Rotting Infinitely Many-Armed Bandits

Jung-Hun Kim, Milan Vojnovic, Se-Young Yun
Proceedings of the 39th International Conference on Machine Learning, PMLR 162:11229-11254, 2022.

Abstract

We consider the infinitely many-armed bandit problem with rotting rewards, where the mean reward of an arm decreases at each pull of the arm according to an arbitrary trend with maximum rotting rate $\varrho=o(1)$. We show that this learning problem has an $\Omega(\max\{\varrho^{1/3}T, \sqrt{T}\})$ worst-case regret lower bound where $T$ is the time horizon. We show that a matching upper bound $\tilde{O}(\max\{\varrho^{1/3}T, \sqrt{T}\})$, up to a poly-logarithmic factor, can be achieved by an algorithm that uses a UCB index for each arm and a threshold value to decide whether to continue pulling an arm or remove the arm from further consideration, when the algorithm knows the value of the maximum rotting rate $\varrho$. We also show that an $\tilde{O}(\max\{\varrho^{1/3}T, T^{3/4}\})$ regret upper bound can be achieved by an algorithm that does not know the value of $\varrho$, by using an adaptive UCB index along with an adaptive threshold value.

Cite this Paper


BibTeX
@InProceedings{pmlr-v162-kim22j, title = {Rotting Infinitely Many-Armed Bandits}, author = {Kim, Jung-Hun and Vojnovic, Milan and Yun, Se-Young}, booktitle = {Proceedings of the 39th International Conference on Machine Learning}, pages = {11229--11254}, year = {2022}, editor = {Chaudhuri, Kamalika and Jegelka, Stefanie and Song, Le and Szepesvari, Csaba and Niu, Gang and Sabato, Sivan}, volume = {162}, series = {Proceedings of Machine Learning Research}, month = {17--23 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v162/kim22j/kim22j.pdf}, url = {https://proceedings.mlr.press/v162/kim22j.html}, abstract = {We consider the infinitely many-armed bandit problem with rotting rewards, where the mean reward of an arm decreases at each pull of the arm according to an arbitrary trend with maximum rotting rate $\varrho=o(1)$. We show that this learning problem has an $\Omega(\max\{\varrho^{1/3}T, \sqrt{T}\})$ worst-case regret lower bound where $T$ is the time horizon. We show that a matching upper bound $\tilde{O}(\max\{\varrho^{1/3}T, \sqrt{T}\})$, up to a poly-logarithmic factor, can be achieved by an algorithm that uses a UCB index for each arm and a threshold value to decide whether to continue pulling an arm or remove the arm from further consideration, when the algorithm knows the value of the maximum rotting rate $\varrho$. We also show that an $\tilde{O}(\max\{\varrho^{1/3}T, T^{3/4}\})$ regret upper bound can be achieved by an algorithm that does not know the value of $\varrho$, by using an adaptive UCB index along with an adaptive threshold value.} }
Endnote
%0 Conference Paper %T Rotting Infinitely Many-Armed Bandits %A Jung-Hun Kim %A Milan Vojnovic %A Se-Young Yun %B Proceedings of the 39th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2022 %E Kamalika Chaudhuri %E Stefanie Jegelka %E Le Song %E Csaba Szepesvari %E Gang Niu %E Sivan Sabato %F pmlr-v162-kim22j %I PMLR %P 11229--11254 %U https://proceedings.mlr.press/v162/kim22j.html %V 162 %X We consider the infinitely many-armed bandit problem with rotting rewards, where the mean reward of an arm decreases at each pull of the arm according to an arbitrary trend with maximum rotting rate $\varrho=o(1)$. We show that this learning problem has an $\Omega(\max\{\varrho^{1/3}T, \sqrt{T}\})$ worst-case regret lower bound where $T$ is the time horizon. We show that a matching upper bound $\tilde{O}(\max\{\varrho^{1/3}T, \sqrt{T}\})$, up to a poly-logarithmic factor, can be achieved by an algorithm that uses a UCB index for each arm and a threshold value to decide whether to continue pulling an arm or remove the arm from further consideration, when the algorithm knows the value of the maximum rotting rate $\varrho$. We also show that an $\tilde{O}(\max\{\varrho^{1/3}T, T^{3/4}\})$ regret upper bound can be achieved by an algorithm that does not know the value of $\varrho$, by using an adaptive UCB index along with an adaptive threshold value.
APA
Kim, J., Vojnovic, M. & Yun, S.. (2022). Rotting Infinitely Many-Armed Bandits. Proceedings of the 39th International Conference on Machine Learning, in Proceedings of Machine Learning Research 162:11229-11254 Available from https://proceedings.mlr.press/v162/kim22j.html.

Related Material