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Abstract

In this paper, we introduce a robust nonparamet-
ric density estimator combining the popular Ker-
nel Density Estimation method and the Median-
of-Means principle (MoM-KDE). This estima-
tor is shown to achieve robustness for a large
class of anomalous data, potentially adversar-
ial. While previous works only prove consis-
tency results under very specific contamination
models, this work provides finite-sample high-
probability error-bounds without any prior knowl-
edge on the outliers. To highlight the robustness
of our method, we introduce an influence function
adapted to the considered O U Z framework. Fi-
nally, we show that MoM-KDE achieves competi-
tive results when compared with other robust ker-
nel estimators, while having significantly lower
computational complexity.

1. Introduction

Over the past years, the task of learning in the presence
of outliers has become an increasingly important objective
in both statistics and machine learning. Indeed, in many
situations, training data can be contaminated by undesired
samples, which may badly affect the resulting learning task,
especially in adversarial settings. Therefore, building robust
estimators and algorithms that are resilient to outliers is
becoming crucial in many learning procedures. In particu-
lar, the inference of a probability density function from a
contaminated random sample is of major concern.

Density estimation methods are mostly divided into paramet-
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ric and nonparametric techniques. Among the nonparamet-
ric family, the Kernel Density Estimator (KDE) is arguably
the most known and used for both univariate and multivari-
ate densities (Parzen, 1962; Silverman, 1986; Scott, 2015),
but it is also known to be sensitive to datasets contaminated
by outliers (Kim and Scott, 2011; 2012; Vandermeulen and
Scott, 2014). The construction of a robust KDE is therefore
an important area of research that can have useful applica-
tions, such as anomaly detection and resilience to adversarial
data corruption. Yet, only few works have proposed such a
robust estimator.

Kim and Scott (2012) proposed to combine KDE with ideas
from M-estimation to construct the so-called Robust Ker-
nel Density Estimator (RKDE). However, no consistency
results were provided and robustness was rather shown ex-
perimentally. Later, RKDE was proven to converge to the
true density, however at the condition that the dataset re-
mains uncorrupted (Vandermeulen and Scott, 2013). More
recently, Vandermeulen and Scott (2014) proposed another
robust estimator, called Scaled and Projected KDE (SP-
KDE). Authors proved the L;-consistency of SPKDE under
a variant of the Huber’s e-contamination model (Huber,
1992) where two strong assumptions are made. First, the
contamination parameter ¢ is assumed to be known, and
second, the outliers must be uniform over the support of the
true density. Unfortunately, as they did not provide rates
of convergence, it still remains unclear at which speed SP-
KDE converges to the true density. Finally, both RKDE
and SPKDE require iterative algorithms to compute their
estimators, thus increasing the overall complexity of their
construction. For theoretical findings, the recent work of
Liu and Gao (2019) managed to obtain minimax optimal
rates for kernel density estimates, but in the quite restrictive
Huber’s model (see Sec. 2.1).

In statistical analysis, another idea to construct robust es-
timators is to use the Median-of-Means principle (MoM).
Introduced by Nemirovsky and Yudin (1983), Jerrum et al.
(1986), and Alon et al. (1999), the MoM was first designed
to estimate the mean of a real random variable. It relies on
the simple idea that rather than taking the average of all the
observations, the sample is split in several non-overlapping
blocks over which the mean is computed. The MoM esti-
mator is then defined as the median of these means. Being
easy to compute, the MoM properties have been studied by
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Minsker et al. (2015) and Devroye et al. (2016) to estimate
the means of heavy-tailed distributions. Furthermore, due
to its robustness to outliers, MoM-based estimators have
recently gained a renewed interest in the machine learning
community (Lecué et al., 2020b;a; Laforgue et al., 2020).

Contributions. In this paper, we propose a new robust
nonparametric density estimator based on the combination
of the Kernel Density Estimation method and the Median-of-
Means principle (MoM-KDE). We place ourselves in a more
general framework than the classical Huber contamination
model, called O U Z, which gets rid of any assumption on
the outliers. We demonstrate the statistical performance
of the estimator through finite-sample high-confidence er-
ror bounds in the L,,-norm and show that MoM-KDE is
consistent under the condition that the outlier proportion
tends to 0 — a necessary condition in robust kernel density
estimation (Liu and Gao, 2019). Additionally, we prove the
consistency in the L;-norm, which is known to reflect the
global performance of the estimate (Devroye and Gyorfi,
1985). To the best of our knowledge, this is the first work
that presents such results in the context of robust kernel
density estimation, under the O U Z framework. As a mea-
sure of robustness, we also introduce an influence function
adapted to the O U 7 framework. It allows us to find the
number of outliers above which the MoM-KDE is less sen-
sitive to outliers than the KDE. Finally, we demonstrate the
empirical performance of MoM-KDE on both synthetic and
real data and show the practical interest of such estimator as
it has a lower computational complexity than the baseline
RKDE and SPKDE.

2. Median-of-Means Kernel Density
Estimation

We first recall the classical kernel density estimator. Let
X1,---,X, be independent and identically distributed
(i.1.d.) random variables that have a probability density
function (pdf) f(-) with respect to the Lebesgue measure
on RY. The Kernel Density Estimate of f (KDE), also
called the Parzen—Rosenblatt estimator, is a nonparametric
estimator given by

; IR X —
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where h > 0 and K : R? — R, is an integrable
K(u)du = 1 (Tsybakov, 2008).

function satisfying

Such a function K (-) is called a kernel and the param-
eter h is called the bandwidth of the estimator. The
bandwidth is a smoothing parameter that controls the
bias-variance tradeoff of f,,(-) with respect to the input data.
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Figure 1. From left to right: True density and outliers from a uni-
form density, estimation with KDE, and with MoM-KDE.

While this estimator is central in statistics, a major drawback
is its weakness against outliers (Kim and Scott, 2008; 2011;
2012). Indeed, as it assigns uniform weights 1/n to every
K (-) regardless of whether X; is an outlier or not, inliers and
outliers contribute equally in the construction of the KDE,
which results in undesired “bumps” over outlier locations in
the final estimated density (see Figure 1).

In the following, we propose a KDE-based density estimator
robust to the presence of outliers in the sample set. These
outliers are considered in a general framework described in
the next section.

2.1. Outlier setup

Throughout the paper, we consider the O U Z framework
introduced by Lecué and Lerasle (2019). This very general
framework allows the presence of outliers in the dataset and
relax the standard i.i.d. assumption on each observation. We
therefore assume that the n random variables are partitioned
into two (unknown) groups: a subset {X; | ¢ € Z} made of
inliers, and another subset {X; | ¢ € O} made of outliers
such that ONZ = Pand OUZ = {1,...,n}. While
we suppose the X;c7 are i.i.d. from a distribution that
admits a density f with respect to the Lebesgue measure,
no assumption is made on the outliers X;c». Hence, these
outlying points can be dependent or adversarial.

The O U 7T framework is related to the well-known Huber’s
e-contamination model (Huber, 1992) where it is assumed
that data are i.i.d. with distribution g = ¢fr + (1 — ¢) fo,
and € € [0, 1); the distribution f7 being related to the inliers
and fo to the outliers. However, there are several important
differences. First, in the O U Z the proportion of outliers is
fixed and equals |O|/n, whereas it is random in the Huber’s
e-contamination model (Lerasle, 2019). Second, the O UZ
is less restrictive. Indeed, contrary to Huber’s model which
considers that inliers and outliers are respectively i.i.d from
the same distributions, O UZ does not make any assumption
about the outliers. This framework should not be confused
with the e-corruption model where an adversary is allowed
to directly modify the inliers set (Diakonikolas et al., 2019).
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2.2. MoM-KDE

We now present our main contribution, a robust kernel den-
sity estimator based on the MoM. This estimator is essen-
tially motivated by the fact that the classical kernel density
estimation at one point corresponds to an empirical average
(see Equation (1)). Therefore, the MoM principle appears
to be an intuitive solution to build a robust version of the
KDE. A formal definition of MoM-KDE is given below.

Definition 1. (MoM Kernel Density Estimator) Let 1 <

S < n, and let By,---,Bg be a random partition of
{1,--- ,n} into S non-overlapping blocks B of equal size
ns =n/S.

The MoM Kernel Density Estimator (MoM-KDE) of f at xg
is given by

fA{oM(fEO) x Median (fn1 (.270), s ,fns (l‘o)) s (2)

where fns (z0) is the value of the standard kernel density
estimator at x obtained via the samples of the s-th block
B,. Note that fMoM(') do not necessarily integrates to
1. However, as suggested by Devroye and Lugosi (2012)
(section 5.6), it can always be normalized by its integral.

Broadly speaking, MoM estimators appear to be a good
tradeoff between the unbiased but non robust empirical
mean and the robust but biased median (Lecué et al., 2020b).
Furthermore, we remark that, when S = 1 the standard
KDE is recovered.

2.3. Time complexity

The complexity of MoM-KDE to evaluate one point is the
same as the standard KDE, O(n); O(S - %) for the block-
wise evaluation and O(.S) to compute the median with the
median-of-medians algorithm (Blum et al., 1973). Since
RKDE and SPKDE are KDEs with modified weights, they
also perform the evaluation step in O(n) time. However,
these weights need to be learnt, thus requiring an additional
non-negligible computing capacity. Indeed, each one of
them rely on an iterative method — respectively the itera-
tively reweighted least squares algorithm and the projected
gradient descent algorithm, that both have a complexity of
O(niter-n?), where 14, is the number of needed iterations
to reach a reasonable accuracy. MoM-KDE on the other
hand does not require any learning procedure. Depending
on the application that we have, MoM-KDE may require
a normalization step. When using a Monte Carlo method,
the complexity of such a normalization step at a given pre-
cision of 1//Mporm is O(Nporm) (Weinzierl, 2000). Note
that the evaluation step can be accelerated through several
ways, hence potentially reducing computational time of all
these competing methods (Gray and Moore, 2003a;b; Wang
and Scott, 2019; Backurs et al., 2019). Theoretical time
complexities are gathered in Table 1.

Method Learning Evaluation Iterative method
KDE - O(n) no
RKDE O(niter - %) O(n) yes
SPKDE O(niter - n?)  O(n) yes
MoM-KDE - O(n + Nporm) NO

Table 1. Computational complexity.

3. Theoretical analysis

In this section, we give a finite-sample high-probability er-
ror bound in the L .-norm for MoM-KDE under the O UZ
framework. To our knowledge, this work is the first to pro-
vide such error bounds in robust kernel density estimation
under this framework. In order to build this high-probability
error bound, it is assumed, among other standard hypothe-
ses, that the true density is Holder-continuous, a smoothness
property usually considered in KDE analysis (Tsybakov,
2008; Jiang, 2017; Wang et al., 2019). In addition, we
show the consistency in the L;-norm. In this last result,
we will see that the aforementioned assumptions are not
necessary to obtain the consistency. In the following, we
give the necessary definitions and assumptions to perform
our non-asymptotic analysis.

3.1. Setup and assumptions

Let us first list the usual assumptions, notably on the consid-
ered kernel function, that will allow us to derive our results.
They are standard in KDE analysis, and are chosen for their
simplicity of comprehension (Tsybakov, 2008; Jiang, 2017).
More general hypotheses could be made in order to obtain
the same results, notably assuming kernel of order ¢ (see
for example the works of Tsybakov (2008) and Wang et al.
(2019)).

Assumption 1. (Bounded density) || f]|oc < 00.

We make the following assumptions on the kernel K
which are fairly standard.

Assumption 2. The kernel K : R? —; R is bounded by
a positive constant C, and integrates to 1.

Assumption 3. Let F be the class of functions of the
form z € R? — K(x — z). Then, F is a uniformly
bounded VC class (Wang et al., 2019).

All the above assumptions are respected by most of the
popular kernels, in particular the Gaussian, Exponential,
Uniform, Triangular, Cosine kernel, etc. These are key prop-
erties to provide the bounds presented in the next section.

Before stating our main results, we recall the definition of
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the Holder class of functions.

Definition 2. (Holder class) Let T be an interval of R,
and 0 < a < 1and L > 0 be two constants. We say that a
Sunction f : T — R belongs to the Holder class X(L, o) if
it satisfies

Vo, o' €T, |f(z)— f@)| < Lz —2'|*. (3)
This definition implies a notion of smoothness on the func-
tion f, and is a convenient property to bound the bias of
KDE-based estimators.

3.2. L, and L, consistencies of MoM-KDE

This section states our central finding, a L, finite-sample
error bound for MoM-KDE that proves its consistency
under the O U Z framework.

Lemma 1. (L, error-bound of the KDE without outliers -
(Wang et al., 2019)) Suppose that f belongs to the class of
densities P(c, L) defined as

Pla, 1) £ {f 520, [ St =1, @
and f € E(a,L)} ,

where X(av, L) is the Holder class of functions on R? (Def-
inition 2). Grant assumptions 1 to 3 and let h € (0,1),
v > 0, n large enough, and nh® > 1. Then with probability
at least 1 — exp(—y), we have

v +log(1/h)

fo <
[ fr = fllo < Ch i

+C2h®, (5)

where Cy = L/ lul|“K (u)du < 0o and C1 is a constant

that only depends on || f || oo, the dimension d, and the kernel
properties.

This lemma, which is verified several times in the literature
(see e.g. (Giné and Guillou, 2002; Jiang, 2017; Wang
et al., 2019)), comes from the well-known bias-variance
decomposition, where we separately bound the variance
(see e.g. Wang et al. (2019); Kim et al. (2019)) and the bias
(see e.g. Tsybakov (2008); Rigollet and Vert (2009)). It
shows the consistency of KDE without outliers, as soon as
h — 0 and nh? — oco.

We now present our main result. Its objective is to show
that even under the O U Z framework, we do not need any
critical additional hypothesis — besides the ones of the
previous lemma — to show that MoM-KDE is consistent.

Proposition 1. (L., error-bound of the MoM-KDE under
the O U Z) Suppose that f belongs to the class of densities
P(a, L) and grant assumptions 1 to 3. Let S be the number
of blocks such that S > 2|O| + 1. Then, for any h € (0, 1),
~v > 0, n/S large enough, and nh® > S, we have with
probability at least 1 — exp(—~),

S(log(S) + v + log(1/h))

nhd +COh?

| Farons—Flloo < Cl\/

where Cy = L [ ||u||*K (u)du < oo, and C} is a constant

that only depends on || f|| 0, the dimension d, and the kernel
properties.

The proof of this proposition is given in the Appendix.
In addition to S > 2|O| + 1 in Proposition 1, the other
conditions come from those in Lemma 1, which are
necessary to obtain the rate in the uncorrupted scenario. The
upper bound in the probability is minimal for S = 2|O| + 1.
Note also that when |O| = 0 and S = 1, we exactly recover
the result of Lemma 1 i.e. the rate for the KDE without
outliers. This was expected as for S = 1, the MoM-KDE is
exactly the KDE.

Corollary 1. (Rate of convergence) Consider the assump-
tions of Proposition 1 with S = 2|O| + 1, v = log(n) and

let
e (Sl 1ot
= " .

With probability higher than 1 — % we have

HfMo]VI - f”oo

a/(2a+d) 1 a/(2a+d)
< <O| log(n)) + ( Og(n)) .
n

n

Corollary 1, proved in Appendix, shows that the rate is split
in two terms. On the right, we have the classical minimax
optimal rate of the KDE without outliers. On the left, we
have a rate that depends on the outlier proportion |O|/n. It
also shows that a sufficient condition to obtain consistency
(error tending to 0) is to have n — oo (standard) and the
proportion of outliers |O|/n tending to 0. This latter condi-
tion was also expected since the minimax analysis done for
the specific case of the Huber’s model already captured it
as a necessary condition (Liu and Gao, 2019). Note further
that, when there is no outlier, i.e. |O| = 0, we recover the
standard KDE minimax optimal rate (Wang et al., 2019).

Last but not least, our two main results illustrate that the
convergence of the MoM-KDE only depends on the number
of outliers in the dataset, and not on their “type”. This
estimator is therefore robust in a wide range of scenarios.
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In particular, the proof of Proposition 1 and Corollary 1
are also valid under the adversarial scenario (Diakonikolas
et al., 2019; Depersin and Lecué, 2021) which is a more
complex case than the O U Z framework. For instance, this
framework allows the inliers to be highly correlated because
of the corruption step.

We now give a L -consistency result under mild hypotheses,
which is known to reflect the global performance of
the estimate. Indeed, small L, error leads to accurate
probability estimation (Devroye and Gyorfi, 1985).

Proposition 2. (L;-consistency in probability) If n/S —
00, h = 0, nh% = oo, S/W%O,andSZQKQH—l,
then R

| fatons = i =+ 0.

This result is obtained by bounding the left-hand part by
the errors in the healthy blocks only, i.e. those without
anomalies. Under the hypothesis of the proposition, these
errors are known to converge to 0 in probability (Wang
et al., 2019). The complete proof is given in the Appendix.
Contrary to SPKDE (Vandermeulen and Scott, 2014), no
assumption on the outliers generation process is necessary to
obtain this consistency result. Moreover, while we need to
assume that the proportion of outliers is perfectly known to
prove the convergence of SPKDE, the MoM-KDE converges
whenever the number of outliers is overestimated.

Finally, note that again in Proposition 2, a condition to
obtain consistency is that the fraction of outliers |O|/n
tends to zero. As explained upper, this assumption is natural
since the fraction of outliers tending to zero has been shown
to be a necessary condition for consistency in the Huber
framework (Liu and Gao, 2019).

3.3. Influence function in the O U 7 framework

As a measure of robustness, we now introduce an Influence
Function (IF) (or sensitivity curve) adapted to the O UZ
framework. It is inspired from the classical IF, first pro-
posed by Hampel (1974), which measures how an estimator
changes when the initial distribution is modified by adding
a small amount of contamination at a point 2. Therefore, it
provides a notion of stability in the Huber model framework
(Andrews, 1986; Debruyne et al., 2008).

Generalizing the IF from the Huber model to the O UZ
framework is not that straightforward. Indeed, the definition
of the IF for function estimate (introduced for the Huber
model in (Kim and Scott, 2011) ; Definition 1) is
T(x; Fy) —T(x; F
IFuuber (2,2 T, F) = lim (@; Fy) (; F) ,

s—0 S

where Fy = (1 — s)F' + s, and T is a function estimate
based on F' evaluated at x. This formulation is adapted for

—— IF of MoM-KDE
IF of KDE

e  outliers (2/)

Figure 2. Influence function for MoM-KDE and KDE where n =
1000, m = 40 outliers are placed at ' = 12, and where the
samples in Z,, are drawn from the true density: 2/3 - A(0,1) +
1/3-N(5,1).

the Huber model as it consider all samples drawn from a
mixture of a true density (here F') and an outlying one (d,).
This is unfortunately not adapted to the O U Z framework.
To highlight the robustness of our estimator using an “IF-
based idea”, we adapt it to this framework and proposed the
following definition.

Definition 3. (IFoyz) Let T,,(x0;Z,,) be a density estima-
tor evaluated at xo and learned with a healthy data set
T, = {X;}" ;. Let m € Nand ' € R%. The IFo,z is
defined as:

IFOUI($07 xlv m; Ly, Tn)
£ T3 (205 Zn) — Tn(w0; L U {x/}?ll)‘ )

where by healthy points we mean inliers i.e. samples that
are independently drawn from the true density function.

Given this definition, [Fpz quantifies how much the value
at xg of an estimated density function changes whenever the
healthy dataset is increased by m points located at z’. There-
fore, the link with the notion of stability is made obvious:
the smaller IF» 7 is, the more stable and thus robust the es-
timator is. An illustration of the IF for MoM-KDE and KDE
is given in Figure 2. It shows that the IF for MoM-KDE
is lower than the one of KDE, especially near the outlying
points {z’}. Note that the variability observed in the case
of MoM-KDE is due to the block splitting procedure. See
Section C of the Appendix for more results on the IF.

In the next proposition, we provide a lower bound on the
number of added samples m over which the IFpz of
the MoM-KDE is lower that the one of KDE with high
probability.

Proposition 3. Let 2/, € R and T,, be a healthy data
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set. Grant assumptions 1 to 3 and denote

A X; — 2o A x' — xg
a:ZK<h>, b:K( - .

i€Ly,

Let S > 2m + 1 with m € [0, 5[ the number of added

samples and 6 > 0 such that |b — a/n| > C,1/26S/n.
C,V2n3S

I > £

fm - \b—a/n\—cp\/QSS/n

than 1 — 4 exp(—0) we have:

, then with probability higher

Fouz(zo, ', m; L, faronr)

<1Fouz(zo,2',m; Ly, fxDE) -

The proof of this proposition is given in the Appendix.

Given the previous proposition, the lower bound on m
over which the MoM-KDE is better than KDE is not nec-
essarily easy to interpret. When everything is fixed ex-
cept 2o and z’, we see that the bound is low whenever
|b—a/n| = |K(3”°T*“”') — 157 K(#05%4)) is large. A suf-
ficient condition for this is to take 2’ far from the sampling
set Z,,, i.e take 2’ as an outlier. Under this condition, the
bound will get even lower whenever x gets closer to z’.

4. Numerical experiments

In this section, we display numerical results supporting
the relevance of MoM-KDE. All experiments were run on
a personal laptop computer using Python. The code of
MoM-KDE is made available online.'.

Comparative methods. In the following experiments, we
propose to compare MoM-KDE to the classical KDE and
two robust versions of KDE, called RKDE (Kim and Scott,
2012) and SPKDE (Vandermeulen and Scott, 2014).

As previously explained, RKDE takes the ideas of robust
M-estimation and translate it to kernel density estimation.
The authors point out that classical KDE estimator can be
seen as the minimizer of a squared error loss in the Repro-
ducing Kernel Hilbert Space (RKHS) H corresponding to
the chosen kernel. Instead of minimizing this loss, they
propose to minimize a robust version of it:

frxoE = argmian(qu(Xi) —9lw),
9 iy

where ¢ is the canonical feature map associated to the RKHS
and p(-) is taken to be either the Huber or the Hampel func-
tion, both known to bring robustness in M-estimations. The
solution of the newly expressed problem is then found us-
ing the iteratively reweighted least squares algorithm. Note

lhttps ://github.com/1lminvielle/mom—-kde. For
the sake of comparison, we also implemented RKDE and SPKDE.

that this RKHS approach has also been combined with the
MoM principle for robust estimation in (Lerasle et al., 2019).
However, no algorithm was proposed to build this estimator,
which is why no comparison is made here.

SPKDE proposes to scale and project the standard KDE in
a way that it decontaminates the dataset. Recall that fn is
the classical KDE estimator of Equation (1), this procedure
is done by finding

n
JspkDE = argminz 18.fn = gll2

[ STAN

where A,, corresponds to the convex hull of { K ( X';I_' )
and S is an hyperparameter that controls the robustness.
The minimization is shown to be equivalent to a quadratic
program over the simplex, solved via projected gradient
descent.

Metrics. The performance of the MoM-KDE is measured
through three metrics. Two are used to measure the sim-
ilarity between the estimated and the true density. One
describes performances of an anomaly detector based on
the estimated density. The first one is the Kullback-Leibler
divergence (Kullback and Leibler, 1951) which is the most
used in robust KDE (Kim and Scott, 2008; 2011; 2012; Van-
dermeulen and Scott, 2014). Used to measure the similarity
between distributions, it is defined as

DeL(fIf) = /f(:c) log (;Eg) dx

As the Kullback-Leibler divergence is non-symmetric and
may have infinite values when distributions do not share the
same support, we also consider the Jensen-Shannon diver-
gence (Endres and Schindelin, 2003; Liese and Vajda, 2006).
It is a symmetrized version of Dy; , with positive values,
bounded by 1 (when the logarithm is used in base 2), and
has found applications in many fields, such as deep learn-
ing (Goodfellow et al., 2014) or transfer learning (Segev
et al., 2017). It is defined as

Dis(FI1) = 5 (Pa(Fll) + Drel )

withg = 2(f+ f) .

Motivated by real-world application, the third metric is not
related to the true density, which is usually not available
in practical cases. Instead, we quantify the capacity of
the learnt density to detect anomalies using the well-known
Area Under the ROC Curve criterion (AUC) (Bradley, 1997).
An input point x is considered abnormal whenever f (z0)
is below a given threshold.
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Figure 3. Density estimation with synthetic data. The displayed metric is the Jensen-Shannon divergence. A lower score means a better

estimation of the true density.

Hyperparameters. All estimators are built using the
Gaussian kernel. The number of blocks S in MoM-KDE
is selected on a regular grid of 20 values between 1 and
2|O| + 1 in order to obtain the lowest Djs. Recall that from
a theoretical point of view, we showed that if S > 2|O| 4 1,
i.e. at least half of the blocks does not contain anomalies,
consistency results and rates can be obtained (Propositions
1 and 2). However, if the proportion of anomalies gets large,
S > 2|0| + 1 implies a small number of samples in each
block which may lead to bad estimates. Thus, it seems that
S > 2|O] + 1 is not a necessary condition to obtain good
results. In practice, this suggests that .S could be lower than
2|O| 4 1, reason why we use this grid search strategy. The
bandwidth A is chosen for KDE via the pseudo-likelihood
k-cross-validation method (Turlach, 1993), and used for all
estimators. The construction of RKDE follows exactly the
indications of its authors (Kim and Scott, 2012) and p(-) is
taken to be the Hampel function as it empirically showed to
be the most robust. For SPKDE, the true ratio of anomalies
is given as an input parameter.

4.1. Results on synthetic data

To evaluate the efficiency of the MoM-KDE against KDE
and its robust competitors, we set up several outlier situa-
tions. In all theses situations, we draw N = 1000 inliers
from an equally weighted mixture of two normal distribu-
tion A (1, 01) and N (g, 02) with g1 = 0, ps = 6, and
01 = o9 = 0.5. The outliers however are sampled through
various schemes:

(a) Uniform. A uniform distribution U ([p1 — 3, p2 +
3]) which is the classical setting used for outlier
simulation.

(b) Regular Gaussian. A similar-variance normal dis-
tribution A (3,0.5) located between the two inlier
clusters.

(¢) Thin Gaussian. A low-variance normal distribution
N (3,0.01) located between the two inliers clusters.

(d) “Adversarial” Thin Gaussian. A low variance nor-
mal distribution A(0,0.01) located on one of the
inliers’ Gaussian mode. This scenario can be seen
as adversarial as an ill-intentioned agent may hide
wrong points in region of high density. It is the most
challenging setting for standard robust estimators as
they are in general robust to outliers located outside
the support of the density we wish to estimate.

For all situations, we consider several ratios of contamina-
tion and set the number of outliers || in order to obtain a
ratio |O|/n ranging from 0.05 to 0.5 with 0.05-wide steps.
Finally, to evaluate the pertinence of our results, for each
set of parameters, data are generated 10 times.

We display in Figure 3 the results over synthetic data us-
ing the Djg score. The average scores and standard de-
viations over the 10 experiments are represented for each
outlier scheme and ratio. Overall, the results show the
good performance of MoM-KDE in all the considered situ-
ations. Furthermore, they highlight the dependency of the
two competitors to the type of outliers. Indeed, as SPKDE is
designed to handle uniformly distributed outliers, the algo-
rithm struggles when confronted with differently distributed
outliers (see Figure 3 b, ¢, d). RKDE performs generally
better, but fails against adversarial contamination, which
may be explained by its tendency to down-weight points
located in low-density regions, which for this particular case
correspond to the inliers. Results for Dgy, and AUC are
reported in the Appendix C. Generally, they show similar
results and the same conclusions on the good performance
of MoM-KDE can be made.

In the Appendix C, we also add comparisons with methods
that first proceed to an anomaly detection step before fitting
a classical KDE. However, their results are not as good as
those of the robust estimators.

4.2. Results on real data

Experiments are also conducted over six classifica-
tion datasets: Banana, German, Titanic, Breast-cancer,
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Figure 4. Anomaly detection with real datasets, measured with AUC over varying outlier proportion. A higher score means a better
detection of the outliers. For Digits, we specify which classes are chosen to be inliers (Z) and outliers (O).

Iris, and Digits. They contain respectively n =
5300, 1000, 2201, 569, 150 and 1797 data points having
d = 2,20,3,30,4 and 64 input dimensions. They
are all publicly available either from open reposito-
ries at http://www.raetschlab.org/Members/
raetsch/benchmark/ (for the first three) or directly
from the Scikit-learn package (for the last three) (Pedregosa
et al., 2011). We follow the approach of Kim and Scott
(2012) that consists in setting the class labeled 0 as outliers
and the rest as inliers. To artificially control the outlier pro-
portion, we randomly downsample the abnormal class to
reach aratio |O|/n ranging from 0.05 to 0.5 with 0.05-wide
steps. When a dataset does not contain enough outliers to
reach a given ratio, we similarly downsample the inliers. For
each dataset and each ratio, the experiments are performed
50 times, the random downsampling resulting in different
learning datasets. The empirical performance is evaluated
through the capacity of each estimator to detect anomalies,
which we measure with the AUC.

Results are displayed in Figure 4. With the Digits dataset,
we also explore additional scenarios with changing inlier
and outlier classes (specified in the figure captions). Overall,
results are in line with performances observed over syn-
thetic experiments, achieving good results in comparison
to its competitors. Note that even in the highest dimen-
sional scenarios, i.e. Digits and Breast cancer (d = 64 and
d = 30), MoM-KDE still behaves well, outperforming its
competitors. This behavior for high-dimensionality prob-
lems was also notice for robust KDE-based methods in a
recent anomaly detection review (Domingues et al., 2018).

Additional results are reported in the the Section C of the
Appendix.

5. Conclusion

The present paper introduced MoM-KDE, a new efficient
way to perform robust kernel density estimation. The
method has been shown to be consistent in both L,
and L; error-norm in presence of very generic outliers.
MoM-KDE achieved good empirical results in various
situations while having a lower computational complexity
than its competitors.

While the present work uses the coordinate-wise median
to construct its robust estimator, it might be interesting to
investigate the use of other generalizations of the median
in high dimension, e.g. the geometric median. Another
possible extension of the proposed method is to consider a
bootstrap version where several random splits are performed
and thus several MoM-KDE are aggregated. In that case,
one can expect the final output to be smoother and the bound
to be less dependent on the number of blocks .S. On the other
hand, with such approach the complexity of the method
increases. First empirical visualizations of this method can
be found in the Appendix.
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Appendix

A. Additional comments

We begin this section with a simple example highlighting the robustness of MoM-KDE compared with KDE (see also Figure
1 for a different visual example).

Example 1. (MoM-KDE v.s. Uniform KDE) Let the inliers be i.i.d. samples from a uniform distribution on the interval
[—1, 1] and the outliers be i.i.d. samples from another uniform distribution on [—3, 3]. Let the kernel function be the uniform
kernel, o = 2 and h € (0, 1). , we obtain

| Farons (o) — F(20)| =0 a.s.

and P (|falwo) = f(zo)] =0) = (1—1/3) £ 1.

Proof. Since the inliers are uniform on [—1, 1], when 29 = 2, we have f(xo) = 0. Recall that the classical KDE at zy = 2
with the uniform kernel and h € (0, 1) is

1 n
= — — < . < .
fn(xo) onh i:E - I(l‘o h < XZ < g+ h)

The support of the inliers is [—1, 1], hence, Vi € Z, I(xg — h < X; < x4+ h) = 0 a.s. and without outliers we would
have f,,(xo) = 0, resulting in no errors at o = 2.

To prove the first equality, it suffices to observe that S > 2|O| implies that more than half the blocks do not contain outliers.
Over each one of these block, the KDE at z is thus equal to 0 a.s. making the MoM estimate equal to 0 as well. Finally it
results in | farons (20) — f(20)| = faronr(zo) = 0, almost surely.

Let us prove the second equality:

]P)(|fn($0)_f( ) ]P)( n xo )
P(leo—h<X <m0+h)—0>

P> I(wo—h<X; <x0+h)—0>
€O

P(¥i € O, X; ¢ [vo — hyzo + 1))
=(1-h/3)°.
O

This result shows that the MoM-KDE makes (almost surely) no error at the point xy. On the contrary, the KDE here has a
non-negligible probability to make an error.

We now make three comments on the behavior of the MoM-KDE.

Optimality. Characterizing the optimality i.e. obtaining lower bound/minimax rates, for our framework is a difficult task.
This is why, at the moment, we characterize the optimality by comparing our rate with the one of the standard KDE, known
to be optimal without outliers (a strategy already used in Lecué et al. (2020a) for example).

Note that Liu and Gao (2019) study minimax rates of the KDE. Nevertheless, their framework is different. Indeed, they
consider the Huber model and study the optimality under L?-convergence. Actually, to be consistent with Liu and Gao
(2019), we have also been interested in finding error rates with L2-convergence. However, the median operator makes the
analysis a lot more complicated, as it would require well-suited concentration inequalities for order statistics in the manner
of Boucheron and Thomas (2012) but for sub-gaussian random variables.
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Figure 5. Illustration of MoM-KDE + Bootstrap.
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Figure 6. Influence function for the 10-randomized version of MoM-KDE with S = 2m + 1 and KDE where the m outliers are placed at
x’ = 12. The true density is 2/3 - N'(0,1) + 1/3 - N'(5,1).

MoM is dependent from the partition. In Figure 2, we see that the MoM-IF is very erratic. This is essentially due
to the partitioning. We actually have several ideas to mitigate this behavior. One natural idea is to perform several
partitions/estimations and then aggregate them. However this would come at the price of additional computations and the
theoretical analysis would become quickly intractable.

Randomization to reduce the variance. During the process of the MoM-KDE, the split of the dataset is arbitrary. One
natural idea, is to consider different splits in order to learn a single MoM-KDE per split, and then average them. The idea
being to learn a smoother density estimator. We give an illustration of this procedure in Figure 5. We clearly see that
MoM-KDE together with Bootstrap is smoother than just one MoM-KDE. The impact of this strategy is also illustrated in
Figures 6 regarding the IF.

B. Technical proofs

Lemma 1 (L., error-bound of the KDE without outliers - (Wang et al., 2019)) Suppose that f belongs to the class of
densities P(a, L) defined as

P(a,L)é{f|f20,/f(x)dac:1, ander(a,L)} ,

where Y(a, L) is the Holder class of function on R, Grant assumptions 1 to 3 and let h € (0,1), v > 0, n large enough,
and nh® > 1. Then with probability at least 1 — exp(—7), we have

v+ log(1/h)

o <
[fn = flloo < C1 —rd

+ C2h®

where Cy = L/ [lu||* K (u)du < oo and C4 is a constant that only depends on || f||co, the dimension d, and the kernel

properties.
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Proposition 1 (L, error-bound of the MoM-KDE under the O U ) Suppose that f belongs to the class of densities
P(a, L) and grant assumptions 1 to 3. Let S be the number of blocks such that S > 2|O| + 1. Then, for any h € (0,1),
v > 0, n/S large enough, and nh® > S, we have with probability at least 1 — exp(—7),

s S(log(S) + v +log(1/h
||fMoM—f|oo§01\/ (Log(S) n’ZLd o1/ ))+Czha7

where Cy = L/ ||lu]|“ K (u)du < oo and C1 is a constant that only depends on || f||co, the dimension d, and the kernel

properties.

Proof. From the definition of the MoM-KDE, we have the following implication (Lecué et al., 2020b)

{sgp j (x)—f(w)’_ } {Supz (

Thus to upper-bound the probability of the left-hand event, it suffices to upper-bound the probability of the right-hand event.
Moreover, we have

Fo (@) — ()‘>a)25/2}.

Fuu @) = £(@)] < sup|fo, (@) = £(@)]

)
o) = 1(@)| > €) < 1 (s

=>I<

s=1 s=1

s s
— slipzf(fns(x)—f(ﬂ?)‘ >5) SZI<31;P ,
vos=1

which implies that

S S
P(sng_jI(f —f(m)‘>€)25/2> SP(ZI(Slip

s=1

RWFﬂM>sz%.

Let Z, =1 (supz

fou () = flz )‘ > e) and let S = {s € {1,---,5} | B;n O = 0} i.e. the set of indices s such that

the block B, does not contain any outliers. Since Z ) is bounded by |O|, almost surely, the following holds.
seSC

i[(sup Fus() — £ ‘ ) Zz =3 z+ Y 2.<Y 2, +10|. ©)
s=1 x

seES s€SC sES

Note that S is never empty thanks to the hypothesis S > 2|O| + 1.

For n large enough e.g. (n/S)h? >~ and (n/S)h? > |log(~y)| (Sriperumbudur and Steinwart (2012) Thm 3.1), Lemma 1

S(y+log(1/h))

with e = C} o

+ C3h®, leads to

pg—P<gpﬂA@f@ﬂ>s>§e”.

Combining this last inequality with equation (6) gives
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fu.(x) — f(a:)‘ > g> > S/2> <P (Z Z;+10] > 5/2>

s=1 seS
<P (ZZS > 5/2 - OI>
seS
g]P’(ZZS > 1/2) :1—]P’<ZZS:O>
seS sES

Sl_(l_pE)‘Sl < 1_(1_175)5
<1—(1—e 5.

Finally, using the factthat 1 — y - e=% < (1 — e~%)Y, we obtain

S(y +log(1/h))
nhd

P(HfMo]\/I_fHooSCl +02ha> 21—5-6_’}/.

Replacing « by log(S) + v > 0 gives

P <|fMoM — flloe < Cl\/S(log(S) t;;: log(1/h)) + C’gh“) >1—e 7.

Note that we can easily extend this proof to the adversarial framework (Depersin and Lecué, 2021). Indeed, suppose
Zy,-- -, Zg defined above equation (6) are corrupted and Z1, - - - , Z¢ are the corresponding uncorrupted version of them.
We have that 73, - - - , Zg are potentially not independent but Z7, - - - , Z§ are independent and Z; = Z for any i € S (this
is the adversarial framework). Then,

S S
Y Zo=d Zi+Y (Z,-Z) <Y Zi+]|0].
s=1

s=1 s=1 s=1
The right-hand side is now a sum of i.i.d. bounded random variables and restarting from equation (6) we can conclude.

O

Corollary 1 (Rate of convergence) Consider the assumptions of Proposition 1 with S = 2|O| + 1, v = log(n) and
. (S log(n) ) 1/(2a+d)

. Thus, with probability higher than 1 — %, we have
n

. O a/(2a+d) ] a/(2a+d)
| faronr = flloo S <| | log(n)> + (og(n)) .

n n

Proof. From the previous proposition we know that with probabability 1 — 1/n, we have

S(log(S) + log(n) + log(1/h))
nhd

||fMoM_f|m<Cl\/ +Cgha

3Slog(n)

<G nhd

+ Cyh® .
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S log(n) 1/(2a+d)
n

Replacing h by in this last equation gives us that

; Sl o/ (2a+d) O o/(2a+d) ] a/(2a+d)
R R e () T )

n n

O
Proposition 2. (L;-consistency in probability) If n/S — oo, h — 0, nh? = oo, S/W — 0,and S > 2|0O| + 1, then
Il fazors = £l n%@ 0.
Proof. We first rewrite the MoM-KDE as

Frron (z Z Fu(

where A, = {x | fMoM(x) = fns (a:)} Without loss of generality, we assume that

S S
A f a0 DB ma Y06

S
@) = 1@ = 15 fu@a. )~ @) de
/XS:( ))IAS(x) dx
SS:
)‘IAS(sc)dac

ES:/ m)‘dw
z;g/ d:v—I—Z/

From the L;-consistency of the KDE in probability, if the number of anomalies grows at a small enough speed (Devroye
and Gyorfi, 1985), the left part is bounded, i.e.

AL

To be more specific, since R,, = v'nh, the rate given in Thm 5.1 of Devroye and Gyorfi (1985), the convergence is
guarantee whenever S/R,, tends to 0 e.g. with S = O(R],) and any 7 € (0,1). We now upper-bound the right part of
equation (7). Let consider a particular block A; where s € S C'. In this block, the estimator fn, is selected and is calculated
with samples containing anomalies. As Vx € Ay, fp,, ()i , we can always find a

s' € Ssuchthat f,, (z) < f, (z)or fu, (z) > fn, ().

Now let denote by AT = {x e Ay | fo(2) > fa )} and AT = {33 e Ay | ful@) < f(x)}. We have A+ U AT = A,

and each one of these blocks can be decomposed respectively into |S| sub-blocks (not necessarily disjoint) { Ag’ﬁr }oes and
{A%~}yes such that Vs’ € S,

f(z)|dx . (7)

fo(@) = fl@)|de 25 0. ®)

n—oo

x)‘dmgsezs/
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45 = o € A| foy (@) 2 fo (@) 2 f@) fand A7 = {o € AL | fo (@) < (@) < S(@) }.
Finally, the right-hand term of equation (7) can be upper-bounded by

> | | fns<x>—f<x>\dx+/45

seSC

:E)‘dxg Z/jﬁ

fo. @) = f@)] da

DIPY [ i@ = s@dat [ @) - r@) e
DD / o @) = @) et [ @) - 1@ e
- s€SC 5'€S )‘ o +/ Jau (@) = f(x)‘ da

Since Vs’ € S we have / | f"s/ (x) — f(z)|dz L 0, we can conclude using similar arguments as those used for (8) that

Z / | fn. () — f(z)|d —> 0, which concludes the proof.

SESC

Proposition 3. Let 2/, xo € R? and T, be an healthy data set. Grant assumptions 1 to 3 and denote

l_
a—ZK( O), béK<x h%)'
i€l

Let S > 2m + 1 with m € [0, 5 [ the number of added samples and § > 0 such that |b — a/n| > C,~/26S/n.
C,V2n5S
fm = lb—a/n|—Cyy/265/n’

then with probability higher than 1 — 4 exp(—9) we have:

IFouz(zo, &', m; Tn, farons) < WFouz(zo, ', m; L, frpE) -

Proof.
— The IF»z for the KDE is
IFouz(zo, 2’ ,m, In; fxpE) = ‘(n+1m)hd (iK (X¢;x0> +i—i1K (xlzxo)) _ # :1]( (Xi;xo)‘
e () () ()

nb—a
n?/m+n

1 1 1\ & X; — xo m ' — xg
- - )Yk K
hd (n+m n)zz_: ( h )+n+m ( h )
m 1
o (75) =

i X
mmaéE:K(
=1

—IFo» 7 for the MoM-KDE
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Let S > 2m be the number of blocks in the MoM-KDE, {B,}5_, and { B, }5_, be respectively the blocks of the
contaminated data set Z,, U {z'}™ and the healthy data set. We have:

S
Xi—xo (EI—IEO
ZK<h>+ZK(h)}
1€L,NBs ie{z’'}NB, =
S

Fouz(xo, 2’ m, Ln; farors) =

1 . S
m Medlan{ m

. S Xi—a?()
— Med — K
edian { & 3 ( - )
s'=1

iGES/
S X,'—Z‘o S X,‘—JUO
— YK - = K
n—i—m_zB; ( h > n Z ( h )"

1€ B iGBS/

1

S

where B, is the block selected by the median for the healthy MoM-KDE. The inequality is obtained by noticing that, with
S > 2m, there always exists an healthy block B that makes it true.

Finally, denoting

S XZ‘—.Z‘Q S Xi—l‘o ’
K - N 2 (At :’Z(S)—Z(S)
Zn-l—m < h ) Z n < h )‘

i€Bs i€B,s
and using both the triangular and Hoeffding inequalities, and the fact that E(Z(®)) = E(Z(*)), we have

h - TFouz(we, ', m, Tn; faronr) < ‘Z(S) AR AR E(Z(S/))’

< ‘Z(S) - IE(Z(S))‘ + ‘Z(S/) - IE(Z(S/))‘ ,

and for ¢ > 0,

P (‘Z(s) - E(Z(s>)‘ > t) < 2exp (_%Q(Her)))

sc?
P (‘Z(s') - E(Z(S’))‘ > t) < 2ex _2t2n = 2ex _2n5t2

where ns = n/S. Furthermore, given two real-valued random variables X, Y", we know that for ¢ > 0,
P(X|+[Y|>20) <P(X| > 6) + (Y| >1) .

Therefore, we have

2
P (‘z(s) _E(Z(S))’ + \z(s ) _E(z¢ ))‘ > t) < dexp <_”St ) .

202
C,oV20 /
Setting t = —2—"— with § > 0, finally gives P (‘Z(S) - 76| < t) > 1 —4exp(—05). We now know that with probability
No»

A 1 C,v20
1- 46Xp(—5), IFOUI(x()ax/amvzn;fJV[oM) < — p\/i

N

and we seek for which value of m, this value is smaller than
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the IF» 7 of the KDE i.e.

Vs|nb — al

n?/m+n< Y21

C V2o

\/rTS|nb—a|7n n2
= 1/m§< 2% )/

n2
= m>

~ /ns|nb — al
Y————n
C,V20

n2

B —
~ Vnnb—a| "
C,V20S
n

>
" VA —a/n]
C,\265

C. Additional results

As stated in the main paper, we display here the additional results containing:

e For synthetic data, the Kullback-Leibler divergence in both directions, i.e. Dgp ( f , f) and Dgr(f, f ), and the ROC
AUC measuring the performance of an anomaly detector based on f. Results are displayed on Figure 7.

e For synthetic data, a benchmark of Outlier Detection (OD) + KDE. Instead of applying directly a robust estimator,
we first proceed to an outlier detection step after which we fit a standard KDE. Results are displayed on Figure 8.

e For Digits data, the ROC AUC measuring the performance of an anomaly detector based on f . As stated in the
main paper, this is done under multiple scenarios, where outliers and inliers can be chosen among the nine available
classes. Here we show the AUC when the outliers are set as one class (class 2 to class 9), and inliers are set as “the
rest” of all classes. Results are displayed on Figure 9.

o Additional visualizations highlighting the behavior of the Influence Function of KDE and MoM-KDE (Figures 10
and 11).

KL, ROC and AUC for Synthetic data. When considering the Kullback-Leibler divergence, results lead to a very similar
conclusion as previously stated, that is, an overall good performance of MoM-KDE while its competitors, notably SPKDE,
are more data-dependent. When the density estimate f is used in a simple anomaly detector, results are quite different.
Indeed, when outliers are uniformly distributed, even if MoM-KDE seems to better estimate the true density (according to
Djs and D), this doesn’t make f Mo a better anomaly detector. It seems that in this case, the outliers are either easily
detected because distant from the density estimate, or located in dense regions, thus making them impossible to identify,
and this for all density estimates provided by competitors. In the case of adversarial contamination, the conclusion is quite
similar. Although MoM-KDE better fits the true density, the situation is extremely difficult for anomaly detection, hence
making all competitors yield very poor results. In the two other cases — Gaussian outlier, anomaly detection results follow
the density estimation.

Benchmark of Outlier Detection (OD) + KDE: We proceed to the OD step using two different methods, the KDE and
the Isolation Forest (IF) (Liu et al., 2008). For the first method, we fit a KDE estimate using all data and we erase the
proportion £ = |O|/n of samples that have the lower density. For the IF, we proceed similarly by removing a proportion &
of outliers. Finally, we fit a KDE estimate on the new samples. The results are given in Figure 8 and show that OD + KDE
(purple curve) or IF + KDE (brown) is not as efficient as RKDE or MoM-KDE.
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Dxw(f, f)
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Figure 7. Density estimation with synthetic data. The displayed metrics are the Kullback-Leibler divergence (a lower score means a better
estimation of the true density) and the AUC (a higher score means a better detection of the outliers).

Digits data. Results over Digits scenarios are inline with main conclusions over real data. Although from one scenario
to another, all methods have varied results, the overall observation is that MoM-KDE is either similar or better than its
competitors.

Influence Function. Illustrations of the behavior of the Influence Function (IF) for MoM-KDE and KDE are given in
Figures 10 and 11. They show that the IF for MoM-KDE is lower than the one of KDE when the m outlying points are all
placed at a low density point 2’ (see Figure 10). On the other hand, Figure 11 shows that whenever the outlying points are
all placed at a high density point 2, the two IF exhibit similar behavior.
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Figure 8. Density estimation with synthetic data. The displayed metric is the Jensen-Shannon divergence. A lower score means a better
estimation of the true density.
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Figure 9. Anomaly detection with Digits data, measured with AUC over varying outlier proportion. A higher score means a better
detection of the outliers. We specify which classes are chosen to be inliers (Z) and outliers (O).
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Figure 10. Influence function for the 10-randomized version of MoM-KDE with § = 2m + 1 and KDE where the m outliers are placed

at ' = 12. The true density is 2/3 - N'(0,1) + 1/3 - N'(5,1).
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Figure 11. Influence function for MoM-KDE with S = 2m + 1 and KDE where the m = 100 outliers are placed at z’, and where the

samples in Z,, are drawn from the true density: 2/3 - N'(0,1) + 1/3 - N'(5,1).



