Adversarial Attacks on Gaussian Process Bandits

Eric Han, Jonathan Scarlett
Proceedings of the 39th International Conference on Machine Learning, PMLR 162:8304-8329, 2022.

Abstract

Gaussian processes (GP) are a widely-adopted tool used to sequentially optimize black-box functions, where evaluations are costly and potentially noisy. Recent works on GP bandits have proposed to move beyond random noise and devise algorithms robust to adversarial attacks. This paper studies this problem from the attacker’s perspective, proposing various adversarial attack methods with differing assumptions on the attacker’s strength and prior information. Our goal is to understand adversarial attacks on GP bandits from theoretical and practical perspectives. We focus primarily on targeted attacks on the popular GP-UCB algorithm and a related elimination-based algorithm, based on adversarially perturbing the function f to produce another function f  whose optima are in some target region. Based on our theoretical analysis, we devise both white-box attacks (known f) and black-box attacks (unknown f), with the former including a Subtraction attack and Clipping attack, and the latter including an Aggressive subtraction attack. We demonstrate that adversarial attacks on GP bandits can succeed in forcing the algorithm towards the target region even with a low attack budget, and we test our attacks’ effectiveness on a diverse range of objective functions.

Cite this Paper


BibTeX
@InProceedings{pmlr-v162-han22f, title = {Adversarial Attacks on {G}aussian Process Bandits}, author = {Han, Eric and Scarlett, Jonathan}, booktitle = {Proceedings of the 39th International Conference on Machine Learning}, pages = {8304--8329}, year = {2022}, editor = {Chaudhuri, Kamalika and Jegelka, Stefanie and Song, Le and Szepesvari, Csaba and Niu, Gang and Sabato, Sivan}, volume = {162}, series = {Proceedings of Machine Learning Research}, month = {17--23 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v162/han22f/han22f.pdf}, url = {https://proceedings.mlr.press/v162/han22f.html}, abstract = {Gaussian processes (GP) are a widely-adopted tool used to sequentially optimize black-box functions, where evaluations are costly and potentially noisy. Recent works on GP bandits have proposed to move beyond random noise and devise algorithms robust to adversarial attacks. This paper studies this problem from the attacker’s perspective, proposing various adversarial attack methods with differing assumptions on the attacker’s strength and prior information. Our goal is to understand adversarial attacks on GP bandits from theoretical and practical perspectives. We focus primarily on targeted attacks on the popular GP-UCB algorithm and a related elimination-based algorithm, based on adversarially perturbing the function f to produce another function f  whose optima are in some target region. Based on our theoretical analysis, we devise both white-box attacks (known f) and black-box attacks (unknown f), with the former including a Subtraction attack and Clipping attack, and the latter including an Aggressive subtraction attack. We demonstrate that adversarial attacks on GP bandits can succeed in forcing the algorithm towards the target region even with a low attack budget, and we test our attacks’ effectiveness on a diverse range of objective functions.} }
Endnote
%0 Conference Paper %T Adversarial Attacks on Gaussian Process Bandits %A Eric Han %A Jonathan Scarlett %B Proceedings of the 39th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2022 %E Kamalika Chaudhuri %E Stefanie Jegelka %E Le Song %E Csaba Szepesvari %E Gang Niu %E Sivan Sabato %F pmlr-v162-han22f %I PMLR %P 8304--8329 %U https://proceedings.mlr.press/v162/han22f.html %V 162 %X Gaussian processes (GP) are a widely-adopted tool used to sequentially optimize black-box functions, where evaluations are costly and potentially noisy. Recent works on GP bandits have proposed to move beyond random noise and devise algorithms robust to adversarial attacks. This paper studies this problem from the attacker’s perspective, proposing various adversarial attack methods with differing assumptions on the attacker’s strength and prior information. Our goal is to understand adversarial attacks on GP bandits from theoretical and practical perspectives. We focus primarily on targeted attacks on the popular GP-UCB algorithm and a related elimination-based algorithm, based on adversarially perturbing the function f to produce another function f  whose optima are in some target region. Based on our theoretical analysis, we devise both white-box attacks (known f) and black-box attacks (unknown f), with the former including a Subtraction attack and Clipping attack, and the latter including an Aggressive subtraction attack. We demonstrate that adversarial attacks on GP bandits can succeed in forcing the algorithm towards the target region even with a low attack budget, and we test our attacks’ effectiveness on a diverse range of objective functions.
APA
Han, E. & Scarlett, J.. (2022). Adversarial Attacks on Gaussian Process Bandits. Proceedings of the 39th International Conference on Machine Learning, in Proceedings of Machine Learning Research 162:8304-8329 Available from https://proceedings.mlr.press/v162/han22f.html.

Related Material