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Abstract

Contrastively trained language-image models
such as CLIP, ALIGN, and BASIC have demon-
strated unprecedented robustness to multiple chal-
lenging natural distribution shifts. Since these
language-image models differ from previous train-
ing approaches in several ways, an important ques-
tion is what causes the large robustness gains. We
answer this question via a systematic experimen-
tal investigation. Concretely, we study five dif-
ferent possible causes for the robustness gains:
(i) the training set size, (ii) the training distribu-
tion, (iii) language supervision at training time,
(iv) language supervision at test time, and (v) the
contrastive loss function. Our experiments show
that the more diverse training distribution is the
main cause for the robustness gains, with the other
factors contributing little to no robustness. Be-
yond our experimental results, we also introduce
ImageNet-Captions, a version of ImageNet with
original text annotations from Flickr, to enable
further controlled experiments of language-image
training.

1. Introduction

Large pre-trained language-image models such as CLIP
(Radford et al., 2021), ALIGN (Jia et al., 2021), and BASIC
(Pham et al., 2021) have recently demonstrated unprece-
dented robustness on a variety of natural distribution shifts.
In contrast to prior models that are trained on images with
class annotations, CLIP and relatives' are directly trained on
images and their corresponding unstructured text from the
web. The resulting models achieve large robustness even on
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1Following Radford et al. (2021), we use CLIP as a name for
the general training technique, not only their specific models.

challenging distribution shifts such as ImageNetV2 (Recht
et al., 2019) and ObjectNet (Barbu et al., 2019). No prior
algorithmic techniques had enhanced robustness on these
datasets even after multiple years of intensive research in
reliable machine learning (Djolonga et al., 2021; Taori et al.,
2020). As CLIP also improves robustness on a wide range
of other distribution shifts, an important question emerges:
What causes CLIP’s unprecedented robustness?

The fact that language-image models were the first to
achieve large robustness gains suggests that multimodal
learning on language and image data may be key to more ro-
bust image representations. However, pinpointing the exact
cause of CLIP’s robustness is complicated by the fact that
CLIP relied on several changes to the common supervised
training paradigm for image classification models. For in-
stance, the CLIP models with highest accuracy follow the
vision transformer (ViT) architecture (Dosovitskiy et al.,
2020). Radford et al. (2021) already investigated model ar-
chitecture and size, showing that these factors do not affect
the robustness of their CLIP models. Nevertheless, there is
still a long list of possible causes for CLIP’s robustness:

* The large training set size (400 million images)
* The training distribution

» Language supervision at training time

» Language supervision at test time via prompts
* The contrastive loss function

Understanding the mechanism underlying CLIP’s robust-
ness is important as it may guide the way towards more
reliable machine learning more broadly.

In this paper, we answer the question of CLIP’s robustness
via a series of controlled experiments that test the five pos-
sible causes listed above. Our main result is that CLIP’s
robustness is determined almost exclusively by the training
distribution. Language supervision at training time does
not make the resulting models more robust than standard
supervised learning when the images in the training set are
the same. Hence language supervision only has an indirect
effect on robustness. In particular, language supervision
simplifies training on a diverse distribution of images by re-
moving the need for consistent annotation with class labels.
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The more diverse training distribution — not the language
supervision — then leads to more robust representations.

Robustness under distribution shift
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Figure 1. We compare models trained using different methods and
on different datasets, measuring their robustness on a range of
natural distribution shifts (ImageNetV2, ImageNet-R, ImageNet-
Sketch, and ObjectNet). The CLIP models stand out with their
consistent performance in the presence of distribution shift. We
find that large gains in effective robustness (improvement over Im-
ageNet models) only come from varying the training distribution.
Language supervision alone does not cause robustness.

Our investigation of CLIP’s robustness rests on two further
contributions. First, we introduce ImageNet-Captions, a
new dataset for training on paired language-image data.
ImageNet-Captions augments 463,622 of the 1.2 million
images in the ImageNet 2012 training set (Russakovsky
et al., 2015) with the original text data sourced from the
corresponding Flickr images. ImageNet-Captions enables
controlled experiments comparing standard (class-based)
ImageNet training with language-image training on the same
set of images. Such experiments precisely pinpoint the
effect of utilizing language when training computer vision
models.

Second, we provide a new baseline for language-image
training that minimizes the interaction between the vision
and language components yet achieves accuracy similar
to CLIP training. Specifically, we introduce the following
training procedure and illustrate its behavior on the YFCC-
15M dataset (Thomee et al., 2016; Radford et al., 2021):

1. Use SimCLR (Chen et al., 2020a) to pre-train a repre-
sentation on only the images in YFCC-15M.

2. Fine-tune the resulting representation by matching ex-
amples in YFCC-15M to ImageNet classes with simple
text matches in the corresponding captions.

In particular, our approach relies on no language model,

demonstrating that it is possible to match the performance
of CLIP training with much simpler language processing.
Besides serving as a useful baseline to understand CLIP
training, our simplified approach may open the way for
further algorithmic innovations in language-image training.

The remainder of our paper proceeds as follows. The next
two sections introduce relevant background and our new
dataset ImageNet-Captions as experimental framework. Sec-
tions 4 and 5 then describe our main experiments testing the
impact of language supervision and the training distribution
on the robustness of the resulting models. Sections 6 and
7 present the evidence against test time prompts and con-
trastive training losses as causes for CLIP’s robustness. We
summarize our findings in Section 8.

2. Background

Pinpointing the cause of CLIP’s robustness requires a pre-
cise experimental setup for comparing robustness across a
range of models. To this end, we follow the effective ro-
bustness framework first proposed by Taori et al. (2020)
and later utilized by Radford et al. (2021) to demonstrate
the robustness gains of their CLIP models. We first review
this measurement framework and then survey further related
work.

2.1. Experimental setup for measuring robustness

An important goal of reliable machine learning is to design
models that consistently perform well across a diverse range
of test distributions. For instance, a model that achieves
75% accuracy on ImageNet should ideally also achieve 75%
accuracy on the closely related ImageNetV?2 distribution
shift because humans can do so (Shankar et al., 2020). But
instead of consistent performance, most current ImageNet
models see a 12 percentage point (pp) accuracy drop on
this distribution shift (Recht et al., 2019). In contrast, the
CLIP models of Radford et al. (2021) are more robust and
only have a 6 pp accuracy drop on ImageNetV2. Compared
to earlier models, CLIP also exhibits substantially smaller
accuracy drops on many other distribution shifts (Radford
et al., 2021; Jia et al., 2021; Pham et al., 2021).

More formally, our experiments measure the accuracy of
a model f on two test distributions D7 and D5, which we
abbreviate as accp, (f) and accp, (f). Usually D is the
ImageNet (ILSVRC-2012) test set and D is one of multiple
out-of-distribution test sets. An ideal model would achieve
close to 100% accuracy on both distributions. Since such
machine models currently do not exist, we instead have to
compare the robustness of models with varying accuracies
across the two distributions. In these comparisons, an im-
portant confounder is that simply increasing accuracy on
distribution D, often already results in accuracy gains on Dy
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(Taori et al., 2020; Miller et al., 2021). For instance, Figure 1
shows a range of ImageNet models (blue points) in a scatter
plot with ImageNet accuracy on the z-axis (accp, (f)) and
accuracy under distribution shift on the y-axis (accp, (f)).
The models achieve higher accuracy under distribution shift
just by virtue of having higher ImageNet accuracy.

In order to address the confounder of ImageNet accuracy
when evaluating robustness, Taori et al. (2020) quantified
robustness as accuracy beyond the baseline given by Im-
ageNet models. The authors called this quantity effective
robustness. In Figure 1, effective robustness corresponds
to the vertical lift of a model above the blue baseline given
by ImageNet-trained models. Radford et al. (2021) then
demonstrated that their CLIP models achieve high effective
robustness (the purple line). Mathematically, we first fit
a baseline function 8 : R — R that maps from the accu-
racy accp, (f) of baseline models f to the corresponding
accp, (f). For a new model f’, the effective robustness is
then given by p(f’) = accp, (f') — B(accp, (f')). This is
the main quantity we visualize in this paper to understand
the robustness of CLIP models.

Similar to Taori et al. (2020) and Radford et al. (2021), we
focus on natural distribution shifts, which arise from natural
variations such as lighting, geographic location, crowdsourc-
ing process, etc. Natural distribution shifts stand in contrast
to synthetic distribution shifts, where an existing test set
is intentionally computationally modified to reduce model
accuracy (e.g., by adding Gaussian noise, blur, or adversar-
ial perturbations). Since natural distribution shifts resem-
ble real data, we choose the following popular distribution
shifts:?

1. ImageNet-V2 (Recht et al., 2019): a reproduction of
the ImageNet validation set with distribution shift due
to changes in the crowdsourcing process.

2. ImageNet-Sketch (Wang et al., 2019): black and white
sketches of ImageNet images.

3. ImageNet-R (Hendrycks et al., 2021): renditions (e.g.,
art, patterns, etc.) of 200 ImageNet classes.

4. ObjectNet (Barbu et al., 2019): real-world objects from
ImageNet with crowd-sourced random backgrounds,
rotations, and viewpoints.

5. ImageNet-A (Hendrycks et al., 2019): naturally occur-
ring examples filtered so they are misclassified by a
ResNet-50 model.

2See Appendix A for examples of the shifts. In some figures
we omit ImageNet-A due to the piecewise linear response created
by the adversarial filtering process. We refer the reader to Taori
et al. (2020) for details.

An important property of effective robustness on these dis-
tribution shifts is that only varying the size of the training
set (holding its distribution constant) does not influence
effective robustness. In particular, Taori et al. (2020) and
Miller et al. (2021) showed that randomly sub-sampling the
training set changes the accuracy, but not the effective ro-
bustness of the resulting models. This rules out the training
set size as a cause for CLIP’s high effective robustness (the
training set size is still important for the ImageNet accuracy
of the CLIP models).

2.2. Additional related work

Language image pre-training has been an active area of
research for multiple years, including initial contributions
such as VirTex (Desai & Johnson, 2021), ICMLM (Sariy-
ildiz et al., 2020), and ConVIRT (Zhang et al., 2020). Rad-
ford et al. (2021) and Jia et al. (2021) continued this line of
work and trained on significantly larger datasets to achieve
competitive performance on a variety of tasks, as well as
obtain models with unprecedented robustness.

Related recent work also studies exactly where the gener-
alization capabilities of CLIP come from. Devillers et al.
(2021) investigate whether models that use multimodal in-
formation (such as text & images) have superior general-
ization capabilities — as measured by few-shot and linear
probe performance — to models that use only one type of
information (images or text). Their analysis found that for
both few-shot and linear probe settings there was no con-
sistent advantage of multimodal models over models using
only a single modality. In contrast, our work studies the
robustness of CLIP and how language specifically affects
its capability to generalize out of distribution. An important
difference between our experiments and those of Devillers
et al. (2021) is that we control for in-distribution accuracy
in our comparison between the models to separate accuracy
and robustness. Furthermore, Andreassen et al. (2021) study
the effect of fine-tuning on robustness. They find that effec-
tive robustness decreases almost monotonically during the
fine-tuning process, pointing to the zero-shot capability of
CLIP as a source of its robustness.

Since the original CLIP paper (Radford et al., 2021), there
have been a series of follow up works, including ALIGN (Jia
etal., 2021), BASIC (Pham et al., 2021) and LiT (Zhai et al.,
2021), each of which has made contributions to improving
either the robustness or base accuracy of large pre-trained
image-text models. Most related to our experiments in Sec-
tion 5 is LiT, which uses a pre-trained image model and
fine-tunes only the text head of the language-image model
to achieve high accuracy on downstream tasks. However,
we note that this work differs from our contribution in that
LiT still fine-tunes a language model on a dataset of 4 bil-
lion image-caption pairs to achieve its zero-shot capability,
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Figure 2. Overview of the two main training sets in our experi-
ments. (Top) We introduce the ImageNet-Captions dataset, where
we augment a subset of the ImageNet 2012 training set images
with the corresponding original captions collected from Flickr.
(Bottom) We convert the YFCC image-caption dataset into YFCC-
Classification by searching for class labels in the YFCC captions
and then removing the text annotations. These two datasets allows
us to evaluate the impact of language-image training on robustness
because we can compare language-image training with standard
classification training on the same set of images.

while we simply convert the captions to class labels using
substring matching and train a regular image classifier.

Image captioning datasets. Existing literature offers a
variety of public datasets with image-text pairs. Examples
range from medium to large scale, including MS-COCO
(Chen et al., 2015), SBU (Ordonez et al., 2011), Conceptual
Captions 3M (Sharma et al., 2018) and 12M (Changpinyo
et al., 2021), RedCaps (Desai et al., 2021), WIT (Srini-
vasan et al., 2021), YFCC 100M (Thomee et al., 2016) and
LAION 400M (Schuhmann et al., 2021). Compared to these
datasets, ImageNet-Captions contains high quality classi-
fication labels along with text associated with each image.
Moreover, ImageNet-Captions is designed such that the dis-
tribution of images strongly resembles that of ImageNet,
which is widely used for training and evaluating models, en-
abling controlled experiments such as comparisons between
multiclass supervised training and image-text training.

3. ImageNet-Captions

We now describe ImageNet-Captions®, our new dataset for
experiments with image-text supervision. Four desiderata
guided the creation of ImageNet-Captions:

1. To isolate the effect of natural language supervision
on effective robustness, we require a dataset that con-
tains both natural language supervision and traditional
classification labels. This setup allows us to train clas-

3The dataset is available at https://github.com/
mlfoundations/imagenet-captions.

sifiers separately with contrastive image-text losses and
with standard classification losses on the same images
and compare the resulting models. Differences in the
models are then solely due to different loss functions,
not architectural differences or different training distri-
butions.

2. The text annotations in the dataset should come from
the original image source, as opposed to synthetically
generated captions from curated templates or an image
captioning model. This helps ensure that the dataset
is representative of image-text data “in the wild” and
minimizes artifacts from templates or machine models.

3. The dataset should be related to commonly studied
benchmarks, such as ImageNet, in order to have good
baselines and comparable training methods.

4. The dataset should be large enough to support training
on contemporary neural networks.

Before our paper, no dataset satisfied these constraints.

We constructed ImageNet-Captions to satisfy all four
desiderata. ImageNet-Captions is a subset of the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) 2012
training set, paired with the original image title, description,
and tags from Flickr (recall that a large part of ImageNet
was sourced from the Flickr image hosting website). Figure
3 shows three sample image-text pairs from our dataset.

3.1. Constructing ImageNet-Captions

Since ImageNet is a widely used image classification bench-
mark, our goal was to augment the 2012 ImageNet training
set with original text data. A priori, this is a difficult task
since the standard 2012 ImageNet release does not con-
tain any metadata for the images. As a starting point, we
leveraged three facts about ImageNet:

* A large fraction of ImageNet is sourced from Flickr.

e The ImageNet fall 2011 release contained URLSs for
each image in the full ImageNet dataset.

* For a given photo identifier, the Flickr API provides
the associated text data.

Our dataset construction began with filtering the 14,197,122
image URLs in the ImageNet fall 2011 release to only in-
clude images from Flickr. In addition, we restricted the
images to just the 1,000 classes included in the 2012 Im-
ageNet competition (every entry in the fall 2011 release
contains both a URL and a class label). After this filtering,
we were left with 642,147 images belonging to 999 classes
(all classes in ILSVRC-2012 except “teddy bear™).
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Title: Reflected Duck

Description:
Tags: lake, water,bird [6 tags
omitted]

Title: SILENT ROCKER
Description: MOSE’ S MOTHER HAS
LEFT THE BuILDING [10 words
omitted]

Tags: rockingchair, rock, chair
[2 tags omitted]

Title: A Phone Call at Night
Description: I might have a
thing with telephones [174
words omitted]
Tags: phone, telephone,
blackandwhite [7 tags omitted]

Figure 3. Three sample images from ImageNet-Captions. Their respective ImageNet labels are: drake, rocking chair, payphone.

Table 1. Images from ImageNet-Captions contain three types of
metadata: titles, description, and tags. For each type of metadata,
this table shows the number of images that have corresponding
metadata that contains the class label of the image. For most
images, the class label is in at least one text field, indicating that
ImageNet-Captions is suitable for language-image training.

Caption Type # Images % of Total
Title Only 239,495 51.6
Description Only 134,387 28.9
Tags Only 342,340 73.8
Title, Tag and Description 435,239 93.8

Next, we ran the image deduplication routine of Jain et al.
(2019) to remove images that were not in the ILSVRC-
2012 training set. In addition, we removed text containing
profanity. This left us with a dataset of 463,622 images
that are in the ILSVRC-2012 training set, along with the
newly obtained corresponding text data. In particular, for
each image we extracted a title (the text at the top of the
Flickr image), description (the text at the bottom of the
Flickr image), and user-provided tags. Since these images
are a subset of ILSVRC-2012, we also have a corresponding
class label that can be used for standard ImageNet training.

3.2. Properties of ImageNet-Captions

The resulting dataset contains captions from a mix of 127
different languages with the bulk (90%) coming from En-
glish. We further inspected the quality of image-text pairs
by checking for the presence of the desired class label in
the associated text. Table 1 summarizes the analysis. We
find that for 94% of the images, the name of the ImageNet
class is present in the corresponding text. This indicates that
most of the captions contain relevant information about the
class and are suitable for training image-text models. For

additional statistics, see Appendix M.

4. ImageNet-Captions experiments

In this section, we use the ImageNet-Captions dataset to
investigate the effect of language on robustness. ImageNet-
Captions provides a simple comparison with vision-only
methods because ImageNet is considered the premier bench-
mark for image classification. We train the ResNet-50 based
CLIP model on ImageNet-Captions with a contrastive loss,
as well as the vision encoder of that CLIP model with an
additional linear layer on the equivalent image classification
dataset. Training details are in Appendix B.

4.1. Caption construction

When constructing ImageNet-Captions, we had to choose
which parts of the metadata to include in the caption. To
do so, we ran experiments on variants that included just the
title, the title followed by the description, and the title fol-
lowed by the tags followed by the description. Furthermore,
Radford et al. (2021) use a filter to keep only images with
captions in English. We create additional variants of the
dataset by applying a similar filter. As shown in Table 2,
captions that include more information appear to perform
better. Furthermore, it seems that filtering for cleaner cap-
tions does not make up for the loss of image-caption pairs.
In caption construction ablations, images with empty cap-
tions were dropped, causing variation in dataset size across
the experiments in Table 2.

4.2. Robustness

To determine the robustness of models trained on ImageNet-
Captions, we evaluate on ImageNet and compare with nat-
ural distribution shifts in ImageNetV2, ImageNet-R, Ima-
geNet Sketch, ObjectNet, and ImageNet-A. In Figure 4, we
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Table 2. Evaluating different caption variants across ImageNet (IN) natural distribution shifts. Results are reported in top-1 accuracy (%).
The best performing caption uses title, tags, and description. Although the language filter makes captions cleaner, the decrease in overall

dataset size decreases performance.

Title Desc Tags Filter Size Relative IN IN-V2 IN-R IN Sketch ObjectNet IN-A
Size (%)
v v 197K 42.6 157 122 6.6 1.1 55 2.4
v 459K 99.0 262 20.7 9.5 2.6 8.4 2.7
v v v 312K 67.4 219 165 8.0 1.7 6.1 2.2
v v 461K 99.4 27.8  21.6 9.6 3.0 8.0 2.7
v v v v 367K 79.3 265 203 8.9 2.3 7.9 25
v v v 464K 100.0 315 24.0 109 2.7 9.1 3.0

see that ImageNet-Captions CLIP models roughly follow
the same linear trends as ImageNet-Captions classification
models across the various distribution shifts. This shows
that CLIP models are not more robust than classification
models trained on the same dataset, despite the difference
of language supervision. This is a better comparison than
that with ImageNet classification models because there is
no longer the potential confounding factor of the datasets
having different image distributions. Nevertheless, these
models do not achieve the robustness seen in CLIP models
from Radford et al. (2021). Additional experiment details
can be found in Appendix C and D.

4.3. Pre-training on language

While the above experiments show that language super-
vision from ImageNet-Captions does not contribute to a
model’s robustness, it does not rule out robustness com-
ing from the language supervision of OpenAlI’s proprietary
dataset used to train CLIP. Therefore we ran additional ex-
periments where we loaded the pre-trained OpenAl CLIP
model onto the language encoder, while randomly initializ-
ing the vision encoder. We trained ImageNet-Captions on
this setup, with an additional variant where we also freeze
the language encoder’s weights. As seen in Figure 5, while
both the unfrozen and frozen variants of the pre-trained lan-
guage encoder increased the accuracy of the model when
compared to the completely randomly initialized model,
neither variant provided additional effective robustness. De-
tailed experiment results can be found in Appendix E.

4.4. Effect of using templates

Given that images in ImageNet-Captions have a correspond-
ing ImageNet class, we can try to leverage this information
to investigate the effect of captions and class information
on both accuracy and robustness. Radford et al. (2021) in-
troduces prompt templates in formats similar to “A photo
of a {label}.” Creating templates for ImageNet-Captions is
different than doing so for other image-text datasets because
each image already has an assigned label; for other datasets,

creating a template requires looking through the caption for
classes, which are not guaranteed to be in the caption.

We found that attaching templates at the beginning of cap-
tions (followed by Title+Tags+Description) achieves 34.7%
ImageNet top-1 accuracy, which is 3.2% more than without
the templates. However, using the templates by themselves
as the captions achieves 50.5% ImageNet top-1 accuracy,
suggesting that the additional information in the captions
hurts ImageNet performance. The model trained on the
equivalent classification task achieves 48.7%, which sug-
gests that with additional parameter tuning, classification
may be similar to CLIP training on templates. Detailed
experiment results can be found in Appendix F.

While using templates instead of captions can increase Ima-
geNet performance, it does not improve robustness. Figure 8
in Appendix F shows that using templates on top of the cap-
tions follows linear trends similar to ImageNet-Captions. In
fact, training a model on all of ImageNet using templates
behaves like an equivalent classification model.

4.5. Improving ImageNet performance using captions

While language supervision does not improve robustness, it
is still possible that the additional information may improve
ImageNet accuracy. We investigate this by running exper-
iments on ImageNet, augmented with ImageNet-Captions.
It is well known that ResNet-50 achieves 77.15% top-1 Im-
ageNet accuracy (He et al., 2016). As a similar baseline, we
achieve 76.62% top-1 ImageNet accuracy by training the
CLIP model with templates as the caption.

We have tried improving this baseline by initializing the
language head with the OpenAl pre-trained model, using
the combined ImageNet (templates) and ImageNet-Captions
for training, using ImageNet-Captions as text augmentation
when available, and contrasting the image encoding with
both the template and the ImageNet-Captions caption encod-
ings when available. However, all of these fall within £1%
of the baseline. Note that concatenating the captions to the
templates changes the image distributions, while some of
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Figure 4. On most natural distribution shifts, models trained with language information from ImageNet-Captions follow the same trend as
models trained without it. Neither comes close to achieving the robustness of OpenAI’s CLIP models.

the other approaches do not. On the other hand, restricting
the images used to those within ImageNet-Captions hints
that language may help improve ImageNet performance.

Appendix G presents detailed results. The experiments we
have run are non-exhaustive, and we leave it to future work
to find whether language information can improve ImageNet
performance, and more broadly, vision task performance.

5. YFCC experiments

Our experiments in the previous section show that language
supervision alone does not improve robustness. To further
understand the source of CLIP’s robustness, we now inves-
tigate whether it is possible to train a representation with
minimal or even no language supervision that still yields
the same robustness as CLIP. These results will provide fur-
ther evidence that CLIP’s robustness stems from the more
diverse data distribution, not the presence of language su-
pervision.

Our experiments in this section start with a language-
image training set on which CLIP exhibits improved ro-
bustness: the Yahoo Flickr Creative Commons dataset
(YFCC) (Thomee et al., 2016). To test whether the im-
age data in YFCC alone can improve robustness, we con-

trastively pre-train a “standard” image representation on
YFCC that does not involve the language part of the dataset.
Building on this image-only representation, we then train a
zero-shot classifier with only minimal text processing (sub-
string matches). The resulting classifier achieves effective
robustness close to CLIP. This demonstrates that the training
distribution, not language supervision at training time, is the
main reason behind CLIP’s robustness.

Dataset. In this section, we use the YFCC-15M (Radford
et al., 2021) dataset, a subset of YFCC-100M (Thomee
et al., 2016) filtered to only images with English titles or
descriptions. The dataset contains 14,829,396 images with
natural language captions associated with each image.

To train image classifiers on YFCC-15M, we convert YFCC-
15M into a classification dataset with class labels for each
image, which we denote YFCC-15M-Cls. We assign Ima-
geNet labels to each image using a simple strategy: if the
title or description contains the name of an ImageNet synset
or synonym (Miller, 1995), we assign the corresponding
synset label to the image. If an image contains no or multi-
ple ImageNet synsets, we discard that image. This results
in 1,694,125 images (11.4% of the full dataset) covering
953 ILSVRC classes. The least common class has 1 image,
while the most common has 280,351 images.
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Figure 5. Using the weights from OpenAl’s pre-trained CLIP
model does not improve robustness, despite the large size of the full
CLIP training set (400 million images). This is further evidence
that language supervision does not increase robustness. See Figure
4 for remaining legend elements.

Table 3. Comparing CLIP training with (language model free)
classification models on YFCC-15M. All experiments use a ViT-
B/16 backbone. The CLIP results are from Mu et al. (2021). Image-
only contrastive learning followed by a simple text matching stage
for classification nearly matches the performance of CLIP with a
full language model.

Training style ImageNet Avg OOD
CLIP 37.9 19.9
SimCLR — Classification 35.7 18.8

Classification training. We use a ViT-Base (ViT-B/16)
model fine-tuned using the softmax cross-entropy loss on
YFCC-15M-Cls. Since this data is only a fraction of YFCC-
15M, we initialize the classification model with a SImCLR
model pre-trained on YFCC-15M from Mu et al. (2021).
Appendix J includes implementation details and ablations.

Results. We present our results in Table 3 and Figure 1.
A CLIP model trained on all images and captions from
YFCC-15M yields an ImageNet top-1 accuracy of 37.9%.
Our baseline classification model?*, which trains SimCLR on
YFCC-15M, but fine-tunes on only a small fraction (about
11%) of the supervision in YFCC-15M, results in an accu-
racy of 35.7%, which we found surprisingly close to CLIP.
Further, as shown in Figure 1 (“YFCC SimCLR + Classifi-
cation”), our baseline model’s effective robustness is similar
to that of CLIP.

*We call this baseline “NoCLIP”, for “Now we use Sim-
CLR+Classification instead of Contrastive Language-Image Pre-
training

Appendix K provides results for training on YFCC-15M-
Cls from scratch. Since the training set is now about nine
times smaller than YFCC-15M, the resulting models achieve
much lower accuracy and are hard to compare to CLIP.

Overall, we find that despite largely eschewing language,
and training on a fraction of the supervision, our baseline
model results in high effective robustness, similar to CLIP.
These results indicate that image-only pre-training followed
by classification fine-tuning can match the robustness of
CLIP, and that language pre-training is not necessary for
effective robustness. Models trained on YFCC consistently
achieve higher effective robustness than models trained on
ImageNet, which shows that different training distributions
have different levels of effective robustness.

6. Effect of test time prompts

As another hypothesis, we study whether natural language
prompts affect CLIP’s robustness. Recall that prompts con-
sist of a template (e.g., “a photo of ___") and the name of a
class in the dataset. Radford et al. (2021) showed how to use
multiple templates by averaging their text representations.
Similarly, it is also possible to use multiple class names for
each class if synonyms exist (e.g. microwave and microwave
oven). To investigate the influence of specific prompts in the
robustness of CLIP, we conduct a series of experiments us-
ing a trained CLIP model and multiple prompting strategies.
Specifically, we vary:

* The templates used, using one of the following three
options:

i) Templates from Radford et al. (2021);

ii) No templates (i.e., only the class names);

iii) Random words appended before and after the
class name.’

* The names of the classes, using one of the following

three sources:

i) Class names from Radford et al. (2021);

ii) Class names from WordNet synset (Miller, 1995);

iii) A combination of the previous two sources.

e The number of templates used, chosen from

{1,2,4,8,16,32,80}.

* The maximum synonyms per class, one of {1,2,4}.

Figure 6 (left) shows the results from over a hundred exper-

iments. We find that specific choices of prompts can have

STemplates are composed by one to ten random words
along with the class name, in an arbitrary position. Ran-
dom words are drawn using https://pypi.org/project/
Random-Word/.
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Figure 6. Effect of prompting strategies and contrastive objectives on robustness. (Left) On most natural distribution shifts, effect of
prompting on effective robustness is similar to that of random interpolation. (Right) Models pre-trained with various contrastive objectives
on ImageNet do not achieve the same effective robustness as CLIP models.

a substantial impact on performance. While some prompt
variations did increase effective robustness, this increase
is entirely due to the substantially reduced accuracy. In
particular, one can achieve the same change in effective
robustness by simply interpolating with a random classifier
(which sees no performance change under distribution shift).
We illustrate this behavior with the brown line in Figure 6
(left). Overall, these results show that prompts are not the
source of robustness of CLIP models.

7. Effect of contrastive training losses

Finally, we explore contrastive pre-training as a potential
source of CLIP’s robustness. Contrastive pre-training is a
popular method for self-supervised representation learning
that encourages similar pairs to be close and dissimilar pairs
to be far apart in a learned representation space. In Radford
et al. (2021), the similar pairs are images and their corre-
sponding captions. In SImCLR (Chen et al., 2020a), similar
pairs are the same images with different data augmentation.

As the contrastive loss is core to CLIP’s approach, we ex-
plore whether contrastive approaches independently pro-
mote effective robustness. Figure 6 (right) shows results for
various popular contrastive methods, including SimCLRv2
(Chen et al., 2020b), SimSiam (Chen & He, 2020) and
SwAV (Caron et al., 2020), pre-trained on ImageNet. We
evaluate on ImageNet and the five distribution shifts. While
the methods differ significantly from each other (e.g., dif-
ferent augmentation strategies, memory banks, and feature
clustering techniques), they consistently exhibit little to no
effective robustness. See Appendix H for further details.

8. Conclusion

The previous sections have systematically ruled out the
training set size, language supervision, and the contrastive
loss function as explanations for the large robustness gains
achieved by the CLIP models of Radford et al. (2021). In ad-
dition, Section 5 has demonstrated that changing the training
distribution from ImageNet(-Captions) to YFCC substan-
tially affects the robustness of the resulting models. We
arrive at a clear conclusion: CLIP’s robustness is dominated
by the choice of the training distribution, with other factors
playing a small or non-existent role. While language super-
vision is still helpful for easily assembling training sets, it is
not the primary driver for robustness.

Our paper connects the fields of robustness, learning from
language & vision, and data-centric machine learning. More-
over, our results add to a growing body of evidence that the
training distribution plays a central role for mitigating real-
world distribution shifts. Hence, we believe that the some-
times overlooked area of dataset design offers a promising
avenue for increasing the robustness of machine learning
models, and we hope that the community invests more ef-
forts into this direction.
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A. Distribution shift examples
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Figure 7. Samples of the class candle from the various distribution shifts that we evaluate on in our experiments.

B. ImageNet-Captions experiments training details

CLIP experiments are trained with cross-entropy losses using AdamW optimizer with initial learning rate of 0.001 and
a cosine-annealing learning rate schedule with 500 warmup steps. Hyperparameters for AdamW are set at 5; = 0.9,
B2 = 0.999, and € =1e-8. The batch size is set to 1024. CLIP models trained on ImageNet-Captions are trained for 32
epochs, while CIIP models trained on all of ImageNet are trained for 90 epochs.

ImageNet-Captions classification models are trained with cross-entropy loss for 90 epochs using SGD with Nesterov
momentum, setting weight decay to 0.0001, momentum to 0.9, and batch size to 256. The initial learning rate is 0.1, and is
decayed by 0.1 at epochs 30, 50, and 70.

The default augmentation is random resized crop to size 224 with scale set to (0,9,1.0), and then normalization.
Additional augmentation indicates using random resized crop to size 224, random horizontal flips, and then normal-
ization. Normalization is done with mean set to (0.48145466,0.4578275,0.40821073), and standard deviation set to
(0.26862954, 0.26130258, 0.27577711).

C. ImageNet-Captions CLIP subsampled experiments

All models used here are the ResNet-50 based CLIP model used in Radford et al. (2021). Experiments are trained on a
class-balanced subset of ImageNet-Captions (IN-Captions).

Experiment IN IN-V2 IN-R IN Sketch  ObjectNet IN-A
(top-1, %) (top-1, %) (top-1, %) (top-1, %) (top-1, %) (top-1, %)
IN-Captions 30% 10.8 8.6 4.7 0.8 3.8 1.8
IN-Captions 40% 14.7 11.2 5.8 1.0 42 2.2
IN-Captions 50% 18.9 14.2 7.4 1.2 5.7 2.2
IN-Captions 60%  23.0 17.6 8.0 1.6 6.6 2.0
IN-Captions 70%  24.9 19.2 8.9 1.9 7.1 2.5
IN-Captions 80%  27.1 21.4 9.0 2.2 7.8 2.8

IN-Captions 100%  31.5 24.0 10.9 2.7 9.1 3.0
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D. ImageNet-Captions classification experiments

Unless otherwise specified, all models used here are the ResNet-50 based visual encoder used in Radford et al. (2021), with
an additional linear layer at the end. Experiments are trained on a class-balanced subset of ImageNet-Captions (IN-Captions).

Experiment IN IN-V2 IN-R IN Sketch ~ ObjectNet IN-A
(top-1, %) (top-1, %) (top-1, %) (top-1, %) (top-1, %) (top-1, %)
IN-Captions 10% 12.9 10.0 5.0 1.0 3.0 1.7
IN-Captions 20% 22.8 18.4 8.3 2.2 4.4 1.9
IN-Captions 30% 29.3 23.1 10.8 3.6 6.0 2.5
IN-Captions 40% 33.8 27.6 13.0 4.7 7.9 2.8
IN-Captions 60% 41.2 33.0 16.7 7.2 11.2 2.9
IN-Captions 80% 46.1 374 19.2 9.1 13.4 3.7
IN-Captions 100% 48.7 40.0 21.6 10.8 15.8 3.8
IN-Captions 100%, Aug 54.3 45.0 20.8 10.7 18.7 3.5
ResNet-18, IN-Captions 100%  40.5 323 19.1 8.8 12.9 2.4

E. ImageNet-Captions language encoder experiments

Title Desc Tags Filter IN IN-V2 IN-R IN Sketch  ObjectNet IN-A
(top-1, %) (top-1, %) (top-1, %) (top-1, %) (top-1, %) (top-1, %)

Language Initialized

v v 19.9 15.3 8.4 1.9 6.5 22
v 27.2 21.7 10.8 2.8 8.1 3.0
v v v 26.5 20.7 10.4 2.8 8.3 29
v v 30.7 23.5 11.2 33 8.8 3.0
v v v v 31.2 24.0 12.0 32 10.0 2.8
v v v 35.6 28.0 13.3 4.0 10.9 3.1
Language Initialized and Frozen

v v 234 18.5 11.0 32 8.6 2.9
v 32.6 26.0 14.1 4.3 10.4 3.0
v v v 29.3 23.5 12.3 3.6 9.2 29
v v 34.1 27.0 14.7 4.3 11.3 29
v v v v 354 27.5 14.7 4.8 11.0 33
v v v 38.3 30.2 15.5 5.0 11.6 3.1
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F. ImageNet-Captions template experiments

Experiment IN IN-V2 IN-R IN Sketch ~ ObjectNet IN-A
(top-1, %) (top-1, %) (top-1, %) (top-1, %) (top-1, %) (top-1, %)
Title+Tags+Description (Base) 31.5 24.0 10.9 2.7 9.1 3.0
Templates+Base 34.7 27.1 10.5 3.0 9.8 2.9
Templates+Base, Aug 42.1 32.9 11.2 3.6 10.8 2.5
Base as Templates 50.5 39.6 17.4 7.5 13.9 34
Base as Templates, Aug 59.0 47.6 18.3 8.4 16.1 3.2
Base as Classification 48.7 40.2 21.5 10.8 15.7 3.7
Base as Classification, Aug 54.2 45.0 20.7 10.6 18.7 3.6
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Figure 8. For the experiments that use templates in Appendix F, the templates do not increase a model’s robustness.
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G. ImageNet templates and captions training variation experiments

Experiments in this section use all of ImageNet with the class labels replaced with templates. Experiments that mention
captions use captions for the subset of ImageNet in ImageNet-Captions.

Experiment

ImageNet (top-1, %)

ImageNet using Templates (Base)
Base, Language Initialized
Base concatenated with Captions

Base concatenated with Captions, Language Initialized

Base, Captions as Text Augmentation
Base, Contrast with Template and Captions

76.6
76.6
76.8
76.9
76.4
76.0

H. Self-supervised training variation experiments

Figure 9 supplements our analysis of self-supervised methods with the recent MAE models of (He et al., 2021). In contrast
to SimCLRV2 or MoCo, MAE is not a contrastive training approach. While MAE provides more effective robustness than
other approaches, it is still much less robust than CLIP. However, the source of this robustness is an open question.

Figure 9. On most natural distribution shifts, models pre-trained on ImageNet with various contrastive objectives do not achieve effective

robustness.
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I. Data cleaning

The dataset is cleaned by removing samples thought to be offensive or profane. More specifically, the captions are inspected
via three independent mechanisms: i) matches using a list of bad words and expressions; ii) a profanity detector model
trained on human-labeled samples; iii) and human annotations, when applicable.

For the first filtering step, we use better-profanity library.® The list of words and expressions is initialized from the 835 default
expressions from the library.” The authors manually reviewed these 835 expressions, finding 18 that could potentially be associated with
ImageNet classes in non-profane captions. Captions containing any of these 18 expressions were marked for subsequent human validation,
while captions that contained any of the remaining 817 expressions were automatically excluded. This step is responsible for the largest
portion of filtered samples, around 14 thousand samples (approximately 3% of the data). We now list the 18 expressions (warning, the
following words might be offensive): breasts, cock, cocks, coon, cowgirl, dyke, nappy, nipple, nipples, organ, paddy, pot, sandbar, screw,
screwed, screwing, sniper, titi.

Data is additionally filtered using the profanity-check library.® The library detects profane or offensive language using a linear
SVM model trained on 200 thousand human-labeled samples. We use a threshold of 0.95, which filters 482 samples.

Finally, remaining captions that are found to contain any of the 18 expressions listed above are manually reviewed. A total of 114 samples
were found to be offensive or profane, and were removed from the dataset.

Combined, the three filtering steps filter 14,322 samples, approximately 3% of the data.

J. NoCLIP ablations

We train NoCLIP using RandAug (Cubuk et al., 2020) augmentation with N=3, magnitude=9,and magnitude std=0.5. We use a cosine
annealing learning rate initialized at 1e—3 with no warmup, and a batch size of 64, with a class-balanced sampler, training for 1 epoch.
We use early stopping because training for more epochs hurts performance. Heckel & Yilmaz (2021) showed that early stopping can be
helpful when there is label noise. We present ablations with different hyperparameters in Table 4.

Table 4. NoCLIP ablations. “Label match” indicates whether we search for the ImageNet synset or the synset and synonyms in the YFCC
captions. “Init” indicates whether we train from scratch, or using SimCLR pre-training. “Augmentation” indicates different augmentation
strategies; for “RandAug” we use N=3, magnitude=9, and magnitude std=0.5. “Sampler” is either class-balanced (‘Class-bal’) or
‘Random’(i.i.d., no balancing).

Label match Init Augmentation Sampler Epochs ImageNet (top-1, %)
Synset Scratch  Crop, Flip, Jitter ~ Class-bal 1 3.6
Synset Scratch  Crop, Flip, Jitter ~ Class-bal 20 5.7
Synset SimCLR  Crop, Flip, Jitter = Random 1 15.0
Synset SimCLR  Crop, Flip, Jitter ~Class-bal. 1 32.1
Synset SimCLR  Crop, Flip, Jitter  Class-bal. 2 30.4
Synset SimCLR  Crop, Flip, Jitter ~ Class-bal. 5 27.1
Synset + Synonyms SimCLR  Crop, Flip, Jitter ~ Class-bal. 1 34.5
Synset + Synonyms  SimCLR RandAug Class-bal. 1 35.7

K. YFCC-15M-Cls additional experiments

In addition to the experiments that trained on top of a model pre-trained on YFCC-15M, we also train a model on YFCC-15M-Cls from
scratch. Note that this model is at a much lower accuracy regime than the rest of the models we look at.

Experiment IN IN-V2 IN-R IN Sketch  ObjectNet IN-A
(top-1, %) (top-1, %) (top-1, %) (top-1, %) (top-1, %) (top-1, %)
YFCC-15M-Cls Only 8.3 7.7 4.5 0.4 2.8 2.6

*https://pypi.org/project/better-profanity/

"https://github.com/snguyenthanh/better_profanity/blob/master/better_profanity/
profanity_wordlist.txt

$https://pypi.org/project/profanity-check/


https://pypi.org/project/better-profanity/
https://github.com/snguyenthanh/better_profanity/blob/master/better_profanity/profanity_wordlist.txt
https://github.com/snguyenthanh/better_profanity/blob/master/better_profanity/profanity_wordlist.txt
https://pypi.org/project/profanity-check/
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L. YFCC-15M-ClIs classes

There were 47 ImageNet classes that did not show up in the YFCC captions. They are the following:

tiger shark, boa constrictor, partridge, bee eater, crane bird, sea lion, toy terrier, Black and Tan Coonhound, English foxhound, Otterhound,
Curly-coated Retriever, Brittany dog, Kuvasz, Groenendael dog, Greater Swiss Mountain Dog, Entlebucher Sennenhund, brussels griffon,
tiger cat, tiger beetle, guinea pig, bath towel, bell tower, cassette player, cliff dwelling, construction crane, espresso machine, fountain pen,
French horn, harp, one-piece bathing suit, measuring cup, missile, oxygen mask, plate rack, radio telescope, rain barrel, balaclava ski
mask, slide rule, steel drum, totem pole, waffle iron, whiskey jug, window screen, Windsor tie, acorn squash, bell pepper, gyromitra
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M. ImageNet-Captions additional statistics

Table 5. The most frequently occurring languages in ImageNet-Captions, according to PYCLD?2 top-1. English also appears as a top-3
language in 91% of the captions.

Language  # Captions % of Total

English 416,601 89.9
Chinese 5,357 1.2
Spanish 3,893 0.8
Danish 2,993 0.6
Italian 2,598 0.6
German 2,263 0.5
Portuguese 2,104 0.5
Dutch 1,924 04
French 1,433 0.3
Scottish 1,404 0.3
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Figure 10. The cumulative distribution function of the caption lengths (in number of words) for the title-tag-description variant of
ImageNet-Captions. We limit the maximum of the x-axis to 100 words, as only 3.6% of captions are between 100 and 4,924 words. The
median caption length is 17 words.



