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Abstract
Wasserstein gradient flow has emerged as a
promising approach to solve optimization prob-
lems over the space of probability distributions.
A recent trend is to use the well-known JKO
scheme in combination with input convex neural
networks to numerically implement the proximal
step. The most challenging step, in this setup, is
to evaluate functions involving density explicitly,
such as entropy, in terms of samples. This pa-
per builds on the recent works with a slight but
crucial difference: we propose to utilize a varia-
tional formulation of the objective function formu-
lated as maximization over a parametric class of
functions. Theoretically, the proposed variational
formulation allows the construction of gradient
flows directly for empirical distributions with a
well-defined and meaningful objective function.
Computationally, this approach replaces the com-
putationally expensive step in existing methods, to
handle objective functions involving density, with
inner loop updates that only require a small batch
of samples and scale well with the dimension.
The performance and scalability of the proposed
method are illustrated with the aid of several nu-
merical experiments involving high-dimensional
synthetic and real datasets.

1 Introduction
The Wasserstein gradient flow models the gradient dynam-
ics on the space of probability densities with respect to
the Wasserstein metric. It was first discovered by Jordan,
Kinderlehrer, and Otto (JKO) in their seminal work (Jor-
dan et al., 1998). They pointed out that the Fokker-Planck
equation is in fact the Wasserstein gradient flow of the free
energy, bringing tremendous physical insights to this type
of partial differential equations (PDEs). Since then, the
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Wasserstein gradient flow has played an important role in
optimal transport (Santambrogio, 2017; Carlier et al., 2017),
PDEs (Otto, 2001), physics (Carrillo et al., 2021; Adams
et al., 2011), machine learning (Bunne et al., 2021; Lin
et al., 2021; Alvarez-Melis et al., 2021; Frogner & Pog-
gio, 2020), sampling (Bernton, 2018; Cheng & Bartlett,
2018; Wibisono, 2018) and many other areas (Ambrosio
et al., 2008). Despite the abundant theoretical results on the
Wasserstein gradient flow established over the past decades
(Ambrosio et al., 2008; Santambrogio, 2017), the compu-
tation of it remains a challenge. Most existing methods
are either based on a finite difference method applied to
the underlying PDEs or based on a finite dimensional opti-
mization; both require discretization of the underlying space
(Peyré, 2015; Benamou et al., 2016; Carlier et al., 2017;
Li et al., 2020; Carrillo et al., 2021). The computational
complexity of these methods scales exponentially with the
problem dimension, making them unsuitable for the cases
with probability densities over high dimensional space.

This shortcoming motivated recent line of interesting
works to develop scalable algorithms utilizing neural net-
works (Mokrov et al., 2021; Alvarez-Melis et al., 2021; Yang
et al., 2020; Bunne et al., 2021; Bonet et al., 2021). A central
theme, in most of these works, is the application of the JKO
scheme in combination with input convex neural networks
(ICNN) (Amos et al., 2017). The JKO scheme, which is
essentially a backward Euler method, is used to discretize
the continuous flow in time. At each time-step, one needs
to find a probability distribution that minimizes a weighted
sum of squared Wasserstein distance, with respect to the
distribution at the previous time-step, and the objective func-
tion. The probability distribution is then parametrized as
push-forward of the optimal transport map from the previ-
ous probability distribution. The optimal transport map is
represented with gradient of an ICNN utilizing the knowl-
edge that optimal transport maps are gradient of convex
functions when the transportation cost is quadratic. The
problem is finally cast as stochastic optimization problem
which only requires samples from the distribution.

Our paper builds on these recent works but with a crucial
difference. We propose to use a variational form of the ob-
jective function, leveraging f -divergences, which has been
employed in multiple machine learning applications, such
as generative models (Nowozin et al., 2016), and Bayesian
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inference (Wan et al., 2020). The variational problem is
formulated as maximization over a parametrized class of
functions. The variational form allows the evaluation of the
objective in terms of samples, without the need for density
estimation or approximating the logarithm of the determi-
nant of the Hessian of ICNNs which appears in (Mokrov
et al., 2021; Alvarez-Melis et al., 2021). Moreover, the vari-
ational form, even when restricted to a finite-dimensional
class of functions, admits nice geometrical properties of its
own leading to a meaningful objective function to minimize.

At the end of the algorithm, a sequence of transport maps
connecting the initial distribution with the terminal distri-
bution along the gradient flow dynamics are obtained. One
can then sample from the distributions along the flow by
sampling from the initial distribution (often Gaussian) and
then propagating these samples through the sequence of
transport maps. When the transport map is modeled by the
gradient of an input convex neural network, one can also
evaluate the densities at every point.

Our contributions are summarized as follows.
i) We develop a numerical algorithm to implement the
Wasserstein gradient flow that is based on a variational
representation of the objective functions. The algorithm
does not require spatial discretization, density estimation,
or approximating logarithm of determinant of Hessians.
ii) We numerically demonstrate the performance of our algo-
rithm on several representative problems including sampling
from high-dimensional Gaussian mixtures, porous medium
equation, and learning generative models on MNIST and CI-
FAR10 datasets. We illustrate the computational advantage
of our proposed method in comparison with (Mokrov et al.,
2021; Alvarez-Melis et al., 2021), in terms of computational
time and scalibity with the problem dimension.
iii) We establish some preliminary theoretical results regard-
ing the proposed variational objective function. In particular,
we provide conditions under which the variational objective
satisfies a moment matching property and an embedding in-
equality with respect to a certain integral probability metric
(see Proposition 4.1).

Related works: Most existing methods to compute Wasser-
stein gradient flow are finite difference based (Peyré, 2015;
Benamou et al., 2016; Carlier et al., 2017; Li et al., 2020;
Carrillo et al., 2021). These methods require spatial dis-
cretization and are thus not scalable to high dimensional
settings. There is a line of research that uses particle-based
method to estimate the Wasserstein gradient flow (Carrillo
et al., 2019a; Frogner & Poggio, 2020). In these algorithms,
the current density value is often estimated using kernel
method whose complexity scales at least quadratically with
the number of particles. More recently, several interest-
ing neural network based methods (Mokrov et al., 2021;
Alvarez-Melis et al., 2021; Yang et al., 2020; Bunne et al.,

2021; Bonet et al., 2021; Hwang et al., 2021) were proposed
for Wasserstein gradient flow. Mokrov et al. (2021) focuses
on the special case with Kullback-Leibler divergence as
objective function. Alvarez-Melis et al. (2021) uses a den-
sity estimation method to evaluate the objective function
by back-propagating to the initial distribution, which could
become a computational burden when the number of time
discretization is large. Yang et al. (2020) is based on a for-
ward Euler time discretization of the Wasserstein gradient
flow and is more sensitive to time stepsize. Bunne et al.
(2021) utilizes JKO scheme to approximate a population
dynamics given an observed trajectory, which finds applica-
tion in computational biology. Bonet et al. (2021) replaces
Wasserstein distance in JKO by sliced alternative but its con-
nection to the original Wasserstein gradient flow remains
unclear.

2 Background

2.1 Optimization problem

We are interested in developing algorithms for

min
P∈Pac(Rn)

F(P ), (1)

where Pac(Rn) is the space of probability distributions that
admit density dP/dx with respect to Lebesgue measure.
The objective functionF(P ) takes different form depending
on the application. Three important examples are:

Example I: Kullback-Leibler divergence with respect to a
given target distribution Q,

D(P ||Q) :=

∫
log

(
dP

dQ

)
dP (2)

plays an important role in the sampling problem.

Example II: Generalized entropy

G(P ) :=
1

m− 1

∫
Pm(x)dx, m > 1

is important for modeling the porous medium.

Example III: The (twice) Jensen-Shannon divergence

JSD(P‖Q) := D
(
P

∥∥∥∥P +Q

2

)
+D

(
Q

∥∥∥∥P +Q

2

)
is important in learning generative models.

2.2 Wasserstein gradient flow

Given a function F(P ) over the space of probability densi-
ties, the Wasserstein gradient flow describes the dynamics
of the probability density when it follows the steepest de-
scent direction of the function F(P ) with respect to the
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Riemannian metric induced by the 2-Wasserstein distance
W2 (Ambrosio et al., 2008). The Wasserstein gradient flow
can be explicitly represented by the PDE

∂P

∂t
= ∇ ·

(
P∇δF

δP

)
,

where δF/δP represents the first-variation of of F with
respect to the standard L2 metric (Villani, 2003, Ch. 8).

Wasserstein gradient flow corresponds to various important
PDEs depending on the choice of objective functions F(P ).
For instance, when F(P ) is the free energy, i.e.

F(P ) =

∫
Rn
P (x) logP (x)dx+

∫
Rn
V (x)P (x)dx,

the gradient flow is the Fokker-Planck equation (Jordan
et al., 1998).

∂P

∂t
= ∇ · (P∇V ) + ∆P.

When F(P ) is the generalized entropy F(P ) =
1

m−1

∫
Rn P

m(x)dx for some positive number m > 1, the
gradient flow is the porous medium equation (Otto, 2001;
Vázquez, 2007) ∂P∂t = ∆Pm.

2.3 JKO scheme and reparametrization

To numerically realize the Wasserstein gradient flow, a dis-
cretization over time is needed. One such discretization is
the famous JKO scheme (Jordan et al., 1998)

Pk+1 = arg min
P∈Pac(Rn)

1

2a
W 2

2 (P, Pk) + F(P ). (3)

This is essentially a backward Euler discretization or a prox-
imal point method with respect to the Wasserstein metric.
The solution to (3) converges to the continuous-time Wasser-
stein gradient flow when the step size a→ 0.

Recall the definition of the Wasserstein-2 distance

W 2
2 (P,Q) = min

T :T]P=Q

∫
Rn
‖x− T (x)‖22dP (x),

where the minimization is over all the feasible transport
maps that transport mass from distribution P to distribution
Q. Hence, (3) can be recast as an optimization in terms of
the transport maps T : Rn → Rn from Pk to P . By defining
P = T]Pk, the optimal T is the optimal transport map from
Pk to T]Pk and thus the gradient of a convex function ϕ
by Brenier’s Theorem (Brenier, 1991). Bunne et al. (2021);
Mokrov et al. (2021); Alvarez-Melis et al. (2021) propose
to parameterize T as the gradient of Input convex neural
network (ICNN) (Amos et al., 2017) and express (3) as

Pk+1 = ∇ϕk]Pk, (4)

ϕk = arg min
ϕ∈CVX

1

2a

∫
Rn
‖x−∇ϕ(x)‖22dPk(x)+F(∇ϕ]Pk),

where CVX stands for the space of convex functions. In our
method, we extend this idea and propose to reparametrize
T alternatively by a residual neural network. With this
reparametrization, the JKO step (3) becomes

Pk+1 = Tk]Pk, (5)

Tk = arg min
T

1

2a

∫
Rn
‖x−T (x)‖22dPk(x)+F(T]Pk).

We use the preceding two schemes (4) and (5) in our numer-
ical method depending on the application.

3 Methods and algorithms
We discuss how to implement JKO scheme with our ap-
proach and its computational complexity in this section.

3.1 F(P ) reformulation with variational formula

The main challenge in implementing the JKO scheme is to
evaluate the functional F(P ) in terms of samples from P .
We achieve this goal by using a variational formulation of
F . In order to do so, we use the notion of f -divergence
between the two distributions P and Q:

Df (P‖Q) = EQ
[
f

(
dP

dQ

)]
(6)

where P admits density with respect to Q (denoted as P �
Q) and f : [0,+∞) → R is a convex and lower semi-
continuous function. Without loss of generality, we assume
f(1) = 0 so that Df attains its minimum at P = Q.

Proposition 3.1. (Nguyen et al., 2010) ∀P,Q ∈ P(Rn)
such that P � Q and differentiable f :

Df (P‖Q) = sup
h∈C

EP [h(X)]− EQ[f∗(h(Y ))]. (7)

where f∗(y) = supx∈R[xy − f(x)] is the convex conjugate
of f and C is all measurable functions h : Rn → R. The
supremum is attained at h = f ′(dP/dQ).

The variational form has the distinguishing feature that it
does not involve the density of P and Q explicitly and can
be approximated in terms of samples from P and Q. In
general, our scheme can be applied to any f -divergence, but
we focus on the functionals in Section 2.1.

With the help of the f -divergence variational formula,
when F(P ) = D(P‖Q), G(P ) or JSD(P‖Q), the JKO
scheme (5) can be equivalently expressed as

Pk+1 = Tk]Pk, (8)

Tk = arg min
T

{
1

2a
EPk [‖X − T (X)‖2] + sup

h
V(T, h)

}
.
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where V(T, h) = EX∼Pk [Ah(T (X))] − EZ∼Γ[Bh(Z)], Γ
is a user designed distribution which is easy to sample from,
andA and B are functionals whose form depends onF . The
specializations of A and B appear in Table 1.

The following lemma implies that if F(P ) can be written
as Df (P‖Q), then F(P ) monotonically decreases along
its Wasserstein gradient flow, which makes it reasonable
to solve (1) by using JKO scheme. It also justifies that the
gradient flow finally converges to Q.

Lemma 3.2. Gao et al. (2019, Lemma 2.2)
d
dtF(Pt) = −EPt(‖∇f ′(Pt/Q)‖2).

3.1.1 KL DIVERGENCE

The KL divergence is a special instance of the f -divergence
with f(x) = x log x. Using f(x) = x log x in (7) yields
the following expression for KL divergence as a corollary
of Proposition 3.1. The proof appears in Section A.1

Corollary 3.3. The variational form for D(P‖Q) reads

D(P‖Q)=1 + sup
h

EP
[
log

h(X)µ(X)

Q(X)

]
− Eµ [h(Z)] ,

where µ is a user designed distribution which is easy to
sample from. The optimal function h is equal to dP/dµ.

This variational formula becomes practical when we have
only access to un-normalized density ofQ, which is the case
for the sampling problem. In practice, we choose µ = µk
adaptively, where µk is the Gaussian with the same mean
and covariance as Pk. We noticed that this choice improves
the numerical stability of the the algorithm.

3.1.2 GENERALIZED ENTROPY

The generalized entropy can be also represented as a f -
divergence. In particular, with f(x) = 1

m−1 (xm − x) and
Q the uniform distribution on the superset of the support of
density P (x) with volume Ω:

Df (P‖Q) =
Ωm−1

m− 1

∫
Pm(x)dx− 1

m− 1
(9)

= Ωm−1G(P )− 1

m− 1
.

Plugging f(x) = 1
m−1 (xm − x) into (7), we get the follow-

ing expression of the generalized entropy as a corollary of
Proposition 3.1. The proof appears in Section A.1

Corollary 3.4. The variational formulation for G(P ) reads

G(P )=
suph

(
EP
[
mhm−1(X)

m−1

]
− EQ [hm(Z)]

)
Ωm−1

. (10)

The optimal function h is equal to dP/dQ.

Table 1: Variational formula for F(P )

F(P ) Ah Bh Γ

D(P‖Q) log
(
h·µk
Q

)
h Gaussian dist. µk

G(P ) m
m−1

· h
m−1

Ωm−1
k

hm

Ωm−1
k

Uniform dist. Qk

JSD(P‖Q) log(1− h) − log h Empirical dist. Q

In practice, we choose Ω = Ωk which is the volume of
a set that guarantees to contain the support of T]Pk. In
view of the connection between generalized entropy and f -
divergence, it is justified that the solution of Porous Media
equation develops towards a uniform distribution. Espe-
cially, when m = 2, (9) recovers the Pearson divergence
between P and the uniform distribution Q.

3.1.3 JENSEN-SHANNON DIVERGENCE

JSD(P‖Q) corresponds to f -divergence with f(x) = −(x+
1) log((1 + x)/2) + x log x. Direct application of (7) con-
cludes the following Corollary.

Corollary 3.5. The variational form for JSD(P‖Q) is

log 4 + sup
h

EP [log(1− h(X))] + EQ [log h(Z)] . (11)

In particular, we apply JSD to the learn the image generative
model, therefore we assume samples from Q are accessible.

Algorithm 1 Primal-dual gradient flow

Input: Objective functional F(P ), initial distribution P0,
JKO step size a, number of JKO steps K.
Initialization: Parameterized Tθ and hλ
for k = 1, 2, . . . ,K do
Tθ ← Tk−1 if k > 1
for j1 = 1, 2, . . . , J1 do

Sample X1, . . . , XM ∼ Pk, Z1, . . . , ZM ∼ Γ.
Maximize 1

M

∑M
i=1 [A(Tθ(Xi), hλ)− B(hλ(Zi))]

over λ for J2 steps.
Minimize 1

M

∑M
i=1

[
‖Xi−Tθ(Xi)‖2

2a +A(Tθ(Xi), hλ)
]

over θ for J3 steps.
end for
Tk ← Tθ

end for
Output: {Tk}Kk=1

3.2 Parametrization of T and h

The two optimization variables T and h in our minimax
formulation (8) can be both parameterized by neural net-
works, denoted by Tθ and hλ. With this neural network
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parametrization, we can then solve the problem by itera-
tively updating Tθ and hλ. This primal-dual method to
solve (1) is depicted in Algorithm 1.

In this work, we implemented two different architectures
for the map T . One way is to use a residual neural network
to represent T directly, and another way is to parametrize
T as the gradient of a ICNN ϕ. The latter has been widely
used in optimal transport (Makkuva et al., 2020; Fan et al.,
2020; Korotin et al., 2021b). However, recently several
works (Rout et al., 2021; Korotin et al., 2021a; Fan et al.,
2021; Bonet et al., 2021) find poor expressiveness of ICNN
architecture and also propose to replace the gradient of
ICNN by a neural network. In our experiments, we find
that the first parameterization gives more regular results,
which aligns with the result in Bonet et al. (2021, Figure
4). However, it would be very difficult to calculate the
density of pushforward distribution. Therefore, with the
first parametrization, our method becomes a particle-based
method, i.e. we cannot query density directly. As we discuss
in Section D, when density evaluation is needed, we adopt
the ICNN since we need to compute T−1.

3.3 Computational complexity

Each update k in Algorithm 1 requires O(J1kMH) oper-
ations, where J1 is the number of iterations per each JKO
step, M is the batch size, and H is the size of the network.
k shows up in the bound because sampling Pk requires us
to pushforward x0 ∼ P0 through k − 1 maps.

In contrast, Mokrov et al. (2021) requires
O
(
J1

(
(k + n)MH + n3

))
operations, which has a

cubic dependence (Mokrov et al., 2021, Section 5) on
dimension n because they need to query the log det∇2ϕ in
each iteration. There exists fast approximation (Huang et al.,
2020) of log det∇2ϕ using Hutchinson trace estimator
(Hutchinson, 1989). Alvarez-Melis et al. (2021) applies this
technique, thus the cubic dependence on n can be improved
to quadratic dependence. Noneless, this is accompanied
by an additional cost, which is the number of iterations to
run conjugate gradient (CG) method. CG is guaranteed to
converge exactly in n steps in this setting. If one wants to
obtain log det∇2ϕ precisely, the cost is still O(n3), which
is the same as calculating log det∇2ϕ directly. If one
uses an error ε stopping condition in CG, the complexity
could be improved to

√
κ log(2/ε)n2 (Shewchuk et al.,

1994), where κ is the upper bound of condition number of
∇2ϕ, but this would sacrifice on the accuracy. Given the
similar neural network size, our method has the advantage
of independence on the dimension for the training time.

Other than training time, the complexity for evaluating the
density has unavoidable dependence on n due to the stan-
dard density evaluation process (see Section D).

4 Theoretical results
We introduce approximate f -divergence notation and ana-
lyze its properties in this section.

4.1 Approximate f -divergence

Given the results in Proposition 3.1, now we consider a re-
striction of the optimization domain C to a class of functions
H, e.g parametrized by neural networks, and define the new
functional

DHf (P‖Q) = sup
h∈H

{∫
hdP −

∫
f∗(h)dQ

}
.

This functional forms a surrogate for the exact f -divergence.
It is straightforward to see that the new function is always
smaller than the exact f -divergence, i.e. DHf (P‖Q) ≤
Df (P‖Q) where the inequality is achieved when f ′( dPdQ )
belongs to H. In the following lemma, we establish
some important theoretical properties of the approximate
f -divergence DHf (P‖Q). In order to do so, we introduce
the integral probability metric (Sriperumbudur et al., 2012;
Arora et al., 2017)

dH(P,Q) = sup
h∈H

1

‖h‖2,Q

{∫
hdP −

∫
hdQ

}
,

where ‖h‖22,Q =
∫
h2dQ.

Proposition 4.1. The approximate f -divergenceDHf (P‖Q)
satisfies the following properties:
1. (positivity) IfH contains all constant functions, then

DHf (P‖Q) ≥ 0, ∀P,Q.

2. (moment-matching) If for all h ∈ H, c + λh ∈ H for
c, λ ∈ R, then

DHf (P‖Q) = 0 ⇔
∫
hdP =

∫
hdQ, ∀h ∈ H.

3. (embedding inequalities) Additionally, if f is strongly
convex with constant α, and smooth with constant L, then,

α

2
dH(P,Q)2 ≤ DHf (P‖Q) ≤ L

2
dH(P,Q)2.

The proposition has important implications. Part (1) es-
tablishes the condition under which the approximate f -
divergence is always positive. Part (2) identifies necessary
and sufficient conditions under which the approximate diver-
gence is zero for two given probability distributions P and
Q. In particular, the divergence is zero iff the moments of P
and Q are equal for all functions in the function classH. Fi-
nally, part (3) provides lower-bound and upper-bound for the
approximate f -divergence in terms of an integral probability
metric defined on the function class H, implying that the
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two measures are equivalent when f is both strongly convex
and smooth. For example, a sequence DHf (Pd‖Qd)→ 0 as
d→∞ iff dH(Pd, Qd)→ 0 as d→∞. Or if we are able
to minimize the approximate f -divergence DHf (P‖Q) with
optimization gap ε, then the error in the moments of P and
Q for functions in H is of order O(

√
ε). These results in-

form us that the proposed objective function of minimizing
DHf (P‖Q) is meaningful and has geometrical significance.
Remark 4.2. The assumption that c+λh ∈ H for all h ∈ H
and c, λ ∈ R holds for any neural network with linear
activation function at the last layer. The assumption that f
is strongly convex and smooth may not hold for a typical
f such as f(x) = x log(x) over (0,∞). However, It holds
when the domain is restricted, which is true when either the
samples are bounded or h is bounded for all h ∈ H.

4.2 Computational boundness

It is also possible to obtain lower-bound for DHf (P‖Q) in
terms of the exact f -divergence Df (P‖Q) when the class
H is rich enough.

Proposition 4.3. If f is α-strongly convex and the class of
functions is able to approximate any function h ∈ C with
h̃ ∈ H such that ‖h̃− h‖2,Q ≤ ε, then

DHf (P‖Q) ≥ Df (P‖Q)− ε2

2α
, ∀P,Q.

Proposition 4.3 gives upper-bound on the error between vari-
ational f -divergence and the ground truth by the function
class expressiveness, which can be verified for neural net
function class. Assume H is the class of neural nets with
an arbitrary depth under mild assumption on the activation
function. Following the proof of Theorem 1 in Korotin et al.
(2022), we can verify that for any ε > 0, compactly sup-
ported Q, and function ‖h‖2,Q <∞, there exists a neural
net h̃ ∈ H such that ‖h̃ − h‖2,Q ≤ ε (c.f. discussion in
Section A.3). However, Proposition 4.1-(3) and Proposition
4.3 require f to be strongly convex, which might be too
strong for some f -divergences, such as KL divergence.

Unlike the exact form of the f -divergence, the varia-
tional formulation is well-defined for empirical distributions
when the function class H is restricted and admits a finite
Rademacher complexity.

Proposition 4.4. Let P (N) = 1
N

∑N
i=1 δXi , Q

(M) =
1
M

∑M
i=1 δYi , where {Xi}Ni=1, {Yi}Mi=1 are i.i.d samples

from P and Q respectively. Then, it follows that

E[|DHf (P‖Q)−DHf (P (N)‖Q(M))|]
≤2RN (H, P ) + 2RM (f∗ ◦ H, Q),

where the expectation is over the samples and RN (H, P )
denotes the Rademacher complexity of the function classH
with respect to P for sample size N .

Proposition 4.4 quantifies the generalization error in terms
of Rademacher complexity. We leave the task of evaluating
the Rademacher complexity for different function classes
employed in this paper for future work.

4.3 Convergence to spherical Gaussian distribution

We assert the efficacy of JKO with variational estima-
tion through a spherical Gaussian example. We consider
sampling from the target distribution Q = N (η, In) by
minimizing the functional F(P ) = D(P‖Q). We choose
P0 = µ = N (0, In), and parameterize T to be linear func-
tions. Assume we get T0, . . . , TK−1 by solving the particle
approximated JKO in (14), and we can estimate Eµ[h(·)]
precisely for simplication. Denote PK as the K-th JKO
iteration TK−1](. . . (T0]P0)) and P ∗K as the ground truth
solution of JKO.
Proposition 4.5. Based on the assumptions in the para-
graph above, let P (N)

K = 1
N

∑N
i=1 δXi , where {Xi}Ni=1 are

i.i.d samples from PK . Then, it follows that

E[|DH(P ∗K‖Q)−DH(P
(N)
K ‖Q)|]

≤1

2
(∆N +

√
ξK,N + 1/N)2

where ∆N = ‖η‖
(1+a)K

,

ξK,N =

(
a

1 + a

)2
n

N

K∑
j=1

1

(1 + a)2(K−j) ,

andH ⊇ {h : h(z) = exp(α>z + γ), α ∈ Rn, γ ∈ R}.

This proposition quantifies the sample complexity and con-
vergence rate of JKO with our variational estimation for a
spherical Gaussian example. In the future, it would be useful
to analyze the stability and convergence of the proposed min-
max formulation for more general functional F(P ), both at
the level of densities and at the level of samples/particles.

5 Numerical examples
In this section, we present several numerical examples to
illustrate our algorithm. We mainly compare with the JKO-
ICNN-d (Mokrov et al., 2021), JKO-ICNN-a (Alvarez-Melis
et al., 2021). The difference between JKO-ICNN-d and
JKO-ICNN-a is that the former computes the log det(∇2ϕ)
directly and the latter adopts fast approximation. We use
the default hyper-parameters in the authors’ implementa-
tion. Our code is written in PyTorch-lightning and is pub-
licly available at https://github.com/sbyebss/
variational_wgf.

5.1 Sampling from Gaussian Mixture Model

We first consider the sampling problem to sample from a
target distribution Q. Note that Q doesn’t have to be nor-

https://github.com/sbyebss/variational_wgf
https://github.com/sbyebss/variational_wgf
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malized. To this end, we consider the Wasserstein gradient
flow with objective function F(P ) = D(P‖Q), that is,
the KL divergence between distributions P and Q. When
this objective is minimized, P ∝ Q. In our experiments,
we consider the Gaussian mixture model (GMM) with 10
equal-weighted spherical Gaussian components. The mean
of Gaussian components are randomly uniformly sampled
inside a cube. The step size is set to be a = 0.1 and the ini-
tial measure is a spherical Gaussian N (0, 16In). In Figure
1, we show our generated samples are in concordance with
the target measure.

(a) Dimension n = 64

(b) Dimension n = 128

Figure 1: Comparison between the target GMM and fitted
measure of generated samples by our method. Samples are
projected onto 2D plane by performing PCA.

Figure 2: Averaged training time (in minutes) of 40 JKO
steps for sampling from GMM.

In Figure 2, we plot the averaged training time of 5 runs for
all compared methods. Note that we fix the number of con-
jugate descent steps to be at most 10 when approximating
log det∇2ϕ in JKO-ICNN-a. That’s why JKO-ICNN-d and
JKO-ICNN-a have quite similar training time when n < 10.

To investigate the performance under the constraint of simi-
lar training time, we perform 40 JKO steps with our method

(a) log10KSD (b) Objective functional

Figure 3: (a) We perform experiments in n =
2, 4, 8, 15, 24, 32 for all methods and additionally n =
64, 128 for our method. With the constraint of similar
training time, our method gives smaller error in high di-
mension. (b) With the variational formula, we use only
samples to estimate the objective functional D(Pk‖Q) in
dimension n = 64. It converges to the ideal objective mini-
mum D(P∞‖Q) = 0.

and the same for JKO-ICNN methods except for n ≥ 15,
where we only let them run for 20, 15, 12 JKO steps for
n = 15, 24, 32 respectively. In doing so, one can verify the
training time of our method and JKO-ICNN is roughly con-
sistent. We only report the accuracy results of JKO-ICNN-d
for n < 10 in Figure 3 since it’s prone to give higher accu-
racy than JKO-ICNN-a considering nearly the same training
time in low dimension. We select Kernalized Stein Diver-
gence (KSD) (Liu et al., 2016) as the error criteria because
it only requires samples to estimate the divergence, which
is useful in the sampling task.

5.2 Ornstein-Uhlenbeck Process

(a) log10SymKL (b) Objective functional

Figure 4: (a): We repeat the experiments for 15 times and
compare the SymKL (Mokrov et al., 2021) between esti-
mated distribution and the ground truth at k = 18 in OU
process. (b): We show the comparison between our esti-
mated D(Pk‖Q) and the ground truth in dimension n = 64.
They align with each other pretty well.

We study the performance of our method in modeling the
Ornstein-Uhlenbeck Process as dimension grows. The
gradient flow is affiliated with the free energy (2), where
Q = e(x−b)TA(x−b)/2 with a positive definite matrix A ∈
Rn×Rn and b ∈ Rn. Given an initial Gaussian distribution
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Table 2: Bayesian logistic regression accuracy and log-
likelihood results.

Accuracy Log-LikelihoodDataset Ours JKO-ICNN Ours JKO-ICNN
covtype 0.753 0.75 -0.528 -0.515
splice 0.84 0.845 -0.38 -0.36

waveform 0.785 0.78 -0.455 -0.485
twonorm 0.982 0.98 -0.056 -0.059
ringnorm 0.73 0.74 -0.5 -0.5
german 0.67 0.67 -0.59 -0.6
image 0.866 0.82 -0.394 -0.43

diabetis 0.786 0.775 -0.45 -0.45
banana 0.55 0.55 -0.69 -0.69

N (0, In), the gradient flow at each time t is a Gaussian
distribution Pt with mean vector

µt = (In − e−At)b

and covariance (Vatiwutipong & Phewchean, 2019)

Σt = A−1(In − e−2At) + e−2At.

We choose JKO step size a = 0.05. We only present JKO-
ICNN-d accuracy results because JKO-ICNN-a has the sim-
ilar or slightly worse performance.

There could be several reasons why we have better perfor-
mance. 1) The proposed distribution µ is Gaussian, which is
consistent with Pt for any t. This is beneficial for the inner
maximization to find a precise h. 2) Parameterizing T as a
neural network instead of gradient of ICNN is handier for
optimization in this toy example.

We also compare the training time per every two JKO steps
with JKO-ICNN method. The computation time for JKO-
ICNN-d is around 25s when n = 2 and increases to 105s
when n = 32. JKO-ICNN-a has slightly better scalability,
which increases from 25s to 95s. Our method’s training
time remains at 22s±5s for all the dimensions n = 2 ∼ 32.
This is due to the fact that we fix the neural network size
for both methods and our method’s computation complexity
does not depend on the dimension.

5.3 Bayesian Logistic Regression

To evaluate our method on a real-world datast, we consider
the bayesian logistic regression task with the same setting in
Gershman et al. (2012). Given a dataset L = {l1, . . . , lS},
a model with parameters x ∈ Rn and the prior distribution
p0(x), our target is to sample from the posterior distribution

p(x|L) ∝ p0(x)p(L|x) = p0(x) ·
S∏
s=1

p(ls|x).

To this end, we let the target distribution Q(x) =
p0(x)p(L|x) and choose F(P ) equal to D(P‖Q). The
parameter x takes the form of [ω, logα], where ω ∈
Rn−1 is the regression weights with the prior p0(ω|α) =
N (ω, α−1). α is a scalar with the prior p0(α) =
Gamma(α|1, 0.01). We test on 8 relatively small datasets
(S ≤ 7400) from Mika et al. (1999) and one large Cover-
type dataset1 (S = 0.58M). The dataset is randomly split
into training dataset and test dataset according to the ratio
4:1. The number of features scales from 2 to 60. From
Table 2, we can tell that our method achieves a comparable
performance as the other. The results of JKO-ICNN-d are
adapted from Mokrov et al. (2021, Table 1). We present
the datasets properties and comparison with another popular
sampling method SVGD (Liu & Wang, 2016) in Table 5 in
the Appendix.

5.4 Porous media equation

Figure 5: SymKL with respect to the Barenblatt profile
ground truth in 50 JKO steps.

(a) Dimension n = 3 (b) Dimension n = 6

Figure 6: We use variational formula to calculate the ob-
jective functional G(P ) with samples and compare it with
ground truth.

We next consider the porous media equation with only dif-
fusion: ∂tP = ∆Pm. This is the Wasserstein gradient
flow associated with the energy function F(P ) = G(P ).
A representative closed-form solution of the porous media
equation is the Barenblatt profile (GI, 1952; Vázquez, 2007)

P (t, x) = (t+ t0)
−α
(
C−β‖x− x0‖2 (t+ t0)

−2α
n

) 1
m−1

+
,

where α = n
n(m−1)+2 , β = (m−1)α

2mn , t0 > 0 is the start-
ing time, and C > 0 is a free parameter. In the experi-

1https://www.csie.ntu.edu.tw/˜cjlin/
libsvmtools/datasets/binary.html

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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ments, we set m = 2, the stepsize for the JKO scheme to
be a = 0.0005 and the initial time to be t0 = 0.001. We
parametrize the transport map T as the gradient of an ICNN
and thus we can evaluate the density following Section D.
From Figure 5, we observe that our method can give stable
simulation results, where the error is controlled in a small
region as diffusion time increases.

5.5 Gradient flow on images

(a) Trajectory (b) Uncurated samples

Figure 7: With Wasserstein gradient flow scheme, we visual-
ize (a): trajectories of the generated samples from JKO-Flow
and (b): 100 uncurated samples from PK .

In this section, we illustrate the scalability of our algorithm
to high-dimensional setting by applying our scheme on real
image datasets, where only samples from Q are accessi-
ble. With the variational formula (11), Algorithm 1 can be
adapted to model gradient flow in image space. Specifically,
we choose F(P ) to be JSD(P‖Q) and P0 = N (0, In).
We name the resulted model JKO-Flow. Note JKO-Flow
model specializes to GAN (Goodfellow et al., 2014) when
a→∞ and K = 1. Thanks to the additional Wasserstein
loss regularization, JKO-Flow enjoys stable training and
suffer less from mode collapsing empirically. We evaluate
JKO-Flow on popular MNIST (LeCun et al., 1998) and CI-
FAR10 (Krizhevsky et al., 2009) datasets. Figure 7 shows
samples and their trajectories starting from P0 to PK and
demonstrates JKO-Flow can approximate Wasserstein gra-
dient flow in image space empirically. To further quantify
the performance of JKO-Flow, we measure discrepancy be-
tween PK and real distribution with the popular sample
metric, Fenchel Inception Distance (Heusel et al., 2017) in
Table 3. We also compare our method with normalizing flow
(NF), which also consists of a sequence of forward mapping.

Table 3: Results of Gradient flow (GF) based methods,
GAN methods and normalizing flow (NF) on unconditional
CIFAR10 dataset.

Method FID score ↓
NF GLOW (Kingma & Dhariwal, 2018) 45.99

VGrow (Gao et al., 2019) 28.8GF JKO-Flow 23.1
WGAN-GP (Arbel et al., 2018) 31.1GANs SN-GAN (Miyato et al., 2018) 21.7

However, the invertible property of NF either requires heavy
calculations (e.g. evaluating matrix determinant or solving
Neural ODE) or special network structures that limit the the
expressiveness of NNs. We include more comparison and
experiments details in Section G.

6 Conclusion
In this paper, we presented a numerical procedure to im-
plement the Wasserstein gradient flow for objective func-
tions in the form of f -divergence. Our procedure is based
on applying the JKO scheme on a variational formulation
of the f -divergence. Each step involves solving a min-
max stochastic optimization problem for a transport map
and a dual function that are parameterized by neural net-
works. We demonstrated the scalability of our approach to
high-dimensional problems through numerical experiments
on Gaussian mixture models and real datasets including
MNIST and CIFAR10. We also provided preliminary theo-
retical results regarding the variational objective function.
The results show that minimizing the variational objective
is meaningful and serve as starting point for future research.
Our method can also be adapted to Crank-Nicolson type
scheme, which enjoys a faster convergence (Carrillo et al.,
2021) in step size a than the classical JKO scheme (see
Section B). One restriction of our method is that it is only
applicable to f -divergence, thus a possible direction for fu-
ture research is to extend the variational formulation beyond
f -divergence. Another limitation is that the min-max train-
ing is both theoretically and numerically more challenging
than a single minimization.
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The appendix is structured as follows. In Section A, we provide the proofs of Corollaries in Section 3.1 and the theoretical
results in Section 4. In Section B, we give a Crank-Nicolson-typed extension of our method for a faster convergence with
respect to the step size a. In Section C, we consider the case where the target functional F(P ) involves the interaction energy,
and propose to use forward-backward scheme to solve the Wasserstein GF. In Section D, for the sake of completeness, we
discuss how to evaluate the probability density of each JKO step Pk. In Section E, we provide additional experimental
results and discussions, such as the computational time. In Section F, we provide the training details of experiments other
than image generation. In Section 5.5, we provide the training details and discussions of image generation experiment.

A Proofs

A.1 Proof of variational formulas in Section 3.1

A.1.1 KL DIVERGENCE

The KL divergence is the special instance of the f -divergence obtained by replacing f with f1(x) = x log x in (6)

Df1(P‖Q) = EQ
[
P

Q
log

P

Q

]
= EP

[
log

P

Q

]
,

which, according to (7), admits the variational formulation

Df1(P‖Q) = 1 + sup
h

EP [h(X)]− EQ
[
eh(Z)

]
(12)

where the convex conjugate f∗1 (y) = ey−1 and a change of variable h→ h− 1 are used.

The variational formulation can be approximated in terms of samples from P and Q. For the case where we have only
access to un-normalized density of Q, which is the case for the sampling problem, we use the following change of variable:
h→ log(h) + log(µ)− log(Q) where µ is a user designed distribution which is easy to sample from. Under such a change
of variable, the variational formulation reads

Df1(P‖Q) = 1 + sup
h

EP
[
log h(X) + log

µ(X)

Q(X)

]
− Eµ [h(Z)] .

Note that the optimal function h is equal to the ratio between the densities of T]Pk and µ. Using this variational form in the
JKO scheme (5) yields Pk+1 = Tk]Pk and

Tk = arg min
T

max
h

EPk
[
‖X − T (X)‖2

2a
+ log h(T (X)) + log

µ(T (X))

Q(T (X))

]
− Eµ [h(Z)] . (13)

Based on particle approximation, the implementable JKO is

Tk = arg min
T

max
h

1

N

N∑
i=1

[
‖X(k)

i − T (X
(k)
i )‖2

2a
+ log h(T (X

(k)
i )) + log

µ(T (X
(k)
i ))

Q(T (X
(k)
i ))

]
− Eµ [h(Z)] . (14)

Remark A.1. The Donsker-Varadhan formula

D(P‖Q) = sup
h

EP [h(X)]− logEQ
[
eh(Z)

]
is another variational representation of KL divergence and it’s a stronger than (12) because it’s a upper bound of (12) for any
fixed h. However, we cannot get an unbiased estimation of the objective using samples.

A.1.2 GENERALIZED ENTROPY

The generalized entropy can be also represented as f -divergence. In particular, let f2(x) = 1
m−1 (xm − x) and let Q be the

uniform distribution on a set which is the superset of the support of density P (x) and has volume Ω. Then

Df2(P‖Q) =
Ωm−1

m− 1

∫
Pm(x)dx− 1

m− 1
.
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As a result, the generalized entropy can be expressed in terms of f -divergence according to

G(P ) =
1

m− 1

∫
Pm(x)dx =

1

Ωm−1
Df2(P‖Q) +

1

Ωm−1(m− 1)
.

Upon using the variational representation of the f -divergence with

f∗2 (y) =

(
(m− 1)y + 1

m

) m
m−1

,

the generalized entropy admits the following variational formulation

G(P ) = sup
h

1

Ωm−1

(
EP [h(X)]− EQ

[(
(m− 1)h(Z) + 1

m

) m
m−1

])
+

1

Ωm−1(m− 1)
.

In practice, we find it numerically useful to let h = 1
m−1

[
m
(
ĥ
)m−1

− 1

]
so that

G(P ) =
1

Ωm−1
sup
ĥ

(
EPk

[
m

m− 1
ĥm−1(X)

]
− EQ

[
ĥm(Z)

])
.

With such a change of variable, the optimal function ĥ = T]Pk/Q. Using this in the JKO scheme yields Pk+1 = Tk]Pk,
and

Tk = arg min
T

max
h

1

2a
EPk‖X − T (X)‖2 +

1

Ωm−1

(
EPk

[
m

m− 1
hm−1(X)

]
− EQ [hm(Z)]

)
.

A.1.3 JENSEN-SHANNON DIVERGENCE

Jensen-Shannon divergence has been widely studied in GAN literature (Nowozin et al., 2016). The variational formula
follows that f(x) = −(x+1) log((1+x)/2)+x log x and f∗(y) = − log(2−exp(y)). Plugging in the variational formula
in the JKO scheme gives

Tk = arg min
T

max
h

1

2a
EPk‖X − T (X)‖2 + EPk [log(1− h(X))] + EQ [log h(Z)] .

A.2 Proof of Propostion 4.1

We present the proof of Propostion 4.1. Let us define J(h) :=
∫
hdP −

∫
f∗(h)dQ.

1. The proof follows from

DHf (P,Q) = sup
h∈H

J(h) ≥ sup
c∈R

J(c) = sup
c∈R
{c− f∗(c)} = f(1) = 0

where the last identity follows from the assumption that f(1) = 0.

2. The direction (⇐) follows because

J(h) ≤
∫
hdP −

∫
hdQ = 0, ∀h ∈ H

where f∗(y) = supx{xy − f(x)} ≥ y1− f(1) = y is used. As a result, DHf (p‖Q) = suph∈H J(h) ≤ 0. Using part
(1), this is only possible when DHf (P‖Q) = 0.

To show the other direction (⇒), for all h ∈ H , define g(λ) := J(f ′(1) + λh) where λ ∈ R. The function
g(λ) attains its maximum at λ = 0 because g(λ) = J(f ′(1) + λh) ≤ suph∈H J(h) = DHf (P‖Q) = 0 and
g(0) = J(f ′(1)) = f ′(1)− f∗(f ′(1)) = f(1) = 0 by Fenchel identity. Therefore, the first-order optimality condition
g′(0) = 0 must hold. The result follows because

g′(0) =

∫
hdP −

∫
hf∗′(f ′(1))dQ =

∫
hdP −

∫
hdQ
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3. Let us define gh(λ) := J(f ′(1) + λh
‖h‖2,Q ). The first and the second derivatives of gh(λ) with respect to λ are:

g′h(λ) =

∫
h

‖h‖
dP −

∫
h

‖h‖
f∗′(f ′(1) +

λh

‖h‖
)dQ

g′′h(λ) = −
∫

h2

‖h‖2
f∗′′(f ′(1) +

λh

‖h‖
)dQ

By assumption on f , the convex conjugate f∗ is strongly convex with constant 1
L and smooth with constant 1

α .
Therefore, 1

L ≤ f∗′′(y) ≤ 1
α . As a result, 1

L ≤ −g
′′
h(λ) ≤ 1

α where we used ‖h‖2 =
∫
h2dQ. Therefore, gh(λ) is

strongly concave and smooth and satisfies the inequalities:

α

2
g′h(0)2 ≤ sup

λ
gh(λ)− gh(0) ≤ L

2
g′h(0)2

Upon using gh(0) = J(f ′(1)) = 0 and taking the sup over h ∈ H of all sides,

α

2
sup
h∈H

g′h(0)2 ≤ sup
h∈H

sup
λ
gh(λ) ≤ L

2
sup
h∈H

g′h(0)2.

By the assumption that for all h ∈ H, c+ λh ∈ H for c, λ ∈ R,

sup
h∈H

sup
λ
gh(λ) = sup

h∈H
J(h) = DHf (P‖Q).

The result follows by noting that suph∈H g
′
h(0) = dH(P,Q).

A.3 Proof of Proposition 4.3

Proof. For a given P and Q, let h0 = f ′( dPdQ ) and h̃ ∈ H be such that ‖h̃ − h0‖2,Q ≤ ε. Similar to the proof of
Proposition 4.1, define J(h) =

∫
hdP −

∫
f∗(h)dQ. Then,

DHf (P‖Q) = sup
h∈H

J(h) ≥ J(h̃) = J(h̃)− J(h0) + J(h0) = J(h̃)− J(h0) +Df (P‖Q)

where J(h0) = Df (P‖Q) is used in the last step. The proof follows by showing that J(h̃)− J(h0) ≥ − 1
2α‖h̃− h0‖22,Q.

In order to show this, note that f∗ is 1
α smooth because f is α strongly convex. Then,

f∗(h̃(x))− f∗(h0(x)) ≤ f∗′(h0(x))(h̃(x)− h0(x)) +
1

2α
|h̃(x)− h0(x)|2, ∀x.

Taking the expectation over Q and adding
∫
h0dP −

∫
h̃dP yields,

J(h0)− J(h̃) ≤
∫
f∗′(h0)(h̃− h0)dQ+

∫
(h0 − h̃)dP +

1

2α
‖h̃− h‖22,Q.

Then, the proof follows from f∗′(h0) = f∗′(f ′( dPdQ )) = dP
dQ to cancel the first two terms.

Discussion on neural network function class Consider H is the class of neural nets with an arbitrary depth and mild
assumption on the activation function. Following the proof of Theorem 1 in Korotin et al. (2022), we can verify that for
any ε > 0, compactly supported Q, and function ‖h‖2,Q <∞, there exists a neural net h̃ ∈ H such that ‖h̃− h‖2,Q ≤ ε.
Indeed, let Q be supported on X ⊂ Rn, and X be compact, by Folland (1999, Proposition 7.9), the continuous functions
C0(X ) are dense in L2(Q). Further by Kidger & Lyons (2020, Theorem 3.2), the neural nets in H are dense in C0(X )
with respect to L∞ norm, and as such with respect to L2 norm. Putting these two pieces together gives neural nets are dense
in L2(Q).
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A.4 Proof of Proposition 4.4

Proof. We first introduce the following notations

J(h) =

∫
hdP −

∫
f∗(h)dQ

JM,N (h) =

∫
hdP (N) −

∫
f∗(h)dQ(M),

GP (h) =

∫
hdP −

∫
hdP (N),

GQ(h) =

∫
f∗(h)dQ−

∫
f∗(h)dQ(M).

Assume the suph∈H J(h) is attained at h = h̄ and suph∈H JM,N (h) is attained at h = hM,N .

sup
h∈H

JM,N (h)− sup
h∈H

J(h) = JM,N (hM,N )− sup
h∈H

J(h) ≤ JN (hM,N )− J(hM,N ) ≤ sup
h∈H
{|GP (h)|}+ sup

h∈H
{|GQ(h)|}.

Similarly

sup
h∈H

J(h)− sup
h∈H

JM,N (h) = J(h̄)− sup
h∈H

JM,N (h) ≤ JM,N (h̄)− J(h̄) ≤ sup
h∈H
{|GP (h)|}+ sup

h∈H
{|GQ(h)|}.

Therefore,

|DHf (P (N)‖Q(M))−DHf (P‖Q)| = | sup
h∈H

JM,N (h)− sup
h∈H

J(h)| ≤ sup
h∈H
{|GP (h)|}+ sup

h∈H
{|GQ(h)|}.

The result follows by taking the expectation and the symmetrization inequality (Wellner, 2005, Lemma 5.1) to the last two
terms

E sup
h∈H
{|GP (h)|}+ E sup

h∈H
{|GQ(h)|} ≤ 2RN (H, P ) + 2RM (f∗ ◦ H, Q).

It’s not difficult to prove the following corollary following the same logic.

Corollary A.2. Let P (N) = 1
N

∑N
i=1 δXi , where {Xi}Ni=1 are i.i.d samples from P . Then, it follows that

E[|DHf (P‖Q)−DHf (P (N)‖Q)|] ≤ 2RN (H, P ),

where the expectation is over the samples andRN (H, P ) denotes the Rademacher complexity of the function classH with
respect to P for sample size N .

A.5 Proof of Proposition 4.5

Proof. Suppose P0 = µ = N (0, I), Q = N (η, I) and F(P ) is the KL divergence D(P‖Q), we parameterize Tk(x) =
x+ βk, hk(z) = exp(α>k z + γk). Then the closed-form solution of JKO is P ∗k = N (ηk, I) where

ηk = η

(
1− 1

(1 + a)k

)
.

Our method adopts the JKO iteration (14) with the variational formula (2). Since µ is a user-defined Gaussian distribution,
it is reasonable to assume Eµ[h(Z)] can be estimated precisely. To sample from Pk at the k-th JKO step, we sample
N particles from the very beginning {Xk

i }Ni=1 ∼ P0 with empirical mean ηk0 = 1
N

∑N
i=1X

k
i , and pushforward them

through maps T1, . . . , Tk−1. We also define ηKk = 1
N

∑N
i=1 Tk−1 ◦ · · · ◦ T1(XK

i ). Clearly, ηKk = ηK0 +
∑k−1
j=0 βj for

1 ≤ k ≤ K, 1 ≤ K ≤ ∞. Then the solutions of our method are

βk =
a(η − ηk+1

k )

1 + a
, αk = βk + ηk+1

k − ηkk , γk = −α>k ηkk −
‖αk‖2

2
.
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Thus the mean of PK is η̂K =
∑K−1
j=0 βK . By standard matrix calculation, we have η̂K = ηK − εN , where

εN =
a

1 + a

K∑
j=1

ηj0
(1 + a)K−j

.

Denote ∆N = ‖η‖
(1+a)K

. By the closed-form of KL divergence between two Gaussians,

DH(P ∗K‖Q) = ∆2
N/2 (15)

Denote ξK,N = E[‖εN‖2] =
(

a
1+a

)2
n
N

∑K
j=1

1
(1+a)2(K−j)

. Additionally, by the Corollary 3.3, we can derive

DH(P
(N)
K ‖Q) = ‖ηKK − η‖2/2,

where ηKK is the mean of P (N)
K . Thus,

E[DH(P
(N)
K ‖Q)] = E[‖ηKK − η‖2/2]|

= E[|‖ηKK − ηK‖2/2− (ηKK − ηK)>(ηK − η) + ‖ηK − η‖2/2|]
≤ E[‖ηKK − ηK‖2/2] + E[|(ηKK − ηK)>(ηK − η)|] + ‖ηK − η‖2/2
= E[‖ηK0 − εN‖2/2] + E[|(ηK0 − εN )>(ηK − η)|] + ∆2

N/2

≤ E[‖ηK0 − εN‖2/2] + ‖ηK − η‖E[‖ηK0 − εN‖] + ∆2
N/2

≤ E[‖ηK0 − εN‖2/2] + ∆N

√
E[‖ηK0 − εN‖2]

=
ξK,N

2
+

1

2N
+

‖η‖
(1 + a)K

√
ξK,N +

1

N
. (16)

By triangular inequality and (15), (16) it holds that

E[|DH(P ∗K‖Q)−DH(P
(N)
K ‖Q)|] ≤DH(P ∗K‖Q) + E[|DH(P

(N)
K ‖Q)|]

≤∆2
N/2 + ∆N

√
ξK,N + 1/N

=
1

2
(∆N +

√
ξK,N + 1/N)2.

B Extension to Crank-Nicolson scheme
Consider the Crank-Nicolson inspired JKO scheme (Carrillo et al., 2021) below

Pk+1 = arg min
P∈Pac(Rn)

1

2a
W 2

2 (P, Pk) +
1

2
F(P ) +

1

2

∫
δF
δP

(Pk)P.

The difficulty of implementing this scheme with neural-network based method is the easy access to the density of Pk.
The predecessors Mokrov et al. (2021) and Alvarez-Melis et al. (2021) don’t have this property, while in our algorithm,
Pk ≈ hk−1Γk−1(k > 1). This is because our optimal hk is equal to or can be transformed to the ratio between densities
of Pk+1 and Γk. Assume h can learn to approximate Pk+1/Γk, our method can be natually extended to Crank-Nicolson
inspired JKO scheme.

C Extension to the interaction energy functional
In this section, we consider F(P ) involves the interaction energy

F(P ) =W(P ) :=

∫ ∫
W (x− y)P (x)P (y)dxdy,

W : Rn → R is symmetric, i.e. W (x) = W (−x).
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C.1 Forward Backward (FB) scheme

When F(P ) involves the interaction energyW(P ), we add an additional forward step to solve the gradient flow:

Pk+ 1
2

:= (I − a∇x(W ∗ Pk))]Pk (17)

Pk+1 := Tk+ 1
2
]Pk+ 1

2
, (18)

where I is the identity map, and Tk+ 1
2

is defined by replacing k by k+ 1
2 in (8). In other words, the first gradient descent step

(17) is a forward discretization of the gradient flow and the second JKO step (18) is a backward discretization. ∇x(W ∗ P )
can be written as expectation Ey∼P∇x(W (x− y)), thus can also be approximated by samples. The computation complexity
of step (17) is at most O(N2) where N is the total number of particles to push-forward. This scheme has been studied as a
discretization of gradient flows and proved to have sublinear convergence to the minimizer of F(P ) under some regular
assumptions (Salim et al., 2020). We make this scheme practical by giving a scalable implementation of JKO.

SinceW(P ) can be equivalently written as expectation Ex,y∼P [W (x − y)], there exists another non-forward-backward
(non-FB) method , i.e., removing the first step and integratingW(P ) into a single JKO step: Pk+1 = Tk]Pk and

Tk = arg min
T

(EPk‖X − T (X)‖2/2a

+EX,Y∼Pk [W (T (X)− T (Y ))] + sup
h
V(T, h)).

In practice, we observe the FB scheme is more stable and gives more regular results however converge slower than non-FB
scheme. The detailed discussion appears in the Appendix C.2, C.4.
Remark C.1. In principle, one can single out log(Q) term from (13) and perform a similar forward step Pk+ 1

2
= (I −

a(∇xQ)/Q)]Pk (Salim et al., 2020), but we don’t observe improved performance of doing this in sampling task.

C.2 Simulation solutions to Aggregation equation

Alvarez-Melis et al. (2021) proposes using the neural network based JKO, i.e. the backward method, to solve (19). They
parameterize T as the gradient of the ICNN. In this section, we use two cases to compare the forward method and backward
when F(P ) =W(P ). This could help explain the FB and non-FB scheme performance difference later in Section C.4.

We study the gradient flow associated with the aggregation equation

∂tP = ∇ · (P∇W ∗ P ), W : Rn → R. (19)

The forward method is

Pk+1 := (I − a∇x(W ∗ Pk))]Pk.

The backward method or JKO is

Pk+1 := Tk]Pk, Tk = arg min
T

{
1

2a
EPk [‖X − T (X)‖2] + EX,Y∼Pk [W (T (X)− T (Y ))]

}
.

Example 1 We follow the setting in Carrillo et al. (2021, Section 4.3.1 ). The interaction kernel is W (x) = ‖x‖4
4 − ‖x‖

2

2 ,
and the initial measure P0 is a Gaussian N (0, 0.25I). In this case, ∇x(W ∗ Pk) becomes Ey∼Pk

[
(‖x− y‖2 − 1)(x− y)

]
.

We use step size a = 0.05 for both methods and show the results in Figure 8.

Example 2 We follow the setting in Carrillo et al. (2021, Section 4.2.3 ). The interaction kernel is W (x) = ‖x‖2
2 − ln ‖x‖,

and the initial measure P0 is N (0, 1). The unique steady state for this case is

P∞(x) =
1

π

√
(2− x2)+.

The reader can refer to Alvarez-Melis et al. (2021, Section 5.3) for the backward method performance. As for the forward
method, ∇x(W ∗ Pk) becomes Ey∼Pk

[
x− y − 1

x−y

]
. Because the kernel W enforces repulsion near the origin and P0
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(a) Forward method k = 23, t = 1.15 (b) Forward method k = 200, t = 10

(c) Backward method k = 23, t = 1.15 (d) Backward method k = 40, t = 2

Figure 8: The steady state is supported on a ring of radius 0.5. Backward converges faster to the steady rate but is unstable.
As k goes large, it cannot keep the regular ring shape and will collapse after k > 50.

is concentrated around origin, ∇x(W ∗ P ) will easily blow up. So the forward method is not suitable for this kind of
interaction kernel.

Through the above two examples, if ∇x(W ∗ P ) is smooth, we can notice the backward method converges faster, but is
not stable when solving (19). This shed light on the FB and non-FB scheme performance in Section C.3, C.4. However, if
∇x(W ∗ P ) has bad modality such as Example 2, the forward method loses the competitivity.

C.3 Simulations to Aggregation–Diffusion Equation with FB scheme

(a) k = 24 (b) k = 36 (c) k = 60 (d) k = 84 (e) k = 92

Figure 9: Histogram for simulated measures Pk by FB scheme at different k.

We simulate the evolution of solutions to the following aggregation-diffusion equation:

∂tP = ∇ · (P∇W ∗ P ) + 0.1∆Pm, W (x) = −e−‖x‖
2

/π.

This corresponds to the energy functionW(P ) + 0.1G(P ). There is no explicit closed-form solution for this equation except
for the known singular steady state (Carrillo et al., 2019b), thus we only provide qualitative results in Figure 9. We use
the same parameters in Carrillo et al. (2021, Section 4.3.3). The initial distribution is a uniform distribution supported on
[−3, 3]× [−3, 3] and the JKO step size a = 0.5. We utilize FB scheme to simulate the gradient flow for this equation with
m = 3 on R2 space. With this choice W (x), ∇x(W ∗ Pk) is equal to Ey∼Pk

[
2e−‖x−y‖

2

/π
]

in the gradient descent step

(17). And we estimate∇x(W ∗ Pk) with 104 samples from Pk.
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Throughout the process, the aggregation term ∇ · (P∇W ∗ P ) and the diffusion 0.1∆Pm adversarially exert their effects
and cause the probability measure split to four pulses and converge to a single pulse in the end. Our result aligns with the
simulation of discretization method (Carrillo et al., 2021) well.

C.4 Simulation solutions to Aggregation-diffusion equation with non-FB scheme

In Figure 10, we show the non-FB solutions to Aggregation-diffusion equation in Section C.3. FB scheme should be
independent with the implementation of JKO, but in the following context, we assume FB and non-FB are both neural
network based methods discussed in Section 3. Non-FB scheme reads

Pk+1 = Tk]Pk

Tk = arg min
T

{
1

2a
EPk [‖X − T (X)‖2] + EX,Y∼Pk [W (T (X)− T (Y ))] + G(T, h)

}
,

where G(T, h) is represented by the variational formula (10). We use the same step size a = 0.5 and other PDE parameters
as in Section C.3.

(a) k = 18 (b) k = 24 (c) k = 30 (d) k = 42

Figure 10: Histograms for simulated measures Pk by non-FB scheme at different k.

Comparing the FB scheme results in Figure 9 and the non-FB scheme results in Figure 10, we observe non-FB converges
1.5× slower than the finite difference method (Carrillo et al., 2021), and FB converges 3× slower than the finite difference
method. This may because splitting one JKO step to the forward-backward two steps removes the aggregation term effect in
the JKO, and the diffusion term is too weak to make a difference in the loss. Note at the first several k, both Pk and Q are
nearly the same uniform distributions, so h is nearly a constant and T (x) exerts little effect in the variational formula of
G(P ). Another possible reason is a single forward step for aggregation term converges slower than integrating aggregation
in the backward step, as we discuss in Section C.2 and Figure 8.

However, FB generates more regular measures. We can tell the four pulses given by FB are more symmetric. We speculate
this is because gradient descent step in FB utilizes the geometric structure of W (x) directly, but integratingW(P ) in neural
network based JKO losses the geometric meaning of W (x).

D Evaluation of the density
In this section, we assume the solving process doesn’t use forward-backward scheme, i.e. all the probability measures Pk
are obtained by performing JKO one by one. Otherwise, the map I − a∇x(W ∗ Pk) = I − Ey∼Pk∇x(W (x− y)) includes
an expectation term and becomes intractable to push-backward particles to compute density.

If T is invertible, these exists a standard approach, which we present here for completeness, to evaluate the density of Pk
(Alvarez-Melis et al., 2021; Mokrov et al., 2021) through the change of variables formula. More specifically, we assume
T is parameterized by the gradient of an ICNN ϕ that is assumed to be strictly convex. Thus we can guarantee that the
gradient ∇ϕ invertible. To evaluate the density Pk(xk) at point xk, we back propagate through the sequence of maps
Tk = ∇ϕk, . . . , T1 = ∇ϕ1 to get

xi = T−1
i+1 ◦ T

−1
i+2 ◦ · · · ◦ T

−1
k (xk).
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The inverse map T−1
j = (∇ϕj)−1 = ∇ϕ∗j can be obtained by solving the convex optimization

xj−1 = arg max
x∈Rn

〈x, xj〉 − ϕj(x). (20)

Then, by the change of variables formula, we obtain

log[dPk(xk)] = log[dP0(x0)]−
k∑
i=1

log
∣∣∇2ϕi(xi−1)

∣∣ , (21)

where∇2ϕi(xi−1) is the Hessian of ϕi and |∇2ϕi(xi−1)| is its determinant. By iteratively solving (20) and plugging the
resulting xj into (21), we can recover the density dPk(xk) at any point.

E Additional experiment results and discussions

E.1 Computational time

The forward step (17) takes about 14 seconds to pushforward one million points.

Other than learning generative model, assume each JKO step involves 500 iterations, the number of iterations J2 = 3,
J3 = 2, then the training of each JKO step (18) takes around 15 seconds.

For learning image generative model, assume J2 = 1, J3 = 5, then the training of each JKO step (18) takes around 20
minutes.

E.2 Learning of function h

The learning of the function h is crucial because it determines the effectiveness of variational formula. In our KL divergence
and generalized entropy variational formulas, the optimal h is equal to T]Pk/Γ, which can have large Lipschitz constant in
some high dimensional applications and become difficult to approximate. To tackle this issue, we replace h by exp(h̄)− 1,
thus the optimal h̄ is log(h+ 1), whose Lipschitz constant is much weakened. We apply this trick in Section 5.1 and observe
the improved performance.

In image tasks, h works like a discriminator in GAN. A typical problem in GAN is that the discriminator can be too strong
to let generator keep learning. To avoid this, we add the spectral normalization in h such that the Lipschitz of h is bounded
by 1.

E.3 Convergence comparison with the same number of JKO steps

In this section, we show the convergence comparison under the constraint of performing same number of JKO steps for all
methods. The result is in Figure 11. We repeat the experiment for 5 times with the same global random seed 1, 2, 3, 4, 5 for
all methods. JKO-ICNN shows large variance and instability after longer run in high dimension. Specifically, we observe
that at random seed 2 in dimension 24, JKO-ICNN-d converges for the first 19 JKO steps and then suddenly diverges,
causing the occurrence of an extreme point. The similar instability issue is also reported in Bonet et al. (2021, Figure 3).
With the same random seeds, through 40 JKO steps, we don’t observe this instability issue using our method.

F Experiments implementation details other than image
Our experiments are conducted on GeForce RTX 3090 or RTX A6000. We always make sure the comparison is conducted
on the same GPU card when comparing training time with other methods. Our code is written in Pytorch-Lightning (Falcon
& Cho, 2020). We use other wonderful python libraries including W&B (Biewald, 2020), hydra (Yadan, 2019), seaborn
(Waskom, 2021), etc. We also adopt the code given by Mokrov et al. (2021) for some experiments. For fast approximation
of log det∇2ϕ, we adapt the code given by Huang et al. (2020) with default parameters therein.

Without further specification, we use the following parameters:

• The number of iterations: J1 = 600. J2 = 3. J3 = 1.
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Figure 11: Quantitative comparison in converging to GMM with the constraint of performing 40 JKO steps for all methods.
We calculate the kernelized Stein divergence between the generated distribution and the target distribution.

• The batch size is fixed to be M = 100.

• The learning rate is fixed to be 0.001.

• All the activation functions are set to be PReLu.

• h has 3 layers and 16 neurons in each layer.

• T has 4 layers and 16 neurons in each layer.

The transport map T can be parametrized in different ways. We use a residual MLP network for it in Section 5.1, 5.2, 5.3,
C.3, C.2, and the gradient of a strongly convex ICNN in Section 5.4, C.4. Except image task, the dual test function h is
always a MLP network with quadratic or sigmoid actication function in the final layer to promise h is positive.
The networks T and h in Section 5.5 are chosen to be UNet and a normal CNN.

F.1 Calculation of error criteria

Sampling from GMM We estimate the kernelized Stein discrepancy (KSD) following the author’s instructions (Liu et al.,
2016). We draw N samples X1, . . . , XN from each method, and estimate KSD as

KSD(P,Q) =
1

N(N − 1)

∑
1≤i 6=j≤N

uQ(Xi, Xj),

where

uQ(x, x′) = sq(x)>k (x, x′) sq (x′) + sq(x)>∇x′k (x, x′) +∇xk (x, x′)
>
sq (x′) + trace (∇x,x′k (x, x′)) ,

sQ = ∇x logQ(x) =
∇xQ(x)

Q(x)
.

We choose the kernel φ to be the RBF kernel and use the same bandwidth for all methods. We fix N = 1× 105,

OU process For each method, we draw 5 · 105 samples from Pt and calculate the empirical mean µ̃t and covariance Σ̃t.
Then we calculate the SymKL between N (µ̃t, Σ̃t) and the exact solution.

Porous media equation We calculate the density of Pk according to Section D and estimate the SymKL using Monte
Carlo according to the instructions in Mokrov et al. (2021).

F.2 Sampling from Gaussian Mixture Models (Section 5.1 )

Two moons We run K = 10 JKO steps with J2 = 6, J3 = 1 inner iterations. h has 5 layers. T has 4 layers.
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Table 4: Hyper-parameters in the GMM convergence experiments.

Our methods JKO-ICNNDimension `
T width T depth h width h depth width depth

2 5 8 3 8 3 256 2
4 5 32 4 32 3 384 2
8 5 32 4 32 4 512 2

15 3 64 4 64 4 1024 2
17 3 64 4 64 4 1024 2
24 3 64 5 64 4 1024 2
32 3 64 5 64 4 1024 2
64 2 128 5 128 4 - -
128 1.5 128 5 128 4 - -

Table 5: Bayesian logistic regression accuracy and log-likelihood full results.

Accuracy Log-LikelihoodDataset # features dataset size Ours JKO-ICNN-d SVGD Ours JKO-ICNN-d SVGD
covtype 54 581012 0.753 0.75 0.75 -0.528 -0.515 -0.515
splice 60 2991 0.84 0.845 0.85 -0.38 -0.36 -0.355

waveform 21 5000 0.785 0.78 0.765 -0.455 -0.485 -0.465
twonorm 20 7400 0.982 0.98 0.98 -0.056 -0.059 -0.062
ringnorm 20 7400 0.73 0.74 0.74 -0.5 -0.5 -0.5
german 20 1000 0.67 0.67 0.65 -0.59 -0.6 -0.6
image 18 2086 0.866 0.82 0.815 -0.394 -0.43 -0.44

diabetis 8 768 0.786 0.775 0.78 -0.45 -0.45 -0.46
banana 2 5300 0.55 0.55 0.54 -0.69 -0.69 -0.69

GMM The mean of Gaussian components are randomly sampled from Uniform([−`/2, `/2]n). J3 = 2. The map T has
dropout in each layer with probability 0.04. The learning rate of our method is 1 ·10−3 for the first 20 JKO steps and 4 ·10−4

for the last 20 JKO steps. The learning rate of JKO-ICNN is 5 · 10−3 for the first 20 JKO steps, and then 2 · 10−3 for the rest
steps. The batch size is 512 and each JKO step runs 1000 iterations for all methods. The rest parameters are in Table 4.

F.3 Ornstein-Uhlenbeck Process (Section 5.2)

We use nearly all the same hyper-parameters as Mokrov et al. (2021), including learning rate, hidden layer width, and the
number of iterations per JKO step. Specifically, we use a residual feed-forward NN to work as T , i.e. without activation
function. h and T both have 2 layers and 64 hidden neurons per layer for all dimensions. We also train them for J1 = 500
iterations per each JKO with learning rate 0.005. The batch size is M = 1000.

F.4 Bayesian Logistic Regression (Section 5.3)

Same as Mokrov et al. (2021), we use JKO step size a = 0.1 and calculate the log-likelihood and accuracy with 4096
random parameter samples. The rest parameters are in Table 6.

F.5 Porous media equation (Section 5.4)

We use rejection sampling (Eckhardt et al., 1987) to sample from P0 because its computational time is more promising
than MCMC methods. However, the rejection sampling acceptance rate is expected to be exponentially small (MacKay &
Mac Kay, 2003, Ch 29.3) in dimension, and empirically it’s intractable when n > 6. So we only give the results for n ≤ 6.

In the experiment, h have 4 layers and 16 neurons in each layer with CELU activation functions except the last layer, which
is activated by PReLU. To parameterize the map, we adopt DenseICNN (Korotin et al., 2021a) structure with width 64,
depth 2 and rank 1. The batch size is M = 1024. Each JKO step runs J1 = 1000 iterations. The learning rate for both ϕ
and h is 1 · 10−3. J3 = 1 for dimension 3 and J3 = 2 for dimension 6.
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Table 6: Hyper-parameters in the Bayesian logistic regression.

Dataset K M J1 T width T depth h width h depth T learning rate h learning rate

covtype 7 1024 7000 128 4 128 3 2 · 10−5 2 · 10−5

splice 50 1024 400 128 5 128 4 1 · 10−4 1 · 10−4

waveform 5 1024 1000 32 4 32 4 1 · 10−5 5 · 10−5

twonorm 15 512 800 32 4 32 3 1 · 10−3 1 · 10−3

ringnorm 9 1024 500 32 4 32 4 1 · 10−5 1 · 10−5

german 14 800 640 32 4 32 4 2 · 10−4 2 · 10−4

image 12 512 1000 32 4 32 4 1 · 10−4 1 · 10−4

diabetis 16 614 835 32 4 32 3 1 · 10−4 1 · 10−4

banana 16 512 1000 16 2 16 2 5 · 10−4 5 · 10−4

F.6 Aggregation-diffusion equation (Section C.3 and C.4)

Each JKO step contains J1 = 200 iterations. The batch size is M = 1000.

G Image experiment details

G.1 Hyperparameters and network architecture

We use Adam optimizer with learning rate 2×10−4 and other default settings in PyTorch library. We choose J2 = 1, J3 = 5.
Our h network follows the architecture of ResNet classifier network (He et al., 2016). More specially, our module uses two
downsampling modules, which results in three feature map resolution (32× 32, 16× 16, 8× 8). We use two convolutional
residual blocks for each resolution and pass the features extracted from at 8 × 8 resolution into a 2-layer MLP. We use
128 channels for CNN and 128 hidden neurons for the MLP. Similar to training generative adversarial networks, we found
adding regularizers on h network can help stabilize training. Thus, we apply the spectral normalization (Miyato et al., 2018)
on h network.

Our framework requires the Tk networks to approximate mappings between same dimensional data spaces. Our network
architecture follows the backbone of PixelCNN++ (Salimans et al., 2017), which can be viewed as a modified U-Net (Ron-
neberger et al., 2015) based on Wide ResNet (Zagoruyko & Komodakis, 2016). More specifically, we use 3 downsampling
and 3 upsampling modules, which results in four feature map resolutions (32× 32, 16× 16, 8× 8, 4× 4). At each resolution,
we have two convolutional residual blocks. We use 64, 128, 256, 512 channels for as image resolution decreases.

Here are more training details:

• We resize MNIST image to 32× 32 resolution so that we h, Tk networks can work on both MNIST and CIFAR10 with
small modification of input channel.

• We use random horizontal flips during training for CIFAR10.

• We use batch size M = 128.

• On CIFAR10, we use implementation from torch-fidelity2 to calculate FID scores with 50k samples.

• The JKO step size a controls the divergence between Pk and Pk+1. We observe training with large a has unstable
issues and mode collapse, a small a suffers from slower convergence. We found a = 5 works well on both MNIST and
CIFAR10 datasets.

• We use 10 epochs to train each Pk, we notice P30 generates realistic images when a = 5.0. However, we find FID
score decreases as k increases. We present the change of FID score of samples from different Pk in Figure 12.

2https://github.com/toshas/torch-fidelity

https://github.com/toshas/torch-fidelity
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Figure 12: The FID score converges as k increases on CIFAR10 datset.

Figure 13: Mode collapsing in GANs.

G.2 More Comparison

Comparison with GANs. As we use Jensen-Shannon divergence in our scheme, JKO-Flow specializes to Jensen-Shannon
GAN when a→∞,K = 1. However, we found training with a→∞,K = 1 is very unstable and suffer mode collapsing
occasionally. Though training GANs can not recover the gradient flow from noise to image, it is interesting to compare
JKO-Flow and GANs in term of sampling quality. To make a fair comparison, we instantiate generator network as the same
as Tk network and discriminator as h for GANs. We note such choice is not optimal for GAN since generators in existing
works usually map a lower dimensional Gaussian noise into images instead of mapping from same dimensional space. We
believe the comparison and JKO-Flow scheme may help future research when modeling mapping between same dimensional
data spaces. As shown in Table 7, JKO-Flow enjoys better sample qualities. Empirically we found training GANs is more
challenging when latent space is relative large and with more complex generator networks as mode collapsing becomes
more common. We find the additional Wasserstein distance loss in JKO-Flow can be viewed a regularizer to avoid mode
collapsing because Tk will receive large penalty if it maps all inputs into a local minimal. However, one shortcoming of our
method is the scheme of JKO-Flow needs to model a sequence of generators instead of one generate that push P0 particles
into Q, and small step size controlled by a resulted in slower convergence and more training time.

Comparison with more generative models based on gradient flows and optimal transport maps. Most existing works
in this line focus on the latent spaces of pre-trained autoencoders (Seguy et al., 2017; An et al., 2019; 2020; Makkuva et al.,

Method FID score ↓
GAN (JKO-Flow with a→∞,K = 1) ≥ 80

WGAN-GP 62.3
SN-GAN 43.2

JKO-Flow 23.1

Table 7: Comparison between JKO-Flow and various GANs. The generator and discriminator networks in GANs follow
same architecture of Pk and h network in JKO-Flow.
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Method FID score ↓ Inception Score ↑
AE-OT (An et al., 2019) 28.5 -

AE-OT-GAN (An et al., 2020) 17.1 -
OTM (Rout et al., 2021) 20.69 7.41 ± 0.11

JKO-Flow 23.1 7.48 ± 0.12

Table 8: More comparison among generative models on CIFAR10.

2020; Korotin et al., 2021a). The approach reduces burden of training gradients and optimal transport maps since tasks of
modeling complex image modality and interactions between pixels are left to pre-trained decoders partially. We note the
recent work Rout et al. (2021) investigates mappings between distributions located on the spaces with same dimensionality or
unequal dimensionality. However, they only demonstrate the unconditional image generative model based on an embedding
from a lower dimensional Gaussian distribution to image distributions. In contrast, we show JKO-Flow can learn complex
mappings between both high dimensional distribution and achieve encouraging performance when applying such learned
mappings in the challenging image generation task without additional conditional signal. We include more comparison in
Table 8.

G.3 More generated samples and trajectories

We include more results of JKO-Flow. Figure 14, Figure 16, Figure 15, and Figure 17 show more generated samples from
PK and trajectories from JKO-Flow.
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Figure 14: More MNIST sample from JKO-Flow
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Figure 15: More MNIST trajectories from JKO-Flow with K = 1 to K = 30.
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Figure 16: More CIFAR10 sample from JKO-Flow
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Figure 17: More CIFAR10 trajectories from JKO-Flow with K = 1 to K = 30.


