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Abstract
The inaccessibility of the target domain data
causes domain generalization (DG) methods
prone to forget target discriminative features, and
challenges the pervasive theme in existing lit-
erature in pursuing a single classifier with an
ideal joint risk. In contrast, this paper inves-
tigates model misspecification and attempts to
bridge DG with classifier ensemble theoretically
and methodologically. By introducing a pruned
Jensen-Shannon (PJS) loss, we show that the tar-
get square-root risk w.r.t. the PJS loss of the
ρ-ensemble (the averaged classifier weighted by
a quasi-posterior ρ) is bounded by the averaged
source square-root risk of the Gibbs classifiers.
We derive a tighter bound by enforcing a posi-
tive principled diversity measure of the classifiers.
We give a PAC-Bayes upper bound on the tar-
get square-root risk of the ρ-ensemble. Method-
ologically, we propose a diversified neural aver-
aging (DNA) method for DG, which optimizes
the proposed PAC-Bayes bound approximately.
The DNA method samples Gibbs classifiers trans-
versely and longitudinally by simultaneously con-
sidering the dropout variational family and opti-
mization trajectory. The ρ-ensemble is approxi-
mated by averaging the longitudinal weights in
a single run with dropout shut down, ensuring a
fast ensemble with low computational overhead.
Empirically, the proposed DNA method achieves
the state-of-the-art classification performance on
standard DG benchmark datasets.

1. Introduction
In real-world challenges, the identically distributed con-
dition between the training (source domain) data and the
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testing (target domain) data is likely to be violated. For
example, the patient population in the medical image pro-
cessing task (Li et al., 2020), the weather condition in
the autonomous driving recognition task (Michaelis et al.,
2019), and the visual resolution in multi-modality data anal-
ysis (Zhu et al., 2015) could be varied. Traditional machine
learning algorithms based on the empirical risk minimiza-
tion (ERM) (Vapnik, 1999) are error-prone to such distri-
butional shifts, whence the empirical source risk does not
necessarily converge to the population target risk. Deep
learning algorithms are acknowledged as being especially
sensitive to distributional shifts (Su et al., 2019; Recht et al.,
2019). Such concerns on deploying machine learning al-
gorithms in critical systems urge increasing attention to
domain generalization (DG).

DG aims at generalizing a classifier trained by the source
domain(s) data to an unseen target domain in the presence
of distributional shift (Blanchard et al., 2011; Muandet et al.,
2013). A significant challenge of DG manifests as the
inaccessibility of the target data, differing DG from do-
main adaptation (DA) where comparing covariates of the
source domain and the target domain is possible during
training (Ben-David et al., 2007). Many principles have
been proposed to tackle DG over the last decade (Muandet
et al., 2013; Volpi et al., 2018; Piratla et al., 2020). Never-
theless, a predominant theme of existing DG literature is
setting the model misspecification (whence the hypothesis
space’s support may not contain an ideal classifier David
et al. (2010)) at negligible, and assuming the support of
the deep hypothesis space during training contains an ideal
classifier, whose joint risks over the source domain and the
target domain are ideal (Muandet et al., 2013; Zhang et al.,
2021a). Such an ideal joint risk assumption is challenged
by the information bottleneck principle of the deep neural
networks (DNNs) (Tishby et al., 2000; Tishby & Zaslavsky,
2015): When training on the source data, a deep classifier
tends to remember only discriminative features of seen train-
ing data and forget any other information, including those
that might be target-discriminative. The inaccessibility of
the target data during training implies that the deep clas-
sifiers’ hypothesis space tends to support on the subspace
of low source risk, not necessarily on the subspace of low
target risk. In a word, the ideal classifier is possibly depart
from the training stage hypothesis space’s effective support.
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A practical approach to handle model misspecification is
classifier ensemble (model/classifier averages) (Masegosa,
2020), which works by enriching the support set of the
hypothesis space (Domingos, 1997). Empirical studies have
found ensembles outperform thereof Bayesian rivals under
distributional shift (Fort et al., 2019). There is literature
discussing ensembles for DA (Germain et al., 2013; 2016b).
However, there is no adequate research on bridging DG and
ensembles from the lens of model misspecification, possibly
due to the hiatus of a theoretically convenient loss function.

This paper attempts to bridge DG and classifier ensem-
ble both theoretically and methodologically. We connect
a domain’s generalization risk for a given classifier with
a pruned Jensen-Shannon (PJS) divergence by proposing
a novel pruned Jensen-Shannon (PJS) loss function. The
risk with respect to (w.r.t.) the PJS loss function has two
intriguing properties: Firstly, the square-root risk inherits
the satisfaction of triangle inequality from the original JS
divergence (Endres & Schindelin, 2003). Secondly, the
square-root risk enjoys convexity w.r.t. the classifiers, a
property that the original JS divergence does not possess.
With the assurance of the convexity and satisfaction of tri-
angle inequality, we show that the target square-root risk of
the ρ-ensemble (the averaged classifier weighted by a quasi-
posterior ρ) is bounded by the averaged source square-root
risk of the Gibbs classifiers. We prove that the upper bound
on the target square-root risk can be tighter by enforcing
a positive diversity measure of classifiers in an ensemble.
The diversity measure can be seen as a principled extension
of the measure proposed recently (Masegosa, 2020; Ortega
et al., 2021) concerning distributional shift. To enable a
principled algorithm, we give a PAC-Bayes bound on the
square-root target risk in terms of empirical source risks.

Grounded on the proposed PAC-Bayes bound on the square-
root target risk, we propose a practical fast-ensemble
method for DG with low computation overhead, dubbed
the Diversified Neural Averaging (DNA). The DNA method
samples Gibbs classifiers transversely and longitudinally by
simultaneously considering the dropout variational family
and the optimization trajectory. For dropout realizations,
the proposed DNA encourages a positive diversity measure
explicitly. The diversity for trajectory realizations is induced
implicitly during the training. In order to reduce the com-
putational overhead, inspired by the recent advance in the
fast neural ensemble (Izmailov et al., 2018), the proposed
DNA method approximates the ρ-ensemble by DNN weight
averaging in a single run, without saving checkpoints.

We highlight the contributions of this paper:
1. This paper theoretically and methodologically bridges
DG and classifier ensemble from the lens of model mis-
specification, and this paper firstly discusses a principled
diversity measure in the DG scenario.

2. This paper proposes a novel PJS loss, connecting the
generalization risk and the PJS divergence. Thence it al-
lows an upper bound on the square-root target risk of the
ρ-ensemble. This paper also proposes a PAC-Bayes upper
bound in terms of empirical source risks.
3. This paper proposes a principled DNA method for
DG. The DNA method is a fast-ensemble method with
low computational overhead and a competitive method for
DG with high performance. The proposed DNA method
achieves competitive classification performance on five DG
benchmarks (PACS (Li et al., 2017), VLCS (Fang et al.,
2013), OfficeHome (Venkateswara et al., 2017), TerraIncog-
nita (Beery et al., 2018) and DomainNet (Peng et al., 2019))
in extensive experiments.

2. Related Work
Over the past decades, there has been a long line of DG lit-
erature. Many efforts are devoted to mitigating the domain
gap (Muandet et al., 2013) or the risk gap (Arjovsky et al.,
2019) in a learned latent space: (a) Directly optimizing sta-
tistical distance (Sun & Saenko, 2016) such as Wasserstein
distance (Ganin et al., 2016; Li et al., 2018d) and maximum
mean discrepancy (MMD) (Li et al., 2018b; Blanchard et al.,
2021). (b) Indirectly reducing domain gap by methods such
as data augmentation (Wang et al., 2020b) or normaliza-
tion (Nam & Kim, 2018). c) Adjusting target distribution at
test-time, such as meta-learning methods (Li et al., 2018a;
2019; Zhang et al., 2020) and uncertainty minimization
methods (Wang et al., 2020a; Iwasawa & Matsuo, 2021).
Another line of work tries to learn stable/causal features
across domains by learning disentangled features (Mahajan
et al., 2021; Zhang et al., 2021b; Li et al., 2021).

A more relevant line of DG methods is increasing the model
robustness. The class of input-robust methods learns a ro-
bust classifier against input perturbations (Sinha et al., 2018;
Volpi et al., 2018; Sagawa et al., 2020; Yi et al., 2021;
Krueger et al., 2021) by optimizing the worst-case risk over
a set of perturbations on the inputs. On the other hand,
SWAD (Cha et al., 2021) and Transfer (Zhang et al., 2021a)
consider perturbations in the hypothesis (parameter) space.
Although SWAD and our DNA employ stochastic weight
averaging (SWA) (Izmailov et al., 2018) from the method-
ological perspective, the motivations differ. SWAD adopts
SWA to seek a perturbation-resistant parameter subspace. In
contrast, the proposed DNA adopts SWA to approximate the
diversified ρ-ensemble to reduce computational overhead.

The Bayesian model averaging (BMA) (Xiao et al., 2021) is
a close class of methods to the ensemble. BMA reduces the
uncertainty to distinguish the best single model with limited
data (Hoeting et al., 1999). Classifier ensemble works by
enriching the hypothesis space (Domingos, 1997). There are
a few works proposing heuristic-based multi-expert meth-
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ods (Seo et al., 2020; Zhou et al., 2021; Zhang et al., 2021c),
which aim to exploits the complementary information in
various source domains. The domains labels are essential
for those multi-expert methods. Whereas the domains la-
bels is not necessary for our method. There is a recent
work (Thomas et al., 2021) assumes an environment B and
proposes an upper bound for the averaged-case target risk
EQ∼BE(x,y)∼Q[ℓ]. In contrast, we propose a stronger result,
an upper bound for the worst-case target risk, E(x,y)∼Q[ℓ] for
any Q. A contemporary work (Arpit et al., 2021) proposes
an EoA method which also adopts ensemble to tackle DG.
We highlight three inherent differences: a) DNA is more the-
oretically grounded by optimizing the proposed PAC-Bayes
target risk bound w.r.t. the PJS loss function. b) DNA pro-
motes a principled measure of diversity and our theoretical
results can be viewed as a justification for EoA. c) DNA is a
fast-ensemble method that approximates a diversified classi-
fier averaging in a single run, instead of averaging classifiers
out of multiple runs with multiplied computational cost. A
more detailed discussion on the theoretical connections with
existing literature is in Sect. 3.3.

3. Theory
In this section1, we first formulate the DG problem. Then
we introduce the definition and properties of the proposed
PJS divergence and PJS loss function, where we set up
a link between the generalization risk and the proposed
divergence. After that, we introduce theoretical results on
the ρ-ensembles, demonstrating the benefits of considering
a diversified classifier ensemble for DG. Lastly, we discuss
the connections with existing DG theories.
Problem Formulation Denote the input space by X ⊆ Rn

and the output space by the C − 1 simplex Y = ∆C−1.
Denote byM+(X×Y) the space of all probability measures
on the sample space X× Y (provided with a σ-algebra Σ).
The common setting of domain generalization (DG) focuses
on the C-class single label classification tasks. The source
domain(s)2 refers to a probability measure P ∈M+(X× I)
that is available for sampling, where I = {y ∈ {0, 1}C :∑C

j=1 yj = 1} ⊆ Y is the space of one-hot label vectors. In
contrast, the target domain refers to a related measure Q ∈
M+(X× I) that is invisible during training. Given a sample
Dn = {(xi, yi)}ni=1 independently identically distributed
(i.i.d.) drawn from Pn, a hypothesis space H of stochastic
classifiers, and a loss function ℓ : X × I × H → R+, the
goal of DG is to learn a classifier ĥ ∈ H with a minimal
generalization risk on the target domain Q,

ĥ = argmin
h∈H

Rℓ
Q(h) = argmin

h∈H
E(x,y)∼Q [ℓ(x, y,h)] . (1)

1Please refer to the Appendix A for the proofs of this section.
2We consider a single source domain and a single target domain

for easiness and fairness concerns (Hashimoto et al., 2018). The
extension for multiple source domains is straightforward.

3.1. The PJS Divergence and PJS Loss

Definition 3.1 (pruned Jensen-Shannon divergence). Con-
sider a subset of M+(X×Y) induced by a dominating mea-
sure λ, Mλ

+ = {µ ∈M+(X× Y) : µ≪ λ}, such that each
measure inMλ

+ is absolutely continuous (w.r.t.) the the dom-
inating measure λ. For measures Υ,P ∈Mλ

+ and P ≪ Υ,
let p = dP

dλ and υ = dΥ
dλ denote the Radon–Nikodym deriva-

tives accordingly. The pruned Jensen-Shannon (PJS) diver-
gence DPJS(P∥Υ) : Mλ

+ ×Mλ
+ → R from a measure Υ

to a measure P is defined by an integral over the support set
AP of measure P , that is

DPJS(P∥Υ) =

∫
AP

p log
2p

p+ υ
+ υ log

2υ

p+ υ
dλ. (2)

The integral over the support set AP of measure P implies
that DPJS(P∥Υ) only describes the behavior of measures
P and Υ on AP , but not the behavior on the different set
of the supports AΥ − AP . Whereas the original Jensen-
Shannon (JS) divergence (Endres & Schindelin, 2003) is
defined by the intergal of the same function (differs by a
factor of 1

2 ) over the union of the supports. The subtle
difference makes the proposed PJS divergence violate the
identity of indiscernibles (DPJS(P∥Υ) = 0 ⇏ P = Υ) so
that it is not a statistical divergence. However, as we will see
in Thm. 3.2, the PJS divergence inherits the ideal property
of satisfying the triangle inequality from the JS divergence.
Moreover, the proposed PJS divergence is more compatible
with a diversified ensemble learning than the JS divergence.

Theorem 3.2 (properties of PJS divergence). Consider mea-
sures Q,P,Υ ∈ Mλ

+. Suppose that Q ≪ Υ, P ≪ Υ and
AP = AQ, then the PJS divergence satisfies
(a)DPJS(P∥Q) = 2DJS(P∥Q), whereDJS is the vanilla
JS divergence.
(b) DPJS(P∥Υ) ≥ 0.
(c)
√
DPJS(Q∥Υ) ≤

√
DPJS(P∥Υ) +

√
2DJS(P∥Q).

Next, we introduce the PJS loss ℓPJS that connects the gen-
eralization risk RℓPJS and the PJS divergence DPJS(·∥·).
Definition 3.3 (pruned Jensen-Shannon loss). Let A be the
support of the underlying (empirical) distribution where
the realization (x, y) is drawn from. The pruned Jensen-
Shannon (PJS) loss ℓPJS : X× I×H → R+ is

ℓPJS(x, y,h) = (log
2

h∗ + 1
+ h∗ log

2h∗

h∗ + 1
)1{(x,y)∈A},

(3)
where h∗ ∈ (0, 1) is the vector component of h that corre-
sponds to the correct class, and 1{·} is the indicator function.

Provided a domain P ∈M+(X× I), assume the existence
of the density function over the input space X, denoted by
pP(x). Then pP(x)h induces a (set of) measure(s) ΥP ∈
M+(X× Y) whose density over X× Y is pP(x)h.



DNA: Domain Generalization with Diversified Neural Averaging

Proposition 3.4. (connecting risk and PJS divergence) For
a classifier h and a domain P ∈ M+(X × I). Let ΥP be
the induced measure. Assuming pP(y|x) ∈ {0, 1}3, then

RℓPJS

P (h) = E
(x,y)∼P

[ℓPJS(x, y,h)] = DPJS(P∥ΥP) (4)

Founding on the connection of the risk and the PJS diver-
gence in the Prop. 3.4, we have bounds of the target risk by
invoking the triangle inequality (c) in Thm 3.2.
Theorem 3.5 (bounds of the target risk). Let Q and P be the
(fixed) target domain and the source domain in M+(X× I),
with pQ(x) and pP(x) being their density functions over the
input space X, respectively. Suppose the supports of Q and
P are identical, i.e., AP = AQ, with pP(y|x), pQ(y|x) ∈
{0, 1}. Let H be a hypothesis space, such that for any
h ∈ H, the density pP(x)h induced measure ΥP dominates4

P , and ΥQ dominates Q, i.e., P ≪ ΥP and Q ≪ ΥQ.
Then for any h ∈ H,

√
RℓPJS

Q (h) ≤
√
RℓPJS

P (h) + 2
√
2DJS(P∥Q). (5)√

RℓPJS

Q (h) ≥
√
RℓPJS

P (h)− 2
√
2DJS(P∥Q). (6)

3.2. The ρ-ensemble

One could arrive at similar bounds within the framework of
the original JS divergence. Whereas in this paper we aim at
(diversified) ensembles. The pruned JS divergence enables
a guaranteed training towards the ensemble quasi-posterior
ρ. Formally, we introduce the ρ-ensemble.
Definition 3.6 (ρ-ensemble). Suppose that ρ is a measure on
a hypothesis space H. The ρ-ensemble ρ is the ρ-weighted
averaged classifier, ρ = Eh∼ρ(h).

Directly training the averaged classifier ρ is often impracti-
cable in modern deep architectures. A practical solution is
sampling classifiers (Gibbs classifier) from H according to
ρ first, and then training the Gibbs classifiers. However, the
sampling-training paradigm relies on a crucial assumption:
The generalization risk of the ρ is no larger than the aver-
aged risk of the Gibbs classifiers, i.e., R(ρ) ≤ Eρ[R(h)].
The proposed PJS divergence satisfies this requirement.
Theorem 3.7 (inequalities related to the ρ-ensemble). Let H
be a hypothesis space as stated in the Thm. 3.5. For any ρ ∈
M+(H), any measure P , take DP = EP [V arρ(

√
ℓPJS)],√

RℓPJS

P (ρ) ≤
√

Eρ[R
ℓPJS

P (h)]− DP ≤ Eρ[

√
RℓPJS

P (h)].
(7)

3It says a real-world input x cannot in two categories, combined
with AP = AQ would imply a covariate shift assumption with
deterministic conditional p(y|x). Since invariance is not the focus
of this paper, we left the relaxation of invariance for future work.

4This is not a strong requirement as long as the component of
the correct class in vector h is non-zero.

Moreover, DP > 0 is a necessary condition for the sec-
ond inequality becoming strict. If ℓPJS(x1,y,h)

ℓPJS(x2,y,h) is varying
on (a non-zero measured subset of) the set {(x, y,h) :
V arρ(

√
ℓPJS) > 0} for x1 ̸= x2 , then DP > 0 is a

sufficient condition for the second inequality being strict.

The Thm. 3.7 says that in order to obtain a ρ-ensemble with
an ideal source risk, we may sample Gibbs classifiers first
and optimize the (square-root) risk of each Gibbs classi-
fier. There are at least two options according to the two in-
equalities in Eq. (7). The first inequality implies a diversity-
promoting strategy: Minimizing Eρ[R

ℓPJS

P (h)]−DP prefers
a quasi-posterior ρ supported on diversified classifiers to
produce a large DP = EP [V arρ(

√
ℓPJS)]. The second

option is minimizing Eρ[
√
RℓPJS

P (h)] without the explicit

emphasis on diversity. When DP > 0 and ℓPJS(x1,y,h)
ℓPJS(x2,y,h) is

non-constant on a non-zero measured set, the former diver-
sity promoting strategy will lead to a strictly tighter upper
bound on the ρ-ensemble source risk than the latter one.

Invoking the Thm. 3.5 gives an upper bound on the square-
root target risk of the ρ-ensemble.

Corollary 3.8 (target risk upper bound of the ensembles).
Given a fixed source domain P and a target domain Q, for
any measure ρ ∈M+(H) on hypothesis space H,√
RℓPJS

Q (ρ) ≤
√
Eρ[R

ℓPJS

P (h)]− DP+2
√
2DJS(P∥Q).

(8)

Note that the Thm. 3.7 holds for any measure. Therefore
we may apply Eq. (7) to the target measure and derive the
following corollary on the joint risk.

Corollary 3.9 (joint risk upper bound of the ensembles).
Given a fixed source domain P and a target domain Q, for
any measure ρ ∈M+(H) on the hypothesis space H,√

RℓPJS

P (ρ) +
√
RℓPJS

Q (ρ)

≤
√

Eρ[R
ℓPJS

P (h)]− DP +
√
Eρ[R

ℓPJS

Q (h)]− DQ

≤ Eρ[

√
RℓPJS

P (h)] + Eρ[
√
RℓPJS

Q (h)].

(9)

Cor. 3.9 says the joint risk of the ρ-ensemble is no more
significant than that of the Gibbs classifier, validating the
motivation of employing classifier ensemble to reduce the
undue influence of model misspecification.

We conclude this section by introducing a PAC-Bayes gener-
alization upper bound on the ρ-ensemble target risk in terms
of empirical estimates (denoted by R̂(·) or D̂(·)).
Theorem 3.10 (PAC-Bayesian generalization upper bound).
For a fixed source domain P and a fixed target domain
Q, let H be a hypothesis space as stated in the Thm. 3.5.
Suppose that π is a prior over H, which is independent of
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draws of source realizations Dn = {(xi, yi)}ni=1
i.i.d.∼ Pn.

Then for any c > 0, ρ ∈ M+(H), and any δ ∈ (0, 1), with
probability over 1− δ√

RℓPJS
Q (ρ) ≤ 2

√
2DJS(P∥Q)+√

Eρ[R̂
ℓPJS
P (h)]− D̂P +

2DKL(ρ∥π) + log 1
δ
+ΨℓPJS

P,π (c, n)

cn
,

(10)

where logEπ2EPn [ecnEP
√

ℓ(h′)EP
√

ℓ(h)−ÊP
√

ℓ(h′)ÊP
√

ℓ(h)]
= Ψℓ

P,π(c, n) is constant w.r.t. ρ for fixed c, n, π, ℓ, and δ.

3.3. Connection with Existing DG Theory

Bridging DG with classifier ensemble is a complement
rather than a substitute for existing DG literature. (a) From
the transferability perspective: Existing literature assume
the optimal Bayes classifier for various domains is in the hy-
pothesis space (Blanchard et al., 2011; Muandet et al., 2013),
or the excess risk of the target domain is comparable to those
of the source domains in a hypothesis subspace (Zhang et al.,
2021a), thence assuring a classifier with an ideal joint risk.
We argue that this requirement might be too restrictive for
the hypothesis space of deep classifiers without access to
the target data, and we may ease the dilemma by enrich-
ing the hypothesis with classifier ensembles. (b) From the
invariance perspective: We assume the identical support
of the target domain and the source domain with a deter-
ministic conditional density p(y|x), which is equivalent to
the Dirac delta posterior and the covariate shift assumption
in the existing literature (Blanchard et al., 2011; Muandet
et al., 2013). (c) From the discrepancy perspective: The up-
per bounds on the target risks usually include a discrepancy
measure between the target domain and the source domain.
The term discrepancy measure is related to the underlying
loss function. For example, our PJS loss leads to the JS
divergence. The 0-1 loss usually leads to the total variation
divergence (Zhao et al., 2019; Cha et al., 2021). The JS
divergence is tighter than the variation divergence (Polyan-
skiy & Wu, 2014), implying narrow risk gaps. (d) Last but
not least: we discuss classifier ensemble in the DG scenario
without target access, which is different from the domain
adaptation literature discussing classifier ensemble w.r.t. the
0-1 loss (Germain et al., 2013; 2016b).

4. Method
In this section, we propose a Diversified Neural Averaging
(DNA) method for DG, whose principle is to optimize the
PAC-Bayesian generalization upper bound introduced in
Thm. 3.10. We start by quoting the necessary preliminaries
from existing deep learning literature before diving into the
detailed algorithm.

Dropout variational family (Gal & Ghahramani, 2016).

Suppose that θ = {Ai}Li=1 ∈ Θ are NN weight matrices in
each layer. Let ϵi be a Bernoulli random vector. The well-
known dropout regularization (Srivastava et al., 2014) on
activations of i-th layer is equivalent to multiplying Ai by ϵi,
resulting in a stochastic weight matrix Wi = ϵiAi. The re-
sulting ω = {Wi}Li=1 can be viewed as draws from a quasi-
posterior distribution ρ̃θ parametrized by θ = {Ai}Li=1.
The transformation from ϵ = {ϵi}Li=1 to ω, ω = r(ϵ,θ), is
referred to as the reparameterization trick.

The JS divergence between the source domain and the target
domain in this bound is inestimable and often treated as a
relatively small constant in DG literature, which is implic-
itly comprised in the underlying assumption of DG that the
target domain is similar to the source domain. Thus, by
discarding constant terms of the bound w.r.t. ρ, the mini-
mization problem can be written as,

minimize
ρ∈M+(H)

Eρ[R̂
ℓPJS

P (h)]− D̂P(ρ) +
2DKL(ρ∥π)

cn
(11)

To optimize this objective, we need to sample Gibbs classi-
fiers from the quasi-posterior ρ. The proposed DNA method
samples Gibbs classifiers transversely and longitudinally by
simultaneously considering two aspects. On the one hand,
the optimization trajectory of DNNs produces a natural sam-
pling distribution of parameters. On the other hand, we
adopt the dropout variational family as a practical choice
because it provides sampling and computing convenience.

Formally, we focus on the situation when the hypothesis
space H is the space of parametric functions induced by a
DNN. Suppose that H = {hω(·)|ω ∈ Ω}, where h(·) is the
functional form determined by fixed network architecture
and ω parameterizes the function hω(·). Ω is the parameter
space that parameters ω live in. As mentioned above, ω is
reparameterized by the DNN weight matrices parameters
θ and the Bernoulli vector ϵ, where θ is sampled from
an optimization trajectory distribution T ∈ M+(Θ) and ϵ
is sampled from a Bernoulli random vector B with each
dimension being 1 with probability 0.5. For the first term in
the Eq. (11), we optimize the empirical risk of each sampled
Gibbs classifier,

Eρ|θ[R̂
ℓPJS

P (h)] =
1

nm

n∑
i=1

m∑
ϵ∼B

ℓPJS(xi, yi, h
r(ϵ,θ)).

(12)

For the diversity measure D̂P(ρ) in the Eq. (11), it is difficult
to handle this term among the Gibbs classifiers sampled
along the optimization trajectory simultaneously. Therefore,
we only explicitly model and promote the diversity measure
for each fixed θ on the trajectory with different dropout
realizations,

D̂P(ρ|θ) =
1

n

n∑
i=1

V arϵ|θ(
√
ℓPJS(xi, yi, hr(ϵ,θ))), (13)
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where V arϵ|θ(·) is the variance calculated on the m sam-
ples of ϵ ∼ B for a fixed θ. The usage of the KL term
DKL(ρ∥π) in Eq. (11) is regularizing the quasi-posterior
ρ to be not far from the prior π over the hypothesis space.
The DKL(ρ∥π) is introduced into the upper bound by ap-
plying the Donsker and Varadhan’s variational formula (cf.
the proof for Thm. 3.10 in Appendix A for more details).
Assured by the KL condition (Gal, 2016; Gal & Ghahra-
mani, 2016), when the prior is approximately Gaussian,
DKL(ρ∥π) can be approximated by the weight decay for
the Bernoulli (and Gaussian) variational family. Moreover,
there have been literature (Loshchilov & Hutter, 2018; Mad-
dox et al., 2019) suggesting the approximate Gaussian prior
of modern deep learning.

Thus, the optimization objective of the proposed DNA is

minimize
θ∈Θ

Eρ|θ[R̂
ℓPJS

P (h)]− ηD̂P(ρ|θ), (14)

where η > 0 is a hyperparameter controlling the trade-
off between minimizing the source risk and promoting the
diversity, and the weight decay regularization is used in
DNA as a default setting.

In DNA, the target samples are classified by the ρ-
ensemble. ρ-ensemble is the averaged classifier over the
quasi-posterior ρ. The classifier averaging over ρ, i.e.,
ρ = Eθ∼T Eϵ∼B(h

r(ϵ,θ)), comprises two steps. In the
first step, classifier averaging is performed across different
dropout realizations for a fixed θ, which is approximated
well by shutting down the dropout (Srivastava et al., 2014).
In the second step, classifier averaging is performed along
the optimization trajectory. In order to reduce computational
overhead, we do not save every checkpoint and ensemble
these classifiers. Considering the strong connections be-
tween the classifiers and the parameter space of DNN (Fort
et al., 2019), we approximate classifier averaging by adopt-
ing a dense stochastic weight averaging (SWA) (Izmailov
et al., 2018; Cha et al., 2021) over the parameter space in
a single run, making our DNA a fast-ensemble method. To
be specific, we use SWAD (Cha et al., 2021) for weight
averaging, which is a modified version of SWA (Izmailov
et al., 2018) with a dense and overfit-aware stochastic weight
sampling strategy. The entire procedure of DNA method is
given in Algorithm 15.

4.1. Complexity analysis.

Compared to the baseline (Gulrajani & Lopez-Paz, 2021),
the additonal time complexity of DNA incurs from higher
evaluation frequency and dropout sampling. We use the
same technique as in (Cha et al., 2021) to analyze the over-
head: let the total number of source domain samples n,
training-validation split ratio rs, and evaluation frequency

5Codes are avalable at https://github.com/JinYujie99/DNA

f . For one epoch, let tf be the forward time, tb be the back-
ward time, rt be the ratio of forward (backward) time cost of
the fully connected layer to that of the convolutional back-
bone in a DNN. For simplicity, we assume that tf = tb = t.
For one epoch, the training time is 2tnrs(1 +mrt)/(rs +
1)(rt + 1), the evaluation time is ftn/(rs + 1). Thus, the
total time of DNA is tn

rs+1 [f + 2rs(1 + mrt)/(rt + 1)],
while the total time of ERM is tn

rs+1 [fd + 2rs], where fd
is the default evaluation frequency in DomainBed (Gulra-
jani & Lopez-Paz, 2021). The final time overhead ratio is
[f + 2rs(1 +mrt)/(rt + 1)]/(fd + 2rs). Since f ∼ 3fd
(in our experimental settings), fd < 1, rs = 4 and rt ≪ 1,
the ratio indicates a low computational overhead.

Algorithm 1 DNA: DG with Diversified Neural Averaging.
Input: source dataset D = {(xi, yi)}

n
i=1, dropout model h

with weight matrices θ, batch size b, total iterations for training
I , trade-off hyperparameter η, number of dropout samples m
Output: learned ρ-ensemble ρ
iter ← 0, initialize θ, θ
while iter < I do
L ← 0
{(xi, yi)}

b
i=1 ←randomly sample b instances from D

{ϵj}mj=1 ← randomly sample m dropout realizations
L ← L+ 1

bm

∑b
i=1

∑m
j=1 ℓPJS(xi, yi, h

r(ϵj ,θ))

L ← L− η
b

∑b
i=1 V ar(

√
ℓPJS(xi, yi, h

r(ϵj ,θ)))

update θ using∇θL
θ ← (iter · θ + θ)/(iter + 1)
iter = iter + 1

end while
ρ← hθ with dropout shutdown

5. Experiment
5.1. Experimental Settings

Datasets. Following Gulrajani & Lopez-Paz (2021),
we exhaustively conduct experiments on various bench-
mark datasets to validate the proposed DNA: PACS (Li
et al., 2017) comprises four domains d ∈ {photo, art,
cartoon, sketch}, containing 9991 images of 7 cate-
gories. VLCS (Fang et al., 2013) comprises four photo-
graphic domains d ∈ {VOC2007, LabelMe, Caltech101,
SUN09}, with 10729 samples of 5 classes. Office-
Home (Venkateswara et al., 2017) has four domains d ∈
{art, clipart, product, real}, containing 15500 images with a
larger label sets of 65 categories. TerraIncognita (Beery
et al., 2018) comprises photos of wild animals taken by
cameras at different locations. Following (Gulrajani &
Lopez-Paz, 2021), we use domains of d ∈ {L100, L38,
L43, L46}, which include 24778 samples and 10 classes.
DomainNet (Peng et al., 2019) is a large scale dataset con-
taining 596006 images and 345 classes, over six domains
d ∈ {clipart, infograph, painting, quickdraw, real, sketch}.

Evaluation protocol. For a fair comparison, we follow the

https://github.com/JinYujie99/DNA
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Table 1. Benchmark Comparisons. Out-of-domain classification accuracies(%) on PACS, VLCS, OfficeHome, TerraIncognita, and
DomainNet are shown. The results of mDSDI and SWAD are from the original literature, and the other numbers are from DomainBed (Gul-
rajani & Lopez-Paz, 2021). Each experiment is repeated 3 times and we highlight the best results.

Method PACS VLCS OfficeHome TerraIncognita DomainNet Avg

ERM (Vapnik, 1999) 85.5 ± 0.2 77.5 ± 0.4 66.5 ± 0.3 46.1 ± 1.8 40.9 ± 0.1 63.3
IRM (Arjovsky et al., 2019) 83.5 ± 0.8 78.5 ± 0.5 64.3 ± 2.2 47.6 ± 0.8 33.9 ± 2.8 61.6
DRO (Sagawa et al., 2020) 84.4 ± 0.8 76.7 ± 0.6 66.0 ± 0.7 43.2 ± 1.1 33.3 ± 0.2 60.7
MMD (Li et al., 2018c) 84.6 ± 0.5 77.5 ± 0.9 66.3 ± 0.1 42.2 ± 1.6 23.4 ± 9.5 58.8
DANN (Ganin et al., 2016) 83.6 ± 0.4 78.6 ± 0.4 65.9 ± 0.6 46.7 ± 0.5 38.3 ± 0.1 62.6
CDANN (Li et al., 2018d) 82.6 ± 0.9 77.5 ± 0.1 65.8 ± 1.3 45.8 ± 1.6 38.3 ± 0.3 62.0
MTL (Blanchard et al., 2021) 84.6 ± 0.5 77.2 ± 0.4 66.4 ± 0.5 45.6 ± 1.2 40.6 ± 0.1 62.9
ARM (Zhang et al., 2020) 85.1 ± 0.4 77.6 ± 0.3 64.8 ± 0.3 45.5 ± 0.3 35.5 ± 0.2 61.7
VREx (Krueger et al., 2021) 84.9 ± 0.6 78.3 ± 0.2 66.4 ± 0.6 46.4 ± 0.6 33.6 ± 2.9 61.9
RSC (Huang et al., 2020) 85.2 ± 0.9 77.1 ± 0.5 65.5 ± 0.9 46.6 ± 1.0 38.9 ± 0.5 62.7
Mixup (Wang et al., 2020b) 84.6 ± 0.6 77.4 ± 0.6 68.1 ± 0.3 47.9 ± 0.8 39.2 ± 0.1 63.4
MLDG (Li et al., 2018a) 84.9 ± 1.0 77.2 ± 0.4 66.8 ± 0.6 47.7 ± 0.9 41.2 ± 0.1 63.6
SagNet (Nam et al., 2021) 86.3 ± 0.2 77.8 ± 0.5 68.1 ± 0.1 48.6 ± 1.0 40.3 ± 0.1 64.2
CORAL (Sun & Saenko, 2016) 86.2 ± 0.3 78.8 ± 0.6 68.7 ± 0.3 47.6 ± 1.0 41.5 ± 0.1 64.5
mDSDI (Bui et al., 2021) 86.2 ± 0.2 79.0 ± 0.3 69.2 ± 0.4 48.1 ± 1.4 42.8 ± 0.1 65.1
SWAD (Cha et al., 2021) 88.1 ± 0.4 79.1 ± 0.4 70.6 ± 0.3 50.0 ± 0.4 46.5 ± 0.2 66.9
DNA (ours) 88.4 ± 0.1 79.0 ± 0.1 71.2 ± 0.1 52.2 ± 0.4 47.2 ± 0.1 67.6

training and evaluation protocol in DomainBed (Gulrajani
& Lopez-Paz, 2021). We choose a domain as the target
domain for testing and use the remaining domains as source
domains for training. We split each source domain into 8:2
training/validation splits and integrate the validation sub-
sets of each source domain to create an overall validation
set, which is used for validation and model selection. The
chosen model is tested on the unseen target domain, and we
report the mean and standard deviation of out-of-domain
classification accuracies from three different runs with dif-
ferent training-validation splits.

Implementation details. We use ResNet-50 (He et al.,
2016) pre-trained on ImageNet (Deng et al., 2009) as the
backbone network for all datasets. All the batch normaliza-
tion (BN) layers are frozen during training. We replace the
last FC layer of the ResNet-50 with a 2-layer classifier with
1024 hidden units and employ the dropout regularization on
the 1024-dimensional output (2048 hidden units are used
for DomainNet, adjusting for the larger label space). The
network is trained using the Adam (Kingma & Ba, 2015)
optimizer. The number of dropout samples m is set to 5.
For weight averaging, we use the densely and overfit-aware
sampling strategy in (Cha et al., 2021). We follow the hy-
perparameter search protocol in DomainBed (Gulrajani &
Lopez-Paz, 2021) and follow Cha et al. (2021) to use a re-
duced search space for computational efficiency. We search
the trade-off hyperparameter η ∈ {0.01, 0.1, 1.0} and set
η = 0.1 by model selection on the validation sets6.

6More implementation details are given in Appendix B.2.

5.2. Results

We compare our proposed DNA with various domain gener-
alization methods under the same evaluation protocol and
report the out-of-domain classification accuracies7 in Tab. 1.
For all baseline methods, the ResNet-50 is used as the back-
bone network. It is shown that our DNA method achieves
state-of-the-art performance on four of the five benchmarks,
including PACS, OfficeHome, TerraIncognita, and Domain-
Net. While on VLCS, the performance of our method
(79.0%) is on par with the previous best results (79.1%).
Thus our DNA method achieves a significantly better aver-
age accuracy of 67.6% against the baselines. Moreover, the
smaller standard errors of DNA manifest that our method is
relatively more stable and robust.

5.3. Ablation Studies

To verify the effectiveness of the design of our DNA method,
we do ablation studies with regard to the weight averaging,
the diversity enforcement DP , the dropout variational family
and the PJS loss. In all experiments, the DNN architecture
of different DNA variants is kept consistent.

Effects of weight averaging. To inspect the effect of weight
averaging, we use only the PJS loss (no dropout or any di-
versity enforcement term DP in the optimization objective)
to train the DNN, with (w/) and without (w/o) SWA on Of-
ficeHome, TerraIncognita and DomainNet. The results are

7Baseline descriptions and full results per dataset per domain
are detailed in Appendix B.1 and Appendix C.
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(a) PJS(single) (b) PJS(SWA) (c) CE(single) (d) CE(SWA)

Figure 1. Losses visualization. “single” and “SWA” indicate the single model and the SWA (from the beginning of the optimization
trajectory) ensemble model. “tr loss”, “val loss” and “te loss” denote the loss on the training set, validation set, and test set, respectively.
Settings: OfficeHome dataset, the target domain is art while source domains include clipart, product, and real.

Table 2. Out-of-domain accuracies(%) of the PJS loss with (w/) or
without (w/o) SWA. Each experiment is repeated 3 times.

OfficeHome TerraIncognita DomainNet

w/ SWA 70.5± 0.1 51.4± 0.4 46.5± 0.1
w/o SWA 66.5± 0.2 49.4± 0.3 43.7± 0.1

Table 3. Out-of-domain accuracies(%) with (w/) or without (w/o)
DP for optimization. Each experiment is repeated 3 times.

PACS VLCS DomainNet

w/ DP 88.2± 0.2 78.7± 0.1 46.8± 0.1
w/o DP 88.4± 0.1 79.0± 0.1 47.2± 0.1

shown in Tab. 2, instantiating the advantage of ensembles
and result of Thm. 78.

To validate the reasonableness of approximating the ρ-
ensemble by DNN weight averaging in a single run, we
do an ablation study to compare the high-cost classifier av-
eraging with the low-cost weight averaging. The results
are shown in Tab. 4. Specifically, we save checkpoints at
every evaluation steps in every single run. Then we uni-
formly sample these models and ensemble them for predic-
tion. The results show that the performance of DNA can be
approached by classifier averaging as the number of mod-
els for ensemble increases. While DNA is a fast-ensemble
method without saving checkpoints, it greatly reduces the
computational overhead.

Effects of explicitly enforcing diversity and the choice
of variational family. To validate the efficacy of explicitly
enforcing diversity of classifiers for ensemble, i.e., encourag-
ing a positive DP in the optimization objective, we compare
the (w/) and without (w/o) DP variants of DNA on all the

8Tab. 2 rediscovers the advantage of applying SWA for DG
(Cha et al., 2021). In contrast to SWAD (Cha et al., 2021), the pro-
posed DNA is motivated from the lens of fast classifier ensemble,
and the results are developed by optimizing the PJS loss.

five benchmarks. The results are shown in Tab. 3 (PACS,
VLCS, and DomainNet) and Tab. 5 (OfficeHome and Ter-
raIncognita according to the 1st column). The performance
of explicitly enforcing diversity of classifiers consistently
outperforms, which substantiates the first and the second
inequalities in Eq.(7) of Thm. 3.7.

We also compare DNA with variants regarding the Gaus-
sian dropout variational family. The Bernoulli (the default
configuration for DNA) and Gaussian variational families
are different choices for optimizing the PAC-Bayes bound
approximately. The Bernoulli family is more appropriate for
multi-modality distributions. The results of two variational
family are reported in Tab. 5 (according to the 2nd col-
umn). We can find that the performances of DNA with the
Bernoulli dropout variational family are better than that of
the Gaussian variational family. We interpret the superiority
as a result of better multi-modality posterior tolerance.

Effects of the PJS loss. We compare the models trained
with the proposed pruned Jensen-Shannon (PJS) loss func-
tion with the models trained with cross-entropy (CE) loss
function. The results of optimizing the CE loss and PJS loss
with SWA and with explicitly enforcing diversity DP are
reported in Tab. 6. Note that the diversity measure proposed
recently in Masegosa (2020) is used to adapt the CE loss for
the CE scenario. From the results, we can find that each PJS
model outperforms its CE variant, indicating the effective-
ness of the proposed PJS loss and the diversity measure in
the presence of distributional shift. The similar accuracies
of PJS and CE on OfficeHome (15,500 images of 65 classes)
are more of the consequence of the dataset limitation than
the limitation of the method. When the dataset is easy or
small, the DNN tends to give a high-confidence output, i.e.,
a h∗ = prob(ycorrect|x) close to 1. From the formulation
of the PJS loss (cf. Eq. (3)) and the CE loss, the PJS loss
and CE loss will behave similarly when h∗ is close to 1.
On the other hand, when the dataset is hard or large, two
losses behave dissimilarly, and the target risk optimization
w.r.t. the PJS loss is theoretically guaranteed by our theory,
leading to better accuracy. Additionally, comparing the with
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Table 4. Out-of-domain accuracies(%) of ensemble of different number of models are shown. “K” denotes the number of sampled
checkpoints for averaging. Each experiment is repeated 3 times.

OfficeHome TerraIncognita

A C P R Avg L100 L38 L43 L46 Avg

K=5 64.6 ± 0.3 56.1 ± 0.4 77.8 ± 0.2 79.5 ± 0.3 69.5 53.0 ± 1.4 42.0 ± 0.2 58.2 ± 0.5 42.6 ± 1.6 49.0
K=10 65.9 ± 0.3 56.6 ± 0.1 78.5 ± 0.2 80.0 ± 0.1 70.3 55.9 ± 1.3 43.9 ± 1.2 60.0 ± 0.4 42.8 ± 1.0 50.6
K=20 66.4 ± 0.1 57.0 ± 0.2 78.8 ± 0.1 80.5 ± 0.1 70.7 57.1 ± 1.2 43.7 ± 0.9 60.0 ± 0.4 43.1 ± 1.0 51.0
DNA 67.7 ± 0.2 57.7 ± 0.3 78.9 ± 0.2 80.5 ± 0.2 71.2 56.8 ± 1.2 47.0 ± 0.9 61.0 ± 0.5 44.0 ± 1.0 52.2

Table 5. Out-of-domain accuracies (%) of different DNA variants are shown. “DP” indicates whether the diversity measure is explicitly
enforced. “Bernoulli” and “Gaussian” denote the type of dropout variational family. Each experiment is repeated 3 times.

DP Variational Family OfficeHome TerraIncognita
A C P R Avg L100 L38 L43 L46 Avg

× Gaussian 67.1 ± 0.1 57.4 ± 0.1 78.6 ± 0.1 80.2 ± 0.4 70.8 54.8 ± 1.6 48.2 ± 0.4 60.2 ± 1.0 43.2 ± 0.9 51.6
✓ Gaussian 67.2 ± 0.2 57.5 ± 0.1 78.7 ± 0.3 80.3 ± 0.4 70.9 56.0 ± 0.9 47.2 ± 1.3 60.9 ± 0.7 43.4 ± 0.7 51.9
× Bernoulli 67.1 ± 0.3 57.6 ± 0.1 78.7 ± 0.2 80.4 ± 0.2 70.8 55.6 ± 1.8 47.9 ± 1.0 60.5 ± 0.4 43.2 ± 0.7 51.8
✓ Bernoulli 67.7 ± 0.2 57.7 ± 0.3 78.9 ± 0.2 80.5 ± 0.2 71.2 56.8 ± 1.2 47.0 ± 0.9 61.0 ± 0.5 44.0 ± 1.0 52.2

Table 6. Out-of-domain accuracies(%) by optimizing the cross-
entropy (CE) loss and pruned Jensen-Shannon (PJS) loss with
SWA and with explicitly enforcing diversity DP . Each experiment
is repeated 3 times.

loss OfficeHome TerraIncognita DomainNet

CE 71.1± 0.1 51.9± 0.5 46.9± 0.1
PJS 71.2± 0.1 52.2± 0.4 47.2± 0.1

SWA results in Tab. 2 to the ERM results in Tab. 1 demon-
strates the individual influence of loss functions: similar
accuracies of two losses on OfficeHome, accuracies of PJS
on TerraIncognita and DomainNet outperform.

We also inspect the optimization process by observing the
loss functions during the training time between the model
trained with the PJS loss and the model trained with the CE
loss. Specifically, we visualize the empirical estimate of
PJS/CE loss on the training set, validation set and test set for
the single model and the SWA ensemble model along the
optimization trajectory. The results are shown in Fig. 1. We
observe that in the averaging and non-averaging scenario,
our proposed PJS loss suffers a lower level of overfitting, i.e.,
smaller gaps between training losses and testing/validation
losses. Whereas the CE loss suffers a relatively higher level
of overfitting, in the sense that the test loss goes up in late
iterations. The second intriguing aspect of our PJS loss is the
smoothness over the validation and test data, indicating that
our method suffers less influence of model selection. For
both loss functions, the averaging version exhibits a lower
level of overfitting and a smoother plot of loss values in
late iterations, substantiating our motivation of considering
classifier ensemble.

6. Conclusion and Future Works
This paper bridges DG and classifier ensemble both theo-
retically and methodologically. We propose a novel PJS
divergence and a novel PJS loss, upon which we derive
generalization bounds for the risk of the target domain.
Grounded on the theoretical results, we propose a fast-
ensemble method for DG, DNA. The DNA method is a
highly competitive method with a low computational over-
head. Extensive experiments validate the effectiveness of
the proposed DNA. There are many possible directions for
future works, to name a few: (a) For fairness without de-
mographics (Hashimoto et al., 2018). The proposed DNA
does not utilize the domain labels, highlighting its poten-
tial in protecting private features of the minority subgroups.
(b) For learning under label noise. The proposed PJS loss
is a bounded and symmetric loss. The boundedness and
symmetry of a loss are empirically beneficial for robustness
against label noise (Wang et al., 2019; Englesson & Az-
izpour, 2021). (c) For more competitive DG methods. DNA
is a drop-in framework that tackles DG from the model mis-
specification perspective and is potentially compatible with
existing DG principles for higher empirical performance.
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A. Proofs for Section 3
Definition A.1 (pruned Jensen-Shannon divergence). Consider a subset of M+(X× Y) induced by a dominating measure
λ, Mλ

+ = {µ ∈M+(X× Y) : µ≪ λ}, such that each measure in Mλ
+ is absolutely continuous (w.r.t.) the the dominating

measure λ. For measures Υ,P ∈ Mλ
+ and P ≪ Υ, let p = dP

dλ and υ = dΥ
dλ denote the Radon–Nikodym derivatives

accordingly. The pruned Jensen-Shannon (PJS) divergence DPJS(P∥Υ) :Mλ
+ ×Mλ

+ → R from a measure Υ to a measure
P is defined by an integral over the support set AP of measure P , that is

DPJS(P∥Υ) =

∫
AP

p log
2p

p+ υ
+ υ log

2υ

p+ υ
dλ. (1)

Theorem A.2 (properties of PJS divergence). Consider measures Q,P,Υ ∈ Mλ
+. Suppose that Q ≪ Υ, P ≪ Υ and

AP = AQ, then the PJS divergence satisfies
(a) DPJS(P∥Q) = 2DJS(P∥Q), where DJS is the vanilla JS divergence.
(b) DPJS(P∥Υ) ≥ 0.
(c)
√
DPJS(Q∥Υ) ≤

√
DPJS(P∥Υ) +

√
2DJS(P∥Q).

Proof. Let p = dP
dλ , q = dQ

dλ and υ = dΥ
dλ denote the Radon–Nikodym derivatives accordingly.

(a) The proof is straightforward by recalling the definition of the original Jensen-Shannon divergence (Endres & Schindelin,
2003). Taking A = AP = AQ,

DJS(P∥Q) =

∫
A

1

2
p log

2p

p+ q
+

1

2
q log

2q

p+ q
dλ

=
1

2

∫
AP

p log
2p

p+ q
+ q log

2q

p+ q
dλ =

1

2
DPJS(P∥Q).

(2)

(b) We show equivalently that −DPJS(P∥Υ) ≤ 0,

−DPJS(P∥Υ) = −
∫
AP

p log
2p

p+ υ
+ υ log

2υ

p+ υ
dλ

= −
∫
AP

dP
dλ

log
2dP
dλ

dP
dλ + dΥ

dλ

+
dΥ

dλ
log

2dΥ
dλ

dP
dλ + dΥ

dλ

dλ

= −
∫
AP

dP log
2dP

dP + dΥ
+ dΥ log

2dΥ

dP + dΥ

=

∫
AP

dP log
dP + dΥ

2dP
+ dΥ log

dP + dΥ

2dΥ

(i)

≤
∫
AP

dP(
dP + dΥ

2dP
− 1) + dΥ(

dP + dΥ

2dΥ
− 1)

=

∫
AP

(
dP + dΥ

2
− dP) + (

dP + dΥ

2
− dΥ) = 0

(3)

the inequality (i) uses the fact that log x ≤ x− 1 for x > 0.

(c) The triangle inequality simply relies on the lemma given in (Endres & Schindelin, 2003),

Lemma A.3 (Lemma 2 in Endres & Schindelin (2003)). Let p, q, υ ∈ R+ and let L(p, q) ≜ p log 2p
p+q + q log 2q

p+q . Then

√
L(q, υ) ≤

√
L(p, υ) +

√
L(p, q) (4)

We skip the proof for this lemma, please refer to the Lemma 2 in Endres & Schindelin (2003) for the detailed proof.
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By definition of DPJS(P∥Υ) and take A = AP = AQ, there is

√
DPJS(Q∥Υ) =

√∫
A
q log

2q

q + υ
+ υ log

2υ

p+ υ
dλ

=

√∫
A
(
√
L(q, υ))2dλ

(i)

≤

√∫
A
(
√
L(p, υ) +

√
L(p, q))2dλ

(ii)

≤

√∫
A
(
√
L(p, υ))2dλ+

√∫
A
(
√
L(p, q))2dλ

=
√
DPJS(P∥Υ) +

√
DPJS(P∥Q) =

√
DPJS(P∥Υ) +

√
2DJS(P∥Q),

(5)

where the inequality (i) invokes the Lem. A.3 and the inequality (ii) invokes the Minkowski’s inequality (Royden &
Fitzpatrick (1988),Sect.7.2).

Definition A.4 (pruned Jensen-Shannon loss). Let A be the support of the underlying (empirical) distribution where the
realization (x, y) is drawn from. The pruned Jensen-Shannon (PJS) loss ℓPJS : X× I×H → R+ is

ℓPJS(x, y,h) = (log
2

h∗ + 1
+ h∗ log

2h∗

h∗ + 1
)1{(x,y)∈A}, (6)

where h∗ ∈ [0, 1] is the vector component of h that corresponds to the correct class, and 1{·} is the indicator function.

Proposition A.5 (connecting risk and PJS divergence). For a classifier h and a domain P ∈M+(X× I). Let ΥP be the
induced measure. Assuming pP(y|x) ∈ {0, 1}, denoting υP(x, y) = p(x)h(y|x) as the induced density of ΥP , then

RℓPJS

P (h) = E
(x,y)∼P

[ℓPJS(x, y,h)] = DPJS(P∥ΥP) (7)

Proof. For ease of notations, we omit the superscript referring P of pP(x) and ΥP , by using p(x) and Υ instead. By
definition of DPJS(P∥Υ) and the facts: (a) p(y∗|x) = 1 for the correct class y∗ and p(y′|x) = 0 for the wrong class y′

(Uniqueness: one-hot labels),(b)1 =
∑C

j=1 p(yj |x, y). We have (dy referring to the counting measure)

DPJS(P∥Υ) =

∫
AP

p(x, y) log
2p(x, y)

p(x, y) + υ(x, y)
+ υ(x, y)

2υ(x, y)
p(x, y) + υ(x, y)

dxdy

=

∫
AP

p(x)p(y|x) log 2p(x, y)
p(x, y) + υ(x, y)

+ p(x)h(y|x) log 2υ(x, y)
p(x, y) + υ(x, y)

dxdy

=

∫
AP

p(x)p(y|x)
[
log

2p(x, y)
p(x, y) + υ(x, y)

+
h(y|x)
p(y|x)

log
2υ(x, y)

p(x, y) + υ(x, y)

]
dxdy

=

∫
{x:p(x)>0}

p(x)
∑
y∈I

C∑
j=1

p(yj |x)1{(x,y)∈AP}[
2p(x)p(yj |x)

p(x)p(yj |x) + p(x)hj
+

hj
p(yj |x)

log
2p(x)hj

p(x)p(yj |x) + p(x)hj
]dx

invoking(a)
=

∫
{x:p(x)>0}

p(x)
∑
y∈I

1{(x,y)∈AP}

[
log

2p(x)
p(x) + p(x)h∗

+ h∗ log
2p(x)h∗

p(x) + p(x)h∗

]
dx

=

∫
{x:p(x)>0}

p(x)
∑
y∈I

1{(x,y)∈AP}

[
log

2

1 + h∗
+ h∗ log

2h∗

1 + h∗

]
dx

invoking(b)
=

∫
{x:p(x)>0}

p(x)
∑
y∈I

1{(x,y)∈AP}

C∑
j=1

p(yj |x)
[
log

2

1 + h∗
+ h∗ log

2h∗

1 + h∗

]
dx = RℓPJS

P (h).

(8)
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Theorem A.6 (bounds of the target risk). Let Q and P be the (fixed) target domain and the source domain in M+(X× I),
with pQ(x) and pP(x) being their density functions over the input space X, respectively. Suppose the supports of Q and P
are identical, i.e., AP = AQ, with pP(y|x), pQ(y|x) ∈ {0, 1}. Let H be a hypothesis space, such that for any h ∈ H, the
density pP(x)h induced measure ΥP dominates9 P , and ΥQ dominates Q, i.e., P ≪ ΥP and Q ≪ ΥQ. Then for any
h ∈ H, 

√
RℓPJS

Q (h) ≤
√
RℓPJS

P (h) + 2
√
2DJS(P∥Q). (9)√

RℓPJS

Q (h) ≥
√
RℓPJS

P (h)− 2
√
2DJS(P∥Q). (10)

Proof. We use the following lemma to prove the first inquality.

Lemma A.7. Given P,Q ∈M+(X× I), suppose that ΥQ is a measure induced by a classifier h and the marginal density
function pQ(x) of Q, i.e., the density function υQ of ΥQ is υQ = pQ(x)h. Similarly, let ΥP be a measure induced by h and
the marginal density function pP (x) of P, with υP = pP (x)h. Then if pP(y|x), pQ(y|x) ∈ {0, 1}, P ≪ Q, P ≪ ΥP and
Q≪ ΥQ ≪, λ, then the following holds,

DPJS(Υ
P ∥ΥQ) ≤ DPJS(P∥Q) (11)

proof of lemma: by definition of the PJS divergence, we have

DPJS(Υ
P ∥ΥQ) =

∫
AP

υP log
2υP

υP + υQ
+ υQ log

2υQ

υP + υQ
dλ

=

∫
AP

pP (x)h log
2pP (x)h

pP (x)h + pQ(x)h
+ pQ(x)h log

2pQ(x)h
pP (x)h + pQ(x)h

dλ

≤
∫
{x:pP (x)>0}

pP (x)
∑
y∈I

1{(x,y)∈AP }

C∑
j=1

h(yj |x) log
2pP (x)hj

pP (x)hj + pQ(x)hj

+ pQ(x)
∑
y∈I

1{(x,y)∈AP }

C∑
j=1

h(yj |x) log
2pQ(x)hj

pP (x)hj + pQ(x)hj
dx

=

∫
{x:pP (x)>0}

pP (x)
∑
y∈I

1{(x,y)∈AP } log
2pP (x)

pP (x) + pQ(x)

C∑
j=1

h(yj |x)

+ pQ(x)
∑
y∈I

1{(x,y)∈AP } log
2pQ(x)

pP (x) + pQ(x)

C∑
j=1

h(yj |x)dx

=

∫
{x:pP (x)>0}

pP (x)
∑
y∈I

1{(x,y)∈AP } log
2pP (x)

pP (x) + pQ(x)
+ pQ(x)

∑
y∈I

1{(x,y)∈AP } log
2pQ(x)

pP (x) + pQ(x)
dx

(i)
=

∫
{x:pP (x)>0}

pP (x)
∑
y∈I

1{(x,y)∈AP }p
P (y∗|x) log 2pP (x)pP (y∗|x)

pP (x)pP (y∗|x) + pQ(x)pQ(y∗|x)

+ pQ(x)
∑
y∈I

1{(x,y)∈AP }p
Q(y∗|x) log 2pQ(x)pQ(y∗|x)

pP (x)pP (y∗|x) + pQ(x)pQ(y∗|x)
dx

≤
∫
{x:pP (x)>0}

∑
y∈I

1{(x,y)∈AP }p
P (x, y) log

2pP (x, y)
pP (x, y) + pQ(x, y)

+
∑
y∈I

1{(x,y)∈AP }p
Q(x, y) log

2pQ(x, y)
pP (x, y) + pQ(x, y)

dx

= DPJS(P∥Q),
(12)

where equality (i) invokes the facts that pP (y∗|x) = 1, pP (y∗|x) = 1, pQ(y∗|x) = 1 and P ≪ Q, since the labels are
one-hot vectors and the probability is 1 for being in the correct class. Q.E.D. of the lemma A.7.

9This is not a strong requirement as long as the component of the correct class in vector h is non-zero.
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We then apply the triangle inequality in Thm. A.2(c) to the measures P ,Q,ΥP and ΥQ, leading to√
DPJS(Q∥ΥQ) ≤

√
DPJS(Q∥ΥP) +

√
DPJS(ΥQ∥ΥP)

≤
√
DPJS(P∥ΥP) +

√
DPJS(P∥Q) +

√
DPJS(ΥQ∥ΥP)

(ii)

≤
√
DPJS(P∥ΥP) + 2

√
2DJS(P∥Q),

(13)
where Lem. A.7 and Thm. A.2(a) are applied to the inequality (ii).
Invoking Prop. A.5, there are {

RℓPJS

P (h) = DPJS(P∥ΥP), (14)

RℓPJS

Q (h) = DPJS(Q∥ΥQ), (15)

thereof combined with Eq. (13) would lead to the desired inequality√
RℓPJS

Q (h) ≤
√
RℓPJS

P (h) + 2
√
2DJS(P∥Q). (16)

Similarly, by switching argument Q and P , we have√
DPJS(P∥ΥP) ≤

√
DPJS(P∥ΥQ) +

√
DPJS(ΥP∥ΥQ)

≤
√
DPJS(Q∥ΥQ) +

√
DPJS(P∥Q) +

√
DPJS(ΥP∥ΥQ) ≤

√
DPJS(Q∥ΥQ) + 2

√
2DJS(P∥Q),

(17)
Therefore invoking Prop. A.5 again would result in the second inequality√

RℓPJS

P (h) ≤
√
RℓPJS

Q (h) + 2
√

2DJS(P∥Q) ⇐⇒
√
RℓPJS

Q (h) ≥
√
RℓPJS

P (h)− 2
√
2DJS(P∥Q). (18)

Definition A.8 (ρ-ensemble). Suppose that ρ is a measure on a hypothesis space H. The ρ-ensemble ρ is the ρ-weighted
averaged classifier,

ρ = Eh∼ρ(h). (19)

Theorem A.9 (inequalities related to the ρ-ensemble). Let H be a hypothesis space as stated in the Thm. A.6. For any
ρ ∈M+(H), any measure P , take DP = EP [V arρ(

√
ℓPJS)],√

RℓPJS

P (ρ) ≤
√
Eρ[R

ℓPJS

P (h)]− DP ≤ Eρ[

√
RℓPJS

P (h)]. (20)

Moreover, DP > 0 is a necessary condition for the second inequality becoming strict. If ℓPJS(x1,y,h)
ℓPJS(x2,y,h) is varying on (a

non-zero measured subset of) the set {(x, y,h) : V arρ(
√
ℓPJS) > 0} for x1 ̸= x2 , then DP > 0 is a sufficient condition for

the second inequality being strict.

Proof. The inequalities are relying on the convexity induced by the design of the PJS loss. We prove the inequalities based
on the following lemma.

Lemma A.10. The function g(t) is convex on t ∈ (0, 1)

g(t) =

√
log

2

t+ 1
+ t log

2t

t+ 1
. (21)

proof of lemma: we check the sign of the second derivative of g(t).

dg(t)

dt
=

log 2t
t+1

2g(t)
. (22)
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d2g(t)

dt2
=

2g2(t)− t(t+ 1) log2( 2t
t+1 )

4t(t+ 1)g3(t)
=

2 log 2
t+1 + 2t log 2t

t+1 − t(t+ 1) log2( 2t
t+1 )

4t(t+ 1)g3(t)
. (23)

It suffices to check the sign of numerator of Eq. (23) since the denominator 4t(1 + t)g3(t) is positive on the interval
t ∈ (0, 1). Let G(t) = 2 log 2

t+1 + 2t log 2t
t+1 − t(t+ 1) log2( 2t

t+1 ),

dG(t)

dt
= −(2t+ 1) log2(

2t

t+ 1
) < 0, for t ∈ (0, 1). (24)

Thence G(t) is decreasing on t ∈ (0, 1) and we have

G(t) > G(1) = 2 log
2

1 + 1
+ 2 log

2

1 + 1
− 2 log2(

2

1 + 1
) = 0. (25)

Therefore d2g(t)
dt2 > 0 on the interval t ∈ (0, 1), which implies g(t) is convex on t ∈ (0, 1). Q.E.D. of the lemma A.10.

Remark A.11. The inequalities in the Thm. 3.7, Cor. 3.8, Cor. 3.9 and Thm. 3.10 rely on the design of the PJS divergence.

Specifically, the key is the convexity of the function g(t) =
√
log 2

t+1 + t log 2t
t+1 on t ∈ (0, 1). Whereas the function

g∗(t) =
√

log 2
t+1 + t log 2t

t+1 + (1− t)log2 is not convex nor concave on t ∈ (0, 1). Thence within the framework of the
original JS divergence, the corresponding inequalities do not necessarily hold.

Next we prove the first inequality
√
RℓPJS

P (ρ) ≤
√
Eρ[R

ℓPJS

P (h)]− DP with DP = EP [V arρ(
√
ℓPJS)].

By Lem. A.10 and Jensen’s inequality (Royden & Fitzpatrick (1988),Sect.6.6),

g(Eρ(h
∗)) ≤ Eρ[g(h

∗)]. (26)

Since g(t) is non-negative, then
g2(Eρ(h

∗)) ≤ (Eρ[g(h
∗)])2. (27)

Taking expectation over P on both side of Eq. (27) leads to

EP [g
2(Eρ(h

∗))] ≤ EP [Eρg(h
∗)]2. (28)

It suffices to show the left hand side (L.H.S.) of Eq. (28) is RℓPJS

P (ρ) and the right hand side (R.H.S.) of Eq. (28) is
Eρ[R

ℓPJS

P (h)]− DP with DP = EP [V arρ(
√
ℓPJS)], which are straightforward by the definitions,

L.H.S : g2(Eρ(h
∗)) = log

2

Eρ(h∗)
+ Eρ(h

∗) log
Eρ(h

∗)

Eρ(h∗) + 1

=⇒ EP [g
2(Eρ(h

∗))] = EP [ℓPJS(x, y,ρ)] = RℓPJS

P (ρ).

(29)

R.H.S : EP [Eρg(h
∗)]2 = EP [Eρg

2(h∗)− V arρ(g(h
∗))] = EP [Eρg

2(h∗)]− EP [V arρ(g(h
∗))]

= EP [EρℓPJS(x, y,h)]− EP [V arρ(
√
ℓPJS)]

(i)
= Eρ[EPℓPJS(x, y,h)]− DP

= Eρ[R
ℓPJS

P (h)]− DP ,

(30)

where the equality (i) invokes the Fubini’s theorem (Royden & Fitzpatrick (1988),Sect.20.1). Thus we have proved the first
inequality

RℓPJS

P (ρ) ≤= Eρ[R
ℓPJS

P (h)]− DP =⇒
√
RℓPJS

P (ρ) ≤
√
Eρ[R

ℓPJS

P (h)]− DP . (31)

Next we prove the second inequality
√
Eρ[R

ℓPJS

P (h)]− DP ≤ Eρ[
√
RℓPJS

P (h)]. By Eq. (30), it suffices to show√
EP [Eρg(h∗)]2 ≤ Eρ[

√
RℓPJS

P (h)]. This is equivalent to show

√
EP [Eρg(h∗)]2 ≤ Eρ[

√
EPg2(h∗)] ⇐⇒

(∫
AP

[

∫
Aρ

g(h∗)dρ]2dP

) 1
2

≤
∫
Aρ

[

∫
AP

g2(h∗)dP]
1
2 dρ, (32)
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which is guaranteed to be true by the Minkowski’s integral inequality (Hardy et al. (1952),Thm.202).

The inequality in Eq. (32) becomes equality if and only if ℓPJS(x, y,h) = g2(h∗)1{x,y∈AP} = ψ(x, y)ϕ(h) for some fixed
measurable functions ψ(·) and ϕ(·) almost everywhere.

When there is a non-zero measured set B ⊆ {AP ∩ Aρ} such that ℓPJS(x1,y,h)
ℓPJS(x2,y,h) is varying, the existence of the non-zero

measured set B would result in a contradiction of the existence of function ψ(·) and ϕ(·).

Assuming such set B, functions ψ(·) and ϕ(·) exist at the same time, then on B, when h1 ̸= h2, x1 ̸= x2,

ℓPJS(x1, y,h1)

ℓPJS(x2, y,h1)
̸= ℓPJS(x1, y,h2)

ℓPJS(x2, y,h2)
⇐⇒ ψ(x1, y)ϕ(h1)

ψ(x2, y)ϕ(h1)
̸= ψ(x1, y)ϕ(h2)

ψ(x2, y)ϕ(h2)
=⇒ ψ(x1, y)

ψ(x2, y)
̸= ψ(x1, y)
ψ(x2, y)

, (33)

which reduces to absurdity. Therefore when such a set B exists, the second inequaility of the theorem is strict.

The necessity condition of DP > 0:
If DP = 0, then ℓPJS(x, y,h) is constant on AP ∩ Aρ, then there are infinitely many solutions for funcitons ψ(·) and ϕ(·)
being exist, thus the second inequality of the theorem would be equality. Therefore if the inequality is strict, DP can not be
0, which proves the necessity condition.

Corollary A.12 (target risk upper bound of the ensembles). Given a fixed source domain P and a target domain Q, for any
measure ρ ∈M+(H) on hypothesis space H,√

RℓPJS

Q (ρ) ≤
√
Eρ[R

ℓPJS

P (h)]− DP + 2
√
2DJS(P∥Q). (34)

Proof. The proof is straightforward by combining Thm. A.6 and Thm. A.9.√
RℓPJS

Q (ρ) ≤
√
RℓPJS

P (h) + 2
√
2DJS(P∥Q) ≤

√
Eρ[R

ℓPJS

P (h)]− DP + 2
√

2DJS(P∥Q) (35)

Corollary A.13 (joint risk upper bound of the ensembles). Given a fixed source domain P and a target domain Q, for any
measure ρ ∈M+(H) on hypothesis space H,√
RℓPJS

P (ρ) +
√
RℓPJS

Q (ρ) ≤
√
Eρ[R

ℓPJS

P (h)]− DP +
√
Eρ[R

ℓPJS

Q (h)]− DQ ≤ Eρ[

√
RℓPJS

P (h)] + Eρ[
√
RℓPJS

Q (h)].
(36)

Proof. It’s easy to check the requirement of applying Thm. A.9 is satisfied by both source domain P and the target domain
Q. The proof is straightforward by invoking Thm. A.9 twice w.r.t. P and Q.

√
RℓPJS

P (ρ) ≤
√

Eρ[R
ℓPJS

P (h)]− DP ≤ Eρ[

√
RℓPJS

P (h)]. (37)√
RℓPJS

Q (ρ) ≤
√

Eρ[R
ℓPJS

Q (h)]− DQ ≤ Eρ[
√
RℓPJS

Q (h)]. (38)

Therefore we have√
RℓPJS

P (ρ) +
√
RℓPJS

Q (ρ) ≤
√
Eρ[R

ℓPJS

P (h)]− DP +
√
Eρ[R

ℓPJS

Q (h)]− DQ ≤ Eρ[

√
RℓPJS

P (h)] + Eρ[
√
RℓPJS

Q (h)].
(39)

Theorem A.14 (PAC-Bayesian generalization upper bound). For a fixed source domain P and a fixed target domain Q, let
H be a hypothesis space as stated in the Thm. A.6. Suppose that π is a prior over H, which is independent of draws of source
realizations Dn = {(xi, yi)}ni=1

i.i.d.∼ Pn. Then for any c > 0, ρ ∈M+(H), and any δ ∈ (0, 1), with probability over 1− δ

√
RℓPJS

Q (ρ) ≤ 2
√
2DJS(P∥Q) +

√
Eρ[R̂

ℓPJS

P (h)]− D̂P +
2DKL(ρ∥π) + log 1

δ +ΨℓPJS

P,π (c, n)

cn
, (40)

where Ψℓ
P,π(c, n) = logEπ2EPn [ecnEP

√
ℓ(h′)EP

√
ℓ(h)−ÊP

√
ℓ(h′)ÊP

√
ℓ(h)] is constant w.r.t. ρ for fixed c, n, π, ℓ, and δ.
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Proof. The main part of the proof of this theorem employs the same technique as in the proof of Thm.3 in Masegosa
(2020), which relies on a lemma (Thm.3 in Germain et al. (2016a)) derived from the acknowledged Donsker and Varadhan’s
variational formula (Donsker & Varadhan, 1983).

Lemma A.15 (Alquier et al. (2016),Germain et al. (2016a)). Given a distribution P ∈M+(X× Y), a hypothesis space H,
a loss function ℓ : X× Y×H −→ R, a prior distribution π ∈M+(H). Given a δ ∈ (0, 1) and a real number ζ > 0, with
probability at least 1− δ over the choice Pn, for any ρ ∈M+(H),

Eh∼ρ[L
ℓ
P(h)] ≤ Eh∼ρ[L̂

ℓ
P(h)] +

1

ζ
[DKL(ρ∥π) + log

1

δ
+ΨP,π(ζ, n)], (41)

where ΨP,π(ζ, n) = logEh∼πEPn [eζ(L
ℓ
P(h)−L̂ℓ

P(h))].

We skip the proof for this lemma, please refer to the Thm. 3 in Germain et al. (2016a) for the detailed proof.
Recalling the Eq. 30 in the proof of Thm. A.9, where we got Eρ[R

ℓPJS

P (h)]− DP = EP [Eρg(h
∗)]2, then

Eρ[R
ℓPJS

P (h)]− DP = E(x,y)∼P [Eh∼ρ

√
ℓPJS(x, y,h)]2

= E(x,y)∼P [Eh∼ρ

√
ℓPJS(x, y,h)Eh∼ρ

√
ℓPJS(x, y,h)]

= E(x,y)∼P [Eh′∼ρ

√
ℓPJS(x, y,h′)Eh∼ρ

√
ℓPJS(x, y,h)]

= E(h′,h)∼ρ2 [E(x,y)∼P

√
ℓPJS(x, y,h′)E(x,y)∼P

√
ℓPJS(x, y,h)]

(42)

Let LℓPJS

P (h′,h) = E(x,y)∼P
√
ℓPJS(x, y,h′)E(x,y)∼P

√
ℓPJS(x, y,h). Regarding Lℓ

P(·) in Lem. A.15 as LℓPJS

P (h′,h),
and invoking the fact DKL(ρ

2∥π2) = 2DKL(ρ∥π), from Lem. A.15, there is

Eρ[R
ℓPJS

P (h)]− DP = E(h′,h)∼ρ2 [LℓPJS

P (h′,h)]

≤ E(h′,h)∼ρ2 [LℓPJS

P (h′,h)] +
1

cn
[2DKL(ρ∥π) + log

1

δ
+ΨP,π(c, n)]

= Eρ[R̂
ℓPJS

P (h)]− D̂P +
1

cn
[2DKL(ρ∥π) + log

1

δ
+ΨP,π(c, n)],

(43)

where we take ζ = cn. Note that Eρ[R
ℓPJS

P (h)]− DP = E(x,y)∼P [Eh∼ρ

√
ℓPJS(x, y,h)]2 > 0, thus we have√

Eρ[R
ℓPJS

P (h)]− DP ≤
√
Eρ[R̂

ℓPJS

P (h)]− D̂P +
1

cn
[2DKL(ρ∥π) + log

1

δ
+ΨP,π(c, n)]. (44)

Combining Cor. A.12 and Eq. (44) completes the proof,√
RℓPJS

Q (ρ) ≤
√
RℓPJS

P (h) + 2
√
2DJS(P∥Q) ≤

√
Eρ[R

ℓPJS

P (h)]− DP + 2
√

2DJS(P∥Q)

≤
√

Eρ[R̂
ℓPJS

P (h)]− D̂P +
1

cn
[2DKL(ρ∥π) + log

1

δ
+ΨP,π(c, n)] + 2

√
2DJS(P∥Q).

(45)
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B. Experimental details.
B.1. Baseline details

This appendix provides a detailed description of the 14 baseline methods used for benchmark comparisons.

• Empirical Risk Minimization (ERM, (Vapnik, 1999)) aggregates the data from all source domains together, and
minimizes the cross entropy loss for classification.

• Invariant Risk Minimization (IRM, (Arjovsky et al., 2019)) learns a feature mapping such that the optimal linear
classifier on top of that representation matches across source domains.

• Group Distributionally Robust Optimization (DRO, (Sagawa et al., 2020)) performs ERM while increasing the
importance of domains with larger error by re-weighting minibatches.

• Inter-domain Mixup (Mixup, (Wang et al., 2020b)) employs mixup (Zhang et al., 2018) technique across multiple
domains and performs ERM on the augmented heterogeneous mixup distribution.

• Meta-Learning for Domain Generalization (MLDG, (Li et al., 2018a)) divides the source domains into meta-train-
domains and meta-test-domain to simulate domain shift, and regulate the model trained on meta-train-domains to
perform well on meta-test-domain.

• Deep CORrelation ALignment (CORAL, (Sun & Saenko, 2016)) matches the first-order (mean) and the second-order
(covariance) statistics of feature distributions across source domains.

• Maximum Mean Discrepancy (MMD, (Li et al., 2018c)) achieves distribution alignment in the latent space of an
autoencoder by using adversarial learning and the maximum mean discrepancy criteria.

• Domain Adversarial Neural Network (DANN, (Ganin et al., 2016)) employs a domain discriminator to align feature
distributions across domains using adversarial learning.

• Class-conditional Domain Adversarial Neural Network (CDANN, (Li et al., 2018d)) matches conditional feature
distributions across domains, enabling alignment of multimodal distributions for all class labels.

• Marginal Transfer Learning (MTL, (Blanchard et al., 2021)) estimates a kernel mean embedding per domain, passed
as a second argument to the classifier. Then, these embeddings are estimated using single test examples at test time.

• Style Agnostic Networks (SagNet, (Nam et al., 2021)) disentangle style encodings from class categories to prevent
style biased predictions and focus more on the contents.

• Adaptive Risk Minimization (ARM, (Zhang et al., 2020) is an extension of MLDG and introduces an additional
module to compute domain embeddings, which are used by the prediction module to infer information about the input
distribution.

• Variance Risk Extrapolation (VREx, (Krueger et al., 2021)) is a form of robust optimization over a perturbation set of
extrapolated domains and minimizes the variance of training risks across domains.

• Representation Self-Challenging (RSC, (Huang et al., 2020)) iteratively discards the dominant features activated on
the training data, and forces the CNN to activate remaining features that correlates with labels.

• Meta-Domain Specific-Domain Invariant (mDSDI, (Bui et al., 2021)) disentangles features in the latent space
while jointly learning the domain-invariant and domain-specific features in a unified meta-learning framework. The
domain-specific information is utilized to enhance predictions.

• Stochastic Weight Averaging Densely (SWAD, (Cha et al., 2021)) finds flatter minima and suffers less from overfitting
by modifying the vanilla SWA with a dense and overfit-aware sampling strategy.
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B.2. Implementation details.

Training and Evaluation protocol. We follow the training and evaluation protocol described in (Gulrajani & Lopez-Paz,
2021) and our implementation is built upon the released SWAD10 library. For training, we choose a domain as the target
domain and use the remaining domains as source domains. We split each source domain into 8:2 training/validation splits
and integrate the validation subsets of each source domain to create an overall validation set, which is used for validation
and model selection.

Model Architectures. We use the ResNet-50 pre-trained on ImageNet as the backbone network and all the BN layers are
frozen during training. We replace the last FC layer of the ResNet-50 with a 2-layer classifier with 1024 hidden units and
employ the dropout regularization on the 1024-dimensional output (except for DomainNet, 2048 hidden units are used since
its label set is much larger).

Hyperparameters. We use the hyperparameter search protocol in (Gulrajani & Lopez-Paz, 2021) with a slight modification
following (Cha et al., 2021): we do not search independently for each test domain, use hyperparameters searched in the
first random data split to the other splits and search algorithm-specific hyperparameters independently from the universal
ones. We use a smaller search space (shown in Table 1) for computational efficiency. Batch size and ResNet dropout rate
are fixed as 32 and 0. All the SWAD-specific hyperparameters are not searched and the default values are used. For DNA
hyperparameters, we search the FC dropout rate and η. Here, the FC dropout rate is searched in [0.1, 0.3, 0.5] depending on
datasets, hence 0.1 is used in DomainNet and 0.5 is used in the other datasets. η is searched in [0.01, 0.1, 1.0] on PACS and
the searched value 0.1 is used for all experiments. The total number of training iterations is 20000 for DomainNet and 5000
for the other datasets, which are enough numbers for our method to be converged. The evaluation frequency is: 500 for
DomainNet, 50 for VLCS and 100 for the others.

Table 1. Hyperparameter search space comparisons. “Uni” and list denote uniform distribution and random choice, respectively.

Hyper-Parameter Default Value DomainBed Ours

Batch size 32 2Uni(3,5.5) 32
Learning rate 5e-5 10Uni(−5,−3.5) [3e-5, 4e-5, 5e-5]
ResNet dropout 0 [0, 0.1, 0.5] 0
Weight decay 0 10Uni(−6,−2) [1e-6,1e-4]

B.3. Experimental environments.

Hardware environments. We perform our experiments on three machines: two with 8 Nvidia RTX3090s and Xeon
E5-2680, and one with 4 Nvidia V100 and Xeon Platinum 8163.

Software environments. Our experiments are conducted with Python 3.7.9, and the following packages are used: PyTorch
1.7.1, torchvision 0.8.2 and NumPy 1.19.4.

10https://github.com/khanrc/swad

https://github.com/khanrc/swad
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C. Full results.
This section provides full results of Table 1 for each domain of each dataset.

C.1. PACS

Table 2. Out-of-domain accuracies(%) on PACS.

Method A C P S Avg

ERM (Vapnik, 1999) 84.7 ± 0.4 80.8 ± 0.6 97.2 ± 0.3 79.3 ± 1.0 85.5
IRM (Arjovsky et al., 2019) 84.8 ± 1.3 76.4 ± 1.1 96.7 ± 0.6 76.1 ± 1.0 83.5
DRO (Sagawa et al., 2020) 83.5 ± 0.9 79.1 ± 0.6 96.7 ± 0.3 78.3 ± 2.0 84.4
Mixup (Wang et al., 2020b) 86.1 ± 0.5 78.9 ± 0.8 97.6 ± 0.1 75.8 ± 1.8 84.6
MLDG (Li et al., 2018a) 85.5 ± 1.4 80.1 ± 1.7 97.4 ± 0.3 76.6 ± 1.1 84.9
CORAL (Sun & Saenko, 2016) 88.3 ± 0.2 80.0 ± 0.5 97.5 ± 0.3 78.8 ± 1.3 86.2
MMD (Li et al., 2018c) 86.1 ± 1.4 79.4 ± 0.9 96.6 ± 0.2 76.5 ± 0.5 84.6
DANN (Ganin et al., 2016) 86.4 ± 0.8 77.4 ± 0.8 97.3 ± 0.4 73.5 ± 2.3 83.6
CDANN (Li et al., 2018d) 84.6 ± 1.8 75.5 ± 0.9 96.8 ± 0.3 73.5 ± 0.6 82.6
MTL (Blanchard et al., 2021) 87.5 ± 0.8 77.1 ± 0.5 96.4 ± 0.8 77.3 ± 1.8 84.6
SagNet (Nam et al., 2021) 87.4 ± 1.0 80.7 ± 0.6 97.1 ± 0.1 80.0 ± 0.4 86.3
ARM (Zhang et al., 2020) 86.8 ± 0.6 76.8 ± 0.5 97.4 ± 0.3 79.3 ± 1.2 85.1
VREx (Krueger et al., 2021) 86.0 ± 1.6 79.1 ± 0.6 96.9 ± 0.5 77.7 ± 1.7 84.9
RSC (Huang et al., 2020) 85.4 ± 0.8 79.7 ± 1.8 97.6 ± 0.3 78.2 ± 1.2 85.2
mDSDI (Bui et al., 2021) 87.7 ± 0.4 80.4 ± 0.7 98.1 ± 0.3 78.4 ± 1.2 86.2
SWAD (Cha et al., 2021) 89.3 ± 0.2 83.4 ± 0.6 97.3 ± 0.3 82.5 ± 0.5 88.1
DNA (ours) 89.8 ± 0.2 83.4 ± 0.4 97.7 ± 0.1 82.6 ± 0.2 88.4

C.2. VLCS

Table 3. Out-of-domain accuracies(%) on VLCS.

Method C L S V Avg

ERM (Vapnik, 1999) 97.7 ± 0.4 64.3 ± 0.9 73.4 ± 0.5 74.6 ± 1.3 77.5
IRM (Arjovsky et al., 2019) 98.6 ± 0.1 64.9 ± 0.9 73.4 ± 0.6 77.3 ± 0.9 78.5
DRO (Sagawa et al., 2020) 97.3 ± 0.3 63.4 ± 0.9 69.5 ± 0.8 76.7 ± 0.7 76.7
Mixup (Wang et al., 2020b) 98.3 ± 0.6 64.8 ± 1.0 72.1 ± 0.5 74.3 ± 0.8 77.4
MLDG (Li et al., 2018a) 97.4 ± 0.2 65.2 ± 0.7 71.0 ± 1.4 75.3 ± 1.0 77.2
CORAL (Sun & Saenko, 2016) 98.3 ± 0.1 66.1 ± 1.2 73.4 ± 0.3 77.5 ± 1.2 78.8
MMD (Li et al., 2018c) 97.7 ± 0.1 64.0 ± 1.1 72.8 ± 0.2 75.3 ± 3.3 77.5
DANN (Ganin et al., 2016) 99.0 ± 0.3 65.1 ± 1.4 73.1 ± 0.3 77.2 ± 0.6 78.6
CDANN (Li et al., 2018d) 97.1 ± 0.3 65.1 ± 1.2 70.7 ± 0.8 77.1 ± 1.5 77.5
MTL (Blanchard et al., 2021) 97.8 ± 0.4 64.3 ± 0.3 71.5 ± 0.7 75.3 ± 1.7 77.2
SagNet (Nam et al., 2021) 97.9 ± 0.4 64.5 ± 0.5 71.4 ± 1.3 77.5 ± 0.5 77.8
ARM (Zhang et al., 2020) 98.7 ± 0.2 63.6 ± 0.7 71.3 ± 1.2 76.7 ± 0.6 77.6
VREx (Krueger et al., 2021) 98.4 ± 0.3 64.4 ± 1.4 74.1 ± 0.4 76.2 ± 1.3 78.3
RSC (Huang et al., 2020) 97.9 ± 0.1 62.5 ± 0.7 72.3 ± 1.2 75.6 ± 0.8 77.1
mDSDI (Bui et al., 2021) 97.6 ± 0.1 66.4 ± 0.4 74.0 ± 0.6 77.8 ± 0.7 79.0
SWAD (Cha et al., 2021) 98.8 ± 0.1 63.3 ± 0.3 75.3 ± 0.5 79.2 ± 0.6 79.1
DNA (ours) 98.8 ± 0.1 63.6 ± 0.2 74.1 ± 0.1 79.5 ± 0.4 79.0
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C.3. OfficeHome

Table 4. Out-of-domain accuracies(%) on OfficeHome.

Method A C P R Avg

ERM (Vapnik, 1999) 61.3 ± 0.7 52.4 ± 0.3 75.8 ± 0.1 76.6 ± 0.3 66.5
IRM (Arjovsky et al., 2019) 58.9 ± 2.3 52.2 ± 1.6 72.1 ± 2.9 74.0 ± 2.5 64.3
DRO (Sagawa et al., 2020) 60.4 ± 0.7 52.7 ± 1.0 75.0 ± 0.7 76.0 ± 0.7 66.0
Mixup (Wang et al., 2020b) 62.4 ± 0.8 54.8 ± 0.6 76.9 ± 0.3 78.3 ± 0.2 68.1
MLDG (Li et al., 2018a) 61.5 ± 0.9 53.2 ± 0.6 75.0 ± 1.2 77.5 ± 0.4 66.8
CORAL (Sun & Saenko, 2016) 65.3 ± 0.4 54.4 ± 0.5 76.5 ± 0.1 78.4 ± 0.5 68.7
MMD (Li et al., 2018c) 60.4 ± 0.2 53.3 ± 0.3 74.3 ± 0.1 77.4 ± 0.6 66.3
DANN (Ganin et al., 2016) 59.9 ± 1.3 53.0 ± 0.3 73.6 ± 0.7 76.9 ± 0.5 65.9
CDANN (Li et al., 2018d) 61.5 ± 1.4 50.4 ± 2.4 74.4 ± 0.9 76.6 ± 0.8 65.8
MTL (Blanchard et al., 2021) 61.5 ± 0.7 52.4 ± 0.6 74.9 ± 0.4 76.8 ± 0.4 66.4
SagNet (Nam et al., 2021) 63.4 ± 0.2 54.8 ± 0.4 75.8 ± 0.4 78.3 ± 0.3 68.1
ARM (Zhang et al., 2020) 58.9 ± 0.8 51.0 ± 0.5 74.1 ± 0.1 75.2 ± 0.3 64.8
VREx (Krueger et al., 2021) 60.7 ± 0.9 53.0 ± 0.9 75.3 ± 0.1 76.6 ± 0.5 66.4
RSC (Huang et al., 2020) 60.7 ± 1.4 51.4 ± 0.3 74.8 ± 1.1 75.1 ± 1.3 65.5
mDSDI (Bui et al., 2021) 68.1 ± 0.3 52.1 ± 0.4 76.0 ± 0.2 80.4 ± 0.2 69.2
SWAD (Cha et al., 2021) 66.1 ± 0.4 57.7 ± 0.4 78.4 ± 0.1 80.2 ± 0.2 70.6
DNA (ours) 67.7 ± 0.2 57.7 ± 0.3 78.9 ± 0.2 80.5 ± 0.2 71.2

C.4. TerraIncognita

Table 5. Out-of-domain accuracies(%) on TerraIncognita.

Method L100 L38 L43 L46 Avg

ERM (Vapnik, 1999) 49.8 ± 4.4 42.1 ± 1.4 56.9 ± 1.8 35.7 ± 3.9 46.1
IRM (Arjovsky et al., 2019) 54.6 ± 1.3 39.8 ± 1.9 56.2 ± 1.8 39.6 ± 0.8 47.6
DRO (Sagawa et al., 2020) 41.2 ± 0.7 38.6 ± 2.1 56.7 ± 0.9 36.4 ± 2.1 43.2
Mixup (Wang et al., 2020b) 59.6 ± 2.0 42.2 ± 1.4 55.9 ± 0.8 33.9 ± 1.4 47.9
MLDG (Li et al., 2018a) 54.2 ± 3.0 44.3 ± 1.1 55.6 ± 0.3 36.9 ± 2.2 47.7
CORAL (Sun & Saenko, 2016) 51.6 ± 2.4 42.2 ± 1.0 57.0 ± 1.0 39.8 ± 2.9 47.6
MMD (Li et al., 2018c) 41.9 ± 3.0 34.8 ± 1.0 57.0 ± 1.9 35.2 ± 1.8 42.2
DANN (Ganin et al., 2016) 51.1 ± 3.5 40.6 ± 0.6 57.4 ± 0.5 37.7 ± 1.8 46.7
CDANN (Li et al., 2018d) 47.0 ± 1.9 41.3 ± 4.8 54.9 ± 1.7 39.8 ± 2.3 45.8
MTL (Blanchard et al., 2021) 49.3 ± 1.2 39.6 ± 6.3 55.6 ± 1.1 37.8 ± 0.8 45.6
SagNet (Nam et al., 2021) 53.0 ± 2.9 43.0 ± 2.5 57.9 ± 0.6 40.4 ± 1.3 48.6
ARM (Zhang et al., 2020) 49.3 ± 0.7 38.3 ± 2.4 55.8 ± 0.8 38.7 ± 1.3 45.5
VREx (Krueger et al., 2021) 48.2 ± 4.3 41.7 ± 1.3 56.8 ± 0.8 38.7 ± 3.1 46.4
RSC (Huang et al., 2020) 50.2 ± 2.2 39.2 ± 1.4 56.3 ± 1.4 40.8 ± 0.6 46.6
mDSDI (Bui et al., 2021) 53.2 ± 3.0 43.3 ± 1.0 56.7 ± 0.5 39.2 ± 1.3 48.1
SWAD (Cha et al., 2021) 55.4 ± 0.0 44.9 ± 1.1 59.7 ± 0.4 39.9 ± 0.2 50.0
DNA (ours) 56.8 ± 1.2 47.0 ± 0.9 61.0 ± 0.5 44.0 ± 1.0 52.2



DNA: Domain Generalization with Diversified Neural Averaging

C.5. DomainNet

Table 6. Out-of-domain accuracies(%) on DomainNet.

Method C I P Q R S Avg

ERM (Vapnik, 1999) 58.1 ± 0.3 18.8 ± 0.3 46.7 ± 0.3 12.2 ± 0.4 59.6 ± 0.1 49.8 ± 0.4 40.9
IRM (Arjovsky et al., 2019) 48.5 ± 2.8 15.0 ± 1.5 38.3 ± 4.3 10.9 ± 0.5 48.2 ± 5.2 42.3 ± 3.1 33.9
DRO (Sagawa et al., 2020) 47.2 ± 0.5 17.5 ± 0.4 33.8 ± 0.5 9.3 ± 0.3 51.6 ± 0.4 40.1 ± 0.6 33.3
Mixup (Wang et al., 2020b) 55.7 ± 0.3 18.5 ± 0.5 44.3 ± 0.5 12.5 ± 0.4 55.8 ± 0.3 48.2 ± 0.5 39.2
MLDG (Li et al., 2018a) 59.1 ± 0.2 19.1 ± 0.3 45.8 ± 0.7 13.4 ± 0.3 59.6 ± 0.2 50.2 ± 0.4 41.2
CORAL (Sun & Saenko, 2016) 59.2 ± 0.1 19.7 ± 0.2 46.6 ± 0.3 13.4 ± 0.4 59.8 ± 0.2 50.1 ± 0.6 41.5
MMD (Li et al., 2018c) 32.1 ± 13.3 11.0 ± 4.6 26.8 ± 11.3 8.7 ± 2.1 32.7 ± 13.8 28.9 ± 11.9 23.4
DANN (Ganin et al., 2016) 53.1 ± 0.2 18.3 ± 0.1 44.2 ± 0.7 11.8 ± 0.1 55.5 ± 0.4 46.8 ± 0.6 38.3
CDANN (Li et al., 2018d) 54.6 ± 0.4 17.3 ± 0.1 43.7 ± 0.9 12.1 ± 0.7 56.2 ± 0.4 45.9 ± 0.5 38.3
MTL (Blanchard et al., 2021) 57.9 ± 0.5 18.5 ± 0.4 46.0 ± 0.1 12.5 ± 0.1 59.5 ± 0.3 49.2 ± 0.1 40.6
SagNet (Nam et al., 2021) 57.7 ± 0.3 19.0 ± 0.2 45.3 ± 0.3 12.7 ± 0.5 58.1 ± 0.5 48.8 ± 0.2 40.3
ARM (Zhang et al., 2020) 49.7 ± 0.3 16.3 ± 0.5 40.9 ± 1.1 9.4 ± 0.1 53.4 ± 0.4 43.5 ± 0.4 35.5
VREx (Krueger et al., 2021) 47.3 ± 3.5 16.0 ± 1.5 35.8 ± 4.6 10.9 ± 0.3 49.6 ± 4.9 42.0 ± 3.0 33.6
RSC (Huang et al., 2020) 55.0 ± 1.2 18.3 ± 0.5 44.4 ± 0.6 12.2 ± 0.2 55.7 ± 0.7 47.8 ± 0.9 38.9
mDSDI (Bui et al., 2021) 62.1 ± 0.3 19.1 ± 0.4 49.4 ± 0.4 12.8 ± 0.7 62.9 ± 0.3 50.4 ± 0.4 42.8
SWAD (Cha et al., 2021) 66.0 ± 0.1 22.4 ± 0.3 53.5 ± 0.1 16.1 ± 0.2 65.8 ± 0.4 55.5 ± 0.3 46.5
DNA (ours) 66.1 ± 0.2 23.0 ± 0.1 54.6 ± 0.1 16.7 ± 0.1 65.8 ± 0.2 56.8 ± 0.1 47.2


