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Abstract
Many machine learning models for online appli-
cations, such as recommender systems, are often
trained on data with cyclical properties. These
data sequentially arrive from a time-varying dis-
tribution that is periodic in time. Existing algo-
rithms either use streaming learning to track a
time-varying set of optimal model parameters,
yielding a dynamic regret that scales linearly in
time; or partition the data of each cycle into multi-
ple segments and train a separate model for each—
a pluralistic approach that is computationally and
storage-wise expensive. In this paper, we have
designed a novel approach to overcome the afore-
mentioned shortcomings. Our method, named
“Fourier learning”, encodes the periodicity into
the model representation using a partial Fourier
sequence, and trains the coefficient functions mod-
eled by neural networks. Particularly, we design a
Fourier multi-layer perceptron (F-MLP) that can
be trained on streaming data with stochastic gra-
dient descent (streaming-SGD), and we derive its
convergence guarantees. We demonstrate Fourier
learning’s better performance with extensive ex-
periments on synthetic and public datasets, as
well as on a large-scale recommender system that
is updated in real-time, and trained with tens of
millions of samples per day.

1. Introduction
Cyclical data are an important component in a wide range of
machine learning applications. In large-scale recommender
systems such as YouTube and TikTok, users usually log into
the platform during a relatively fixed time window each day
(e.g. before bed or after work), resulting in a strong cycli-
cal pattern in the system’s revenue. In federated learning
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Figure 1. Top: Normalized revenue of a recommender system over
3 days. Bottom: Normalized trend of the word “dinner” over 6
days (data collected from https://trends.google.com).

(Kairouz et al., 2019), the training data are cyclical in nature
as the availability of each device is usually fixed throughout
the day (Eichner et al., 2019). In financial markets, asset
prices rise and fall periodically on a yearly basis, a phe-
nomenon commonly known to the investors as “seasonality”
(Gultekin & Gultekin, 1983). In search engines, the num-
ber of hits for certain keywords can also display periodic
patterns (Tracà et al., 2021). Figure 1 depicts a few of these
applications. How to exploit the periodicity within the train-
ing data to learn a better prediction model is an important
issue for these applications.

Problem setup. Given samples denoted by (x, y, t), with
x ∈ X ⊂ Rd being the feature, y ∈ Y ⊆ R being the label,
and t ∈ R being the time at which the sample is generated,
we wish to maintain a model f that can consistently and
accurately predict y with x at any given t. In this paper, we
focus on the scenario where the model is updated under an
online learning (Hazan, 2019) or continual learning (Lopez-
Paz & Ranzato, 2017) framework, while the data arrive in a
streaming and cyclical fashion. More specifically, between
two consecutive updates of the model at t and t + δ, only
samples arrived within the interval [t, t + δ) is available
for training. In addition, if (x, y) is generated from a time-
dependent distribution Dt, then there exists a T such that
Dt = Dt−T for all t. Assuming that T is given, and that, for

https://trends.google.com
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any (x, y, t), the triplet (x, y,mod(t, T )) is sampled from a
joint distribution p(mod(t, T ))Dmod(t,T )(x, y),1 our goal is
to solve the following set of optimization problems:

f∗t (x) ∈ argmin
f∈L2(X )

Ex,y∼Dt
[ℓ(f(x), y)] ∀t ∈ R. (1)

Here, we assume that X and Y are convex and compact sets,
and ℓ is strongly convex with respect to f for all y ∈ Y .
The optimization is conducted within L2(X ) = {f : X →
R|
∫
X f

2(x)dx < ∞}, a function space that contains all
finite-energy functions defined over X .

Motivation. The periodicity of the data distribution plays
an important role in (1). Since Dt = Dt+nT for all n ∈ N,
a solution f∗t (x) at t is also guaranteed to be a solution at
t + nT . This immediately implies that the model learned
at time t may offer useful information to improve the pre-
diction accuracy at t + nT . This intuition motivates the
design of a learning algorithm that can effectively exploit
this information offered by the cyclical nature of the data.

Surprisingly, existing literature in optimization and machine
learning offers little insight on how to exploit periodicity
within the data distribution to solve (1) efficiently. This
is particularly pronounced under a big-data setting, where
industrial practices implement algorithms that simply un-
derrate the periodicity within the training data. Below, we
summarize existing approaches to the best of our knowledge
from both academia and industry.

1.1. Related Works

Learning with a time feature. A straight-forward design
to encode periodicity into the model structure is to include t
as a model input and learn a model f(x, t). Unfortunately,
this approach is not guaranteed to learn a periodic function
out-of-the-box, especially when f(x, t) is approximated
by a neural network (Ziyin et al., 2020). When f(x, t) is
assumed to belong to a non-parametric family, such as a
reproducing kernel Hilbert space (RKHS) with a periodic
kernel (Fukumizu et al., 2008; Wahba, 1990), the periodicity
is usually encoded across all input dimensions, whereas in
(1), f(x, t) may be aperiodic in x.

An enhanced version of the above approach is to focus on a
single period of f(x, t) and learn a model f(x,mod(t, T ))
instead. Although the pre-processing of t into mod(t, T )
guarantees periodicity during the inference stage, it still of-
ten requires laborious feature engineering, especially when
x is high-dimensional and f(x, t) has a complicated design,
e.g., (Cheng et al., 2016).

The pluralistic approach. An alternative approach to (1)
is to partition the time axis, and learn a model for every

1For convenience, we denote p(mod(t, T )) and Dmod(t,T ) as
p(t) and Dt interchangeably in the rest of the paper.

time interval (Eichner et al., 2019). When Dt is piece-
wise constant in time, e.g., Dt = D01[0 ≤ mod(t, T ) <
T/2] +D11[T/2 ≤ mod(t, T ) < T ], this approach allows
each separate model to converge to its optimal as t/T → ∞.
On the other hand, however, the pluralistic approach suffers
from an approximation error when the partition is crude
(Eichner et al., 2019). More importantly, it is hard to scale
as it requires storing multiple models. Although computa-
tionally efficient methods exist, e.g., partially sharing the
network structure between the models, they typically com-
promise the theoretical guarantees as a trade-off.

Online learning. A standard industrial practice for training
large-scale systems using sequential data is to follow the
online learning protocol (Hazan, 2019). The performance of
the learning algorithm is typically evaluated using the con-
cept of dynamic regret (Mokhtari et al., 2016), which mea-
sures the model’s capability to consistently and accurately
predict the labels of the latest batch of arriving data. Crudely
speaking, when t takes a set of discretized values, the dy-
namic regret measures

∑
t EDt

[ℓ(ft(x), y)− ℓ(f∗t (x), y)],
the cumulative sum of the differences between the loss un-
der the learned model and the optimal loss under f∗t (x)
defined in (1). Although a plethora of optimization algo-
rithms have been proposed to improve the dynamic regret
analysis (Zhang et al., 2018b; 2016), none of them shed
light on how to exploit periodicity within the training data.
What is more, when Dt does not converge to a fixed distri-
bution as t diverges, the dynamic regret scales linearly in
t, implying that the gap between the learned model and the
desired optimal does not vanish even when we know that
the data is cyclical.

To summarize, learning with cyclical data remains largely
an open problem for large-scale machine learning models
that are trained with an online learning setup.

1.2. Our Contributions

In this paper, we address the challenge of learning with
cyclical data by proposing a novel learning framework called
“Fourier learning”. Simply put, Fourier learning reduces (1)
into a single optimization problem in a function space that
naturally contains time-periodic functions, and learns the
coefficients of a partial Fourier expansion for these functions
using streaming-SGD. Theoretically, we support the Fourier
learning framework from two different aspects: (i) from a
modeling perspective, we derive Fourier learning naturally
from a functional optimization problem that is equivalent to
problem (1) under a strongly convex and a realizable setting;
(ii) in terms of optimization, we show that the coefficient
functions updated with streaming-SGD provably converge
in the frequency domain. Practically, for large-scale learning
systems with a neural network architecture, we introduce F-
MLP, a deep learning component that can be incrementally
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added to a wide range of existing model designs to increase
capacity. Last but not least, we provide extensive numerical
evidence on synthetic, public, and real-time production data
of a recommender system to demonstrate the advantage of
Fourier learning over the prior state-of-the-arts.

2. Learning Cyclical Data in Hilbert Spaces
A Hilbert space formulation. In this section, we lay the
theoretical foundations for Fourier learning by deriving it as
a natural solution to a function optimization problem. We
start by reformulating the set of learning problems in (1) as
one single learning problem in a Hilbert space. This allows
us to learn a unified model that takes both x and t as inputs.
Our learning objective takes the form of (2) below, where
the expectation can be replaced by the empirical mean over
datasets in practice:

min
f∈H

L(f) := Ex,y,t∼Dt(x,y)p(t)

[
ℓ(f(x, t), y)

]
. (2)

The unified objective (2) is related to (1) via the following
lemma, the proof of which is given in Appendix A.

Lemma 1. For f∗t (x) in (1), let f0(x, t) = f∗t (x), ∀t ∈ R.
If f0(x, t) ∈ H, then f0(x, t) minimizes L(f) in H.

Lemma 1 implies that, if (2) has a unique minimizer, and
if f∗t (x) belongs to H when treated as a function of both x
and t, then the minimizer of (2) leads to the solution of (1).
Hence, under a realizable setting, (2) serves as a proxy to
solving (1). In the rest of the paper, we adopt this realizable
learning setup and focus on solving (1) via (2).

Another critical element in (2) is the design of H. Here, we
focus particularly on functions that are continuous, periodic
in time, and have finite energy in a single period. In addition,
we require that the functions in H degenerate to L2(X ) as
specified in (1) for every fixed t. We now introduce two
important elements required for designing such an H.

Functions on circles. Defining functions on circles is a
common way to characterize periodic functions. These
functions take the angular information of a point on a circle
as input, and naturally have a period that is proportional to
the circle’s circumference. In our problem, we further define
a Hilbert space structure over these functions by viewing a
circle as a line segment with its end-points glued together: 2

L2(S
T ) =

{
f : R → R

∣∣∣∣ ∫ T

0

|f(t)|2dt <∞

and f(t+ T ) = f(t) ∀t ∈ R
}
. (3)

2More strictly speaking, ST = R/TZ is a quotient space,
and therefore could be treated more rigorously with group theory
(Rudin, 2017).

As it turns out, if we define ⟨f, g⟩ def
=
∫ T

0
f(t)g(t)dt, then

(L2(S
T ), ⟨·, ·⟩) forms a Hilbert space.3 This Hilbert space

meets our needs in the special case when there is no input
feature to the model, i.e., when f(x, t) depends on t only.

Tensor product between Hilbert spaces. To further aug-
ment L2(S

T ) into a Hilbert space that contains functions
dependent on both x and t, we turn to the concept of tensor
product between Hilbert spaces, which is a direct metric
space extension to the concept of Kronecker product be-
tween vectors in Euclidean spaces. Specifically, given two
Hilbert spaces denoted by (H1, ⟨·, ·⟩1) and (H2, ⟨·, ·⟩2), re-
spectively, the tensor product of H1 and H2 is a Hilbert
space (H ≜ H1 ⊗ H2, ⟨·, ·⟩) coupled by a bi-linear map-
ping ϕ : H1 × H2 → H. Together, H and ϕ must
satisfy the following properties. (i) The set of vectors
ϕ(u1, u2) with u1 ∈ H1 and u2 ∈ H2 must form a to-
tal subset of H. That is, H = Span{ϕ(u1, u2)|u1 ∈
H1, u2 ∈ H2}. (ii) The inner product of H, ⟨·, ·⟩, must
satisfy ⟨ϕ(u1, u2), ϕ(v1, v2)⟩ = ⟨u1, v1⟩1⟨u2, v2⟩2 for any
u1, v1 ∈ H1 and u2, v2 ∈ H2. If we adopt two orthonor-
mal sets of basis functions, {e1i}dim(H1)

i=1 and {e2j}dim(H2)
j=1 ,

for H1 and H2, respectively, these aforementioned proper-
ties would allow us to expand any element ϕ(u1, u2) ∈ H
into ϕ(u1, u2) =

∑dim(H1)
i=1

∑dim(H2)
j=1 u1iu2jϕ(e1i, e2j),

where u1i = ⟨u1, e1i⟩1 and u2j = ⟨u2, e2j⟩2, respectively.
Furthermore, when H1 = L2(X ) and H2(Y) = L2(Y),
as is the case for our problem, an isomorphism exists such
that ϕ(e1i, e2j) ∼= e1ie2j . This implies that we can con-
sider H as an isomorphism of H1 ⊗ H2 containing func-
tions that are linear combinations of {e1ie2j}∞i=1,j=1, i.e,
H = L2(X ) ⊗ L2(Y) ∼= L2(X × Y). We refer interested
readers to (Reed, 2012) for more details on this topic.

2.1. A Tensor-Product-Based Design of H
Augmenting L2(S

T ) by its tensor product with L2(X ), a
natural choice of H is to set H ≜ L2(X × ST ), where

L2(X × ST ) =

{
f : X × R → R

∣∣∣∣ ∥f∥L2(X×[0,T ]) <∞

and f(x, t) = f(x, t− T ) ∀t
}
. (4)

This L2(X ×ST ) expands L2(X ) with an additional dimen-
sion in t defined on a circle with a circumference T , which
naturally restricts f(x, t) ∈ H to be a periodic function over
t for any fixed x ∈ X . The following lemma certifies that
H is a Hilbert space and characterizes its basis functions
using the isomorphism between H and L2(X )⊗ L2(S

T ).

Lemma 2. Let H be defined in (4). For f, g ∈ H, let
⟨f, g⟩ def

=
∫
X
∫ T

0
f(x, t)g(x, t)dxdt, then (H, ⟨·, ·⟩) is a

3For the simplicity of notations, we denote the inner product as
⟨·, ·⟩ when its associated Hilbert space is clear by context.
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Hilbert space. Furthermore, there exists an isomorphism
between H and L2(X ) ⊗ L2(S

T ), i.e., if {ϕi}∞i=1 and
{ψj}∞j=1 are two orthonormal sets of bases for L2(X ) and

L2(S
T ), respectively, then {φij}∞i,j=1, where φij(x, t)

def
=

ϕi(x)ψj(t), is an orthonormal set of basis functions for H.

The proof of Lemma 2 is given in Appendix B. This lemma
paves the way to a framework that learns the model f via its
basis expansion in H, which we introduce in the following
section. Meanwhile, we argue that H is general enough for
our learning purpose in the sense that the function f0(x, t)
defined pointwise by solutions in (1) belongs to H under
mild assumptions. We start by introducing necessary defini-
tions and assumptions as below.
Definition 3 (Continuity under total variation). Let Dt(x)
be the conditional distribution of y given x under Dt. We
say Dt(x) is continuous in t under total variation distance
if, for any fixed t and any ϵ > 0, there exists δ > 0 such that

∥Dt′(x)−Dt(x)∥TV ≤ ϵ whenever |t′ − t| ≤ δ.

Assumption 4. Suppose: (i) X and Y are compact and con-
vex sets; (ii) Dt(x) in Definition 3 is continuous under total
variation for all x ∈ X ; (iii) the loss function ℓ(f(x), y) is
σ-strongly-convex in its first argument for all y ∈ Y; (iv)
f(x) in (1) is bounded and maxx∈X ,y∈Y ℓ(f(x), y) ≤ K
for some constant K.

In practice, Assumption 4 can be easily satisfied by a wide
range of machine learning systems. For instance, deep
neural networks (DNNs) typically have bounded outputs
when a clipping on the final output is enforced. The uniform
strong convexity of the loss function also holds for a wide
range of ℓ such as the the mean squared loss. With the
above definition and assumption, we now state the following
lemma.
Lemma 5. Under Assumption 4, f∗t (x) is continuous in t

for any given x ∈ X . In addition, f0(x, t)
def
= f∗t (x) ∈ H.

The proof of Lemma 5 is given in Appendix C. This lemma
implies that, under Assumpiton 4, the optimal solution of
(2), f0(x, t), belongs to H. Combining Lemmas 1 and 5, we
immediately see that the satisfaction of Assumption 4 allows
us to acquire a set of desired solution of (1) by solving (2).

2.2. Fourier Learning with Cyclical Data

We now introduce Fourier learning, a learning framework
that hard-wires the periodicity into the model’s structure via
a partial Fourier expansion and learns the model by learning
its Fourier coefficient functions. From a modeling aspect,
we invoke Lemma 2, and represent f(x, t) ∈ H by

f(x, t) =

∞∑
i=1

∞∑
j=1

ci,jϕi(x)ψj(t) =

∞∑
j=1

cj(x)ψj(t), (5)

where cj(x) ∈ L2(X ) is the sum of ci,jϕi(x) over i. Notic-
ing that a set of bases for L2(S

T ) are the trigonometric
functions with a base frequency 1/T , we immediately have
the following Theorem (the proof is given in Appendix D).

Theorem 6. Any f(x, t) ∈ H can be represented by

f(x, t) =
∞∑

n=0

[
an(x) sin

[
2πnt

T

]
+ bn(x) cos

[
2πnt

T

]]
, (6)

where an(x), bn(x) ∈ L2(X ), and a0(x) ≡ 0.

Theorem 6 provides an explicit way of designing periodic
models and specifies how the time-feature could be ex-
ploited. Note that, it is entirely possible to construct H
with a weighted L2 space defined on circles to guarantee
periodicity, e.g., an RKHS with a periodic kernel. This al-
lows us to deviate from the trigonometric functions and use
potentially other periodic functions to encode periodicity,
e.g., the periodic Gaussian kernel (MacKay et al., 1998).

Our goal now shifts towards learning the coefficient func-
tions in the frequency domain. For tractable learning, we
introduce a cutoff frequency N/T , and learn a truncated
expansion of f(x, t) instead:

fN (x, t) =

N∑
n=0

[
an(x) sin

[
2πnt

T

]
+ bn(x) cos

[
2πnt

T

]]
. (7)

By (Carleson, 1966), the approximation error for all f ∈ H,

EN (f) =

∥∥∥∥f(x, t)− fN (x, t)

∥∥∥∥2
H
, (8)

satisfies limN→∞EN (f) = 0. Hence, with a properly
selected N , we can control the approximation error while
limiting the amount of model parameters at the same time.

The coefficient functions, an(x) and bn(x), can be learned
under a variety of regimes. For example, they can be learned
non-parametrically using function optimization algorithms
(Yang et al., 2019) (see Section 4 for more details). In the
remainder of the paper, we focus primarily on parameteriz-
ing an(x) and bn(x) with neural networks, so as to apply
Fourier learning to large-scale machine learning scenarios.

2.3. Discussions

Fourier analysis in machine learning. Fourier analysis, as
a prominent branch of study in signal processing and digital
communications (Oppenheim et al., 1983), has been widely
adopted in machine learning and the designs of neural net-
works (Gallant & White, 1988; Uteuliyeva et al., 2020).
In many applications, such as computer vision and time
series analysis (Tancik et al., 2020; Zhang et al., 2018a),
Fourier analysis has attracted substantial research interests
as it yields more expressive features (Rahimi et al., 2007),
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Fourier Learning (time domain) Fourier Learning (frequency domain)

Pluralistic (1 model) (2 models)Online Learning

Time

Frequency

Weight
Optimal Optimal

Optimal Optimal

Time

Time

Weight

Weight Weight

Figure 2. Illustration on how online learning, the pluralistic ap-
proach, and Fourier learning learn a sine function.

{an(x)}Nn=1

Element-Wise Product

MLPMLP

Last Hidden Layer

SUMFourier Layer Output
dim = 2N + 1

Final Output
dim = 1

SIN
dim = N

COS
dim = N + 1

× ×

+

Fourier Layer

{bn(x)}Nn=0

Concat

SUM

Figure 3. The design of a Fourier-MLP with a scalar output.

and improves the predictive power of the neural networks
(Tancik et al., 2020; Sitzmann et al., 2020).

Unlike existing works, Fourier learning focuses on an on-
line learning setup, and improves the model performance by
exploiting periodicity within the data distribution. To fur-
ther illustrate this difference, we compare Fourier learning,
online learning, and the pluralistic approach in Example 1.

Example 1. Consider learning f∗t (x) = sin(2πt/T ) given
a stream of samples {ti, sin(2πti/T )}100i=1, with T = 10
and ti = i. Under a mean squared error (MSE) loss, we
sketched the output of online learning, the pluralistic ap-
proach, and Fourier learning in Figure 2. As illustrated,
online learning learns a periodic function with a delay. This
is because at time t, online learning can only learn with the
samples collected prior to t. The pluralistic approach learns
a fixed model for each interval. It suffers from an approx-
imation error when the partition is crude. By comparison,
Fourier learning learns the frequency representation of the
model a1(x), and yields a near-optimal solution in time do-
main. By exploiting periodicity within the data distribution,
Fourier learning mitigates the delay in online learning, and
the approximation error in the pluralistic approach.

In Example 1, Fourier learning is only tasked to learn a
frequency component that is independent of x. In practice,
ft(x) often highly depends on x, and is typically modeled
by neural networks. This motivates us to design a deep
learning solution to incorporate periodicity into the existing
deep learning models, which we focus on in the next section.

3. Fourier Multi-Layer Perceptron (F-MLP)
To integrate Fourier learning in large-scale machine learning
systems, we introduce F-MLP, a neural network structure
that can be incrementally added to existing neural network
designs to better learn a periodic model.

3.1. Architecture of F-MLP

F-MLP is designed by the following intuition: if we view x
as the output of a neural network’s last hidden layer, then
(7) can be viewed as the network’s output layer with an
architecture shown in Figure 3. Specifically, F-MLP first
transforms x into an(x) and bn(x), and then element-wise
multiplies them with basis vectors SIN and COS, yielding
a (2N + 1)-dimension layer. This layer is then added up,
yielding a scalar output.4 Notably, when an(x) = bn(x) =
0 for all n ≥ 1, the final output equals b0(x), which, by
itself, can be interpreted as the original model’s output.
This implies that replacing the original model’s output layer
with an F-MLP increases its capacity, avoiding the need for
laborious feature engineering.

3.2. Training F-MLP with Streaming-SGD

The training of F-MLP is performed jointly with the original
model, following the procedure of streaming-SGD. This pro-
cedure is different from the standard SGD, which in practice
would need sample data (x, y, t) ∼ Dt(x, y)p(t). However,
sampling from p(t) is difficult for many online applications
due to the real-time update requirement, where data arrive
sequentially. Here we show that with streaming-SGD we
can avoid this issue while still having good practical perfor-
mances and convergence guarantees.

The training procedure is as follows. We parameterize an(x)
and bn(x) by an(x; θn) and bn(x; ρn), respectively, with θn
and ρn being the neural network parameters. For cyclical
data, we collect the τ -th mini-batch of data in the k-th cycle,
and update the model with the following update rule:

θ(k,τ+1)
n = θ(k,τ)n − ηk,τg

(k,τ)
θn

,

ρ(k,τ+1)
n = ρ(k,τ)n − ηk,τg

(k,τ)
ρn

.
(9)

Here, g(k,τ)θn
and g(k,τ)ρn are gradients calculated using the

4We refer interested readers to Appendix H for the design of
F-MLP with a vector output.
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collected mini-batch of data:

g
(k,τ)
θn

= ∇θn
L̂k,τ (f

(k,τ)
N ),

g(k,τ)ρn
= ∇ρn

L̂k,τ (f
(k,τ)
N ),

(10)

where f (k,τ)N is computed with (7), while L̂k,τ is the empir-
ical version of the loss in (2) over this mini-batch of data.
The overall training procedure is summarized in Algorithm
1, and we present the convergence analysis of it below.

3.3. Convergence Analysis

In this section, we discuss the convergence properties when
training Fourier learning models with streaming-SGD. Re-
call that, using a truncated fN (x, t), problem (2) reduces
into finding the optimal of

min
{an}N

n=1,{bn}N
n=0

Ex,y,t∼Dt(x,y)p(t)

[
ℓ(fN (x, t), y)

]
(11)

in the frequency domain. We denote the optimal set of
coefficient functions of (11) as a∗n(x) and b∗n(x), for which
the corresponding model f∗N (x, t) can be expressed as

f∗
N (x, t) =

N∑
n=0

[
a∗
n(x) sin

[
2πnt

T

]
+ b∗n(x) cos

[
2πnt

T

]]
. (12)

In the following, we first show a gradient norm convergence
result for streaming-SGD under a general non-convex set-
ting, and then introduce a global convergence result under
the assumption of strong convexity. Prior to that, we intro-
duce some additional assumptions.

Assumption 7. Suppose: (i) for all n, k, τ , the sec-
ond moment of the update directions are bounded:
max{E[∥g(k,τ)ρn

∥22|F (k)],E[∥g(k,τ)θn
∥22|F (k)]} ≤ G2 for

some G ∈ R, where F (k) is the minimum σ-algebra gener-
ated by a(κ,τ)n and b(κ,τ)n for all n, κ < k and 1 ≤ τ ≤ Γ.
In addition, we assume (ii) there exists Λ > 0 such that
∥∇L(f1)−∇L(f2)∥ ≤ Λ∥f1 − f2∥ for all f1, f2 ∈ H.

This assumption assumes bounded second moment of the up-
date directions, and the Lipschitzness of the gradient, which
are usually required in the convergence analysis of SGD-
type algorithms. The following result shows that streaming-
SGD with a proper learning rate achieves convergence under
both non-convex and strongly convex settings.

Theorem 8 (Convergence of Streaming-SGD). Let (i),
(ii) of Assumption 4 and Assumption 7 hold, and define
∥∇L(f (k,1)N )∥ as the gradient with respect to a joint param-
eter vector combining all θ(k,1)n and ρ(k,1)n .

• Let ηk,τ ≜ ηk = Θ(1/
√
Tmax + 1), then

min
0≤k≤Tmax

∥∇L(f (k,1)N )∥2 = O(1/
√
Tmax + 1).

Algorithm 1 Streaming-SGD for F-MLP
1: Input: Macro-iteration number Tmax; loss L; step sizes

{ηk,τ}Tmax,Γ
k=0,τ=1; period T ; cutoff frequency N/T .

2: Initialize {a(0,1)n }Nn=1 and {b(0,1)n }Nn=0.
3: for (k, τ) = (0, 1) to (Tmax, 1) do
4: Compute f (k,τ)N with a(k,τ)n and b(k,τ)n with (7).
5: for n ∈ {0, . . . , N} do
6: Compute g(k,τ)θn

and g(k,τ)ρn
.

7: Update θ(k,τ)n and ρ(k,τ)n .
8: end for
9: end for

10: Output: f (Tmax,1)
N , a(Tmax,1)

n and b(Tmax,1)
n .

• Let ηk,τ ≜ ηk = Θ(1/
√
k), then

min
0≤k≤Tmax

∥∇L(f (k,1)N )∥2 = O
(
log(Tmax + 1)√

Tmax + 1

)
.

Moreover, if L is σ-strongly convex with respect to θn and
ρn, we can take ηk,τ = ψ/k with ψ < (2σ2)−1 and obtain

E∥θ(Tmax,1)
n − θ∗n∥22 = O(T−1

max),

E∥ρ(Tmax,1)
n − ρ∗n∥22 = O(T−1

max),

where we assume an(x, θ∗n) = a∗n(x), bn(x, ρ
∗
n) = b∗n(x).

The proof of Theorem 8 is given in Appendix F. Sim-
ply put, our learning framework offers a convergence rate
of O(1/

√
Tmax) under a general non-convex setting and

O(1/Tmax) under a strongly convex setting. If we further
drive N → ∞, the overall learning error of f0(x, t) can be
driven to arbitrarily small. Compared to the online learning
benchmark whose dynamic regret is affected by both the
changing speed of the data-generating distribution and the
variance of the stochastic gradients, Fourier learning yields
a much smaller learning error and hence offers a potentially
much better performance in many practical scenarios.

4. Extension to the Non-Parametric Regime
Apart from the parametric framework introduced in the prior
sections, Fourier learning also fits into the non-parametric
regime, where an and bn are updated directly:

a(k,τ+1)
n (x) = a(k,τ)n (x)− ηk,τ · g(k,τ)an

(x),

b(k,τ+1)
n (x) = b(k,τ)n (x)− ηk,τ · g(k,τ)bn

(x).
(13)

As the functional gradients in L2 often contain Dirac’s δ-
functions, causing discontinuous updates, we substitute the
functional gradients with their kernel embeddings instead.
Specifically, with K(·, ·) : X × X → R being a positive-
definite kernel whose minimum eigen-value is bounded
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away from 0, we let

g(k,τ)an
(x) = ⟨∇an

L̂k,τ (f
(k,τ)
N )](·),K(x, ·)⟩,

g
(k,τ)
bn

(x) = ⟨[∇bn
L̂k,τ (f

(k,τ)
N )](·),K(x, ·)⟩.

(14)

It is easy to verify that these kernel embeddings yield con-
tinuous updates of an(x) and bn(x) at each iteration. At the
same time, g(k,τ)an

and g(k,τ)bn
are “close enough” to the exact

gradients and retain the convergence guarantees (Yang et al.,
2019). If we initialize a(0,τ)n and b(0,τ)n to be zeros, then
a
(k,τ)
n and b(k,τ)n can be written as a linear combination of a

finite set of kernels. An example of calculating the kernel
embeddings of functional gradients is given in Appendix E.
The convergence result for the non-parametric case is given
in Theorem 9 below. The proof is given in Appendix G.

Theorem 9. Let Assumption 4 and Assumption 7 hold. Let
g
(k,τ)
an

and g(k,τ)bn
be the kernel embeddings of functional

gradient with K(·, ·) at iteration (k, τ), as defined in (14).
Let ηk,τ = σ(k + 0.5)λ−1(k + 1)−2. Then, E∥a(Tmax,1)

n −
a∗n∥22 = O(T−1

max) and E∥b(Tmax,1)
n −b∗n∥22 = O(T−1

max), with
a∗n and b∗n defined in (12).

5. Numerical Simulations
In this section, we numerically demonstrate the superior-
ity of Fourier learning over the prior state-of-the-arts on
synthetic and public datasets. Our major benchmarks in-
clude: (i) Time-feature: a benchmark that encodes peri-
odicity with f(x,mod(t, T )) using neural networks; (ii)
Pluralistic (Eichner et al., 2019); and (iii): Online learning
(Hazan, 2019), as adopted by common industrial systems.

For each simulated method, we record the instantaneous
loss at each iteration prior to updating the model. This
allows us to evaluate the model’s ability on tracking a
constantly changing set of optimal model parameters and
on maintaining a good prediction accuracy consistently.
The source code and logs used to generate the reported
experiments can be found at https://github.com/
Yangyx891121/Fourier-Learning.

5.1. Synthetic Dataset: Linear Model

Experiment settings. We considered a toy experiment
with T = 1 and p(t) = 1 for t ∈ [0, T ] in (1).
For t ∈ [0, T ], let x ∼ N (sin(2πt), 0.1), and y ∼
N (
∑6

n=1 sin(2πnt)x, 0.01). We generated samples over
t ∈ [0, 50T ], and fitted a linear time-varying system y =
α(t)x using the mean squared error (MSE) loss. The op-
timal α(t) under this setting is α∗(t) =

∑6
n=1 sin(2πnt),

allowing us to evaluate the performance of each algorithm
using the MSE between its estimated α(t) and α∗(t).

We implemented the aforementioned benchmarks under
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Figure 4. Aggregated MSE (in log scale) in each period between
the estimated and ground truth α(t) over 50 periods.

the following settings. For (i), we simulated two sepa-
rate designs, one using f(x, t) = α(mod(t, T ))x where
α(mod(t, T )) is a two-layer neural network, while the
other models f(x, t) with a two-layer neural network di-
rectly. For (ii), we used a vector α to store m separate
α’s. The i-th value of α is responsible for learning samples
with mod(t, T ) ∈ [(i − 1) × interval, i × interval) where
interval = T/m. The number of models, m, is set as a tun-
ing parameter. For (iii), we directly optimized over α using
online gradient descent. We grid-searched the learning rate,
hidden layer sizes, and the number of Fourier bases.

Results. We plotted the MSE of the simulated algorithms in
Figure 4, where we aggregated the MSE over each period
so that the horizontal axis shows how an algorithm’s perfor-
mance improves as t/T increases. We see that Fourier learn-
ing has a much better performance than all the benchmarks.
In addition, the online learning benchmark has almost no
MSE reduction as t/T increases. This is because the online
learning regime lacks exploitation of the cyclical nature of
the data, which leaves behind a constant gap between the
learned model and the desired optimal at each iteration.

5.2. Real Dataset: Sentiment140

Experiment settings. We classified the sentiment of tweets
using a bag-of-words model over the Sentiment140 Twitter
(Go et al., 2009) dataset. Following the experiment settings
of Eichner et al. (2019), we manually created a cyclical data
stream with T = 1 day = 86400 seconds by first dividing
the samples into four blocks based on their associated times-
tamps, and then down-sampled the positive (or negative)
samples of each block based on the sign and value of a
randomly-generated ratio within a range of [−0.7, 0.7].

For the bag-of-words model, we used a three-layers neu-
ral network, with a 4096-dimensional input layer, a 64-
dimensional hidden layer, and a two-dimensional output

https://github.com/Yangyx891121/Fourier-Learning
https://github.com/Yangyx891121/Fourier-Learning
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Figure 5. Testing error of Fourier learning and benchmarks, aver-
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layer, largely following the settings of (Eichner et al., 2019).
The time feature was added as a one-dimensional input to
the input layer. For the pluralistic approach, we reduced
the hidden layer size to keep the number of parameters in
line with the other methods. For Fourier learning, a 64-
dimensional Fourier layer is added at the output end.

Results. We conducted the experiment over 15 days of
data, and plotted the results for lr = 0.1 in Figure 5 (see
Appendix I for more results). We see that Fourier learning
has a better performance than all the benchmarks. We also
see that adding a time feature and online learning have very
similar performances. This suggests that directly adding
a time-feature may not bring immediate performance im-
provement, which warrants the need for further feature engi-
neering. Furthermore, the gap between Fourier learning and
the aforementioned benchmarks cannot be easily closed. In
fact, even upon trippling the network size, the performance
of online learning is still inferior than Fourier learning (see
Appendix I). Lastly, despite the competitiveness of the plu-
ralistic approach (Eichner et al., 2019), its performance lags
as the storage constraint forces a reduction to its model size.

6. Fourier Learning in Recommender Systems
In this section, we report the performance of Fourier learn-
ing implemented on a conversion rate (CVR) prediction
model in an industrial recommender system. As demon-
strated in Figure 1, the system’s revenue displays a periodic
pattern due to the periodic patterns in the lifestyles of its
users. The model architecture follows the design of a wide-
and-deep network (Cheng et al., 2016), with thousands of
features, and several sub-networks that are either wide or
deep. The model output at (k, τ)-th iteration has the form
foco(x; (k, τ)) =

∑Q
q=1 fq(x; (k, τ)). Here, fq(x; (k, τ))

is the output of the q-th (out of a total of Q) sub-network at
iteration (k, τ).

Logit

MLP MLP

Wide Model Deep Model

Last Hidden Layer

Original Model

+

Model Output

F-MLP + Convex
Combination

SUM

Figure 6. Deploying F-MLP to a wide and deep neural network.

Design. We added Fourier learning to this model by mix-
ing foco(x; (k, τ)) with fFL(x, (k, τ)), the output of Fourier
learning which uses t as an input. This output of Fourier
learning is obtained by first aligning the dimensions of
the last hidden layers of all the sub-networks, and then
passing their sum through a single Fourier layer. Ex-
ploiting the linearity of the Fourier transform, this design
avoids the need of learning a Fourier layer for each sub-
network. The final output has the form f(x, (k, τ)) =
ξfoco(x; (k, τ))+ (1− ξ)f FL(x, (k, τ)), where ξ ∈ [0, 1] is
a hyperparameter. We visualized this design in Figure 6.

Intuitively, the mixture of logits has two advantages. First,
it circumvents drastic alterations to the original model ar-
chitecture. In fact, setting ξ = 1 retains the original model:
f(x, (k, τ)) = foco(x; (k, τ)). Secondly, it handles the prac-
tical situation that the data distribution may not strictly fol-
low a periodic pattern. When the periodicity pattern is
relatively strong, we expect Fourier learning to improve the
performance of the original model; when the periodicity pat-
tern is relatively weak, the presence of foco(x; (k, τ)) limits
the model mismatch introduced by Fourier learning. It turns
out that this strategy is highly effective.

Learning setting. We used production-level data spanned
over three months, denoted by months F, G, and H, re-
spectively. Each day has thirty to sixty million training
samples. Under the aforementioned design, we set the base
frequency of the Fourier learning model to 2.4192MHz, or
(28 days)−1, and set N = 28 × 4 in (7), providing a fre-
quency band of up to (6 hours)−1. The coefficient ξ is set
to 0.5. The rest of the model parameters are the same as
baseline. We trained the model on a distributed machine
learning platform with 3,600 CPU cores. The training took
one day. A total of five benchmarks are implemented, with
the hyperparameters carefully tuned via grid search.
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• Online learning: baseline model, the current produc-
tion model that serves hundreds of millions of users
every single day. It does not use time features.

• Time-feature: learning f(x,mod(t, T )) with a time
of day feature mod(t, T ). This feature is inserted into
the model the same way as all other features.

• Positional encoding: learning f(x, g(mod(t, T )))
with the time of day feature (mod(t, T )) embedded in
a positional encoder g(·) (Vaswani et al., 2017). This
encoded feature is inserted into the model as an input
to the deep sub-network.

• Pluralistic (Eichner et al., 2019): a total of six models
are trained but the models only differ in the last few
layers. Since a single model in the production system
costs a tremendous amount of CPU cores and memory
to train and serve, the pluralistic approach is simply
impossible to implement in its original form.

• Online learning (large): the online learning approach
with a larger network that has the same number of
parameters as Fourier learning. We use this benchmark
to show that Fourier learning’s performance gain is not
due to a simple increment in the model size.

Results. We reported the experiment results in Figure 7,
measured by the Area under the Curve (AuC) aggregated
on a monthly basis. The variance of the readings due to
the distributed training environment is typically < 0.02%.
Table 4 shows that Fourier learning has a clear and consistent
advantage of > 0.1% over all benchmarks, none of which
possesses a significant (> 0.02%) AuC improvement over
the baseline model. Furthermore, this improvement is not
due to the increase in the model size, as online learning
(large), which has the same number of model parameters
as Fourier learning, does not show a consistent AuC gain
over the baseline. This is significant for such a large-scale
system, since a 0.1% improvement in AuC may bring in
millions of dollars of revenue growth on a monthly basis.

Apart from AuC, we also examined the calibration of the
trained models, aggregated montly. The calibration is de-
fined as Calibration = pCVR/CVR, where pCVR and CVR
are the predicted and empirical conversion ratio, averaged
over all samples. Note that a well calibrated Ads CVR pre-
diction model should have a calibration reading close to
one. As is shown in Table 1, the Fourier learning model’s
calibration is very close to one and is comparable to others.

7. Conclusion and Discussions
In this paper, we introduced a novel framework, “Fourier
learning”, to efficiently train large-scale machine learning
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Algorithm Month F Month G Month H
Online learning 0.9927 0.9974 0.9977
Online learning (L) 0.9918 0.9974 0.9979
Time-feature 0.9926 0.9974 0.9976
Positional encoding 0.9928 0.9975 0.9977
Pluralistic 0.9929 0.9976 0.9978
Fourier learning (O) 0.9922 0.9973 0.9975

Table 1. Calibration of the algorithms, aggregated monthly. Here,
“L” and “O” are abbreviations for “Large” and “Ours”, respectively.

models with cyclical data. Using Fourier analysis, we trans-
formed the learning problem into the frequency domain, and
proposed a theoretically guaranteed optimization algorithm
to learn the coefficient functions. We introduced F-MLP in
the context of deep learning which strictly increases the orig-
inal model’s capacity. We also demonstrated the superiority
of Fourier learning over the state-of-the-arts on synthetic,
public, and production-level data.

This work opens up several research directions. Among
them, an important one is to measure the periodicity by the
degree to which the data distribution oscillates. This is nec-
essary because, under the current definition provided in this
paper, even i.i.d. data can be deemed periodic as T can be ar-
bitrary. However, as explained in Section 1.1 and illustrated
in Example 1, Fourier learning may have an advantage over
online learning only when the data distribution oscillates.
In light of this, how the degree of oscillation relates to the
advantage of Fourier learning needs to be answered.
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Appendix
A. Proof of Lemma 1
Starting from (2), we have, for any f(x, t) ∈ H,

L(f0(x, t)) = Ex,y,t∼Dmod(t,T )(x,y)p(mod(t,T ))

[
ℓ(f0(x, t), y)

]
= Ep(mod(t,T ))

{
Ex,y∼Dmod(t,T )(x,y)

[
ℓ(f0(x, t), y)

]}
≤ Ep(mod(t,T ))

{
Ex,y∼Dmod(t,T )(x,y)

[
ℓ(f(x, t), y)

]}
= L(f(x, t)), (15)

where the inequality follows from the assumption that

Ex,y∼Dmod(t,T )(x,y)

[
ℓ(f0(x, t), y)

]
≤ Ex,y∼Dmod(t,T )(x,y)

[
ℓ(f(x, t), y)

]
(16)

for any f(x, t) ∈ H. Hence, f0(x, t) is a minimizer of (2).

B. Proof of Lemma 2
We prove the lemma in two parts.

• First, we show that H is a Hilbert space.

• Then, we show the existence of an isomorphism between H and L2(X )⊗ L2(S
T ).

B.1. Proving H is a Hilbert space.

H is a pre-Hilbert space. It is relatively straight-forward that H is a linear vector space, where the zero-vector is f(x) ≡ 0
almost everywhere under the uniform measure over X × [0, T ]. We now show that ⟨·, ·⟩ is an inner product.

First, ⟨·, ·⟩ is symmetric:

⟨f, g⟩ =
∫
X

∫ T

0

f(x, t)g(x, t)dxdt

∫
X

∫ T

0

g(x, t)f(x, t)dxdt = ⟨g, f⟩.

It is bi-linear:

⟨f1 + f2, g⟩ =
∫
X

∫ T

0

(f1(x, t) + f2(x, t))g(x, t)dxdt

=

∫
X

∫ T

0

f1(x, t)g(x, t)dxdt+

∫
X

∫ T

0

f2(x, t)g(x, t)dxdt

= ⟨f1, g⟩+ ⟨f2, g⟩;

and

⟨λf, g⟩ =
∫
X

∫ T

0

λf(x, t)g(x, t)dxdt = λ

∫
X

∫ T

0

f(x, t)g(x, t)dxdt = λ⟨f, g⟩.

It is positive-definite:

⟨f, f⟩ =
∫
X

∫ T

0

f2(x, t)dxdt ≥ 0,
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where the equality holds if and only if f(x, t) ≡ 0 almost everywhere on X × [0, T ] under the uniform measure.

Therefore, ⟨·, ·⟩ is an inner product, and (H, ⟨·, ·⟩) is a pre-Hilbert space.

H is a Hilbert space. A pre-Hilbert space H is a Hilbert space if it is also complete, i.e., every Cauchy sequence {fi}∞i=1 in
H has a limit in H. To prove this, it suffices to find a convergent subsequence of {fi}∞i=1.

Let nk be such that ∥fnk
− fj∥2 ≤ 2−k, for all j ≥ nk. Let Bj = {(x, t) : |fnj+1

(x, t) − fnj
(x, t)| ≥ 2−j/3}, and

B = ∩∞
k=1 ∪j≥k Bj . Let µ be the uniform probability measure over X × [0, T ], then by Chebyshev’s inequality, we have

(subject to a multiplicative volume constant)

µ(Bj) ≤ 22j/3∥fnj+1
− fnj

∥2 ≤ 2−j/3. (17)

Noticing that
∑

j 2
−j/3 is convergent, we can apply the Borel-Cantelli lemma to reach the conclusion that µ(B) = 0.

This means that the set of (x, t) that belongs to infinitely many Bj’s has 0 measure, which further implies that {fnj
}∞j=1

converges point-wise almost everywhere. Define the point-wise limit as f , and as a standard result in real analysis, we know
that f is measurable. Then, it only remains to show that f ∈ H. Using Fatou’s lemma and the definition of the subsequence
{fnj

}∞j=1, we have

∥fnj
− f∥2 =

∫
X

∫ T

0

lim
k→∞

|fnj
(x, t)− fk(x, t)|2dxdt

≤ lim inf
k→∞

∫
X

∫ T

0

|fnj
(x, t)− fk(x, t)|2dxdt

= lim inf
k→∞

∥fnj
− fk∥2

≤ 2−j .

Hence, we have both ∥f∥2 ≤ ∞ by triangle inequality of the norm, and the convergence of fnj
to f in H norm. Therefore,

H is a Hilbert space.

B.2. Proving the existence of an isohorphism.

We define the following mapping U such that

U(ϕi ⊗ ψj)(x, t) = ϕi(x)ψj(t)

for x ∈ X , t ∈ [0, T ]. Then, U is a unitary mapping of L2(X ) ⊗ L2(S
T ) onto H. For any f ∈ L2(X ) and g ∈ L2(S

T ),
assume

f(x) =
∑
i

aiϕi(x), and g(t) =
∑
j

biψj(t),

then, by linearity,

U(f ⊗ g)(x, t) = U

(∑
i

aiϕi

)
⊗

∑
j

biψj

 (x, t)

= U

∑
i,j

aibj(ϕi ⊗ ψj)

 (x, t)

=
∑
i,j

aibjϕi(x)ψj(t)

= f(x)g(t).

This shows that there exists an isomorphism between L2(X )⊗ L2(S
T ) and H.
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C. Proof of Lemma 5
We prove the lemma in two steps:

• First, we show that f∗t (x) is continuous in t for any x ∈ X .

• Exploiting the continuity of f∗t (x), we show f0(x, t)
def
= f∗t (x) for every t is in H.

In addition, we need the following lemma.

Lemma 10. Let X be some metric space and h̃ : X 7→ R be some function such that ∥h̃∥∞ def
= maxx∈X h̃(x) ≤ K. Let

p, q be two distributions over X . Then

EX∼p[h̃(X)]− EX∼q[h̃(X)] ≤ 2K∥p− q∥TV.

Proof. The proof follows from the following reasoning:

EX∼p[h̃(X)]− EX∼q[h̃(X)] ≤ sup

{
|EX∼p[h(X)]− EX∼q[h(X)]|

∣∣∣∣ ∥h∥∞ ≤ K

}
= K sup

{∣∣∣∣EX∼p

[
h(X)

K

]
− EX∼q

[
h(X)

K

]∣∣∣∣ ∣∣∣∣ ∥h∥∞ ≤ K

}
= K sup

{
|EX∼p[h(X)]− EX∼q[h(X)]|

∣∣∣∣ ∥h∥∞ ≤ 1

}
= 2K∥p− q∥TV. (By the dual representation of total variation distance)

C.1. Showing f∗t (x) is continuous in t for any x ∈ X .

Without loss of generality, consider a fixed x ∈ X and a fixed ϵ > 0. Under a realizable setting, we can define

ux(t)
def
= f∗t (x) ∈ argmin

u∈R
Ey∼Dt(x)[ℓ(u, y)], ∀t ∈ [0, T ].

Here, u(t) is a well-defined function because ℓ(u, y) is strongly convex in u for each y ∈ Y . Since Dt(x) is continuous in t
under total variation distance, we can find some δ > 0 such that whenever |t− t′| ≤ δ, we have ∥Dt(x)−Dt′(x)∥TV ≤ ϵ.

Now, for arbitrary t′ such that |t− t′| ≤ δ, the function gt′(u)
def
= Ey∼Dt′ (x)[ℓ(u, y)] is σ-strongly convex in u. By definition,

we can see that ux(t′) minimizes gt′(u). Thus, the property of strongly convex function yields the following:

|ux(t)− ux(t
′)| · σ

2
≤ gt′(ux(t))− gt′(ux(t

′)) = gt′(ux(t))− gt(ux(t)) + gt(ux(t))− gt′(ux(t
′))

≤ gt′(ux(t))− gt(ux(t)) + gt(ux(t
′))− gt′(ux(t

′)) (Since u(t) minimizes gt(u))
= Ey∼Dt′ (x)[ℓ(ux(t), y)]− Ey∼Dt(x)[ℓ(ux(t), y)] + Ey∼Dt(x)[ℓ(ux(t

′), y)]− Ey∼Dt′ (x)[ℓ(ux(t
′), y)]

≤ 4K∥Dt(x)−Dt′(x)∥TV ≤ 4Kϵ. (By Lemma 10 and boundedness assumption of loss function)

Since σ > 0, we have |u(t)− u(t′)| = |f∗t (x)− f∗t′(x)| ≤ 8Kσ−1ϵ for all |t− t′| < δ. Hence, driving ϵ and δ towards 0
leads to the continuity of f∗t (x) as a function of t for any x ∈ X .

C.2. Showing f∗t (x) ∈ H.

Since f∗t (x) is continuous in t for any x ∈ X , h(t) def
=
∫
X |f∗t (x)|2dx is also continuous in t. Since f∗t ∈ L2(X ), h(t) is

finite for any t. Therefore, h(t) is bounded over [0, T ].

Let M2 = maxt∈[0,T ] h(t). We have

∥f0(x, t)∥2H =

∫
X

∫ T

0

f20 (x, t)dxdt ≤
∫ T

0

∥f∗t (x)∥2L2(X )dt ≤M2T. (18)

This implies that f0(x, t) has finite H-norm, and therefore we have f0(x, t) ∈ H.
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D. Proof of Theorem 6
The proof follows directly upon noticing that {exp(2πjnt/T )}∞n=−∞, where j is the imaginary number, is a complete
orthonormal set of basis for L2(S

T ) and applying Eq. (5).

E. Computing the Kernel Embeddings of a Functional Gradient
In this section, we illustrate the computation of kernel embeddings for functional gradients through an example. Adopting a
simplified setting, we consider the following loss function:

ℓ(f(x, t), y) =
1

2
(f(x, t)− y)2.

Denoting this functional as L(an, bn) with an and bn defined in (7), we can derive the (stochastic) functional gradient for
an as follows given samples (xm, ym, tm)Mm=1 that arrive between the (k, τ)-th and the (k, τ + 1)-th iterations:

[∇an
L̂k,τ (an, bn)](x) =

M∑
m=1

(f(xm, tm)− ym)× sin(2πnt/T )δ(x− xm).

Let K(·, ·) : X × X → R be a positive-definite kernel, we have the kernel embedding of

gan
(x) =

∫
X
[∇an

L̂k,τ (an, bn)](y)K(x, y)dy

=

M∑
m=1

(f(xm, tm)− ym)× sin(2πnt/T )K(xm, x),

where the second equality follows from the property of the Dirac’s δ-function.

F. Proof of Theorem 8
In this section, we prove the major Theorems related to the convergence of streaming-SGD for Fourier learning. In
particular, we first prove 8 under both strongly convex and non-convex setting. Then we prove 9, which extends the result to
non-parametric case.

F.1. Strongly Convex Case

For the sake of simplicity, denote the concatenation of all θ(k,τ)n for n ∈ {0, . . . , N} and ρ(k,τ)n for n ∈ {1, . . . , N} as
U (k,τ), and denote its optimal as U∗. By the moment assumption, we immediately have

max
k,τ

E∥∇L̂k,τ (U
(k,τ))∥2 ≤ (2N + 1)G2, (19)

and

max
k,τ

E∥∇L̂k,τ (U
(k,τ))∥ ≤

√
(2N + 1)G2. (20)

In addition, denoting ηk = ηk,τ for τ ∈ {1, . . . ,Γ}, we also have

U (k+1,1) = U (k,1) − ηk

Γ∑
τ=1

∇L̂k,τ (U
(k,τ)), (21)

where ∇L̂k,τ is the incremental gradient of L with respect to U calculated using the data that arrived between (k, τ)-th and
(k, τ − 1)-th iterations.5 Since ∇L̂k,τ (U

(k,τ) is computed using only the data between the (k, τ)-th and the (k, τ + 1)-th
iterations, we can alternatively write (21) as

U (k+1,1) = U (k,1) − ηk(∇L̂k(U
(k,1))− e(k)), (22)

5Note that for a batch with size n, we have chosen to compute the empirical average of L̂k,τ using coefficient 1
nΓ

instead of 1
n

. This

design ensures E[L̂k]
def
= E

[∑Γ
τ=1 L̂k,τ

]
= L.
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where ∇L̂k(U
(k,1)) is now the stochastic gradient of L evaluated at U (k,1), calculated using the data that arrived in

macro-iteration k:

∇L̂k(U) =

Γ∑
τ=1

∇L̂k,τ (U). (23)

Meanwhile, the error term e(k) has the following expression:

e(k) =

Γ∑
τ=1

[
∇L̂k,τ (U

(k,1))−∇L̂k,τ (U
(k,τ))

]
. (24)

Taking norm on both sides and using triangle inequality, we have

∥e(k)∥ ≤
Γ∑

τ=1

∥∇L̂k,τ (U
(k,1))−∇L̂k,τ (U

(k,τ))∥. (25)

Further invoking the Lipschitzness of the gradient gives us

∥e(k)∥ ≤
Γ∑

τ=1

Λ∥U (k,1) − U (k,τ)∥. (26)

Since ∥U (k,1) − U (k,τ)∥ ≤ ηk(τ − 1) ·maxκ,ν ∥∇L̂κ,ν(U
(κ,ν))∥ ≤ ηk(τ − 1)G

√
2N + 1, we can invoke (20) and get

E∥e(k)∥ ≤
Γ∑

τ=1

Λ(τ − 1)ηkG
√
2N + 1 =

1

2
ΛΓ(Γ− 1)ηkG

√
2N + 1, (27)

and

E∥e(k)∥2 ≤ 1

6
η2kΛ

2Γ2(Γ− 1)(2Γ− 1)G2(2N + 1) (28)

upon taking expectations on both sides. This bound implies that the expected error of the micro-iterations over τ vanishes
asymptotically if we choose a set of diminishing step sizes ηk.

In the meantime, using (22), we have

∥U (k+1,1) − U∗∥2 = ∥U (k,1) − U∗ − ηk(∇L̂k(U
(k,1))− e(k))∥2 (29)

= ∥U (k,1) − U∗∥2 + η2k∥∇L̂k(U
(k,1))− e(k)∥2 − 2ηk⟨U (k,1) − U∗,∇L̂k(U

(k,1))− e(k)⟩. (30)

By the rule of total expectation and the assumption on strong convexity of L, we have

E
[
2ηk⟨U (k,1) − U∗,∇L̂k(U

(k,1))− e(k)⟩
]
= E

[
2ηk⟨U (k,1) − U∗,∇L̂k(U

(k,1))⟩
]
− E

[
2ηk⟨U (k,1) − U∗, e(k)⟩

]
(31)

= E
[
2ηk⟨U (k,1) − U∗,∇L(U (k,1))⟩

]
− E

[
2ηk⟨U (k,1) − U∗, e(k)⟩

]
(32)

≥ 2ηkσE∥U (k,1) − U∗∥2 − 2ηkE∥U (k,1) − U∗∥ · E∥e(k)∥ (33)

≥ 2ηkσE∥U (k,1) − U∗∥2 − 2η2kGΓ
√
2N + 1 · E∥U (k,1) − U∗∥ (34)

Combining (29) and (31), we have

E∥U (k+1,1) − U∗∥2 ≤ E∥U (k,1) − U∗∥2 + 2η2k(E∥∇L̂k(U
(k,1))∥2 + E∥e(k)∥2)− 2ηkσE∥U (k,1) − U∗∥2+

+ 2η2kGΓ
√
2N + 1 · E∥U (k,1) − U∗∥. (35)
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Rearranging and assuming D to be the diameter of the space containing U (k,τ), we can further upper bound the right-hand
side of (35) by

E∥U (k+1,1) − U∗∥2 ≤ (1− 2ηkσ)E∥U (k,1) − U∗∥2 + 2η2k(E∥∇L̂k(U
(k,1))∥2 + E∥e(k)∥2) + 2η2kGΓD

√
2N + 1 (36)

= (1− 2ηkσ)E∥U (k,1) − U∗∥2 + 2η2k(2N + 1)G2 + 2η2kGΓD
√
2N + 1+

+
1

3
η4kΛ

2Γ2(Γ− 1)(2Γ− 1)G2(2N + 1) (37)

Denoting

C1 = (2N + 1)G2 +GΓD
√
2N + 1 +

1

6
η2kΓ

2Λ2(Γ− 1)(2Γ− 1)G2(2N + 1), (38)

we have

E∥U (k+1,1) − U∗∥2 ≤ (1− 2ηkσ)E∥U (k,1) − U∗∥2 + 2η2kC1. (39)

Finally, selecting ηk = O(1/k) and using mathematical induction yields E∥U (k+1,1) − U∗∥2 = O(1/k).

F.2. Non-Convex Case

In this section, we show that gradient norm vanishes for streaming-SGD under a constant or a cycle-wise diminishing
learning rate.

Following the notations defined in Theorem 8, we invoke the smoothness assumption, and obtain

L(U (k+1,1)) ≤ L(U (k,1))− ηk⟨∇L(U (k,1)), V (k)⟩+ Λ2η2k
2

∥V (k)∥2, (40)

where

V (k) = ∇L̂k(U
(k,1))− e(k) (41)

with e(k) defined in (24). Taking the unconditional expectations on both sides, we have

E[L(U (k+1,1))] ≤ E[L(U (k,1))]− ηkE∥∇L(U (k,1))∥2 + ηkE⟨∇L(U (k,1)), e(k)⟩+ Λ2η2k
2

E∥V (k)∥2 (42)

≤ E[L(U (k,1))]− ηkE∥∇L(U (k,1))∥2 + ηkE∥∇L(U (k,1))∥E∥e(k)∥+ Λ2η2k
2

E∥V (k)∥2, (43)

where we have invoked the Cauchy-Schwartz inequality in the second step. Once again, invoking (20) and (27), we obtain
the following bounds:

E∥∇L(U (k,1))∥ = E∥E[∇L̂k(U
(k,1))|F (k)]∥ ≤ E∥Γ ·max

k,τ
E[∇L̂k,τ (U

(k,τ))|F (k)]∥ ≤ Γ
√
(2N + 1)G2, (44)

and

E[∥e(k)∥|F (k)] ≤ 1

2
Γ(Γ− 1)ηkG

√
2N + 1. (45)

Therefore, there exists a constant C7 such that

E∥∇L(U (k,1))∥E∥e(k)∥ ≤ ηkC7. (46)

In the meantime, we can upper bound E∥V (k)∥2 by

E∥V (k)∥2 ≤ 2E∥∇L̂k(U
(k,1))∥2 + 2E∥e(k)∥2, (47)

invoking (20) and (28), we see that there exists a constant C8 such that

E∥V (k)∥2 ≤ C8. (48)
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Plugging (48) and (46) into (43), we see that there exists a constant C9 such that

E[L(U (k+1,1))] ≤ E[L(U (k,1))]− ηkE∥∇L(U (k,1))∥2 + η2kC9. (49)

Hence,

Tmax∑
k=0

ηkE∥∇L(U (k,1))∥2 ≤ C9

Tmax∑
k=0

η2k + E[L(U (0,1))]− E[L(U (Tmax+1,1))] (50)

≤ C9

Tmax∑
k=0

η2k + E[L(U (0,1))]− L(U∗). (51)

Constant learning rate. Let ηk = 1/
√
Tmax + 1. Then

Tmax∑
k=0

1√
Tmax + 1

E∥∇L(U (k,1))∥2 ≤ C9 +max(E[L(U (0,1))]− L(U∗)). (52)

Assuming max(E[L(U (0,1))]− L(U∗)) ≤ C10, we have

min
0≤k≤Tmax

E∥∇L(U (k,1))∥2 ≤ C9 + C10√
Tmax + 1

. (53)

Diminishing learning rate. Let ηk = 1/
√
(k + 1). Then, (50) can be re-written as

Tmax∑
k=0

ηk∑Tmax

κ=0 ηκ
E∥∇L(U (k,1))∥2 ≤

C9

∑Tmax

k=0
1

k+1 + C10∑Tmax

κ=0 ηκ
. (54)

Here, the left-hand side is lower bounded by

Tmax∑
k=0

ηk∑Tmax

κ=0 ηκ
E∥∇L(U (k,1))∥2 ≥ min

1≤k≤Tmax

E∥∇L(U (k,1))∥2. (55)

In the meantime, the numerator of the right-hand side’s numerator is upper bounded by O(log Tmax), whereas the denomi-
nator is bounded by Θ(

√
Tmax). Hence, we see that

min
1≤k≤Tmax

E∥∇L(U (k,1))∥2 = O(log Tmax/
√
Tmax). (56)

G. Proof of Theorem 9
The non-parametric case is more challenging as the update rule involves the notion of pseudo-gradients. Unlike the
parametric case, where the update is performed in a Euclidean space, the updates for the non-parametric case are performed
in H. Nevertheless, the majority of the proof for the parametric case can be retained as follows.

Auxiliary results and lemmas. Similar to the parametric case, we combine all an and bn into a vector

U (k,τ)(x) = [a
(k,τ)
0 (x), . . . , a

(k,τ)
N (x), b

(k,τ)
1 (x), . . . , b

(k,τ)
N (x)] ∈ H2N+1. (57)

In addition, we define a composite norm for such vectors, denoted by ∥ · ∥. Denoting the i-th component of U (k,τ) as U (k,τ)
i ,

we define, with a slight abuse of notations,

∥U (k,τ)∥ def
=

∥∥∥∥[∥U (k,τ)
1 ∥H, . . . , ∥U (k,τ)

2N+1∥H
]∥∥∥∥. (58)

This composite norm first computes the H-norm of each element of U (k,τ), and then compute the vector norm of the
resulting vector. With this composite norm, we can easily check that (19) and (20) hold for the non-parametric case as well.
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Next, we proceed to write the composite update for the non-parametric case. Since we have chosen the pseudo-gradient to
be the kernel embedding of the (incremental) functional gradient, we have

U (k+1,1)(x) = U (k,1)(x)− ηk

Γ∑
τ=1

⟨[∇L̂k,τ (U
(k,τ))](·),K(x, ·)⟩ (59)

= U (k,1)(x)− ηk⟨[∇L̂k(U
(k,1))− e(k)](·),K(x, ·)⟩, (60)

where, once again, ∇L̂k(U
(k,1)) is the empirical gradient function calculated using the samples that arrive during the

macro-iteration k, whereas

∇L̂k,τ (U
(k,τ)) = [∇a0

L̂k,τ (U
(k,τ)), . . . ,∇aN

L̂k,τ (U
(k,τ)),∇b1

L̂k,τ (U
(k,τ)), . . . ,∇bn

L̂k,τ (U
(k,τ))]⊤. (61)

Here, K(·, ·) is a (2N + 1)-dimensional vector stacked up by the kernel K(·, ·):

K(·, ·) = [K(·, ·), . . . ,K(·, ·)]⊤. (62)

Similar to the definition of the composite norm, the inner product in (60) should be interpreted as a composite inner product,
which first takes the inner product of H over each element of ∇L̂k,τ (U

(k,τ)) and K(·, ·), and then takes the vector dot
product over the resulting vectors in the (2N + 1)-dimensional Euclidean space.

Lastly, in (60), e(k) is the accumulated error function:

e(k) =

Γ∑
τ=1

[
∇L̂k,τ (U

(k,1))−∇L̂k,τ (U
(k,τ))

]
. (63)

Note that e(k) is a function of x, as are ∇L̂k,τ (U
(k,1)) and ∇L̂k,τ (U

(k,τ)). Taking the composite norm on both sides, and
invoking the Lipschitzness of the gradient for the H-norm, we have

∥e(k)∥ ≤
Γ∑

τ=1

∥∇L̂k,τ (U
(k,1))−∇L̂k,τ (U

(k,τ))∥ ≤
Γ∑

τ=1

Λ∥U (k,1) − U (k,τ)∥. (64)

Since ∥U (k,1) − U (k,τ)∥ ≤ ηk(τ − 1)maxκ,ν ∥∇L̂κ,ν(U
(κ,ν))∥ ≤ ηk(τ − 1)G

√
2N + 1, we can invoke (20) and get

E[∥e(k)∥|F (k)] ≤ 1

2
Γ(Γ− 1)ηkG

√
2N + 1, (65)

as well as

E[∥e(k)∥2|F (k)] ≤ 1

6
η2kΛ

2Γ2(Γ− 1)(2Γ− 1)G2(2N + 1), (66)

upon taking expectations on both sides. Similar to the parametric case, this bound again implies that the approximation error
of U (k,τ) using U (k,1) vanishes if we choose a set of diminishing step sizes ηk.

The remaining part of the proof deviates from the parametric case as the updates use pseudo-gradients. Before introducing
the main proof, we first need the following lemma.

Lemma 11 (Lemma 11 of (Yang et al., 2019)). Letting ∥ · ∥♯ be a norm and ∥ · ∥♯,∗ be its dual norm. In addition, suppose
f ∈ H is continuously differentiable, and satisfies ∥∇f(x+ y)−∇f(y)∥♯ ≤ L∥y∥♯,∗. Then

f(x+ y)− f(x)− ⟨∇f(x), y⟩ ≤ L

2
∥y∥♯,∗. (67)

Main proof. Letting ∥ · ∥♯,∗ be the composite norm, and denoting

V (k)(x) = ⟨[∇L̂k(U
(k,1))− e(k)](·),K(x, ·)⟩ (68)
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as the pseudo-gradient with error during the macro-iteration k, we can invoke Lemma 11 and (60) on the loss function L,
and obtain

L(U (k+1,1)) ≤ L(U (k,1))− ηk⟨∇L(U (k,1)), V (k)⟩+ Λ2η2k
2

∥V (k)∥2. (69)

Taking unconditional expectations on both sides, we have

E
[
L(U (k+1,1))− L(U∗)

]
≤ E

[
L(U (k,1))− L(U∗)

]
− ηkE

[
⟨∇L(U (k,1)),E[V (k)|F (k)]⟩

]
+

Λ2η2k
2

E∥V (k)∥2 (70)

≤ E
[
L(U (k,1))− L(U∗)

]
− ηkλ∥∇L(U (k,1))∥2 + Λ2η2k

2
E∥V (k)∥2+

+ ηkE
[
⟨[∇L(U (k,1))](⋆), ⟨E[e(k)|F (k)](·),K(⋆, ·)⟩⟩

]
(71)

where F (k) is the minimum σ-algebra generated by U (κ,τ) for all κ ≤ k and 1 ≤ τ ≤ Γ. In addition, the second inequality
is obtained by invoking the assumption that the minimum eigenvalue of K(·, ·) is λ > 0. The last term on the right-hand
side has two inner products: the outer one is taken with respect to “⋆”, while the inner is taken with respect to “·”. Note that,
both inner products are composite.

By Cauchy’s inequality, and the upper bound on E[∥e(k)∥|F (k)], we get

E
[
⟨[∇L(U (k,1))](⋆), ⟨E[e(k)|F (k)](·),K(⋆, ·)⟩⟩

]
≤ E∥∇L(U (k,1))∥E∥K(⋆, ·)∥ · 1

2
Γ(Γ− 1)ηkG

√
2N + 1. (72)

Letting

C2 = E∥K(⋆, ·)∥ · 1
2
Γ(Γ− 1)G

√
2N + 1, (73)

we get

E
[
⟨[∇L(U (k,1))](⋆), ⟨E[e(k)|F (k)](·),K(⋆, ·)⟩⟩

]
≤ C2ηkE∥∇L(U (k,1))∥. (74)

Note that, in (74), we can further upper bound E∥∇L(U (k,1))∥ by the convexity of the composite norm:

E∥∇L(U (k,1))∥ = E∥E[∇L̂k(U
(k,1))|F (k)]∥ ≤ E∥Γ ·max

k,τ
E[∇L̂k,τ (U

(k,τ))|F (k)]∥ ≤ Γ
√
(2N + 1)G2. (75)

Therefore, letting C3 = C2Γ
√
(2N + 1)G2 gives us

E
[
⟨[∇L(U (k,1))](⋆), ⟨E[e(k)|F (k)](·),K(⋆, ·)⟩⟩

]
≤ ηkC3. (76)

In the meantime, we can invoke the Cauchy’s inequality again, and, according to the expression of V (k) given in (68), we
have

V (k)(x) ≤ ∥K(x, ·)∥∥∇L̂k(U
(k,1))− e(k)∥ ≤ max

x∈X
∥K(x, ·)∥(∥∇L̂k(U

(k,1))∥+ ∥e(k)∥). (77)

Since X is compact, there exists a constant C4 such that

∥V (k)∥2 ≤ C4(∥∇L̂k(U
(k,1))∥+ ∥e(k)∥)2 ≤ 2C4(∥∇L̂k(U

(k,1))∥2 + ∥e(k)∥2). (78)

Taking the unconditional expectations on both sides, and invoking the upper bounds in (19) and (66), we get

E∥V (k)∥2 ≤ 2C4

[
(2N + 1)G2 +

1

6
η2kΛ

2Γ2(Γ− 1)(2Γ− 1)G2(2N + 1)

]
. (79)
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For simplicity, we denote the right-hand side of (79) as C5, which gives the following succinct relationship:

E∥V (k)∥2 ≤ C5. (80)

Combining (80), (76) and (71), we get

E
[
L(U (k+1,1))− L(U∗)

]
≤ E

[
L(U (k,1))− L(U∗)

]
− ηkλE∥∇L(U (k,1))∥2 + η2kC6, (81)

where

C6 =
Λ2C5

2
+ C3. (82)

Since L is σ-strongly-convex, we have

E∥∇L(U (k,1))∥2 ≥ 2σ−1E
[
L(U (k,1))− L(U∗)

]
. (83)

Hence,

E
[
L(U (k+1,1))− L(U∗)

]
≤ (1− 2σ−1ληk)E

[
L(U (k,1))− L(U∗)

]
+ η2kC6. (84)

Choosing

ηk =
σ(2k + 1)

2λ(k + 1)2
, (85)

we get

E
[
L(U (k+1,1))− L(U∗)

]
≤ k2

(k + 1)2
E
[
L(U (k,1))− L(U∗)

]
+ C6 ·

(2k + 1)2

(k + 1)4
, (86)

or equivalently,

(k + 1)2E
[
L(U (k+1,1))− L(U∗)

]
≤ k2E

[
L(U (k,1))− L(U∗)

]
+ C6

(2k + 1)2

(k + 1)2
(87)

≤ k2E
[
L(U (k,1))− L(U∗)

]
+ 4C6. (88)

Denoting

δ(k) = k2E
[
L(U (k,1))− L(U∗)

]
, (89)

we immediately have

δ(k + 1) ≤ δ(k) + 4C6. (90)

Noticing that δ(0) = 0, we can sum both sides over 0 to Tmax, and get

δ(Tmax) ≤ 4TmaxC6, (91)

implying

E
[
L(U (Tmax,1))− L(U∗)

]
= O(T−1

max). (92)

The bound on the norm difference follows from the strong convexity assumption of L.
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Figure 8. Fourier learning over Sentiment140 Twitter dataset with learning rates 0.05 (top left), 0.1 (top right), 0.2 (bottom left), 0.4
(bottom right), respectively.

H. Multi-Dimensional Fourier-MLP
If the Fourier layer is to replace a hidden layer with a multi-dimensional output, we can substitute the summation of
the Fourier layer in Figure 3 with another MLP, so that each output neuron has a unique time interpolation. Using
F-MLP[N ]

d1→d2
(x) ∈ Rd2×1 as a general expression for an F-MLP with input dimension d1 and output dimension d2, we

have:

F-MLP[N ]
d1→d2

(x) = (W2 ⊙ COS) · MLPd1→(N+1)(x) + (W1 ⊙ SIN) · MLPd1→N (x), (93)

where x ∈ Rd1×1 is the input to the Fourier layer; MLPd1→N (x) ∈ RN×1 is a regular MLP that maps x into a vector of
dimension N , having no activations; W1 ∈ Rd2×N and W2 ∈ Rd2×(N+1); while SIN and COS are matrices stacked up by
row vectors [sin(2πt/T ), . . . , sin(2πNt/T )] and [1, cos(2πt/T ), . . . , cos(2πNt/T )] a total of d2 times. The operator ⊙
is the Hadamard product. When d2 = 1, W1 and W2 can be merged into MLPd1→N and MLPd1→(N+1), which serve the
role of an(x) and bn(x) in (7), respectively.

I. Additional Experiment Results
I.1. Sentiment140

We report additional results for Fourier learning over the Sentiment140 Twitter dataset in Figure 8. Fourier learning has a
better performance across the board. In Figure 9, online learning is still inferior than Fourier learning even after we trippled
its network size. This suggests that the gap in Figures 5 and 8 cannot be easily mitigated by tweaking the benchmark.

I.2. Fourier Learning in Recommender Systems

We report the raw data used to plot Figure 7 in Table 2.
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Figure 9. F-MLP against a large online learning model.

Algorithm Month F Month G Month H
Online learning 0.85504 0.85812 0.86350
Online learning (large) 0.85538 0.85766 0.86254
Time-feature 0.85502 0.85810 0.86350
Positional encoding 0.85481 0.85813 0.86351
Pluralistic 0.85497 0.85832 0.86367
Fourier learning (ours) 0.85627 0.85935 0.86456

Table 2. AuC for the implemented algorithms, aggregated monthly.


