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Abstract

Unsupervised/self-supervised time series repre-
sentation learning is a challenging problem be-
cause of its complex dynamics and sparse anno-
tations. Existing works mainly adopt the frame-
work of contrastive learning with the time-based
augmentation techniques to sample positives and
negatives for contrastive training. Nevertheless,
they mostly use segment-level augmentation de-
rived from time slicing, which may bring about
sampling bias and incorrect optimization with
false negatives due to the loss of global con-
text. Besides, they all pay no attention to incor-
porate the spectral information in feature repre-
sentation. In this paper, we propose a unified
framework, namely Bilinear Temporal-Spectral
Fusion (BTSF). Specifically, we firstly utilize
the instance-level augmentation with a simple
dropout on the entire time series for maximally
capturing long-term dependencies. We devise
a novel iterative bilinear temporal-spectral fu-
sion to explicitly encode the affinities of abundant
time-frequency pairs, and iteratively refines repre-
sentations in a fusion-and-squeeze manner with
Spectrum-to-Time (S2T) and Time-to-Spectrum
(T2S) Aggregation modules. We firstly conducts
downstream evaluations on three major tasks for
time series including classification, forecasting
and anomaly detection. Experimental results
shows that our BTSF consistently significantly
outperforms the state-of-the-art methods.
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1. Introduction

Time series analysis (Oreshkin et al., 2020) plays a crucial
role in various real-world scenarios, such as traffic
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Figure 1. Statistics about false predictions of randomly selected
evaluation samples.

prediction, clinical trials and financial market. Classification
(Esling & Agon, 2012), forecasting (Deb et al., 2017) and
anomaly detection (Laptev et al., 2015) are main tasks for
time series analysis. However, there is often no adequate
labeled data for training and results are not ideal when
time series are sparsely labeled or without supervision (Lan
et al., 2021; Yang et al., 2020). Therefore, it is valuable
to study on the unsupervised representation learning for
time series with which the learned representations can be
used for aforementioned downstream tasks. Unsupervised
representation learning (Zheng et al., 2022; Yang & Hong,
2022; Zhang et al., 2022) has been well studied in computer
vision and natural language processing (Denton & Birodkar,
2017; Gutmann & Hyvérinen, 2012; Wang & Gupta, 2015;
Pagliardini et al., 2018; Chen et al., 2020b) but only a few
researches are related with time series analysis (Eldele et al.,
2021b; Yue et al., 2021b; Liu et al., 2021).

Recent works mainly utilize the time-based contrastive learn-
ing framework (Chen et al., 2020a; Zerveas et al., 2021) for
unsupervised representation learning in time series. Time-
Contrastive Learning (TCL) (Hyvarinen & Morioka, 2016),
Contrastive Predictive Coding (CPC) (Oord et al., 2018),
Scalable RepresentationLearning (SRL) (Franceschi et al.,
2019), Temporal and Contextual Contrasting (TS-TCC)
(Eldele et al., 2021b) and Temporal Neighborhood Cod-
ing(TNC) (Tonekaboni et al., 2021) are all segment-level
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Figure 2. The diagram of our general unsupervised representation learning framework for multivariate time series, ® is the cross product.

See Section 3.2 for more details.

methods which sample contrastive pairs along temporal axis.
Nevertheless, they all fail to utilize the temporal-spectral
affinities in time series and thus limit the discriminativity
and expressiveness of the representations. We further take
an experimental analysis on these methods and Figure 1
shows statistics about false predictions on time series classi-
fication. We implement existing works according to public
codes. In specific, by spectral means we use their pro-
posed sampling methods to generate contrastive pairs and
transform the sampled time series into spectral domain for
extracting feature for later training and testing. It is notable
that existing works all have a low overlap percentage around
30% about false predictions with only temporal or spectral
feature. The phenomenon demonstrates their temporal and
spectral representations have few associations. Besides, pre-
vious segment-level methods are based on the assumption
that distant segments are negative pairs and neighbour seg-
ments are positive pairs, which usually perform badly in
long-term scenarios and fail to capture the global context.

Based on the aforementioned shortcomings of existing
works, we propose an unsupervised representation learn-
ing framework for time series, namely Bilinear Temporal-
Spectral Fusion (BTSF). BTSF promotes the representation
learning process from two aspects, the more reasonable con-

struction of contrastive pairs and the adequate integration of
temporal and spectral information. In order to preserve the
global temporal information and have the ability to capture
long-term dependencies of time series, BTSF uses the entire
time series as input and simply applies a standard dropout
(Srivastava et al., 2014) as an instance-level augmentation
to produce different views of time series. Such construction
of contrastive pairs ensures that the augmented time series
would not change their raw properties, which effectively
reduces the possible false negatives and positives. For the
effective combination of temporal-spectral information and
further achieving alignment between them in feature repre-
sentation, we perform an iterative bilinear fusion between
temporal and spectral features to produce a fine-grained
second-order feature which explicitly preserves abundant
pairwise temporal-spectral affinities. To adequately utilize
the informative affinities, we further design a cross-domain
interaction with Spectrum-to-Time and Time-to-Spectrum
Aggregation modules to iteratively refine temporal and spec-
tral features for cycle update. Compared to simple combi-
nation operations like summation and concatenation, our
bilinear fusion make it possible that the temporal (spectral)
feature gets straightly enhanced by spectral (temporal) in-
formation of the same time series, which is proved to be
effective by our further experiments and theoretical analysis.
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Our main contributions are summarized as the following:

* We revisit the existing segment-level contrastive learn-
ing framework for time series representation learning
and propose the instance-level augmentation technique
to maximally preserve global context.

e A novel iterative bilinear temporal-spectral fusion is
proposed to explicitly model pairwise cross-domain
dependencies for discriminating and enriching repre-
sentations in a fusion-and-squeeze manner.

* Sufficient assessments including alignment and unifor-
mity (Wang & Isola, 2020) are conducted to identify the
generalization ability of our learned representations.

» Extensive experiments show that our BTSF signifi-
cantly outperforms previous works in downstream clas-
sification, forecasting and anomaly detection tasks, and
is competitive with supervised methods.

2. Related Work

Unsupervised Representation Learning for Time Series.
A relevant direction of research about representation learn-
ing on sequence data has been well-studied (Chung et al.,
2015; Fraccaro et al., 2016; Krishnan et al., 2017; Bayer
et al., 2021). However, few efforts have made in unsu-
pervised representation learning for time series (Lingkvist
et al., 2014; Eldele et al., 2021b; Yue et al., 2021b). Apply-
ing auto-encoders (Choi et al., 2016) and seq-to-seq models
(Malhotra et al., 2017; Lyu et al., 2018) with an encoder-
decoder architecture to reconstruct the input are preliminary
approaches to unsupervised representation learning for time
series. Rocket (Dempster et al., 2020) is a fast method that
involves training a linear classifier on top of features ex-
tracted by a flat collection of numerous and various random
convolutional kernels. Several approaches leverage inherent
correlations in time series to learn unsupervised representa-
tions. SPIRAL (Lei et al., 2017) bridges the gap between
time series data and static clustering algorithm through pre-
serving the pairwise similarities of the raw time series data.
Ma et al. (2019) integrates the temporal reconstruction and
K-means (Krishna & Murty, 1999) objective to generate
cluster-specific temporal representations.

Time-Series Contrastive Learning. Another group of
approaches design different sample policy and incorporate
contrastive learning (Hyvarinen & Morioka, 2016; Oord
et al., 2018; Chen et al., 2020a; Yue et al., 2021a) to tackle
representation learning for temporal data without supervi-
sion. Inspired by Word2Vec (Mikolov et al., 2013), Scalable
Representation Learning (SRL) (Franceschi et al., 2019) pro-
poses a novel triplet loss and tries to learn scalable represen-
tations via randomly sampling time segments. Contrastive

Predictive Coding (CPC) (Oord et al., 2018) conducts repre-
sentation learning by using powerful autoregressive models
in latent space to make predictions in the future, relying
on Noise-Contrastive Estimation (Gutmann & Hyvérinen,
2010) for the loss function in similar ways. Temporal and
Contextual Contrasting (TS-TCC) (Eldele et al., 2021b)
is a improved work of CPC and learns robust representa-
tion by a harder prediction task against perturbations intro-
duced by different timestamps and augmentations. Tempo-
ral Neighborhood Coding (TNC) (Tonekaboni et al., 2021)
presents a novel neighborhood-based unsupervised learning
framework and applies sample weight adjustment for non-
stationary multivariate time series. Their main difference
is that they select contrastive pairs according to different
segment-level sampling policies. However, they are prone
to be affected by false negatives and fails to capture long-
term dependencies because of the loss of global context.
Besides, they only extract temporal feature, neglecting to
leverage spectral feature and involve temporal-spectral re-
lations. In this paper, we address all these problems in a
unified framework.

3. The Proposed Method
3.1. Instance-level Augmentation Technique

Previous researches on the unsupervised representation
learning for time series mainly tackle the problem by de-
signing different sampling policy on temporal data. They
use the sampled data to construct the contrastive objective
for guiding the training procedure. Sampling bias is an in-
evitable problem for existing representation works in time
series because of their segment-level sampling policy (time
slicing). Time slicing is unable to capture the long-term
dependencies due to the loss of global semantical informa-
tion. To explore an effective augmentation method for the
construction of contrastive pairs, we first investigate general
augmentation methods for time series. A latest empirical
survey (Iwana & Uchida, 2021a) evaluates 12 time series
data augmentation methods on 128 time series classification
datasets with 6 different types of neural networks. Accord-
ing to results, no augmentation method, not excepting time
slicing, is able to improve performance on all datasets con-
sistently. It is because time series is sensitive to sequential
order and temporal patterns.

To preserve the global temporal information and not change
the original properties for time series, we apply a standard
dropout as a minimal data augmentation to generate different
views in unsupervised representation learning. Specifically,
we simply employ two independently sampled dropout
masks on the time series to obtain a positive pair and treat
time series of other variables as negative samples for nega-
tive pairs construction. With the instance-level contrastive
pairs, our method has the ability to capture long-term depen-
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dencies and effectively reduce the sampling bias which is
superior to previous segment-level pairs. In the procedure of
contrastive pairs construction, we pass the each time series
x to the dropout to generate a positive pair £*"¢ and xP°%.
For negative samples, we randomly choose other variables
as ™% for multivariate time series.

"¢ = Dropout(x), xP°° = Dropout(x). (1)
Thus our instance-level augmentation is general and can
process both non-stationary and periodic time series. In con-
trast, time slicing fails to deal with the periodic time series
because it is possible for them to choose false negative sam-
ples. The dropout rate is set to 0.1 in our experiments. For
more experimental comparisons with other augmentation
methods and the sensitivity of dropout rate, see Appendix A
for more details.

3.2. Iterative Bilinear Temporal-Spectral Fusion

In this subsection, we provide a detailed introduction to a
general and effective framework for learns a discriminative
feature representation for multivariate time series, namely
Bilinear Temporal-Spectral Fusion (BTSF). As illustrated in
Figure 2, after constructing the contrastive pairs, we map the
time series to a high dimensional feature space to assimilate
x and 2P°%, and to distinguish ™9 from x. Previous works
neglect to leverage spectral feature and temporal-spectral
relations, our proposed BTSF not only simultaneously uti-
lize spectral and temporal features but also enhances the
representation learning in a more fine-grained way. Instead
of summation and concatenation, BTSF adopts iterative bi-
linear temporal-spectral fusion to iteratively explore and
refine the pairwise affinities between temporal and spectral
features for producing an interactive feature representation,
representing the most common parts of positive pairs and
enlarging the differences of negative pairs.

Specifically, each augmented time series x; is first trans-
formed to spectral domain by a fast Fourier transform (FFT),
obtaining spectral signal 5. Then x; and =, are delivered
to two encoding networks for feature extraction respectively.
The process is as the following:

F; = Encoder o(x;0;), Fs= Encoderp(xs;0s)

2

where F;, € R™*? and F, € R"*¢ are temporal and spec-
tral features, 8, and O, are parameters of their encoding
networks Encoder 4 and Encoder g respectively. We just
use simple stacks of dilated causal convolutions (Bai et al.,
2018) to encode temporal features and use 1D convolutional
blocks to extract spectral features. We apply a max-pooling
layer in the end of encoding network to guarantee the same
size of features, which makes our model scalable to input
length. BTSF makes an iterative bilinear fusion between F;

and F;. Specifically, we establish a channel-wise interaction
between features of two domains as the following:

F(i,j) = Fi(i) F.(j) 3)

where ¢ and j stand for the i-th and j-th location in tem-
poral and spectral axes respectively. This bilinear process
adequately models the fine-grained time-frequency affini-
ties between Fy(i) € R? and F,(i) € R%. To summarize
such affinities globally, BTSF integrates F'(i, j) € R?*? to
produce the initial bilinear feature vector Fy;jineqr € Raxd
with sum pooling of all time-frequency feature pairs:

Fbilinear:FtT x Fy :ZZF(Z7J)

i=1 j=1

=YY FO)"F()

i=1 j=1

“4)

where x denotes the matrix multiplication. This bilinear
feature conveys the fine-grained time-frequency affinities to
acquire a more discriminative feature representation. Then
we encode cross-domain affinities to adaptively refine the
temporal and spectral features through an iterative procedure
as the following:

S2T .
T2S :

F; = BiCasual(Conv(Fyiinear)) s
F, = Conv(BiCasual(Fyilinecar)) )
where F; € R™*? and F, € R"*? are updated by
Spectrum-to-Time Aggregation (S2T : R4*d — Rmxd)
and Time-to-Spectrum Aggregation (T2S : R4*d —
R™*4) Coonwv is normal convolution and BiCasual is
bi-directional causal convolution, followed by nonlinear
function (e.g., ReLLU). Specifically, S2T first aggregates
spectrum-attentive information for each temporal feature
through applying convolutional blocks along spectral axis.
Then it exchanges the spectrum-related information along
temporal axis to refine the temporal features by several
bi-directional causal convolutions. Contrary to S2T, T2S
applies above aggregation-exchange procedure from tem-
poral domain to spectral domain. S2T and T2S modules
adequately aggregate the cross-domain dependencies and re-
fine the temporal and spectral features respectively. In turn,
refined temporal and spectral features are able to produce
more discriminative bilinear feature. S2T, T2S and bilin-
ear fusion jointly form a loop block in a fuse-and-squeeze
manner. After several loops of Eq.(4) and Eq.(5), the final
bilinear feature Fj;j;ineqr- 1S Obtained. The ablation study of
loops number is in Appendix A.

Nevertheless, its efficiency may suffer from the memory
overhead of storing high-dimensional features with the
quadratic expansion. To solve the problem, we transform
the final bilinear feature into a low-rank one by inserting
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and factorizing an interaction matrix W € R™*™, It is
first inserted to make linear transformation between each
temporal-spectral feature pair:

Fhitincar = Fi" x W x F, (6)
=Y > ROWEHFG) O
i=1 j=1

Then, we use W = UV to factorize the interaction matrix
into U € R™*! and V*! (I << d) for obtaining low-rank
bilinear feature:

Fhitinear = F;¥ xU x VT x F, (8)
= (UT x F) o (VT x Fy) )

where o denotes Hadamard product. BTSF employs the two
linear mappings without biases to produce the bilinear repre-
sentations Fhijinear € R4 for a given output dimension [.
Through this process, the storing memory of naive features
of Eq.(4) is reduced largely from O(d?) to O(ld).

For not forgetting the original temporal and spectral infor-
mation, the initial temporal feature F; € R!*“ and spectral
feature F; € R'*< are both combined with F;jineqr to €n-
hance the representative capacity. Therefore, the final joint
feature representation f € R'*? of each augmented time
series can expressed as the following:

f=oW, x F,+ W, x F, + F," x W x F,)

(10)
where W, € R™*! and V; € R™*! are all linear transfor-
mation layers. o is the sigmoid function. After vectorizing
the feature representations f"¢, fP°% and f"°Y of a con-
trastive tuple (x®"¢, xP°% x£™9), we build a loss function
to minimize and maximize the distance of positive and neg-
ative pairs respectively. We represent a multivariate time
series as X € RP*T = {x;}P |, where D is the number
of variables and 7T is the length of time series. Thus, the
contrastive loss for a training batch of multivariate time
series can be expressed as the following:

L =Ex~p,,. [—log(sim(f*°, f°%)/7)+
Egneanx [log(sim (£, £79)/7)]]

where sim(-, -) denotes the inner product to measure the
distance between two 5 normalized feature vectors and 7
is a temperature parameter. Eq.(11) demonstrates that for
each multivariate time series, when a time series is chosen
for constructing the positive pair, time series of all other
variables are the negative samples. For ablation studies of
hyperparameters, see Appendix A.

Y

3.3. Effectiveness of the Proposed BTSF

To prove the efficiency of our devised bilinear fusion, we
provide the deduction of gradient flow from the loss function.

Since the overall architecture is a directed acyclic graph, the
parameters can be trained by back-propagating the gradients
of the contrastive loss. The bilinear form simplifies the
gradient computations. Let g—? be the gradient of £ with
respect to f, then for Eq.(10) by chain rule of gradients (we
omit the sigmoid function for simplicity):

oL 0L oL
TE_ﬁWt—‘rwWXFS’

(12)
oL oL oL .+
871-718 - EWS + QW X Ft
oL oL
= ——F
ow, of "
oL  oc
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ow —aplt < E
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=== =21 W x F,,
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00,  Of OF, ° ' Of OF,

From the Eq.(12) and Eq.(14), , we conclude that the gra-
dient update of parameters 6; in temporal feature F; is
closely related to the spectral feature since F is treated as a
weighted coefficient straightly multiplying the gradient, and
vice versa. Additionally, we can know that interaction ma-
trix W has a strong connection with cross-domain affinities
F, x F,7 from the Eq.(13) which leads to a better com-
bination of temporal and spectral features. In hence, it is
proved that our BTSF adequately explores and utilizes the
underlying spectral and temporal information of time series.

4. Experiments

We apply our BTSF on multiple time series datasets in three
major practical tasks including classification, anomaly detec-
tion and forecasting. We are the first to evaluate on all three
tasks. We compare our performances with state-of-the-art
approaches CPC, SRL, TS-TCC and TNC. For fair com-
parisons, we implement these methods by public code with
the same encoder architecture and the similar computational
complexity and parameters, also use the same representation
dimensions with BTSF. More specific descriptions of tasks
definitions, datasets and experiments are in Appendix B.

Time-Series Classification. We evaluate our learned rep-
resentation on downstream classification tasks for time se-
ries on widely-used time series classification datasets (An-
guita et al., 2013; Goldberger et al., 2000; Andrzejak et al.,
2001; Moody, 1983). For fair comparisons, we further train



Unsupervised Time-Series Representation Learning with Iterative Bilinear Temporal-Spectral Fusion

Table 1. Comparisons of classification results.

Methods HAR Sleep-EDF ECG Waveform
Accuracy AUPRC Accuracy AUPRC Accuracy AUPRC

Supervised | 92.03+£2.48 0.98+0.00 83.41+£1.44 0.784+0.52 84.81+0.28 0.67+0.01

KNN 84.85+0.84 0.75+0.01 64.87+1.73 0.75+2.88 54.76+£5.46 0.384+0.06

SRL 63.60+3.37 0.7140.01 78.32+1.45 0.714+2.83 75.51+£1.26  0.474+0.00

CPC 86.43+1.41 0.93£0.01 82.82+1.68 0.7342.15 68.64+0.49 0.4240.01

TS-TCC 88.044+2.46 0.92+0.02 83.00+0.71 0.7442.63 74.81+£1.10 0.534+0.02

TNC 88.324+0.12 0.94+0.01 82.97+0.94 0.76+1.73 77.79+£0.84 0.55+0.01

BTSF 94.63+0.14 0.99+0.01 87.45+0.54 0.79+0.74 85.14+0.38 0.68+0.01

Table 2. Comparisons of multivariate forecasting results.
Datasets Leneth Supervised SRL CPC TS-TCC TNC BTSF

& MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
24 0.577 0.549 0.698 0.661 0.687 0.634 0.653 0.610 0.632 0.596 0.541 0.519
48 0.685 0.625 0.758 0.711  0.779 0.768 0.720 0.693 0.705 0.688  0.613 0.524
ETThl1 168 0.931 0.752 1341 1.178 1.282 1.083 1.129 1.044 1.097 0.993  0.640 0.532
336 1.128 0.873 1.578 1.276  1.641 1.201 1492 1.076  1.454 0919 0.864 0.689
720 1.215 0.896 1.892 1.566  1.803 1.761 1.603 1.206 1.604 1.118  0.993 0.712
24 0.720 0.665 1.034 0901 0981 0.869 0.883 0.747 0.830 0.756  0.663 0.557
48 1.451 1.001 1.854 1.542 1.732 1440 1.701 1378 1.689 1.311 1.245 0.897
ETTh2 168 3389 1.515 5.062 2.167 4591 3.126 3.956 2.301 3792 2.029  2.669 1.393
336 2.723 1.340 4921 3.012 4772 3.581 3.992 2.852 3516 2.812 1.954 1.093
720 3467 1473 5301 3.207 5.191 2781 4732 2345 4501 2410 2.566 1.276
24 0.323 0.369 0.561 0.603 0.540 0.513 0473 0490 0.429 0455 0.302 0.342
48 0494 0.503 0.701 0.697 0.727 0.706  0.671 0.665 0.623 0.602  0.395 0.387
ETTml 96 0.678 0.614 0901 0.836 0.851 0.793 0.803 0.724 0.749 0.731  0.438 0.399
288 1.056 0.786  2.471 1927 2.066 1.634 1.958 1.429 1.791 1356  0.675 0.429
672 1.192 0926 2.042 1.803 1962 1.797 1.838 1.601 1.822 1.692  0.721 0.643
24 0.335 0.381 0.688 0.701  0.647 0.652 0.572 0.603 0.484 0.513 0.324 0.369
48 0.395 0459 0.751 0.883 0.720 0.761 0.647 0.691 0.608 0.626  0.366 0.427
Weather 168 0.608 0.567 1.204 1.032 1.351 1.067 1.117 0962 1.081 0970  0.543 0.477
336 0.702 0.620 2.164 1982 2.019 1.832 1.783 1.370 1.654 1.290 0.568 0.487
720 0.831 0.731 2281 1.994 2.109 1.861 1.850 1.566 1.401 1.193  0.601 0.522

a linear classifier on top of the learned representations to
evaluate how well the representations can be used to classify
hidden states, following Tonekaboni et al. (2021). Beyond
aforementioned methods, we also implement a K-nearest
neighbor classifier equipped with DTW (Chen et al., 2013)
metric and a supervised model which is trained with the
same encoder and classifier with those of our unsupervised
model. In the training stage, we keep the original train/test
splits of datasets and use the training set to train all the
models. We apply two metrics for evaluation, the predic-
tion accuracy and the area under the precision-recall curve
(AUPRC). Table 1 demonstrates our superior performance
over existing methods in all datasets and our BTSF surpasses
the supervised method, which shows that BTSF adequately
leverages the temporal and spectral information in time se-
ries for representation learning. In addition, the pair-wise

temporal-spectral fusion provides more fine-grained infor-
mation for discriminativity.

Time-Series Forecasting. We evaluate our algorithm with
other methods on time series forecasting task in both short-
term and long-term settings, following Zhou et al. (2021).
A decoder is added on top of learned representations to
make predictive outputs. Specifically, we train a linear
regression model with L2 norm penalty and use informer
(Zhou et al., 2021) as our supervised comparison method.
We use two metrics to evaluate the forecasting performance,
Mean Square Error (MSE) and Mean Absolute Error (MAE).
Table 2 demonstrates that our BTSF has the least forecasting
error of different prediction lengths (short/long) across the
datasets. In addition, BTSF outperforms existing methods
including supervised one in a large margin especially for
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Table 3. Comparisons of multivariate anomaly detection.

Datasets  Metric \ Supervised SRL  CPC TS-TCC TNC BTSF
SAaT F1 | 0.901 0.710  0.738 0.775 0.799 0914
WADI F1 | 0.649 0.340 0.382 0.427 0.440  0.653
SMD F1 | 0.958 0.768  0.732 0.794 0.817 0.972
SMAP Fl | 0.842 0.598  0.620 0.679 0.693  0.863
MSL F1 | 0.945 0.788 0.813 0.795 0.833  0.957

long time series prediction. It is noted that BTSF gets a
better performance when the length of datasets increases
due to the better use of global context, which makes BTSF
fully capture the long-term dependencies in long time series.
More visualization results of time series forecasting are in
Appendix B.2, Fig.8 and Fig.9.

Time-Series Anomaly Detection. To the best of our
knowledge, we are the first to evaluate on anomaly detection
(Su et al., 2019; Hundman et al., 2018; Goh et al., 2016;
Mathur & Tippenhauer, 2016; Braei & Wagner, 2020). The
results of this task assessment reflect how well the model
capture the temporal trends and how sensitive to the outlier
the model is for time series. We add a decoder on top of
representations learned by models and reconstruct the input
time series and follow the evaluation settings of Audibert
et al. (2020). For each input data point «; and reconstructed
one &y, if |&; — x¢| > 7 (7 is a predefined threshold), x; is
an outlier. Precision (P), Recall (R), and F1 score (F1) were
used to evaluate anomaly detection performance and we just
list the results of F1 metric here (see Appendix B for more
results of P and R metrics). Table 3 illustrates that BTSF
achieves new SOTA across all datasets and especially sur-
passes the supervised results by a large margin. It conveys
that BTSF is more sensitive to the outliers in time series
since it captures long-term dynamics and expresses the fine-
grained information through iterative bilinear fusion.

5. Analysis

Comparisons about Time-Series Augmentation Methods.
To further prove the effectiveness of our instance-level aug-
mentation (dropout), we compare our method with 12 other
augmentation policies as mentioned in Iwana & Uchida
(2021a): Jittering, Rotation, Scaling, Magnitude Warp-
ing, Permutation, Slicing, Time Warping, Window Warp-
ing, SPAWNER (Kamycki et al., 2020), Weighted DTW
Barycentric Averaging (WDBA) (Forestier et al., 2017), Ran-
dom Guided Warping (RGW) (Iwana & Uchida, 2021b) and
Discriminative Guided Warping (DGW) (Iwana & Uchida,
2021b). The classification accuracy comparisons of differ-
ent augmentations on HAR datasets are illustrated in Figure

3. It is noted that proposed instance-level augmentation
(dropout) has a best performance in both average accuracy
and variance, which demonstrates dropout is more accurate
and more stable for unsupervised representation learning in
time series.

Accuracy comparisons of different augmentations (in %)

Figure 3. Classification accuracies and variances of different aug-
mentations on HAR dataset.

Impact of Iterative Bilinear Fusion To investigate the
impact of iterative bilinear fusion in BTSF, we follow the
experiment as illustrated in Section 1. We apply the learned
representations of models to the classification task and make
statistics about false predictions by only using temporal or
spectral feature respectively. Specifically, we use the fea-
ture out of S2T and T2S module as temporal and spectral
feature respectively. From Table 4, we find that after adding
iterative bilinear fusion, BTSF not only gets a large promo-
tion in accuracy but also achieves a good alignment between
temporal and spectral domain with a overlap percentage of
96.60 %, much higher than existing works (around 30%).
Therefore, our designed iterative bilinear fusion make an
effective interaction between two domains and it is vital for
final prediction accuracy. More ablation studies about BTSF
are in Appendix A.

Visualization. To make assessments about the clusterabil-
ity of learned representations in the encoding space, we
visualize the feature distribution by using t-SNE (Van der
Maaten & Hinton, 2008). It is noted that if the information
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Table 4. Statistics about false predictions of all test samples on HAR dataset

Only Temporal Only Spectral  Overlap (% by Temporal, % by Spectral)
SRL 1073 1174 349 (32.53%, 29.73%)
CPC 401 448 106 (26.43%, 23.66%)
TS-TCC 354 383 107 (30.23%, 27.94%)
TNC 346 376 115 (33.24%, 30.59%)
BTSF 159 163 152 (96.60%, 93.25%)

of the latent state is properly learned and encoded by the
model, the representations from the same underlying state
should cluster together. Figure 4 shows the comparisons
about representations distribution of different models. It
demonstrates that the representations learned by proposed
BTSF from the same hidden state are better than the other
approaches. The visualization results further prove the su-
perior representation ability of our model. In Addition, we
have evaluated on the all univariate time series datasets: the
UCR archive. The corresponding critical difference diagram
is shown in Figure 5. The BTSF significantly outperforms
the other approaches with an average rank of almost 1.3.

TS-TCC CcpPC SRL

Figure 4. T-SNE visualization of signal representations for HAR
dataset.

5 4 3 2 1
L I I I )

b——— BTSF

cc—mmM8M8 —8— b—————— supervised
SRL. ey 1 [
TS-TCC

Figure 5. Critical difference diagram showing pairwise statistical
difference comparison of BTSF and previous methods on the UCR
archive.

Alignment and Uniformity. To make a comprehensive
assessment of the representations, we evaluate the two prop-
erties of learned representations, alignment and uniformity
(Wang & Isola, 2020). Alignment is used to measure the sim-
ilarities of features between similar samples, which means

features of a positive pair should be invariant to the noise.
Uniformity assumes that a well-learned feature distribution
should preserve maximal information as much as possible.
It makes sense that well-generalized feature representations
not only minimize the intra-similarities of positive pairs and
enlarge the inter-distances of negative pairs but also keep
the feature distributed uniformly to retain enough informa-
tion. Therefore we follow Wang & Isola (2020) to make
the assessments. Figure 6 and Figure 7 show the results of
alignment and uniformity respectively. Compared with pre-
vious SOTA TNC and supervised results, our BTSF gets the
highest mean value about feature distance of positive pairs,
which means that BTSF achieves the best alignment. Addi-
tionally, the feature extracted BTSF is evenly distributed in
the encoding space which preserves maximal information
of the data, much better than TNC and supervised models.

TNC Supervised BTSF

Distance Distribution

Distance Distribution

Distance Distribution

- mean | 1200 § ~— mean

Figure 6. Distance distribution of positive pairs for assessing align-
ment. Our BTSF is well aligned.

TNC supervised BTSF

Feature Distribution Feature Distribution Feature Distribution

Figure 7. Feature distribution of samples in different classes on
the normalized surface area for assessing uniformity. Features
extracted by BTSF are evenly distributed.
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6. Conclusion

In this paper, we propose Bilinear Temporal-Spectral Fusion
(BTSF) for unsupervised time series representation learn-
ing. We revisit existing segment-level contrastive learning
methods and conclude that they all fail to leverage global
contextual information due to the segment-level augmenta-
tion (time slicing) and are unable to use temporal-spectral
relations for enhancing representation learning. First, we
utilize instance-level augmentation which use the entire time
series as input and apply dropout to generate different views
for training. Second, we devise iterative bilinear temporal-
spectral fusion and refine the feature representation in a
fuse-and-squeeze manner for time series. The extensive ex-
periments on classification, forecasting and anomaly detec-
tion downstream tasks have been conducted and the results
demonstrates the superior performance of our BTSF. BTSF
surpasses existing unsupervised learning models for time
series in a large margin including the supervised model.
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A. More ablation studies

To quantify the promotion of each module in BTSF, we make a specific ablation study where all experiments are conducted
on HAR dataset and results are in Table 5. We use TNC as a baseline which applies time slicing as augmentation with
accuracy of 88.3%. We could find that our instance-level augmentation (dropout) is better than segment-level augmentation
(slicing) and layer-wise dropout (adding dropout in internal layers) has a promotion by 1.5% compared with slicing. However,
we do not apply layer-wise dropout in aforementioned experiments for fair comparisons otherwise our BTSF will have better
performance. Besides, incorporating spectral feature with temporal feature by using summation or concatenation will also
improve the results, which illustrates the necessity of cross-domain interaction. The accuracy is obviously promoted by
2%~3% when involving temporal and spectral information with bilinear fusion, and iterative operation will further improve
the performance by enhancing and refining the temporal-spectral interaction. In conclusion, instance-level augmentation
(dropout) and iterative bilinear fusion are two main modules of BTSF which largely improve the generalization ability of
unsupervised learned representations with accuracy of 94.6%, an improvement of 6.3% to baseline.

Table 5. Ablation experiments of BTSF.

Accuracy Temporal Spectral Sum/Concat Bilinear Iterative Bilinear

Slicing 88.3 86.7 88.7 90.7 91.5

Dropout 89.4 88.4 89.8 92.4 94.6
Layer-Wise Dropout ~ 89.8 89.1 90.4 93.1 95.4

Studies of hyperparameters In the proposed BTSF, there are some hyperparameters needed to be carefully set, the
dropout rate, temperature number 7 and the loops number of iterative bilinear fusion. Table 6 illustrates that when the rate is
set to 0.1, BTSF acquires the best performance since setting too high value would lose the original properties of time series
and setting too low value would bring about representation collapse. Table 7 demonstrates that when 7 is set to 0.05 , BTSF
has the best performance. It is reasonable that proper value of 7 would promote the optimization of training process and
make representations more discriminative with the adjustment. We also run the experiments of loops number of iterative
bilinear fusion, and we conclude that our iterative bilinear fusion is effective and its performance converges after just three
loops.

Table 6. Ablation experiments of dropout rate

dropout rate p=0.01 p=0.05 p=0.1 p=0.15 p=0.2 p=0.3
HAR 90.29 9278 94.63 9336 91.21 88.07
Sleep-EDF  82.76  85.34 87.45 86.01 83.44 80.92

Table 7. Ablation experiments on temperature number 7.

T 0.001 0.01 0.05 0.1 1
HAR 90.04 9291 94.63 93.04 91.85
Sleep-EDF  82.69 84.82 87.45 85.11 83.28

B. Datasets descriptions and more experiments

In all experiments, we use Pytorch 1.8.1 (Paszke et al., 2017) and train all the models on a GeForce RTX 2080 Ti GPU with
CUDA 10.2. We apply an Adam optimizer (Kingma & Ba, 2017) with a learning rate of 3e-4, weight decay of le-4 and
batch size is set to 256. In this part, we would introduce all the datasets used in our experiments which involve three kinds
of downstream tasks, time series classification, forecasting and anomaly detection. The definitions of downstream tasks are
detailed in the following:

* Time Series Classification: Given the univariate time series {x1,z2,...,2z7} or multivariate time series
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{x1,x2,...,xp} as input, time series classification is to classify the input consisting of real-valued observations to a
certain class.

* Time Series Forecasting: Given the past univariate observations {z;_7,41,...,2;} or multivariate ones
{®t—1y41,- .., %} as input, time series forecasting aims to predict the future data points {2¢11, Tt 42, ..., T4, } O
{®t41, Te12, ..., TeqT, } based on the input.

* Time Series Anomaly Detection: Given the univariate time series {x1,z3,..., 27} or multivariate time series
{x1,x2,...,xp} as input, time series anomaly detection is to find out which point (£; or ;) or subsequence
({21, 2, ..., 27} or {&1, s, ... ,@r}) of the input behaves unusually when compared either to the other values in
the time series (global outlier) or to its neighboring points (local outlier).

Data Preprocessing Following Franceschi et al. (2019); Zhou et al. (2021), for univariate time series classification task,
we normalize datasets using z-score so that the set of observations for each dataset has zero mean and unit variance. For
multivariate time series classification task, each variable is normalized independently using z-score. For forecasting tasks,
all reported metrics are calculated based on the normalized time series.

B.1. Classification

In the time series classification task, we choose several popular benchmarks which are widely used in previous works. They
are Human Activity Recognition (HAR) (Anguita et al., 2013), Sleep Stage Classification (Sleep-EDF) (Goldberger et al.,
2000), Epilepsy Seizure Prediction (Andrzejak et al., 2001), ECG Waveform (Moody, 1983). The detailed introduction to
these datasets are as follows:

Human Activity Recognition HAR dataset contains 30 individual subjects which provide six activities for each subject.
These six activities are walking, walking upstairs, downstairs, standing, sitting, and lying down. The data of HAR is
collected by sensors with a sampling rate of 50 HZ and the collected signals record the continuous activity of every subject.

Sleep Stage Classification The dataset is designed for EEG signal classification task where each signal belongs to one of
five categories: Wake (W), Non-rapid eye movement (N1, N2, N3) and Rapid Eye Movement (REM). And the Sleep-EDF
dataset collects the PSG for the whole night, and we just used a single EEG channel, following previous works (Eldele et al.,
2021a).

Epilepsy Seizure Prediction The Epileptic Seizure Prediction dataset contains EEG signals which are collected from 500
subjects. The brain activity for each subject was recorded for 23.6 seconds. Additionally, the original classes of the dataset
are five, and we preprocess the dataset for classification task like Eldele et al. (2021b).

ECG Waveform The ECG Waveform is a real-world clinical dataset, it includes 25 long-term Electrocardiogram (ECG)
recordings (10 hours in duration) of human subjects with atrial fibrillation. Besides, it contains two ECG signals with a
sampling rate of 250HZ.

Table 8 shows the comparison results between BTSF with recent works following their evaluation protocols. The results
show that BTSF significantly outperforms them in a large margin. Table 9 shows the classification results of Epileptic
Seizure Prediction datasets. From the illustrated results, we conclude that our BTSF gets the best performance and exceeds
other methods by a large margin in univariate and multivariate time series classification tasks.

B.2. Forecasting

In Section 4, we conduct experiments on four datasets about time series forecasting, including two collected real-world
datasets for long sequence time-series forecasting (LSTF) problem and one public benchmark dataset as in Zhou et al.
(2021). The detailed introduction to these datasets are as follows:

Electricity Transformer Temperature (ETT) The ETT is a crucial indicator in the electric power long-term deployment.
The 2-year data was collected from two separated counties in China, which was first used to investigate the granularity on
the LSTF problem with each data point containing the target value ~oil temperature” and six power load features. ETThI ,
ETTh2 and ETTml1 represent for 1-hour-level and 15-minute-level respectively.
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Table 8. More comparisons of classification results about BTSF and previous work, results of TST (Zerveas et al., 2021), Rocket (Dempster
et al., 2020) and Supervised (Zerveas et al., 2021) are quoted from TST for fair comparisons.

Methods ‘ TST Rocket Supervised BTSF
EthanolConcentration | 32.6  45.2 33.7 49.4
FaceDetection 68.9 64.7 68.1 73.0
Handwriting 359 5838 30.5 62.3
Heartbeat 77.6  75.6 77.6 84.7
JapaneseVowels 99.7  96.2 99.4 99.8
InsectWingBeat 68.7 - 68.4 78.3
PEMS-SF 89.6  75.1 91.9 95.7
SelfRegulationSCP1 | 92.2  90.8 92.5 96.5
SelfRegulationSCP2 | 60.4  53.3 58.9 64.9
SpokenArabicDigits | 99.8  71.2 99.3 99.8
UWaveGestureLibrary | 91.3 944 90.3 97.1
Avg Accuracy | 748 725 74.2 82.0
Avg Rank ‘ 1.7 23 1.7 1.2

Table 9. More comparisons of classification results of ESP dataset.

Epilepsy Seizure Prediction
Accuracy AUPRC

Supervised 96.32+0.38  0.97+0.65

Methods

KNN 87.96£1.32 0.89+£1.04
SRL 94.65+£0.97 0.95+0.86
CPC 96.61+£0.43  0.97+0.69
TS-TCC 97.23£0.10  0.98+0.21
TNC 96.15+0.33  0.96+0.45
BTSF 99.01+0.12  0.99+0.06

Weather This dataset contains local climatological data for about 1,600 U.S. places, 4 years from 2010 to 2013, where
data points are collected every 1 hour with each data point consisting of the target value “wet bulb” and 11 climate features.

We run the forecasting tasks about prediction length of 48 and 1440 on ETT dataset and visualize the forecasting results of
BTSF, TNC and supervised models. From Figure 8 and 9, we could find that our BTSF achieves the best forecasting results
under both short-term and long-term settings since it adequately leverages the global context and utilize temporal-spectral
relations which are helpful in producing more accurate predictive representations.

B.3. Anomaly detection

In Section 4, we conduct extensive experiments about time series anomaly detection on five widely used datasets, which are
all public available. The detailed introduction to these datasets are illustrated as follows:

Secure Water Treatment (SWaT) The SWaT dataset is a scaled down version of a real-world industrial water treatment
plant producing filtered water (Goh et al., 2016). The collected dataset (Mathur & Tippenhauer, 2016) consists of 11 days of
continuous operation: 7 days collected under normal operations and 4 days collected with attack scenarios.

Water Distribution (WADI) This dataset is collected from an extension of the SWaT tesbed. It consists of 16 days of
continuous operation: 14 days were collected under normal operation and 2 days with attack scenarios.
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Server Machine Dataset (SMD) This dataset is a 5-week-long dataset from a large internet company which was collected
and made publicly available (Su et al., 2019). It contains data from 28 server machines with each one monitored by m=33
metrics. SMD is divided into two subsets of equal size: the first half is the training set and the second half is the testing set.

Soil Moisture Active Passive (SMAP) and Mars Science Laboratory (MSL) SMAP and MSL are two real-world public
datasets, expert-labeled datasets from NASA (Hundman et al., 2018).
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Figure 8. Visualizing forecasting results of length 48 on ETT dataset.
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Figure 9. Visualizing long-term forecasting results of length 1440 on ETT dataset.



