
NP-Match: When Neural Processes meet Semi-Supervised Learning

Jianfeng Wang 1 Thomas Lukasiewicz 2 1 Daniela Massiceti 3 Xiaolin Hu 4 Vladimir Pavlovic 5

Alexandros Neophytou 6

Abstract
Semi-supervised learning (SSL) has been widely
explored in recent years, and it is an effective way
of leveraging unlabeled data to reduce the reliance
on labeled data. In this work, we adjust neural pro-
cesses (NPs) to the semi-supervised image clas-
sification task, resulting in a new method named
NP-Match. NP-Match is suited to this task for two
reasons. Firstly, NP-Match implicitly compares
data points when making predictions, and as a
result, the prediction of each unlabeled data point
is affected by the labeled data points that are sim-
ilar to it, which improves the quality of pseudo-
labels. Secondly, NP-Match is able to estimate
uncertainty that can be used as a tool for select-
ing unlabeled samples with reliable pseudo-labels.
Compared with uncertainty-based SSL methods
implemented with Monte Carlo (MC) dropout,
NP-Match estimates uncertainty with much less
computational overhead, which can save time
at both the training and the testing phases. We
conducted extensive experiments on four public
datasets, and NP-Match outperforms state-of-the-
art (SOTA) results or achieves competitive results
on them, which shows the effectiveness of NP-
Match and its potential for SSL.

1. Introduction
Deep neural networks have been widely used in computer
vision tasks (Krizhevsky et al., 2012; Simonyan & Zisser-
man, 2014; Szegedy et al., 2015; 2016; He et al., 2016)
due to their strong performance. Training deep neural net-

1Department of Computer Science, University of Oxford,
UK. 2Institute of Logic and Computation, TU Wien, Austria.
3Microsoft Research, Cambridge, UK. 4Department of Computer
Science and Technology, Tsinghua University, Beijing, China.
5Department of Computer Science, Rutgers University, New Jer-
sey, USA. 6Microsoft, Applied Science Group, Reading, UK. Cor-
respondence to: Jianfeng Wang <jianfeng.wang@cs.ox.ac.uk>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

works relies on large-scale labeled datasets, but annotating
large-scale datasets is time-consuming, which encourages
researchers to explore semi-supervised learning (SSL). SSL
aims to learn from few labeled data and a large amount of
unlabeled data, and it has been a long-standing problem in
computer vision and machine learning (Sohn et al., 2020;
Zhang et al., 2021; Rizve et al., 2021; Pham et al., 2021; Li
& Zhou, 2014; Liu et al., 2010; Berthelot et al., 2019; 2020).
In this work, we focus on SSL for image classification.

Most recent approaches to SSL for image classification are
based on the combination of consistency regularization and
pseudo-labeling (Sohn et al., 2020; Li et al., 2021; Rizve
et al., 2021; Zhang et al., 2021; Nassar et al., 2021; Pham
et al., 2021; Hu et al., 2021). They can be further classified
into two categories, namely, deterministic (Sohn et al., 2020;
Li et al., 2021; Zhang et al., 2021; Nassar et al., 2021; Pham
et al., 2021; Hu et al., 2021) and probabilistic ones (Rizve
et al., 2021). A deterministic approach aims at directly
making predictions, while a probabilistic approach tries to
additionally model the predictive distribution, such as using
Bayesian neural networks (BNNs), which are implemented
by Monte Carlo (MC) dropout (Gal & Ghahramani, 2016).
As a result, the former cannot estimate the uncertainty of
the model’s prediction, and unlabeled samples are selected
only based on high-confidence predictions. In contrast,
the latter can give uncertainties for unlabeled samples, and
the uncertainties can be combined with high-confidence
predictions for picking or refining pseudo-labels.

Current SOTA methods for the semi-supervised image clas-
sification task are deterministic, including FixMatch (Sohn
et al., 2020), CoMatch (Li et al., 2021), and FlexMatch
(Zhang et al., 2021), which have achieved promising results
on public benchmarks. In contrast, progress on probabilistic
approaches lags behind, which is mainly shown by the fact
that there are only few studies on this task and MC dropout
becomes the only option for implementing the probabilistic
model (Rizve et al., 2021). In addition, MC dropout also
dominates the uncertainty-based approaches to other SSL
tasks (Sedai et al., 2019; Shi et al., 2021; Wang et al., 2021;
Yu et al., 2019; Zhu et al., 2020). MC dropout, however,
is time-consuming, requiring several feedforward passes to
get uncertainty at both the training and the testing stages,
especially when some large models are used.

NP-Match: When Neural Processes meet Semi-Supervised Learning

To solve this drawback and to further promote the related
research, we need to find better probabilistic approaches
for SSL. Considering that MC dropout is an approximation
to the Gaussian process (GP) model (Gal & Ghahramani,
2016), we turn to another approximation model called neu-
ral processes (NPs) (Garnelo et al., 2018b), which can be
regarded as an NN-based formulation that approximates
GPs. Similarly to a GP, a neural process is also a probabilis-
tic model that defines distributions over functions. Thus, an
NP is able to rapidly adapt to new observations, with the
advantage of estimating the uncertainty of each observation.
There are two main aspects that motivate us to investigate
NPs in SSL. Firstly, GPs have been preliminarily explored
for some SSL tasks (Sindhwani et al., 2007; Jean et al.,
2018; Yasarla et al., 2020), because of the property that their
kernels are able to compare labeled data with unlabeled data
when making predictions. NPs share this property, since
it has been proved that NPs can learn non-trivial implicit
kernels from data (Garnelo et al., 2018b). As a result, NPs
are able to make predictions for target points conditioned on
context points. This feature is highly relevant to SSL, which
must learn from limited labeled samples in order to make
predictions for unlabeled data, similarly to how NPs are able
to impute unknown pixel values (i.e., target points) when
given only a small number of known pixels (namely, context
points) (Garnelo et al., 2018b). Due to the learned implicit
kernels in NPs (Garnelo et al., 2018b) and the successful
application of GPs to different SSL tasks (Sindhwani et al.,
2007; Jean et al., 2018; Yasarla et al., 2020), NPs could be
a suitable probabilistic model for SSL, as the kernels can
compare labeled data with unlabeled data in order to im-
prove the quality of pseudo-labels for the unlabeled data at
the training stage. Secondly, previous GP-based works for
SSL do not explore the semi-supervised large-scale image
classification task, since GPs are computationally expensive,
which usually incur a O(n3) runtime for n training points.
But, unlike GPs, NPs are more efficient than GPs, providing
the possibility of applying NPs to this task. NPs are also
computationally significantly more efficient than current
MC-dropout-based approaches to SSL, since, given an input
image, they only need to perform one feedforward pass to
obtain the prediction with an uncertainty estimate.

In this work, we take the first step to explore NPs in large-
scale semi-supervised image classification, and propose a
new probabilistic method called NP-Match. NP-Match still
rests on the combination of consistency regularization and
pseudo-labeling, but it incorporates NPs to the top of deep
neural networks, and therefore it is a probabilistic approach.
Compared to the previous probabilistic method for semi-
supervised image classification (Rizve et al., 2021), NP-
Match not only can make predictions and estimate uncer-
tainty more efficiently, inheriting the advantages of NPs, but
also can achieve a better performance on public benchmarks.

Summarizing, the main contributions of this paper are:

• We propose NP-Match, which adjusts NPs to SSL, and ex-
plore its use in semi-supervised large-scale image classifi-
cation. To our knowledge, this is the first such work. In ad-
dition, NP-Match has the potential to break the monopoly
of MC dropout as the probabilistic model in SSL.

• We experimentally show that the Kullback-Leibler (KL)
divergence in the evidence lower bound (ELBO) of NPs
(Garnelo et al., 2018b) is not a good choice in the con-
text of SSL, which may negatively impact the learning of
global latent variables. To tackle this problem, we pro-
pose a new uncertainty-guided skew-geometric Jensen-
Shannon (JS) divergence (JSGαu) for NP-Match.

• We show that NP-Match outperforms SOTA results or
achieves competitive results on four public benchmarks,
demonstrating its effectiveness for SSL. We also show
that NP-Match estimates uncertainty faster than the MC-
dropout-based probabilistic model, which can improve
the training and the test efficiency.

The rest of this paper is organized as follows. In Section 2,
we review related methods. Section 3 presents NP-Match
and the uncertainty-guided skew-geometric JS divergence
(JSGαu), followed by the experimental settings and results
in Section 4. In Section 5, we give a summary and an
outlook on future research. The source code is available at:
https://github.com/Jianf-Wang/NP-Match.

2. Related Work
We now briefly review related works, including semi-super-
vised learning (SSL) for image classification, Gaussian pro-
cesses (GPs) for SSL, and neural processes (NPs).

SSL for image classification. Most methods for semi-
supervised image classification in the past few years are
based on pseudo-labeling and consistency regularization.
Pseudo-labeling approaches rely on the high confidence of
pseudo-labels, which can be added to the training data set
as labeled data, and those approaches can be classified into
two classes, namely, disagreement-based models and self-
training models. The former models aim to train multiple
learners and exploit the disagreement during the learning
process (Qiao et al., 2018; Chen et al., 2018), while the
latter models aim at training the model on a small amount of
labeled data, and then using its predictions on the unlabeled
data as pseudo-labels (Lee, 2013; Zhai et al., 2019; Wang
et al., 2020; Pham et al., 2021). Consistency-regularization-
based approaches work by performing different transforma-
tions on an input image and adding a regularization term to
make their predictions consistent (Bachman et al., 2014; Saj-
jadi et al., 2016; Laine & Aila, 2017; Berthelot et al., 2019;
Xie et al., 2020). Based on these two approaches, FixMatch

https://github.com/Jianf-Wang/NP-Match

NP-Match: When Neural Processes meet Semi-Supervised Learning

(Sohn et al., 2020) is proposed, which achieves new state-
of-the-art (SOTA) results on the most commonly-studied
SSL benchmarks. FixMatch (Sohn et al., 2020) combines
the merits of these two approaches: given an unlabeled im-
age, weak data augmentation and strong data augmentation
are performed on the image, leading to two versions of the
image, and then FixMatch produces a pseudo-label based
on its weakly-augmented version and a preset confidence
threshold, which is used as the true label for its strongly
augmented version to train the whole framework. The suc-
cess of FixMatch inspired several subsequent methods (Li
et al., 2021; Rizve et al., 2021; Zhang et al., 2021; Nassar
et al., 2021; Pham et al., 2021; Hu et al., 2021). For instance,
Li et al. (2021) additionally design the classification head
and the projection head for generating a class probability
and a low-dimensional embedding, respectively. The projec-
tion head and the classification head are jointly optimized
during training. Specifically, the former is learnt with con-
trastive learning on pseudo-label graphs to encourage the
embeddings of samples with similar pseudo-labels to be
close, and the latter is trained with pseudo-labels that are
smoothed by aggregating information from nearby samples
in the embedding space. Zhang et al. (2021) propose to use
dynamic confidence thresholds that are automatically ad-
justed according to the model’s learning status of each class.
Rizve et al. (2021) propose an uncertainty-aware pseudo-
label selection (UPS) framework for semi-supervised image
classification. The UPS framework introduces MC dropout
to obtain uncertainty estimates, which are then leveraged
as a tool for selecting pseudo-labels. This is the first work
using MC dropout for semi-supervised image classification.

GPs for SSL. Since NPs are also closely related to GPs,
we review the application of GPs to different SSL tasks in
this part. GPs, which are non-parametric models, have been
preliminarily investigated in different semi-supervised learn-
ing tasks. For example, Sindhwani et al. (2007) introduce a
semi-supervised GP classifier, which incorporates the infor-
mation of relationships among labeled and unlabeled data
into the kernel. Their approach, however, has high computa-
tional costs and is thus only evaluated for a simple binary
classification task on small datasets. Deep kernel learning
(Wilson et al., 2016) also lies on the spectrum between NNs
and GPs, and has been integrated into a new framework for
the semi-supervised regression task, named semi-supervised
deep kernel learning (Jean et al., 2018), which aims to mini-
mize the predictive variance for unlabeled data, encourag-
ing unlabeled embeddings to be near labeled embeddings.
Semi-supervised deep kernel learning, however, has not
been applied to SSL image classification, and (similarly
to semi-supervised GPs) also comes with a high (cubic)
computational complexity. Recently, Yasarla et al. (2020)
proposed to combine GPs with UNet (Ronneberger et al.,
2015) for SSL image deraining. Here, GPs are used to get

pseudo-labels for unlabeled samples based on the feature
representations of labeled and unlabeled images. GPs have
also been combined with graph convolutional networks for
semi-supervised learning on graphs (Ng et al., 2018; Walker
& Glocker, 2019; Liu et al., 2020). Although many previous
works explore GPs in different semi-supervised learning
tasks, none of them investigates the application of GPs to
semi-supervised large-scale image classification.

NPs. The origin of NPs can be traced back to conditional
NPs (Garnelo et al., 2018a), which define conditional distri-
butions over functions given a set of observations. Condi-
tional NPs, however, do not introduce global latent variables
for observations, which led to the birth of NPs (Garnelo
et al., 2018b). In NPs, the mean-aggregator is used to sum-
marize the encoded inputs of a task into a global latent
variable, which is then used to make predictions on targets
in the task. In recent years, several NP variants have been
proposed to better approximate stochastic processes. For ex-
ample, Kim et al. (2019) consider that the mean-aggregator
may cause difficulties for the decoder to pick relevant in-
formation with regard to making predictions, and they in-
troduce a differentiable attention mechanism to solve this
issue, resulting in new attentive NPs. Gordon et al. (2020)
consider that the translation equivariance is important for
prediction problems, which should be considered. There-
fore, they incorporate translation equivariance into NPs and
design a new model, called convolutional conditional NPs.
Besides, Louizos et al. (2019) consider that using global
latent variables is not flexible for encoding inductive biases.
Thus, they propose to use local latent variables along with
a dependency structure among them, resulting in new func-
tional NPs. Lee et al. (2020) point out the limitation of
using a single Gaussian latent variable to model functional
uncertainty. To solve the limitation, they propose to use
bootstrapping for inducing functional uncertainty, leading
to a new NP variant, called Bootstrapping Neural Processes
(BNP). Bruinsma et al. (2021) introduce a novel member of
the NP family that incorporates translation equivariance and
models the predictive distributions directly with Gaussian
processes, called Gaussian NP (GNP). GNPs do not allow
for correlations in the predictive distribution, but also pro-
vide universal approximation guarantees. Currently, NPs
and their variants have been widely used in many differ-
ent settings, including meta-learning (Singh et al., 2019;
Yoon et al., 2020; Requeima et al., 2019) and sequential
data modelling (Qin et al., 2019), but they have not been
studied in SSL. Our work is the first to leverage NPs for
semi-supervised large-scale image recognition. We choose
the most basic model from (Garnelo et al., 2018b) (i.e., the
original NPs), and we expect that future works can further
study the application of other variants to this task.

NP-Match: When Neural Processes meet Semi-Supervised Learning

CNN

Feature
vectors

Labeled data

Unlabeled data

Labeled data

Selected
Unlabeled data

Real Labels

Feature vectors,
e.g., r test
(target) points.

Pseudo Labels

Input
images

Inference Mode

Training Mode

MLPs

MLPs

Latent Path

Deterministic Path

MLPs

Concatenate

with one-hot

real labels

Concatenate with one-hot real orpseudo labels MLPs

M

M

Mean
vector

Variance
vector

Reparameterization

Latent
vectors

Deterministic
Memory Bank

Latent
Memory Bank

Sampling T latent vectors,
and making rcopies of

the latent vectors
•
•
•

•
•
•

m context points,
which contain
labeled data

r target points,
which contain
labeled data or
unlabeled data

C
on

ca
te

na
te

C
la

ss
if

ie
r

MLPs

Decoder,
i.e., g(·)

Making T copies of each target point

order-invariant
representation

order-invariant
representation

NP Model

CNNInput
images

Latent Path

Deterministic Path

MLPs

MLPs

M

M

Mean
vector

Variance
vector

Latent
vectors

Deterministic
Memory Bank

Latent
Memory Bank

Sampling T latent vectors,
and making r copies of

the latent vectors
•
•
•

C
on

ca
te

na
te

MLPs

Decoder,
i.e., g(·)

NP Model

Reparameterization

Making T copies of each target point

Making T * r copies of the order-
invariant representation

Mean aggregator

Test data

M Mean aggregator

order-invariant
representation

order-invariant
representation C

la
ss

if
ie

r

•
•
•

Making T * r copies of the order-
invariant representation

M

Figure 1. Overview of NP-Match: it contains a convolutional neural network (CNN) and an NP model that is shown in the red dotted box.
The feature vectors come from the global average pooling layer in the CNN.

3. Methodology
In this section, we provide a brief introduction to neural
processes (NPs) and a detailed description of our NP-Match.

3.1. NPs

NPs approximate stochastic processes via finite-dimensional
marginal distributions (Garnelo et al., 2018b). Formally,
given a probability space (Ω,Σ,Π) and an index set X , a
stochastic process can be written as {F (x, ω) : x ∈ X},
where F (· , ω) is a sample function mapping X to another
space Y for any point ω ∈ Ω. For each finite sequence x1:n,
a marginal joint distribution function can be defined on the
function values F (x1, ω), F (x2, ω), . . . , F (xn, ω), which
satisfies two conditions given by the Kolmogorov Extension
Theorem (Øksendal, 2003), namely, exchangeability and
consistency. Assuming that a density π, where dΠ = πdµ,
and the likelihood density p(y1:n|F (· , ω), x1:n) exist, the
marginal joint distribution function can be written as:

p(y1:n|x1:n) =

∫
π(ω)p(y1:n|F (· , ω), x1:n)dµ(ω). (1)

The exchangeability condition requires the joint distribu-
tions to be invariant to permutations of the elements, i.e.,
p(y1:n|x1:n) = p(φ(y1:n)|φ(y1:n)), where φ is a permuta-
tion of {1, . . . , n}. The consistency condition expresses that
if a part of the sequence is marginalised out, then the result-
ing marginal distribution is consistent with that defined on

the original sequence.

Letting (Ω,Σ) be (Rd,B(Rd)), where B(Rd) denotes the
Borel σ-algebra of Rd, NPs parameterize the function
F (· , ω) with a high-dimensional random vector z sampled
from a multivariate Gaussian distribution. Then, F (xi, ω)
can be replaced by g(xi, z), where g(·) denotes a neural
network, and Eq. (1) becomes:

p(y1:n|x1:n) =

∫
π(z)p(y1:n|g(x1:n, z), x1:n)dµ(z). (2)

The training objective of NPs is to maximize p(y1:n|x1:n),
and the learning procedure reflects the NPs’ property that
they have the capability to make predictions for target points
conditioned on context points (Garnelo et al., 2018b).

3.2. NP-Match

As Figure 1 shows, NP-Match is mainly composed of two
parts: a deep neural network and an NP model. The deep
neural network is leveraged for obtaining feature represen-
tations of input images, while the NP model is built upon
the network to receive the representations for classification.

3.2.1. NP MODEL FOR SEMI-SUPERVISED IMAGE
CLASSIFICATION

Since we extend the original NPs (Garnelo et al., 2018b)
to the classification task, p(y1:n|g(x1:n, z), x1:n) in Eq. (2)
should define a categorical distribution rather than a Gaus-

NP-Match: When Neural Processes meet Semi-Supervised Learning

sian distribution. Therefore, we parameterize the categorical
distribution by probability vectors from a classifier that con-
tains a weight matrix (W) and a softmax function (Φ):

p(y1:n|g(x1:n, z), x1:n) = Categorical(Φ(Wg(x1:n, z))).
(3)

Note that g(·) can be learned via amortised variational
inference, and to use this method, two steps need to be
done: (1) parameterize a variational distribution over z, and
(2) find the evidence lower bound (ELBO) as the learn-
ing objective. For the first step, we let q(z|x1:n, y1:n) be a
variational distribution defined on the same measure space,
which can be parameterized by a neural network. For the
second step, given a finite sequence with length n, we as-
sume that there are m context points (x1:m) and r target
points (xm+1: m+r) in it, i.e., m+ r = n. Then, the ELBO
is given by (with proof in the appendix):

log p(y1:n|x1:n) ≥

Eq(z|xm+1: m+r,ym+1: m+r)

[m+r∑
i=m+1

log p(yi|z, xi)−

log
q(z|xm+1: m+r, ym+1: m+r)

q(z|x1:m, y1:m)

]
+ const.

(4)

To learn the NP model, one can maximize this ELBO. Under
the setting of SSL, we consider that only labeled data can
be treated as context points, and either labeled or unlabeled
data can be treated as target points, since the target points
are what the NP model makes predictions for.

3.2.2. NP-MATCH PIPELINE

We now introduce the NP-Match pipeline. We first focus on
the configuration of the NP model, which is shown in the red
dotted box in Figure 1. The NP model is mainly constructed
by MLPs, memory banks, and a classifier. Specifically, the
classifier is composed of the weight matrix (W) and the
softmax function (Φ). Similarly to the original implemen-
tation of NPs, we build two paths with the memory banks
and MLPs, namely, the latent path and the deterministic
path. The decoder g(·) is also implemented with MLPs.
The workflow of NP-Match at the training stage and the
inference stage are different, which are shown in Figure 1,
and they are introduced separately as follows.

Training mode. Given a batch of B labeled images L =
{(xi, yi) : i∈{1, . . . , B}} and a batch of unlabeled im-
ages U = {xu

i : i∈{1, . . . , µB}} at each iteration, where
µ determines the relative size of U to L, we apply weak
augmentation (i.e., crop-and-flip) on the labeled and unla-
beled samples, and strong augmentation (i.e., RandAugment
(Cubuk et al., 2020)) on only the unlabeled samples. After
the augmentation is applied, the images are passed through
the deep neural network, and the features are input to the NP
model, which finally outputs the predictions and associated
uncertainties. The detailed process can be summarized as

follows. At the start of each iteration, NP-Match is switched
to inference mode, and it makes predictions for the weakly-
augmented unlabeled data. Then, inference mode is turned
off, and those predictions are treated as pseudo-labels for
unlabeled data. After receiving the features, real labels, and
pseudo-labels, the NP model first duplicates the labeled sam-
ples and treats them as context points, and all the labeled and
unlabeled samples in the original batches are then treated as
target points, since the NP model needs to make a prediction
for them. Thereafter, the target points and context points
are separately fed to the latent path and the deterministic
path. As for the latent path, target points are concatenated
with their corresponding real labels or pseudo labels, and
processed by MLPs to get new representations. Then, the
representations are averaged by a mean aggregator along
the batch dimension, leading to an order-invariant repre-
sentation, which implements the exchangeability and the
consistency condition, and they are simultaneously stored in
the latent memory bank, which is updated with a first-in-first-
out strategy. After the mean aggregator, the order-invariant
representation is further processed by other two MLPs in
order to get the mean vector and the variance vector, which
are used for sampling latent vectors via the reparameteriza-
tion trick, and the number of latent vectors sampled at each
feed-forward pass is denoted T . As for the deterministic
path, context points are input to this path and are processed
in the same way as the target points, until an order-invariant
representation is procured from the mean aggregator. We
also introduce a memory bank to the deterministic path
for storing representations. Subsequently, each target point
is concatenated with the T latent vectors and the order-
invariant representations from the deterministic path (note
that, practically, the target point and the order-invariant rep-
resentations from the deterministic path must be copied T
times). After the concatenation operation, the T ∗ r feature
representations are fed into the decoder g(·) and then the
classifier, which outputs T probability distributions over
classes for each target point. The final prediction for each
target point can be obtained by averaging the T predictions,
and the uncertainty is computed as the entropy of the aver-
age prediction (Kendall & Gal, 2017). The ELBO (Eq. (4))
shows the learning objective. Specifically, the first term can
be achieved by using the cross-entropy loss on the labeled
and unlabeled data with their corresponding real labels and
pseudo-labels, while the second term is the KL divergence
between q(z|xm+1: m+r, ym+1: m+r) and q(z|x1:m, y1:m).

Inference mode. Concerning a set of test images, they are
also passed through the deep neural network at first to ob-
tain their feature representations. Then, they are treated as
target points and are fed to the NP model. Since the labels
of test data are not available, it is impossible to obtain the
order-invariant representation from test data. In this case,
the stored features in the two memory banks can be directly

NP-Match: When Neural Processes meet Semi-Supervised Learning

used. As the bottom diagram of Figure 1 shows, after the
order-invariant representations are obtained from the mem-
ory banks, the target points are leveraged in the same way
as in the training mode to generate concatenated feature
representations for the decoder g(·) and then the classifier.

3.2.3. UNCERTAINTY-GUIDED SKEW-GEOMETRIC JS
DIVERGENCE

NP-Match, like many SSL approaches, relies on the use
of pseudo-labels for the unlabeled samples. Pseudo-labels,
however, are sometimes inaccurate and can lead to the neu-
ral network learning poor feature representations. In our
pipeline, this can go on to impact the representation pro-
cured from the mean-aggregator and hence the model’s
estimated mean vector, variance vector, and global latent
vectors (see “Latent Path” in Figure 1). To remedy this,
similarly to how the KL divergence term in the ELBO
(Eq. (4)) is used to learn global latent variables (Garnelo
et al., 2018b), we propose a new distribution divergence,
called the uncertainty-guided skew-geometric JS divergence
(JSGαu). We first formalize the definition of JSGαu :

Definition 1. Let (Ω,Σ) be a measurable space, where Ω
denotes the sample space, and Σ denotes the σ-algebra of
measurable events. P and Q are two probability measures
defined on the measurable space. Concerning a positive
measure1, which is denoted as µ, the uncertainty-guided
skew-geometric JS divergence (JSGαu) can be defined as:

JSGαu (p, q) =

(1− αu)

∫
p log

p

G(p, q)αu

dµ+ αu

∫
q log

q

G(p, q)αu

dµ,

(5)
where p and q are the Radon-Nikodym derivatives of P and
Q with respect to µ, the scalar αu ∈ [0, 1] is calculated
based on the uncertainty, and G(p, q)αu = p1−αuqαu /
(
∫
Ω
p1−αuqαudµ). The dual form of JSGαu is given by:

JS
Gαu
∗ (p, q) = (1− αu)

∫
G(p, q)αu log

G(p, q)αu

p
dµ+

αu

∫
G(p, q)αu log

G(p, q)αu

q
dµ.

(6)

The proposed JSGαu is an extension of the skew-geometric
JS divergence first proposed by Nielsen (2020). Specifically,
Nielsen (2020) generalizes the JS divergence with abstract
means (quasi-arithmetic means (Niculescu & Persson,
2006)), in which a scalar α is defined to control the degree
of divergence skew.2 By selecting the weighted geometric
mean p1−αqα, such generalized JS divergence becomes the

1Specifically, the positive measure is usually the Lebesgue
measure with the Borel σ-algebra B(Rd) or the counting measure
with the power set σ-algebra 2Ω.

2The divergence skew means how closely related the interme-
diate distribution (the abstract mean of p and q) is to p or q.

skew-geometric JS divergence, which can be easily applied
to the Gaussian distribution because of its property that the
weighted product of exponential family distributions stays
in the exponential family (Nielsen & Garcia, 2009). Our
JSGαu extends such divergence by incorporating the uncer-
tainty into the scalar α to dynamically adjust the divergence
skew. We assume the real variational distribution of the
global latent variable under the supervised learning to be q∗.
If the framework is trained with real labels, the condition
q(z|xm+1: m+r, ym+1: m+r) = q(z|x1:m, y1:m) = q∗

will hold after training, since they are all the marginal
distributions of the same stochastic process. However, as
for SSL, q(z|xm+1: m+r, ym+1: m+r) and q(z|x1:m, y1:m)
are no longer equal to q∗, as some low-quality repre-
sentations are involved during training, which affect
the estimation of q(z|xm+1: m+r, ym+1: m+r) and
q(z|x1:m, y1:m). Our proposed JSGαu solves this issue by
introducing an intermediate distribution that is calculated
via G(q(z|x1:m, y1:m), q(z|xm+1: m+r, ym+1: m+r))αu

,
where αu = ucavg/(ucavg + utavg). Here, ucavg de-
notes the average value over the uncertainties of the
predictions of context points, and utavg

represents the
average value over that of target points. With this
setting, the intermediate distribution is usually close to
q∗. For example, when ucavg

is large, and utavg
is small,

which means that there are many low-quality feature
presentations involved for calculating q(z|x1:m, y1:m),
and q(z|xm+1: m+r, ym+1: m+r) is closer to q∗, then
G(q(z|x1:m, y1:m), q(z|xm+1: m+r, ym+1: m+r))αu

will
be close to q(z|xm+1: m+r, ym+1: m+r), and as a result,
the network is optimized to learn the distribution of the
global latent variable in the direction to q∗, which mitigates
the issue to some extent.3 Concerning the variational
distribution being supposed to be a Gaussian distribution,
we introduce the following theorem (with proof in the
appendix) for calculating JSGαu on Gaussian distributions:

Theorem 1. Given two multivariate Gaussians N1(µ1,Σ1)
and N2(µ2,Σ2), the following holds:

JSGαu (N1,N2) =
1

2
(tr(Σ−1

αu
((1− αu)Σ1 + αuΣ2))+

(1− αu)(µαu − µ1)
TΣ−1

αu
(µαu − µ1)+

αu(µαu − µ2)
TΣ−1

αu
(µαu − µ2)+

log[
det[Σαu]

det[Σ1]1−αudet[Σ2]αu
]−D)

JS
Gαu
∗ (N1,N2) =

1

2
(log[

det[Σ1]
1−αudet[Σ2]

αu

det[Σαu]
] + αuµ

T
2 Σ

−1
2 µ2

− µT
αu

Σ−1
αu

µαu + (1− αu)µ
T
1 Σ

−1
1 µ1),

(7)

3As long as one of q(z|x1:m, y1:m) and q(z|xm+1: m+r,
ym+1: m+r) is close to q∗, the proposed JSGαu mitigates the
issue, but JSGαu still has difficulties to solve the problem when
both of their calculations involve many low-quality representations.

NP-Match: When Neural Processes meet Semi-Supervised Learning

where Σαu
= ((1 − αu)Σ

−1
1 + αuΣ

−1
2)−1 and µαu

=
Σαu((1− αu)Σ

−1
1 µ1 + αuΣ

−1
2 µ2), D denotes the number

of dimension, and det[·] represents the determinant.

With Theorem 1, one can calculate JSGαu or its dual form
JS

Gαu
∗ based on the mean vector and the variance vector,

and use JSGαu or JSGαu
∗ to replace the original KL diver-

gence term in the ELBO (Eq. (4)) for training the whole
framework. When the two distributions are diagonal Gaus-
sians, Σ1 and Σ2 can be implemented by diagonal matrices
with the variance vectors for calculating JSGαu or JSGαu

∗ .

3.2.4. LOSS FUNCTIONS

To calculate loss functions, reliable pseudo-labels are re-
quired for unlabeled data. In practice, to select reliable
unlabeled samples from U and their corresponding pseudo-
labels, we preset a confidence threshold (τc) and an uncer-
tainty threshold (τu). In particular, as for unlabeled data xu

i ,
NP-Match gives its prediction p(y|Augw(x

u
i)) and associ-

ated uncertainty estimate under the inference mode, where
Augw(·) denotes the weak augmentation. When the highest
prediction score max(p(y|Augw(x

u
i))) is higher than τc,

and the uncertainty is smaller than τu, the sample will be
chosen, and we denote the selected sample as xuc

i , since the
model is certain about his prediction, and the pseudo-label of
xuc
i is ŷi = arg max(p(y|Augw(x

uc
i))). Concerning µB

unlabeled samples in U , we assume Bc unlabeled samples
are selected from them in each feedforward pass. According
to the ELBO (Eq. (4)), three loss terms are used for training,
namely, Lcls, Lu

cls, and JSGαu . For each input (labeled
or unlabeled), the NP model can give T predictions, and
hence Lcls and Lu

cls are defined as:

Lcls =
1

B × T

B∑
i=1

T∑
j=1

H(y∗
i , pj(y|Augw(xi))),

Lu
cls =

1

Bc × T

Bc∑
i=1

T∑
j=1

H(ŷi, pj(y|Augs(x
uc
i))),

(8)

where Augs(·) denotes the strong augmentation, y∗i repre-
sents the real label for the labeled sample xi, and H(·, ·)
denotes the cross-entropy between two distributions. Thus,
the total loss function is given by:

Ltotal = Lcls + λuL
u
cls + βJSGαu , (9)

where λu and β are coefficients. During training, we fol-
lowed previous work (Sohn et al., 2020; Zhang et al., 2021;
Rizve et al., 2021; Li et al., 2021) to utilize the exponen-
tial moving average (EMA) technique. It is worth noting
that, in the real implementation, NP-Match only preserves
the averaged representation over all representations in each
memory bank after training, which just takes up negligible
storage space.

4. Experiments
We now report on our experiments of NP-Match on four
public image classification benchmarks. To save space,
implementation details are given in the appendix.

4.1. Datasets

We conducted our experiments on four widely used pub-
lic SSL benchmarks, including CIFAR-10 (Krizhevsky
et al., 2009), CIFAR-100 (Krizhevsky et al., 2009), STL-
10 (Coates et al., 2011), and ImageNet (Deng et al., 2009).
CIFAR-10 and CIFAR-100 contain 50,000 images of size
32×32 from 10 and 100 classes, respectively. We evaluated
NP-match on these two datasets following the evaluation set-
tings used in previous works (Sohn et al., 2020; Zhang et al.,
2021; Li et al., 2021). The STL-10 dataset has 5000 labeled
samples with size 96× 96 from 10 classes and 100,000 un-
labeled samples, and it is more difficult than CIFAR, since
STL-10 has a number of out-of-distribution images in the
unlabeled set. We follow the experimental settings for STL-
10 as detailed in (Zhang et al., 2021). Finally, ImageNet
contains around 1.2 million images from 1000 classes. Fol-
lowing the experimental settings in (Zhang et al., 2021), we
used 100K labeled data, namely, 100 labels per class.

4.2. Main Results

In the following, we report the main experimental results on
the accuracy, the average uncertainty, the expected uncer-
tainty calibration error, and the running time of NP-Match
compared with SOTA approaches.

First, in Table 1, we compare NP-Match with SOTA SSL im-
age classification methods on CIFAR-10, CIFAR-100, and
STL-10. We see that NP-Match outperforms SOTA results
or achieves competitive results under different SSL settings.
We highlight two key observations. First, NP-Match out-
performs all other methods by a wide margin on all three
benchmarks under the most challenging settings, where the
number of labeled samples is smallest. Second, NP-Match
is compared to UPS4, since the UPS framework is the MC-
dropout-based probabilistic model for semi-supervised im-
age classification, and NP-Match completely outperforms
them on all three benchmarks. This suggests that NPs can be
a good alternative to MC dropout in probabilistic approaches
to semi-supervised learning tasks.

Second, we analyse the relationship between the average
class-wise uncertainty and accuracy at test phase on CIFAR-
10 and STL10. From Figure 2, we empirically observe
that: (1) when more labeled data are used for training, the
average uncertainty of samples’ predictions for each class

4Note that UPS (Rizve et al., 2021) does not use strong aug-
mentations, thus we re-implemented it with RandAugment (Cubuk
et al., 2020) for fair comparisons.

NP-Match: When Neural Processes meet Semi-Supervised Learning

Dataset CIFAR-10 CIFAR-100 STL-10
Label Amount 40 250 4000 400 2500 10000 40 250 1000

MixMatch (Berthelot et al., 2019) 36.19 (±6.48) 13.63 (±0.59) 6.66 (±0.26) 67.59 (±0.66) 39.76 (±0.48) 27.78 (±0.29) 54.93 (±0.96) 34.52 (±0.32) 21.70 (±0.68)
ReMixMatch (Berthelot et al., 2020) 9.88 (±1.03) 6.30 (±0.05) 4.84 (±0.01) 42.75 (±1.05) 26.03 (±0.35) 20.02 (±0.27) 32.12 (±6.24) 12.49 (±1.28) 6.74 (±0.14)

UDA (Xie et al., 2020) 10.62 (±3.75) 5.16 (±0.06) 4.29 (±0.07) 46.39 (±1.59) 27.73 (±0.21) 22.49 (±0.23) 37.42 (±8.44) 9.72 (±1.15) 6.64 (±0.17)
CoMatch (Li et al., 2021) 6.88 (±0.92) 4.90 (±0.35) 4.06 (±0.03) 40.02 (±1.11) 27.01 (±0.21) 21.83 (±0.23) 31.77 (±2.56) 11.56 (±1.27) 8.66 (±0.41)

SemCo (Nassar et al., 2021) 7.87 (±0.22) 5.12 (±0.27) 3.80 (±0.08) 44.11 (±1.18) 31.93 (±0.33) 24.45 (±0.12) 34.17 (±2.78) 12.23 (±1.40) 7.49 (±0.29)
Meta Pseudo Labels (Pham et al., 2021) 6.93 (±0.17) 4.94 (±0.04) 3.89 (±0.07) 44.23 (±0.99) 27.68 (±0.22) 22.48 (±0.18) 34.29 (±3.29) 9.90 (±0.96) 6.45 (±0.26)

FlexMatch (Zhang et al., 2021) 4.96 (±0.06) 4.98 (±0.09) 4.19 (±0.01) 39.94 (±1.62) 26.49 (±0.20) 21.90 (±0.15) 29.15 (±4.16) 8.23 (±0.39) 5.77 (±0.18)
UPS (Rizve et al., 2021) 5.26 (±0.29) 5.11 (±0.08) 4.25 (±0.05) 41.07 (±1.66) 27.14 (±0.24) 21.97 (±0.23) 30.82 (±2.16) 9.77 (±0.44) 6.02 (±0.28)

FixMatch (Sohn et al., 2020) 7.47 (±0.28) 4.86 (±0.05) 4.21 (±0.08) 46.42 (±0.82) 28.03 (±0.16) 22.20 (±0.12) 35.96 (±4.14) 9.81 (±1.04) 6.25 (±0.33)
NP-Match (ours) 4.91 (±0.04) 4.96 (±0.06) 4.11 (±0.02) 38.91 (±0.99) 26.03 (±0.26) 21.22 (±0.13) 14.20 (±0.67) 9.51 (±0.37) 5.59 (±0.24)

Table 1. Comparison with SOTA results on CIFAR-10, CIFAR-100, and STL-10. The error rates are reported with standard deviation.

0

0.02

0.04

0.06

0.08

0.1

0.12

0 1 2 3 4 5 6 7 8 9

40 250 4000

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 1 2 3 4 5 6 7 8 9

40 250 1000

88

90

92

94

96

98

100

0 1 2 3 4 5 6 7 8 9

40 250 4000

60
65
70
75
80
85
90
95

100

0 1 2 3 4 5 6 7 8 9

40 250 1000
Number of Labeled Samples

Indexes of Classes

Uncertainty
Number of Labeled Samples

Accuracy Uncertainty
Number of Labeled Samples Number of Labeled Samples

Accuracy

(a) CIFAR-10 (b) STL-10

Indexes of Classes Indexes of Classes Indexes of Classes

Figure 2. Analysis of average class-wise uncertainty and accuracy.

Dataset CIFAR-10 STL-10
Label Amount 40 250 4000 40 250 1000

UPS (MC Dropout) 7.96 7.02 5.82 17.23 9.65 5.69
NP-Match 7.23 6.85 5.89 12.45 8.72 5.28

Table 2. Expected UCEs (%) of the MC-dropout-based model (i.e.,
UPS (Rizve et al., 2021)) and of NP-Match on the test sets of
CIFAR-10 and STL-10.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

5 10 15 20 25

UPS（MC Dropout） NP-Match (Neural Processes)

0

2

4

6

8

10

12

14

16

5 10 15 20 25

UPS（MC Dropout） NP-Match (Neural Processes)

(a) WRN-28-2 on CIFAR-10 (b) WRN-28-8 on CIFAR-100

Figure 3. Time consumption of estimating uncertainty for the MC-
dropout-based model (i.e., UPS (Rizve et al., 2021)) and NP-Match.
The horizontal axis refers to the number of predictions used for
the uncertainty quantification, and the vertical axis indicates the
time consumption (sec).

decreases. This is consistent with the property of NPs and
GPs where the model is less uncertain with regard to its
prediction when more real and correct labels are leveraged;
(2) the classes with higher average uncertainties have lower
accuracy, meaning that the uncertainty is a good standard
for choosing unlabeled samples.

Third, the expected uncertainty calibration error (UCE) of
our method is also calculated to evaluate the uncertainty

Method Top-1 Top-5

Deterministic
Methods

FixMatch (Sohn et al., 2020) 43.66 21.80
FlexMatch (Zhang et al., 2021) 41.85 19.48

CoMatch (Li et al., 2021) 42.17 19.64
Probabilistic

Methods
UPS (Rizve et al., 2021) 42.69 20.23

NP-Match 41.78 19.33

Table 3. Error rates of SOTA methods on ImageNet.

estimation. The expected UCE is used to measure the mis-
calibration of uncertainty (Laves et al., 2020), which is an
analogue to the expected calibration error (ECE) (Guo et al.,
2017; Naeini et al., 2015). The low expected UCE indicates
that the model is certain when making accurate predictions
and that the model is uncertain when making inaccurate pre-
dictions. More details about the expected UCE can be found
in previous works (Laves et al., 2020; Krishnan & Tickoo,
2020). The results of NP-Match and the MC-dropout-based
model (i.e., UPS (Rizve et al., 2021)) are shown in Table 2;
their comparison shows that NP-Match can output more
reliable and well-calibrated uncertainty estimates.

Furthermore, we compare the running time of NP-Match
and the MC dropout-based model (i.e., UPS (Rizve et al.,
2021)). We use a batch of 16 samples and two network archi-
tectures that are widely used in previous works (Zagoruyko
& Komodakis, 2016; Zhang et al., 2021; Sohn et al., 2020;
Li et al., 2021), namely, WRN-28-2 on CIFAR-10 (Figure 3
(a)) and WRN-28-8 on CIFAR-100 (Figure 3 (b)). In (a), we
observe that when the number of predictions (T) increases,
the time cost of the UPS framework rises quickly, but the
time cost of NP-Match grows slowly. In (b), we observe
that the time cost gap between these two methods is even

NP-Match: When Neural Processes meet Semi-Supervised Learning

Dataset CIFAR-10 CIFAR-100 STL-10
Label Amount 40 250 4000 400 2500 10000 40 250 1000

NP-Match with KL 5.32 (±0.06) 5.20 (±0.02) 4.36 (±0.03) 39.15 (±1.53) 26.48 (±0.23) 21.51 (±0.17) 14.67 (±0.38) 9.92 (±0.24) 6.21 (±0.23)

NP-Match with JS
Gαu
∗ 4.93 (±0.02) 4.87 (±0.03) 4.19 (±0.04) 38.67 (±1.29) 26.24 (±0.17) 21.33 (±0.10) 14.45 (±0.55) 9.48 (±0.28) 5.47 (±0.19)

NP-Match with JSGαu 4.91 (±0.04) 4.96 (±0.06) 4.11 (±0.02) 38.91 (±0.99) 26.03 (±0.26) 21.22 (±0.13) 14.20 (±0.67) 9.51 (±0.37) 5.59 (±0.24)

Table 4. Ablation studies of the proposed uncertainty-guided skew-geometric JS divergence and its dual form.

larger when a larger model is tested on a larger dataset. This
demonstrates that NP-Match is significantly more computa-
tionally efficient than MC dropout-based methods.

Finally, Table 3 shows the experiments conducted on Im-
ageNet. Here, NP-Match achieves a SOTA performance,
suggesting that it is effective at handling challenging large-
scale datasets. Note that previous works usually evaluate
their frameworks under distinct SSL settings, and thus it is
hard to compare different methods directly. Therefore, we
re-evaluate another two methods proposed recently under
the same SSL setting with the same training details, namely,
UPS and CoMatch.

4.3. Ablation Studies

We now report our ablation studies on CIFAR-10, CIFAR-
100, and STL-10. We also present further experiments,
including a hyperparameter exploration, in the appendix.

We evaluate our uncertainty-guided skew-geometric JS di-
vergence (JSGαu) as well as its dual form (JSGαu

∗), and
compare them to the original KL divergence in NPs. In
Table 4, we see that NP-Match with KL divergence con-
sistently underperforms relative to our proposed JSGαu

and JS
Gαu
∗ . This suggests that our uncertainty-guided

skew-geometric JS divergence can mitigate the problem
caused by low-quality feature representations. Between the
two, JSGαu and JS

Gαu
∗ achieve a comparable performance

across the three benchmarks, and thus we select JSGαu to
replace the original KL divergence in the ELBO (Eq. (4)) for
the comparisons to previous SOTA methods in Section 4.2.

5. Summary and Outlook
In this work, we proposed the application of neural pro-
cesses (NPs) to semi-supervised learning (SSL), designing
a new framework called NP-Match, and explored its use
in semi-supervised large-scale image classification. To our
knowledge, this is the first such work. To better adapt NP-
Match to the SSL task, we proposed a new divergence term,
which we call uncertainty-guided skew-geometric JS diver-
gence, to replace the original KL divergence in NPs. We
demonstrated the effectiveness of NP-Match and the pro-
posed divergence term for SSL in extensive experiments,
and also showed that NP-Match could be a good alterna-
tive to MC dropout in SSL.

Future works will explore the following two directions. First,
due to the successful application of NPs to semi-supervised
image classification, it is valuable to explore NPs in other
SSL tasks, such as object detection and segmentation. Sec-
ond, many successful NPs variants have been proposed since
the original NPs (Garnelo et al., 2018b) (see Section 2). We
will also explore these in SSL for image classification.

6. Acknowledgements
This work was partially supported by the Alan Turing In-
stitute under the EPSRC grant EP/N510129/1, by the AXA
Research Fund, and by the EPSRC grant EP/R013667/1.
We also acknowledge the use of the EPSRC-funded Tier 2
facility JADE (EP/P020275/1) and GPU computing support
by Scan Computers International Ltd.

References
Bachman, P., Alsharif, O., and Precup, D. Learning with

pseudo-ensembles. Advances in Neural Information Pro-
cessing Systems, 27:3365–3373, 2014.

Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N.,
Oliver, A., and Raffel, C. MixMatch: A holistic approach
to semi-supervised learning. Advances in Neural Infor-
mation Processing Systems, 2019.

Berthelot, D., Carlini, N., Cubuk, E. D., Kurakin, A., Sohn,
K., Zhang, H., and Raffel, C. ReMixMatch: Semi-
supervised learning with distribution alignment and aug-
mentation anchoring. International Conference on Learn-
ing Representations, 2020.

Bruinsma, W. P., Requeima, J., Foong, A. Y., Gordon, J.,
and Turner, R. E. The Gaussian neural process. Advances
in Approximate Bayesian Inference, 2021.

Chen, D.-D., Wang, W., Gao, W., and Zhou, Z.-H. Tri-net
for semi-supervised deep learning. In Proceedings of 27th
International Joint Conference on Artificial Intelligence,
pp. 2014–2020, 2018.

Coates, A., Ng, A., and Lee, H. An analysis of single-layer
networks in unsupervised feature learning. In Interna-
tional Conference on Artificial Intelligence and Statistics,
pp. 215–223. JMLR Workshop and Conference Proceed-
ings, 2011.

NP-Match: When Neural Processes meet Semi-Supervised Learning

Cubuk, E. D., Zoph, B., Shlens, J., and Le, Q. V. Ran-
dAugment: Practical automated data augmentation with
a reduced search space. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
Workshops, pp. 702–703, 2020.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. ImageNet: A large-scale hierarchical image database.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 248–255, 2009.

Gal, Y. and Ghahramani, Z. Dropout as a Bayesian approxi-
mation: Representing model uncertainty in deep learning.
In International Conference on Machine Learning, pp.
1050–1059. PMLR, 2016.

Garnelo, M., Rosenbaum, D., Maddison, C., Ramalho, T.,
Saxton, D., Shanahan, M., Teh, Y. W., Rezende, D., and
Eslami, S. A. Conditional neural processes. In Interna-
tional Conference on Machine Learning, pp. 1704–1713.
PMLR, 2018a.

Garnelo, M., Schwarz, J., Rosenbaum, D., Viola, F.,
Rezende, D. J., Eslami, S., and Teh, Y. W. Neural pro-
cesses. arXiv:1807.01622, 2018b.

Gordon, J., Bruinsma, W. P., Foong, A. Y., Requeima, J.,
Dubois, Y., and Turner, R. E. Convolutional conditional
neural processes. International Conference on Learning
Representations, 2020.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. On cali-
bration of modern neural networks. In International Con-
ference on Machine Learning, pp. 1321–1330. PMLR,
2017.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 770–778, 2016.

Hu, Z., Yang, Z., Hu, X., and Nevatia, R. SimPLE: Similar
pseudo label exploitation for semi-supervised classifica-
tion. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 15099–
15108, 2021.

Jean, N., Xie, S. M., and Ermon, S. Semi-supervised deep
kernel learning: Regression with unlabeled data by mini-
mizing predictive variance. Advances in Neural Informa-
tion Processing Systems, 2018.

Kendall, A. and Gal, Y. What uncertainties do we need in
bayesian deep learning for computer vision? Advances
in Neural Information Processing Systems, 2017.

Kim, H., Mnih, A., Schwarz, J., Garnelo, M., Eslami, A.,
Rosenbaum, D., Vinyals, O., and Teh, Y. W. Attentive

neural processes. International Conference on Learning
Representations, 2019.

Krishnan, R. and Tickoo, O. Improving model calibration
with accuracy versus uncertainty optimization. Advances
in Neural Information Processing Systems, 2020.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. ImageNet
classification with deep convolutional neural networks.
Advances in Neural Information Processing Systems, 25:
1097–1105, 2012.

Laine, S. and Aila, T. Temporal ensembling for semi-
supervised learning. International Conference on Learn-
ing Representations, 2017.

Laves, M.-H., Ihler, S., Kortmann, K.-P., and Ortmaier, T.
Calibration of model uncertainty for dropout variational
inference. arXiv:2006.11584, 2020.

Lee, D.-H. Pseudo-label: The simple and efficient semi-
supervised learning method for deep neural networks. In
Workshop on Challenges in Representation Learning, In-
ternational Conference on Machine Learning, volume 3,
pp. 896, 2013.

Lee, J., Lee, Y., Kim, J., Yang, E., Hwang, S. J., and Teh,
Y. W. Bootstrapping neural processes. Advances in Neural
Information Processing Systems, pp. 6606–6615, 2020.

Li, J., Xiong, C., and Hoi, S. C. CoMatch: Semi-supervised
learning with contrastive graph regularization. In Pro-
ceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 9475–9484, 2021.

Li, Y.-F. and Zhou, Z.-H. Towards making unlabeled data
never hurt. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 37(1):175–188, 2014.

Liu, W., He, J., and Chang, S.-F. Large graph construction
for scalable semi-supervised learning. In International
Conference on Machine Learning, 2010.

Liu, Z.-Y., Li, S.-Y., Chen, S., Hu, Y., and Huang, S.-
J. Uncertainty aware graph Gaussian process for semi-
supervised learning. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, pp. 4957–4964, 2020.

Loshchilov, I. and Hutter, F. SGDR: Stochastic gradient
descent with warm restarts. arXiv:1608.03983, 2016.

Louizos, C., Shi, X., Schutte, K., and Welling, M. The func-
tional neural process. Advances in Neural Information
Processing Systems, 2019.

NP-Match: When Neural Processes meet Semi-Supervised Learning

Naeini, M. P., Cooper, G., and Hauskrecht, M. Obtaining
well calibrated probabilities using bayesian binning. In
29th AAAI Conference on Artificial Intelligence, 2015.

Nassar, I., Herath, S., Abbasnejad, E., Buntine, W., and
Haffari, G. All labels are not created equal: Enhancing
semi-supervision via label grouping and co-training. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 7241–7250, 2021.

Ng, Y. C., Colombo, N., and Silva, R. Bayesian semi-
supervised learning with graph Gaussian processes. Ad-
vances in Neural Information Processing Systems, 2018.

Niculescu, C. and Persson, L.-E. Convex functions and their
applications. Springer, 2006.

Nielsen, F. On a generalization of the Jensen-Shannon
divergence and the Jensen-Shannon centroid. Entropy, 22
(2):221, 2020.

Nielsen, F. and Garcia, V. Statistical exponential families:
A digest with flash cards. arXiv:0911.4863, 2009.

Øksendal, B. Stochastic differential equations. In Stochastic
Differential Equations, pp. 65–84. Springer, 2003.

Pham, H., Dai, Z., Xie, Q., and Le, Q. V. Meta pseudo
labels. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 11557–
11568, 2021.

Qiao, S., Shen, W., Zhang, Z., Wang, B., and Yuille, A.
Deep co-training for semi-supervised image recognition.
In Proceedings of the European Conference on Computer
Vision (ECCV), pp. 135–152, 2018.

Qin, S., Zhu, J., Qin, J., Wang, W., and Zhao, D. Recur-
rent attentive neural process for sequential data. LIRE
Workshop NeurIPS, 2019.

Requeima, J., Gordon, J., Bronskill, J., Nowozin, S., and
Turner, R. E. Fast and flexible multi-task classification
using conditional neural adaptive processes. Advances in
Neural Information Processing Systems, 32:7959–7970,
2019.

Rizve, M. N., Duarte, K., Rawat, Y. S., and Shah, M. In de-
fense of pseudo-labeling: An uncertainty-aware pseudo-
label selection framework for semi-supervised learning.
International Conference on Learning Representations,
2021.

Ronneberger, O., Fischer, P., and Brox, T. U-net: Con-
volutional networks for biomedical image segmentation.
In International Conference on Medical Image Comput-
ing and Computer-Assisted Intervention, pp. 234–241.
Springer, 2015.

Sajjadi, M., Javanmardi, M., and Tasdizen, T. Regulariza-
tion with stochastic transformations and perturbations
for deep semi-supervised learning. Advances in Neural
Information Processing Systems, 29:1163–1171, 2016.

Sedai, S., Antony, B., Rai, R., Jones, K., Ishikawa, H.,
Schuman, J., Gadi, W., and Garnavi, R. Uncertainty
guided semi-supervised segmentation of retinal layers in
OCT images. In International Conference on Medical
Image Computing and Computer-Assisted Intervention,
pp. 282–290. Springer, 2019.

Shi, Y., Zhang, J., Ling, T., Lu, J., Zheng, Y., Yu, Q., Qi, L.,
and Gao, Y. Inconsistency-aware uncertainty estimation
for semi-supervised medical image segmentation. IEEE
Transactions on Medical Imaging, 2021.

Simonyan, K. and Zisserman, A. Very deep convolutional
networks for large-scale image recognition. International
Conference on Learning Representations, 2014.

Sindhwani, V., Chu, W., and Keerthi, S. S. Semi-supervised
Gaussian process classifiers. In International Joint Con-
ference on Artificial Intelligence, pp. 1059–1064, 2007.

Singh, G., Yoon, J., Son, Y., and Ahn, S. Sequential neural
processes. Advances in Neural Information Processing
Systems, 2019.

Sohn, K., Berthelot, D., Li, C.-L., Zhang, Z., Carlini, N.,
Cubuk, E. D., Kurakin, A., Zhang, H., and Raffel, C.
FixMatch: Simplifying semi-supervised learning with
consistency and confidence. Advances in Neural Infor-
mation Processing Systems, 2020.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich,
A. Going deeper with convolutions. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 1–9, 2015.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,
Z. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 2818–
2826, 2016.

Walker, I. and Glocker, B. Graph convolutional Gaus-
sian processes. In International Conference on Machine
Learning, pp. 6495–6504. PMLR, 2019.

Wang, K., Zhan, B., Zu, C., Wu, X., Zhou, J., Zhou, L.,
and Wang, Y. Tripled-uncertainty guided mean teacher
model for semi-supervised medical image segmentation.
In International Conference on Medical Image Comput-
ing and Computer-Assisted Intervention, pp. 450–460.
Springer, 2021.

NP-Match: When Neural Processes meet Semi-Supervised Learning

Wang, X., Kihara, D., Luo, J., and Qi, G.-J. Enaet: A self-
trained framework for semi-supervised and supervised
learning with ensemble transformations. IEEE Transac-
tions on Image Processing, 30:1639–1647, 2020.

Wilson, A. G., Hu, Z., Salakhutdinov, R., and Xing, E. P.
Deep kernel learning. In Artificial Intelligence and Statis-
tics, pp. 370–378. PMLR, 2016.

Xie, Q., Dai, Z., Hovy, E., Luong, M.-T., and Le, Q. V.
Unsupervised data augmentation for consistency train-
ing. Advances in Neural Information Processing Systems,
2020.

Yasarla, R., Sindagi, V. A., and Patel, V. M. Syn2Real
transfer learning for image deraining using Gaussian pro-
cesses. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 2726–
2736, 2020.

Yoon, J., Singh, G., and Ahn, S. Robustifying sequential
neural processes. In International Conference on Ma-
chine Learning, pp. 10861–10870. PMLR, 2020.

Yu, L., Wang, S., Li, X., Fu, C.-W., and Heng, P.-
A. Uncertainty-aware self-ensembling model for semi-
supervised 3D left atrium segmentation. In International
Conference on Medical Image Computing and Computer-
Assisted Intervention, pp. 605–613. Springer, 2019.

Zagoruyko, S. and Komodakis, N. Wide residual networks.
British Machine Vision Conference, 2016.

Zhai, X., Oliver, A., Kolesnikov, A., and Beyer, L. S4l: Self-
supervised semi-supervised learning. In Proceedings of
the IEEE/CVF International Conference on Computer
Vision, pp. 1476–1485, 2019.

Zhang, B., Wang, Y., Hou, W., Wu, H., Wang, J., Oku-
mura, M., and Shinozaki, T. FlexMatch: Boosting semi-
supervised learning with curriculum pseudo labeling. Ad-
vances in Neural Information Processing Systems, 34,
2021.

Zhu, H., Li, Y., Bai, F., Chen, W., Li, X., Ma, J., Teo,
C. S., Tao, P. Y., and Lin, W. Grasping detection net-
work with uncertainty estimation for confidence-driven
semi-supervised domain adaptation. In 2020 IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems, pp. 9608–9613. IEEE, 2020.

Appendix

A. Derivation of ELBO (Eq. (4))
Proof. As for the marginal joint distribution p(y1:n|x1:n) over n data points in which there are m context points and r target
points (i.e., m+ r = n), we assume a variation distribution q, and then:

log p(y1:n|x1:n) = log

∫
z

p(z, y1:n|x1:n)

= log

∫
z

p(z, y1:n|x1:n)

q(z|xm+1: m+r, ym+1: m+r)
q(z|xm+1: m+r, ym+1: m+r)

≥ Eq(z|xm+1: m+r,ym+1: m+r)[log
p(z, y1:n|x1:n)

q(z|xm+1: m+r, ym+1: m+r)
]

= Eq(z|xm+1: m+r,ym+1: m+r)[log
p(y1:m)p(z|x1:m, y1:m)

∏m+r
i=m+1 p(yi|z, xi)

q(z|xm+1: m+r, ym+1: m+r)
]

= Eq(z|xm+1: m+r,ym+1: m+r)[

m+r∑
i=m+1

log p(yi|z, xi) + log
p(z|x1:m, y1:m)

q(z|xm+1: m+r, ym+1: m+r)
+ log p(y1:m)]

= Eq(z|xm+1: m+r,ym+1: m+r)[

m+r∑
i=m+1

log p(yi|z, xi)− log
q(z|xm+1: m+r, ym+1: m+r)

p(z|x1:m, y1:m)
] + const,

(10)

where “const” refers to Eq(z|xm+1: m+r,ym+1: m+r)[log p(y1:m)], which is a constant term. Concerning that p(z|x1:m, y1:m)
is unknown, we replace it with q(z|x1:m, y1:m), and then we get:

log p(y1:n|x1:n) ≥ Eq(z|xm+1: m+r,ym+1: m+r)

[m+r∑
i=m+1

log p(yi|z, xi)− log
q(z|xm+1: m+r, ym+1: m+r)

q(z|x1:m, y1:m)

]
+ const. (11)

□

B. Proof of Theorem 1
Proof. Let us first show that Σαu

= ((1−αu)Σ
−1
1 +αuΣ

−1
2)−1 and µαu

= Σαu
((1−αu)Σ

−1
1 µ1+αuΣ

−1
2 µ2). Concerning

two Gaussian distributions N1(µ1,Σ1) and N2(µ2,Σ2), the weighted geometric mean of them (N 1−αu
1 Nαu

2) is given by:

(2π)−
D
2 det[Σ1]

− 1−αu
2 det[Σ2]

−αu
2 e−

1−αu
2

(x−µ1)
TΣ−1

1 (x−µ1)−αu
2

(x−µ2)
TΣ−1

2 (x−µ2)

= (2π)−
D
2 det[Σ1]

− 1−αu
2 det[Σ2]

−αu
2 e−

1
2
((x−µ1)

T ((1−αu)Σ−1
1)(x−µ1)+(x−µ2)

T (αuΣ−1
2)(x−µ2)).

(12)

Now, we let Σ−1
1u

= (1− αu)Σ
−1
1 and Σ−1

2u
= αuΣ

−1
2 , then:

(2π)−
D
2 det[Σ1]

− 1−αu
2 det[Σ2]

−αu
2 e−

1
2
((x−µ1)

TΣ−1
1u

(x−µ1)+(x−µ2)
TΣ−1

2u
(x−µ2))

= C1e
− 1

2
(xT (Σ−1

1u
+Σ−1

2u
)x−xT (Σ−1

1u
µ1+Σ−1

2u
µ2)−(µT

1 Σ−1
1u

+µT
2 Σ−1

2u
)x+(µT

1 Σ−1
1u

µ1+µT
2 Σ−1

2u
µ2))

= C1e
− 1

2
(xT (Σ−1

1u
+Σ−1

2u
)x−xT (Σ−1

1u
+Σ−1

2u
)(Σ−1

1u
+Σ−1

2u
)−1(Σ−1

1u
µ1+Σ−1

2u
µ2)−(µT

1 Σ−1
1u

+µT
2 Σ−1

2u
)x+(µT

1 Σ−1
1u

µ1+µT
2 Σ−1

2u
µ2))

= C1e
− 1

2
(xT (Σ−1

1u
+Σ−1

2u
)(x−(Σ−1

1u
+Σ−1

2u
)−1(Σ−1

1u
µ1+Σ−1

2u
µ2))−(µT

1 Σ−1
1u

+µT
2 Σ−1

2u
)x+(µT

1 Σ−1
1u

µ1+µT
2 Σ−1

2u
µ2))

(13)

NP-Match: When Neural Processes meet Semi-Supervised Learning

= C1e
− 1

2
(xT (Σ−1

1u
+Σ−1

2u
)(x−(Σ−1

1u
+Σ−1

2u
)−1(Σ−1

1u
µ1+Σ−1

2u
µ2))−(µT

1 Σ−1
1u

+µT
2 Σ−1

2u
)x+(µT

1 Σ−1
1u

+µT
2 Σ−1

2u
)(Σ−1

1u
+Σ−1

2u
)−1(Σ−1

1u
µ1+Σ−1

2u
µ2)+C2)

= C1e
− 1

2
(xT (Σ−1

1u
+Σ−1

2u
)(x−(Σ−1

1u
+Σ−1

2u
)−1(Σ−1

1u
µ1+Σ−1

2u
µ2))−(µT

1 Σ−1
1u

+µT
2 Σ−1

2u
)(x−(Σ−1

1u
+Σ−1

2u
)−1(Σ−1

1u
µ1+Σ−1

2u
µ2))+C2)

= C1e
− 1

2
(xT (Σ−1

1u
+Σ−1

2u
)(x−(Σ−1

1u
+Σ−1

2u
)−1(Σ−1

1u
µ1+Σ−1

2u
µ2))−(µT

1 Σ−1
1u

+µT
2 Σ−1

2u
)(Σ−1

1u
+Σ−1

2u
)−1(Σ−1

1u
+Σ−1

2u
)(x−(Σ−1

1u
+Σ−1

2u
)−1(Σ−1

1u
µ1+Σ−1

2u
µ2))+C2)

= C1e
− 1

2
((xT−(µT

1 Σ−1
1u

+µT
2 Σ−1

2u
)(Σ−1

1u
+Σ−1

2u
)−1)(Σ−1

1u
+Σ−1

2u
)(x−(Σ−1

1u
+Σ−1

2u
)−1(Σ−1

1u
µ1+Σ−1

2u
µ2))+C2)

= C1e
− 1

2
((x−(Σ−1

1u
+Σ−1

2u
)−1(Σ−1

1u
µ1+Σ−1

2u
µ2))

T (Σ−1
1u

+Σ−1
2u

)(x−(Σ−1
1u

+Σ−1
2u

)−1(Σ−1
1u

µ1+Σ−1
2u

µ2))+C2)

= C3e
− 1

2
(x−(Σ−1

1u
+Σ−1

2u
)−1(Σ−1

1u
µ1+Σ−1

2u
µ2))

T (Σ−1
1u

+Σ−1
2u

)(x−(Σ−1
1u

+Σ−1
2u

)−1(Σ−1
1u

µ1+Σ−1
2u

µ2)),
(14)

where C1 = (2π)−
D
2 det[Σ1]

− 1−αu
2 det[Σ2]

−αu
2 , C2 is a constant for aborting the terms used for completing the square

relative to x, and C3 = C1e
− 1

2C2 . The last formula of Eq. (13) is an unnormalized Gaussian curve with covariance
(Σ−1

1u
+Σ−1

2u
)−1 and mean (Σ−1

1u
+Σ−1

2u
)−1(Σ−1

1u
µ1+Σ−1

2u
µ2). Therefore, we can get Σαu

= ((1−αu)Σ
−1
1 +αuΣ

−1
2)−1 and

µαu = Σαu((1−αu)Σ
−1
1 µ1+αuΣ

−1
2 µ2). After the normalization step, we can get a Gaussian distribution Nαu(µαu ,Σαu).

As for JSGαu , we first calculate EN1 [logN1 − logNαu] as follows:

EN1 [logN1 − logNαu]

=
1

2
EN1 [−logdet[Σ1]− (x− µ1)

TΣ−1
1 (x− µ1) + logdet[Σαu] + (x− µαu)

TΣ−1
αu

(x− µαu)]

=
1

2
(log

det[Σαu]

det[Σ1]
+ EN1 [−(x− µ1)

TΣ−1
1 (x− µ1) + (x− µαu)

TΣ−1
αu

(x− µαu)])

=
1

2
(log

det[Σαu]

det[Σ1]
+ EN1 [−tr[Σ−1

1 Σ1] + tr[Σ−1
αu

(xxT − 2xµT
αu

+ µαuµ
T
αu

)]])

=
1

2
log

det[Σαu]

det[Σ1]
− D

2
+

1

2
EN1 [tr[Σ

−1
αu

(xxT − 2xµT
αu

+ µαuµ
T
αu

)]]

=
1

2
log

det[Σαu]

det[Σ1]
− D

2
+

1

2
EN1 [tr[Σ

−1
αu

((x− µ1)(x− µ1)
T + 2µ1x

T − µ1µ
T
1 − 2xµT

αu
+ µαuµ

T
αu

)]]

=
1

2
log

det[Σαu]

det[Σ1]
− D

2
+

1

2
tr[Σ−1

αu
(Σ1 + µ1µ

T
1 − 2µαuµ

T
1 + µαuµ

T
αu

)]

=
1

2
log

det[Σαu]

det[Σ1]
− D

2
+

1

2
tr[Σ−1

αu
Σ1] +

1

2
tr[µT

1 Σ
−1
αu

µ1 − 2µT
1 Σ

−1
αu

µαu + µT
αu

Σ−1
αu

µαu)]

=
1

2
log

det[Σαu]

det[Σ1]
− D

2
+

1

2
tr[Σ−1

αu
Σ1] +

1

2
(µαu − µ1)

TΣ−1
αu

(µαu − µ1).

(15)

The calculation of EN2
[logN2 − logNαu

] is the same, and then, JSGαu is given by:

JSGαu =
1− αu

2
log

det[Σαu]

det[Σ1]
− D(1− αu)

2
+

1− αu

2
tr[Σ−1

αu
Σ1] +

1− αu

2
(µαu − µ1)

TΣ−1
αu

(µαu − µ1)+

αu

2
log

det[Σαu]

det[Σ2]
− Dαu

2
+

αu

2
tr[Σ−1

αu
Σ2] +

αu

2
(µαu − µ2)

TΣ−1
αu

(µαu − µ2)

=
1

2
(log

det[Σαu]
1−αu

det[Σ1]1−αu
+ log

det[Σαu]
αu

det[Σ2]αu
)− D

2
+

1

2
tr(Σ−1

αu
((1− αu)Σ1 + αuΣ2))+

1− αu

2
(µαu − µ1)

TΣ−1
αu

(µαu − µ1) +
αu

2
(µαu − µ2)

TΣ−1
αu

(µαu − µ2)

=
1

2
(log[

det[Σαu]

det[Σ1]1−αudet[Σ2]αu
]−D + tr(Σ−1

αu
((1− αu)Σ1 + αuΣ2)) + (1− αu)(µαu − µ1)

TΣ−1
αu

(µαu − µ1)+

αu(µαu − µ2)
TΣ−1

αu
(µαu − µ2)).

(16)

As to the dual form JS
Gαu
∗ , we calculate ENαu

[logNαu
− logN1], which is given by:

1

2
log

det[Σ1]

det[Σαu]
− D

2
+

1

2
tr[Σ−1

1 Σαu] +
1

2
(µ1 − µαu)

TΣ−1
1 (µ1 − µαu). (17)

NP-Match: When Neural Processes meet Semi-Supervised Learning

Then, the calculation of ENαu
[logNαu

− logN2] is the same, and JS
Gαu
∗ is given by:

JS
Gαu
∗ =

1− αu

2
log

det[Σ1]

det[Σαu]
− D(1− αu)

2
+

1− αu

2
tr[Σ−1

1 Σαu] +
1− αu

2
(µ1 − µαu)

TΣ−1
1 (µ1 − µαu)+

αu

2
log

det[Σ2]

det[Σαu]
− Dαu

2
+

αu

2
tr[Σ−1

2 Σαu] +
αu

2
(µ2 − µαu)

TΣ−1
2 (µ2 − µαu)

=
1

2
(log

det[Σ1]
1−αu

det[Σαu]
1−αu

+ log
det[Σ2]

αu

det[Σαu]
αu

)− D

2
+

1

2
tr((1− αu)Σ

−1
1 Σαu + αuΣ

−1
2 Σαu) +

1− αu

2
µT
1 Σ

−1
1 µ1−

1− αu

2
µT
1 Σ

−1
1 µαu − 1− αu

2
µT
αu

Σ−1
1 µ1 +

1− αu

2
µT
αu

Σ−1
1 µαu +

αu

2
µT
2 Σ

−1
2 µ2 −

αu

2
µT
2 Σ

−1
2 µαu

− αu

2
µT
αu

Σ−1
2 µ2 +

αu

2
µT
αu

Σ−1
2 µαu

=
1

2
log

det[Σ1]
1−αudet[Σ2]

αu

det[Σαu]
− D

2
+

1

2
tr(((1− αu)Σ

−1
1 + αuΣ

−1
2)︸ ︷︷ ︸

Σ−1
αu

Σαu) +
1− αu

2
µT
1 Σ

−1
1 µ1−

(1− αu)µ
T
1 Σ

−1
1 µαu +

1− αu

2
µT
αu

Σ−1
1 µαu +

αu

2
µT
2 Σ

−1
2 µ2 − αuµ

T
2 Σ

−1
2 µαu +

αu

2
µT
αu

Σ−1
2 µαu

=
1

2
log

det[Σ1]
1−αudet[Σ2]

αu

det[Σαu]
+

1− αu

2
µT
1 Σ

−1
1 µ1 +

αu

2
µT
2 Σ

−1
2 µ2 − ((1− αu)µ

T
1 Σ

−1
1 + αuµ

T
2 Σ

−1
2)︸ ︷︷ ︸

µT
αu

Σ−1
αu

µαu+

1

2
µT
αu

((1− αu)Σ
−1
1 + αuΣ

−1
2)︸ ︷︷ ︸

Σ−1
αu

µαu

=
1

2
(log

det[Σ1]
1−αudet[Σ2]

αu

det[Σαu]
+ (1− αu)µ

T
1 Σ

−1
1 µ1 + αuµ

T
2 Σ

−1
2 µ2 − µT

αu
Σ−1

αu
µαu).

(18)

□

C. Implementation Details
The deep neural network configuration and training details are summarized in Table 5. As for the NP-Match related
hyperparameters, we set the lengths of both memory banks (Q) to 2560. The coefficient (β) is set to 0.01, and we sample
T = 10 latent vectors for each target point. The uncertainty threshold (τu) is set to 0.4 for CIFAR-10, CIFAR-100, and
STL-10, and it is set to 1.2 for ImageNet. NP-Match is trained by using stochastic gradient descent (SGD) with a momentum
of 0.9. The initial learning rate is set to 0.03 for CIFAR-10, CIFAR-100, and STL-10, and it is set to 0.05 for ImageNet.
The learning rate is decayed with a cosine decay schedule (Loshchilov & Hutter, 2016), and NP-Match is trained for 220

iterations. The MLPs used in the NP model all have two layers with M hidden units for each layer. For WRN, M is a
quarter of the channel dimension of the last convolutional layer, and as for ResNet-50, M is equal to 256. To compete with
the most recent SOTA method (Zhang et al., 2021), we followed this work to use the Curriculum Pseudo Labeling (CPL)
strategy in our method and UPS (Rizve et al., 2021). We initialize each memory bank with a random vector.

Dataset CIFAR-10 CIFAR-100 STL-10 ImageNet
Model WRN-28-2 WRN-28-8 WRN-37-2 ResNet-50

Weight Decay 5e-4 1e-3 5e-4 1e-4
Batch Size (B) 64 256

µ 7 1
Confidence Threshold (τc) 0.95 0.7

EMA Momentum 0.999
λu 1.0

Table 5. Details of the training setting.

We ran each label amount setting for three times using different random seeds to obtain the error bars on CIFAR-10, CIFAR-
100, and STL-10, but on ImageNet, we only ran for once. GeForce GTX 1080 Ti GPUs were used for the experiments on
CIFAR-10, CIFAR-100, and STL-10, while Tesla V100 SXM2 GPUs were used for the experiments on ImageNet.

NP-Match: When Neural Processes meet Semi-Supervised Learning

93

93.5

94

94.5

95

95.5

96

96.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

40 250 4000
Number of Labeled Samples

80

85

90

95

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

40 250 1000
Number of Labeled Samples

CIFAR-10 STL-10

94.5

95

95.5

96

64 256 512 1280 2560 5120

40 250 4000
Number of Labeled Samples

82

84

86

88

90

92

94

64 256 512 1280 2560 5120

400 250 1000
Number of Labeled Samples

CIFAR-10 STL-10

93.5

94

94.5

95

95.5

96

96.5

1 0.1 0.01 0.001 0.0001

40 250 4000
Number of Labeled Samples

75

80

85

90

95

1 0.1 0.01 0.001 0.0001

400 250 1000
Number of Labeled Samples

CIFAR-10 STL-10

93.5

94

94.5

95

95.5

96

96.5

5 10 15 20 25

40 250 4000
Number of Labeled Samples

80

85

90

95

5 10 15 20 25

400 250 1000
Number of Labeled Samples

CIFAR-10 STL-10

(a) Uncertainty Threshold (b) Length of Memory Banks

(c) Coefficient β (d) Number of Sampled Latent Vectors

Figure 4. Performance for different hyperparameters.

D. Hyperparameter Exploration
We did additional experiments on CIFAR-10 and STL-10 in terms of the hyperparameters related to the NP model in
NP-Match, in order to explore how performance is affected by the changes of hyperparameters, which may provide some
hints to readers for applying NP-Match to other datasets. We consider four hyperparameters in total, including the uncertainty
threshold (τu), the length of memory banks (Q), the coefficient of JSGαu (β), and the number of sampled latent vectors
(T). By Figure 4(a), a reasonable τu is important. Specifically, lower τu usually leads to worse performance, because lower
τu enforces NP-Match to select a limited number of unlabeled data during training, which is equivalent to training the
whole framework with a small dataset. Conversely, when τu is too large, more uncertain unlabeled samples are chosen,
whose pseudo-labels might be incorrect, and using these uncertain samples to train the framework can also lead to a poor
performance. Furthermore, the difficulty of a training set also affects the setting of τu, as a more difficult dataset usually
has more classes and hard samples (e.g., ImageNet), which makes the uncertainties of predictions large, so that τu should
be adjusted accordingly. From Figure 4(b), the performance becomes better with the increase of Q. When more context
points are used, the more information is involved for inference, and then the NP model can better estimate the global latent
variable and make predictions. This observation is consistent with the experimental results where the original NPs are used
for image completion (Garnelo et al., 2018b). Figure 4(c) shows the ablation study of β that controls the contribution of
JSGαu to the total loss function, and when β = 0.01, we can obtain the best accuracy on both datasets. By Figure 4(d), if T
is smaller than 5, then the performance will go down, but when T is further increased, then the performance of NP-Match is
not influenced greatly.

