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Abstract
We justify the fast equilibrium conjecture on
stochastic gradient descent from (Li et al., 2020)
under the assumptions that critical points are non-
degenerate and the stochastic noise is a standard
Gaussian. In this case, we prove an scaling in-
varaint SGD with constant effective learning rate
consists of three stages: descent, diffusion and
tunneling, and explicitly identify temporary equi-
librium states that can be observed within practi-
cal training time. This interprets the gap between
the mixing time in the fast equilibrium conjecture
and the previously known upper bound. While our
assumptions do not represent typical implementa-
tions of SGD of neural networks in practice, this is
the first description of the three-stage mechanism
in any case. The main finding in this mechanism
is that a temporary equilibrium of local nature is
quickly achieved after polynomial time (in term
of the reciprocal of the intrinsic learning rate) and
then stabilizes within observable time scales; and
that the temporary equilibrium is in general differ-
ent from the global Gibbs equilibrium, which will
only appear after an exponentially long period
beyond typical training limits. Our experiments
support that this mechanism may extend to the
general case.

1. Introduction
1.1. Background and motivation

Stochastic gradient descent (SGD) has been an indispens-
able tool in the training of neural networks and is known to
work in both convex and non-convex settings. One theme
that has recently attracted much attention is the descrip-
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tion of the asymptoic behavior of the SGD, especially how
learning rate schemes affect the distribution of random tra-
jectories. A useful approach is to model the SGD

wk+1 ← (1− λ)wk − η∇LBk(wk), (1)

where LBk is the loss function over a stochastic batch Bk
and λ and η are respectively the weight decay and the learn-
ing rate, by stochastic differential equations (SDE). In this
approach, the random noise in ∇LBk(wk) is regarded, by
taking a continuous limit on time increments, as a Brownian
motion with covariance matrix Σ(wk). A widely adopted
approach is to approximate the SGD (1) by the value at
t = kη of the SDE:

dWt = −η(∇L(Wt)dt+ Σ(Wt)
1
2 dBd

t )−λeWtdt, (2)

starting fromW0 = w0, where λe = λη, andBd
t stands for

the standard Brownian motion in Rd (see §2.1 for more de-
tails). The quantity λe is called the intrinsic learning rate
and is known to decide the limit behavior of the dynamics.

Modern neural networks often contain various normalization
steps, such as batch normalization, weight normalization
and layer normalization. Normalization makes the loss
function L scaling invariant and typically non-smooth near
the origin. A priori, it may take a long time for the SDE (2)
to reach an equilibrium as |Wt| may remain too large or too
small for a long period. Recently (Li et al., 2020) studied
how λe affects the distribution of the solutions through
another quantity γ

− 1
2

t := |Wt|−2η, called the effective
learning rate. Under mild assumptions, they proved that
γ
− 1

2
t stabilizes to the magnitude O(λ

1
2
e ) after O( 1

λe
) time.

They further conjectured:

Conjecture 1.1. (Fast Equilibrium Conjecture) (Li et al.,
2020) Suppose F (W ,x) is the output of the neural network
with parameter W and input data x, then the distribution
of F (Wt,x) stabilizes in total variation distance for all x
after O( 1

λe
) time to an equilibrium state. Moreover, this

distribution is independent of the initial parameterW0.

Remark that the conjecture concerns the speed of conver-
gence of a sequence of distributions towards an equilibrium
state in terms of the total variation distance between prob-
ability measures. An interesting but different question in
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similar settings, about convergence of a typical trajectory
towards a local minima in terms of the gap in the loss func-
tion, has been studied in (Raginsky et al., 2017; Zhang et al.,
2017; Xu et al., 2018; Huang & Becker, 2021).

While the conjecture is supported by numerical experiments,
it currently lacks theoretical explanation. The relation be-
tween the convergence time of the SDE model and the learn-
ing rate λe has been studied in (Bovier et al., 2004; Shi et al.,
2020) and the best known upper bound for mixing time is
O(eCλ

−1
e ) for networks without normalization. For systems

with normalization, after adapting the stabilized value of
effective learning rate O(λ

1
2
e ) in (Li et al., 2020), in lieu of

λe, this bound becomes O(eCλ
− 1

2
e ), which is much larger

than O( 1
λe

). This gap has not been theoretically explained
and will be the main focus of this paper.

Thanks to scaling-invariance, the distribution of F (Wt,x)
is determined by the distribution of Wt

|Wt| . We will study this
later distribution on the unit sphere Sd−1 and prove that it
displays fast convergence to certain temporary equilibria.
It turns out that, unlike in Conjecture 1.1, the temporary
equilibrium of Wt

|Wt| after such fast convergence does de-
pend on the initial valueW0. For possibile interpretations
that reconcile such dependence with the initial parameter
independence in Conjecture 1.1, see the discussions in §6.1.

We also note that several earlier works, such as (Mandt
et al., 2017; Izmailov et al., 2018) investigated local mixing
in the convex optimization case, when there is only one local
minimum and the loss function is assumed to be quadratic.
Compared to these works, the current paper deals with other
obstructions that arise in a non-convex setting. Namely, we
will mainly focus on the separation between stages, which is
not an issue in the convex case since that case does not have
a final stage during which trajectories move across basins.

1.2. Restriction of mathematical tools and our goal

It is worth noting that both the works (Bovier et al., 2004;
Shi et al., 2020) assumed two hypothesis: (i) the noise Σ
is the standard Gaussian (see Assumption 4.1), (ii) L is a
Morse function, i.e. all critical points are non-degenerate
and hence isolated (see Assumption 4.2). The reason lies
in the limitation of mathematical tools: the only currently
available mathematical theory that applies to the study of
convergence of distributions towards equilibria around lo-
cal minima is the seminal work of Barry Simon (Simon,
1983) on semiclassical analysis of low lying eigenvalues.
However this theory is limited to the two assumption above.
It is unclear whether similar conclusions can be achieved
beyond these two assumptions without a major update to
the underlying mathematical theory.

As no such updates exist to date, the goal of this paper is

to work within the framework of Simon’s theory and to
explain the huge gap between the experimentally supported
upper bound in Conjecture 1.1 and the previously known
exponentially large upper bounds under these assumptions.

1.3. Our contributions

The main contributions of this paper are:

(1) We derive a spherical SDE model (Definition 3.2) of
the SGD with constant effective learning rate. This model
focuses on the normalized parameter Wt

|Wt| and uses intrinsic
differential operators of Sd−1 (instead of those in Rd). Since
the output of the neural network depends only on Wt

|Wt| , this
does not affect Conjecture 1.1. This spherical SDE is also
the mathematical model of the Riemannian realization of
batch normalization in (Cho & Lee, 2017).

(2) We introduce, for the first time to the best of our knowl-
edge, the three-stage description of the SGD: descent, dif-
fusion and tunneling. The descent stage sends, with high
probability, a point near the bottom of attracting basin con-
taining it. The diffusion stages stabilizes the distribution
towards a temporary Gibbs equilibrium that is locally Gibbs
within each individual attracting basin. The tunneling stage
allows mass to slowly leak between basins to achieve the
unique global Gibbs state. The three stages respectively take
at most O( 1

λ
1
2
e

), O( 1
λe

) , O(e
C
λe ) in time. It was previously

known (Shi et al., 2020) that convergence towards the global
Gibbs state is exponentially slow. But to our best knowledge
our result for the first time identifies the distinction between
the three stages, especially the fast-slow contrast between
the diffusion and tunneling stages.

(3) Our proof is based on a completely new strategy. Instead
of fully relying on Simon’s semiclassical analysis, we com-
plement this theory with a probabilistic argument (Lemma
E.6) that characterizes microscopically the difficulty for an
individual trajectory to escape from an attracting basin. This
is the key to materialize the gap between small and large
non-zero eigenvalues discovered in (Simon, 1983), which
leads to the aforementioned separation between the diffu-
sion and tunneling stages. Previous works (Bovier et al.,
2004; Shi et al., 2020) only used the gap between 0 and the
smallest non-zero eigenvalue.

(4) We derive an explicit formula of the temporary equilib-
rium achieved by the diffusion stage, which is the equilib-
rium observed in real word trainings: it is a linear combi-
nation of local Gibbs states µk in the attracting basins Uk.
And the weight of each basin is approximately the same as
the initial distribution of parameter among basins.

(5) Finally, we remark that our analysis also works in the
setting of (Shi et al., 2020), where scaling invaraince is not
assumed. Instead of the compact parametric space Sd−1,
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one assumes L is a loss function on Rd that grows fast as
|x| → ∞. y (which is the case when the neural network has
regularization such as weight decay). In fact, the main math-
ematical theories from (Simon, 1983; Freidlin & Wentzell,
2012), that our proof relies on, work in both the Sd−1 and
the fast growing functions in Rd settings.

1.4. Limitations

The main limitation of our study is the adoption of Assump-
tions 4.1 and Assumption 4.2. As mentioned above, the
reason for these assumptions is their indispensability for the
application of (Simon, 1983). On the one hand, the isotropic
Gaussian is a popular assumption to use study SGD via SDE,
and Morse functions are mathematically generic among C2-
functions. On the other hand, a serious limitation of these
assumptions arises from the fact that most modern neural
networks are overparametrized, which forces local minima
to form connected regions, instead of being isolated like
in the case of Morse functions, see (Garipov et al., 2018;
Kuditipudi et al., 2019; Maddox et al., 2020; Benton et al.,
2021; Cooper, 2021). The local dynamics near such regions
has more recently been studied in (Li et al., 2021b).

Experimental evidences suggest that the temporary equi-
libria at constant effective learning rates should still be lo-
calized in the general setting. We hope the study of this
phenomenon may shed light on better understanding the dy-
namics of SGD in schemes not covered by Simon’s theory,
and formulate it as Conjecture 6.3.

2. Preliminaries
2.1. SDE model

The SDE model of SGD has been extensively studied in
recent years. Given a dataset S = {xi}Ni=1, at the k-th
step of the SGD, a subset Bk ⊂ S of fixed size n is ran-
domly drawn to train a neural network whose parameters
are denoted by w ∈ Rd. For x from a mini-batch B and
a parameter w, the neural network outputs a loss function
`B(w,x), which is assumed to be differentiable in w. The
loss function depends on B because of batch normalization
steps inside the neural network. The loss functions over
B is LB(w) := Ex∈B`B(w,x). Also define the average
loss function by L(w) := Ex∈S`B(w,x) = E B⊂S

|B|=n
LB(w)

(averaging all subsets B of size n randomly drawn from S).
In the k-th step, the parameter wk is updated by (1).

The function L now defines the gradient vector field∇L at
every point w ∈ Rd. We also define a non-negative definite

symmetric matrix Σ(w) ∈ Mat(d, d) at everyw ∈ Rd by

Σ(w) := E
B⊂S
|B|=n

((
∇LB(w)−∇L(w)

)
(
∇LB(w)−∇L(w)

)>)
.

(3)

The matrix Σ(w) is called the gradient noise, and will take
the role as a diffusion matrix.

The popular approach of approximating (1) by (2) has been
studied in (Jastrzebski et al., 2017; Goyal et al., 2017; Smith
& Le, 2018; Smith et al., 2018; Chaudhari & Soatto, 2018;
Shi et al., 2020; Li et al., 2019, Li et al., 2020). For example,
Li et al. (2019) proved that, for small η, starting from the
same initial position the probability distributions of the ran-
dom variables Wkη in (2) and wk in (1) are close to each
other for fixed K and all k ≤ K

η . See also (Yaida, 2019;
Smith et al., 2021; Li et al., 2021a) for discussions on the
deficiencies of SDE view of SGD as well as conditions that
guarantee validate this view.

Li et al. (2020, Theorem 5.1) proved that the SDE (2) is in
turn equivalent to

dW t =− γ−
1
2

t

(
∇L(W t)dt+ Σ(W t)

1
2 dBd

t

)
− 1

2
γ−1
t TrΣ(W t)W tdt

; (4)

dγt
dt

= −4λeγt + 2TrΣ(W t), (5)

whereW t = Wt

|Wt| and γt = |Wt|4η−2. The quantity γ−
1
2

t

is called the effective learning rate. In particular, W t is
a random process on the unit sphere Sd−1. In addition,
experimental results from (Li et al., 2020) suggest that both
TrΣ(W t) and γt stabilizes quickly near constant values,
and the learning perfomance has little dependence on the
initial parameter γ0.

2.2. Normalization and scaling invariance within
components

The neural network is assumed to be batch normalized,
which guarantees that `B(w,x) = `B(cw,x) for all
c > 0. In consequence (Li et al., 2020, Lemma B.1),
w>∇`B(w,x) = 0. The same orthogonality holds for
∇LB(w) and∇L(w), which are linear combinations of the
∇`B’s. Thus,

w>∇L(w) = 0,Σ(w)w = 0. (6)

For a vector w, denote by V ⊥w its (d − 1)-dimensional or-
thogonal complement vector space. As Σ(w) is symmetric
and has mutually orthogonal eigenspaces, Σ(w) preserves
V ⊥w . Therefore Σ(w)

1
2 annihilates w and preserves V ⊥w as

well. Recall Σ(w)
1
2 is a uniquely defined positive semi-

definite matrix (Horn & Johnson, 2013, Thm. 7.2.6).
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3. The spherical model
By scaling invariance, the parametersWt andW t yield the
same outcome. So it suffices to understand the distribution
ofW t to consider Conjecture 1.1. We shall ignore (5) and
focus on (4).

3.1. Description of model

Denote by∇ the gradient on Sd−1 with respect to the stan-
dard sphere metric . Then∇L : Sd−1 → TSd−1 is a vector
field on Sd−1, whose value coincides with ∇L by (6). For
later use, we also write ∆ for the Laplacian on Sd−1.

Write Σ(w) and Σ(w)
1
2 for the restrictions of Σ(w) and

Σ(w)
1
2 to Sd−1, viewed as tensor fields that send Rd to

TwSd−1 = V ⊥w for w ∈ Sd−1. In particular, given the
Brownian motion dBd

t on Rd, Σ(W t)
1
2 dBd

t is a random
infinitesimal vector along the tangent space TwSd−1.

Theorem 3.1. Starting from an initial value W 0 ∈ Sd−1,
the SDE (4) is equivalent to the following SDE on Sd−1:

dW t = −γ−
1
2

t

(
∇L(W t)dt+ Σ(W t)

1
2 dBd

t

)
. (7)

Difference between the SDE’s (4) and (7). We now explain
the meaning of Theorem 3.1, as it may at first glance seem
unnatural to remove the last term − 1

2γ
−1
t TrΣ(W t)W tdt

from (4) without destroying the equality. The difference
is as follows: (7) is a differential equation defined on the
manifold Sd−1 with respect to the intrinsic geometry of this
manifold, where the terms ∇L(W t)dt and Σ(W t)

1
2 dBd

t

are infinitesimal tangent vectors of Sd−1. While the parame-
terW t flows along these vector fields according to (7), it by
construction stays inside Sd−1. Indeed, in the construction
the diffusion process (7), the differential geometry of Sd−1

is used (Hsu, 2002, §1.3) in addition to the values of vector
fields. But (4) is a differential equation defined on the larger
ambient manifold Rd, and ∇L(W t)dt and Σ(W t)

1
2 dBd

t

are only vector fields on Rd. A priori, (4) movesW t around
in the entire Rd but not necessarily within Sd−1. However,
it turns out that given an initial positionW 0 ∈ Sd−1, almost
all random trajectories of (4) must remain in Sd−1 since (4)
arises from (2) withW t = Wt

|Wt| . Theorem 3.1 then asserts
the probability distributions ofW t are the same for (4) and
for (7).

In most of this paper, Σ(w)|V ⊥w will be assumed to be the
constant matrix σ2Id|V ⊥w for w ∈ Sd−1. In this case, (Li
et al., 2020, Lemma 5.2) proved γt = γ + (γ0 − γ)e−4λet

converges exponentially fast to γ = σ2

2λe
. In light of this, we

will focus on the SDE model assuming γt is the constant γ:

Definition 3.2. The sphericial model of SGD with constant
effective learning rate ζ := γ−

1
2 =

√
2λe
σ is the following

SDE on Sd−1:

dW t = −ζ
(
∇L(W t)dt+ Σ(W t)

1
2 dBd

t

)
. (8)

We will denote by PW 0=w(W t) and PW 0∼ν(W t) the
probability distributions of the random solutionW t to the
equation (8), respectively under initial conditionsW 0 = w
and W 0 ∼ ν, where w ∈ Sd−1 and ν is a probability
measure on Sd−1.

3.2. Relation to Riemannian implement of BN

Besides simulating the stablizing behavior of γt, the SDE
(8) is also a model to the Riemannian approach to batch nor-
malization introduced by (Cho & Lee, 2017). This approach
aims to eliminate the ambiguity in scaling by perform SGD
on the Riemannian manifold Sd−1.

The basic algorithm from (Cho & Lee, 2017) can be sim-
ply stated as follows: the sequence of parameters wk will
always remain in Sd−1 and be updated by

wk+1 ← expwk
(−ζ∇LBk(wk)), (9)

where ζ is the learning rate and expw(v) := w cos |v| +
v sin |v|
|v| is the exponential map on Sd−1 for w ∈ Sd−1

and v ∈ TwSd−1. Note that ∇LBk(wk)) ∈ TwSd−1 as
w>∇LB(w,x) = 0. An alternative to (9) is

wk+1 ←
wk − ζ∇LBk(wk)

|wk − ζ∇LBk(wk)|
. (10)

The updating methods (9) and (10) differ only byO(ζ2) and
hence are asymptotic to each other for small ζ, as demon-
strated by Theorem 3.3 below. However (10) has the advan-
tage that it is computationally cheaper and the trajectories
are guaranteed to stay in Sd−1 despite of numerical errors.

Theorem 3.3. If the vector ∇LB(w) − ∇L(w) is con-
sidered as a Gaussian noise ξ(w) with covariance matrix
Σ(w) defined by (3), then (8) is the continuous time limit of
both (9) and (10).

4. Three-stage evolution
We will from now on assume following conditions like in
(Bovier et al., 2004; Shi et al., 2020) :

Assumption 4.1. (Standard noise) On Sd−1, the covari-
ance matrix Σ coincides with a constant multiple of the
Riemannian metric on Sd−1. More precisely, there exists
σ > 0 such that for all w ∈ Sd−1 and v ∈ V ⊥w = TwSd−1,
v>Σ(w)v = σ2|v|2.

Assumption 4.2. (Morse loss function) The restriction of
L to Sd−1 is a function in C2(Sd−1). Furthermore, it is a
Morse function: every critical point z is non-degenerate, i.e.
det∇2L(z) 6= 0.
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Note that the Morse function condition is generically true
in the class C2(Sd−1).

4.1. Fokker-Planck equation and Gibbs density

Because the diffusion matrix Σ(w)
1
2 (Σ(w)

1
2 )> = Σ(w)

coincides with σ2Id|TwSd−1 on TwSd−1, the marginal dis-
tribution of the stochastic process (8) is absolutely contin-
uous on Sd−1 for t > 0 and its density function ut(w) is
a solution for t ∈ (0,∞) and w ∈ Sd−1 to the following
Fokker-Planck equation by standard arguments on diffusion
process (see §B for a proof).

Proposition 4.3. The density function u : (0,∞)×Sd−1 →
R of the distribution of the stochastic process (8) satisfies

∂tu = ζ∇ · (u∇L) +
1

2
ζ2σ2∆u. (11)

Define

β :=
1

2
ζσ2 =

√
λe
2
σ. (12)

It is known that the Gibbs density

µ(β)(w) :=
e−
L(w)
β∫

Sd−1 e
−Lβ dm

(13)

is a stationary solution to (11).

4.2. Attracting basins

In view of Assumption 4.2, denote the set of critical points
of the restriction of L on Sd−1 by Z ⊂ Sd−1, and the local
minima among them by z1, ...,zm ∈ Z. Because the critical
points are non-degenerate, they must be isolated. Hence Z
is finite.

Definition 4.4. The attracting basin Uz of a critical point
z ∈ Z is the set of all points w0 ∈ Sd−1 such that the
unique solutionW t to the ODE

W t = −ζ∇L(W t)dt (14)

defined on Sd−1, subject to the initial conditionW 0 = w0,
converges to z as t→∞. For simplicity, when z = zi is a
local minima, we will write Ui := Uzi .

For Q > 0, let Ui,Q := {w ∈ Ui : L(w) − L(zi) < Q},
which is a neighborhood of zi in Ui.

4.3. Main theorems

In the analysis below, fix a parameter ε > 0 as error toler-
ance, and let λe be sufficiently small. All choices of param-
eters, as well as implicit constants in O(·) notations, are
supposed to be dependent of the loss function L.

The dynamics of (8) consists of three different stages: de-
scent, diffusion and tunneling.

Stage 1: Descent. In this stage, the trajectory, with proba-
bility close to 1, takes O(λ

− 1
2

e ) time, to descend to Ui,Q1
in

each Ui.

Theorem 4.5. Under Assumptions 4.1 and 4.2, for all ε > 0
and Q1 > 0, there exist Cdes > 0, λdes > 0 and a set Λε of
volume m(Λε) > 1 − ε, such that for all λe < λdes, and
allw0 ∈ Λε, the random solutionW t to (8) starting atw0

satisfies PW 0=w0

(
W

Cdesλ
− 1

2
e

∈ Uk,Q1

)
> 1 − ε, where

Uk is the unique attracting basin that contains w0.

Stage 2: Diffusion. The diffusion stage takes at most
O(λ−1

e ) time in terms of t. During this period, the dis-
tribution converges to a temporary equilbrium given by
the conditional measure of the Gibbs equilibrium inside
each basin and remains stable for exponentially long time
after that. The weights assigned to basins correspond to the
initial distribution of mass among them. The next theorem
is the central one in this paper.

Theorem 4.6. Under Assumptions 4.1 and 4.2, for all ε > 0,
there exist constants Cdif , cdif , λdif > 0, and a set Λε of
volume m(Λε) > 1− ε, such that:

With β =
√

λe
2 σ, for all λe < λdif , the random solution

W t to (8) satisfies: for all t ∈ [Cdif

λe
, e

cdif√
λe ]:

(i) For all initial positions w0 ∈ Λε,

distTV

(
PW 0=w0

(W t),
µ(β)|Uk∫
Uk
µ(β)dm

dm
)
≤ ε,

where Uk is the unique attracting basin of the gradient flow
of L that contains w0.

(ii) For all initial probability distribution ν0,

distTV

(
PW 0∼ν0(W t),

m∑
i=1

ν0(Ui)
µ(β)|Ui∫
Ui
µ(β)dm

dm
)

≤ε+ ν0(Λcε).

Here distTV is the total variation distance distTV(µ, ν) =
supA |µ(A)− ν(A)| between measures, and Λcε is the com-
plement of Λε.

Theorem 4.6.(ii) identifies a temporary equilibrium∑m
i=1 ν0(Ui)

µ(β)|Ui∫
Ui
µ(β)dm

dm. The corollary below claims

that in the case of non-convex optimization, this tempo-
rary equilibrium is often different from the eventual Gibbs
equilibrium µ(β)dm.

Corollary 4.7. In the setting of Theorem 4.6, if in addition
m ≥ 2, then there exists a constant κdif > 0 and a subset
Ωdif with m(Ωdif) > κdif , such that for all sufficiently small
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λe, w0 ∈ Ωdif and t ∈ [Cdif

λe
, e

cdif√
λe ], the random solution

W t to (8) satisfies

distTV

(
PW 0=w0

(W t), µ
(β)dm

)
> κdif .

Moreover, if L attains its global minimum value on Sd−1 at
more than one local minima, then given any small ε > 0,
one can replace m(Ωdif) > κdif by m(Ωdif) > 1 − ε for
sufficiently small λe.

The exceptional set Λcε in Theorems 4.5 and 4.6 is a small
neighborhood of the set of points whose deterministic gradi-
ent descent trajectory converge to a stationary point ofL that
is not a local minimum. This later set is a submanifold of
strictly lower dimension under Assumption 4.2, and should
be viewed as the boundary between attracting basins of local
minima. A careful analysis of the arguments in Appendix
§D would control the radius of the neighbordhood in terms
of ε, the values of L and ∇2L at the stationary points of L
and the Lipschtiz norm of L.

Stage 3: Tunneling. The final stage takes O(e
C√
λe ) time.

During this stage, mass leaks slowly between basins, and
eventually equidistributes towards the Gibbs equilibrium
µ(β)dm. Because of the slow rate, this stage is not expected
to be observed within typical training time.

The name “tunneling”, following previous works, e.g. (Helf-
fer & Sjöstrand, 1985; Hérau et al., 2011), comes from the
quantum tunnel effect in solutions to the Schrödinger equa-
tion, which is related to our model through the Schrödinger
operator Dβ,#f = β∆f − ( |∇L|

2

4β − ∆L
2 )f (see §E.1).

Theorem 4.8. Under Assumptions 4.1 and 4.2, and with

β =
√

λe
2 σ, there exist constants Ctun, λtun > 0 such that

for all w0 ∈ Sd−1, λe < λtun and t ≥ 0, the random
solutionW t to (8) satisfies :

distTV

(
PW 0=w0

(W t), µ
(β)dm

)
≤ O(e−e

−Ctun√
λe t).

We don’t claim originality for Theorem 4.8 and only include
it for a complete description of the stages. It was proved by
(Shi et al., 2020) for fast growing loss functions L on Rd,
and their argument also works here (see §F).

Instead, our main contribution is Theorem 4.6, which identi-
fies the temporary equilibrium and proves the time needed
to reach it is ≤ O(λ−1

e ), as well as Corollary 4.7, which as-
serts that typically the temporary and eventual equilibria are
different, and the time needed to deviate from the temporary

equilibrium towards the eventual one is at least O(e
cdif√
λe ),

and thus usually beyond practical observable windows. The
contrast between Corollary 4.7 and Theorem 4.8 establishes
the separation between the diffusion and tunneling stages.

5. Experiments
Model with our assumptions. We implemented the SDE
(8) on Sd−1 with d = 100, σ = 0.1, and a scaling-invariant
loss function L(w) =

∑200
i=1 sin(ai · w

|w| )
2 where ai are ran-

domly chosen. For each ζ, we ran 32 independent random
instances of the discrete implementation

wk+1 ←
wk − ζ

(
∇L(wk) +Nd(0, σ)

)∣∣wk − ζ(∇L(wk) +Nd(0, σ)
)∣∣ (15)

of (8). The same proof of Theorem 3.3 shows (8) is a
continuous time limit of (15). All instances start at the same
initial position and last 8× 105 iteration steps.
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Figure 1. Train loss [Toy function experiment]
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Figure 2. Variance among instances [Toy function experiment]

211.0 211.5 212.0 212.5 213.0 213.5 214.0 214.5 215.0

#iteration

0.249100

0.249125

0.249150

0.249175

0.249200

0.249225

0.249250

0.249275

av
er

ag
e 

lo
ss

= 2 4.50

= 2 5.00

= 2 5.50

= 2 6.00

= 2 6.50

= 2 7.00

Figure 3. Train loss, zoom in view [Toy function experiment]

We choose two features to indicate the achievement of an
equilibrium: the average loss among the instances, as well
as the variance of the weightsWt of all the instances. Fig-
ures 1-4 show that when ζ is divided by 20.5, the step
at which these features become approximately constant is
roughly multiplied by 20.5. That is, equilibrium is observed
in O(ζ−1) time. As ζ =

√
2λe
σ , O(ζ−1) = O(λ

− 1
2

e ) <
O(λ−1

e ), this is consistent with Theorem 4.6 and suggests
there is room for further improvement (Question 6.2 below).

Experiments also support that the observed equilibrium is
the one in Theorem 4.6. First of all, the observed equilib-
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Figure 4. Variance, zoom in view [Toy function experiment]

rium is localized near a single local minimum point, as the
variance among instances become very close to 0.

In addition, note µ(β)
k :=

µ(β)|Uk∫
Uk
µ(β)dm

dm is concentrated

near zk for small β. As zk is a non-degenerate local mini-
mum, in suitable local linear coordinates y ∈ TzkSd−1 for
w near zk, L(w) = L(zk)+ 1

2 |y|
2 +O(|y|3). Then µ(β)

k is

approximated by
e−

1
2β |y|

2

constant
dy, which is the normal distribu-

tion N (0, βId) in terms of y. Sincew is approximately an
affine function of y, Var

µ
(β)
k

(w) should be approximately

proportional to β = 1
2ζσ

2, and thus to ζ as well. In ad-
dition, E

µ
(β)
k

L(w) − L(zk) ≈ 1
2Eµ(β)

k

|y|2 = 1
2Var(y) ≈

1
2TrβId = d−1

2 β is also proportional to both β and ζ.
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Figure 5. Train loss at equilibrium vs ζ [Toy function experiment]
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Figure 6. Variance of equilibrium vs ζ [Toy function experiment]

Figures 5 and 6 show that near the observed equilibrium,
the training loss EL(Wt) is approximately linear in ζ and
Var(Wt) is approximately proportional to ζ, which per-
fectly matches the predictions above.

Underparametrized neural network. We apply (10) to a
tiny 4-layer CNN network of the same structure as above,
but with on the MNIST dataset of only d = 332 param-
eters. There are two convolution layer followed by two
linear layers. All layers are batch normalized to ensure

scale-invariance. The number of parameters is chosen to be
unpractically low for two reasons: (1) the underparametriza-
tion of the network guarantees that Assumption 4.2 still
holds and local minima are isolated; (2) to allow faster train-
ing, as we need to run many independent instances and
observe their distribution. However, Assumption 4.1 no
longer holds in this case.

Due to the small size of the network, the achieved minimum
of the cross entropy loss function is much worse than those
in practical trainings. But our goal here is to empirically
test the likelihood of whether our results extend to settings
satisfying Assumption 4.2 but not Assumption 4.1.

For each learning rate ζ, 16 independent random instances
of (10) with the same initial position are performed, for
20,000 epochs. Each epoch has 54 iteration steps with a
batch size of 1000.
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As before, we use the average loss as well as the variance
among parameters as indicators for reaching equilibrium.
Figures 7-10 1 again show that random trajectories with
the same initial position stabilize to a local equilibrium

1Curves in Figures 7-10, as well as in Figure 14 later, are
logarithmically smoothified by displaying at n the average values
from epoch 0.9n to epoch n.
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Figure 10. Variance, zoom in view [Underparametrized NN]

within O(ζ−1) = O(λ
− 1

2
e ) time. This local minimum is

again near a single critical point as Var
µ
(β)
k

(w) is extremely
small. As ζ decreases, the loss and variance decay in similar
patterns as in the previous model. However, Figure 12 shows
Var

µ
(β)
k

(w) is not exactly proportional to α, but decreases
to 0 faster than η, which suggests that with Assumption 4.2
but not Assumption 4.1, the local equilibrium in general

doesn’t take the form
µ(β)|Uk∫
Uk
µ(β)dm

dm than in the standard

noise setting. See Conjecture 6.3 below.
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Figure 11. Train loss at equilibrium vs ζ [Underparametrized NN]
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Figure 12. Variance of equilibrium vs ζ [Underparametrized NN]

Overparametrized neural network. Finally we apply (10)
to a 4-layer CNN network of the same structure as above,
but with d ≈ 100k parameters instead, on the MNIST. This
general case is very different from the setting we studied
as it is highly overparametrized and the local minima are
likely submanifolds of large dimensions and sizes. Neither
Assumptions 4.1 nor 4.2 is expected to hold. In particular,
we no longer expect to see equilibria concentrated around
single critical points.

In this setting it takes a huge number (> 10k) of epochs be-
fore statistics stabilize, and each epoch runs for longer time.
Hence it was infeasible within our training budget to carry
out similar experiments with many independent instances

across several learning rates like in the two previous cases.
However, in this case we want to know: Starting from a
given initial position, is the fast equilibrium for (7) localized
inside a single basin, and different from the global Gibbs
equilibrium, like in Theorem 4.6? In other words, does
the separation between the diffusion and tunneling stages
extend to the overparametrized case?

Our experiment suggests that the answer is yes. At small
effective learning rate, within observable time windows
different initial positions lead to different equilibria that
are far from each other. Since they cannot both be the
unique Gibbs equilibrium, these equilibria are both local and
temporary in nature. Starting from each of two randomly
chosen initial positions w1

0,w
2
0 ∈ Sd−1, we ran 5 instances

of the implementation (10) of (7) for 40000 epochs (≈ 2M
iterations) at ζ = 2−4.5. All instances use independent
random seeds. For 1 ≤ i ≤ 5 and p = 1, 2, let wi,p

k ∈
Sd−1 denote the parameter at k-th step of the i-th instance
starting at wp

0 . We tracked the average distance squares
between pairs of parameters that originated from the same
initial position, as well as from different initial positions, or
more precisely the quantities V11(k) := Ei 6=j |wi,1

k −w
j,1
k |2;

V22(k) := Ei6=j |wi,2
k − w

j,2
k |2; V12(k) := Ei,j |wi,1

k −
wj,2
k |2. where the parameters are regarded as vectors in Rd.
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Figure 13. Different temporary equilibria [Overparametrized NN]

Figure 13 shows: (1) The equilibrium derived from an initial
position is not concentrated near a single point, as V11 and
V22 do not approach 0; (2) The two equilibria derived from
w1

0 and w2
0 are far from each other, because V12 is much

larger than V11 and V22. Indeed, V12 ≈ 2 for all time. Since
the distance between two uniformly chosen random points
on Sd−1 is ≈

√
2 when d is large, this suggests the two

equilibria are independently located.

6. Discussions
6.1. Interpretations of initial parameter independence

in Conjecture 1.1

Our Theorem 4.6 shows that, in the parameter space the
equilibrium reached in O( 1

λe
) time is mostly concentrated

in the attracting basin of the initial parameter. While this
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is supported by real world neural network implementations
(Figure 13), one needs to explain such deviation from the
independence on the initial parameter in Conjecture 1.1 of
(Li et al., 2020). Two possible interpretations are sketched
below.

Initial mass distribution. Consider SGD with batch nor-
malization starting from an inital distribution ν0 of parame-
ters and let νt be the distribution at moment t. Theorem 4.6
shows that equilibrium can be reached in t1 ≤ O( 1

λe
) steps

after γ−
1
2

t stabilizes. Moreover, the equilibrium is a linear
combination

∑
k pkµ

(β)
k of local equilibria µ(β)

k in basins
Uk. The allocation of weights pk is approximately the same
as the initial allocation for this stage, or in other words the
allocation at the end of the preparatory phase when γt stabi-
lizes. (Li et al., 2020) suggests this prepartory phase takes
t0 ≈ O( 1

λe
) steps, during which γt stabilizes exponentially

fast (at least when TrΣ is constant). Experiments in (Li
et al., 2020, Figure 5) also show that the initial effective
learning rate γ−

1
2

0 is typically much larger than the limit
value at t0.

When t is small, the effective learning rate γ−
1
2

t is large for
some time. Though this period is short, the large learning
rate allows mixing in short time and reaches a global equilib-
rium (which we think of as µ(β0) with some very large β0).
This process fixes the allocation of mass pk among basins
Uk. Once the effective learning rate becomes small, mech-
anisms similar to Theorem 4.6 prevent mass from leaking
between basins. Finally, after γ−

1
2

t stabilizes, the distribu-
tion is locally fine tuned to local Gibbs equilibria µ(β)

k with
small β without changing the weights pk.

In summary, in the fast equilibrium
∑
k pkµ

(β)
k , the compo-

nents µ(β)
k ’s are determined later at small effective learning

rates, but the weights pk’s are determined earlier at large
effective learning rates.

Similar landscapes among local minima. We are grateful
to an anonymous reviewer for suggesting to us that the use
of an output function such as testing/training loss might be
responsable for the independence in the initial parameter in
Conjecture 1.1. On the one hand, for an arbitrary loss func-
tion L, this is likely not the case because L may have two
attracting basins with different local minimum valuesL(x1),
L(x2). Different initial parameters in these basins will out-
put the corresponding training losses. On the other hand,
further experiments show that in realistic neural network
implementations the use of an output function such as the
loss Lmight explain the initial parameter independence. For
instance, for the same initial parameters w1

0 , w2
0 in Figure

13, though their stochastic trajectories converge in the diffu-
sions stage to different temporary equilibria in the parameter
space, Figure 14 shows that the loss function L has similar

distribution over these temporary equilibria. More precisely,
the quantities VL11(k) := Ei 6=j |L(wi,1

k ) − L(wj,1
k )|2,

VL22(k) := Ei 6=j |L(wi,2
k ) − L(wj,2

k )|2 and VL12(k) :=

Ei,j |L(wi,1
k ) − L(wj,2

k )|2 are all distributed near 0 with
the same pattern. This suggests the following possible in-
terpretation of initial parameter independence: in an over-
parametrized scaling-invariant neural network, a majority
portion of the parametric space Sd−1 might be covered by
attracting basins on which the landscapes of L are approxi-
mately the same.
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Figure 14. Different temporary equilibria have similar distributions
of loss function [Overparametrized NN]

6.2. Open questions and future directions

The following questions might be of interest.

Question 6.1. Analyze either one or both of the interpreta-
tions in §6.1.

Though Theorem 4.6 shows the distribution stabilizes near
temporary equilibria within O( 1

λe
) time, in our experiments,

most features only require O( 1√
λe

) time to stabilize with

constant γ−
1
2

t . Note that this wouldn’t affect Conjecture 1.1

as the convergence of γ−
1
2

t itself needs O( 1
λe

) time.

Question 6.2. With Assumptions 4.1 and 4.2, can the bound
t ≥ O( 1

λe
) in Theorem 4.6 be improved to t ≥ O( 1√

λe
)?

In light of the experiments in §5, we conjecture that

Conjecture 6.3. Without Assumptions 4.1 and 4.2, around
each connected sets Zk ⊂ Sd−1 of local minima of L,
there are probability measures µ(β)

k supported on attract-
ing basins, such that E

w∼µ(β)
k

dist(w, Zk) → 0 as β → 0;
and Theorem 4.6 and Corollary 4.7 hold after replacing
µ(β)|Uk∫
Uk
µ(β)dm

dm with µ(β)
k .
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Fox, E., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems, volume 32. Curran As-
sociates, Inc., 2019. URL https://proceedings.
neurips.cc/paper/2019/file/
46a4378f835dc8040c8057beb6a2da52-Paper.
pdf.

https://proceedings.neurips.cc/paper/2017/file/3a0844cee4fcf57de0c71e9ad3035478-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3a0844cee4fcf57de0c71e9ad3035478-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3a0844cee4fcf57de0c71e9ad3035478-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3a0844cee4fcf57de0c71e9ad3035478-Paper.pdf
https://doi.org/10.1007/978-3-642-25847-3
https://doi.org/10.1007/978-3-642-25847-3
https://doi.org/10.1017/S1474748011000028
https://doi.org/10.1017/S1474748011000028
https://doi.org/10.1090/gsm/038
https://doi.org/10.1090/gsm/038
https://doi.org/10.1007/BFb0112488
https://doi.org/10.1007/BFb0112488
https://proceedings.neurips.cc/paper/2019/file/46a4378f835dc8040c8057beb6a2da52-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/46a4378f835dc8040c8057beb6a2da52-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/46a4378f835dc8040c8057beb6a2da52-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/46a4378f835dc8040c8057beb6a2da52-Paper.pdf


Three-stage Evolution and Fast Equilibrium for SGD with Non-degerate Critical Points

Li, Q., Tai, C., and E, W. Stochastic modified equations
and dynamics of stochastic gradient algorithms i: Math-
ematical foundations. Journal of Machine Learning Re-
search, 20(40):1–47, 2019. URL http://jmlr.org/
papers/v20/17-526.html.

Li, Z., Lyu, K., and Arora, S. Reconciling modern deep
learning with traditional optimization analyses: The in-
trinsic learning rate. Advances in Neural Information
Processing Systems 33 pre-proceedings (NeurIPS 2020),
abs/2010.02916, 2020.

Li, Z., Malladi, S., and Arora, S. On the validity of modeling
SGD with stochastic differential equations (SDEs). In
Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan,
J. W. (eds.), Advances in Neural Information Processing
Systems, 2021a. URL https://openreview.net/
forum?id=goEdyJ_nVQI.

Li, Z., Wang, T., and Arora, S. What happens after sgd
reaches zero loss? –a mathematical framework, 2021b.

Maddox, W. J., Benton, G., and Wilson, A. G. Rethinking
parameter counting in deep models: Effective dimension-
ality revisited. arXiv:2003.02139, 2020.

Mandt, S., Hoffman, M. D., and Blei, D. M. Stochastic
gradient descent as approximate bayesian inference. The
Journal of Machine Learning Research, 18(1):4873–4907,
2017.

Michel, L. About small eigenvalues of the Witten Lapla-
cian. Pure Appl. Anal., 1(2):149–206, 2019. ISSN
2578-5885. doi: 10.2140/paa.2019.1.149. URL https:
//doi.org/10.2140/paa.2019.1.149.

Raginsky, M., Rakhlin, A., and Telgarsky, M. Non-convex
learning via stochastic gradient langevin dynamics: a
nonasymptotic analysis. In Kale, S. and Shamir, O.
(eds.), Proceedings of the 2017 Conference on Learning
Theory, volume 65 of Proceedings of Machine Learn-
ing Research, pp. 1674–1703. PMLR, 07–10 Jul 2017.
URL https://proceedings.mlr.press/v65/
raginsky17a.html.

Shi, B., Su, W. J., and Jordan, M. I. On learning rates and
schrödinger operators. arXiv preprint arXiv:2004.06977,
2020.

Simon, B. Semiclassical analysis of low lying eigenvalues.
I. Nondegenerate minima: asymptotic expansions. Ann.
Inst. H. Poincaré Sect. A (N.S.), 38(3):295–308, 1983.
ISSN 0246-0211.

Smith, S. L. and Le, Q. V. A bayesian perspective on gener-
alization and stochastic gradient descent. In International
Conference on Learning Representations, 2018.

Smith, S. L., Kindermans, P.-J., and Le, Q. V. Don’t decay
the learning rate, increase the batch size. In International
Conference on Learning Representations, 2018.

Smith, S. L., Dherin, B., Barrett, D., and De, S. On the origin
of implicit regularization in stochastic gradient descent.
In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=rq_Qr0c1Hyo.

Xu, P., Chen, J., Zou, D., and Gu, Q. Global convergence
of langevin dynamics based algorithms for nonconvex
optimization. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems,
pp. 3126?3137, 2018.

Yaida, S. Fluctuation-dissipation relations for stochastic gra-
dient descent. In International Conference on Learning
Representations, 2019. URL https://openreview.
net/forum?id=SkNksoRctQ.

Zhang, Y., Liang, P., and Charikar, M. A hitting time anal-
ysis of stochastic gradient langevin dynamics. In Kale,
S. and Shamir, O. (eds.), Proceedings of the 2017 Con-
ference on Learning Theory, volume 65 of Proceedings
of Machine Learning Research, pp. 1980–2022. PMLR,
07–10 Jul 2017.

http://jmlr.org/papers/v20/17-526.html
http://jmlr.org/papers/v20/17-526.html
https://openreview.net/forum?id=goEdyJ_nVQI
https://openreview.net/forum?id=goEdyJ_nVQI
https://doi.org/10.2140/paa.2019.1.149
https://doi.org/10.2140/paa.2019.1.149
https://proceedings.mlr.press/v65/raginsky17a.html
https://proceedings.mlr.press/v65/raginsky17a.html
https://openreview.net/forum?id=rq_Qr0c1Hyo
https://openreview.net/forum?id=rq_Qr0c1Hyo
https://openreview.net/forum?id=SkNksoRctQ
https://openreview.net/forum?id=SkNksoRctQ


Three-stage Evolution and Fast Equilibrium for SGD with Non-degerate Critical Points

A. Proofs of results in §3
Proof of Theorem 3.1. First remark that given any initial
positionW 0 ∈ Sd−1, the solution to (4) almost surely stays
in Sd−1 by (Li et al., 2020, Thm 5.1).

Write Σ(w)
1
2 = (a1(w), ...,ad(w)). Note that for w ∈

Sd−1, aj(w) ∈ TwSd−1. Then the random solutionW t to
(7) satisfies the following property:

d
dt
Ef(W t) = E(Ψf(W t)), (16)

where Ψ is a differential operator on Sd−1 defined by

Ψf(w) = −γ−
1
2

t ∇L(w)·∇f(w)+
1

2
γ−1
t

d∑
j=1

(∇aj )
2f(w).

(17)
where ∇aj is the covariant derivative along the vector field
aj on Sd−1 with respect to the spherical metric (see (Hsu,
2002, Theorem 1.3.4)). The operator Ψ is called the genera-
tor of (7). Similarly, the random solutionW t to (4) satisfies
: d

dtEf(W t) = E(Ψf(W t)) where Ψ is a differential op-
erator on Rd defined by

Ψf(w) =− γ−
1
2

t ∇L(w) · ∇f(w)

+
1

2
γ−1
t

d∑
j=1

∇2
ajf(w)

− 1

2
γ−1
t TrΣ(w)w · ∇f(w).

(18)

We emphasize that besides the removal of the last term, Ψ
differs from Ψ in that differential operators and the Rieman-
nian metric on Sd−1 are used instead of those on Rd−1.

We next analyze the difference between corresponding terms
in (17) and (18) at w ∈ Sd−1.

Recall that TwSd−1 is the orthogonal complement V ⊥w
of w, and the unit normal vector at w is given by w it-
self. Thus ∇f(w) is the V ⊥w -component of ∇f(w) and
∇f(w) = ∇f(w) − (∇wf(w))w. Similarly ∇L =
∇L − (∇wL)w = ∇L, where we used the fact that L
is scaling-invariant and ∇wL(w) = 0. Moreover, by (6),
∇L(w) · (∇f(w) − ∇f(w)) = (−∇wf(w))(∇L(w) ·
w) = 0. Therefore, (17) and (18) share the same first term.

For the second term, we use the fact that

(∇ai)
2 − (∇ai)

2 = −Πw(ai,ai)∇w

at w ∈ Sd−1, where Πw is the second fundamental form
of Sd−1 at w and ∇w is the directional derivative along
the outward normal direction. Since w · ∇f = ∇wf , after
comparing, we know that there exists a function G on Sd−1

such that Ψf(w)−Ψf(w) = G(w)∇wf .

Because trajectories of both (4) and (7) remain in Sd−1, for
w ∈ Sd−1 and two smooth functions f , g that coincide on
Sd−1, Ψf(w) = Ψg(w) and Ψf(w) = Ψg(w). Hence
G(w)∇w(f − g)(w) = 0. Because ∇w(f − g)(w) can
be chosen arbitrarily, we must have G(w) = 0. Therefore,
Ψf = Ψf on Sd−1 for all functions f .

Therefore, restricted to Sd−1, (4) and (7) have the same
generator and are hence equivalent as diffusion processes.
The proof is completed.

Proof of Theorem 3.3. We first prove the theorem for the
updating method (9). Under continuous limit, the surro-
gate for ∇LB(w) = ∇L(w) +

(
∇LB(w) − ∇L(w)

)
is ∇L(w)dt + dξt where ξt is a Gaussian diffusion of
covariance Σ(w), such a diffusion can be taken to be
ξt =

∫
Σ(w)

1
2 dBd

t .

Using the Taylor expansion

expw(v) =w +w(cos |v| − 1) + v
sin |v|
|v|

=w(1− 1

2
|v|2 +

1

4!
|v|4 − ...)

+ v(1− 1

3!
|v|2 + ...),

the surrogate dynamics for (9) is

dW t

=W t

(
− 1

2

∣∣∣ζ(∇L(W t)dt+ Σ(W t)
1
2 dBd

t

)∣∣∣2
+

1

4!

∣∣∣ζ(∇L(W t)dt+ Σ(W t)
1
2 dBd

t

)∣∣∣4 − ...)
− ζ
(
∇L(W t)dt+ Σ(W t)

1
2 dBd

t

)(
1− 1

3!

∣∣∣ζ(∇L(W t)dt+ Σ(W t)
1
2 dBd

t

)∣∣∣2 + ...

)
.

Itô’s calculus gives∣∣∣ζ(∇L(W t)dt+ Σ(W t)
1
2 dBd

t

)∣∣∣2
=ζ2(dBd

t )>(Σ(W t)
1
2 )>Σ(W t)

1
2 dBd

t

=ζ2Tr
(
(Σ(W t)

1
2 )>Σ(W t)

1
2

)
dt

=ζ2TrΣ(W t)dt.

Hence,

dW t =W t

(
− 1

2
ζ2TrΣ(W t)dt

)
− ζ
(
∇L(W t)dt+ Σ(W t)

1
2 dBd

t

)
(1− 1

6
ζ2TrΣ(W t)dt)

=− ζ
(
∇L(W t)dt+ Σ(W t)

1
2 dBd

t

)
− 1

2
ζ2TrΣ(W t)W tdt.
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Note that only the terms w(1 − 1
2 |v|

2) + v came into the
final expression. Since this is exactly the same equation as
(4) with γ−

1
2

t = ζ , the statement now follows from Theorem
3.1.

For the updating method (9), it suffices to use, forw ∈ Sd−1

and v⊥w, the Taylor expansion

w + v

|w + v|
=(w + v)(1 + |v|2)−

1
2

=w(1− 1

2
|v|2 +

3

4
|v|4 + ...)

+ v(1− 1

2
|v|2 +

3

4
|v|4 + ...)

Since we still have w(1− 1
2 |v|

2) + v as leading terms, the
same argument as above applies and concludes the proof.

B. Formulation of the Fokker-Planck equation
In this section, we justify the Fokker-Planck equation (11),
which is a standard fact.

Proof of Proposition 4.3. As in the proof of Theorem 3.1,
write Σ(w)

1
2 = (a1(w), ...,ad(w)). Because for w ∈

Sd−1 ( d∑
j=1

aj(w)>aj(w)
)∣∣
TwSd−1

=
(
(Σ(w)

1
2 )>Σ(w)

1
2

)∣∣
TwSd−1

=Σ(w)|TwSd−1

=σ2Id|TwSd−1 ,

the operator
∑d
j=1∇

2

aj equals σ2∆. (Recall ∆ denotes the
Laplacian on Sd−1.)

As we are working with the effective learning rate γ−
1
2

t equal
to a constant ζ. The random solution W t to (8) satisfies
(16) with

Ψf(w) =− ζ∇L(w) · ∇f(w) +
1

2
ζ2

d∑
j=1

(∇aj )
2f(w)

=− ζ∇L(w) · ∇f(w) +
1

2
ζ2σ2∆f(w).

(19)
Then for all smooth test functions f , (16) can be reformu-
lated as

∂t

∫
Sd−1

u(t,w)f(w)

=

∫
Sd−1

u(t,w)
(
− ζ∇L(w) · ∇f(w) +

1

2
ζ2σ2∆f(w)

)
.

After integration by parts, this is equivalent to the desired
Fokker-Planck equation (11).

C. Linear time change and notations
We first perform a time change. Let β and µ(β) be as in (12),
(13). Write T = ζt and accordingly

W̃
(β)
T := W T

ζ
; ũ(T,w) = u(

T

ζ
,w). (20)

After this time change, (8) and (11) respectively become

dW̃ (β)
T = −∇L(W̃

(β)
T )dT − β 1

2 Σ(W̃
(β)
T )

1
2 dBd

T , (21)

and

∂T ũ = D(β)ũ, (22)

where

D(β)ũ := ∇ · (ũ∇L) + β∆ũ. (23)

Like in the notations for W t, We will denote by
P
W̃

(β)
0 =w

(W̃
(β)
T ) andP

W̃
(β)
0 ∼ν(W̃

(β)
T ) the probability dis-

tribution of the random solution W̃t to (21), respectively
under initial conditions W̃ (β)

0 = w and W̃ (β)
0 ∼ ν where

ν is a measure (which we allow to be a non-probability). In
addition we define an operator F̃ (β)

T between measures by:

F̃ (β)
T ν := P

W̃
(β)
0 ∼ν(W̃

(β)
T ), (24)

in other words F̃ (β)
T is the pushforward by the SDE (21) for

time T .

Remark that F̃ (β)
T is a linear operator between positive mea-

sures and preserves total mass. Moreover, F̃ (β)
T forms a

semigroup parametered by T : F̃ (β)
T ◦ F̃ (β)

T ′ = F̃ (β)
T+T ′ .

For convenience, we will occasionally denote by W̃ (β)
T (w)

fo the value of W̃ (β)
T subject to initial condition W̃ (β)

0 = w.
Note that this value is random.

D. Proof of the descent stage
This section contains the proof of Theorem 4.5. After the
time change, Theorem 4.5 is equivalent to:

Theorem D.1. Under Assumptions 4.1 and 4.2, for all ε > 0
and Q1 > 0, there exists Cdes, βdes > 0 and a set Λε of
volume m(Λε) > 1 − ε, such that for all β < βdes and
all w0 ∈ Λε, the solutions to (21) starting at w0 satisfy
P
W̃

(β)
0 =w0

(
W̃

(β)
Tdes

∈ Uk,Q1

)
> 1 − ε, where Uk is the

unique attracting basin in Sd−1 that contains w0.

We will first focus on the gradient flow without an diffusion
term and then prove the diffusion component is a small
peturbation in the begining of the dynamics.
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D.1. Study of the gradient flow

Note that by allowing to endow β with value 0, again via
the time change T = ζt, the gradient flow (14) is equiva-
lent to the flow W̃ (0)

T defined by (21) with the same initial
condition. Hence we will think of the attracting basins Uz

as attracting basins for the flow W̃ (0)
T . We emphasize that

W̃
(0)
T is deterministic and has only one possible trajectory

starting from a given initial position.
Lemma D.2. Under Assumption 4.2,

1. Sd−1 is the disjoint union of {Uz}z∈Z;

2. Ui is open for each i = 1, ...,m, and the union
⋃m
i=1 Ui

is dense in Sd−1;

3. If z ∈ Z\{z1, ...,zm}, then Uz is a submanifold whose
dimension is strictly less than d− 1.

This is an elementary fact and the proof is omitted.
Lemma D.3. For all Q′ > 0 and ε > 0, there exists θ =
θ(Q′, ε) > 0, such that the volume of the set

Λ1
θ :=

m⋃
i=1

{
w0 ∈ Ui : ∀T ≥ 0,

either L(W̃
(0)
T (w0))− L(zi) < Q′

or |∇L(W̃
(0)
T (w0))|2 > θ.

}
satisfies m(Λ1

θ) > 1− ε.

Proof. Since the set Λ1
θ is decreasing in θ, it suffices to show

that m(
⋃
θ>0 Λ1

θ) = 1. We claim that
⋃
θ>0 Λ1

θ ⊇
⋃m
i=1 Ui.

The lemma would then follow from Lemma D.2.

Suppose W̃ (0)
0 = w0 ∈ Ui and T ≥ 0, then W̃ (0)

T ∈ Ui
as well. It suffices to show there exists θ that depends on
w0 but not on T , such that if L(W̃

(0)
T )− L(zi) ≥ Q′ then

|∇L(W̃
(0)
T )|2 > θ.

Indeed, as limT→∞(L(W̃
(0)
T ) − L(zi)) = 0, L(W̃

(0)
T ) −

L(zi) ≥ Q′ only happens on a fixed interval [0, T0].

Moreover, ∇L(W̃
(0)
T ) > 0 for all T ≥ 0, because oth-

erwise W̃ (0)
T ∈ Z and hence w = W̃

(0)
T is a critical

point, which must be zi since w ∈ Ui. In this case
L(W̃

(0)
T )− L(zi) ≥ Q′ does not hold.

Therefore, as ∇L is continuous on the com-
pact interval [0, T0], it suffices to choose θ =

supT∈[0,T0] |∇L(W̃
(0)
T )|2 > 0.

Corollary D.4. Let θ = θ(Q′, ε) be as in the lemma above.
If w0 ∈ Λ1

θ then w0 ∈ Ui for some 1 ≤ i ≤ m. Moreover,
if W̃ (0)

0 = w0, then for T = maxL−minL
θ , W̃ (0)

T ∈ Ui and
L(W̃

(0)
T )− L(zi) < Q′.

Proof. By definition w ∈ Ui for some i. Assume that
L(W̃

(0)
T ) − L(zi) ≥ Q′, then L(W̃

(0)
s ) − L(zi) ≥ Q

for all s ∈ [0, T ] as the gradient flow decreases L. Thus
|∇L(W̃

(0)
s )|2 ≥ θ and

L(w0)− L(W̃
(0)
T )

=−
∫ T

0

d
ds
L(W̃ (0)

s )

=−
∫ T

0

∇L(W̃ (0)
s )> · (−∇L(W̃ (0)

s ))ds

=

∫ T

0

|∇L(gsw)|2ds ≥ θT ≥ maxL −minL,

which cannot be true as L(W̃
(0)
T ) > L(zi) ≥ minL. This

completes the proof.

D.2. Perturbative estimate

As the following lemma shows, the SDE (21) is a perturba-
tion of the gradient flow on short time scales, during which
the diffusion effect is weak and dominated by the speed to
the gradient flow.

Lemma D.5. Assume W̃ (β)
T and W̃ (0)

T start from the same
initial position w0 at T = 0, then

E
(

dist(W̃
(β)
T (w0), W̃

(0)
T (w0))

)2

= OT (β)

for a fixed T > 0 and sufficiently small β.

Proof. By (Freidlin & Wentzell, 2012, p32), there
exists a Lipschitz type constant C = C(L),

such that E
(

dist(W̃
(β)
T (w0), W̃

(0)
T (w0))

)2

=

O
(
βC2e2CT

∫ T
0
e(2C+βC2)sds

)
. For small β, the

right hand side is OT (β).

Corollary D.6. In the setting as above, for a fixed T , there
exists a subset Λ2

T,ε with m(Λ2
T,ε) > 1 − ε, such that for

sufficiently small β and all w0 ∈ Λ2
T,ε, the solutions to (21)

starting at w satisfy

P
(
W̃

(β)
T (w0) and w belong to the same Ui,

and dist(W̃
(β)
T (w0), W̃

(0)
T (w0)) < OT (β

1
2 )
)

>1− ε.

Proof. Lemma D.5 implies, by Chebyshev inequality, that
P
(

dist(W̃
(β)
T (w0), W̃

(0)
T (w0)) < OT (β

1
2 )
)
> 1 − ε for

all initial positions w. Remember that W̃ (0)
T (w0) and w0

belong to the same attracting basin. For W̃ (β)
T and w to be
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in the same Ui, we can take

Λ̃2
T,β :=

m⋃
i=1

{w0 ∈ Ui : B
OT (β

1
2 )

(W̃
(0)
T (w0)) ⊆ Ui}.

By Lemma D.2, if w0 /∈ Λ̃2
T,β , then the neigh-

borhood B
OT (β

1
2 )

(W̃
(0)
T (w0)) meets the boundary of

Ui, which is contained in
⋃

z∈Z\{z1,...,zi} Uz , a union
of finitely many proper submanifolds. In other
words, W̃

(0)
T (w0) is in the OT (β

1
2 )-neighborhood

B
OT (β

1
2 )

(⋃
z∈Z\{z1,...,zi} Uz

)
of this union. It follows

that (Λ̃2
T,β)c ⊆ W̃

(0)
−T

(
B
OT (β

1
2 )

(⋃
z∈Z\{z1,...,zi} Uz

))
,

where W̃ (0)
−T is the time-reversed gradient flow. Because⋂
β>0

W̃
(0)
−T

(
B
OT (β

1
2 )

( ⋃
z∈Z\{z1,...,zi}

Uz

))
=W̃

(0)
−T

( ⋃
z∈Z\{z1,...,zi}

Uz

)
=

⋃
z∈Z\{z1,...,zi}

Uz,

we conclude limβ→0 m(Λ̃2
T,β) = 1. Since the sets Λ̃2

T,β

are decreasing in β, one may fix a sufficiently small β0 =
β0(T, ε) and set Λ2

T,ε = Λ̃2
T,β0

, such that m(Λ2
ε) > 1 −

ε.

D.3. Proof of Theorem 4.5

Proof of Theorem 4.5. It suffices to prove Theorem D.1.

Take Tdes = maxL−minL
θ(
Q1
2 ,ε)

and Λε = Λ1
ε ∩Λ2

Tdes,ε
. It follows

from Corollaries D.4 and D.6 that

P
W̃

(β)
0 =w0

(
W̃

(β)
Tdes
∈ Uk , and

L(W̃
(β)
Tdes

)− L(zk) <
Q1

2
+ max |∇L| ·Oε(β

1
2 )
)

>1− ε.

For sufficiently small β, Q1

2 + max |∇L| · Oε(β
1
2 ) < Q1.

Moreover, m(Λε) > 1− 2ε. To deduce the proposition, it
suffices to rewrite 2ε as ε.

E. Proof of the diffusion stage
This section contains the proof of Theorem 4.6. Using the
time change T = ζt, Theorem 4.6 follows from:
Theorem E.1. Under Assumptions 4.1 and 4.2, for all ε > 0,
there exist constants Rdif , rdif , λdif > 0, and a set Λε of
volume m(Λε) > 1− ε, such that:

With β =
√

λe
2 σ, for all λe < λdif , the following is true for

all T ∈ [Rdif

β , e
rdif
β ]:

(i) For all initial positions w0 ∈ Λε,

distTV

(
P
W̃

(β)
0 =w0

(W̃
(β)
T ),

µ(β)|Uk∫
Uk
µ(β)dm

dm
)

≤ ε,

where Uk is the unique attracting basin of the gradient flow
of L that contains w0.

(ii) More generally, for all initial probability distribution
ν0,

distTV

(
P
W̃

(β)
0 ∼ν0

(W̃
(β)
T ),

m∑
i=1

ν0(Ui)
µ(β)|Ui∫
Ui
µ(β)dm

dm
)

≤ε+ ν0(Λcε).

E.1. Relevant Hilbert spaces and operators

Consider the adjoint operator (D(β))∗ = −∇L · ∇ + β∆.
It is known that (D(β))∗ is self-adjoint on the Hilbert space
L2(µ(β)) := L2(Sd−1, µ(β)dm) (Kolokoltsov, 2000, §8.5).
More precisely, for smooth functions f , g,∫

f((D(β))∗g)µ(β)dm =

∫
((D(β))∗f)gµ(β)dm. (25)

This is equivalent to∫
D(β)(fµ(β))gdm =

∫
fD(β)(gµ(β))dm,

or ∫
D(β)(fµ(β))gµ(β) · 1

µ(β)
dm

=

∫
fµ(β)D(β)(gµ(β)) · 1

µ(β)
dm.

This shows D(β) is self-adjoint for the Hilbert space
L2( 1

µ(β) ) := L2(Sd−1, 1
µ(β) dm). We shall also write

L2(1) := L2(Sd−1, dm) for the unweighted L2 space.

The equality (25) can also be written as∫
((D(β))∗f)gµ(β)dm =

∫
D(β)(fµ(β))gdm, which

implies

(D(β))∗f =
1

µ(β)
D(β)(fµ(β)). (26)

On the other hand, one can directly check the following
facts:

Lemma E.2. Let fT (w) = µ(β)(w)−
1
2 ũT (w). If u is a

solution to (22) then f satisfies ∂T f = Dβ,#f where

Dβ,#f := β∆f − (
|∇L|2

4β
− ∆L

2
)f. (27)

We also note

D(β)ũ = D(β)((µ(β))
1
2 f) = (µ(β))

1
2Dβ,#f. (28)
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The equalities (25) and (28) guarantee the following com-
mutative diagram of operators:

L2(µ(β)) L2(1) L2( 1
µ(β) )

L2(µ(β)) L2(1) L2( 1
µ(β) )

f→(µ(β))
1
2 f

(D(β))∗

f→(µ(β))
1
2 f

Dβ,# D(β)

f→(µ(β))
1
2 f f→(µ(β))

1
2 f

(29)
In this diagram, every horizontal arrow is an isometry and
every vertical arrow is a self-adjoint operator. In particu-
lar, f → f(µ(β))

1
2 is a bijection, from the eigenfunctions

of (D(β))∗ to those of Dβ,# with the same eigenvalues,
then again a bijection from the later ones to the eigenfunc-
tions of D(β) with the same eigenvalues. In other words,
the spectra of (D(β))∗ , Dβ,# and D(β), as self-adjoint op-
erators in their corresponding spaces, are the same. By
self-adjointness, this spectrum is actually contained in R.

Recall that Uj is the attracting basin containing zj . From
now on, we will denote the indicator function of Uj by

χj := χUj .

The low lying eigenvalues of −D(β) correspond to the local
minima. This was first proved in (Simon, 1983). The precise
version that we need can be found in (Kolokoltsov, 2000).

Proposition E.3. (Kolokoltsov, 2000, p248) Given L, there
exist constants Q0, ρ > 0, determined by L, such that:

1. The first m eigenvalues (counted with multiplicity) of
−D(β) in L2( 1

µ(β) ) are ≤ O(e−
Q0
β );

2. With Π(β) and (Π(β))⊥ = Id−Π(β) respectively denot-
ing the orthogonal projections in L2( 1

µ(β) ) to the span of

the firstm eigenfunctions of−D(β) and to its orthogonal

complement,
‖(Π(β))⊥(χjµ

(β))‖L2( 1

µ(β)
)

‖χjµ(β)‖L2( 1

µ(β)
)

= O(e−
Q0
β )

holds for 1 ≤ j ≤ m;

3. All other eigenvalues of−D(β) are greater than or equal
to ρ.

More precisely, Q0 can be any positive value such that
Q0 < mini supw∈Ui

(
(L(w)− L(zi)

)
.

The original formulation in (Kolokoltsov, 2000) was for the
spectral decomposition of −(D(β))∗. But in light of the
correspondence D(β)(µ(β)f) = µ(β)(D(β))∗f (see §E.1),
the translation to the D(β) setting is straightforward.

E.2. Approximate spectral decomposition

For brevity, let χ̂(β)
j =

χjµ
(β)

‖χjµ(β)‖L2( 1

µ(β)
)

and ψ
(β)
j =

Π(β)χ̂
(β)
j . Then ‖χ̂(β)

j ‖L2( 1

µ(β)
) = 1. By Proposition E.3,

‖ψ(β)
j − χ̂(β)

j ‖L2( 1

µ(β)
) ≤ O(e−

Q0
β ), (30)

and the matrix

K = (Kij)
m
i,j=1 :=

(
〈ψ(β)
i , ψ

(β)
j 〉L2( 1

µ(β)
)

)m
i,j=1

is within distance O(e−
Q0
β ) from Id. In consequence,

‖K−1 − Id‖ ≤ O(e−
Q0
β ). (31)

The entries of K−1 will be denoted by K−1 = (Kij).

Suppose ũT (·) = ũ(T, ·) is the density function of the
distribution of trajectories W̃T that start from an intial point
w0. We are interested in the spectral decomposition of ũT ,
or more precisely the projection

Π(β)f =

m∑
i=1

( m∑
j=1

Kij〈ũT , ψ(β)
j 〉L2( 1

µ(β)
)

)
ψ

(β)
j . (32)

The strategy is to show that the coefficient∑m
j=1K

ij〈ũT , ψ(β)
j 〉L2( 1

µ(β)
) in the decomposition

above has little dependence on the choice of w0 as long as
it is supported in Uk,Q1

.

E.3. Regularity bound

From now on, suppose Uk is the attracting basin containing
w0. By Theorem D.1, after running the SDE (21) for T1 =
OQ1,ε(1) time starting from a randomly sampled point w0,
the resulting point W̃T1 is with probabilty 1−ε in the “well”
Uk,Q1

near the local minimum zk at the bottom of Uk.

We will start the SDE again, on a longer time scale, from
the restricted probability distribution

(
F̃ (β)
T1
δw0

)
|Uk,Q1

. In
the next stage, gradient descent slows down because∇L is
small in Uk,Q1 , and diffusion behavior plays a more impor-
tant role than in the previous stage.

It is noteworthy that
(
F̃ (β)
T1
δw0

)Uk,Q1 is absolutely contin-
uous because T1 > 0 and the parabolic PDE (22) is non-
degenerate.

Instead of bounding ũ(T, ·), we allow the stochastic pro-
cess (21) to run for a duration of R

β before estimating the
regularity of the new marginal distribution uR

β
dm. Let

p : (0,∞) × Sd−1 × Sd−1 be the heat kernel of the op-
erator D(β), i.e. p(T,x,y)dm(y) = d

(
F̃ (β)
T δx

)
(y). In

other words, for each fixed x, p(T,x, ·) solves (22) and
p(T,x,y)dm(y) converges weakly to δx as T → 0.
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Lemma E.4. There exist constants C1, C2 > 0 determined
by L, such that for every R ≥ 1 and sufficiently small β,
|p(Rβ , ·, ·)| is uniformly bounded by O(e

C1R+C2
β ).

Proof. First remark that, by (29), e−
L(x)−L(y)

2β p(T,x,y) =

(µ(β))
1
2 (x)(µ(β))−

1
2 (y)p(T,x,y) is the heat kernel of the

operator Dβ,#.

We then renormalize Dβ,# to D
β,#

β = ∆ − V (β) where

V (β) := |∇L|2
4β2 − ∆L

2β . The heat kernel of D
β,#

β at time R

takes the form e−
L(x)−L(y)

2β p(Rβ ,x,y).

Note that V (β) may take negative values, but minV (β) ≥
−‖∆L‖L∞2β . Define the Schrödinger operator

S(β) := ∆− (V (β) −minV (β)),

whose heat kernel at time R is
e(minV (β))Re−

L(x)−L(y)
2β p(Rβ ,x,y).

Because the new potential function V (β)−minV (β) is non-
negative, by a standard maximal principle argument, the
heat kernel of S(β) is bounded by the Gaussian heat kernel,
i.e. the one of the Laplancian ∆ on Sd−1. This in particular
shows that

e(minV (β))Re−
L(x)−L(y)

2β p(
R

β
,x,y)

≤O
(
R−

d−1
2 e−

cdist(x,y)2

R

)
for some constant c > 0. Thus

p(
R

β
,x,y) ≤ O

(
R−

d−1
2 e−(minV (β))Re

L(x)−L(y)
2β

)
.

To establish the lemma, it suffices to take C1 = ‖∆L‖L∞
2

and C2 = maxL −minL.

Corollary E.5. For R ≥ 1, small β and any initial mea-
sure ν0 on Sd−1, F̃ (β)

R
β

ν0 is absolutely continuous. More-

over, F̃ (β)
R
β

ν0 = qdm for a function q with ‖q‖L∞ ≤

O(e
C1R+C2

β )ν0(Sd−1).

The operator F̃ (β)
R
β

was defined in §C.

Proof. This follows from Lemma E.4 and the direct decom-

position q(y) =

∫
p(
R

β
,x,y)dν0(x).

E.4. Non-escaping from well

We will make a choice of the parameter Q1 in Theorem
D.1 that depends only on L. The goal is to assert that the

a trajectory of the SDE (21) with starting point w ∈ Uk,Q1

will be trapped inUk,Q for an exponentially long period with
high probability. The argument below is essentially due to
(Freidlin & Wentzell, 2012, §4.4). However, while their
proof works for all w ∈ Uk,Q0

, the purpose of reproducing
it here is to demonstrate the uniformity of the estimate for
all w ∈ Uk,Q1

.

For every w ∈ Uk,Q0
, its first exit time with respect to

Uk,Q0
is denoted by

τ (β)(w) := inf
{
T > 0 : W̃

(β)
T (w) ∈ ∂Ui,Q0

}
. (33)

Lemma E.6. Given L and Q0, there exists a constant Q1,
such that the bound P(τ (β)(w) ≤ e

Q0
3β ) ≤ O(e−

Q0
3β ) holds

uniformly for all w ∈ Uk,Q1
.

Proof. Together with another constant r, also determined
by L, we can make Q1 satisfy the following condition:

∀1 ≤ i ≤ m,Ui,Q1 ⊂ Br(zi) and B3r(zi) ⊂ Ui,Q0 (34)

For every w ∈ Ui,Q0
∪ ∂Ui,Q0

, and let τ (β)
1 (w) be the

following stopping time:

τ
(β)
1 (w)

:= inf
{
T > 0 : W̃

(β)
T (w) ∈ ∂Br(zi) ∪ ∂Ui,Q0

and ∃T ′ ∈ [0, T ) s.t. W̃ (β)
T ′ (w) ∈ ∂B2r(zi)

}
.

(35)

Fix constants Q′0, Q
′′
0 such that 0 < Q′′0 < Q′0 < Q0 .

In addition to (34), by (Freidlin & Wentzell, 2012, Ch. 4,
(4.6)), one can choose r to be sufficiently small, such that
for all sufficiently small β,

P
(
W̃

(β)

τ
(β)
1 (w)

(w) ∈ ∂Ui,Q0

)
≤ e−

Q′0
β (36)

for all 1 ≤ i ≤ m and w ∈ ∂Br(zi) ∪ ∂Ui,Q0
. In addition,

define for every w ∈ Ui,Q0
recursively the n-th stopping

times for all n ≥ 1:

τ (β)
n (w) := τ

(β)
n−1(w) + τ

(β)
1 (W̃

(β)

τ
(β)
n−1(w)

). (37)

Note that if w ∈ B2r(zi), then τ (β)(w) = τ
(β)

N(β)(w)
(w)

for a random variable N = N (β)(w) ∈ N.

Once r is fixed, because the stochastic process (21) is a
perturbation of the geodesic flow when β is very small and
the separation condition (34) holds, there exists a constant
θ > 0 such that P(τ

(β)
1 (w) > θ) > 1

2 for all sufficiently
small β and w ∈ ∂B2r(zk). By construction of τ (β)

1 , this
inequality is also true for all w ∈ ∂Br(zk)



Three-stage Evolution and Fast Equilibrium for SGD with Non-degerate Critical Points

From now on suppose w ∈ Ui,Q1
⊂ Br(zi), Set a target

iteration number at M (β) = b 4
θ e

Q′′0
β c. Then τ (β)

1 (w) =

τ
(β)
0 (w)+τ

(β)
1 (W̃

(β)

τ
(β)
0 (w)

(w)) where τ (β)
0 (w) := inf{T >

0 : W̃
(β)
T (w) ∈ ∂Br(zi)}. In particular,

N (β)(w) = N (β)
(
W̃

(β)

τ
(β)
0 (w)

(w)
)
. (38)

Since W̃ (β)

τ
(β)
0 (w)

(w) ∈ ∂Br(zi) ∪ ∂Ui,Q0
, by (36),

P(N (β)(w) <M (β)) ≤ 1−
(
1− e−

Q′0
β
)b 4θ eQ′′0β c

=O(e
Q′′0−Q

′
0

β ),

(39)

where the implied constant is uniform for w ∈ Ui,Q1
⊂

Br(zi).

On the other hand, since τ
(β)
n (w) = τ

(β)
0 (w) +∑n

l=1 τ
(β)
1

(
W̃

(β)

τ
(β)
l−1(w)

(w)
)
, and each term in the summa-

tion, given all precedent terms, is greater than θ with at least
1
2 probability, we know by large deviation principle that for
an absolute constant c > 0,

P(τ
(β)

M(β)(w) ≤ θ

3
M (β)) ≤ e−cM

(β)

(40)

uniformly for all w ∈ Ui,Q1
. Combining (39) and (40)

yields that for all sufficiently small β (depending only on
L), we have uniformly for all w ∈ Ui,Q1

,

P(τ (β)(w) ≤ e
Q′′0
β )

=P(τ
(β)

N(β)(ω)
(w) ≤ e

Q′′0
β ) ≤ P(τ

(β)

N(β)(ω)
(w) ≤ θ

3
M (β))

≤P(N (β)(w) < M (β)) + P(τ
(β)

M(β)(w) ≤ θ

3
M (β))

≤O(e
Q′′0−Q

′
0

β ) + e−cb
4
θ e

Q′′0
β c

≤O(e
Q′′0−Q

′
0

β ).
(41)

The proof is completed by taking Q′′0 = Q0

3 and Q′0 =
2Q0

3 .

E.5. Short term convergence towards local equilibria

We are now ready to put the pieces together and understand
the evolution during the current stage.

Let T1 = Tdes as in Theorem D.1. Fix an arbitrary parame-
ter R′ > 0, say R′ = 1. Let

C ′2 = C2 +
1

2
(maxL −minL) =

3

2
(maxL −minL),

which depends only on L. Consider R ≥ R′ such that the
following assumptions are satisfied:

R ≥ ρ+ C1

ρ
R′ +

C ′2 +Q0

ρ
, (42)

R′

β
≤ R

β
≤ e

Q0
3β . (43)

We first write

PW 0=w0
(W R

β
) = F̃ (β)

R
β

δw0 = F̃ (β)
R−R′
β

F̃ (β)
R′
β

δw0 . (44)

Then decompose

F̃ (β)
R′
β

δw0
=F̃ (β)

R′
β −T1

((
F̃ (β)
T1
δw0

)
|Uk,Q1

)
+ F̃ (β)

R′
β −T1

((
F̃ (β)
T1
δw0

)
|Uck,Q1

)
.

By Theorem 4.5, the total mass of
F̃ (β)
R
β −T1

((
F̃ (β)
T1
δw0

)
|Uck,Q1

)
is less than ε.

For simplicity, denote the measure
F̃ (β)
R′
β −T1

((
F̃ (β)
T1
δw0

)
|Uk,Q1

)
by γ. Then its properties

can be summarized as follows:

(i) distTV

(
F̃ (β)
R′
β

δw0
, γ) ≤ ε;

(ii) γ is absolutely continuous. Moreover, γ =
h(·)dm with a density function h satisfying ‖h‖ ≤
O(e

C1R
′+C2
β ).

Here the second property follows from Corollary E.5.

In particular, the total mass of γ satisfies 1−ε ≤ γ(Sd−1) ≤
1.

We now run the Fokker-Planck equation (22) starting at
initial time R′

β and initial data h(·), and denote the solution

by h̃; that is, h̃T (w) := h̃(T,w) is defined on T ≥ R′

β ,
w ∈ Sd−1, and solves{

∂T h̃T = D(β)h̃T
h̃R′
β

(·) = h(·). (45)

In other words, h̃T−R′β = e(T−R′β )D(β)

h. Note that as the
Fokker-Planck equation preserves total mass,∫

h̃T dm =

∫
hdm ∈ [1− ε, 1],∀T ≥ R′

β
. (46)

Since h̃ and ũ both satisfy (22), for T ≥ R′

β , h̃T will be
viewed as an approximation of ũT in the sense that

distTV

(
F̃ (β)
T δw0

, h̃T dm
)

=distTV(ũT dm, h̃T dm)

=distTV(F̃ (β)

T−R′β
(ũR′

β
dm), F̃ (β)

T−R′β
(h̃R′

β
dm))

=distTV(F̃ (β)

T−R′β
(ũR′

β
dm), F̃ (β)

T−R′β
γ)

≤ε.

(47)
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Recall ψ(β)
j = Π(β)χ̂

(β)
j and χ̂(β)

j − ψ(β)
j = (Π(β))⊥χ̂

(β)
j

are respectively the projections of χ̂(β)
j to the span of the first

m eigenvalues of −D(β) and its orthogonal complement in
L2( 1

µ(β) ). The conditions (42) and (43) will be assumed on
R and R′ without further notice.

Lemma E.7. For sufficiently small β,∥∥(Π(β))⊥h̃R
β

∥∥
L2( 1

µ(β)
)
≤ O(e−

Q0
β ).

The projections Π(β) and (Π(β))⊥ were defined in Proposi-
tion E.3.

Proof. The projection (Π(β))⊥h̃R
β

can be bounded by∥∥(Π(β))⊥h̃R
β

∥∥
L2( 1

µ(β)
)

=
∥∥(Π(β))⊥e

R−R′
β D(β)

h̃R′
β

∥∥
L2( 1

µ(β)
)

=
∥∥eR−R′β D(β)

(Π(β))⊥h̃R′
β

∥∥
L2( 1

µ(β)
)

≤e−ρ(
R−R′
β )

∥∥h̃R′
β

∥∥
L2( 1

µ(β)
)

(48)

because by Proposition E.3.(3), the spectrum of −D(β) on
the image of (Π(β))⊥ is in [ρ,∞).

By the bound on h̃R′
β

= h, we have:

‖h̃R′
β
‖L2( 1

µ(β)
)

≤O(e
C1R

′+C2
β )‖1‖L2( 1

µ(β)
)

=O(e
C1R

′+C2
β )

(∫ 1

µ(β)
dm
)− 1

2

≤O(e
C1R

′+C2
β )(minµ(β))−

1
2

≤O(e
C1R

′+C2
β )(e

minL−maxL
β )−

1
2

=O(e
C1R

′+C′2
β ).

(49)

Combining (48) with (49), we obtain∥∥(Π(β))⊥h̃R
β

∥∥
L2( 1

µ(β)
)

≤O(e−ρ(
R−R′
β )e

C1R
′+C′2
β )

≤O(e−
ρR−(ρ+C1)R′−C′2

β )

≤O(e−
Q0
β )

because of (42).

Notation E.8. In addition to the usual bigO(·) notation, we
will use Õ(ε) to represent an error taking value in [−ε, ε].

Lemma E.9. For each j,∫
Uj,Q0

h̃R
β

dm =

{
1 + Õ(ε) +O(e−

Q0
3β ) j = k;

O(e−
Q0
3β ) j 6= k.

Proof. By the fact that h̃R
β

dm =

F̃ (β)
R
β −T1

((
F̃ (β)
T1
δw0

)
|Uck,Q1

)
, condition (43), and Lemma

E.6,
∫
Uj,Q0

h̃R
β

dm = δkj
∫
Sd−1 h̃R

β
dm + O(e−

Q0
3β ). We

then conclude with (46).

Corollary E.10. For sufficiently small β,

〈h̃R
β
, ψ

(β)
j 〉L2( 1

µ(β)
)

=
δkj + Õ(ε) +O(e−

Q0
3β )

‖χkµ(β)‖L2( 1

µ(β)
)

+O(e−
2Q0
β ).

Proof. It follows from (30) and the lemma above that

〈h̃R
β
, ψ

(β)
j − χ̂(β)

j 〉L2( 1

µ(β)
)

=〈(Π(β))⊥h̃R
β
, ψ

(β)
j − χ̂(β)

j 〉L2( 1

µ(β)
)

≤O(e−
Q0
β ) ·O(e−

Q0
β ) = O(e−

2Q0
β ).

(50)

Together with Lemma E.9, this implies

〈h̃R
β
, χ̂

(β)
j 〉L2( 1

µ(β)
)

=
〈h̃R

β
, χjµ

(β)〉L2( 1

µ(β)
)

‖χjµ(β)‖L2( 1

µ(β)
)

=

∫
Uj,Q0

h̃R
β
µ(β) · 1

µ(β) dm

‖χjµ(β)‖L2( 1

µ(β)
)

=

∫
Uj,Q0

h̃R
β

dm

‖χjµ(β)‖L2( 1

µ(β)
)

=
δkj + Õ(ε) +O(e−

Q0
3β )

‖χkµ(β)‖L2( 1

µ(β)
)

.

(51)

The corollary is proved by adding (50) and (51).

E.6. Proof of Theorem 4.6

To prove Theorem 4.6, it suffices to prove Theorem E.1.

Proof of Theorem E.1. The constant Rdif will be the right
hand in (42) and let rdif = Q0

3 . For T ∈ [Rdif

β , e
rdif
β ], write

T = R
β . Then R satisfies both (42) and (43).
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Part (i). Let Uk be the unique basin containing w0. First
assume that A ⊆ Uk. In this case, using (30)

〈χAµ(β), ψ
(β)
j 〉L2( 1

µ(β)
)

=〈χAµ(β), χ̂
(β)
j 〉L2( 1

µ(β)
)

+ 〈χAµ(β), ψ
(β)
j − χ̂(β)

j 〉L2( 1

µ(β)
)

=
〈χAµ(β), χjµ

(β)〉L2( 1

µ(β)
)

‖χjµ(β)‖L2( 1

µ(β)
)

+ ‖χAµ(β)‖L2( 1

µ(β)
)‖ψ

(β)
j − χ̂(β)

j ‖L2( 1

µ(β)
)

=

δkj‖χAµ(β)‖2
L2( 1

µ(β)
)

‖χkµ(β)‖L2( 1

µ(β)
)

+O(e−
Q0
β )‖χAµ(β)‖L2( 1

µ(β)
)

=

(δkj‖χAµ(β)‖L2( 1

µ(β)
)

‖χkµ(β)‖L2( 1

µ(β)
)

+O(e−
Q0
β )

)
‖χAµ(β)‖L2( 1

µ(β)
)

(52)
We can now, from (31), (32), (52) and Corollary E.10, de-
duce

〈Π(β)h̃R
β
, χAµ

(β)〉L2( 1

µ(β)
)

=

m∑
i=1

m∑
j=1

Kij〈h̃R
β
, ψ

(β)
i 〉L2( 1

µ(β)
)

· 〈χAµ(β), ψ
(β)
j 〉L2( 1

µ(β)
)

=

m∑
i=1

m∑
j=1

(
δij +O(e−

Q0
β )
)

·
(
δki +O(ε+ e−

Q0
3β )

‖χkµ(β)‖L2( 1

µ(β)
)

+O(e−
2Q0
β )

)

·
(δkj‖χAµ(β)‖L2( 1

µ(β)
)

‖χkµ(β)‖L2( 1

µ(β)
)

+O(e−
Q0
β )

)
· ‖χAµ(β)‖L2( 1

µ(β)
)

=

m∑
j=1

(
δkj + Õ(ε) +O(e−

Q0
3β )

‖χkµ(β)‖L2( 1

µ(β)
)

+O(e−
2Q0
β )

)

·
(δkj‖χAµ(β)‖L2( 1

µ(β)
)

‖χkµ(β)‖L2( 1

µ(β)
)

+O(e−
Q0
β )

)
· ‖χAµ(β)‖L2( 1

µ(β)
)

(53)

By separating the j = k and j 6= k terms, this becomes

〈Π(β)h̃R
β
, χAµ

(β)〉L2( 1

µ(β)
)

=

((
1 + Õ(ε) +O(e−

Q0
3β )

‖χkµ(β)‖L2( 1

µ(β)
)

+O(e−
2Q0
β )

)

·
(‖χAµ(β)‖L2( 1

µ(β)
)

‖χkµ(β)‖L2( 1

µ(β)
)

+O(e−
Q0
β )

)

+
O(e−

Q0
β )

‖χkµ(β)‖L2( 1

µ(β)
)

)
‖χAµ(β)‖L2( 1

µ(β)
)

=

(‖χAµ(β)‖L2( 1

µ(β)
)

‖χkµ(β)‖2
L2( 1

µ(β)
)

+
Õ(ε) +O(e−

Q0
3β )

‖χkµ(β)‖L2( 1

µ(β)
)

)
· ‖χAµ(β)‖L2( 1

µ(β)
)

=

‖χAµ(β)‖2
L2( 1

µ(β)
)

‖χkµ(β)‖2
L2( 1

µ(β)
)

+

(
Õ(ε) +O(e−

Q0
3β )
)
‖χAµ(β)‖L2( 1

µ(β)
)

‖χkµ(β)‖L2( 1

µ(β)
)

=

∫
A
µ(β)dm∫

Uk
µ(β)dm

+ Õ(ε) +O(e−
Q0
3β ).

(54)

Here we used the fact that ‖χAµ(β)‖L2( 1

µ(β)
) ≤

‖χkµ(β)‖L2( 1

µ(β)
) =

( ∫
Uk
µ(β)dm

) 1
2 ≤ 1.

On the other hand, by Lemma E.7,

〈(Π(β))⊥h̃R
β
, χAµ

(β)〉L2( 1

µ(β)
)

≤O(e−
Q0
β )‖χAµ(β)‖L2( 1

µ(β)
) ≤ O(e−

Q0
β )

(55)

Adding the last two inequalities gives, for all subsetA ⊆ Uk,

〈h̃R
β
, χAµ

(β)〉L2( 1

µ(β)
)

=

∫
A
µ(β)dm∫

Uk
µ(β)dm

+ Õ(ε) +O(e−
Q0
3β )

(56)

Assume now A ⊆ U ck . In this case, by Lemma E.9,

〈h̃R
β
, χAµ

(β)〉L2( 1

µ(β)
) =

∫
A

h̃R
β

dm = O(e−
Q0
3β ) (57)

Finally, for a general subset A ⊆ Sd−1, we decompose A
intoA∩Uk andA\Uk and apply (56) and (57), and conclude
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that ∫
A

h̃R
β

dm

=〈h̃R
β
, χAµ

(β)〉L2( 1

µ(β)
)

=

∫
A∩Uk µ

(β)dm∫
Uk
µ(β)dm

+ Õ(ε) +O(e−
Q0
3β )

=

∫
A
µ(β)|Ukdm∫
Uk
µ(β)dm

+ Õ(ε) +O(e−
Q0
3β )

(58)

By (47), the relation (58) is equivalent to

distTV

(
F̃ (β)
R
β

δw0
,

µ(β)|Uk∫
Uk
µ(β)dm

dm
))

≤ε+O(e−
Q0
3β ) ≤ 2ε.

(59)

for sufficiently small β. Let T = R
β . After renaming 2ε as

ε and rewriting F̃ (β)
R
β

δw0
= P

W̃
(β)
0 =w0

(W̃
(β)
T ), in view of

(43), we obtain Part (i) of Theorem E.1.

Part (ii). The second part of the theorem follows directly
from Part (i) by disintegrating ν0 as

∑m
j=1 ν0|Uj∩Λε+ν0|Λcε .

Corollary 4.7 follows from Theorem 4.6 and the following
lemma:

Lemma E.11. In the setting of Theorem 4.6, given ε > 0,
for sufficiently small β,

(i) For all i with L(zi) > minL,

distTV

( µ(β)|Ui∫
Ui
µ(β)dm

, µ(β)dm
)
≥ 1− ε;

(ii) For all i with L(zi) = minL,

distTV

( µ(β)|Ui∫
Ui
µ(β)dm

, µ(β)dm
)

≥1− (det∇2L(zi))
− 1

2∑
k:L(zk)=minL(det∇2L(zk))−

1
2

− ε.

Proof. By (Hwang, 1980, Thm. 2.1), as β → 0,
µ(β) converges to a probability measure µ(0) supported
on {zi : L(zi) = minL} and µ(0)({zi}) =

(det∇2L(zi))
− 1

2∑
k:L(zk)=minL(det∇2L(zk))−

1
2

if L(zi) = minL. There-

fore:

For all i with L(zi) > minL, µ(0) is supported outside Ui,
thus

distTV

( µ(β)|Ui∫
Ui
µ(β)dm

, µ(β)dm
)
≥ 1;

For all i with L(zi) = minL,

distTV

( µ(β)|Ui∫
Ui
µ(β)dm

, µ(0)dm
)

≥1− (det∇2L(zi))
− 1

2∑
k:L(zk)=minL(det∇2L(zk))−

1
2

.

Both inequalities above are obtained by comparing the mea-
sures of Ui.

It now suffices to take sufficiently small β in the limit.

Proof of Corollary 4.7. Suppose m ≥ 2, choose λe < λdif

sufficiently small such that β is small enough for Lemma
E.11. Let Ωdif = Λε ∩

⋃
i:L(zi)>minL Ui if there is only

one zk with L(zk) = minL; and Ωdif = Λε ∩
⋃
i Ui

otherwise. Note that m(
⋃
i:L(zi)>minL Ui) > 0 in the first

case and
⋃
i Ui = 1 in the second case. So in the first case

m(Ωdif) > κ1 − ε for some constant κ1 > 0, and in the
second case m(Ωdif) > 1− ε.

Suppse w ∈ Ωdif and w ∈ Ui. Notice that in the second

case, 1 − (det∇2L(zi))
− 1

2∑
k:L(zk)=minL(det∇2L(zk))−

1
2
> 0 by the non-

degeneracy Assumption 4.2. By Lemma E.11, in both cases,

distTV

( µ(β)|Ui∫
Ui
µ(β)dm

, µ(β)dm
)
> κ2 − ε

for some constant κ2 > 0. By Theorem 4.6,

distTV

(
PW 0=w0

(W t), µ
(β)dm

)
> κ2 − 2ε.

The corollary follows by fixing a sufficiently small ε <
1
4 min(κ1, κ2) and choose λe accordingly.

F. Proof of the tunneling stage
Using again the time change T = ζt, Theorem 4.8 would
follow from:

Theorem F.1. Under the genericity Assumption 4.2, There
exists a constant Qtun such that for all T ≥ 0

distTV

(
P
W̃

(β)
0 =w0

(W̃
(β)
T ), µ(β)dm

)
≤O(e−(e

−Qtun
β )T )

holds uniformly for all initial position w0 ∈ Sd−1 and
sufficiently small β.

Proof of Theorem F.1. As noted in the discussion following
Theorem 4.8, this part (or the Rd version of it) has essen-
tially been proved in (Shi et al., 2020). Their proof is for
fast growing functions L on Rd and is based on the fact that
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there exists Q such that for the second eigenvalue λ(β)
2 of

−D(β),
λ

(β)
2 & e−

Q
β . (60)

(Recall that the first eigenvalue is 0 as D(β)µ(β) = 0.) In
our setting of the compact manifold Sd−1, (60) was proved
in (Michel, 2019, Thm 2.8), and the same argument as in
(Shi et al., 2020) applies.


