
Iterative Double Sketching for Faster Least-Squares Optimization

Rui Wang 1 Yanyan Ouyang 1 Wangli Xu 1

Abstract
This work is concerned with the overdetermined
linear least-squares problem for large scale data.
We generalize the iterative Hessian sketching
(IHS) algorithm and propose a new sketching
framework named iterative double sketching
(IDS) which uses approximations for both the
gradient and the Hessian in each iteration. To un-
derstand the behavior of the IDS algorithm and
choose the optimal hyperparameters, we derive
the exact limit of the conditional prediction error
of the IDS algorithm in the setting of Gaussian
sketching. Guided by this theoretical result, we
propose an efficient IDS algorithm via a new class
of sequentially related sketching matrices. We
give a non-asymptotic analysis of this efficient
IDS algorithm which shows that the proposed
algorithm achieves the state-of-the-art trade-off
between accuracy and efficiency.

1. Introduction
We consider the overdetermined least-squares problem

x∗ := arg min
x∈Rd

{
f(x;A,y) :=

1

2
‖Ax− y‖2

}
, (1)

where A = (a1, . . . ,aN)> ∈ RN×d is a given data matrix
and y = (y1, . . . , yN)> ∈ RN is a vector of observations.
Throughout the paper, it is assumed that A has full column
rank, that is, Rank(A) = d.

The solution to the problem (1) has the explicit expression

x∗ = (A>A)−1A>y. (2)

The direct computation of x∗ using this formula costs
O(Nd2) time. Note that for any initial point x0 ∈ Rd,

x∗ = x0 − (A>A)−1∇f(x0;A,y),

1Center for Applied Statistics and School of Statistics, Renmin
University of China, Beijing 100872, China. Correspondence to:
Wangli Xu <wlxu@ruc.edu.cn>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

where ∇f(x;A,y) := A>(Ax − y) is the gradient of f
at x, and A>A is the Hessian of f . Thus, from any initial
point x0, one can obtain the exact solution to the problem
(1) in just one Newton iteration. And the formula (2) is the
output of one Newton iteration with x0 = 0d.

When N and d are large, the direct computation via the
formula (2) may be time-consuming. In this case, sketching
methods are often used to obtain approximate solutions to
the problem (1). For the classical sketching methods, the
data (A,y) is projected to (SA,Sy) via certain random
sketching matrix S ∈ Rr×N with d ≤ r � N , and the
sketched least-squares problem

xCS := arg min
x∈Rd

{
f(x;SA,Sy) =

1

2
‖SAx− Sy‖2

}
is considered as a surrogate of the original problem; see
Mahoney (2011); Woodruff (2014); Drineas & Mahoney
(2016) for reviews of classical sketching methods. If the
matrix A>S>SA is invertible, then we have

xCS = x0 − (A>S>SA)−1∇f(x0;SA,Sy). (3)

Once the sketched data (SA,Sy) is obtained, the direct
computation of xCS via the formula (3) only costs O(rd2)
time which can be much faster than the direct computation
of x∗. With a small r, however, the classical sketching
method can only produce a low-precision approximation of
x∗. Recently, Pilanci & Wainwright (2016) introduced the it-
erative Hessian sketch (IHS) algorithm which uses sketching
methods in conjunction with an iteration method to achieve
high-precision approximations of x∗. They considered the
following iteration formula:

xt+1 = xt − (A>S>t StA)−1∇f(xt;A,y), (4)

where S0,S1, . . . are independent and identically distributed
(i.i.d.) r×N random sketching matrices. Compared with the
classical sketching methods, the formula (4) of the IHS al-
gorithm has two new features. First, the IHS algorithm only
sketches the Hessian and does not sketch the gradient. Sec-
ond, the IHS algorithm applies multiple Newton iterations
to refine the solution. The theoretical results of Pilanci &
Wainwright (2016) guarantee that with high probability, the
IHS algorithm can produce a high-precision approximation
of x∗.

Since the publication of Pilanci & Wainwright (2016), the
IHS algorithm has drawn much attention and several im-
provements are proposed. In the original iteration formula

Iterative Double Sketching for Faster Least-Squares Optimization

(4) of the IHS algorithm, a refreshed Hessian sketching
A>S>t StA is used for each iteration. The computation
of refreshed Hessian sketching is time-consuming. Some
recent work reveals that the IHS algorithm can also work
well with fixed Hessian sketching across iterations, that is,
S0 = S1 = · · · ; see, e.g., Wang & Xu (2018); Özaslan
et al. (2019); Lacotte & Pilanci (2021). With a fixed Hes-
sian sketching, one can first compute and cache the matrix
(A>S>0 S0A)−1. Then in each iteration, one only need to
compute the gradient∇f(xt, ;A,y), and update xt via the
formula xt+1 = xt − (A>S>0 S0A)−1∇f(xt;A,y). In
another direction of research, more general update formulas
are considered to improve the IHS algorithm. For example,
Özaslan et al. (2019) considered the update formula

xt+1 = xt − α(A>S>0 S0A)−1∇f(xt;A,y) + β(xt − xt−1),

and investigated fine-grained choices of α and β. See La-
cotte & Pilanci (2020; 2021) for some recent work in this
direction.

The IHS algorithm and its variants have achieved great
success for the problem (1). Nevertheless, there is still room
for improvement. To appreciate this point, we note that the
typical convergence rate of the IHS algorithms has the form

‖A(xt − x∗)‖ ≤ ρt‖A(x0 − x∗)‖, (5)

where ρ ∈ (0, 1) is certain constant; see, e.g., Özaslan et al.
(2019); Lacotte & Pilanci (2020; 2021). Such a convergence
rate is often tight for the IHS algorithms. Hence roughly
speaking, in each iteration of the IHS algorithm, the error
is reduced by a constant ratio. On the other hand, for each
iteration of the IHS algorithm, one need to compute the gra-
dient ∇f(xt;A,y) = A>(Axt − y) which costs O(Nd)
time. That is, in each iteration of the IHS algorithm, it costs
at least O(Nd) time to reduce the error by a constant ratio.
For the first few iterations, this may not achieve a good
trade-off between the accuracy and efficiency.

The computation of the gradient is a bottleneck of the IHS
algorithm. To improve the IHS algorithm, we consider a
general sketching framework, named iterative double sketch-
ing (IDS), which uses not only a sketched Hessian but also a
sketched gradient in each iteration. While using a sketched
gradient may negatively affect the convergence property of
the algorithm, it can reduce the computing time significantly,
and hence allows for more iterations within a given comput-
ing time. Hence it can be expected that there exists an IDS
algorithm which can achieve much better performance than
the IHS algorithm. However, there are two main challenges
in the design of such an IDS algorithm.

The first challenge is how to choose the sketch sizes of gra-
dient sketching in each iteration. We note that the classical
sketching and IHS are two extreme cases in terms of the
sketch sizes of gradient sketching. In fact, for the classical
sketching method, the sketch size of gradient is r which is
the same as the sketch size of Hessian. In contrast, for the

IHS algorithm, the gradient is computed using the full data,
or in other words, the sketch size for gradient sketching isN
for all iterations. Unfortunately, neither of these two choices
is optimal. To design a concrete IDS algorithm, we would
like to choose the optimal sketch sizes of gradient sketching
in each iteration.

The second challenge is how to efficiently compute the
sketched gradient in each iteration. We note that the Hes-
sian sketching can be efficiently computed using exist-
ing sketching matrices such as the Subsampled Random-
ized Hadamard Transform (SRHT) (Sarlós, 2006; Ailon &
Chazelle, 2009) or sparse Johnson-Lindenstrauss transforms
(Kane & Nelson, 2014). However, it is not efficient to use
these sketching matrices to compute the sketched gradient
in each iteration. In fact, for dense data matrix, the appli-
cation of these sketching matrices requires accesssing each
element of data matrix at least once, which costs at least
O(Nd) time. The computing timeO(Nd) is undesirable. In
fact, we can even compute the exact gradient within O(Nd)
time. Thus, a new sketching method is required to efficiently
compute the sketched gradient in each iteration.

The goal of the present work is to investigate the above two
challenges and propose an efficient IDS algorithm which
has guaranteed good performance.

1.1. Our Contributions

We propose the general IDS framework. To theoretically
understand the behavior of the IDS algorithm, we give an
asymptotic analysis of the IDS algorithm in the setting of
Gaussian sketching. In this setting, we derive the exact limit
of the conditional prediction error of the IDS algorithm.
Based on this result, we obtain the optimal sketch sizes of
gradient sketching such that the limiting conditional pre-
diction error is minimized under the constraint of a given
computational cost. While these results are interesting in
theory, the Gaussian sketching is not efficient to apply. Nev-
ertheless, these results provide a general guidance on how
to choose the sketch sizes of gradient sketching.

We propose a new class of sequentially related sketching
matrices named iteration efficient sketching. The iteration
efficient sketching matrices can be efficiently applied to
obtain the sketched gradient in each iteration of the IDS
algorithm. We establish the embedding properties of the
iteration efficient sketching matrix.

We design an efficient IDS algorithm. In the proposed
algorithm, the choice of the sketch size of gradient sketching
is guided by our theoretical results in the Gaussian sketching.
We use the proposed iteration efficient sketching matrices to
efficiently compute the sketched gradient in each iteration.
We give a non-asymptotic analysis of the proposed IDS
algorithm. As shown in Table 1, for a wide range of the

Iterative Double Sketching for Faster Least-Squares Optimization

Table 1. The computing time of various algorithms to achieve ε relative error, i.e., ‖A(xT − x∗)‖ ≤ ε‖A(x0 − x∗)‖. Here IHS is the
algorithm in Lacotte & Pilanci (2020), PCG is the algorithm in Lacotte & Pilanci (2021) and IDS is Algorithm 3 of the present paper. We

assume that N = Ω(d2), and ‖A(x0 − x∗)‖ has the same order of magnitude as
√

d
r
‖Ax∗ − y‖.

METHODS COMPUTING TIME

IHS IN LACOTTE & PILANCI (2020) O
(
(log(d) + log(1

ε))Nd+ d3
)

PCG IN LACOTTE & PILANCI (2021) O

((
log(d) + max

(√
log(1

ε),
log(1

ε)

log(N
d2

)

))
Nd

)
IDS (ALGORITHM 3) O

(
max

(
1, log2(1

ε)− 1
2 log2(N

d(log(d))3)
)
Nd+ d3 log(d)

)

error parameter ε, the proposed IDS algorithm improves
the state-of-the-art computing time for high-precision least-
squares problem. We conduct experiments to verify the
good performance of the IDS algorithm in practice.

1.2. Related Work

Classical sketching methods for the problem (1) were ex-
tensively researched in the field of theoretical computer sci-
ence and applied mathematics; see, e.g., Mahoney (2011);
Woodruff (2014); Drineas & Mahoney (2016) and the ref-
erences therein. For classical sketching methods for the
problem (1), the algorithm precision is directly connected
to the subspace embedding property of the sketching ma-
trix S, which refers to the norm preserving property of
S; see, e.g., Woodruff (2014). Perhaps the most classical
sketching matrix is the Gaussian sketching matrix whose
elements are independent normal random variables. The
celebrated Johnson-Lindenstrauss lemma (Johnson & Lin-
denstrauss, 1984) implies that the Gaussian sketching matrix
has good subspace embedding property. However, the Gaus-
sian sketching matrix is not efficient to apply. In fact, for an
m×N Gaussian sketching matrix A, the direct computation
of SA costs O(mNd) time.

In recent years, several alternative sketching matrices have
been proposed which are more efficient to apply. A pop-
ular fast sketching matrix is the SRHT; see Sarlós (2006);
Ailon & Chazelle (2009). For an m × N SRHT sketch-
ing matrix S, the computation of SA can be completed
within O(Nd log(m)) time; see Theorem 2.1 of Ailon &
Liberty (2009). Also, it is known that the SRHT matrix
has good subspace embedding property; see, e.g., Tropp
(2011); Boutsidis & Gittens (2013); Cohen et al. (2016).
Another widely used sketching matrix is the CountSketch
matrix which is even faster to apply. The CountSketch ma-
trix stems from the data stream literature (Charikar et al.,
2004; Thorup & Zhang, 2004), and is later used to construct
sparse subspace embedding (Dasgupta et al., 2010; Clark-
son & Woodruff, 2013; 2017). The CountSketch matrix
S has a single non-zero element per column. As a result,
the sketching method based on CountSketch can achieve

input-sparsity time. While the CountSketch matrix is fast
to apply, it may require a large m to achieve good subspace
embedding property; see, e.g., Woodruff (2014). See Meng
& Mahoney (2013); Nelson & Nguyen (2013); Kane & Nel-
son (2014); Allen-Zhu et al. (2014); Bourgain et al. (2015);
Cohen et al. (2018); Jagadeesan (2019) for further analyses
on general sparse subspace embeddings.

The sketching methods can be used in conjunction with
iterative algorithms to achieve to achieve high-precision
approximation in the least-squares problem (1). To the best
of our knowledge, the first work in this direction is made by
Rokhlin & Tygert (2008) who proposed a preconditioned
conjugate gradient (PCG) algorithm based on sketching. A
similar idea was used in Avron et al. (2010). Lacotte &
Pilanci (2021) proposed a PCG algorithm which achieves
the current state-of-the-art computing time high-precision
least-squares problem in the regime N > d2. In another
line of research, Pilanci & Wainwright (2016) proposed the
IHS algorithm which has become a popular method since
then. We have mentioned some recent achievements on the
theoretical understanding and methodological improvement
of the IHS algorithm for the least-squares problem (1). To
the best of our knowledge, the fastest variant of the IHS
algorithm in the literature is the algorithm in Lacotte &
Pilanci (2020). In addition to the sketching algorithms,
there are some general purpose optimization algorithms that
can be applied to solve the least-squares problem; see, e.g.,
(Lan et al., 2019) and the references therein. However, to the
best of our knowledge, general purpose algorithms can not
yield state-of-the-art computing time for the least-squares
problem. Table 1 lists the computing time of the proposed
IDS algorithm and the current state-of-the-art algorithms.

2. Iterative Double Sketching Framework
In this section, we introduce the proposed IDS Frame-
work. The IDS algorithm is an iterative sketching method
which uses both gradient sketching and Hessian sketching.
The Hessian sketching is fixed across all iterations. Let
S̃ ∈ Rr×N be the sketching matrix for Hessian approxima-
tion. The sketched Hessian is defined as H̃ := A>S̃>S̃A.

Iterative Double Sketching for Faster Least-Squares Optimization

Algorithm 1 Generic iterative double sketching

Input: µ, T , S̃A, (StA,Sty), t = 0, . . . , T − 1
H̃−1 ← (A>S̃>S̃A)−1

x0 ← H̃−1A>S̃>S̃y
for t← 0 to T − 1 do

xt+1 ← xt − µH̃−1∇f(xt;StA,Sty)
end for
Return xT

We use the classical sketching method based on (S̃A, S̃y)

to obtain the initial point x0 := H̃−1A>S̃>S̃y. Let
St ∈ Rmt×N be the sketching matrix for gradient approx-
imation when computing xt+1, t = 0, . . . , T − 1. Here
m0, . . . ,mT−1 are the sketch sizes for gradient sketching
in each step. We consider the update formula

xt+1 = xt − µH̃−1∇f(xt;StA,Sty), (6)

where µ > 0 is the step size parameter. Note that the
original IHS uses the step size µ = 1. Here we introduce
µ to allow for fine-grained choices of the step size. We
summarize the generic IDS algorithm in Algorithm 1.

For small t, xt is relatively far from x∗, and an approximate
gradient may be sufficient to ensure that xt moves toward
x∗. As t increases, xt gets closer to x∗, and a gradient
with higher precision may be necessary to ensure that xt
moves toward x∗. In this view, mt should be an increasing
function of t. Formally, we require that the sketch sizes
r,m0, . . . ,mT−1 satisfy d ≤ r ≤ m0 ≤ · · · ≤ mT−1 ≤
N . If mt reaches N for some t, then there is no need to
sketch the gradient, and we use the exact gradient instead.
Formally, we require that if mt = N , then St = IN . Define

T † := min ({t : 0 ≤ t < T and mt = N} ∪ {T}) .

Hence for t = 0, . . . , T † − 1, sketched data is used to
approximate the gradient; for t = T †, . . . , T − 1, the full
data is used to compute the exact gradient. We call the
iterations for t = 0, . . . , T † − 1 the IDS iteration, and call
the iterations for t = T †, . . . , T − 1 the IHS iteration. If
T † = 0, then all iterations are IHS iterations, and Algorithm
1 reduces to the IHS algorithm.

Algorithm 1 relies on the given sketched data (StA,Sty),
t = 0, . . . , T − 1. However, to obtain these sketched
data via the vanilla method, one needs to access the full
data for T times, which is highly inefficient. To re-
duce the computational cost of the IDS algorithm, we as-
sume that for t = 0, . . . , T † − 2, (StA,Sty) is a func-
tion of (St+1A,St+1y). In this case, we can compute
the sketched data (ST †−1A,ST †−1y), . . . , (S0A,S0y) se-
quentially. We shall propose new sketching matrices such
that the sketched data can be efficiently computed in this
sequential manner.

Now we consider the cost of floating point operations
(FLOPs) in the iteration steps in Algorithm 1. The FLOPs

of basic matrix computations are counted as in Section
1.1.15 of Golub & Van Loan (2013). Given xt, H̃−1

and (StA,Sty), the computation of xt+1 via the up-
date formula (6) costs {(4d + 1)mt + 2d2 + 2d} FLOPs,
t = 0, . . . , T − 1. Thus, given x0, H̃−1 and (StA,Sty),
t = 0, . . . , T −1, the total T iterations of the IDS algorithm
cost {(4d+ 1)

∑T−1
t=0 mt + 2d2T + 2dT} FLOPs. For the

IHS algorithm, where mt = N , t = 0, . . . , T − 1, the total
T iterations cost {(4d+ 1)NT + 2d2T + 2dT} FLOPs. In
this expression, the leading term is (4d+ 1)NT . With the
same number T of iterations, the IDS algorithm reduces
this term to (4d + 1)

∑T−1
t=0 mt. However, to achieve a

given level of precision, the IDS algorithm may need more
iterations than the IHS algorithm.

Compared with the IHS algorithm, the IDS framework
involves additional hyperparameters m0, . . . ,mT−1. The
choice of these hyperparameters largely affects the perfor-
mance of the IDS algorithm. How to choose the optimal
m0, . . . ,mT−1 is a challenge in the IDS framework. An-
other challenge in the IDS framework is how to design the
sketching matrices S0, . . . ,St−1 such that (StA,Sty) can
be efficiently computed from (St+1A,St+1y) and St has
good embedding property. We shall deal with these two
challenges in the following sections.

3. IDS with Gaussian Sketching
In this section, we investigate the asymptotic properties of
the IDS algorithm with Gaussian sketching matrices. A
Gaussian sketching matrix S ∈ Rm×N is a random matrix
whose elements are independent with distribution N (0, 1

m).
Recall that we require that the sketched data can be obtained
sequentially. To meet this requirement, we construct the
sketching matrices as follows. Let C be an N ×N random
matrix with i.i.d. N (0, 1) entries. Let Ck denote the k ×N
matrix consisting of the first k rows of C, k = 1, . . . , N .
The sketching matrices are defined as

S̃ =
1√
r
Cr, St =

1√
mt

Cmt , t = 0, . . . , T − 1. (7)

With the above construction, (StA,Sty) is the first
mt rows of

√
mt+1√
mt

(St+1A,St+1y). Hence once
(ST †−1A,ST †−1y) is obtained, the sketched data can be
obtained sequentially.

With the above construction of sketching matrices, the
sketched data are equivalent to subsamples of the pre-
conditioned data (Ã, ỹ) := (CA,Cy). To see this, de-
note Ã = (ã1, . . . , ãN)> and ỹ = (ỹ1, . . . , ỹN)>. Let
Ãk := (ã1, . . . , ãk)> denote the matrix of the first k
rows of Ã, and ỹk := (ỹ1, . . . , ỹk)> denote the vec-
tor of the first k elements of ỹ, k = 1, . . . , N . Then
we have (S̃A, S̃y) = 1√

r
(Ãr, ỹr) and (StA,Sty) =

1√
mt

(Ãmt , ỹmt), t = 0, . . . , T − 1. With above notations,

Iterative Double Sketching for Faster Least-Squares Optimization

the update formula (6) becomes

xt+1 =xt − µ
r

mt
(Ã>r Ãr)

−1Ã>mt(Ãmtxt − ỹmt). (8)

While the original data (A,y) is non-random, the precon-
ditioned data (Ã, ỹ) has good statistical properties. In fact,
the rows of (Ã, ỹ) are independent and(

ỹk
ãk

)
∼ N

(
0d+1,

(
y>y y>A
A>y A>A

))
, k = 1, . . . , N.

Equivalently,

ãk ∼ N (0d,A
>A), ỹk | ãk ∼ N (ã>k x

∗, ‖Ax∗ − y‖2).

That is, ãk and ỹk satisfy the Gaussian linear model

ỹk = ã>k x
∗ + εk, (9)

where εk ∼ N (0, ‖Ax∗ − y‖2) and εk is independent
of ãk. Thus, with Gaussian preconditioning, the problem
(1) is statistically equivalent to the estimation problem of
Gaussian linear model (9). Hence as a by-product, we obtain
a fast algorithm with update formula (8) for the estimation
problem of Gaussian linear model.

Now we derive the asymptotic behavior of the IDS algo-
rithm with Gaussian sketching matrices. We consider the
asymptotic scenario where T is fixed, N → ∞ and the
quantities µ, d, A, y and mt, t = 0, . . . , T − 1 are func-
tions of N . For nonnegative integer n, let C(n) := (2n)!

(n+1)!n!

denote the nth Catalan number. By definition, C(0) := 1.
We have the following theorem.
Theorem 3.1. Suppose xT is the output of Algorithm 1
where the sketching matrices are defined in (7). Suppose as
N →∞, the iteration number T is fixed, mT−1 < N and

d→∞, d
r
→ 0,

r

m0
→ 0,

mt

mt+1
→ 0, t = 0, . . . , T − 2.

Suppose the step size µ satisfies |µ− 1| = O(dr). Then as
N →∞,

E
{∥∥A(xT − x∗)

∥∥2 | Ã}
=(1 + oP (1))‖Ax∗ − y‖2

{(
d

r

)T+1

C(T) +

T−1∑
t=0

g(t, T)

mt

}
,

where

g(t, T) := C(T − t− 1)
dT−t

rT−t−1
, t = 0, . . . , T − 1.

In Theorem 3.1, the assumptionmT−1 < N ensures that xT
is the output of an IDS iteration. Theorem 3.1 explicitly char-
acterizes how the conditional prediction error of xT depends
on the sketch sizes m0, . . . ,mT−1. Now we use this result
to determine the optimal choice ofm0, . . . ,mT−1. The idea
is to minimize the limiting conditional prediction error under

Algorithm 2 Optimal sketch sizes
Input: g(0, T), . . . , g(T − 1, T), M , N
t← T − 1
for i← T − 1 to 0 do
mi ←

M
√
g(i,T)∑t

j=0

√
g(j,T)

if mi ≥ N then
t← i− 1
mi ← N
M ←M −N

end if
end for
Return m0, . . . ,mT−1

the constraint of a given FLOPs. Recall that the T iterations
of Algorithm 1 cost {(4d+ 1)

∑T−1
t=0 mt + 2d2T + 2dT}

FLOPs, which relies on m0, . . . ,mT−1 through their sum∑T−1
t=0 mt. Thus, we consider the following constrained

optimization problem

min
m0,...,mT−1∈R

T−1∑
t=0

g(t, T)

mt
(10)

s. t.
T−1∑
t=0

mt ≤M and 0 < mt ≤ N, t = 0, . . . , T − 1,

where M > 0 is a prespecified upper bound of
∑T−1
t=0 mt.

In practice, m0, . . . ,mT−1 should be positive integers.
In (10), however, we relax this restriction and allow
m0, . . . ,mT−1 to be positive real numbers, which makes
the problem easier to solve. Of course, one can round the
solution for practical use. We propose an algorithm to solve
the problem (10), which is summarized in Algorithm 2.

While Theorem 3.1 assumes mT−1 < N , Algorithm 2
can also determine the optimal sketch sizes when mT−1 =
N . The following proposition verifies the correctness of
Algorithm 2.

Proposition 3.2. Assume that r ≥ 4d. Then Algorithm 2
returns exactly the solution to the problem (10).

The output of Algorithm 2 may not have a closed-form
solution. Nevertheless, Algorithm 2 implies that the optimal
sketch sizes take the form

mt = min(c
√
g(t, T), N), t = 0, . . . , T − 1,

where c > 0 is a constant. We have

mt+1

mt
=

√
r

4d

√
T − t

T − t− 3
2

, t = 0, . . . , T † − 2.

It can be seen that the ratio mt+1

mt
has small variation for

t = 0, . . . , T † − 2. In fact, we have√
r

4d
≤ mt+1

mt
≤ 2

√
r

4d
, t = 0, . . . , T † − 2.

Iterative Double Sketching for Faster Least-Squares Optimization

While the optimal sketch sizes are obtained only for Gaus-
sian sketching matrices, our result gives a useful insight for
general sketching matrices, that is, we can choose the sketch
sizes such that m1

m0
≈ m2

m1
≈ · · · ≈ m

T†−1

m
T†−2

.

Now we consider the performance of the IDS algorithm with
the optimal sketch sizes. Note that there remain two con-
stants, that is c and T , to be determine. For the convenience
of analysis, we would like to choose a c such that m0

r ≈
m1

m0
.

Hence we take m0 = 1
2r

3
2 d−

1
2 . With this choice of m0, the

optimal sketch sizes are

mt = min

(√
rt+3C(T − t− 1)

4dt+1C(T − 1)
, N

)
. (11)

To be simple, we would like to choose a T such that T =
T † + 1. That is, in addition to the IDS iterations, we would
like to perform one additional IHS iteration. In this way, it
is guaranteed that each observation is accessed for at least
once. To achieve this goal, we define

T = 1 + max

{
T̃ :

√
rT̃+2

4dT̃C(T̃ − 1)
< N

}
. (12)

If r > 4d, then rT̃+2

4dT̃C(T̃−1) is an increasing function of T̃
and hence T is well defined. We have the following theorem.
Theorem 3.3. Suppose xT is obtained from Algorithm 1
where T is defined by (12), the sketching matrices are de-
fined in (7) and the sketch sizes for IDS iterations are defined
in (11). Suppose log(N/r)

log(r/(4d)) is bounded. Suppose asN tends

to infinity, d → ∞, dr → 0 and |µ − 1| = O(dr). Then as

N →∞, ‖A(xT − x∗)‖ = oP

(√
d
N ‖Ax∗ − y‖

)
.

Now we consider the computing time of Algorithm 1 un-
der the setting of Theorem 3.3. The computation of H̃−1

and x0 is the same as that in the IHS algorithm, and
costs O(rd2) time. Note that

∑T †−1
t=0 mt ≤ (1 + o(1))N .

Then by our definition of mt,
∑T−1
t=0 mt ≤ (1 + o(1))2N .

Thus, the total T iterations of the IDS algorithm cost at
most {(1 + o(1))8Nd} FLOPs. In comparison, within
{(1 + o(1))8Nd} FLOPs, one can only perform two IHS
iterations.

To appreciate the error rate in Theorem 3.3, we consider the
case that the data (A,y) is generated from a simple Gaus-
sian linear model. Precisely, suppose that the elements of
A are independent standard normal random variables, and
that y = Aβ + ξ where β is an unknown d-dimensional
parameter and ξ ∼ N (0N , IN). In this case, x∗ is the least
square estimator of the parameter β, and the estimation er-
ror is ‖A(x∗−β)‖2 ∼ χ2(d) = OP (d). On the other hand,
‖Ax∗ − y‖2 ∼ χ2(N − d) = OP (N). Hence Theorem
3.3 implies that ‖A(xT − x∗)‖ = oP (

√
d). In comparison,

from the theory of IHS algorithm, the output of 2 IHS iter-
ations has the error rate ‖A(x2 − x∗)‖ = OP (N

1
2 (dr)

3
2).

Thus, if r
3

d2 = o(N), then the IDS algorithm can achieve a
smaller order of error than the IHS algorithm with compara-
ble computing time.

In the above analysis, we only consider the computing time
of the iteration procedure when the sketched data (S̃A, S̃y)
and (StA,Sty), t = 0, . . . , T − 1 are given. Although
these sketched data can be obtained sequentially, their com-
putation is still very intensive. Nevertheless, the theoretical
analysis of the IDS algorithm with Gaussian sketching ma-
trices can give insights on the general behavior of the IDS
algorithm, and will guide us to propose an efficient IDS
algorithm.

4. IDS with Iteration Efficient Sketching
We have investigated the properties of the IDS algorithm
and derived the optimal choice of sketch sizes with Gaus-
sian sketching matrices. These results are interesting in
theory. In practice, however, it is not efficient to compute
the gradient sketching and Hessian sketching with Gaussian
sketching matrices. In this section, we propose a new class
of sketching matrices, named iteration efficient sketching,
which are efficient to apply in the IDS framework. Based
on the proposed sketching matrices, we design an efficient
IDS algorithm. For general sketchng matrices, it is hard to
derive the exact error of the IDS algorithm as we did in the
Gaussian sketching setting. Nevertheless, our theoretical
results for Gaussian sketching imply that it may be a good
choice to set sketch sizes such that m1

m0
= · · · = m

T†−1

m
T†−2

. For
the sake of simplicity, throughout this section, we assume
N is a power of 2 and mt+1 = 2mt for t = 0, . . . , T † − 1.
Then we have T † = log2(Nm0

). Here the constant 2 is not
essential, and can be replaced by other positive integers.

We will sequentially compute the sketched data in reverse
order (ST †−1A,ST †−1y), . . . , (S0A,S0y). We divide the
T † iterations into two stages. The first stage consists of
the iterations for t = T † − 1, . . . , T �, and the second stage
consists of the iterations for t = T � − 1, . . . , 0, where
T � ∈ {1, . . . , T †} will be specified later. The computation
in the two stages are exactly the same. However, we perform
a preconditioning operation between the two stages. This
preconditioning operation allows for a theoretical guarantee
on the performance of the proposed algorithm.

In the first stage, the proposed sketching matrix is motivated
by CountSketch, a popular sketching matrix that is fast to
apply. The CountSketch matrix S ∈ Rm×N is defined as
follows. The columns of S are independent. Each column of
S contains exactly one non-zero element for which the posi-
tion is uniformly distributed on {1, . . . ,m}. The non-zero
elements of S are independent Rademacher random vari-
ables. For CountSketch S, the computation of SA can be
completed within O(Nd) time. Unfortunately, for CountS-
ketch matrices, it may not be easy to compute the sketched
data (StA,Sty) sequentially in the IDS framework. It can

Iterative Double Sketching for Faster Least-Squares Optimization

be seen that the m×N CountSketch matrix has the same
distribution as Gm,NDNPN , where the matrices Gm,N ,
DN and PN are independent, Gm,N is defined as

Gm,N :=


1>k1 0>k2 · · · 0>km
0>k1 1>k2 · · · 0>km

...
...

. . .
...

0>k1 0>k2 · · · 1>km

 ,

the vector (k1, . . . , km) has multinomial distribution
Mult(N ; 1

m , . . . ,
1
m), DN ∈ RN×N is a diagonal matrix

whose diagonal elements are i.i.d. Rademacher random vari-
ables and PN ∈ RN×N is a uniformly distributed permuta-
tion matrix. The matrix Gm,N relies on k1, . . . , km which
are random. We propose to replace (k1, . . . , km)> by its
expectation (Nm , . . . ,

N
m)>. To be precise, let G∗m,N :=

Im ⊗ 1>N
m

, where ⊗ denotes the Kronecker product of ma-
trices. We propose the following sketching matrix:

Ŝm,N := G∗m,NDNPN . (13)

The following theorem implies that the sketching matrix
Ŝm,N has a similar embedding property as CountSketch.

Theorem 4.1. Suppose U ∈ RN×d is a non-random matrix
such that U>U = Id, and ε, δ ∈ (0, 1). If m ≥ d(d+1)

δε2 ,
then

Pr
{
‖U>Ŝ>m,N Ŝm,NU− Id‖ > ε

}
≤ δ.

Here we remark that Ŝm,N has an good property that is not
shared by CountSketch. That is, if m = N , then ŜN,N is
an orthogonal matrix. Hence the application ŜN,N does not
loss any information. In comparison, the N ×N CountS-
ketch matrix may not be invertible. This phenomenon im-
plies that Ŝm,N may be more favorable for large m.

For m1,m2 such that m2

m1
is an integer, we have G∗m1,N

=(
Im1
⊗ 1>m2

m1

)
G∗m2,N

. With this property, we can compute

the sketched data sequentially in the first stage. We define

St := G∗mt,NDNPN , t = T �, . . . , T † − 1,

where the random matrices DN and PN are defined as
above. By construction, all sketching matrices St share
the same random matrices DN and PN . Note that StA =(
Imt⊗1>mt+1

mt

)
St+1A. This formula allows us to efficiently

compute (StA,Sty) based on (St+1A,St+1y).

The sketching matrix Ŝm,N is fast to apply. However, The-
orem 4.1 implies that one must take m = Ω(d2) to guar-
antee a valid subspace embedding. This phenomenon is
also shared by CountSketch. In fact, for CountSketch, it is
known that the Ω(d2) sketch size is necessary for subspace
embedding; see, e.g., Nelson & Nguyên (2014). Hence
Ŝm,N can not be used to reduce the sample size smaller

than the order d2. Nevertheless, the theoretical results of
Bourgain et al. (2015) imply that if the data is precondi-
tioned by the randomized Hadamard transform, then we can
apply CountSketch with a much smaller m. Motivated by
this result, we propose the following sketching matrix:

Šm,N := G∗m,NDNPNWND̃N ,

where DN and PN are defined as in (13), D̃N is an in-
dependent copy of DN , and WN ∈ RN×N is the Walsh-
Hadamard transform defined recursively as

W1 := 1, WN :=
1√
2

(
1 1
1 −1

)
⊗WN

2
.

The computation of Šm,NA costs O(Nd log(N)) time
where the bottleneck is the application of the Walsh-
Hadamard transform. Nevertheless, Šm,NA has a better
embedding property than Ŝm,NA, as indicated by the fol-
lowing theorem.
Theorem 4.2. Suppose U ∈ RN×d is a non-random matrix
such that U>U = Id, and ε, δ ∈ (0, 1). Then for any m ≥
γε−2d{log(e

2d
εδ)}3, where γ > 0 is an absolute constant,

we have

Pr
{
‖U>Š>m,N Šm,NU− Id‖ > ε

}
≤ δ.

Theorem 4.2 implies that Šm,N is a valid subspace embed-
ding for m = Ω(d(log(d))3). Since Šm,N is slower to
apply than Ŝm,N , we do not directly use Šm,N . Instead, we
apply it after the sample size is already reduced to mT� in
the first stage. In the first stage, we apply ŜT †−1, . . . , T �
sequentially and obtain the reduced data ST�A. Then the
rows of ST�A are random vectors whose distributions are
invariant under sign flipping. Consequently, in the second
stage, we do not need to apply the matrix D̃mT� . We define

St := G∗mt,mT�DmT�PmT�WmT�ST� , t = 0, . . . , T � − 1,

where the random matrices DmT� and PmT� are indepen-
dent of ST� . Then the distribution of St is the same as that
of Šmt,mT�ST� where Šmt,mT� and ST� are independent.
In practice, the proposed two stage sketching is very easy to
implement. In fact, after we obtain ST�A in the first stage,
we apply DmT�PmT�WmT� to this matrix and then we
can compute St, t = T � − 1, . . . , 0, exactly as in the first
stage.

From Theorem 4.2, after two stages of sketching, we can
eventually reach m0 = O(d(log(d))3). It is known that
SRHT can reduce the sample size to O(d log(d)); see Co-
hen (2016). Hence we use SRHT to further reduce the
sample size to O(d(log(d))) to obtain the Hessian sketch-
ing. Specifically, we define S̃ := S†S0, where S† ∈ Rr×m0

is an SRHT matrix which is independent of S0.

We summarize the proposed IDS algorithm with iteration
efficient sketching matrices in Algorithm 3. The following

Iterative Double Sketching for Faster Least-Squares Optimization

Algorithm 3 IDS algorithm with iteration efficient sketch-
ing matrices

Input: A ∈ RN×d, y ∈ RN , r, m0, T �, T , µ
T † ← log2(N

m0
)

A← DNPNA; y← DNPNy; ST† ← IN ;
for t← T † − 1 to 0 do

StA← (I2tm0
⊗1>2)St+1A; Sty← (I2tm0

⊗1>2)St+1y
if t = T � then
ST�A← DmT�PmT�WmT�ST�A
ST�y← DmT�PmT�WmT�ST�y

end if
end for
H̃−1 ← (A>S>0 S

†>S†S0A)−1

x0 ← H̃−1A>S>0 S
†>S†S0y

for t← 0 to T † − 1 do
xt+1 ← xt − µH̃−1∇f(xt;StA,Sty)

end for
for t← T † to T − 1 do

xt+1 ← xt − µH̃−1∇f(xt;A,y)
end for
Return xT

theorem gives a non-asymptotic bound on the convergence
rate of Algorithm 3.
Theorem 4.3. In Algorithm 3, supposeN, r,m0 are powers
of 2, T � < T , |µ − 1| ≤ 1

4 , δ ∈ (0, 1), and ε ∈ (0, 1
10).

Suppose

mT� > γ̃
d2

δε2
, m0 > γ̃ε−2d

{
log

(
e2d

εδ

)}3

,

r > γ̃ε−2
(
d+ log

(m0

δ

))
log

(
ed

δ

)
,

where γ̃ > 0 is an absolute constant. Let xT be the output
of Algorithm 3. Then with probability at least 1 − 3δ, for
any T ≥ T † = log2(Nm0

),

‖A(xT − x∗)‖ ≤ 1

2T
‖A(x0 − x∗)‖

+
4
√

5(
√

2 + 1)

2T−T†δ

√
d

N
‖Ax∗ − y‖. (14)

The first term in the error bound (14) takes the same form
as the error bound of the IHS algorithm (5). The additional
term in the bound (14) is the price of using an approximation
of the gradient. According to Theorem 4.3, we take mT� =
O(d2), m0 = O(d(log(d))3), r = O(d log(d)).

Now we consider the computing time of Algorithm 3. Note
that

∑T †−1
t=0 mt = O(N). Hence with iteration efficient

sketching matrices, the computation of the sketched data
(S0A,S0y), . . . , (ST †−1A,ST †−1y) and (S̃A, S̃y) can be

completed within O((
∑T †−1
t=0 mt + N)d) = O(Nd) time.

Since we take r = O(d log(d)), the computation of H̃−1

and x0 can be completed within O(Nd + d3 log(d)) time.
Finally, the T † steps of IDS iterations and T − T † steps
of IHS iterations cost O((

∑T †−1
i=0 mt)d+ (T − T †)Nd) =

O((T + 1− T †)Nd) time. In summary, Algorithm 3 costs
O((T + 1− T †)Nd+ d3 log(d)) time in total.

Theorem 4.3 allows us to analyze the trade-off between
the computing time and the precision of Algorithm 3. It

can be shown that ‖A(x0 − x∗)‖ = OP (
√

d
r ‖Ax∗ − y‖).

We make a further assumption that ‖A(x0 − x∗)‖ and√
d
r ‖Ax∗ − y‖ have the same order of magnitude. This as-

sumption is valid under general conditions. In this case, the
error bound (14) is bounded by O(1

2T−T
†/2 ‖A(x0 − x∗)‖).

Suppose we would like to achieve an ε relative error, i.e.,
‖A(xT − x∗)‖ ≤ ε‖A(x0 − x∗)‖, where ε ∈ (0, 1).
Then the IDS algorithm needs to take T = max(T †, T

†

2 +

log2(1
ε) + O(1)) iterations. But T † = log2(Nm0

) =

log2(N
d(log(d))3) + O(1). Hence the IDS algorithm costs

O
(

max
(
1, log2(1

ε)− 1
2 log2(N

d(log(d))3)
)
Nd+ d3 log(d)

)
time. This computing time is significantly faster than the
IHS algorithm. In fact, if log2(1

ε) − 1
2 log2(N

d(log(d))3)

is bounded, or equivalently, ε = Ω(
√

d(log(d))3

N), and
d2 log(d) = O(N), then the IDS algorithm can reach the ε
relative error within O(Nd) time. In this regime, the pro-
posed IDS algorithm improves the current state-of-the-art
performance for least-squares problem.

5. Numerical Experiments
We carry out simulations of the IDS algorithm and compare
it with the IHS algorithm and the PCG algorithm in (La-
cotte & Pilanci, 2021). All algorithms are implemented by
C++. No external library is used except for C++ Standard
Template Library. The matrix inverse is implemented by
Gaussian elimination. The program is compiled using gcc
version 7.5.0 with -O2 optimization, and runs on a CPU
with 3.30 GHz.

We use ∆t := ‖A(xt − x∗)‖2 to measure the precision
of xt, t = 1, . . . , T . In our experiments, T = 6 it-
erations are performed for all algorithms. The IDS al-
gorithm is implemented according to Algorithm 3 with
T † = 5, T � = 1, m0 = N/25, r = 8d. Following
the result of Özaslan et al. (2019), we adopt the step size
µ = (1−d/r)2

1+d/r . For the IHS algorithm, we use the update for-
mula xt+1 = xt − µ(A>S>0 S0A)−1∇f(xt;A,y) where
S0 is an (8d)×N SRHT sketching matrix and µ = (1−d/r)2

1+d/r .
The computing time is measured in seconds. For the PCG
algorithm, SRHT sketching matrix is used. The reported
results are the averages of 10 independent replications.

The data generation mechanism is as follows. For Model
I, the elements of A are i.i.d. generated from the standard
normal distribution, and y = Aβ + ξ, where β ∈ Rd
and ξ ∈ RN are random vectors whose elements are i.i.d.

Iterative Double Sketching for Faster Least-Squares Optimization

standard normal random variables. For Model II, we first
generate data from Model I. Then each element of A and y
is replaced by zero with probability 0.5. The ground truth
x∗ is computed via the formula x∗ = (A>A)−1A>y.

Figure 1 illustrates the relationship between ∆t and the
computing time (measured by seconds) in different settings.
The numerical results show that for a given computing time,
the IDS algorithm can achieve a much smaller error than
the IHS algorithm, which verifies our theoretical results.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Computing Time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

t

×104

Methods
IDS
IHS
PCG

(a) Model I. N = 220, d = 26.

0 1 2 3 4 5 6 7
Computing Time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

t

×104

Methods
IDS
IHS
PCG

(b) Model I. N = 220, d = 27.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Computing Time

0

1

2

3

4

5

6

t

×105

Methods
IDS
IHS
PCG

(c) Model II. N = 220, d = 26.

0 1 2 3 4 5 6 7 8
Computing Time

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

t

×106

Methods
IDS
IHS
PCG

(d) Model II. N = 220, d = 27.

Figure 1. ∆t versus the computing time for IDS, IHS and PCG.

6. Discussion
In this work, we proposed the IDS algorithm for the least-
squares problem which uses approximations for both the
gradient and the Hessian. We investigated the theoretical
properties of the IDS algorithm. The proposed IDS algo-
rithm improves the state-of-the-art computing time in a wide
range. Nevertheless, there are several problems worth fur-
ther research.

In this work, we did not consider the fine-grained choice
of the step size in Algorithm 3. Also, it is unknown if a
momentum term is useful for the IDS algorithm. To solve
these problems, one may need to analyze the fine-grained
behavior of the IDS algorithm.

The present work focuses on unconstrained least-squares
problem. It is interesting to apply the idea of IDS to con-
strained or regularized least-squares problem.

In this work, we proposed the iteration efficient sketching
and investigated its subspace embedding property. This
sketching method may be useful in other problems. It is
also interesting to investigate the fine-grained subspace em-

bedding properties of the iteration efficient sketching.

Acknowledgements
The authors thank anonymous reviewers for their valuable
comments and suggestions. This work was supported by Na-
tional Natural Science Foundation of China (No 11971478)
and Beijing Natural Science Foundation (No Z200001).

References
Ailon, N. and Chazelle, B. The fast Johnson-Lindenstrauss

transform and approximate nearest neighbors. SIAM Jour-
nal on Computing, 39(1):302–322, 2009.

Ailon, N. and Liberty, E. Fast dimension reduction using
Rademacher series on dual BCH codes. Discrete & Com-
putational Geometry, 42(4):615–630, 2009.

Allen-Zhu, Z., Gelashvili, R., Micali, S., and Shavit, N.
Sparse sign-consistent johnson–lindenstrauss matrices:
Compression with neuroscience-based constraints. Pro-
ceedings of the National Academy of Sciences, 111(47):
16872–16876, 2014.

Avron, H., Maymounkov, P., and Toledo, S. Blendenpik:
Supercharging LAPACK’s least-squares solver. SIAM
Journal on Scientific Computing, 32(3):1217–1236, 2010.

Bai, Z. and Silverstein, J. W. Spectral analysis of large
dimensional random matrices. Springer, 2010.

Bai, Z. D. and Yin, Y. Q. Convergence to the semicircle law.
The Annals of Probability, 16(2):863–875, 1988.

Bourgain, J., Dirksen, S., and Nelson, J. Toward a unified
theory of sparse dimensionality reduction in Euclidean
space. Geometric and Functional Analysis, 25(4):1009–
1088, 2015.

Boutsidis, C. and Gittens, A. Improved matrix algorithms
via the subsampled randomized Hadamard transform.
SIAM Journal on Matrix Analysis and Applications, 34
(3):1301–1340, 2013.

Charikar, M., Chen, K., and Farach-Colton, M. Finding
frequent items in data streams. Theoretical Computer
Science, 312(1):3–15, 2004.

Clarkson, K. L. and Woodruff, D. P. Low rank approxima-
tion and regression in input sparsity time. In STOC, pp.
81–90, 2013.

Clarkson, K. L. and Woodruff, D. P. Low-rank approxima-
tion and regression in input sparsity time. Journal of the
ACM, 63(6):1–45, feb 2017.

Iterative Double Sketching for Faster Least-Squares Optimization

Cohen, M. B. Nearly tight oblivious subspace embeddings
by trace inequalities. In Proceedings of the Twenty-
Seventh Annual ACM-SIAM Symposium on Discrete Al-
gorithms, pp. 278–287, 2016.

Cohen, M. B., Nelson, J., and Woodruff, D. P. Optimal
Approximate Matrix Product in Terms of Stable Rank. In
ICALP, pp. 11:1–11:14, 2016.

Cohen, M. B., Jayram, T., and Nelson, J. Simple Analyses
of the Sparse Johnson-Lindenstrauss Transform. In SOSA,
pp. 15:1–15:9, 2018.

Dasgupta, A., Kumar, R., and Sarlós, T. A sparse Johnson-
Lindenstrauss transform. In STOC, pp. 341–350, 2010.

Drineas, P. and Mahoney, M. W. RandNLA. Communica-
tions of the ACM, 59(6):80–90, may 2016.

Golub, G. H. and Van Loan, C. F. Matrix Computations.
The Johns Hopkins University Press, fourth edition, 2013.

Jagadeesan, M. Simple Analysis of Sparse, Sign-Consistent
JL. In APPROX/RANDOM, pp. 61:1–61:20, 2019.

Johnson, W. B. and Lindenstrauss, J. Extensions of Lips-
chitz mappings into a Hilbert space. volume 26 of Con-
temporary Mathematics, pp. 189–206. 1984.

Kane, D. M. and Nelson, J. Sparser Johnson-Lindenstrauss
transforms. Journal of the ACM, 61(1):4:1–4:23, 2014.

Lacotte, J. and Pilanci, M. Optimal randomized first-order
methods for least-squares problems. In ICML, pp. 5587–
5597, 2020.

Lacotte, J. and Pilanci, M. Faster least squares optimization,
2021. arXiv:1911.02675.

Lan, G., Li, Z., and Zhou, Y. A unified variance-reduced
accelerated gradient method for convex optimization. In
NeurIPS, pp. 10462–10472, 2019.

Mackey, L., Jordan, M. I., Chen, R. Y., Farrell, B., and
Tropp, J. A. Matrix concentration inequalities via the
method of exchangeable pairs. The Annals of Probability,
42(3):906–945, 2014.

Mahoney, M. W. Randomized algorithms for matrices and
data. Foundations and Trends R© in Machine Learning, 3
(2):123–224, 2011.

Meng, X. and Mahoney, M. W. Low-distortion subspace
embeddings in input-sparsity time and applications to
robust linear regression. In STOC, pp. 91–100, 2013.

Nelson, J. and Nguyen, H. L. OSNAP: faster numerical lin-
ear algebra algorithms via sparser subspace embeddings.
In FOCS, pp. 117–126, 2013.

Nelson, J. and Nguyên, H. L. Lower bounds for oblivious
subspace embeddings. In ICALP, volume 8572, pp. 883–
894, 2014.

Özaslan, I. K., Pilanci, M., and Arikan, O. Iterative hessian
sketch with momentum. In ICASSP, pp. 7470–7474,
2019.

Pilanci, M. and Wainwright, M. J. Iterative Hessian sketch:
fast and accurate solution approximation for constrained
least-squares. Journal of Machine Learning Research, 17:
Paper No. 53, 38, 2016.

Rokhlin, V. and Tygert, M. A fast randomized algorithm for
overdetermined linear least-squares regression. Proceed-
ings of the National Academy of Sciences of the United
States of America, 105(36):13212–13217, 2008.

Sarlós, T. Improved approximation algorithms for large
matrices via random projections. In FOCS, pp. 143–152,
2006.

Thorup, M. and Zhang, Y. Tabulation based 4-universal
hashing with applications to second moment estimation.
In SODA, pp. 615–624, 2004.

Tropp, J. A. Improved analysis of the subsampled ran-
domized Hadamard transform. Advances in Adaptive
Data Analysis. Theory and Applications, 3(1-2):115–126,
2011.

Wainwright, M. J. High-Dimensional Statistics. Cambridge
University Press, feb 2019.

Wang, D. and Xu, J. Large scale constrained linear regres-
sion revisited: Faster algorithms via preconditioning. In
AAAI, pp. 1439–1446, 2018.

Woodruff, D. P. Sketching as a tool for numerical linear alge-
bra. Foundations and Trendsr in Theoretical Computer
Science, 10(1-2):iv+157, 2014.

Iterative Double Sketching for Faster Least-Squares Optimization

A. Proofs of Theoretical Results
A.1. Notations

We introduce some notations that will be used throughout our theoretical proofs. For a matrix B, let ‖B‖ denote its operator
norm, and ‖B‖F denote its Frobeneous norm. Let A = UADAV>A denote the compact singular value decomposition of
A, where UA is an N × d column orthogonal matrix, VA is a d× d orthogonal matrix and DA is a d× d diagonal matrix.
In the proofs, we denote κ := ‖Ax∗ − y‖2.

A.2. Proof of Theorem 3.1

In this section, we prove Theorem 3.1. We begin with a useful lemma.

Lemma A.1. Suppose W ∈ RN×d is a random matrix with i.i.d. N (0, 1) entries. If N ≥ d, then for any x > 0,

Pr

(∥∥∥∥ 1

N
W>W − Id

∥∥∥∥ > 2(1 + x)

√
d

N
+ (1 + x)2

d

N

)
≤ 2 exp(−dx2/2).

See, e.g., Wainwright (2019), Example 6.2 for a proof of this result.

Now we prove Theorem 3.1. To make the proof clear, we defer some technical details of the proof to Lemmas A.2, A.3 and
A.4.

Proof of Theorem 3.1. From the update formula (8), we have

xt+1 − x∗ =

(
Id − µ

r

mt
(Ã>r Ãr)

−1Ã>mtÃmt

)
(xt − x∗) + µ

r

mt
(Ã>r Ãr)

−1Ã>mt(ỹmt − Ãmtx
∗). (15)

Note that ‖A(xT − x∗)‖2 = ‖DAV>A(xT − x∗)‖2. Hence we only need to deal with ‖DAV>A(xT − x∗)‖2. Define

Ăk = (ă1, . . . , ăk)> := ÃkVAD−1
A , k = 1, . . . , N.

Then we have ăk ∼ N (0, Id). That is, Ăk is a k × d matrix with independent N (0, 1) entries. Denote

ε̆i :=(Ă>r Ăr)
−1ăiεi, i = 1, . . . , N,

Lt :=Id − µ
r

mt
(Ă>r Ăr)

−1Ă>mtĂmt , t = 0, . . . , T − 1.

Then from (15), we have

DAV>A(xt+1 − x∗) = LtDAV>A(xt − x∗) + µ
r

mt

mt∑
i=1

ε̆i.

Note that DAV>A(xt − x∗) =
∑r
k=1 ε̆k. Then by induction, we obtain the following formula:

DAV>A(xT − x∗) = (

T∏
j=1

LT−j)

r∑
k=1

ε̆k +

T−1∑
i=0

µ
r

mi
(

T−i−1∏
j=1

LT−j)

mi∑
k=1

ε̆k, (16)

where by convention,
∏0
j=1(Id − LT−j) = Id.

Denote K := 1
r Ă
>
r Ăr − Id. To deal with the expression (16), our strategy is to approximate the term Li by K. Note that

DAV>A(xT − x∗)−KT
r∑
k=1

ε̆k −
T−1∑
i=0

µ
r

mi
KT−i−1

mi∑
k=1

ε̆k

=
(T∏
j=1

LT−j −KT) r∑
k=1

ε̆k +

T−1∑
i=0

µ
r

mi

(T−i−1∏
j=1

LT−j −KT−i−1) mi∑
k=1

ε̆k.

Iterative Double Sketching for Faster Least-Squares Optimization

Then from Minkowski inequality,[
E
{∥∥∥DAV>A(xT − x∗)−KT

r∑
k=1

ε̆k −
T−1∑
i=0

µ
r

mi
KT−i−1

mi∑
k=1

ε̆k

∥∥∥2 | Ã}] 1
2

≤
∥∥∥ T∏
j=1

LT−j −KT
∥∥∥[E

{∥∥ r∑
k=1

ε̆k
∥∥2 | Ã}] 1

2
+

T−1∑
i=0

µ
r

mi

∥∥∥ T−i−1∏
j=1

LT−j −KT−i−1
∥∥∥[E

{∥∥ mi∑
k=1

ε̆k
∥∥2 | Ã}] 1

2
. (17)

From Lemma A.3, for i = 0, . . . , T − 1,

E
{∥∥ mi∑

k=1

ε̆k
∥∥2 | Ã} = OP

(
κ
dmi

r2

)
. (18)

And

E
{∥∥ r∑

k=1

ε̆k
∥∥2 | Ã} = OP

(
κ
d

r

)
. (19)

It follows from (17), (18), (19) and Lemma A.2 that[
E
{∥∥∥DAV>A(xT − x∗)−KT

r∑
k=1

ε̆k −
T−1∑
i=0

µ
r

mi
KT−i−1

mi∑
k=1

ε̆k

∥∥∥2 | Ã}] 1
2

=oP

((
κ
d

r

) 1
2
(
d

r

)T
2

+

T−1∑
i=0

r

mi

(
κ
dmi

r2

) 1
2
(
d

r

)T−i−1
2

)

=oP

(
κ

1
2

(
d

r

)T+1
2

+ κ
1
2

T−1∑
i=0

(
d

mi

) 1
2
(
d

r

)T−i−1
2

)

=oP

κ 1
2

{(
d

r

)T+1

C (T) +

T−1∑
`=0

g(i, T)

mi

} 1
2

 . (20)

Having obtained the above approximation bound, now we deal with KT
∑r
k=1 ε̆k +

∑T−1
i=0 µ r

mi
KT−i−1∑mi

k=1 ε̆k. From
Lemma A.4, we have

E


∥∥∥∥∥KT

r∑
k=1

ε̆k +

T−1∑
i=0

µ
r

mi
KT−i−1

mi∑
k=1

ε̆k

∥∥∥∥∥
2

| Ã

 = (1 + oP (1))κ

{
1

r
tr(K2T) +

T−1∑
i=0

1

mi
tr(K2(T−i−1))

}
. (21)

Since r
d →∞, the empirical spectral distribution of the matrix

√
r
dK converges almost surely to the semicircle law with

density function (2π)−1
√

4− x21[−2,2](x); see Bai & Yin (1988). Lemma A.1 implies that the extreme eigenvalues of√
r
dK are bounded in probability. Hence for i = 0, . . . , T ,

tr
(
K2i

)
= d

(
d

r

)i
1

d
tr

{(√ r

d
K
)2i}

= d

(
d

r

)i(∫ 2

−2

x2i
1

2π

√
4− x2 dx+ oP (1)

)
.

From Lemma 2.1 of Bai & Silverstein (2010), we have∫ 2

−2

x2i
1

2π

√
4− x2 dx = C(i), i = 0, . . . , T.

Thus,

1

r
tr(K2T) +

T−1∑
i=0

µ2 1

mi
tr(K2(T−i−1)) = (1 + oP (1))

{(
d

r

)T+1

C (T) +

T−1∑
`=0

d

mi

(
d

r

)T−i−1

C
(
T − i− 1

)}
. (22)

The conclusion follows from (20), (21) and (22).

Iterative Double Sketching for Faster Least-Squares Optimization

Lemma A.2. Suppose the conditions of Theorem 3.1 hold. Then for i = 0, . . . , T − 1,

∥∥∥ T−i−1∏
j=1

LT−j −KT−i−1
∥∥∥ =oP

((
d

r

)T−i−1
2

)
.

and ∥∥∥ T∏
j=1

LT−j −KT
∥∥∥ =oP

((
d

r

)T
2

)
.

Proof. It is straightforward to see that for t = 0, . . . , T − 1,

Lt =K− r(Ă>r Ăr)
−1K2 + r(Ă>r Ăr)

−1(Id −
µ

mt
Ă>mtĂmt).

We have assumed that d/r →∞ and T is fixed. Hence from Lemma A.1,

‖K‖ = OP

(√
d

r

)
,

∥∥∥∥ 1

mt
Ă>mtĂmt − Id

∥∥∥∥ = OP

(√
d

mt

)
, t = 0, . . . , T − 1.

As a consequence, ‖r(Ă>r Ăr)
−1‖ = 1 + oP (1). Also, combine the above bound and the assumptions |µ − 1| = O(dr),

r/m0 → 0, we have, for t = 0, . . . , T − 1, that∥∥∥∥ µmt
Ă>mtĂmt − Id

∥∥∥∥ ≤µ ∥∥∥∥ 1

mt
Ă>mtĂmt − Id

∥∥∥∥+O

(
d

r

)
= OP

(√
d

mt
+
d

r

)
= oP

(√
d

r

)
.

Thus, for t = 0, . . . , T − 1,

‖Lt −K‖ ≤ ‖r(Ă>r Ăr)
−1‖

(
‖K‖2 + ‖ µ

mt
Ă>mtĂmt − Id‖

)
= oP

(√
d

r

)
.

It follows that that for i = 0, . . . , T − 1,

∥∥∥ T−i−1∏
j=1

LT−j −KT−i−1
∥∥∥ =

∥∥∥ T−i−1∏
j=1

{K + (LT−j −K)} −KT−i−1
∥∥∥

≤(2T−i−1 − 1) max
k∈{1,...,T−i−1}
t∈{0,...,T−1}

(
‖Lt −K‖k ‖K‖T−i−1−k

)

=oP

((
d

r

)T−i−1
2

)
.

Similarly, we have

∥∥∥ T∏
j=1

LT−j −KT
∥∥∥ =oP

((
d

r

)T
2

)
.

This completes the proof.

Lemma A.3. Suppose the conditions of Theorem 3.1 hold. Then for i = 0, . . . , T − 1,∥∥∥∥∥E
{(mi∑

k=1

ε̆k
)(mi∑

k=1

ε̆k
)>
| Ã
}
− κmi

r2
Id

∥∥∥∥∥ = oP
(
κ
mi

r2

)
.

Also, ∥∥∥∥∥E
{(r∑

k=1

ε̆k
)(r∑

k=1

ε̆k
)>
| Ã
}
− κ1

r
Id

∥∥∥∥∥ = oP

(
κ

1

r

)
.

Iterative Double Sketching for Faster Least-Squares Optimization

Proof. For i = 0, . . . , T − 1, we have

E

{(mi∑
k=1

ε̆k
)(mi∑

k=1

ε̆k
)>
| Ã

}
=κ(Ă>r Ăr)

−1(Ă>miĂmi)(Ă
>
r Ăr)

−1.

Note that Ămi is a random matrix with independent N (0, 1) entries, i = 0, . . . , T − 1. Then from Lemma A.1,
‖ 1
mi

Ă>miĂmi − Id‖ = oP (1), i = 0, . . . , T − 1. Similarly, ‖ 1r Ă
>
r Ăr − Id‖ = oP (1). For any fixed δ ∈ (0, 1),

with probability tending to 1, we have

(1− δ)miId ≤ Ă>miĂmi ≤ (1 + δ)miId, i = 0, . . . , T − 1, (1− δ)rId ≤ Ă>r Ăr ≤ (1 + δ)rId.

If the above inequalities hold, then for i = 0, . . . , T − 1,

(1− δ)
(1 + δ)2

κ
mi

r2
Id ≤E

{(mi∑
k=1

ε̆k
)(mi∑

k=1

ε̆k
)> | Ã} ≤ (1 + δ)

(1− δ)2 κ
mi

r2
Id.

It follows that ∥∥∥∥∥E
{(mi∑

k=1

ε̆k
)(mi∑

k=1

ε̆k
)> | Ã}− κmi

r2
Id

∥∥∥∥∥ ≤ max

(
3δ − δ2

(1− δ)2 ,
3δ + δ2

(1 + δ)2

)
κ
mi

r2
Id.

The first conclusion follows. The second conclusion follows from a similar argument.

Lemma A.4. Suppose the conditions of Theorem 3.1 hold. Let Q̃,Q0, . . . ,QN−1 be d× d symmetric matrices which are
functions of Ã. Then

E


∥∥∥∥∥Q̃

r∑
k=1

ε̆k +

T−1∑
i=0

Qi

mi∑
k=1

ε̆k

∥∥∥∥∥
2

| Ã

 =(1 + oP (1))κ

{
1

r
tr(Q̃2) +

T−1∑
i=0

mi

r2
tr(Q2

i)

}
.

Proof. We have

E


∥∥∥∥∥Q̃

r∑
k=1

ε̆k +

T−1∑
i=0

Qi

mi∑
k=1

ε̆k

∥∥∥∥∥
2

| Ã

 = tr
{
Q̃(

r∑
k=1

ε̆k)(

r∑
k=1

ε̆k)>Q̃
}

+

T−1∑
i=0

tr
{
Qi(

mi∑
k=1

ε̆k)(

mi∑
k=1

ε̆k)>Qi

}

+ 2

T−1∑
i=0

tr
{
Q̃(

r∑
k=1

ε̆k)(

mi∑
k=1

ε̆k)>Qi

}
+ 2

T−1∑
i=0

T−1∑
j=i+1

tr
{
Qi(

mi∑
k=1

ε̆k)(

mj∑
k=1

ε̆k)>Qj

}
=:u1 + u2 + u3 + u4.

Lemma A.3 implies that

E(u1 + u2 | Ã) =(1 + oP (1))κ
{1

r
tr(Q̃2) +

T−1∑
i=0

mi

r2
tr(Q2

i)
}
.

Hence we only need to show that E(u3 | Ã) and E(u4 | Ã) are negligible compared with E(u1 + u2 | Ã). From
Cauchy-Schwarz inequality and Lemma A.3, for i = 0, . . . , T − 1,

E

[
tr
{
Q̃(

r∑
k=1

ε̆k)(

mi∑
k=1

ε̆k)>Qi

}
| Ã

]
= E

[
tr
{
Q̃(

r∑
k=1

ε̆k)(

r∑
k=1

ε̆k)>Qi

}
| Ã

]

≤

[
E

[
tr
{
Q̃(

r∑
k=1

ε̆k)(

r∑
k=1

ε̆k)>Q̃
}
| Ã

]] 1
2
[

E

[
tr
{
Qi(

r∑
k=1

ε̆k)(

r∑
k=1

ε̆k)>Qi

}
| Ã

]] 1
2

≤
{

E(u1 | Ã)(1 + oP (1))κ
1

r
tr(Q2

i)

} 1
2

=oP (1)
{

E(u1 | Ã) E(u2 | Ã)
} 1

2
.

Iterative Double Sketching for Faster Least-Squares Optimization

Thus, E(u3 | Ã) = oP {E(u1 | Ã) + E(u2 | Ã)}. Similarly, for 0 ≤ i < j ≤ T − 1,

E

[
tr
{
Qi(

mi∑
k=1

ε̆k)(

mj∑
k=1

ε̆k)>Qj

}
| Ã

]
= E

[
tr
{
Qi(

mi∑
k=1

ε̆k)(

mi∑
k=1

ε̆k)>Qj

}
| Ã

]

≤

[
E

[
tr
{
Qi(

mi∑
k=1

ε̆k)(

mi∑
k=1

ε̆k)>Qi

}
| Ã

]] 1
2
[

E

[
tr
{
Qj(

mi∑
k=1

ε̆k)(

mi∑
k=1

ε̆k)>Qj

}
| Ã

]] 1
2

≤
{

E(u2 | Ã)(1 + oP (1))κ
mi

r2
tr(Q2

j)
} 1

2

≤
(
mi

mj

) 1
2

E(u2 | Ã)

=oP
{

E(u2 | Ã)
}
.

This completes the proof.

A.3. Proof of Proposition 3.2

In this section, we present the proof of Proposition 3.2. A technical result in the proof is deferred to Lemma A.5.

Proof of Proposition 3.2. Note that for any positive integer n,

C(n)

C(n− 1)
=

4n− 2

n+ 1
< 4.

Hence the assumption r ≥ 4d implies that for t = 1, . . . , T − 1,

g(t, T)

g(t− 1, T)
=
r

d

C(T − t− 1)

C(T − t) > 1.

That is, g(t, T) is increasing in t. For the optimization problem (10), the objective function is strictly convex and the feasible
region is convex and connected. Hence there is a unique solution, denoted by (m∗0, . . . ,m

∗
T−1), to the problem (10).

If the restriction mt ≤ N is dropped, then from Cauchy-Schwarz inequality,

T−1∑
t=0

g(t, T)

mt
≥ 1

M

(
T−1∑
t=0

g(t, T)

mt

)(
T−1∑
t=0

mt

)
≥ 1

M

(
T−1∑
t=0

√
g(t, T)

)2

,

where the equalities hold if and only if

mt =
M
√
g(t, T)∑T−1

j=0

√
g(j, T)

, t = 1, . . . , T − 1. (23)

If M
√
g(T−1,T)∑T−1

j=0

√
g(j,T)

≤ N , then (23) is exactly the solution to the problem (10).

Now we consider the case that M
√
g(T−1,T)∑T−1

j=0

√
g(j,T)

> N . We claim that in this case, the solution to the problem (10) satisfies

m∗T−1 = N . The proof of this claim is deferred to Lemma A.5. In this case, m∗1, . . . ,m
∗
T−2 are the solution to the

optimization problem

min
m0,...,mT−2∈R

T−2∑
t=0

g(t, T)

mt
s. t.

T−2∑
t=0

mt ≤M −N, 0 < mt ≤ N, t = 0, . . . , T − 2.

This problem has the same structure as the original problem. We can apply the above arguments recursively until the
algorithm is finished.

Lemma A.5. Suppose the conditions of Proposition 3.2 hold. If M
√
g(T−1,T)∑T−1

j=0

√
g(j,T)

> N , then the solution to the problem (10)

satisfies m∗T−1 = N .

Iterative Double Sketching for Faster Least-Squares Optimization

Proof. For t = 0, . . . , T − 1, define functions

mt(h) := (1− h)m∗t + h
M
√
g(t, T)∑T−1

j=0

√
g(j, T)

, h ∈ [0, 1].

Since (m0(1), . . . ,mT−1(1)) is the solution to the relaxed problem, we have

T−1∑
t=0

g(t, T)

mt(1)
<

T−1∑
t=0

g(t, T)

mt(0)
.

Then for any h ∈ (0, 1],

T−1∑
t=0

g(t, T)

mt(h)
≤h

T−1∑
t=0

g(t, T)

mt(1)
+ (1− h)

T−1∑
t=0

g(t, T)

mt(0)
<

T−1∑
t=0

g(t, T)

mt(0)
,

where the first inequality follows from Jensen’s inequality. Since (m0(0), . . . ,mT−1(0)) is the solution to the problem (10),
for any h ∈ (0, 1], (m1(h), . . . ,mT−1(h)) must violate the constraint mt(h) ≤ N , t = 0, . . . , T − 1. As a consequence,
there exists an t∗ ∈ {0, . . . , N − 1} such that mt∗(0) = N . Suppose our claim does not hold, that is, mT−1(0) < N . Then
we have t∗ 6= T − 1. In this case, we define m†t = mt(0) for i /∈ {t∗, T − 1}, m†t∗ = mT−1(0) and m†T−1 = N . Then

T−1∑
t=0

g(t, T)

mt(0)
−
T−1∑
t=0

g(t, T)

m†t
=
g(t∗, T)

N
+
g(T − 1, T)

mT−1(0)
−
(
g(t∗, T)

mT−1(0)
+
g(T − 1, T)

N

)
=(g(t∗, T)− g(T − 1, T))

(
1

N
− 1

mT−1(0)

)
> 0,

which contradicts the definition of (m0(0), . . . ,mT−1(0)). This completes the proof.

A.4. Proof of Theorem 3.3

In this section, we provide the proof of Theorem 3.3.

Proof of Theorem 3.3. By the definition (12) of T , we have

√
rT+1

4dT−1C(T − 2)
< N,

√
rT+2

4dTC(T − 1)
≥ N. (24)

As a consequence of (24), we have

mT−1 = min

(√
rT+2

4dTC(T − 1)
, N

)
= N, mT−2 = min

(√
rT+1

4dT−1C(T − 1)
, N

)
< N.

It follows that T = T † + 1.

From the first inequality in (24), we have

N >

√
rT+1

4dT−1C(T − 2)
≥

√
rT+1

(4d)T−1
.

Thus, T <
2 log(Nr)

log(r4d)
+ 1. Hence by assumption, T is bounded. By a standard subsequence argument, we can without loss

of generality and assume that T is fixed. From the definition of mt, we have r
m0
→ 0 and mt

mt+1
→ 0, t = 0, . . . , T † − 2.

Iterative Double Sketching for Faster Least-Squares Optimization

Hence if only T † iterations are performed, then the conditions of Theorem 3.1 hold. It follows that

E
{∥∥A(xT† − x∗)

∥∥2 | Ã} =(1 + oP (1))κ


(
d

r

)T†+1

C(T †) +

T†−1∑
t=0

g(t, T †)

mt


=(1 + oP (1))κ

{(
d

r

)T†+1

C(T †) +

T†−1∑
t=0

√
C(T † − 1)C(T † − t− 1)

4d2T†−t+1

r2T†−t+1

}

≤(1 + oP (1))
κ

4

{(
4d

r

)T†+1

+

T†−1∑
t=0

(
4d

r

)T†− t
2
+ 1

2

}

=(1 + oP (1))
κ

4

(
4d

r

)T†
2

+1

.

It follows from the above inequality and Markov’s inequality that

∥∥A(xT† − x∗)
∥∥2 =OP

(
κ
(d
r

)T†
2

+1)
. (25)

By definition, the (T † + 1)th iteration is an IHS iteration. Hence

xT = xT† − µr(Ã
>
r Ãr)

−1A>(AxT† − y).

It follows that

xT − x∗ =
(
Id − µr(Ã>r Ãr)

−1A>A
)

(xT† − x∗).

With the notation Ăk in the proof of Theorem 3.1, we have

DAV>(xT − x∗) =
{
Id − µr(Ă>r Ăr)

−1
}
DAV>(xT† − x∗).

Thus,

‖A(xT − x∗)‖ ≤
∥∥∥Id − µr(Ă>r Ăr)

−1
∥∥∥ ‖A>(xT† − x∗)‖. (26)

From Lemma A.1 and the condition |µ− 1| = O(d/r), we have

∥∥∥Id − µr(Ă>r Ăr)
−1
∥∥∥ ≤µ‖r(Ă>r Ăr)

−1‖
∥∥∥∥1

r
Ă>r Ăr − Id

∥∥∥∥+ |µ− 1| = oP

((
d

r

) 1
2

)
. (27)

Combining (25), (26) and (27) yields

‖A(xT − x∗)‖2 = OP

κ(d
r

)T†
2

+2
 .

Then from (24), √
rT†+3

4dT†+1
≥ N.

The above inequality implies that

(
d

r

)T†
2

+2

≤ r

2N

(
d

r

) 3
2

=
d

2N

(
d

r

) 1
2

= o

(
d

N

)
.

Then the conclusion follows.

Iterative Double Sketching for Faster Least-Squares Optimization

A.5. Proof of Theorem 4.1

Our proof of Theorem 4.1 relies on the following lemma.

Lemma A.6. Suppose N
m is an integer. Then for any non-random vectors x,y ∈ RN , we have

E{(x>Ŝ>m,N Ŝm,Ny − x>y)2} ≤ 1

m

(
‖x‖2‖y‖2 + (x>y)2

)
.

Proof. By the definition of PN , there is a uniformly random permutation of {1, . . . , N}, denote as π, such that (P)i,π(i) = 1
and (P)i,j = 0 for j 6= π(i). By the definition of DN , we can write DN = diag(σ1, . . . , σN) where σ1, . . . , σN are i.i.d.
Rademacher random variables. With these notations, we have

Ŝm,Nx =


∑N

m
i=1 σixπ(i)

...∑N

i=m−1
m

N+1
σixπ(i)

 .

Hence

x>Ŝ>m,N Ŝm,Ny − x>y =
m∑
k=1

∑
k−1
m

N<i<j≤ k
m
N

σiσj(xπ(i)yπ(j) + xπ(j)yπ(i)).

Note that for i < j and i′ < j′ such that {i, j} 6= {i′, j′}, we have E(σiσjσi′σj′) = 0. Thus,

E{(x>Ŝ>m,N Ŝm,Ny − x>y)2} =

m∑
k=1

∑
k−1
m

N<i<j≤ k
m
N

E
{

(xπ(i)yπ(j) + xπ(j)yπ(i))
2}

=N

(
N

m
− 1

)
E(x2π(1)y

2
π(2) + xπ(1)yπ(1)xπ(2)yπ(2))

=
N(N

m
− 1)

N(N − 1)

∑
1≤i 6=j≤N

(x2i y
2
j + xiyixjyj)

≤ 1

m

N∑
i=1

N∑
j=1

(x2i y
2
j + xiyixjyj)

=
1

m

(
‖x‖2‖y‖2 + (x>y)2

)
.

This completes the proof.

Proof of Theorem 4.1. Let uj ∈ RN denote the jth column of U. From Lemma A.6,

E{‖U>Ŝ>m,N Ŝm,NU− Id‖2F } =

d∑
i=1

E{(u>i Ŝ>m,N Ŝm,Nui − 1)2}+
∑

1≤i 6=j≤d

E{(u>i Ŝ>m,N Ŝm,Nuj)
2} ≤ d(d+ 1)

m
.

Then Markov’s inequality implies that

Pr
{
‖U>Ŝ>m,N Ŝm,NU− Id‖ > ε

}
≤Pr

{
‖U>Ŝ>m,N Ŝm,NU− Id‖F > ε

}
≤

E{‖U>Ŝ>m,N Ŝm,NU− Id‖2F }
ε2

≤ d(d+ 1)

mε2
.

This completes the proof.

A.6. Proof of Theorem 4.2

Mackey et al. (2014) gave a matrix Khintchine inequality for Hermitian matrices (Mackey et al. (2014), Corollary 7.3). This
result can be generalized to general matrices via Hermitian dilation. This generalized version is a key tool in our proof of

Theorem 4.2. For any matrix A ∈ Rn1×n2 and p ≥ 1, let ‖A‖Sp =
[
tr
{

(A>A)
p
2

}] 1
p denote the Schatten p-norm of A.

We have the following lemma.

Iterative Double Sketching for Faster Least-Squares Optimization

Lemma A.7 (Matrix Khintchine inequality). Suppose that p = 1 or p ≥ 1.5. Let {Ak}Nk=1 be a sequence of non-random
symmetric matrices. Let {εi}Ni=1 be a sequence of independent Rademacher random variables. Then

E

∥∥∥∥∥
N∑
i=1

εiAi

∥∥∥∥∥
2p

S2p

 ≤1

2
(2p)p

∥∥∥∥∥
N∑
i=1

AiA
>
i

∥∥∥∥∥
p

Sp

+
1

2
(2p)p

∥∥∥∥∥
N∑
i=1

A>i Ai

∥∥∥∥∥
p

Sp

.

Proof. Let Bi =

(
On1,n1 Ai

A>i On2,n2

)
be the Hermitian dilation of Ai, i = 1, . . . , N . By construction, Bi is symmetric.

From Mackey et al. (2014), Corollary 7.3, we have

E

∥∥∥∥∥
N∑
i=1

εiBi

∥∥∥∥∥
2p

S2p

 ≤ (2p)p E

∥∥∥∥∥
N∑
i=1

B2
i

∥∥∥∥∥
p

Sp

 .

Note that ∥∥∥∥∥
N∑
i=1

εiBi

∥∥∥∥∥
2p

S2p

= tr

{(
On1,n1

∑N
i=1 εiAi∑N

i=1 εiA
>
i On2,n2

)2p
}

= tr



{(∑N

i=1 εiAi

)(∑N
i=1 εiAi

)>}p
On1,n2

On2,n1

{(∑N
i=1 εiAi

)> (∑N
i=1 εiAi

)}p



=2

∥∥∥∥∥
N∑
i=1

εiAi

∥∥∥∥∥
2p

S2p

.

On the other hand,∥∥∥∥∥
N∑
i=1

B2
i

∥∥∥∥∥
p

Sp

= tr

{(∑N
i=1 AiA

>
i On1,n2

On2,n1

∑N
i=1 A

>
i Ai

)p}
=

∥∥∥∥∥
N∑
i=1

AiA
>
i

∥∥∥∥∥
p

Sp

+

∥∥∥∥∥
N∑
i=1

A>i Ai

∥∥∥∥∥
p

Sp

.

Hence the conclusion holds.

The following lemma provides a standard decoupling technique.
Lemma A.8. Suppose A ∈ RN×N is a non-random matrix whose diagonal elements equal 0. Let D ∈ RN×N be a
diagonal matrix whose diagonal elements are independent and have mean 0. Let D′ be an independent copy of D. Then for
any convex function F : RN×N → R, we have

EF (DAD) ≤ EF (4DAD′).

Proof. Let W ∈ RN×N be a random diagonal matrix which is independent of D and D′. The diagonal elements of W are
i.i.d. random variables taking on values 0 or 1 with equal probability. Since the diagonal elements of A equal 0, we have
A = 4 E{WA(IN −W)}. Hence DAD = 4 E{DWA(IN −W)D | D}. From Jensen’s inequality,

EF (DAD) = EF (4 E{DWA(IN −W)D | D}) ≤ EF (4DWA(IN −W)D).

Conditioning on W, the random matrices DW and (IN −W)D are independent. Thus, the distribution of DWA(IN −
W)D is the same as that of DWA(IN −W)D′. Hence

EF (DAD) ≤ EF (4DWA(IN −W)D′).

We have

DAD′ = DWA(IN −W)D′ + DWAWD′ + D(IN −W)AWD′ + D(IN −W)A(IN −W)D′.

Note that conditioning on W, the random matrices DW, D(IN −W), WD′ and (IN −W)D′ are independent. Hence
we have E {DWAWD′ + D(IN −W)AWD′ + D(IN −W)A(IN −W)D′ |W,DW, (IN −W)D′} = ON×N .
Thus,

E
{
DAD′ |W,DW, (IN −W)D′

}
= DWA(IN −W)D′.

Iterative Double Sketching for Faster Least-Squares Optimization

Then it follows from Jensen’s inequality that

EF (4DWA(IN −W)D′) ≤ EF (4DAD′).

Hence the conclusion holds.

Proof of Theorem 4.2. Let ` ≥ 1.5 be a parameter to be specified. From Markov’s inequality,

Pr(
∥∥∥U>Š>m,N Šm,NU− Id

∥∥∥ > ε) ≤ ε−2` E

(∥∥∥U>Š>m,N Šm,NU− Id

∥∥∥2`
S2`

)
.

We only need to bound the expectation of the right hand side.

Let Ũ := PNWND̃NU. Then Ũ is a column orthogonal matrix. It can be seen that U>Š>m,N Šm,NU − Id =

Ũ>DN

(
G∗>m,NG∗m,N − IN

)
DNŨ. Note that the matrix G∗>m,NG∗m,N − IN has zero diagonal elements. For any given

Ũ, the function B 7→ ‖Ũ>BŨ‖2`S2`
is convex. Hence we can applying Lemma A.8 conditional on Ũ and obtain the bound

E

(∥∥∥U>Š>m,N Šm,NU− Id

∥∥∥2`
S2`

)
≤24` E

(∥∥∥Ũ>DN

(
G∗>m,NG∗m,N − IN

)
D′NŨ

∥∥∥2`
S2`

)
≤1

2
26` E

(∥∥∥Ũ>DNG∗>m,NG∗m,ND′NŨ
∥∥∥2`
S2`

)
+

1

2
26` E

(∥∥∥Ũ>DND′NŨ
∥∥∥2`
S2`

)
, (28)

where D′N is an independent copy of DN and the last inequality follows from the triangle inequality of the Schatten norm.
Let DN,k ∈ RN

m×
N
m denote the (k − 1)Nm + 1 to kNm rows and (k − 1)Nm + 1 to kNm columns of DN , k = 1, . . . ,m.

We define D′N,k similarly. Let Ũk ∈ RN
m×d denote the (k − 1)Nm + 1 to kNm rows of Ũ, k = 1, . . . ,m. Then we have

Ũ>DNG∗>m,NG∗m,ND′NŨ =
∑m
k=1 Ũ

>
kDN,k1N

m
1>N
m

D′N,kŨk. Let σ1, . . . , σm be i.i.d. Rademacher random variables

which are independent of DN , D′N and Ũ. Note that DN,k has the same distribution as σkDN,k, k = 1, . . . ,m. Hence
Ũ>DNG∗>m,NG∗m,ND′NŨ has the same distribution as

∑m
k=1 σkŨ

>
kDN,k1N

m
1>N
m

D′N,kŨk. Then from Lemma A.7, we
have

E

(∥∥∥Ũ>DNG∗>m,NG∗m,ND′NŨ
∥∥∥2`
S2`

)

≤(2`)` E

∥∥∥∥∥
m∑
k=1

∥∥∥1>N
m
D′N,kŨk

∥∥∥2 Ũ>kDN,k1N
m
1>N
m
DN,kŨk

∥∥∥∥∥
`

S`


≤(2`)` E


(

max
k∈{1,...,m}

∥∥∥1>N
m
D′N,kŨk

∥∥∥2`)∥∥∥∥∥
m∑
k=1

Ũ>kDN,k1N
m
1>N
m
DN,kŨk

∥∥∥∥∥
`

S`


≤(2`)`

√√√√√E

(
max

k∈{1,...,m}

∥∥∥∥1>N
m

D′N,kŨk

∥∥∥∥4`
)

E

∥∥∥∥∥
m∑
k=1

Ũ>kDN,k1N
m
1>N
m

DN,kŨk

∥∥∥∥∥
2`

S`

, (29)

where the last inequality follows from Cauchy-Schwarz inequality. Furthermore, we have

E


∥∥∥∥∥
m∑
k=1

Ũ>kDN,k1N
m
1>N
m
DN,kŨk

∥∥∥∥∥
2`

S`

 ≤dE


∥∥∥∥∥
m∑
k=1

Ũ>kDN,k1N
m
1>N
m
DN,kŨk

∥∥∥∥∥
2`

S2`


=dE

{∥∥∥Ũ>DNG∗>m,NG∗m,NDNŨ
∥∥∥2`
S2`

}
=dE

{∥∥∥U>Š>m,N Šm,NU
∥∥∥2`
S2`

}
≤1

2
d22`

[
E

{∥∥∥U>Š>m,N Šm,NU− Id

∥∥∥2`
S2`

}
+ d

]
, (30)

Iterative Double Sketching for Faster Least-Squares Optimization

where the first inequality follows from Cauchy-Schwarz inequality and the last inequality follows from the triangle inequality
of the Schatten norm. It follows from (28), (29), and (30) that

E

(∥∥∥U>Š>m,N Šm,NU− Id

∥∥∥2`
S2`

)
≤1

2
28```

√√√√dE

(
max

k∈{1,...,m}

∥∥∥∥1>N
m

D′N,kŨk

∥∥∥∥4`
)[

E
{∥∥U>Š>m,N Šm,NU− Id

∥∥2`
S2`

}
+ d
]

+
1

2
26` E

(∥∥∥Ũ>DND′NŨ
∥∥∥2`
S2`

)

≤1

2
28```

√√√√dE

(
max

k∈{1,...,m}

∥∥∥∥1>N
m

D′N,kŨk

∥∥∥∥4`
)

E
{∥∥U>Š>m,N Šm,NU− Id

∥∥2`
S2`

}

+
1

2
28```d

√√√√E

(
max

k∈{1,...,m}

∥∥∥∥1>N
m

D′N,kŨk

∥∥∥∥4`
)

+
1

2
26` E

(∥∥∥Ũ>DND′NŨ
∥∥∥2`
S2`

)
.

Note that if x2 ≤ ax+ b for some a, b ≥ 0, then x2 ≤ a2 + 2b. Hence the above inequality implies that

E

(∥∥∥U>Š>m,N Šm,NU− Id

∥∥∥2`
S2`

)
≤1

4
216``2`dE

(
max

k∈{1,...,m}

∥∥∥1>N
m
D′N,kŨk

∥∥∥4`)

+ 28```d

√√√√E

(
max

k∈{1,...,m}

∥∥∥∥1>N
m

D′N,kŨk

∥∥∥∥4`
)

+ 26` E

(∥∥∥Ũ>DND′NŨ
∥∥∥2`
S2`

)
. (31)

Now we deal with the first two terms in (31). We have

E

(
max

k∈{1,...,m}

∥∥∥1>N
m
D′N,kŨk

∥∥∥4`) ≤E

(
m∑
k=1

∥∥∥1>N
m
D′N,kŨk

∥∥∥4`) = mE

(∥∥∥1>N
m
D′N,1Ũ1

∥∥∥4`) ,
where the last equality holds since D′N,k has the same distribution as D′N,1 and Ũk has the same distribution as Ũ1. Denote
Ŭ := WND̃NU. Then Ũ1 consists of N

m uniformly sampled (without replacement) rows from Ŭ. Let δ1, . . . , δN be
random variables taking on values 0 and 1 which indicates N

m uniformly sampled (without replacement) elements from
{1, . . . , N}. Hence the set {i : δi = 1} has exactly N

m elements. Let σ1, . . . , σN be i.i.d. Rademacher random variables
which are independent of δ1, . . . , δN and Ŭ. Then 1>N

m

D′N,1Ũ1 has the same distribution as
∑N
i=1 σiδiŭ

>
i where ŭi ∈ Rd

is the ith row of Ŭ. From Lemma (A.7),

E

(∥∥∥1>N
m
D′N,1Ũ1

∥∥∥4`) = E E

∥∥∥∥∥
N∑
i=1

σiδiŭi

∥∥∥∥∥
4`

| δ1, . . . , δN , Ŭ


≤1

2
(4`)2` E


(

N∑
i=1

δi‖ŭi‖2
)2`
+

1

2
(4`)2` E

∥∥∥∥∥
N∑
i=1

δiŭiŭ
>
i

∥∥∥∥∥
2`

S2`


≤1

2
(4`)2` E


(

N∑
i=1

δi‖ŭi‖2
)2`
+

1

2
(4`)2` E

∥∥∥∥∥
N∑
i=1

δi‖ŭi‖2Id

∥∥∥∥∥
2`

S2`


=

1

2
(1 + d)(4`)2` E


(

N∑
i=1

δi‖ŭi‖2
)2`


≤d(4`)2` E


(

N∑
i=1

δi‖ŭi‖2
)2`
 .

Note that there are only N
m nonzero elements among δ1‖ŭ1‖2, . . . , δN‖ŭN‖2. Hence from Jensen’s inequality, we have

E


(

N∑
i=1

δi‖ŭi‖2
)2`
 ≤

(
N

m

)2`−1 N∑
i=1

E
(
δi‖ŭi‖4`

)
=

(
N

m

)2`−1
1

m

N∑
i=1

E
(
‖ŭi‖4`

)
=

(
N

m

)2`

E
(
‖ŭ1‖4`

)
,

Iterative Double Sketching for Faster Least-Squares Optimization

where the second last equality holds since E(δi) = 1
m and the last equality holds since ŭ1, . . . , ŭN are identically distributed.

We note that ŭ1 has the same distribution as 1√
N

∑N
i=1 σiui, where ui ∈ Rd is the ith row of U. Hence from Lemma A.7,

E
(
‖ŭ1‖4`

)
=

1

N2`
E

∥∥∥∥∥
N∑
i=1

σiui

∥∥∥∥∥
4`
 ≤ (4`)2`

2N2`

∥∥∥∥∥
N∑
i=1

uiu
>
i

∥∥∥∥∥
2`

S2`

+

(
N∑
i=1

‖ui‖2
)2`
 =

(4`)2`

2N2`
(d+ d2`) ≤

(
4`d

N

)2`

. (32)

Combining the above bounds yields,

E

(
max

k∈{1,...,m}

∥∥∥1>N
m
D′N,kŨk

∥∥∥4`) ≤ md(4`)2`
(
N

m

)2`(
4`d

N

)2`

= md

(
16`2d

m

)2`

. (33)

Now we deal with the last term in (31). Let ũi ∈ Rd denote the vector of the ith row of Ũ. Let σ1, . . . , σN be
i.i.d. Rademacher random variables which are independent of Ũ. Then the random matrix Ũ>DND′NŨ has the same
distribution as

∑N
i=1 σiũiũ

>
i . Hence from Lemma A.7,

E

(∥∥∥Ũ>DND′NŨ
∥∥∥2`
S2`

)
= E

∥∥∥∥∥
N∑
i=1

σiũiũ
>
i

∥∥∥∥∥
2`

S2`


≤(2`)` E

∥∥∥∥∥
N∑
i=1

‖ũi‖2ũiũ>i

∥∥∥∥∥
`

S`


≤(2`)` E

∥∥∥∥∥
(

max
i∈{1,...,N}

‖ũi‖2
)(N∑

i=1

ũiũ
>
i

)∥∥∥∥∥
`

S`


=(2`)`dE

(
max

i∈{1,...,N}
‖ũi‖2`

)
,

where the last equality holds since
∑N
i=1 ũiũ

>
i = Id and ‖Id‖`S` = d. We have

E

(
max

i∈{1,...,N}
‖ũi‖2`

)
= E

(
max

i∈{1,...,N}
‖ŭi‖2`

)
≤ N E

(
‖ŭ1‖2`

)
≤ N

{
E
(
‖ŭ1‖4`

)} 1
2 ≤ N

(
4`d

N

)`
,

where the last inequality follows from (32). Thus,

E

(∥∥∥Ũ>DND′NŨ
∥∥∥2`
S2`

)
≤ Nd

(
8`2d

N

)`
≤ md

(
8`2d

m

)`
. (34)

It follows from (31), (33) and (34) that

E

(∥∥∥U>Š>m,N Šm,NU− Id

∥∥∥2`
S2`

)
≤1

4
216``2`dmd

(
16`2d

m

)2`

+ 28```d

√
md

(
16`2d

m

)2`

+ 26`md

(
8`2d

m

)`

=
1

4
224`md2

(
`3d

m

)2`

+ 212`d

√
md

(
`3d

m

)2`

+ 29`md

(
`2d

m

)`
≤224`md2

{(
`3d

m

)2`

+

(
`3d

m

)`}
.

Thus, for ε ∈ (0, 1),

Pr(
∥∥∥U>Š>m,N Šm,NU− Id

∥∥∥ > ε) ≤ε−2` E

(∥∥∥U>Š>m,N Šm,NU− Id

∥∥∥2`
S2`

)
≤ 224`md2

{(
`3d

mε2

)2`

+

(
`3d

mε2

)`}
. (35)

We take ` = log(e
2d
εδ) > 1.5. Define m̌ := γε−2d

{
log(e

2d
εδ)
}3

where γ > 1 is an absolute constant to be specified. Then

for m ≥ m̌, we have `3d
mε2 < 1. Hence for m ≥ m̌,

224`md2
{(

`3d

mε2

)2`

+

(
`3d

mε2

)`}
≤2 · 224`m̌d2

(
`3d

m̌ε2

)`
=

[
exp

{
log(2) + 2 log(d) + log(m̌)

`

}
224

γ

]`
. (36)

Iterative Double Sketching for Faster Least-Squares Optimization

Note that
log(2) + 2 log(d) + log(m̌)

`
≤ log(2) + 3`+ log(γ) + 3 log(`)

`
≤ log(2)

1.5
+ 6 +

log(γ)

1.5
. (37)

Hence we take a constant γ such that γ > (log(3)
1.5 + 6 + log(γ)

1.5)224e (obviously, such a γ exists). Then from (35), (36), (37)
and the choice of γ, for m ≥ m̆, we have

Pr(
∥∥∥U>Š>m,N Šm,NU− Id

∥∥∥ > ε) ≤e−` ≤ e− log(1
δ
) = δ.

This completes the proof.

A.7. Proof of Theorem 4.3

In this section, we prove Theorem 4.3. First we introduce some notations. For ε ∈ (0, 1), define the event

Eε :=

T†−1⋂
t=0

{
‖U>AS>t StUA − Id‖ ≤ ε

}
.

For ε ∈ (0, 1), let Ẽε denote the event

Ẽε :=
{
‖U>AS̃>S̃UA − Id‖ ≤ ε

}
.

For t = 0, . . . , T † − 1, let

x∗t := arg min
x∈Rd

1

2
‖St(Ax− y)‖2 = (A>S>t StA)−1A>S>t Sty.

Lemma A.9. Let ε, δ ∈ (0, 1). Suppose S ∈ Rn×N and S′ ∈ Rm×n are sketching matrices. Suppose S and S′ are
independent. Then for any column orthogonal matrix U ∈ RN×d, on the event

{
‖U>S>SU− Id‖ < 1

3ε
}

, we have

Pr{‖U>S>S′>S′SU− Id‖ > ε | S} < sup
U′∈Rn×d,
U′>U′=Id

Pr

{
‖U′>S′>S′U′ − Id‖ >

1

3
ε

}
.

Proof. We have

‖U>S>S′>S′SU− Id‖ ≤‖U>S>(S′>S′ − Id)SU‖+ ‖U>S>SU− Id‖.

Denote by SU = U0D0V
>
0 the compact singular value decomposition of SU, where U0 ∈ Rn×d and V0 ∈ Rd×d are

column orthogonal matrices and D0 ∈ Rd×d is a diagonal matrix. Then we have

‖U>S>(S′>S′ − Id)SU‖ ≤ ‖U>0 (S′>S′ − Id)U0‖‖D0V
>
0 ‖2 = ‖U>0 S′>S′U0 − Id‖‖U>S>SU‖.

It follows that

‖U>S>S′>S′SU− Id‖ ≤‖U>0 S′>S′U0 − Id‖‖U>S>SU− Id‖+ ‖U>0 S′>S′U0 − Id‖+ ‖U>S>SU− Id‖.

Hence on the event
{
‖U>S>SU− Id‖ < 1

3ε
}

, we have

‖U>S>S′>S′SU− Id‖ ≤2‖U>0 S′>S′U0 − Id‖+
1

3
ε.

Thus, on the event
{
‖U>S>SU− Id‖ < 1

3ε
}

,

Pr
{
‖U>S>S′>S′SU− Id‖ > ε | S

}
≤Pr

{
‖U>0 S′>S′U0 − Id‖ >

1

3
ε | S

}
≤ sup

U′∈Rn×d,
U′>U′=Id

Pr

{
‖U′>S′>S′U′ − Id‖ >

1

3
ε

}
,

where the last inequality holds since S′ and U0 are independent. This completes the proof.

Iterative Double Sketching for Faster Least-Squares Optimization

The following Lemma is a restatement of Lemma 4.1 of Boutsidis & Gittens (2013). It gives the embedding property of the
SRHT sketching matrix.

Lemma A.10. Let S be an m×N SRHT sketching matrix. Suppose N is a power of 2, U ∈ RN×d is a column orthogonal
matrix and ε, δ ∈ (0, 1). Suppose

m ≥ cε−2

(
d+ log

(
N

δ

))
log

(
ed

δ

)
,

where c > 0 is an absolute constant. Then

Pr
{
‖U>S>SU− Id‖ > ε

}
≤ δ.

Lemma A.11. Suppose the conditions of Theorem 4.3 holds. Then for any column orthogonal matrix U ∈ RN×d, we have

Pr


T†−1⋃
t=0

{
‖U>S>t StU− Id‖ > ε

} ≤ δ,
and

Pr
{
‖U>S̃>S̃U− Id‖ > ε

}
≤ δ.

Proof. For sufficiently large absolute constant γ̃, we have mT� ≥ 324d(d+1)
δε2 . Then from Theorem 4.1, we have

Pr

{
‖U>S>t StU− Id‖ >

1

9
ε

}
≤ 81d(d+ 1)

mtε2
, t = T �, . . . , T † − 1.

In particular, we have

Pr

{
‖U>S>T�ST�U− Id‖ >

1

9
ε

}
≤ δ

4
. (38)

From the union bound, we have

Pr


T†−1⋃
t=T�

{
‖U>S>t StU− Id‖ >

1

9
ε

} =

T†−1∑
t=T�

Pr

{
‖U>S>t StU− Id‖ >

1

9
ε

}

≤
T†−1∑
t=T�

81d(d+ 1)

mtε2

=

T†−1∑
t=T�

81d(d+ 1)

2t−T�mT�ε2

≤162d(d+ 1)

mT�ε2

≤ δ
2
, (39)

where the last inequality holds since mT� ≥ 324d(d+1)
δε2 .

For t = 0, . . . , T � − 1, the distribution of St is the same as that of Šmt,mT�ST� where Šmt,mT� and ST� are independent.
For sufficiently large absolute constant γ̃, we have m0 > 81γε−2d{log(72e2d

εδ)}3. Then from Theorem 4.2, we have

sup
U′∈RmT�×d,
U′>U′=Id

Pr

{
‖U′>Š>mt,mT� Šmt,mT�U

′ − Id‖ >
1

9
ε

}
≤ 9e2d

ε
exp

{
−
(
mtε

2

81γd

) 1
3

}
, t = 0, . . . , T � − 1. (40)

Iterative Double Sketching for Faster Least-Squares Optimization

Therefore,

Pr


T�−1⋃
t=0

{
‖U>S>t StU− Id‖ >

1

3
ε

} = E

Pr


T�−1⋃
t=0

{
‖U>S>t StU− Id‖ >

1

3
ε

}
| ST�




≤E

Pr


T�−1⋃
t=0

{
‖U>S>t StU− Id‖ >

1

3
ε

}
| ST�

1{‖U>S>
T�ST�U−Id‖≤ 1

9
ε}


+ Pr

{
‖U>S>T�ST�U− Id‖ >

1

9
ε

}

≤E

T�−1∑
t=0

Pr

{
‖U>S>t StU− Id‖ >

1

3
ε | ST�

}
1{‖U>S>

T�ST�U−Id‖≤ 1
9
ε}

+
δ

4
,

where the last inequality follows from the union bound and (38). From Lemma A.9 and (40), on the event{
‖U>S>T�ST�U− Id‖ ≤ 1

9ε
}

, we have

T�−1∑
t=0

Pr

{
‖U>S>t StU− Id‖ >

1

3
ε | ST�

}
=

T�−1∑
t=0

Pr

{
‖U>S>T� Š>mt,mT� Šmt,mT�ST�U‖ >

1

3
ε | ST�

}

≤
T�−1∑
t=0

sup
U′∈RmT�×d,
U′>U′=Id

Pr

{
‖U′>Š>mt,mT� Šmt,mT�U

′ − Id‖ >
1

9
ε

}

≤
T�−1∑
t=0

9e2d

ε
exp

{
−
(
mtε

2

81γd

) 1
3

}

≤
+∞∑
t=0

9e2d

ε
exp

{
−2

t
3

(
m0ε

2

81γd

) 1
3

}

≤
+∞∑
t=0

9e2d

ε

(
εδ

72e2d

)2
t
3

≤ δ
8

+∞∑
t=0

(ε

72e2d

)2 t3−1

≤ δ
4
,

where the fourth inequality holds since m0 > 81γε−2d{log(72e2d
εδ)}3. It follows that

Pr


T�−1⋃
t=0

{
‖U>S>t StU− Id‖ >

1

3
ε

} ≤ δ

2
. (41)

From (39) and (41) and the union bound,

Pr


T†−1⋃
t=0

{
‖U>S>t StU− Id‖ > ε

} ≤ δ.
Hence the first conclusion holds.

By construction, S̃ = S†S0 where S† ∈ Rr×m0 is an SRHT matrix which is independent of S0. From Lemma A.10, for
sufficiently large absolute constant γ̃,

sup
U′∈Rm0×d,
U′>U′=Id

Pr

{
‖U′>S†>S†U′ − Id‖ >

1

3
ε

}
≤ δ

2
.

Iterative Double Sketching for Faster Least-Squares Optimization

From (41), we have

Pr

{
‖U>S>0 S0U− Id‖ >

1

3
ε

}
≤ δ

2
.

It follows from the above two inequalities and Lemma A.9 that

Pr
{
‖U>S̃>S̃U− Id‖ > ε

}
≤ δ.

Hence the second conclusion holds.

Lemma A.12. Suppose the conditions of Theorem 4.3 hold. Then on Eε, for t = 0, . . . , T † − 1,

‖A(x∗t − x∗)‖ ≤ 1

1− ε‖U
>
AS>t St(Ax∗ − y)‖.

And on Ẽε

‖A(x0 − x∗)‖ ≤ 1

1− ε‖U
>
AS̃>S̃(Ax∗ − y)‖.

Proof. We have

A(x∗t − x∗) =−A(A>S>t StA)−1A>S>t St(Ax∗ − y) = −UA(U>AS>t StUA)−1U>AS>t St(Ax∗ − y).

It follows that

‖A(x∗t − x∗)‖ ≤ ‖(U>AS>t StUA)−1‖‖U>AS>t St(Ax∗ − y)‖.

On Eε, we have

‖(U>AS>t StUA)−1‖ =‖(Id + U>AS>t StUA − Id)
−1‖ ≤ 1

1− ‖U>AS>t StUA − Id‖
≤ 1

1− ε .

Hence the first conclusion holds. The proof of the second conclusion is similar.

Lemma A.13. Suppose the conditions of Theorem 4.3 hold. Then on Ẽε, we have,

‖Id − µ(U>AS̃>S̃UA)−1‖ ≤ ε+ |µ− 1|
1− ε .

Proof. We have

‖Id − µ(U>AS̃>S̃UA)−1‖ =‖(U>AS̃>S̃UA)−1(U>AS̃>S̃UA − µId)‖

≤‖(U>AS̃>S̃UA)−1‖‖U>AS̃>S̃UA − µId‖

≤‖(U>AS̃>S̃UA)−1‖
(
‖U>AS̃>S̃UA − Id‖+ |µ− 1|

)
.

On Ẽε, we have ‖(U>AS̃>S̃UA)−1‖ ≤ 1
1−ε . Hence the conclusion follows.

Lemma A.14. Suppose the conditions of Theorem 4.3 hold. Then on Eε ∩ Ẽε, we have, for t = 0, . . . , T † − 1,

‖A(xt+1 − x∗)‖ ≤ (µ+ 1)ε+ |µ− 1|
1− ε ‖A(xt − x∗)‖+

1 + µε+ |µ− 1|
(1− ε)2 ‖U>AS>t St(Ax∗ − y)‖.

Proof. By the triangle inequality,

‖A(xt+1 − x∗)‖ ≤‖A(xt+1 − x∗t)‖+ ‖A(x∗t − x∗)‖. (42)

Iterative Double Sketching for Faster Least-Squares Optimization

Now we deal with the term ‖A(xt+1 − x∗t)‖ on the right hand side of (42). From the definition of x∗t , we have the normal
equation A>S>t StAx∗t = A>S>t Sty. Then from the update formula (6) we have

xt+1 =xt − µH̃−1A>S>t St(Axt − y)

=xt − µH̃−1A>S>t StA(xt − x∗t)

=xt − µVAD−1
A (U>AS̃>S̃UA)−1U>AS>t StUADAV>A(xt − x∗t).

It follows that

DAV>A(xt+1 − x∗t) =
{
Id − µ(U>AS̃>S̃UA)−1U>AS>t StUA

}
DAV>A(xt − x∗t).

Thus,

‖DAV>A(xt+1 − x∗t)‖ ≤ ‖Id − µ(U>AS̃>S̃UA)−1U>AS>t StUA‖‖DAV>A(xt − x∗t)‖. (43)

Note that

‖Id − µ(U>AS̃>S̃UA)−1U>AS>t StUA‖ =‖Id − µ(U>AS̃>S̃UA)−1 + µ(U>AS̃>S̃UA)−1(Id −U>AS>t StUA)‖

≤‖Id − µ(U>AS̃>S̃UA)−1‖+ µ‖(U>AS̃>S̃UA)−1‖‖Id −U>AS>t StUA‖.

Thus, from Lemma A.13, on E ∩ Ẽ , we have

‖Id − µ(U>AS̃>S̃UA)−1U>AS>t StUA‖ ≤
ε+ |µ− 1|

1− ε + µ
ε

1− ε =
(µ+ 1)ε+ |µ− 1|

1− ε .

From the above inequality and (43), we have, on E ∩ Ẽ , that

‖A(xt+1 − x∗t)‖ ≤
(µ+ 1)ε+ |µ− 1|

1− ε (‖A(xt − x∗)‖+ ‖A(x∗t − x∗)‖) .

Combining the above inequality and (42) leads to that on E ∩ Ẽ ,

‖A(xt+1 − x∗)‖ ≤ (µ+ 1)ε+ |µ− 1|
1− ε ‖A(xt − x∗)‖+

1 + µε+ |µ− 1|
1− ε ‖A(x∗t − x∗)‖

≤ (µ+ 1)ε+ |µ− 1|
1− ε ‖A(xt − x∗)‖+

1 + µε+ |µ− 1|
(1− ε)2 ‖U>AS>t St(Ax∗ − y)‖,

where the last inequality follows from Lemma A.12. This completes the proof.

Lemma A.15. Suppose the conditions of Theorem 4.3 hold. Then on Ẽε, for t = T †, . . . , T − 1, we have

‖A(xt+1 − x∗)‖ ≤ ε+ |µ− 1|
1− ε ‖A(xt − x∗)‖ .

Proof. For t = T †, . . . , T − 1, we have

DAV>A(xt+1 − x∗) =
{
Id − µ(U>AS̃>S̃UA)−1

}
DAV>A(xt − x∗).

Then the conclusion follows from Lemma A.13.

Proof of Theorem 4.3. Since 0 < ε ≤ 1
10 and |µ− 1| ≤ 1

4 , we have

(µ+ 1)ε+ |µ− 1|
1− ε

≤ 1

2
,

1 + µε+ |µ− 1|
(1− ε)2

≤ 2.

From Lemma A.15, on Ẽε, we have

‖A(xT − x∗)‖ ≤ 1

2T−T†
‖A(xT† − x∗)‖ . (44)

Iterative Double Sketching for Faster Least-Squares Optimization

Lemma A.14 implies that on Eε ∩ Ẽε, we have, for t = 0, . . . , T † − 1, that

‖A(xt+1 − x∗)‖ ≤1

2
‖A(xt − x∗)‖+ 2‖U>AS>t St(Ax∗ − y)‖.

Then by induction, on Eε ∩ Ẽε, we have

‖A(xT† − x∗)‖ ≤ 1

2T†
‖A(x0 − x∗)‖+

T†−1∑
t=0

1

2T†−t−2
‖U>AS>t St(Ax∗ − y)‖. (45)

From Lemma A.11, we have Pr(E{ε) ≤ δ and Pr(Ẽ{ε) ≤ δ. Thus, the inequalities (44) and (45) holds with probablity at
least 1− 2δ.

Now we deal with the second term of (45). Let z1, . . . , zd ∈ RN denote the columns of UA. Then for t = T �, . . . , T † − 1,
we have

E
{
‖U>AS>t St(Ax∗ − y)‖2

}
=

d∑
j=1

E{(z>j S>t St(Ax∗ − y))2} ≤ d

mt
‖Ax∗ − y‖2,

where the last inequality follows from Lemma A.6.

We can write St = Ŝmt,mT�WmT�ST� , t = 0, . . . , T � − 1. Hence for t = 0, . . . , T � − 1,

E
{
‖U>AS>t St(Ax∗ − y)‖2

}
=

d∑
j=1

E
{

(z>j S
>
T�W

>
mT�

Ŝ>mt,mT� Ŝmt,mT�WmT�ST�(Ax∗ − y))2
}

=

d∑
j=1

E
{

(z>j S
>
T�W

>
mT�

Ŝ>mt,mT� Ŝmt,mT�WmT�ST�(Ax∗ − y)− z>j S
>
T�ST�(Ax∗ − y))2

}

+

d∑
j=1

E
{

(z>j S
>
T�ST�(Ax∗ − y))2

}
,

where the last equality holds since the cross term has zero mean. From Lemma A.6, we have

d∑
j=1

E
{

(z>j S
>
T�ST�(Ax∗ − y))2

}
≤ d

mT�
‖Ax∗ − y‖2.

On the other hand, Lemma A.6 implies that

E
{

(z>j S
>
T�W

>
mT�

Ŝ>mt,mT� Ŝmt,mT�WmT�ST�(Ax∗ − y)− z>j S
>
T�ST�(Ax∗ − y))2

}
= E E

{
(z>j S

>
T�W

>
mT�

Ŝ>mt,mT� Ŝmt,mT�WmT�ST�(Ax∗ − y)− z>j S
>
T�ST�(Ax∗ − y))2 | ST�

}
≤ 2

mt
E
(
‖ST�zj‖2‖ST�(Ax∗ − y)‖2

)
=

2

mt
E
{

(‖ST�zj‖2 − ‖zj‖2)(‖ST�(Ax∗ − y)‖2 − ‖Ax∗ − y‖2)
}

+
2

mt
‖zj‖2‖Ax∗ − y‖2

≤ 2

mt

√
E {(‖ST�zj‖2 − ‖zj‖2)2}E {(‖ST�(Ax∗ − y)‖2 − ‖Ax∗ − y‖2)2}+

2

mt
‖zj‖2‖Ax∗ − y‖2

≤
(

4

mtmT�
+

2

mt

)
‖zj‖2‖Ax∗ − y‖2

≤ 4

mt
‖Ax∗ − y‖2.

Combining the above bounds yields

E
{
‖U>AS>t St(Ax∗ − y)‖2

}
≤ 5d

mt
‖Ax∗ − y‖2, t = 0, . . . , T � − 1.

Iterative Double Sketching for Faster Least-Squares Optimization

It follows that

E


T†−1∑
t=0

1

2T†−t−2
‖U>AS>t St(Ax∗ − y)‖

 ≤
T†−1∑
t=0

1

2T†−t−2

[
E
{
‖U>AS>t St(Ax∗ − y)‖2

}] 1
2

≤
T†−1∑
t=0

√
5

2T†−t−2

√
d

mt
‖Ax∗ − y‖

=

T†−1∑
t=0

√
5

2T
†− t

2
−2

√
d

m0
‖Ax∗ − y‖

=

√
5

2T†−2

2
T†
2 − 1√
2− 1

√
d

m0
‖Ax∗ − y‖

≤4
√

5(
√

2 + 1)

√
d

N
‖Ax∗ − y‖.

Then from Markov’s inequality, with probablity at least 1− δ,

T†−1∑
t=0

1

2T†−t−2
‖U>AS>t St(Ax∗ − y)‖ ≤4

√
5(
√

2 + 1)

δ

√
d

N
‖Ax∗ − y‖.

Then the conclusion follows from (44), (45) and the above inequality.

