
Penalty Method for Inversion-Free Deep Bilevel Optimization

Appendix
We provide the missing proofs in Appendix A, review other methods for solving bilevel
problems in Appendix B. We discuss the modifications to improve the Alg. 1 in Appendix C,
show additional experiment results in Appendix D and conclude by providing experiment
details in Appendix E.

Appendix A. Proofs

Theorem 2. Suppose {εk} is a positive (εk > 0) and convergent (εk → 0) sequence, {γk} is
a positive (γk > 0), non-decreasing (γ1 ≤ γ2 ≤ · · ·), and divergent (γk →∞) sequence. Let
{(uk, vk)} be the sequence of approximate solutions to Eq. (10) with tolerance (∇uf̃(uk, vk))2+
(∇vf̃(uk, vk))

2 ≤ ε2k for all k = 0, 1, · · · and LICQ is satisfied at the optimum. Then any
limit point of {(uk, vk)} satisfies the KKT conditions of the problem in Eq. (8).

Proof. The proof follows the standard proof for penalty function methods, e.g., [Nocedal and
Wright (2006)]. Let w := (u, v) refer to the pair, and let w := (u, v) be any limit point of the
sequence {wk := (uk, vk)}, and

g̃ :=

(
h(u, v)
∇vg(u, v)

)
then there is a subsequence K such that limk∈K wk = w. From the tolerance condition

‖∇wf̃(wk; γk)‖ = ‖∇wf(wk) + γkJ
T
w (g̃(wk))g̃(wk)‖ ≤ εk

we have

‖JTw (g̃(wk))g̃(wk)‖ ≤
1

γk
[‖∇wf(wk)‖+ εk]

Take the limit with respect to the subsequence K on both sides to get JTw (g̃(w))g̃(w) = 0.
Assuming linear independence constraint quantification (LICQ) we have that the columns

of the JTw g̃ =

(
JTu h ∇2

uvg
JTv h ∇2

vvg

)
are linearly independent. Therefore g̃(w) = 0, which is

the primary feasibility condition for Eq. (8). Furthermore, let µk := −γkg̃(wk), then by
definition,

∇wf̃(wk; γk) = ∇wf(wk)− JTw (g̃(wk))µk

We can write[
Jw(g̃(wk))J

T
w (g̃(wk))

]
µk = Jw(g̃(wk))

[
∇wf(wk)−∇wf̃(wk; γk)

]
The corresponding limit µ can be found by taking the limit of the subsequence K

µ := lim
k∈K

µk =
[
Jw(g̃(w))JTw (g̃(w))

]−1
Jw(g̃(wk))∇wf(w)

Since limk∈K∇wf̃(wk; γk) = 0 from the condition εk → 0, we get

∇wf(w)− JTw (g̃(w))µ = 0

at the limit w, which is the stationarity condition of Eq. (8). Together with the feasibility
condition g̃(w) = 0, the two KKT conditions of Eq. (8) are satisfied at the limit point.

Mehra Hamm

Lemma 3. Assume h ≡ 0.
Given u, let v̂ be v̂ := arg minv f̃(u, v; γ) from Eq. (10). Then, ∇uf̃(u, v̂; γ) = df

du(u, v̂) as in
Eq. (9).

Proof. At the minimum v̂ the gradient ∇vf̃ vanishes, that is ∇vf + γ∇2
vvg∇vg = 0.

Equivalently, ∇vg = −γ−1(∇2
vvg)−1∇vf . Then,

∇uf̃(v̂) = ∇uf(v̂) + γ∇2
uvg(v̂)∇vg(v̂) = ∇uf(v̂)−∇2

uvg(v̂)∇2
vvg
−1(v̂)∇vf(v̂),

where γ disappears, which is the hypergradient df
du(u, v̂) as in Eq. (9).

That is, if we find the minimum v̂ of the penalty function for given u and γ, we get the
hypergradient Eq. (9) at (u, v̂). Furthermore, under the conditions of Theorem 1, v̂(u)→
v∗(u) as γ → ∞ (see Lemma 8.3.1 of [Bard (2013)]), and we get the exact hypergradient
asymptotically.

Appendix B. Review of other bilevel optimization methods for
unconstrained problems

Several methods have been proposed to solve bilevel optimization problems appearing in
machine learning, including forward/reverse-mode differentiation [Maclaurin et al. (2015);
Franceschi et al. (2017)] and approximate gradient [Domke (2012); Pedregosa (2016)] described
briefly here.

Forward-mode (FMD) and Reverse-mode differentiation (RMD).Domke [Domke
(2012)], Maclaurin et al.[Maclaurin et al. (2015)], Franceschi et al. [Franceschi et al. (2017)],
and Shaban et al. [Shaban et al. (2018)] studied forward and reverse-mode differentiation
to solve the minimization problem minu f(u, v) where the lower-level variable v follows a
dynamical system vt+1 = Φt+1(vt;u), t = 0, 1, 2, · · · , T − 1. This setting is more general
than that of a bilevel problem. However, a stable dynamical system is one that converges to
a steady state and thus, the process Φt+1(·) can be considered as minimizing an energy or a
potential function.

Define At+1 := ∇vΦt+1(vt) and Bt+1 := ∇uΦt+1(vt), then the hypergradient Eq. (9) can
be computed by

df

du
= ∇uf(u, vT) +

T∑
t=0

BtAt+1 × · · · ×AT∇vf(u, vT)

When the lower-level process is one step of gradient descent on a cost function g, that is,

Φt+1(vt;u) = vt − ρ∇vg(u, vt)

we get
At+1 = I − ρ∇2

vvg(u, vt), Bt+1 = −ρ∇2
uvg(u, vt).

At is of dimension V × V and Bt is of dimension V × U . The sequences {At} and {Bt}
can be computed in forward or reverse mode.

Penalty Method for Inversion-Free Deep Bilevel Optimization

For reverse-mode differentiation, first compute

vt+1 = Φt+1(vt), t = 0, 1, · · · , T -1,

then compute

qT ← ∇vf(u, vT), pT ← ∇uf(u, vT)

pt−1 ← pt +Btqt, qt−1 ← Atqt, t = T, T -1, · · · , 1.

Time and space Complexity for computing pt is O(c) since the Jacobian vector product can
be computed in O(c) time and space. The final hypergradient for RMD is df

du = p0.
Hence the final time complexity for RMD is O(cT) and space complexity is O(U + V T).

For forward-mode differentiation, simultaneously compute vt, At, Bt and

P0 ← 0, Pt+1 ← PtAt+1 +Bt+1, t = 0, 1, · · · , T -1.

Time complexity for computing Pt is O(Uc) since PtAt+1 can be computed using U Hessian
vector products each needing O(c) and Bt+1 also needs O(Uc) time for unit vectors ei for
i = 1...U . The space complexity for each Pt is O(UV). The final hypergradient for FMD is

df

du
= ∇uf(u, vT) + PT∇vf(vT).

Hence the final time complexity for FMD is O(cUT) and space complexity is O(U + UV) =
O(UV).

Approximate hypergradient (ApproxGrad). Since computing the inverse of the Hes-
sian (∇2

vvg)−1 directly is difficult even for moderately-sized neural networks, Domke [Domke
(2012)] proposed to find an approximate solution to q = (∇2

vvg)−1∇vf by solving the linear
system of equations ∇2

vvg · q ≈ ∇vf . This can be done by solving

min
q
‖∇2

vvg · q −∇vf‖

using gradient descent, conjugate gradient descent, or any other iterative solver. Note that
the minimization requires evaluation of the Hessian-vector product, which can be done in
linear time [Pearlmutter (1994)]. Hence the time complexity of the method is O(cT) and
space complexity is O(U + V) since we only need to store a single copy of u and v same as
Penalty. The asymptotic convergence with approximate solutions was shown by [Pedregosa
(2016)]. In our experiments we use T steps to solve the linear system.

Appendix C. Improvements to Algorithm 1

Here we discuss the details of the modifications to Alg. 1 presented in the main text which
can be added to improve the performance of the algorithm in practice.

Mehra Hamm

C.1. Improving local convexity by regularization

One of the common assumptions of this and previous works is that ∇2
vvg is invertible

and locally positive definite. Neither invertibility nor positive definiteness hold in general
for bilevel problems, involving deep neural networks, and this causes difficulties in the
optimization. Note that if g is non-convex in v, minimizing the penalty term ‖∇vg‖ does
not necessarily lower the cost g but instead just moves the variable towards a stationary
point – which is a known problem even for Newton’s method. Thus we propose the following
modification to the v-update:

min
v

[
f̃ + λkg

]
keeping the u-update intact. To see how this affects the optimization, note that v-update
becomes

v ← v − ρ
[
∇vf + γk∇2

vvg∇vg + λk∇vg
]

After v converges to a stationary point, we get ∇vg = −(γk∇2
vvg + λkI)−1∇vf , and after

plugging this into u-update, we get

u← u− σ

[
∇uf −∇2

uvg

(
∇2
vvg +

λk
γk
I

)−1
∇vf

]

that is, the Hessian inverse ∇2
vvg
−1 is replaced by a regularized version (∇2

vvg + λk
γk
I)−1 to

improve the positive definiteness of the Hessian. With a decreasing or constant sequence
{λk} such that λk/γk → 0 the regularization does not change to solution.

C.2. Convergence with finite γk

The penalty function method is intuitive and easy to implement, but the sequence {(ûk, v̂k)}
is guaranteed to converge to an optimal solution only in the limit with γ →∞, which may
not be achieved in practice in a limited time. It is known that the penalty method can be
improved by introducing an additional term into the function, which is called the augmented
Lagrangian (penalty) method [Bertsekas (1976)]:

min
u,v

[
f̃ +∇vgT ν

]
.

This new term ∇vgT ν allows convergence to the optimal solution (u∗, v∗) even when γk is
finite. Furthermore, using the update rule ν ← ν + γ∇vg, called the method of multipliers,
it is known that ν converges to the true Lagrange multiplier of this problem corresponding
to the equality constraints ∇vg = 0.

C.3. Non-unique lower-level solution

Most existing methods have assumed that the lower-level solution arg minv g(u, v) is unique
for all u. Regularization from the previous section can improve the ill-conditioning of the
Hessian ∇2

vvg but it does not address the case of multiple disconnected global minima of g.

Penalty Method for Inversion-Free Deep Bilevel Optimization

With multiple lower-level solutions Z(u) = {v | v = arg min g(u, v)}, there is an ambiguity
in defining the upper-level problem. If we assume that v ∈ Z(u) is chosen adversarially (or
pessimistically), then the upper-level problem should be defined as

min
u

max
v∈Z(u)

f(u, v).

If v ∈ Z(u) is chosen cooperatively (or optimistically), then the upper-level problem should
be defined as

min
u

min
v∈Z(u)

f(u, v),

and the results can be quite different between these two cases. Note that the proposed
penalty function method is naturally solving the optimistic case, as Alg. 1 is solving the
problem of minu,v f̃(u, v) by alternating gradient descent. However, with a gradient-based
method, we cannot hope to find all disconnected multiple solutions. In a related problem
of min-max optimization, which is a special case of bilevel optimization, an algorithm for
handling non-unique solutions was proposed recently [Hamm and Noh (2018)]. This idea of
keeping multiple candidate solutions may be applicable to bilevel problems too and further
analysis of the non-unique lower-level problem is left as future work.

C.4. Modified algorithm

Here we present the modified algorithm which incorporates regularization (Appendix. C.1) and
augmented Lagrangian (Appendix. C.2) as discussed previously. The augmented Lagrangian
term ∇vgT ν applies to both u- and v-update, but the regularization term λg applies to only
the v-update as its purpose is to improve the ill-conditioning of ∇2

vvg during v-update. The
modified penalized functions f̃1 for u-update and f̃2 for v-update are

f̃1(u, v; γ, ν) := f̃ +∇vgT ν,
f̃2(u, v; γ, λ, ν) := f̃ +∇vgT ν + λg

The new algorithm (Alg. 2) is similar to Alg. 1 with additional steps for updating λk and
νk.

Appendix D. Additional experiments

D.1. Additional comparison of Penalty on the data denoising problem

D.1.1. Comparison with [Franceschi et al. (2017)]

For comparison of Penalty against the RMD-based method presented in [Franceschi et al.
(2017)], we used their setting from Sec. 5.1, which is a smaller version of this data denoising
task. For this, we choose a sample of 5000 training, 5000 validation and 10000 test points
from MNIST and randomly corrupted labels of 50% of the training points and used softmax
regression in the lower-level of the bilevel formulation (Eq. (3)). The accuracy of the classifier
trained on a subset of the dataset comprising only of points with importance values greater
than 0.9 (as computed by Penalty) along with the validation set is 90.77%. This is better

Mehra Hamm

Algorithm 2 Modified Alg. 1 with regularization and augmented Lagrangian
Input: K,T, {σk}, {ρk,t}, γ0, ε0, λ0, ν0, cγ(=1.1),
cε(=0.9), cλ(=0.9)
Output: (uK , vT)
Initialize u0, v0 randomly
Begin
for k = 0, · · · ,K-1 do
while ‖∇uf̃1‖2 + ‖∇vf̃2‖2 > ε2k do
for t = 0, · · · , T -1 do
vt+1 ← vt − ρk,t∇vf̃2(uk, vt) (Appendix C.4)

end for
uk+1 ← uk − σk∇uf̃1(uk, vT) (Appendix C.4)

end while
γk+1 ← cγγk
εk+1 ← cεεk
λk+1 ← cλλk
νk+1 ← νk + γk∇vg

end for

Table 4: Mean wall-clock time (sec) for 10,000 upper-level iterations for synthetic experiments.
Boldface is the smallest among RMD, ApproxGrad, and Penalty. (Mean ± s.d. of
10 runs)

Example 1 GD RMD ApproxGrad Penalty

T=1 7.4±0.3 15.0±0.1 17.4±0.2 17.2±0.1
T=5 14.3±0.1 51.4±0.3 39.3±2.3 34.3±0.3
T=10 23.2±0.1 95.4±0.2 60.9±0.3 57.0±1.0

Example 2 GD RMD ApproxGrad Penalty

T=1 7.7±0.1 18.5±0.1 17.2±0.3 17.4±0.2
T=5 17.3±0.1 62.7±0.1 37.9±0.1 35.0±0.2
T=10 22.4±2.6 115.0±0.4 64.2±0.3 52.7±1.4

Example 3 GD RMD ApproxGrad Penalty

T=1 8.2±0.2 18.8±0.1 19.8±0.1 19.1±0.1
T=5 17.4±0.1 72.4±0.1 47.1±0.4 38.6±0.4
T=10 28.7±0.6 125.0±9.3 80.6±0.3 62.7±0.1

Example 4 GD RMD ApproxGrad Penalty

T=1 7.9±0.1 19.5±0.1 20.4±0.0 19.6±0.1
T=5 16.9±0.2 72.8±0.5 48.4±0.6 40.2±0.1
T=10 28.3±0.2 138.0±0.2 81.2±1.6 58.0±4.3

than the accuracy obtained by Val-only (90.54%), Train+Val (86.25%) and the RMD-based
method (90.09%) used by [Franceschi et al. (2017)] and is close to the accuracy achieved
by the Oracle classifier (91.06%). The bilevel training uses K = 100 and T = 20, σ0=3,
ρ0=0.00001, γ0=0.01, ε0=0.01, λ0=0.01, ν0=0.0 with batch-size of 200

Penalty Method for Inversion-Free Deep Bilevel Optimization

90
92
94
96
98

100

0 5 10 15 20 25 30 35 40 45 50

A
cc

u
ra

cy
 (%

)

Number of lower level iterations (T)

Penalty ApproxGrad

0

0.5

1

1.5

0 5 10 15 20 25 30 35 40 45 50

Ti
m

e
(s

ec
)

Number of lower level iterations (T)

Penalty ApproxGrad

(a) Importance learning

95
96
97
98
99

100

0 5 10 15 20

A
cc

u
ra

cy
 (

%
)

Number of lower level iterations (T)

Penalty ApproxGrad

0

2

4

6

0 10 20

Ti
m

e
(s

ec
)

Number of lower level iterations (T)

Penalty ApproxGrad

(b) Few-shot learning

60
63
66
69
72
75

0 5 10 15 20 25 30 35 40 45 50

A
cc

u
ra

cy
 (

%
)

Number of lower level iterations (T)

Penalty ApproxGrad

0

0.1

0.2

0.3

0.4

0 5 10 15 20 25 30 35 40 45 50

Ti
m

e
(s

ec
)

Number of lower level iterations (T)

Penalty ApproxGrad

(c) Untargeted data poisoning

Figure 5: Comparison of the final accuracy for different number of lower-level iterations T and
wall-clock time required for single upper-level iteration for different values of T for Penalty
and ApproxGrad (with T updates for the linear system) on data denoising problem
(Sec. 3.2 with 25% noise on MNIST) and few-shot learning problem (Sec. 3.3 with 20 way
5 shot classification on Omniglot) and untargeted data poisoning (Appendix. D.2 with 60
poisoned points on MNIST) .

D.1.2. Comparison with [Ren et al. (2018)]

To demonstrate the effectiveness of the penalty in solving the importance learning problem
with bigger models, we compared its performance against the recent method proposed by
[Ren et al. (2018)], which uses a meta-learning approach to find the weights for each example
in the noisy training set based on their gradient directions. We use the same setting as
their uniform flip experiment with 36% label noise on the CIFAR10 dataset. We also use
our own implementation of the Wide Resnet 28-10 (WRN-28-10) which achieves roughly
93% accuracy without any label noise. For comparison, we used the validation set of 1000
points and training set of 44000 points with labels of 36% points corrupted, same as used by
[Ren et al. (2018)]. We use Penalty with T = 1 since using larger T was not possible due to
extremely high computational needs. However, using a larger value T is expected to improve
the results further based on Fig. 5(a). Different from other experiments in this section we
did not use the arctangent conversion to restrict importance values between 0 and 1 but
instead just normalize the important values in a batch, similar to the method used by [Ren

Mehra Hamm

(a) Clean label poisoning attack on dogfish dataset. The top and middle rows show
the target and base instances from the test set and the last row shows the poisoned
instances obtained from Penalty. Notice that poisoned images (bottom row) are
visually indistinguishable from the base images (middle row) and can evade visual
detection.

(b) Untargeted data poisoning attack on MNIST. The top row shows the learned
poisoned image using Penalty, starting from the images in the bottom row as
initial poisoned images. The column number represents the fixed label of the
image, i.e. the label of the images in the first column is digit 0, the second column
is digit 1, etc.

(c) Targeted data poisoning attack on MNIST. The top row shows the learned
poisoned images using Penalty, starting from the images in the bottom row as
initial poisoned images. Images in the first 5 columns have the fixed label of digit
3, and in the next 5 columns are images with the fixed label of digit 8.

Figure 6: Poisoning points for clean label and simple data poisoning attacks

et al. (2018)], for proper comparison. We used K = 200 and T = 1, σ0=3, ρ0=0.0001, γ0=1,
ε0=1, λ0=10, ν0=0.0 with batch-size of 75 and used data augmentation during training. We
achieve an accuracy of 87.41 ± 0.26.

D.2. Simple data poisoning attack

Here we discuss a simple data poisoning attack problem that does not involve any constraint
on the amount of perturbation on the poisoned data. We solve the following bilevel problem

max
u

Lval(u,w
∗) s.t. w∗ = arg min

w
Lpoison(u,w), (11)

Here, we evaluate Penalty on the task of generating poisoned training data, such that models
trained on this data, perform poorly/differently as compared to the models trained on the
clean data. We use the same setting as Sec. 4.2 of [Muñoz-González et al. (2017)] and
test both untargeted and targeted data poisoning on MNIST using the data augmentation
technique. We assume regularized logistic regression will be the classifier used for training.

Penalty Method for Inversion-Free Deep Bilevel Optimization

Table 5: Test accuracy (%) of untargeted poisoning attack (TOP) and success rate (%) of
targeted attack (BOTTOM), using MNIST (Mean ± s.d. of 5 runs). Results for
RMD are from [Muñoz-González et al. (2017)].

Untargeted Attacks (lower accuracy is better) Targeted Attacks (higher accuracy is better)

Poisoned
points

Label
flipping RMD ApproxGrad Penalty Label

flipping RMD ApproxGrad Penalty

1% 86.71±0.32 85 82.09±0.84 83.29±0.43 7.76±1.07 10 18.84±1.90 17.40±3.00
2% 86.23± 0.98 83 77.54±0.57 78.14±0.53 12.08±2.13 15 39.64±3.72 41.64±4.43
3% 85.17±0.96 82 74.41±1.14 75.14±1.09 18.36±1.23 25 52.76±2.69 51.40±2.72
4% 84.93±0.55 81 71.88±0.40 72.70±0.46 24.41±2.05 35 60.01±1.61 61.16±1.34
5% 84.39±1.06 80 68.69±0.86 69.48±1.93 30.41±4.24 - 65.61±4.01 65.52±2.85
6% 84.64±0.69 79 66.91±0.89 67.59±1.17 32.88±3.47 - 71.48±4.24 70.01±2.95

The poisoned points obtained after solving Eq. (11) by various methods are added to the
clean training set and the performance of a new classifier trained on this data is used to
report the results in Table 5. For untargeted attacks, our aim is to generally lower the
performance of the classifier on the clean test set. For this experiment, we select a random
subset of 1000 training, 1000 validation, and 8000 testing points from MNIST and initialize
the poisoning points with random instances from the training set but assign them incorrect
random labels. We use these poisoned points along with clean training data to train logistic
regression, in the lower-level problem of Eq. (11). For targeted attacks, we aim to misclassify
images of eights as threes. For this, we selected a balanced subset (each of the 10 classes are
represented equally in the subset) of 1000 training, 4000 validation, and 5000 testing points
from the MNIST dataset. Then we select images of class 8 from the validation set and label
them as 3 and use only these images for the upper-level problem in Eq. (11) with a difference
that now we want to minimize the error in the upper level instead of maximizing. To evaluate
the performance we selected images of 8 from the test set and labeled them as 3 and report
the performance on this modified subset of the original test set in the targeted attack section
of Table 5. For this experiment, the poisoned points are initialized with images of classes 3
and 8 from the training set, with flipped labels. This is because images of threes and eights
are the only ones involved in the poisoning. We compare the performance of Penalty against
the performance reported using RMD in [Muñoz-González et al. (2017)] and ApproxGrad.
For ApproxGrad, we used 20 lower-level and 20 linear system updates to report the results in
Table 5. We see that Penalty significantly outperforms the RMD based method and performs
similar to ApproxGrad. However, in terms of wall-clock time Penalty has an advantage over
ApproxGrad (see Fig. 5(c) in Appendix D.3). We also compared the methods against a label
flipping baseline where we select poisoned points from the validation sets and change their
labels (randomly for untargeted attacks and mislabel threes as 8 and eights as 3 for targeted
attacks). All bilevel methods are able to beat this baseline showing that solving the bilevel
problem generates better poisoning points. Examples of the poisoned points for untargeted
and targeted attacks generated by Penalty are shown in Fig. 6. For this experiment, we
used l2-regularized logistic regression implemented as a single layer neural network with the
cross entropy loss and a weight regularization term with a coefficient of 0.05. The model is
trained for 10000 epochs using the Adam optimizer with learning rate of 0.001 for training

Mehra Hamm

with and without poisoned data. We pre-train the lower-level with clean training data for
5000 epochs with the Adam optimizer and learning rate 0.001 before starting bilevel training.
For untargeted attacks, we optimized Penalty with K = 5000, T = 20, σ0=0.1, ρ0 = 0.001,
γ0=10, ε0=1, λ0=100, ν0=0.0. The test accuracy of this model trained on clean data is
87%. For targeted attack, Penalty is optimized with K = 5000, T = 20, σ0=0.1, ρ0 = 0.001,
γ0=10, ε0=1, λ0=1, ν0=0.0.

D.3. Impact of T on accuracy and run-time

Here, we compare the accuracy and time for Penalty and ApproxGrad (Fig. 5 and Table 4) as
we vary the number of lower-level iterations T for different experiments. Intuitively, a larger
T corresponds to a more accurate approximation of the hypergradient and therefore improves
the results for both methods. But this improvement comes with a significant increase in
time. Moreover, Fig. 5 shows that relative improvement after T = 20 is small in comparison
to the increased run-time for Penalty and especially for ApproxGrad. Based on these results
we used T = 20 for all our experiments on real data for both methods. The figure also shows
that even though Penalty and ApproxGrad have the same linear time complexity (Table 1),
Penalty is about twice as fast ApproxGrad in wall-clock time on real experiments.

D.4. Impact of various hyperparameters and terms

Here we evaluate the impact of different initial values for the hyperparameters and the
impact of different terms added in the modified algorithm (Algorithm 2). In particular,
we examine the effect of using different initial values of λ0 for synthetic experiments and
λ0, γ0 for untargeted data poisoning with 60 points and also test the effect of having the λkg
and ∇vgT ν (Fig. 7 and Table 6). Based on the results we find that the initial value of the
regularization parameter λ0 does not influence the results too much and the absence of λkg
(λk = 0) also does not change the results too much. We also don’t see significant gains from
using the augmented Lagrangian term and method of multipliers on these simple problems.
However, the initial value of the parameter γ0 does influence the results since starting from
very large γ0 makes the algorithm focus only on satisfying the necessary condition at the
lower level ignoring the f whereas with small γ0 it can take a large number of iterations for
the penalty term to have influence. Apart from these, we also tested the effects of the rate
of tolerance decrease (cε) and penalty increase (cγ), and initial value for ε0. Within certain
ranges, the results do not change much.

Appendix E. Details of the experiments

All codes are written in Python using Tensorflow/Keras and were run on Intel CORE i9-
7920X CPU with 128 GB of RAM and dual NVIDIA TITAN RTX. Implementation and
hyperparameters of the algorithms are experiment-dependent and described separately below.

Penalty Method for Inversion-Free Deep Bilevel Optimization

Table 6: Effect of using different initial values for various hyper-parameters with Penalty on untar-
geted data poisoning attacks, Appendix D.2 (lower accuracy is better) with 60 poisoning
points (Mean ± s.d. of 5 runs with T = 20 (lower-level iterations)). We used the parameters
corresponding to the bold values for the results reported in Table 5.

Hyper-
parameters Different initial values of various hyperparameters

λ0

λ0 = 0 λ0 = 1 λ0 = 10 λ0 = 100

67.87±1.35 68.21±1.78 68.18±1.04 67.59±1.17

ν
with ν without ν

67.59±1.17 68.82±0.75

γ0

γ0 = 1 γ0 = 10 γ0 = 100

73.38±4.98 67.59±1.17 71.96±3.56

0 20000 40000
0

5

10

15

20

T=1

= 0.0000

0 20000 40000
0

5

10

15

20
= 0.0001

0 20000 40000
0

5

10

15

20
= 0.0100

0 20000 40000
0

5

10

15

20
= 1.0000

0 20000 40000
0

5

10

15

20

T=5

0 20000 40000
0

5

10

15

20

0 20000 40000
0

5

10

15

20

0 20000 40000
0

5

10

15

20

0 20000 40000
0

5

10

15

20

T=10

0 20000 40000
0

5

10

15

20

0 20000 40000
0

5

10

15

20

0 20000 40000
0

5

10

15

20

0 20000 40000
0

5

10

15

20

T=1

= 0.0000

0 20000 40000
0

5

10

15

20
= 0.0001

0 20000 40000
0

5

10

15

20
= 0.0100

0 20000 40000
0

5

10

15

20
= 1.0000

0 20000 40000
0

5

10

15

20

T=5

0 20000 40000
0

5

10

15

20

0 20000 40000
0

5

10

15

20

0 20000 40000
0

5

10

15

20

0 20000 40000
0

5

10

15

20

T=10

0 20000 40000
0

5

10

15

20

0 20000 40000
0

5

10

15

20

0 20000 40000
0

5

10

15

20

Figure 7: Penalty method for T=1,5,10 and λ0 = 0, 10−4, 10−2, 1 for Example 1 of Sec.3.1.
Top: with ν. Bottom: without ν. Averaged over 5 trials.

E.1. Synthetic problems

In this experiment, four simple bilevel problems with known optimal solutions are used to
check the convergence of different algorithms. The two problems in Fig. 1 are

min
u,v
‖u‖2 + ‖v‖2, s.t. v = arg min

v
‖1− u− v‖2,

and

min
u,v
‖v‖2 − ‖u− v‖2, s.t. v = arg min

v
‖u− v‖2,

where u = [u1, · · · , u10]T , |ui| ≤ 5 and v = [v1, · · · , v10]T , |vi| ≤ 5. The optimal solutions
are ui = vi = 0.5, i = 1, · · · , 10 for the former and ui = vi = 0, i = 1, · · · , 10 for the
latter. Since there are unique solutions, convergence is measured by the Euclidean distance√
‖u− u∗‖2 + ‖v − v∗‖2 of the current iterate (u, v) and the optimal solution (u∗, v∗).
The two problems in Fig. 2 are

min
u,v
‖u‖2 + ‖v‖2, s.t. v = arg min

v
(1− u− v)TATA(1− u− v)

Mehra Hamm

Table 7: Upper- and lower-level variable sizes for different experiments

Experiment Dataset Upper-level
variable

Lower-level
variable

Data
denoising

MNIST 59K 1.4M
CIFAR10 (Alexnet) 40K 1.2M

CIFAR10 (WRN-28-10) 44K 36M
SVHN 72K 1.3M

Few-shot
learning

Omniglot 111K 39K
Mini-Imagenet 3.8M 5K

Data
poisoning

MNIST (Augment 60
poison points) 47K 8K

ImageNet (Clean
label attack) 268K 4K

and

min
u,v
‖v‖2 − (u− v)TATA(u− v), s.t. v = arg min

v
(u− v)TATA(u− v),

where A is a 5×10 real matrix such that ATA is rank-deficient, and the domains are the same
as before. These problems are ill-conditioned versions of the previous two problems and are
more challenging. The optimal solutions to these two example problems are not unique. For
the former, the solutions are u = 0.5 + p and v = 0.5 + p for any vector p ∈ Null(A). For the
latter, u = p and v = 0 for any vector p ∈ Null(A). Since they are non-unique, convergence
is measured by the residual distance

√
‖P (u− 0.5)‖2 + ‖P (v − 0.5)‖2 for the former and√

‖Pu‖2 + ‖v‖2 for the latter, where P = AT (AAT)−1A is the orthogonal projection to the
row-space of A.

The algorithms used in this experiment are GD, RMD, ApproxGrad, and Penalty. Adam
optimizer is used for minimization everywhere except RMD which uses gradient descent for
a simpler implementation. The learning rates common to all algorithms are σ0 = 10−3 for
u-update and ρ0 = 10−4 for v- and p-updates. For Penalty, the values γ0 = 1, λ0 = 10, and
ε0 = 1 are used. For each problem and algorithm, 20 independent trials are performed with
random initial locations (u0, v0) sampled uniformly in the domain, and random entries of A
sampled from independent Gaussian distributions. We test with T = 1, 5, 10. Each run was
stopped after K = 40000 iterations of u-updates.

E.2. Data denoising by importance learning

Following the formulation for data denoising presented in Eq. (3), we associate an importance
value (denoted by ui) with each point in the training data. Our goal is to find the correct
values for these ui’s such that the noisy points are given lower importance values and clean
points are given higher importance values. In our experiments, we allow the importance
values to be between 0 and 1. We use the change of variable technique to achieve this.
We set u′i = 0.5(tanh(ui) + 1) and since −1 ≤ tanh(ui) ≤ 1, u′i is automatically scaled
between 0 and 1. We use a warm start for the bilevel methods (Penalty and ApproxGrad)
by pre-training the network using the validation set and initializing the importance values
with the predicted output probability from the pre-trained network. We see an advantage in

Penalty Method for Inversion-Free Deep Bilevel Optimization

the convergence speed of the bilevel methods with this pre-training. Below we describe the
network architectures used for our experiments.

For the experiments on the MNIST dataset, our network consists of a convolution layer
with a kernel size of 5x5, 64 filters, and ReLU activation, followed by a max-pooling layer of
size 2x2 and a dropout layer with a drop rate of 0.25. This is followed by another convolution
layer with a 5x5 kernel, 128 filters, and ReLU activation followed by similar max pooling
and dropout layers. Then we have 2 fully connected layers with ReLU activation of sizes 512
and 256 respectively, each followed by a dropout layer with a drop rate of 0.5. Lastly, we
have a softmax layer with 10 classes. We used the Adam optimizer with a learning rate of
0.00001, batch size of 200, and 100 epochs to report the accuracy of Oracle, Val-Only, and
Train+Val classifiers. For bilevel training using Penalty we used K = 100, T = 20, σ0=3,
ρ0=0.00001, γ0=0.01, ε0=0.01, λ0=0.01, ν0=0.000001 as per Alg. 2.

For the experiments on the CIFAR10 dataset, our network consists of 3 convolution
blocks with filter sizes of 48, 96, and 192. Each convolution block consists of two convolution
layers, each with a kernel size of 3x3 and ReLU activation. This is followed by a max-pooling
layer of size 2x2 and a drop-out layer with a drop rate of 0.25. After these 3 blocks, we have
2 dense layers with ReLU activation of sizes 512 and 256 respectively, each followed by a
dropout layer with a rate of 0.5. Finally, we have a softmax layer with 10 classes. This is
optimized with the Adam optimizer using a learning rate of 0.001 for 200 epochs with a
batch size of 200 to report the accuracy of Oracle, Val-Only, and Train+Val classifiers. For
this experiment, we used data augmentation during our training. For the bilevel training
using Penalty we used K = 200, T = 20, σ0=3, ρ0=0.00001, γ0=0.01, ε0=0.01, λ0=0.01,
ν0=0.0001 with mini-batches of size 200. We also use data augmentation for bilevel training.

For the experiments on the SVHN dataset, our network consists of 3 blocks each with 2
convolution layers with a kernel size of 3x3 and ReLU activation followed by a max-pooling
and drop out layer (drop rate = 0.3). The two convolution layers of the first block have 32
filters, the second block has 64 filters and the last block has 128 filters. This is followed
by a dense layer of size 512 with ReLU activation and a dropout layer with a drop rate =
0.3. Finally, we have a softmax layer with 10 classes. This is optimized with the Adam
optimizer and learning rate of 0.001 for 100 epochs to report results of Oracle, Val-Only, and
Train+Val classifiers. The bilevel training uses K = 100 and T = 20, σ0=3, ρ0=0.00001,
γ0=0.01, ε0=0.01, λ0=0.01, ν0=0.0 with batch-size of 200. The test accuracy of these models,
when trained on the entire training data without any label corruption, is 99.5% for MNIST,
86.2% for CIFAR10, and 91.23% for SVHN. For all the experiments with ApproxGrad, we
used 20 updates for the lower-level and 20 updates for the linear system and did the same
number of epochs as for Penalty (i.e. 100 for MNIST and SVHN and 200 for CIFAR), with a
mini-batch-size 200.

E.3. Few-shot learning

For these experiments, we used the Omniglot [Lake et al. (2015)] dataset consisting of 20
instances (size 28 × 28) of 1623 characters from 50 different alphabets and the Mini-ImageNet
[Vinyals et al. (2016)] dataset consisting of 60000 images (size 84 × 84) from 100 different
classes of the ImageNet [Deng et al. (2009)] dataset. For the experiments on the Omniglot
dataset, we used a network with 4 convolution layers to learn the common representation for

Mehra Hamm

the tasks. The first three layers of the network have 64 filters, batch normalization, ReLU
activation, and a 2 × 2 max-pooling. The final layer is the same as the previous ones with
the exception that it does not have any activation function. The final representation size is
64. For the Mini-ImageNet experiments, we used a residual network with 4 residual blocks
consisting of 64, 96, 128, and 256 filters followed by a 1 × 1 convolution block with 2048
filters, average pooling, and finally a 1 × 1 convolution block with 384 filters. Each residual
block consists of 3 blocks of 1 × 1 convolution, batch normalization, leaky ReLU with leak
= 0.1, before the residual connection and is followed by dropout with rate = 0.9. The last
convolution block does not have any activation function. The final representation size is 384.
Similar architectures have been used itefranceschi2018bilevel in their work with the difference
that we don’t use any activation function in the last layers of the representation in our
experiments. For both the datasets, the lower-level problem is a softmax regression with a
difference that we normalize the dot product of the input representation and the weights with
the l2-norm of the weights and the l2-norm of the input representation, similar to the cosine
normalization proposed by [Luo et al. (2018)]. For N way classification, the dimension of the
weights in the lower-level are 64 × N for Omniglot and 384 × N for Mini-ImageNet. For our
Omniglot experiments we use a meta-batch-size 30 for 5-way and 20-way classification and a
meta-batch-size of 2 for 5-way classification with Mini-ImageNet. We use T = 20 iterations
for the lower-level in all experiments and ran them for K=10000. The hyper-parameters
used for Penalty are σ0=0.001, ρ0=0.001, γ0=0.01, ε0=0.01, λ0=0.01, ν0=0.0001.

E.4. Clean label data poisoning attack

We solve the following problem for clean label poisoning:

min
u

Lt(u,w
∗) + ‖r(t)− r(u)‖ s.t. ‖xbase − u‖2 ≤ ε and w∗ = arg min

w
Lpoison(u,w), (12)

We use the dog vs. fish image dataset as used by [Koh and Liang (2017)], consisting of 900
training and 300 testing examples from each of the two classes. The size of the images in
the dataset is 299 × 299 with pixel values scaled between -1 and 1. Following the setting in
Sec. 5.2 of [Koh and Liang (2017)], we use the InceptionV3 model with weights pre-trained
on ImageNet. We train a dense layer on top of these pre-trained features using the RMSProp
optimizer and a learning rate of 0.001 optimized for 1000 epochs before starting bilevel
training. Test accuracy obtained with training on clean training data is 98.33. We repeat
the same procedure as training during evaluation and train the dense layer with training
data augmented with a poisoned point. For solving the Eq. (12) with Penalty we converted
the inequality constraint to an equality constraint by adding a non-negative slack variable.
Penalty is optimized with K = 200, T = 10, σ0=0.01, ρ0 = 0.001, γ0=1, ε0=1, λ0=1.

The experiment shown in Fig. 3 is done on the correctly classified instances from the test
set. For a fair comparison with Alg. 1 in [Shafahi et al. (2018)] we choose the same target
and base instance for both the algorithms and generate the poison points. We modify Alg.
1 of [Shafahi et al. (2018)] in order to constrain the amount of perturbation it adds to the
base image to generate the poison point. We achieve this by projecting the perturbation
back onto the l2 ball of radius ε whenever it exceeds. This is a standard trick used by several
methods which generate adversarial examples for test time attacks. We use β = 0.1, λ = 0.01
for Alg. 1 of [Shafahi et al. (2018)] and run it for 2000 epochs in this experiment. For both

Penalty Method for Inversion-Free Deep Bilevel Optimization

the algorithms we aim to find the smallest ε that causes misclassification. We incrementally
search for the ε ∈ {1, 2, ..., 16} and record the minimum one that misclassifies the particular
target. These are then used to report the average distortion in Fig. 3.

	Introduction
	Inversion-Free Penalty Method
	Background
	Penalty function approach
	Our algorithm

	Experiments
	Synthetic problems
	Data denoising by importance learning
	Few-shot learning
	Training-data poisoning
	Convergence speed comparison of Penalty and ApproxGrad

	Conclusion
	Acknowledgement
	Proofs
	Review of other bilevel optimization methods for unconstrained problems
	Improvements to Algorithm 1
	Improving local convexity by regularization
	Convergence with finite k
	Non-unique lower-level solution
	Modified algorithm

	Additional experiments
	Additional comparison of Penalty on the data denoising problem
	Comparison with [franceschi2017forward]
	Comparison with [ren18l2rw]

	Simple data poisoning attack
	Impact of T on accuracy and run-time
	Impact of various hyperparameters and terms

	Details of the experiments
	Synthetic problems
	Data denoising by importance learning
	Few-shot learning
	Clean label data poisoning attack

