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Abstract

Multi-task actor-critic is a learning paradigm proposed in the literature to improve the
learning efficiency of multiple actor-critics by sharing the learned policies across tasks
while the reinforcement learning progresses online. However, existing multi-task actor-critic
algorithms can only handle reinforcement learning tasks within the same problem domain,
they may fail in cases where tasks possessing diverse state-action spaces. Taking this cue,
in this paper, we embark a study on multi-task actor-critic with knowledge transfer via a
share critic to enable the multi-task learning of actor-critic in heterogeneous state-action
environments. Further, for efficient learning of the proposed multi-task actor-critic, a new
formula for calculating the gradient of the actor network is also presented. To evaluate the
performance of our approach, comprehensive empirical studies on continuous robotic tasks
with different numbers of links. The experimental results confirmed the effectiveness of the
proposed multi-task actor-critic algorithm.

Keywords: Multi-task actor-critic, Cross-domain transfer, Transfer reinforcement learn-
ing, Reinforcement learning

1. Introduction

Reinforcement learning (RL) models how agents learn from environment through trial-
and-error, which has attracted much attention in both academia and industry in the last
decades Sutton (1988); Watkins and Dayan (1992); Sutton and Barto (2018); Li (2017). In
particular, RL is a learning paradigm which has been defined as a Markov decision process
(MDP) that learns by interacting with an environment via a sense, act, and learn cycle.
During the learning process, an RL agent receives a numerical reward which is the feedback
from the environment to evaluate the performance of the agent. The RL agent seeks better
actions autonomously with the aim of maximizing the accumulated reward over time. In
recent years, RL has been successfully applied in many complex real-world applications,
such as robotics Schulman et al. (2015); Kober et al. (2013), games Mnih et al. (2013), and
biology Khamassi et al. (2005).
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Actor-critic method is one of the most popular reinforcement learning algorithms inves-
tigated in the literature Barto et al. (1983); Sutton (1985), which possesses separate struc-
tures for policy learning and value function approximation explicitly. The policy structure
is known as the actor, which is used to select actions, while the estimated value function is
known as the critic that criticizes the actions made by the actor. Due to these structures,
actor-critic is very efficient in action selection, and is able to learn an explicitly stochastic
policy. It also makes it easy to impose domain-specific constraints on the set of allowed
policies. Over the years, many actor-critic algorithms have been developed in the literature,
such as Advantage Actor Critic (A2C), Asynchronous Advantage Actor Critic (A3C) and
Soft Actor-critic Mnih et al. (2016); Haarnoja et al. (2018).

Despite the success enjoyed by the actor-critic approach, it is worth noting that actor-
critic possesses a high sample complexity. As on-policy learning methods, actor-critic algo-
rithms require collections of new samples for each gradient step. It thus becomes extrava-
gantly expensive to learn an effective policy via actor-critic in cases that the task complexity
increases. To improve the efficiency of actor-critic algorithms, in the literature, multi-task
actor-critic learning has been proposed to leverage knowledge across related RL tasks to
accelerate the learning process. For instance, Macua et al. (2017) presented a distributed
multi-task actor-critic algorithm, in which multiple agents collect data independently and
transfer the learned policy between neighbors to accelerate the convergence to a common
policy. Teh et al. (2017) proposed a joint training framework called Distral, for multi-task
actor-critic. It shares a distilled policy between tasks to make the learning process stable
and efficient. However, as these algorithms assume all the RL tasks share common state and
action spaces, they may fail when different tasks have diverse state-action space and envi-
ronment dynamics. To the best of our knowledge, there is little work focusing on multi-task
actor-critic learning with tasks involving heterogeneous state-action spaces. In particular,
Dewangan et al. (2018) proposed to learn a compound policy network of multiple tasks
sharing a set of actions. Nevertheless, if the tasks are not related and have different policy
distributions, the gradient from different tasks will interfere negatively, which makes the
learning process unstable and even less data efficient.

Keeping the above in mind, in this paper, we propose a new multi-task actor-critic
algorithm by considering tasks with different state-action spaces. The proposed algorithm
allows multiple tasks to be learned simultaneously and contains knowledge transfer between
tasks to accelerate the learning process of actor-critic. In contrast to existing approach which
learns a compound policy, each task in the proposed algorithm is solved by independent
actor-critic network with the aim of avoiding negative interference between different tasks.
Further, a centralized critic, namely shared critic, is proposed to extract common features
from all tasks to guide each independent actor-critic network to explore the policy space.
To achieve the effective exploration with the guidance of shared critic, we present a new
formula for the gradient step in actor network to enable agent to learn policy from the
transferred knowledge. In this way, knowledge transfer can be conducted between tasks
with different state-action spaces towards enhanced learning performance. The shared critic
can not only help agents overcome random exploration, but also prevent the search of policy
from trapping in a local optimum.
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To demonstrate the efficacy of the proposed algorithm, comprehensive empirical studies
on continuous robotic control tasks built on MuJoCo platform' have been conducted. The
tasks differ in terms of state space, action space, and environmental dynamics. The obtained
experimental results indicate that our method can accelerate the learning process with
improved RL performance over recently proposed multi-task actor-critic approaches and
single-task actor-critic. The rest of this paper is organized as follows. Section 1.1 and 1.2
discuss the related works and actor-critic algorithm. Section 2 present the details of our
proposed method. Section 3 contains the introduction of tasks, experimental discussions,
and results. Section 4 concludes this paper.

1.1. Related Work

In the literature, there are generally two ways of conducting multi-task actor-critic rein-
forcement learning to reduce the sample complexity and accelerate convergence. The first
one is to learn multiple tasks simultaneously and transfer the learned policies across tasks
while the learning progresses online. For instance, besides the works introduced in section 1,
Yang et al. (2017) proposed a multi-actor and single-critic architecture to enable the robot
to learn multiple skills. It reduces the number of parameters by sharing visual features
and achieved stable learning with superior performance via multi-task training. On the
other hand, the other approach is continual learning where the agent is trained on multiple
tasks sequentially with knowledge transfer over tasks. For instance, Ammar et al. (2014)
presented a multi-task policy gradient method based on deep deterministic policy gradient
(DDPG). In this work, the RL tasks are solved consecutively with transfer knowledge over
tasks to improve the sample efficiency and learning speed of actor-critic. In these works,
as aforementioned, the tasks considered in the multi-task learning scenario share common
state-action spaces.

In order to enable multi-task actor-critic with tasks having different state-action spaces
and environment dynamics, besides the learning of compound policy in Dewangan et al.
(2018), Ammar et al. (2015) proposed a lifelong policy gradient algorithm which allows
cross-domain transfer between consecutive RL tasks. In this work, the authors proposed to
learn a repository of shared knowledge and project the shared knowledge to the task-specific
domains through project matrix. However, as the agent has to learn tasks consecutively
over time in a lifelong learning scenario, it is computationally expensive compared to the
scenario of learning multiple tasks simultaneously.

Moreover, another research topic related to the algorithm proposed in this paper is
multi-agent reinforcement learning (MARL) with centralized training and decentralized
executing. In MARL, actor-critic is widely considered as the RL agent, since the decoupled
architecture of actor-critic is easy to be expanded to multiple policies and centralized critic
networks. For instance, Lowe et al. (2017) and Foerster et al. (2017) proposed actor-critic
based methods to learn policies that require multi-agent coordination or competition. The
centralized critic contains the information of multiple agents, while actors execute actions
only using local information. However, there are fundamental differences between these
methods and our proposed multi-task actor-critic algorithm. First of all, the centralized
critic in MARL is to estimate the value function of global state which integrates the states

1. https://www.roboti.us/



ZHANG FENG Hou

of all agents, while ours aim is to extract the common feature of value function across
multiple tasks. Next, the purpose of knowledge transfer in MARL is to recognize changes
of environment and identify the impact of each agent to the environment, while in the
proposed algorithm, the transfer of knowledge across tasks is to enhance the efficiency and
stability of the RL process.

1.2. Background

In the literature, RL has been modeled by a Markov decision process (MDP), which can
be represented by the tuple < X, U, P,p >, where X denotes the state space, U gives the
action space, P is state transition function P : X x U — X, and p is the reward function
p: X xUx X — R. For each time step, an RL agent executes an action a € U, selected
according to the policy 7, which thus induces a transition in the environment based on the
state transition function P(s'|s,a) — [0,1], s',s € X. After the transition, the RL agent
receives feedback r from the environment, which is given by the reward function r = p(s, a).

Generally, the goal of policy-based RL approaches is to find the optimal policy w, which
map the action for each state directly, with the aim of maximizing a discounted sum of

future rewards G; = ;;Oto vty where v € (0,1) is a discounting factor. The policy
mg(als) with parameter € is updated using the gradient:
VoJ(0) = E[G] Vloggm(at|st)] (1)

The cumulative reward function can be replaced by V function V7™ (s) = E[r]|S; = s; 7],
which denotes the estimation of cumulative discounted future reward, and the @ function
Q™ (s,a) = E[r]|S; = s, At = a; 7], which is the discounted cumulative reward from state-
action pair (s,a). However, such functions may lead to high variance in the estimate of the
gradient, which thus result in slow learning process.

To reduce variance of gradient estimation, actor-critic methods jointly learn policy net-
work (actor) with parameter 6 and value network (critic) with parameter n. For policy
network, the advantage function A(s¢, ar) = Q(sg,a¢) — Vy(se) is often considered, which
measures the success of current action against the average of actions that would have been
taken at the current state. Further, the temporal difference (TD) error d, can be em-
ployed as an unbiased estimate of the advantage function to reduce the number of required
networks. In this way, the policy gradient with the TD error becomes:

Vo J(0) = E[logeme(als)dy] (2)
O =1 +Vy(s') = Vi(s) (3)
Moreover, in this study, we adopt the n-step return Sutton and Barto (2018) to com-

pute advantage function to adjust the tradeoff between variance brought by the immediate
reward, and bias introduced by the value estimation. Therefore, §, is computed as:

Op =Tt41 +YTe42 + oo+ ’Yn_lvn<3t+n) — Vi(st) (4)

Next, the value or critic network is updated by minimizing the squared loss of TD error.
The loss function of critic network is as follow:

L(Q) = E(s,a,r,s’)f\ﬂrg(vn(s) - y>2

_ (5)
where y = ri 1 + Y12 + ... " 1Vn(st+n)
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Figure 1: Overall architecture of the proposed multi-task actor-critic with a shared critic
network

In this paper, this advantage actor-critic with n-step return is considered as the basic
RL algorithm in our proposed multi-task actor-critic algorithm.

2. Proposed Method

In this section, we present the details of the proposed multi-task actor-critic with a shared
critic network. In particular, as illustrated in Fig. 1, the overall architecture of the proposed
algorithm contains independent actor-critic (IAC) agents performing self-learning on each
RL simultaneously, and a centralized critic, i.e., shared critic, for knowledge sharing between
different tasks. The proposed architecture is similar to the Distral framework Teh et al.
(2017) discussed in section 1 which has a distilled policy for sharing knowledge between RL
tasks. However, there are two significant differences between our proposed algorithm and
Distral. First of all, the knowledge transfer in Distral is in the form of policy, while our
proposed algorithm intends to transfer advantage values via the shared critic. Secondly, Dis-
tral focuses on the multi-task learning with tasks possessing common state-actions spaces.
However, in this paper, we considers the more complex multi-task scenarios that different
task contains heterogeneous state-action spaces.

In what follows, the details of the shared critic network and the independent actor-critic
are presented.

2.1. Shared Critic Network

As depicted in Fig. 2, the proposed shared critic collect the trajectories from all tasks to
learn a common value function distribution over all tasks and helps each agent to accelerate
the learning by biasing the search direction of task-specific policies via sharing advantage
value.

In particular, the shared critic network is parameterized by ng. It collects trajectories
T, 79, .., Tn, Sampled from the m task-specific actors in each task. There are two functions for
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Figure 2: Knowledge transfer between the shared critic network and independent actor-
critic.

estimating the critic, which are V' (s) and Q(s,a). Here we consider V function Vj(s) as the
objective function of the shared critic network. This is because the action value of similar
behaviors of the agent could very different, since the tasks may have different state-action
spaces. Therefore, the objective function of the shared critic network is to minimize the
square loss of V' value and the discounted reward of all the tasks, which is given by:

N T
L(no) =D (Vi (sia) — vin)” (6)
i=1 t=1
where target y;; is the cumulative discounted future reward of state s at the ¢-th time step
in task ¢, which is given by:
Yit = Tig+1 T YTigt2 + oo
9" Vg (83 4m)
The shared critic network V;,; learns from all the state spaces of multiple tasks and
estimate the value according to the data of multiple tasks. Note that the dimension of state
in different tasks could be different, in this study, we pad state vectors with zero to make
state vectors with a common dimension before shared critic network training. The padded
state vector should remain structurally uniform. For instance, as illustrated in Fig. 3, the
state of the robot arm includes the angle of each joint (2 dimension), the coordinates of
the target point (2 dimension), and the distance from the fingertip to the target point (3
dimension). When a two-link arm and a three-link arm undergo RL concurrently using the
proposed algorithm, the state of the two-link arm will be padded with two zeros in joint
angle to make the dimension consistent with the state of the three-link arm.
Furthermore, the shared advantage value Ag computed by shared critic will be used for
knowledge transfer across different tasks, which is as follows:

(7)

Ao(8iyty @iyt) = Ong = Tigr1 + Va2 + o

n—1 (8)
+ " Vi (Sitn) — Vi (8it)
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Figure 3: Transform the state vector of a two-link robot arm to be consistent with that of
a three-link robot arm.

As discussed in section 1.2, the advantage value guides the search direction of policy
optimization, since it measures how good it is to make the transition from the current state
to the next. Therefore, the transfer of the shared advantage value is to bise the direction
of policy optimization in each RL task via the common value distribution learned by the
shared critic network on all the tasks.

2.2. Independent Actor-Critic

Due to the discrepancy of different tasks, independent actor-critic (IAC) agent is considered
to learn each tasks simultaneously. Moreover, in this study, each TAC possesses independent
parameters, and do not share a common set of parameter as in MARL Foerster et al. (2017).

Next, as mentioned in section 1.2, the advantage actor-critic with n-step return (A2C)
is considered as the IAC agent in this paper. Further, as illustrated in Fig. 2, we pro-
pose to calculate the advantage value of the TAC by considering both the advantage value
A;(sit,air) computed by its own critic network and the advantage value Ag(s;¢,a;t) ob-
tained by shared critic network, where i,t represent the state and the action for task i at
t-th time step. The proposed formula is given by:

Aﬁ"t“l(sz-,t, a;it) =(1 — a)Ai(sit, ait)

9
+ aAo(sig, ait) ©)

Ai(sit,ait) = Op, = Tig1 +VTipg2 + -
+ 'Yn_lvm(si,t-i-n) - Vm(si,t)

where « is a scalar to balance the tradeoff between self-learning and knowledge transferred
from the shared critic?.

(10)

2. In this study, « is set as 0.5 in all the experiments.
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Algorithm 1 Multi-task actor-critic with a shared critic

Input: State s: Reward r

Parameter: Task number i = 1,2...M; Number of Episode F; Maximum steps of task per
episode T'; Transfer weight «;

Output: Critic n; g actor 0; g;

1: Randomly initialise actor mg, and critic network V,, . for task i, ¢ = 1,2...m;
2: Initialize episode counter e, e =0
3: while ¢; < F; do

4 for each task ¢ do

5: Set step counter t = 0
6: while ¢ < T; and not terminal state do
7 Select action a;; ~ 7, .

8 Execute a;; and state 7; ;41 and s; 411
9: Store tuple (s ¢, @it, Tit+1, Sit+1)

10: Update step counter: ¢ <t + 1

11: end while

12: for each sample do

13: Compute advantage value using Eq.10

14: Compute shared advantage value using Eq.8
15: end for

16: Compute critic gradient using Eq.12

17: Compute actor gradient using Eq.11

18: Compute shared critic gradient using Eq.6

19: end for

20:  Update episode counter e < e+ 1

21: end while

22: return Critic and actor weights: 0; g, 7; £;

Subsequently, with the obtained advantage value, actor network parameterized by 6; is
updated by:
ANG; o< AL (54, 054) Vo, log(mi(ai]sit)) (11)

The optimization of the critic network V;, is proceeded as routine, which is updated by:
T

L(ni) = (Viu(si4) = yin)” (12)
t=1

where target y; ; is the discounted reward, which has been given in Eq.7.
Lastly, the pseudo code of the proposed multi-task actor-critic with a share critic network
is summarized in Algorithm 1.

3. Experiments

In this section, comprehensive empirical studies are conducted to evaluate the performance
of the proposed multi-task actor-critic. The well-known robot tasks with different numbers
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(a) reacher

(b) insert

(c) grasp

Figure 4: Three sets of tasks

of links built on the MuJoCo physics simulator is considered here to construct the hetero-
geneous mutli-task RL scenarios. In particular, according to Gupta et al. (2017), three sets
of tasks which are reacher, insert and grasp, are investigated in this study. As shown in
Fig. 4, in each task, there are three types of robots/agents, i.e. 2 links, 3 links and 4 links.
The state of a robot includes joint angles, joint position and goal position. The action is
a set of driving forces, which change the angular velocities of the robot arm. Therefore,
the dimension of state and action are different across robot arms with different links. For
each set of tasks, the target positions are the same. The position of robot arm is randomly
generated at the beginning of a learning episode. A negative reward is given to the agent
which is proportional to the distance between the end effector and the target during the
RL process. When an agent successfully completes the given task, it will receive a positive
reward 1.

Subsequently, for comparison, the single task actor-critic without knowledge transfer
is considered as the baseline algorithm. Moreover, as mentioned in section 2, since the
proposed algorithm has similar architecture with Distral proposed in Teh et al. (2017), two
instantiations of the Distral, labeled as Distral_1col and Distral_2col are also compared in
this study. Distral_lcol and Distral 2col have the same way to transfer policy, but have dif-
ferent forms in the representation of policies. In Distral_lcol, the policy is parameterized by
policy network with the structure of one column. In Distral 2col, the policy is parameterized
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Figure 5: Reacher

by two column of networks, of which one column is distilled policy, the other column adjusts
the distilled policy to specializing to one task. Further, to enable the learning of policy in
different state-action spaces in Distral, the operation of padding zeros (see Fig. 3) used
in our proposed algorithm is applied here again to ensure a fair comparison. Lastly, in all
the baseline algorithms, the advantage actor-critic with N-step returns (A2C) is employed
as the base agent, and the policies and value functions are configured as 3 layer neural
networks with 40 hidden units and RELU activation, that are trained by the standard back
propagation using the ADAM optimizer Kingma and Ba (2014) with learning rate 0.001.

3.1. Reacher

The first investigation is based on the Reacher task. In this task, the agent aims to research
a pre-defined target point which is set as the farthest distance that the agent can reach. Fig.
5 presents the convergence curves of averaged rewards and averaged success rates® obtained
by all the compared algorithms over 20 independent runs. In the figure, the Y-axis gives
the obtained values of the averaged reward or success rate, while the X-axis denotes the
episode incurred by the corresponding algorithm so far.

As can be observed in the figure, the proposed multi-task actor-critic algorithm achieves
the superior learning speed in contrast to both the single-task A2C and the multi-task
Distral approaches, i.e., Distral_lcol and Distral_2col, on all the three Reacher tasks. In
particular, on the 2-link Reacher task, the proposed algorithm uses only 500 episodes to
arrive the competitive success rate obtained by the Distral 2col in round 2000 episodes,

3. Success rate denotes the ratio between the number of times that the agent completes the task successfully
and the total number of times conducted on this task.
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Figure 6: Insert

and single-task A2C and distral_1col did not learn the optimal policy in 3000 episodes.
Further, with the number of links increases, the Reacher task becomes more complex since
the volume of the sate-action space increases. Therefore, from 2-link Reacher task (Fig.
5(a)subfigure) to 4-link Reacher task (Fig. 5(c¢)subfigure), the success rates obtained by
the single-task A2C decrease accordingly. However, with proper knowledge sharing across
tasks, the proposed algorithm obtains consistent superior rewards and success rates, and
brings increased speedups over the baseline algorithms from 2-link to the 4-link Reacher
tasks.

Moreover, in Fig. 5, it is also observed that the multi-task Distral algorithms, i.e.,
Distral_1col and Distral 2col, obtain deteriorated performance in terms of both averaged
reward and success rate even against the single-task A2C without knowledge transfer. This
on one hand, shows that the policy based knowledge transfer across tasks may not be suitable
for tasks with diverse state-action spaces. On the other hand, this again confirms the
effectiveness of the proposed multi-task actor-critic with a shared critic across heterogeneous
RL tasks.

3.2. Insert

Moreover, we investigate the performance of our proposed algorithm on Insert task. In this
task, the robot arm has to go through a narrow opening to reach the predefined target. In
contrast to the Reacher task, this task contains more actions, and requires sophisticated
policies to complete the predefined goals.

Fig. 6 presents the averaged rewards and averaged success rates obtained by all the
compared algorithms on the 2-link, 3-link, and 4-link Insert task over 5000 episodes. As
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Figure 7: Grasp

can be observed, the proposed algorithm converges faster than single-task A2C, Distral_2col
and Distral_Icol in terms of average reward and success rate in all three Insert tasks. When
the number of links increases, the tasks become more complex and the improvements of
performance brought by our proposed algorithm becomes more significant. In 4-link Insert
task,while single-task A2C obtains 60 percent success rate, our proposed method arrives
the success rate of 95 percent.

For multi-task Distral approaches, Distral_1col always has negative effect on the learning
of tasks, and Distral 2col always disturbs the learning in the early stage and causes the
decrease of learning speed. The comparison results between multi-task Distral approaches
and the proposed algorithm demonstrate that our proposed algorithm can effectively avoid
the interference between tasks with diverse state-action spaces.

3.3. Grasp

In the Grasp task, the robot arm is required to grasp objects with an appropriate angle.
Therefore, in these Grasp tasks, knowledge learned in one scenario is often task-specific. In
contrast to Reacher task and Insert task, knowledge transfer in this task may not be helpful
and even lead to negative transfer easily.

As can be observed, fig 7 shows that knowledge transferred by Distral 2col and Dis-
tral_lcol have a tremendously negative effects on the performance of task, while our pro-
posed algorithm avoids negative transfer and obtains similar results compared to single-task
A2C. In 4-link Grasp task, the proposed algorithm obtains better final success rate than the
single-task A2C. This experiment further confirms the efficacy of the proposed algorithm
for heterogeneous RL tasks.



MULTI-TASK ACTOR-CRITIC WITH KNOWLEDGE TRANSFER VIA A SHARED CRITIC

4. Conclusion

In this paper, we have proposed a new multi-task actor-critic algorithm to enable knowledge
transfer across tasks possessing heterogeneous state-action spaces. In particular, a central-
ized or shared critic network has been proposed to learn a common value distribution over
all tasks, which is then used to guide the learning of independent actor-critic networks. To
evaluate the performance of the proposed algorithm, comprehensive empirical studies have
been conducted using the continuous robotic tasks, i.e., Reacher, Insert, and Grasp, over
both single-task actor-critic and existing multi-task actor-critic algorithms. The obtained
results confirms the efficacy of the proposed algorithm for multi-task actor critic.

Acknowledgments

This work is partially supported by the National Natural Science Foundation of China
(NSFC) under Grant No. 61876025.

References

Haitham Bou Ammar, Eric Eaton, Paul Ruvolo, and Matthew Taylor. Online multi-task
learning for policy gradient methods. In International conference on machine learning,
pages 1206-1214, 2014.

Haitham Bou Ammar, Eric Eaton, José Marcio Luna, and Paul Ruvolo. Autonomous
cross-domain knowledge transfer in lifelong policy gradient reinforcement learning. In
Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015.

Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neuronlike adaptive elements
that can solve difficult learning control problems. [EEE transactions on systems, man,
and cybernetics, (5):834-846, 1983.

Parijat Dewangan, S Phaniteja, K Madhava Krishna, Abhishek Sarkar, and Balaraman
Ravindran. Digrad: Multi-task reinforcement learning with shared actions. arXiv preprint
arXiv:1802.10463, 2018.

Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon
Whiteson. Counterfactual multi-agent policy gradients. arXiv preprint arXiv:1705.08926,
2017.

Abhishek Gupta, Coline Devin, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Learning
invariant feature spaces to transfer skills with reinforcement learning. arXiv preprint
arXw:1703.02949, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. arXiv
preprint arXiv:1801.01290, 2018.

Mehdi Khamassi, Loic Lachéze, Benoit Girard, Alain Berthoz, and Agnes Guillot. Actor—
critic models of reinforcement learning in the basal ganglia: from natural to artificial rats.
Adaptive Behavior, 13(2):131-148, 2005.



ZHANG FENG Hou

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiw:1412.6980, 2014.

Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A
survey. The International Journal of Robotics Research, 32(11):1238-1274, 2013.

Yuxi Li. Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274, 2017.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAl Pieter Abbeel, and Igor Mordatch.
Multi-agent actor-critic for mixed cooperative-competitive environments. In Advances in
neural information processing systems, pages 6379-6390, 2017.

Sergio Valcarcel Macua, Aleksi Tukiainen, Daniel Garcia-Ocana Hernandez, David Baldazo,
Enrique Munoz de Cote, and Santiago Zazo. Diff-dac: Distributed actor-critic for average
multitask deep reinforcement learning. arXiv preprint arXiv:1710.10363, 2017.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning.
arXiv preprint arXiw:1312.5602, 2013.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lill-
icrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for

deep reinforcement learning. In International conference on machine learning, pages
1928-1937, 2016.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In International conference on machine learning, pages 1889—
1897, 2015.

Richard S Sutton. Temporal credit assignment in reinforcement learning. 1985.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine
learning, 3(1):9-44, 1988.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018.

Yee Teh, Victor Bapst, Wojciech M Czarnecki, John Quan, James Kirkpatrick, Raia Hadsell,
Nicolas Heess, and Razvan Pascanu. Distral: Robust multitask reinforcement learning.
In Advances in Neural Information Processing Systems, pages 4496-4506, 2017.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279-292,
1992.

Zhaoyang Yang, Kathryn E Merrick, Hussein A Abbass, and Lianwen Jin. Multi-task deep
reinforcement learning for continuous action control. In IJCAI pages 3301-3307, 2017.



	Introduction
	Related Work
	Background

	Proposed Method
	Shared Critic Network
	Independent Actor-Critic

	Experiments
	Reacher
	Insert
	Grasp

	Conclusion

