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Appendix A. Code

Our code is available at https://github.com/weiyumou/ldu-flow.

Appendix B. Experiment Details

In this section, we describe the architectural and training-specific details about our Si-
nusoidal Flow applied to the two-dimensional toy dataset from Grathwohl et al. (2019),
the five high-dimensional tabular datasets proposed by Papamakarios et al. (2017) and a
version of MNIST (Lecun et al., 1998) and CIFAR-10 (Krizhevsky, 2009) pre-processed
by Papamakarios et al. (2017). In addition, please refer to our code for more details.

B.1. Toy and Tabular Datasets

Consistent with existing work, we use the masked linear layers from MADE (Germain et al.,
2015) as the conditioners for the shift transformations. Table 1 summarises the experiment
details. We use the Adam optimiser (Kingma and Ba, 2015), and either exponential decay
or cosine annealing (Loshchilov and Hutter, 2016) for reducing learning rates over time.

Table 1: Architectural and training-specific details about our Sinusoidal Flow applied to
the toy and tabular datasets. “Embedding dim” refers to the number of parallel
sinusoidal functions bundled in the convex sum inside a sinusoidal transformer,
denoted as K in the main text.

DATA SET 2D TOY POWER GAS HEPMASS MINIBOONE BSDS300
Architectural
# LDU BLOCKS 16 12 12 12 12 12
# D-SCALE PER BLOCK 4 4 4 4 4 4
EMBEDDING DIM (K) 4 4 4 4 4 4
HIDDEN SIZE 100 256-256  256-256 512-512 256-256 512-512
DropouT - - - - 0.3 0.1
Training-specific
# STEPS 50K 1.2M 2M 1M 125K 400K
BATCH SI1ZE 128 512 128 128 128 512
LEARNING RATE 1x107% 5x107* 1x107® 1x1073 5x 1074 5x 1074
LR DECAY - COSINE 0.99 0.99 COSINE COSINE
WEIGHT DECAY - - 1x107°  5x107* 1x1073 -

© 2021 Y. Wei.


https://github.com/weiyumou/ldu-flow

WEI

B.2. MNIST and CIFAR-10

For modelling image data, we use a miniature PixelCNN (van den Oord et al., 2016) as the
conditioners for the shift transformations. The experiment details are shown in Table 2.
The AdamW optimiser (Loshchilov and Hutter, 2019) appears to help stabilise training for
CIFAR-10. We also reduce the learning rate by a factor of 0.9 whenever the validation loss
stops improving for two epochs.

Table 2: Architectural and training-specific details about our Sinusoidal Flow applied to
MNIST and CIFAR-10.

DATA SET MNIST CIFAR-10
Architectural
# LDU BLOCKS 12 12
# D-SCALE PER BLOCK 4 4
EMBEDDING DIM (K) 4
# FEATURE MAPS 16 16
# RESIDUAL BLOCKS 2
Training-specific
# STEPS 200K 140K
BATCH SIZE 128 128
LEARNING RATE 1x107%  5x107*
LR DECAY COSINE 0.9
WEIGHT DECAY 1x1072 1x107t

Appendix C. Reconstruction Analysis

To develop further insights into the fast invertibility of our Sinusoidal Flow, we perform
an analysis on how well it can reconstruct MNIST and CIFAR-10 images from the mapped
z of some input images. A visually indiscernible reconstruction would require an accurate
inversion of our Sinusoidal Flow. The left of Figure 1 shows that the reconstruction errors
for both datasets decrease fairly quickly as more iterations are allowed for inversion at each
LDU block. And in fact, with as few as 70 iterations allowed, we are able to obtain visually
indiscernible reconstructions for both datasets as shown on the right of Figure 1.
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Figure 1: Left: /3 reconstruction error versus maximum number of iterations allowed.
Right: original images (odd rows) versus their reconstructions (even rows).
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