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Abstract

Few-shot action recognition aims at recognizing novel action classes with only a small
number of labeled video samples. We propose a temporal relation based attentive proto-
type network (TRAPN) for few-shot action recognition. Concretely, we tackle this chal-
lenging task from three aspects. Firstly, we propose a spatio-temporal motion enhancement
(STME) module to highlight object motions in videos. The STME module utilizes cues
from content displacements in videos to enhance the features in the motion-related regions.
Secondly, we learn the core common action transformations by our temporal relation (TR)
module, which captures the temporal relations at short-term and long-term time scales.
The learned temporal relations are encoded into descriptors to constitute sample-level fea-
tures. The abstract action transformations are described by multiple groups of temporal
relation descriptors. Thirdly, a vanilla prototype for the support class (e.g., the mean of
the support class) cannot fit well for different query samples. We generate an attentive
prototype constructed from temporal relation descriptors of support samples, which gives
more weight to discriminative samples. We evaluate our TRAPN on Kinetics, UCF101
and HMDB51 real-world few-shot datasets. Results show that our network achieves the
state-of-the-art performance.

Keywords: Few-shot Learning, Action Recognition, Temporal Relation Learning, Spatio-
temporal Attention, Attentive Prototype

1. Introduction

Driven by the exponential growth of video data on the Internet, action recognition as a
basic and core task of video understanding has developed rapidly. Many action recognition
methods based on deep learning have achieved excellent performances ( Li et al. (2020);
Zhonghong et al. (2020)). However, the successes are mainly due to the access to a large
number of labeled videos. If there are not enough labeled videos, the model usually exhibits
a decrease in accuracy because of insufficient training. In addition, humans need to consume
much time and intensive labor to annotate extensive videos manually, which is impractical
and expensive.
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Humans can learn unseen things from extremely constrained samples based on the past
experience and knowledge. Motivated by this observation, the issue referred to as few-shot
learning (FSL) ( Vinyals et al. (2016); Snell et al. (2017); Xiao et al. (2020)) that learning
novel classes with few labeled samples has been greatly explored in recent years. In FSL,
there is a base class set and a novel class set. The base class set does not share the common
classes with the novel class set. FSL aims to learn the prior knowledge in the base class set
and utilize the knowledge to recognize the novel classes with few labeled samples.

To achieve this, FSL is often elaborated as a meta-learning problem focusing on learning
the prior knowledge across episode tasks ( Vinyals et al. (2016); Finn et al. (2017)). Specifi-
cally, each episode task is composed of a support set and a query set. The common learning
scenario is to classify unseen samples from the query set into a set of new classes, given just
a few labeled samples of each class from the support set. The key task of meta-learning
is to train a base learner to map the embedding to task-relevant features with the goal of
making the model generalize better to alleviate the difficulty caused by insufficient samples.

Classifying query samples by computing the distances between prototypes and the query
samples ( Snell et al. (2017)), is a simple and efficient FSL method. Each prototype is
represented by the mean value of the embedding sample features belonging to the same
class from the support set. While this method is applied to few-shot action recognition
( Kumar Dwivedi et al. (2019); Fu et al. (2019, 2020)), there are still some limitations.
Thus, we try to find better solutions to improve the prototype learning.

First, object motions are not highlighted. The discriminative information contained in
the object motions is sometimes overwhelmed by static scene information. So similar scene
appearance information in different classes may confuse the model and result in misclassifi-
cations. To tackle this problem, we propose a spatio-temporal motion enhancement module
to enhance motion information modeling. The motion information is contained in the state
changes of objects, which can be captured by computing the spatio-temporal content dis-
placements in videos. Our module leverages the content displacements to produce motion
weights, which are then utilized to enhance motion-related features. In this way, motion
patterns are highlighted in the original features.

Second, the temporal features learned by data augmentation contain much noise. The
synthesized data with the GAN ( Kumar Dwivedi et al. (2019)) and the shuffled temporal
clips ( Fu et al. (2019, 2020)) may destroy the underlying structure of the action along
the temporal dimension. The model tends to learn time-independent spatial local fea-
tures instead of capturing action transformations. Inspired by ( Santoro et al. (2017)) and
( Zhou et al. (2018)), we focus on learning possible temporal relations across videos and
discovering the core common properties of action transformations. Specifically, capturing
temporal relations at a single time scale may be insufficient for the model to learn ac-
tion features. Different paces, scene changes and appearance deformation make it hard
even for humans to describe some actions at appropriate time scales. Thus, we propose
the temporal relation module to capture temporal relations at short-term and long-term
time scales, which alleviates the difficulty of learning the characteristics of abstract action
transformations.

Third, samples of each class from the support set are directly averaged to generate vanilla
prototypes. This means all of the samples from the support set are weighted equally. It turns
out that the importances of different samples are not distinguished. Considering that the
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dominant samples from the support set that are closer to the query samples are more likely
to contain discriminative information, we propose the improved attentive prototype learning
scheme. The expected prototypes for each class are obtained by attentive aggregation from
the support samples, where the weights are computed by using the similarity scores for the
corresponding query samples.

Based on the above mentioned, we propose a temporal relation based attentive proto-
type network (TRAPN) for few-shot action recognition. There are three main components
in the proposed network: the spatio-temporal motion enhancement module, the temporal
relation module and the attentive prototype metric. To be specific, we devise the spatio-
temporal motion enhancement module to enhance motion information modeling, where
motion patterns are highlighted across feature maps. Following motion enhancement, the
temporal relation module sparsely samples video frames at different time scales to learn
multiple groups of local temporal relation descriptors for each video. With the learned
local temporal relation descriptors, the sample-level features can better preserve the cap-
tured temporal dynamics without losing considerable discriminative information. Finally,
we leverage the learned temporal relation descriptors to create the attentive prototypes
for action predictions. The network is optimized using the attentive prototype metric to
minimize the distances between the query samples and the corresponding class prototypes.

In summary, the contributions of this paper are as follows:

• We propose the spatio-temporal motion enhancement module to highlight the motion-
related features based on the motion attention mechanism.

• To make the model more effective in characterizing action representations, we design
novel local temporal relation descriptors to efficiently capture action transformations
of objects at multiple time scales.

• We propose an attentive prototype network, which can generate a high-quality proto-
type for each query sample. The experimental results verify the superiority of TRAPN
over the state-of-the-art methods.

2. Related Work

Action Recognition. In recent years, convolution neural networks (CNNs) have been
widely used in the video action recognition task. According to the convolutions used in
the feature learning, these deep learning based methods can be briefly divided into two
categories: 2D CNN based methods and 3D CNN based methods. 2D CNN based meth-
ods ( Wang et al. (2016); Zhou et al. (2018)) usually apply 2D CNNs to extract frame-level
features of videos independently and then fuse extracted features along with the temporal di-
mension. However, spatio-temporal information in videos is not fully exploited. On the con-
trary, 3D CNN based methods ( Tran et al. (2015); Carreira and Zisserman (2017)) directly
utilize spatio-temporal filters to learn motion features, which greatly increase both com-
plexity and computational cost. Therefore, some methods ( Qiu et al. (2017); Tran et al.
(2018)) attempt to combine the advantages of 2D CNNs and 3D CNNs to overcome the
shortcomings of those methods.

Few-shot Learning. The few-shot learning aims to learn novel classes from very
few labeled samples. To address the few-shot learning problem, some researchers focus on
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learning powerful models with more generalization ability to better adapt to the novel classes
based on the meta-learning strategy ( Vinyals et al. (2016)). The meta-learning based
methods help to alleviate the overfitting problem to some extent. In addition, the metric
learning based methods tackle the few-shot learning problem by learning a distance metric
for samples. In the metric space, samples from the same class are close to each other but
samples from different classes are far away. Specifically, the representative methods include
Matching Network ( Vinyals et al. (2016)), Prototypical Network ( Snell et al. (2017)) and
Relation Network ( Sung et al. (2018)).

Few-shot Action Recognition. Recent works have tackled the action recognition
problem in the limited data scenario. CMN ( Zhu and Yang (2018)) proposes a mem-
ory network structure to store the feature representations. Embodied Learning ( Fu et al.
(2019)) creates a virtual dataset to learn actions and leverages the proposed video seg-
ment augmentation method to synthesize new videos. ProtoGAN ( Kumar Dwivedi et al.
(2019)) uses the Conditional GAN to synthesize video features for novel classes. AMeFu-Net
( Fu et al. (2020)) fuses the RGB modality and the depth modality to enhance the source
video representations. ARN ( Zhang et al. (2020)) leverages the self-supervision data aug-
mentation method to learn discriminative action features. In addition, TAM ( Cao et al.
(2020)) proposes a temporal similarity metric method to dynamically align video sequences
while learning temporal variations, and TARN ( Bishay et al. (2019)) aligns video sequences
based on the attention mechanism. Compared with TAM and TARN, our method focuses
more on learning general action features from the temporal sequence instead of treating
few-shot action recognition as a video sequence matching problem.

3. Method

Problem Definition. In the few-shot action recognition problem, there is a meta-training
dataset Dtrain and a meta-testing dataset Dtest. The classes of Dtrain and Dtest are disjoint.
An efficient strategy to solve the few-shot learning problem is to mimic the meta-learning
setting via episode as proposed in ( Vinyals et al. (2016)). For each episode, N different video
classes (C1, ..., CN ) are randomly selected from the meta-training/meta-testing set and then
K labeled samples are sampled from each of the N classes. Totally N×K samples constitute
the support set. The query set is composed of one sample, which is sampled from the rest
samples of the selected N classes. Thus, an episode is also termed as a N-way K-shot task.
The task is to classify the query video into one of the N classes from the corresponding
support set. The goal of our model is to quickly adapt to new tasks.

3.1. Pipeline

The overall structure of our model is shown in Figure 1. The input of our model consists
of support videos and one query video. A raw video is usually composed of a sequence
of frames. We adopt the sparse sampling strategy described in TSN ( Wang et al. (2016))
in order to avoid expensive computation of redundant content. All the sampled frames
from each video are mapped to compact frame representations by the feature extractor
ResNet ( He et al. (2016)). The spatio-temporal motion enhancement module is applied
to the features extracted from ResNet, in order to highlight the features in the motion-
related regions. Then the enhanced features are fed into the temporal relation module to
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Figure 1: The pipeline of TRAPN. Each video input consists of the sampled frames from
the video. First, the feature extractor ResNet processes each sampled frame
individually and the spatio-temporal motion enhancement module highlights the
motion-salient features. Then, we leverage the temporal relation module to learn
temporal relation descriptors. Finally, we obtain the predicted action class of the
query video by the attentive prototype metric.

learn temporal relation descriptors at multiple time scales. Finally, we get the video-to-
class probability scores by computing the temporal relation similarities between the query
sample and the attentive class prototypes by using the attentive prototype metric.

3.2. Spatio-temporal Motion Enhancement Module

Motion information plays a crucial role in understanding human behaviors in videos. Con-
sequently, we propose a spatio-temporal motion enhancement (STME) module to focus
on highlighting the motion-salient features. In fact, motion information can be measured
by computing the content displacements of two successive frames ( Li et al. (2020)). Intu-
itively, the STME module enhances the features in motion-related regions based on a motion
attention mechanism by utilizing cues from all the spatio-temporal content displacement
positions.

We design the STME module following the non-local architecture ( Wang et al. (2018)).
As shown in Figure 2, the input of STME is the spatio-temporal features S extracted from
ResNet, where S ∈ R

T×C×H×W . T denotes the temporal dimension and C denotes the
feature channels. H and W denote the spatial size.
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Figure 2: The architecture of the spatio-temporal motion enhancement (STME) module.

For calculating motion features, we first split the spatio-temporal features S into T
frame-level features along the temporal dimension. The motion features at the time step
t are approximately measured by the feature differences between adjacent frames, St and
St+1, where t ∈ [1, T − 1]. For efficient computation, the St and St+1 are respectively fed
into two different 1×1×1 convolutions, conv1 and conv2, by which the number of channels
will be reduced. Formally,

D(t) = conv2(St+1)− conv1(St), 1 ≤ t ≤ T − 1, (1)

where D(t) ∈ R
C′×H×W are the motion features at the time step t and C ′ denotes feature

channels after dimension reduction. In our experiments, C ′ is set to C/8. To keep the
temporal scale consistent with the input S, we denote the motion feature at the time step
T as zero, i.e., D(T ) = 0. We concatenate all the motion features along the temporal
dimension to construct the motion matrix D = [D(1), ...,D(T )], where D ∈ R

T×C′×H×W .
Basically, we note that the motion features at the current time step can be further

enhanced by considering the motion information at neighboring time steps. In practice, we
first perform motion correlation computation between neighboring time instances to get the
motion attention maps M and then get the motion attention weights m. The calculation
can be formulated as:

mp,ji =
exp(Mp,ij)
T∑
i=1

exp(Mp,ij)

, where Mp,ij = Dp,i
TDp,j, (2)

where mp,ji indicates the extent to which the module attends to the ith time instances when
synthesizing the jth time instances for the position at p.

Then, we apply motion attention weights m on conv3(S), which is the transformed
features of S in the new feature space. Finally, we multiply the weighted features with a
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learnable scalar parameter λ and add back the input features S to get the output features
F . The calculation can be formulated as:

Fp,j = λ
T∑

i=1

mp,jiconv3(Sp,i) + Sp,j, (3)

where F ∈ R
T×C×H×W is the final enhanced features.

3.3. Temporal Relation Module

Figure 3: The illustration of the temporal relation (TR) module. TR samples different
subsequences from the time-ordered feature sequence to learn multiple groups
of temporal relation descriptors, where Rn corresponds to the n-frame temporal
relation descriptor. The learned temporal relation descriptors jointly constitute
the sample features.

Inspired by the fact that humans can recognize action classes based on the observations
of behavior changes across time, we propose the Temporal Relation (TR) module to mine the
temporal dynamic information, which is captured by multiple groups of temporal relation
descriptors at different time scales, as shown in Figure 3.

Specifically, we get the enhanced spatio-temporal features F after STME. We split F

into T ordered frame-level features F = {f1, f2, ..., fT } along the temporal dimension. Since
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the temporal relation should be captured from at least two frames, the 2-frame temporal
relation descriptor can be defined as:

R2(F ) =
∑

a<b

g
φ(2)

(fa, fb), (4)

where fa is the ath frame feature and fb is the bth frame feature. {fa, fb} is the possible
subsequence of F . The role of temporal relation function gφ(2) is to learn relations between

frame features. gφ(2) is a fully connected layer with the parameters φ(2). Since we aim to
learn the common properties of the action transformation instead of any particular temporal
relation, we sample multiple possible subsequences from F and accumulate the learned
temporal relations.

Similarly, the 3-frame temporal relation descriptor can be defined as:

R3(F ) =
∑

a<b<c

g
φ(3)

(fa, fb, fc), (5)

where fc is the c
th frame feature. To capture temporal relations at multiple time scales, the

temporal relation descriptor can be further extended as:

Rn(F ) =
∑

a<b<c<n

g
φ(n)

(fa, fb, fc, ..., fn), (6)

where Rn is the n-frame temporal relation descriptor, n 6 T . .
We randomly sample 3 subsequences from all possible subsequences for each temporal

relation descriptor. Each temporal relation descriptor Rn is set to be an L dimensional
vector. We combine all of these temporal relation descriptors together into a single tensor
X, X = [R2, R3, ..., Rn]. Here, the sample feature X is obtained by stacking all the
temporal relation descriptors, where X ∈ R

(T−1)×L. In this way, the temporal dynamics
at short-term and long-term time scales are explicitly encoded and the final sample-level
features consist of the encoded descriptors. The effectiveness is validated in the ablation
study (see in Figure 4).

3.4. Attentive Prototype Metric

Actually, not all the video samples in the same class are equally discriminative. Therefore,
instead of directly fusing sample features of the same class averagely ( Snell et al. (2017)),
we propose to generate attentive prototypes of support classes for each query sample.

Particularly, there are N classes and each class has K samples in a support set. xij is
the jth sample of the ith class. And the query set has a query sample q. Each sample is
composed of multiple temporal relation descriptors obtained in Section 3.3, where xij =
[x2ij , x

3
ij , ..., x

n
ij ] and q = [q2, q3, ..., qn]. We define that the discriminability of each support

sample is evaluated by the similarity with the query sample at the descriptor level. The
discriminability value γnij for the n-frame temporal relation descriptor xnij of the sample xij

is calculated as:

γnij =
exp(g(qn, xnij))∑K
j=1exp(g(q

n, xnij))
, (7)



TRAPN

where g is the similarity function.
Then, we calculate the weighted n-frame temporal relation descriptor pni for the ith class:

pni =
∑K

j=1
γnijx

n
ij, (8)

where the discriminability value γnij is the weight of xnij . After generating each weighted

temporal relation descriptor for the ith class, the attentive prototype pi = [p2i , p
3
i , ..., p

n
i ] for

q is generated.
Finally, we obtain the predicted class scores for the query sample q by comparing the

similarities between the query sample and different class prototypes,

P (ipre = i|q) =
exp(

∑T
n=2g(q

n, pni ))∑N
i=1exp(

∑T
n=2g(q

n, pni ))
. (9)

Particularly, each support prototype and the query sample have their own multiple
groups of descriptors. We use the accumulated descriptor similarities between q and pi as
the video-to-class similarities. The softmax is appled over the video-to-class similarities to
get the scores of predicted results.

4. Experiments

Method 1-shot 2-shot 3-shot 4-shot 5-shot

BaseNet 66.4 76.2 79.9 81.6 83.3
Matching Net ( Vinyals et al. (2016)) 53.3 - - - 74.6
MAML ( Finn et al. (2017)) 54.2 - - - 75.3
CMN ( Zhu and Yang (2018)) 60.5 70.0 75.6 77.3 78.9
TARN ( Bishay et al. (2019)) 66.6 74.6 77.3 78.9 80.7
CFA ( Hu et al. (2019)) 69.9 - 80.5 - 83.1
Embodied Learning ( Fu et al. (2019)) 67.8 77.8 81.1 82.6 85.0
ARN ( Zhang et al. (2020)) 63.7 - - - 82.4
TAM ( Cao et al. (2020)) 73.0 - - - 85.8
AMeFu-Net ( Fu et al. (2020)) 74.1 81.1 84.3 85.6 86.8
TRAPN (Ours) 75.1 82.2 84.8 86.1 87.0

Table 1: Comparisons with the state-of-the-art methods on the Kinetics dataset. We report
the 5-way action recognition accuracy (%) obtained on the meta-testing set.

4.1. Experiment Settings

Datasets. The Kinetics ( Carreira and Zisserman (2017)), UCF101 ( Soomro et al. (2012))
and HMDB51 ( Kuehne et al. (2011)) datasets have been frequently used to evaluate conven-
tional action recognition in prior studies. The original Kinetics dataset has 306,245 videos
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Method
UCF101 HMDB51

1-shot 3-shot 5-shot 1-shot 3-shot 5-shot

BaseNet 78.6 90.2 92.7 48.9 62.4 67.9
ProtoGAN ( Kumar Dwivedi et al. (2019)) 62.3 75.6 80.5 35.7 46.6 51.5
ARN ( Zhang et al. (2020)) 66.3 - 83.1 45.5 - 60.6
AMeFu-Net ( Fu et al. (2020)) 85.1 93.1 95.5 60.2 71.5 75.5
TRAPN (Ours) 86.6 93.4 95.9 61.3 72.9 76.8

Table 2: Comparisons with the state-of-the-art methods on the UCF101 and HMDB51
datasets. We report 5-way action recognition accuracy (%) on the meta-testing
sets.

and 400 action classes. UCF101 has 13,320 videos and 101 action classes. HMDB51 has
6,849 videos and 51 action classes. Particularly, we have to construct the few-shot versions to
serve for few-shot action recognition. Following the dataset split strategy proposed in CMN
( Zhu and Yang (2018)), for the Kinetics, we sample 100 action classes from the original 400
action classes to construct the Kinetics subset. Specifically, 64, 12 and 24 non-overlapping
classes are respectively constructed as the meta-training set, the meta-validation set and
the meta-testing set. And each class has 100 videos. For UCF101 and HMDB51, we follow
the same split strategy proposed in ( Zhang et al. (2020)). On UCF101, we respectively
sample 31, 10 and 10 action classes as the meta-training set, the meta-validation set and
the meta-testing set. And on HMDB51, we respectively sample 70, 10 and 21 action classes
as the meta-training set, the meta-validation set and the meta-testing set.

Implementation details. We follow the sparse sampling strategy and the video pre-
processing procedure proposed in TSN ( Wang et al. (2016)). Each input video sequence
is divided into T segments and one frame is randomly sampled from each segment. Sub-
sequently, each frame is re-scaled to 256 × 256. All frames are augmented with random
horizontal flips and then are cropped to obtain 224 × 224 regions.

In our experiment, we choose ResNet-50 pre-trained on ImageNet ( Deng et al. (2009))
as our backbone. The backbone is finetuned on the training data for 6 epoches, where the
backbone with a learning rate of 1 × 10−4. During the meta-training phase, we randomly
select 2,000 episode tasks and choose Stochastic Gradient Descent (SGD) with momen-
tum=0.9 to optimize the model parameters. For Kinetics, we set the learning rate to
2 × 10−5. Considering that the scale of the UCF101 and HMDB51 datasets is relatively
small, we set the learning rate to 1 × 10−5. We tune the hyperparameters on the meta-
validation set and stop the meta-training process until the accuracy on the meta-validation
set begins to decrease. We evaluate our method on the standard N -way K-shot bench-
mark. The mean accuracy is calculated by randomly selecting 10,000 episodes from the
meta-testing set in all experiments.

4.2. Comparison with State-of-the-Arts

In order to evaluate the performance of our model, we first compare our model with several
state-of-the-art few-shot action recognition methods on the Kinetics, UCF101 and HMDB51



TRAPN

datasets. On the three datasets, we conduct experiments under 5-way K-shot settings. All
methods use the same meta-training/testing set split.

Baseline. For the BaseNet baseline, we follow the setting of “BaseNet+test” proposed
in Embodied Learning ( Fu et al. (2019)). We directly use the ResNet-50 pre-trained on
ImageNet ( Deng et al. (2009)) as our backbone. BaseNet sparsely samples 8 frames from
each video and then averages frame-level features along the temporal dimension to get video-
level features. Specially, BaseNet uses ProtoNet ( Snell et al. (2017)) to get the trainable
prototypes for each class. We use the cosine distance, instead of the Euclidean distance,
for the similarity computation. The baseline and their settings are the same on Kinetics,
UCF101 and HMDB51.

Results on Kinetics. Table 1 provides the comparative results obtained by the com-
peting methods and our model on Kinetics. Our model significantly outperforms the base-
line and all competing methods under different shot settings. We first note that the results
of the baseline method BaseNet are relatively competitive compared with the other meth-
ods, and it even outperforms CMN ( Zhu and Yang (2018)) and ARN ( Zhang et al. (2020))
under the 1-shot setting. This demonstrates the superiority of BaseNet. We conclude that
with the proper frame sampling protocol and training strategy, a model can be trained to
generalize well to the unseen meta-testing set. Additionally, it can be seen that the pro-
posed TRAPN significantly improves the performance of the baseline under all shot settings,
especially with an accuracy increase of 8.7% under the 1-shot setting. And the proposed
TRAPN achieves the state-of-the-art results with 75.1%, 82.2%, 84.8%, 86.1% and 87.0%,
under the 1-shot, 2-shot, 3-shot, 4-shot and 5-shot settings, respectively. Specifically, ARN
and AMeFu-Net ( Fu et al. (2020)) respectively use 20 frames and 16 frames as input, while
our TRAPN just uses 8 frames as input. It shows that the temporal relation extraction
contributes to the abstract action transformation learning to efficiently improve the few-
shot action recognition performance even with fewer frames. The improvements are better
when the labeled samples are extremely scarce, especially when there is only one labeled
sample. Thus, our TRAPN is more prominent when there are fewer samples.

Results on UCF101 and HMDB51. The superiority of our TRAPN on UCF101
and HMDB51 is also impressive. We report the 1-shot, 3-shot and 5-shot accuracies in Ta-
ble 2. The strong baseline BaseNet also shows the outstanding performance. Our TRAPN
performs similar improvements with the results on Kinetics. It verifies the strong general-
ization ability of TRAPN on different datasets. Specifically, for UCF101, we achieve 86.6%
under the 1-shot setting, 93.4% under the 3-shot setting and 95.9% under the 5-shot setting.
For HMDB51, our method achieves 61.3% under the 1-shot setting, 72.9% under the 3-shot
setting and 76.8% under the 5-shot setting.

Our TRAPN explicitly mines temporal dynamic features in videos and sufficiently lever-
ages them to learn class prototypes. Our TRAPN achieves new state-of-the-art results on
different datasets.

4.3. Ablation Study

As aforementioned, our method mainly benefits from the components contained in our
model. We conduct ablation studies to study how those components contribute to our
model. Generally, our ablation studies are conducted under the 5-way setting. We report
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Method base STME TR APM 1-shot 3-shot 5-shot

(a) X 66.4 79.9 83.3
(b) X X 73.5 83.8 86.2
(c) X X 74.6 84.2 86.5
(d) X X X 75.1 84.6 86.7
(e) X X X X 75.1 84.8 87.0

Table 3: Ablation studies on the spatio-temporal motion enhancement (STME) module,
the temporal relation (TR) module and the attentive prototype metric (APM).
The results are on Kinetics under the 5-way setting.

Metric 1-shot 3-shot 5-shot

Gaussian 75.1 84.6 86.9
Cosine 75.1 84.8 87.0

Table 4: The performance with different similarity functions for the attentive prototype
metric on Kinetics.

the results under the 1-shot, 3-shot and 5-shot settings in Table 3. We also compare the
influence of the number of subsequences and the number of descriptors for TR in Figure 4.

Analysis of of each component. In this part, we report the individual influence
of each component under different shot settings. As can be seen in Table 3, both STME
and TR significantly improve the baseline by a large margin under the 1-shot setting. This
shows that both STME and TR are beneficial for TRAPN to achieve the better action
recognition performance.

Specifically, we use Grad-CAM ( Selvaraju et al. (2017)) to visualize the Class Activation
Map (CAM) of some samples from Kinetics. The visualization results are shown in Figure 5.
It can be seen that STME forces BaseNet to focus on the regions that are closely related
to the action objects.

We also show that the performance can be further improved by aggregating STME and
TR. The superior performance verifies that STME and TR are complementary in temporal
motion modeling. In particular, we can observe that the improvements brought by STME
and TR decrease as the number of shots increases. APM focuses more on discriminative
samples at the descriptor level. The generated attentive prototypes are beneficial for the
model to achieve the best results under the 3-shot and 5-shot settings.

Analysis of the design of the temporal relation module. The temporal rela-
tion module learns multiple groups of local temporal relation descriptors. The number of
subsequences to learn temporal relation descriptors and the number of descriptors to con-
stitute sample-level features are two parameters in the temporal relation module. How to
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Figure 4: Influence of the number of subsequences and the number of descriptors on TR
under the 1-shot setting.

choose the suitable parameter value is important to TR. As described above, T frames are
sampled from each video. We set the number of descriptors to 1 when the sample-level
features are only composed of [R2]. Therefore, the number of descriptors is T − 1 when the
sample-level features are composed of [R2, R3, ..., RT ]. Since T is set to 8, the maximum
number of descriptors is 7. All experiments perform similarly under the 1-shot setting. In
Figure 4, the results demonstrate the significant improvement on Kinetics as the number of
descriptors increasing from 1 to 7. As we can see, TR with 7 groups of descriptors achieves
the highest accuracy of 74.61%. In addition, TR clearly benefits from selecting more sub-
sequences. However, the performance of TR is saturated when the number of subsequences
is more than 3. Thus, we sample 3 subsequences for each group of descriptors and use all
the learned descriptors to construct the sample-level features in TR for all the experiments.

Analysis of the similarity function g for the attentive prototype metric. In
APM, we use a similarity function g to measure the discriminability of sample descriptors.
The choice of g may affect the performance of APM. We choose the Gaussian similarity
function and the cosine similarity function, which are two common metrics, for comparison.
The results are shown in Table 4. It can be seen that the cosine similarity function performs
better than the Gaussian similarity function. Thus, we adopt it as the similarity function
g in APM.
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Figure 5: Visualization of the Class Activation Map (CAM) generated by our model. We
show 3 samples from Kinetics. The first column shows the RGB frames. The
CAM of BaseNet and BaseNet with STME are displayed in the second and third
columns, respectively.

5. Conclusion

In this paper, we propose a temporal relation based attentive prototype network (TRAPN),
including the components of spatio-temporal motion enhancement (STME) module, tem-
poral relation (TR) module and attentive prototype metric, for few-shot action recognition.
Specifically, the STME module can enhance spatio-temporal feature learning under the
guide of motion information. Then, by considering the temporal dynamics contained in
videos, we use the TR module to learn the temporal feature descriptors, whose importance
is emphasized and verified. Furthermore, we focus more on discriminative samples of the
same class at the descriptor level to measure the video-to-class similarities. Experimental
results on three benchmark datasets demonstrate the effectiveness of our proposed TRAPN.
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