Nothing Special   »   [go: up one dir, main page]

Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1992 Nov;66(11):6695–6705. doi: 10.1128/jvi.66.11.6695-6705.1992

Monoclonal antibody analysis of neutralization and antibody-dependent enhancement of feline infectious peritonitis virus.

W V Corapi 1, C W Olsen 1, F W Scott 1
PMCID: PMC240165  PMID: 1383568

Abstract

Fifty-four monoclonal antibodies (MAbs) to feline infectious peritonitis virus (FIPV) were characterized according to protein specificity, immunoglobulin subclass, virus neutralization, reactivity with different coronaviruses, and ability to induce antibody-dependent enhancement (ADE) of FIPV infection in vitro. The MAbs were found to be specific for one of three structural proteins of FIPV. A total of 47 MAbs were specific for the 205-kDa spike protein (S), 3 MAbs were specific for the 45-kDa nucleocapsid protein (N), and 4 MAbs were specific for the 26- to 28-kDa membrane protein (M). The S-specific MAbs showed various degrees of cross-reactivity with strains of FIPV, feline enteric coronavirus, canine coronavirus, and porcine transmissible gastroenteritis virus. Nineteen S-specific MAbs neutralized FIPV. A total of 15 of the neutralizing MAbs induced ADE, and all but 1 were of the immunoglobulin G2a subclass. The remaining four neutralizing MAbs that did not induce ADE were of the immunoglobulin G1 subclass. Two S-specific MAbs induced ADE but were nonneutralizing. None of the N- or M-specific MAbs was neutralizing or induced ADE. On the basis of the reactivity patterns of the MAbs with FIPV and related coronaviruses, it was concluded that there is a minimum of five neutralizing sites on S. In most instances, neutralizing MAbs were able to induce ADE, demonstrating a direct relationship between neutralization and enhancement. The difference in immunoglobulin subclass between neutralizing MAbs that induced ADE and those that did not induce ADE suggests that there may be a restriction in the immunoglobulin subclasses capable of mediating ADE.

Full text

PDF
6695

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson C. L. Human IgG Fc receptors. Clin Immunol Immunopathol. 1989 Nov;53(2 Pt 2):S63–S71. doi: 10.1016/0090-1229(89)90071-8. [DOI] [PubMed] [Google Scholar]
  2. Barlough J. E., Stoddart C. A. Cats and coronaviruses. J Am Vet Med Assoc. 1988 Oct 1;193(7):796–800. [PubMed] [Google Scholar]
  3. Binn L. N., Lazar E. C., Keenan K. P., Huxsoll D. L., Marchwicki R. H., Strano A. J. Recovery and characterization of a coronavirus from military dogs with diarrhea. Proc Annu Meet U S Anim Health Assoc. 1974;(78):359–366. [PubMed] [Google Scholar]
  4. Bohl E. H., Gupta R. K., Olquin M. V., Saif L. J. Antibody responses in serum, colostrum, and milk of swine after infection or vaccination with transmissible gastroenteritis virus. Infect Immun. 1972 Sep;6(3):289–301. doi: 10.1128/iai.6.3.289-301.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boyle J. F., Pedersen N. C., Evermann J. F., McKeirnan A. J., Ott R. L., Black J. W. Plaque assay, polypeptide composition and immunochemistry of feline infectious peritonitis virus and feline enteric coronavirus isolates. Adv Exp Med Biol. 1984;173:133–147. doi: 10.1007/978-1-4615-9373-7_12. [DOI] [PubMed] [Google Scholar]
  6. De Groot R. J., Van Leen R. W., Dalderup M. J., Vennema H., Horzinek M. C., Spaan W. J. Stably expressed FIPV peplomer protein induces cell fusion and elicits neutralizing antibodies in mice. Virology. 1989 Aug;171(2):493–502. doi: 10.1016/0042-6822(89)90619-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Evermann J. F., Baumgartener L., Ott R. L., Davis E. V., McKeirnan A. J. Characterization of a feline infectious peritonitis virus isolate. Vet Pathol. 1981 Mar;18(2):256–265. doi: 10.1177/030098588101800214. [DOI] [PubMed] [Google Scholar]
  8. Fiscus S. A., Teramoto Y. A. Antigenic comparison of feline coronavirus isolates: evidence for markedly different peplomer glycoproteins. J Virol. 1987 Aug;61(8):2607–2613. doi: 10.1128/jvi.61.8.2607-2613.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gould E. A., Buckley A. Antibody-dependent enhancement of yellow fever and Japanese encephalitis virus neurovirulence. J Gen Virol. 1989 Jun;70(Pt 6):1605–1608. doi: 10.1099/0022-1317-70-6-1605. [DOI] [PubMed] [Google Scholar]
  10. Halstead S. B., O'Rourke E. J. Dengue viruses and mononuclear phagocytes. I. Infection enhancement by non-neutralizing antibody. J Exp Med. 1977 Jul 1;146(1):201–217. doi: 10.1084/jem.146.1.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Halstead S. B., Venkateshan C. N., Gentry M. K., Larsen L. K. Heterogeneity of infection enhancement of dengue 2 strains by monoclonal antibodies. J Immunol. 1984 Mar;132(3):1529–1532. [PubMed] [Google Scholar]
  12. Hawkes R. A., Lafferty K. J. The enchancement of virus infectivity by antibody. Virology. 1967 Oct;33(2):250–261. doi: 10.1016/0042-6822(67)90144-4. [DOI] [PubMed] [Google Scholar]
  13. Henchal E. A., McCown J. M., Burke D. S., Seguin M. C., Brandt W. E. Epitopic analysis of antigenic determinants on the surface of dengue-2 virions using monoclonal antibodies. Am J Trop Med Hyg. 1985 Jan;34(1):162–169. doi: 10.4269/ajtmh.1985.34.162. [DOI] [PubMed] [Google Scholar]
  14. Hohdatsu T., Nakamura M., Ishizuka Y., Yamada H., Koyama H. A study on the mechanism of antibody-dependent enhancement of feline infectious peritonitis virus infection in feline macrophages by monoclonal antibodies. Arch Virol. 1991;120(3-4):207–217. doi: 10.1007/BF01310476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hohdatsu T., Okada S., Koyama H. Characterization of monoclonal antibodies against feline infectious peritonitis virus type II and antigenic relationship between feline, porcine, and canine coronaviruses. Arch Virol. 1991;117(1-2):85–95. doi: 10.1007/BF01310494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Horzinek M. C., Lutz H., Pedersen N. C. Antigenic relationships among homologous structural polypeptides of porcine, feline, and canine coronaviruses. Infect Immun. 1982 Sep;37(3):1148–1155. doi: 10.1128/iai.37.3.1148-1155.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Horzinek M. C., Osterhaus A. D. Feline infectious peritonitis: a worldwide serosurvey. Am J Vet Res. 1979 Oct;40(10):1487–1492. [PubMed] [Google Scholar]
  18. Inada T., Chong K. T., Mims C. A. Enhancing antibodies, macrophages and virulence in mouse cytomegalovirus infection. J Gen Virol. 1985 Apr;66(Pt 4):871–878. doi: 10.1099/0022-1317-66-4-871. [DOI] [PubMed] [Google Scholar]
  19. Kontny U., Kurane I., Ennis F. A. Gamma interferon augments Fc gamma receptor-mediated dengue virus infection of human monocytic cells. J Virol. 1988 Nov;62(11):3928–3933. doi: 10.1128/jvi.62.11.3928-3933.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Littaua R., Kurane I., Ennis F. A. Human IgG Fc receptor II mediates antibody-dependent enhancement of dengue virus infection. J Immunol. 1990 Apr 15;144(8):3183–3186. [PubMed] [Google Scholar]
  21. Mady B. J., Erbe D. V., Kurane I., Fanger M. W., Ennis F. A. Antibody-dependent enhancement of dengue virus infection mediated by bispecific antibodies against cell surface molecules other than Fc gamma receptors. J Immunol. 1991 Nov 1;147(9):3139–3144. [PubMed] [Google Scholar]
  22. Mathes L. E., Yohn D. S., Olsen R. G. Purification of infectious feline leukemia virus from large volumes of tissue culture fluids. J Clin Microbiol. 1977 Mar;5(3):372–374. doi: 10.1128/jcm.5.3.372-374.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Morens D. M., Halstead S. B. Disease severity-related antigenic differences in dengue 2 strains detected by dengue 4 monoclonal antibodies. J Med Virol. 1987 Jun;22(2):169–174. doi: 10.1002/jmv.1890220208. [DOI] [PubMed] [Google Scholar]
  24. Morens D. M., Venkateshan C. N., Halstead S. B. Dengue 4 virus monoclonal antibodies identify epitopes that mediate immune infection enhancement of dengue 2 viruses. J Gen Virol. 1987 Jan;68(Pt 1):91–98. doi: 10.1099/0022-1317-68-1-91. [DOI] [PubMed] [Google Scholar]
  25. Mueller U. W., Hawes C. S., Jones W. R. Monoclonal antibody production by hybridoma growth in Freund's adjuvant primed mice. J Immunol Methods. 1986 Mar 13;87(2):193–196. doi: 10.1016/0022-1759(86)90530-2. [DOI] [PubMed] [Google Scholar]
  26. Olsen C. W., Corapi W. V., Ngichabe C. K., Baines J. D., Scott F. W. Monoclonal antibodies to the spike protein of feline infectious peritonitis virus mediate antibody-dependent enhancement of infection of feline macrophages. J Virol. 1992 Feb;66(2):956–965. doi: 10.1128/jvi.66.2.956-965.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pedersen N. C., Black J. W. Attempted immunization of cats against feline infectious peritonitis, using avirulent live virus or sublethal amounts of virulent virus. Am J Vet Res. 1983 Feb;44(2):229–234. [PubMed] [Google Scholar]
  28. Pedersen N. C., Boyle J. F., Floyd K. Infection studies in kittens, using feline infectious peritonitis virus propagated in cell culture. Am J Vet Res. 1981 Mar;42(3):363–367. [PubMed] [Google Scholar]
  29. Pedersen N. C., Evermann J. F., McKeirnan A. J., Ott R. L. Pathogenicity studies of feline coronavirus isolates 79-1146 and 79-1683. Am J Vet Res. 1984 Dec;45(12):2580–2585. [PubMed] [Google Scholar]
  30. Pedersen N. C. Morphologic and physical characteristics of feline infectious peritonitis virus and its growth in autochthonous peritoneal cell cultures. Am J Vet Res. 1976 May;37(5):567–572. [PubMed] [Google Scholar]
  31. Pedersen N. C. Serologic studies of naturally occurring feline infectious peritonitis. Am J Vet Res. 1976 Dec;37(12):1449–1453. [PubMed] [Google Scholar]
  32. Petersen N. C., Boyle J. F. Immunologic phenomena in the effusive form of feline infectious peritonitis. Am J Vet Res. 1980 Jun;41(6):868–876. [PubMed] [Google Scholar]
  33. Shulman M., Wilde C. D., Köhler G. A better cell line for making hybridomas secreting specific antibodies. Nature. 1978 Nov 16;276(5685):269–270. doi: 10.1038/276269a0. [DOI] [PubMed] [Google Scholar]
  34. Stoddart C. A., Scott F. W. Intrinsic resistance of feline peritoneal macrophages to coronavirus infection correlates with in vivo virulence. J Virol. 1989 Jan;63(1):436–440. doi: 10.1128/jvi.63.1.436-440.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Stoddart C. A., Scott F. W. Isolation and identification of feline peritoneal macrophages for in vitro studies of coronavirus-macrophage interactions. J Leukoc Biol. 1988 Nov;44(5):319–328. doi: 10.1002/jlb.44.5.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Takeda A., Ennis F. A. FcR-mediated enhancement of HIV-1 infection by antibody. AIDS Res Hum Retroviruses. 1990 Aug;6(8):999–1004. doi: 10.1089/aid.1990.6.999. [DOI] [PubMed] [Google Scholar]
  37. Tamura M., Webster R. G., Ennis F. A. Antibodies to HA and NA augment uptake of influenza A viruses into cells via Fc receptor entry. Virology. 1991 May;182(1):211–219. doi: 10.1016/0042-6822(91)90664-w. [DOI] [PubMed] [Google Scholar]
  38. Unkeless J. C., Scigliano E., Freedman V. H. Structure and function of human and murine receptors for IgG. Annu Rev Immunol. 1988;6:251–281. doi: 10.1146/annurev.iy.06.040188.001343. [DOI] [PubMed] [Google Scholar]
  39. Vennema H., Heijnen L., Zijderveld A., Horzinek M. C., Spaan W. J. Intracellular transport of recombinant coronavirus spike proteins: implications for virus assembly. J Virol. 1990 Jan;64(1):339–346. doi: 10.1128/jvi.64.1.339-346.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Vennema H., de Groot R. J., Harbour D. A., Dalderup M., Gruffydd-Jones T., Horzinek M. C., Spaan W. J. Early death after feline infectious peritonitis virus challenge due to recombinant vaccinia virus immunization. J Virol. 1990 Mar;64(3):1407–1409. doi: 10.1128/jvi.64.3.1407-1409.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Vennema H., de Groot R. J., Harbour D. A., Horzinek M. C., Spaan W. J. Primary structure of the membrane and nucleocapsid protein genes of feline infectious peritonitis virus and immunogenicity of recombinant vaccinia viruses in kittens. Virology. 1991 Mar;181(1):327–335. doi: 10.1016/0042-6822(91)90499-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Weiss R. C., Dodds W. J., Scott F. W. Disseminated intravascular coagulation in experimentally induced feline infectious peritonitis. Am J Vet Res. 1980 May;41(5):663–671. [PubMed] [Google Scholar]
  43. Weiss R. C., Scott F. W. Antibody-mediated enhancement of disease in feline infectious peritonitis: comparisons with dengue hemorrhagic fever. Comp Immunol Microbiol Infect Dis. 1981;4(2):175–189. doi: 10.1016/0147-9571(81)90003-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Weiss R. C., Scott F. W. Pathogenesis of feline infectious peritonitis: nature and development of viremia. Am J Vet Res. 1981 Mar;42(3):382–390. [PubMed] [Google Scholar]
  45. Weiss R. C., Scott F. W. Pathogenesis of feline infetious peritonitis: pathologic changes and immunofluorescence. Am J Vet Res. 1981 Dec;42(12):2036–2048. [PubMed] [Google Scholar]
  46. de Groot R. J., Maduro J., Lenstra J. A., Horzinek M. C., van der Zeijst B. A., Spaan W. J. cDNA cloning and sequence analysis of the gene encoding the peplomer protein of feline infectious peritonitis virus. J Gen Virol. 1987 Oct;68(Pt 10):2639–2646. doi: 10.1099/0022-1317-68-10-2639. [DOI] [PubMed] [Google Scholar]
  47. de Groot R. J., ter Haar R. J., Horzinek M. C., van der Zeijst B. A. Intracellular RNAs of the feline infectious peritonitis coronavirus strain 79-1146. J Gen Virol. 1987 Apr;68(Pt 4):995–1002. doi: 10.1099/0022-1317-68-4-995. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES