Abstract
Neutralizing antibody responses to human immunodeficiency virus type 1 (HIV-1) vary widely and have not been reproducibly associated with prognosis or disease progression. We have found that both low-passage clinical isolates and laboratory-adapted strains of HIV-1 have different sensitivities to neutralization by the same antiserum, depending on the host cell in which the viral stock is prepared. One such isolate (VL069) grown in H9 cells was neutralized by 20 human sera at a geometric mean titer of 1:2,047; this same isolate prepared in peripheral blood mononuclear cell (PBMC) culture was neutralized at a mean titer of < 1:10 by the same sera. Adsorption and mixing experiments indicated that neither antibody to H9 cell components nor blocking by excess viral antigen was responsible for the differences observed. This host cell effect is rapidly reversible upon passage of the virus from PBMCs to H9 cells and back into PBMCs. In contrast, the neutralization characteristics remained remarkably stable over extended culture in PBMCs. Two laboratory strains and five clinical isolates were evaluated in expanded studies of this phenomenon. While the neutralization characteristics of most of the strains studied were affected by the host cell in which the strain was propagated, two of the strains (one clinical isolate and one laboratory strain) appeared antigenically unaffected by their cell of origin. Host cell effect was also evident in neutralization by monoclonal antibodies directed against the CD4-binding region and the V2, V3, and gp41 regions. Possible mechanisms for this host cell effect include (i) mutation during passaging; (ii) selection in different host cells of different subpopulations of the (uncloned) viral stock; and (iii) cell-specific posttranslational modifications. To explore these possibilities, the V3 through V5 region of gp120 was sequenced in preparations made by passing VL069 into H9 cells and into PBMCs; HIVMN grown in CEM-SS cells and in PBMCs was also sequenced. In both cases, a few amino acid changes outside the V3 region were found. Studies are currently under way to assess the significance of these changes.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alexander S., Elder J. H. Carbohydrate dramatically influences immune reactivity of antisera to viral glycoprotein antigens. Science. 1984 Dec 14;226(4680):1328–1330. doi: 10.1126/science.6505693. [DOI] [PubMed] [Google Scholar]
- Arthur L. O., Bess J. W., Jr, Sowder R. C., 2nd, Benveniste R. E., Mann D. L., Chermann J. C., Henderson L. E. Cellular proteins bound to immunodeficiency viruses: implications for pathogenesis and vaccines. Science. 1992 Dec 18;258(5090):1935–1938. doi: 10.1126/science.1470916. [DOI] [PubMed] [Google Scholar]
- Ashkenazi A., Smith D. H., Marsters S. A., Riddle L., Gregory T. J., Ho D. D., Capon D. J. Resistance of primary isolates of human immunodeficiency virus type 1 to soluble CD4 is independent of CD4-rgp120 binding affinity. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7056–7060. doi: 10.1073/pnas.88.16.7056. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beilke M. A., Minagawa H., Stone G., Leon-Monzon M., Gibbs C. J., Jr Neutralizing antibody responses in patients with AIDS with neurologic complications. J Lab Clin Med. 1991 Dec;118(6):585–588. [PubMed] [Google Scholar]
- Benjouad A., Gluckman J. C., Rochat H., Montagnier L., Bahraoui E. Influence of carbohydrate moieties on the immunogenicity of human immunodeficiency virus type 1 recombinant gp160. J Virol. 1992 Apr;66(4):2473–2483. doi: 10.1128/jvi.66.4.2473-2483.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bolwell C., Parry N. R., Rowlands D. J. Comparison between in vitro neutralization titres and in vivo protection against homologous and heterologous challenge induced by vaccines prepared from two serologically distinct variants of foot-and-mouth disease virus, serotype A22. J Gen Virol. 1992 Mar;73(Pt 3):727–731. doi: 10.1099/0022-1317-73-3-727. [DOI] [PubMed] [Google Scholar]
- Brighty D. W., Rosenberg M., Chen I. S., Ivey-Hoyle M. Envelope proteins from clinical isolates of human immunodeficiency virus type 1 that are refractory to neutralization by soluble CD4 possess high affinity for the CD4 receptor. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7802–7805. doi: 10.1073/pnas.88.17.7802. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheng-Mayer C., Shioda T., Levy J. A. Host range, replicative, and cytopathic properties of human immunodeficiency virus type 1 are determined by very few amino acid changes in tat and gp120. J Virol. 1991 Dec;65(12):6931–6941. doi: 10.1128/jvi.65.12.6931-6941.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cranage M. P., Almond N., Jenkins A., Kitchin P. A. Transmembrane protein of SIV. Nature. 1989 Nov 23;342(6248):349–349. doi: 10.1038/342349a0. [DOI] [PubMed] [Google Scholar]
- D'Souza M. P., Durda P., Hanson C. V., Milman G. Evaluation of monoclonal antibodies to HIV-1 by neutralization and serological assays: an international collaboration. Collaborating Investigators. AIDS. 1991 Sep;5(9):1061–1070. doi: 10.1097/00002030-199109000-00001. [DOI] [PubMed] [Google Scholar]
- Daar E. S., Li X. L., Moudgil T., Ho D. D. High concentrations of recombinant soluble CD4 are required to neutralize primary human immunodeficiency virus type 1 isolates. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6574–6578. doi: 10.1073/pnas.87.17.6574. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davis D., Stephens D. M., Willers C., Lachmann P. J. Glycosylation governs the binding of antipeptide antibodies to regions of hypervariable amino acid sequence within recombinant gp120 of human immunodeficiency virus type 1. J Gen Virol. 1990 Dec;71(Pt 12):2889–2898. doi: 10.1099/0022-1317-71-12-2889. [DOI] [PubMed] [Google Scholar]
- Feizi T., Larkin M. AIDS and glycosylation. Glycobiology. 1990 Sep;1(1):17–23. doi: 10.1093/glycob/1.1.17. [DOI] [PubMed] [Google Scholar]
- Fenouillet E., Gluckman J. C., Bahraoui E. Role of N-linked glycans of envelope glycoproteins in infectivity of human immunodeficiency virus type 1. J Virol. 1990 Jun;64(6):2841–2848. doi: 10.1128/jvi.64.6.2841-2848.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fujita K., Silver J., Peden K. Changes in both gp120 and gp41 can account for increased growth potential and expanded host range of human immunodeficiency virus type 1. J Virol. 1992 Jul;66(7):4445–4451. doi: 10.1128/jvi.66.7.4445-4451.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gallo D., Diggs J. L., Shell G. R., Dailey P. J., Hoffman M. N., Riggs J. L. Comparison of detection of antibody to the acquired immune deficiency syndrome virus by enzyme immunoassay, immunofluorescence, and Western blot methods. J Clin Microbiol. 1986 Jun;23(6):1049–1051. doi: 10.1128/jcm.23.6.1049-1051.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gallo D., Kimpton J. S., Dailey P. J. Comparative studies on use of fresh and frozen peripheral blood lymphocyte specimens for isolation of human immunodeficiency virus and effects of cell lysis on isolation efficiency. J Clin Microbiol. 1987 Jul;25(7):1291–1294. doi: 10.1128/jcm.25.7.1291-1294.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goochee C. F., Monica T. Environmental effects on protein glycosylation. Biotechnology (N Y) 1990 May;8(5):421–427. doi: 10.1038/nbt0590-421. [DOI] [PubMed] [Google Scholar]
- Grimaila R. J., Fuller B. A., Rennert P. D., Nelson M. B., Hammarskjöld M. L., Potts B., Murray M., Putney S. D., Gray G. Mutations in the principal neutralization determinant of human immunodeficiency virus type 1 affect syncytium formation, virus infectivity, growth kinetics, and neutralization. J Virol. 1992 Apr;66(4):1875–1883. doi: 10.1128/jvi.66.4.1875-1883.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hansen J. E. Carbohydrates of human immunodeficiency virus. APMIS Suppl. 1992;27:96–108. [PubMed] [Google Scholar]
- Hansen J. E., Nielsen C. M., Nielsen C., Heegaard P., Mathiesen L. R., Nielsen J. O. Correlation between carbohydrate structures on the envelope glycoprotein gp120 of HIV-1 and HIV-2 and syncytium inhibition with lectins. AIDS. 1989 Oct;3(10):635–641. doi: 10.1097/00002030-198910000-00003. [DOI] [PubMed] [Google Scholar]
- Hansen J. E., Nielsen C., Arendrup M., Olofsson S., Mathiesen L., Nielsen J. O., Clausen H. Broadly neutralizing antibodies targeted to mucin-type carbohydrate epitopes of human immunodeficiency virus. J Virol. 1991 Dec;65(12):6461–6467. doi: 10.1128/jvi.65.12.6461-6467.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hanson C. V., Crawford-Miksza L., Sheppard H. W. Application of a rapid microplaque assay for determination of human immunodeficiency virus neutralizing antibody titers. J Clin Microbiol. 1990 Sep;28(9):2030–2034. doi: 10.1128/jcm.28.9.2030-2034.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hanson C. V. Photochemical inactivation of viruses with psoralens: an overview. Blood Cells. 1992;18(1):7–25. [PubMed] [Google Scholar]
- Hirsch V. M., Edmondson P., Murphey-Corb M., Arbeille B., Johnson P. R., Mullins J. I. SIV adaptation to human cells. Nature. 1989 Oct 19;341(6243):573–574. doi: 10.1038/341573a0. [DOI] [PubMed] [Google Scholar]
- Ho D. D., Fung M. S., Cao Y. Z., Li X. L., Sun C., Chang T. W., Sun N. C. Another discontinuous epitope on glycoprotein gp120 that is important in human immunodeficiency virus type 1 neutralization is identified by a monoclonal antibody. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):8949–8952. doi: 10.1073/pnas.88.20.8949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hongo S., Sugawara K., Homma M., Nakamura K. The functions of oligosaccharide chains associated with influenza C viral glycoproteins. II. The role of carbohydrates in the antigenic properties of influenza C viral glycoproteins. Arch Virol. 1986;89(1-4):189–201. doi: 10.1007/BF01309888. [DOI] [PubMed] [Google Scholar]
- Hsieh P., Rosner M. R., Robbins P. W. Host-dependent variation of asparagine-linked oligosaccharides at individual glycosylation sites of Sindbis virus glycoproteins. J Biol Chem. 1983 Feb 25;258(4):2548–2554. [PubMed] [Google Scholar]
- LaRosa G. J., Davide J. P., Weinhold K., Waterbury J. A., Profy A. T., Lewis J. A., Langlois A. J., Dreesman G. R., Boswell R. N., Shadduck P. Conserved sequence and structural elements in the HIV-1 principal neutralizing determinant. Science. 1990 Aug 24;249(4971):932–935. doi: 10.1126/science.2392685. [DOI] [PubMed] [Google Scholar]
- Lake D. F., Kawamura T., Tomiyama T., Robinson W. E., Jr, Matsumoto Y., Masuho Y., Hersh E. M. Generation and characterization of a human monoclonal antibody that neutralizes diverse HIV-1 isolates in vitro. AIDS. 1992 Jan;6(1):17–24. doi: 10.1097/00002030-199201000-00002. [DOI] [PubMed] [Google Scholar]
- Layne S. P., Merges M. J., Dembo M., Spouge J. L., Conley S. R., Moore J. P., Raina J. L., Renz H., Gelderblom H. R., Nara P. L. Factors underlying spontaneous inactivation and susceptibility to neutralization of human immunodeficiency virus. Virology. 1992 Aug;189(2):695–714. doi: 10.1016/0042-6822(92)90593-e. [DOI] [PubMed] [Google Scholar]
- Layne S. P., Merges M. J., Dembo M., Spouge J. L., Nara P. L. HIV requires multiple gp120 molecules for CD4-mediated infection. Nature. 1990 Jul 19;346(6281):277–279. doi: 10.1038/346277a0. [DOI] [PubMed] [Google Scholar]
- Lundström M., Jeansson S., Olofsson S. Host cell-induced differences in the O-glycosylation of herpes simplex virus gC-1. II. Demonstration of cell-specific galactosyltransferase essential for formation of O-linked oligosaccharides. Virology. 1987 Dec;161(2):395–402. doi: 10.1016/0042-6822(87)90132-2. [DOI] [PubMed] [Google Scholar]
- McKeating J. A., Cordell J., Dean C. J., Balfe P. Synergistic interaction between ligands binding to the CD4 binding site and V3 domain of human immunodeficiency virus type I gp120. Virology. 1992 Dec;191(2):732–742. doi: 10.1016/0042-6822(92)90249-o. [DOI] [PubMed] [Google Scholar]
- Montefiori D. C., Robinson W. E., Jr, Mitchell W. M. Role of protein N-glycosylation in pathogenesis of human immunodeficiency virus type 1. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9248–9252. doi: 10.1073/pnas.85.23.9248. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moore J. P., McKeating J. A., Huang Y. X., Ashkenazi A., Ho D. D. Virions of primary human immunodeficiency virus type 1 isolates resistant to soluble CD4 (sCD4) neutralization differ in sCD4 binding and glycoprotein gp120 retention from sCD4-sensitive isolates. J Virol. 1992 Jan;66(1):235–243. doi: 10.1128/jvi.66.1.235-243.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Munk K., Pritzer E., Kretzschmar E., Gutte B., Garten W., Klenk H. D. Carbohydrate masking of an antigenic epitope of influenza virus haemagglutinin independent of oligosaccharide size. Glycobiology. 1992 Jun;2(3):233–240. doi: 10.1093/glycob/2.3.233. [DOI] [PubMed] [Google Scholar]
- Nara P., Tsai W. P., Kung H. F., Minassian A., Garrity R., Goudsmit J., Rimmelzwaan G. Universal cellular tropism? Nature. 1992 Nov 19;360(6401):215–216. doi: 10.1038/360215b0. [DOI] [PubMed] [Google Scholar]
- Page M., Vella C., Corcoran T., Dilger P., Ling C., Heath A., Thorpe R. Restriction of serum antibody reactivity to the V3 neutralizing domain of HIV gp120 with progression to AIDS. AIDS. 1992 May;6(5):441–446. doi: 10.1097/00002030-199205000-00001. [DOI] [PubMed] [Google Scholar]
- Poss M. L., Dow S. W., Hoover E. A. Cell-specific envelope glycosylation distinguishes FIV glycoproteins produced in cytopathically and noncytopathically infected cells. Virology. 1992 May;188(1):25–32. doi: 10.1016/0042-6822(92)90731-4. [DOI] [PubMed] [Google Scholar]
- Poss M. L., Mullins J. I., Hoover E. A. Posttranslational modifications distinguish the envelope glycoprotein of the immunodeficiency disease-inducing feline leukemia virus retrovirus. J Virol. 1989 Jan;63(1):189–195. doi: 10.1128/jvi.63.1.189-195.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prince A. M., Pascual D., Kosolapov L. B., Kurokawa D., Baker L., Rubinstein P. Prevalence, clinical significance, and strain specificity of neutralizing antibody to the human immunodeficiency virus. J Infect Dis. 1987 Aug;156(2):268–272. doi: 10.1093/infdis/156.2.268. [DOI] [PubMed] [Google Scholar]
- Qiu Z., Tufaro F., Gillam S. The influence of N-linked glycosylation on the antigenicity and immunogenicity of rubella virus E1 glycoprotein. Virology. 1992 Oct;190(2):876–881. doi: 10.1016/0042-6822(92)90929-j. [DOI] [PubMed] [Google Scholar]
- Robb M. L., Polonis V., Vahey M., Gartner S., Michael N., Fowler A., Redfield R. R. HIV neutralization assay using polymerase chain reaction-derived molecular signals. J Acquir Immune Defic Syndr. 1992 Dec;5(12):1224–1229. [PubMed] [Google Scholar]
- Robert-Guroff M., Brown M., Gallo R. C. HTLV-III-neutralizing antibodies in patients with AIDS and AIDS-related complex. Nature. 1985 Jul 4;316(6023):72–74. doi: 10.1038/316072a0. [DOI] [PubMed] [Google Scholar]
- Sakai H., Sakuragi S., Sakuragi J., Kawamura M., Shibata R., Adachi A. Sequences responsible for efficient replication of simian immunodeficiency virus SIVMND in cells of the monocyte/macrophage lineage. J Gen Virol. 1992 Nov;73(Pt 11):2989–2993. doi: 10.1099/0022-1317-73-11-2989. [DOI] [PubMed] [Google Scholar]
- Schild G. C., Oxford J. S., de Jong J. C., Webster R. G. Evidence for host-cell selection of influenza virus antigenic variants. Nature. 1983 Jun 23;303(5919):706–709. doi: 10.1038/303706a0. [DOI] [PubMed] [Google Scholar]
- Schmidtmayerová H., Lackovicová M., Stanková M., Brůcková M., Surový I., Ujhelyi E., Füst G., Mayer V. Virus neutralizing antibodies at different stages of the HIV disease: increased levels after azidothymidine treatment. Acta Virol. 1992 Mar;36(2):157–165. [PubMed] [Google Scholar]
- Schols D., Pauwels R., Desmyter J., De Clercq E. Presence of class II histocompatibility DR proteins on the envelope of human immunodeficiency virus demonstrated by FACS analysis. Virology. 1992 Jul;189(1):374–376. doi: 10.1016/0042-6822(92)90719-6. [DOI] [PubMed] [Google Scholar]
- Schulze I. T., Manger I. D. Viral glycoprotein heterogeneity-enhancement of functional diversity. Glycoconj J. 1992 Apr;9(2):63–66. doi: 10.1007/BF00731698. [DOI] [PubMed] [Google Scholar]
- Shimizu H., Hasebe F., Tsuchie H., Morikawa S., Ushijima H., Kitamura T. Analysis of a human immunodeficiency virus type 1 isolate carrying a truncated transmembrane glycoprotein. Virology. 1992 Aug;189(2):534–546. doi: 10.1016/0042-6822(92)90577-c. [DOI] [PubMed] [Google Scholar]
- Sjöblom I., Lundström M., Sjögren-Jansson E., Glorioso J. C., Jeansson S., Olofsson S. Demonstration and mapping of highly carbohydrate-dependent epitopes in the herpes simplex virus type 1-specified glycoprotein C. J Gen Virol. 1987 Feb;68(Pt 2):545–554. doi: 10.1099/0022-1317-68-2-545. [DOI] [PubMed] [Google Scholar]
- Skehel J. J., Stevens D. J., Daniels R. S., Douglas A. R., Knossow M., Wilson I. A., Wiley D. C. A carbohydrate side chain on hemagglutinins of Hong Kong influenza viruses inhibits recognition by a monoclonal antibody. Proc Natl Acad Sci U S A. 1984 Mar;81(6):1779–1783. doi: 10.1073/pnas.81.6.1779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsai W. P., Kung H. F., Goudsmit J., Rimmelzwaan G., Minassian A., Garrity R., Nara P. HIV-1 tropism: truth or consequences? AIDS Res Hum Retroviruses. 1992 Oct;8(10):1749–1750. doi: 10.1089/aid.1992.8.1749. [DOI] [PubMed] [Google Scholar]
- Turner S., Tizard R., DeMarinis J., Pepinsky R. B., Zullo J., Schooley R., Fisher R. Resistance of primary isolates of human immunodeficiency virus type 1 to neutralization by soluble CD4 is not due to lower affinity with the viral envelope glycoprotein gp120. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1335–1339. doi: 10.1073/pnas.89.4.1335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weber J. N., Clapham P. R., Weiss R. A., Parker D., Roberts C., Duncan J., Weller I., Carne C., Tedder R. S., Pinching A. J. Human immunodeficiency virus infection in two cohorts of homosexual men: neutralising sera and association of anti-gag antibody with prognosis. Lancet. 1987 Jan 17;1(8525):119–122. doi: 10.1016/s0140-6736(87)91964-7. [DOI] [PubMed] [Google Scholar]
- Weiss R. A., Clapham P. R., Cheingsong-Popov R., Dalgleish A. G., Carne C. A., Weller I. V., Tedder R. S. Neutralization of human T-lymphotropic virus type III by sera of AIDS and AIDS-risk patients. Nature. 1985 Jul 4;316(6023):69–72. doi: 10.1038/316069a0. [DOI] [PubMed] [Google Scholar]
- Wendler I., Bienzle U., Hunsmann G. Neutralizing antibodies and the course of HIV-induced disease. AIDS Res Hum Retroviruses. 1987 Summer;3(2):157–163. doi: 10.1089/aid.1987.3.157. [DOI] [PubMed] [Google Scholar]