Nothing Special   »   [go: up one dir, main page]

Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1993 Oct 1;178(4):1165–1174. doi: 10.1084/jem.178.4.1165

Leukocyte response integrin and integrin-associated protein act as a signal transduction unit in generation of a phagocyte respiratory burst

PMCID: PMC2191199  PMID: 8104228

Abstract

The leukocyte response integrin (LRI) is a phagocyte integrin which recognizes the basement membrane protein entactin and the synthetic peptide Lys-Gly-Ala-Gly-Asp-Val (KGAGDV). The function of LRI is intimately associated with that of a distinct membrane protein, integrin-associated protein (IAP), as antibodies which recognizes IAP can inhibit all known functions of LRI. When adherent to surface, the LRI ligands entactin and KGAGDV activate the respiratory burst in polymorphonuclear leukocytes (PMN) and monocytes, as do monoclonal antibodies (mAb) directed at either LRI or IAP. When added in solution, peptides and antibodies specific for LRI, and some, but not all, anti- IAP antibodies, can inhibit the respiratory burst activated by any of these surface-adherent ligands. Only monoclonal anti-IAP antibodies which can inhibit LRI function when added in solution are competent to activate the respiratory burst when adherent to a surface. KGAGDV peptide and anti-LRI added in solution can inhibit anti-IAP-stimulated respiratory burst. The LRI-IAP-initiated respiratory burst is independent of CD18, as judged by: (a) blockade of inhibition by anti- CD18 mAb with the protein kinase A inhibitor HA1004; (b) enhanced sensitivity of CD18-dependent respiratory burst compared with LRI/IAP- dependent respiratory burst to the tyrosine kinase inhibitors genestein and herbimicin; and (c) generation of a respiratory burst in response to KGAGDV, anti-LRI, and anti-IAP coated surfaces in PMN from a patient with LAD. Despite its apparent CD18 independence, LRI/IAP-initiated respiratory burst requires a solid phase ligand and is sensitive to cytochalasin B. These data suggest a model in which LRI and IAP act together as a single signal transduction unit to activate the phagocyte respiratory burst, in a manner that requires CD18-independent cell adhesion.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altieri D. C., Edgington T. S. A monoclonal antibody reacting with distinct adhesion molecules defines a transition in the functional state of the receptor CD11b/CD18 (Mac-1). J Immunol. 1988 Oct 15;141(8):2656–2660. [PubMed] [Google Scholar]
  2. Anderson D. C., Schmalsteig F. C., Finegold M. J., Hughes B. J., Rothlein R., Miller L. J., Kohl S., Tosi M. F., Jacobs R. L., Waldrop T. C. The severe and moderate phenotypes of heritable Mac-1, LFA-1 deficiency: their quantitative definition and relation to leukocyte dysfunction and clinical features. J Infect Dis. 1985 Oct;152(4):668–689. doi: 10.1093/infdis/152.4.668. [DOI] [PubMed] [Google Scholar]
  3. Berton G., Laudanna C., Sorio C., Rossi F. Generation of signals activating neutrophil functions by leukocyte integrins: LFA-1 and gp150/95, but not CR3, are able to stimulate the respiratory burst of human neutrophils. J Cell Biol. 1992 Feb;116(4):1007–1017. doi: 10.1083/jcb.116.4.1007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bohnsack J. F., Akiyama S. K., Damsky C. H., Knape W. A., Zimmerman G. A. Human neutrophil adherence to laminin in vitro. Evidence for a distinct neutrophil integrin receptor for laminin. J Exp Med. 1990 Apr 1;171(4):1221–1237. doi: 10.1084/jem.171.4.1221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bohnsack J. F. CD11/CD18-independent neutrophil adherence to laminin is mediated by the integrin VLA-6. Blood. 1992 Mar 15;79(6):1545–1552. [PubMed] [Google Scholar]
  6. Brown E. J., Goodwin J. L. Fibronectin receptors of phagocytes. Characterization of the Arg-Gly-Asp binding proteins of human monocytes and polymorphonuclear leukocytes. J Exp Med. 1988 Mar 1;167(3):777–793. doi: 10.1084/jem.167.3.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brown E., Hooper L., Ho T., Gresham H. Integrin-associated protein: a 50-kD plasma membrane antigen physically and functionally associated with integrins. J Cell Biol. 1990 Dec;111(6 Pt 1):2785–2794. doi: 10.1083/jcb.111.6.2785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Clark R. A., Volpp B. D., Leidal K. G., Nauseef W. M. Two cytosolic components of the human neutrophil respiratory burst oxidase translocate to the plasma membrane during cell activation. J Clin Invest. 1990 Mar;85(3):714–721. doi: 10.1172/JCI114496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. De la Harpe J., Nathan C. F. A semi-automated micro-assay for H2O2 release by human blood monocytes and mouse peritoneal macrophages. J Immunol Methods. 1985 Apr 22;78(2):323–336. doi: 10.1016/0022-1759(85)90089-4. [DOI] [PubMed] [Google Scholar]
  10. Dustin M. L., Springer T. A. T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1. Nature. 1989 Oct 19;341(6243):619–624. doi: 10.1038/341619a0. [DOI] [PubMed] [Google Scholar]
  11. Eppell B. A., Newell A. M., Brown E. J. Adenosine receptors are expressed during differentiation of monocytes to macrophages in vitro. Implications for regulation of phagocytosis. J Immunol. 1989 Dec 15;143(12):4141–4145. [PubMed] [Google Scholar]
  12. Fehr J., Moser R., Leppert D., Groscurth P. Antiadhesive properties of biological surfaces are protective against stimulated granulocytes. J Clin Invest. 1985 Aug;76(2):535–542. doi: 10.1172/JCI112003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Frelinger A. L., 3rd, Cohen I., Plow E. F., Smith M. A., Roberts J., Lam S. C., Ginsberg M. H. Selective inhibition of integrin function by antibodies specific for ligand-occupied receptor conformers. J Biol Chem. 1990 Apr 15;265(11):6346–6352. [PubMed] [Google Scholar]
  14. Frelinger A. L., 3rd, Du X. P., Plow E. F., Ginsberg M. H. Monoclonal antibodies to ligand-occupied conformers of integrin alpha IIb beta 3 (glycoprotein IIb-IIIa) alter receptor affinity, specificity, and function. J Biol Chem. 1991 Sep 15;266(26):17106–17111. [PubMed] [Google Scholar]
  15. Fuortes M., Jin W. W., Nathan C. Adhesion-dependent protein tyrosine phosphorylation in neutrophils treated with tumor necrosis factor. J Cell Biol. 1993 Feb;120(3):777–784. doi: 10.1083/jcb.120.3.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gearing D. P., Comeau M. R., Friend D. J., Gimpel S. D., Thut C. J., McGourty J., Brasher K. K., King J. A., Gillis S., Mosley B. The IL-6 signal transducer, gp130: an oncostatin M receptor and affinity converter for the LIF receptor. Science. 1992 Mar 13;255(5050):1434–1437. doi: 10.1126/science.1542794. [DOI] [PubMed] [Google Scholar]
  17. Gillis S. Cytokine receptors. Curr Opin Immunol. 1991 Jun;3(3):315–319. doi: 10.1016/0952-7915(91)90030-5. [DOI] [PubMed] [Google Scholar]
  18. Ginsberg M. H., Loftus J. C., D'Souza S., Plow E. F. Ligand binding to integrins: common and ligand specific recognition mechanisms. Cell Differ Dev. 1990 Dec 2;32(3):203–213. doi: 10.1016/0922-3371(90)90033-s. [DOI] [PubMed] [Google Scholar]
  19. Graham I. L., Brown E. J. Extracellular calcium results in a conformational change in Mac-1 (CD11b/CD18) on neutrophils. Differentiation of adhesion and phagocytosis functions of Mac-1. J Immunol. 1991 Jan 15;146(2):685–691. [PubMed] [Google Scholar]
  20. Graham I. L., Gresham H. D., Brown E. J. An immobile subset of plasma membrane CD11b/CD18 (Mac-1) is involved in phagocytosis of targets recognized by multiple receptors. J Immunol. 1989 Apr 1;142(7):2352–2358. [PubMed] [Google Scholar]
  21. Gresham H. D., Adams S. P., Brown E. J. Ligand binding specificity of the leukocyte response integrin expressed by human neutrophils. J Biol Chem. 1992 Jul 15;267(20):13895–13902. [PubMed] [Google Scholar]
  22. Gresham H. D., Goodwin J. L., Allen P. M., Anderson D. C., Brown E. J. A novel member of the integrin receptor family mediates Arg-Gly-Asp-stimulated neutrophil phagocytosis. J Cell Biol. 1989 May;108(5):1935–1943. doi: 10.1083/jcb.108.5.1935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Gresham H. D., Graham I. L., Anderson D. C., Brown E. J. Leukocyte adhesion-deficient neutrophils fail to amplify phagocytic function in response to stimulation. Evidence for CD11b/CD18-dependent and -independent mechanisms of phagocytosis. J Clin Invest. 1991 Aug;88(2):588–597. doi: 10.1172/JCI115343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Grinstein S., Furuya W. Chemoattractant-induced tyrosine phosphorylation and activation of microtubule-associated protein kinase in human neutrophils. J Biol Chem. 1992 Sep 5;267(25):18122–18125. [PubMed] [Google Scholar]
  25. Grinstein S., Furuya W. Tyrosine phosphorylation and oxygen consumption induced by G proteins in neutrophils. Am J Physiol. 1991 May;260(5 Pt 1):C1019–C1027. doi: 10.1152/ajpcell.1991.260.5.C1019. [DOI] [PubMed] [Google Scholar]
  26. Ingber D. E., Prusty D., Frangioni J. V., Cragoe E. J., Jr, Lechene C., Schwartz M. A. Control of intracellular pH and growth by fibronectin in capillary endothelial cells. J Cell Biol. 1990 May;110(5):1803–1811. doi: 10.1083/jcb.110.5.1803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kitamura T., Sato N., Arai K., Miyajima A. Expression cloning of the human IL-3 receptor cDNA reveals a shared beta subunit for the human IL-3 and GM-CSF receptors. Cell. 1991 Sep 20;66(6):1165–1174. doi: 10.1016/0092-8674(91)90039-2. [DOI] [PubMed] [Google Scholar]
  28. Liu J., Modrell B., Aruffo A., Marken J. S., Taga T., Yasukawa K., Murakami M., Kishimoto T., Shoyab M. Interleukin-6 signal transducer gp130 mediates oncostatin M signaling. J Biol Chem. 1992 Aug 25;267(24):16763–16766. [PubMed] [Google Scholar]
  29. Lopez A. F., Shannon M. F., Hercus T., Nicola N. A., Cambareri B., Dottore M., Layton M. J., Eglinton L., Vadas M. A. Residue 21 of human granulocyte-macrophage colony-stimulating factor is critical for biological activity and for high but not low affinity binding. EMBO J. 1992 Mar;11(3):909–916. doi: 10.1002/j.1460-2075.1992.tb05129.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Nathan C., Sanchez E. Tumor necrosis factor and CD11/CD18 (beta 2) integrins act synergistically to lower cAMP in human neutrophils. J Cell Biol. 1990 Nov;111(5 Pt 1):2171–2181. doi: 10.1083/jcb.111.5.2171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Nathan C., Srimal S., Farber C., Sanchez E., Kabbash L., Asch A., Gailit J., Wright S. D. Cytokine-induced respiratory burst of human neutrophils: dependence on extracellular matrix proteins and CD11/CD18 integrins. J Cell Biol. 1989 Sep;109(3):1341–1349. doi: 10.1083/jcb.109.3.1341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Nicola N. A., Cary D. Affinity conversion of receptors for colony stimulating factors: properties of solubilized receptors. Growth Factors. 1992;6(2):119–129. doi: 10.3109/08977199209011015. [DOI] [PubMed] [Google Scholar]
  33. O'Shea J. J., Brown E. J., Seligmann B. E., Metcalf J. A., Frank M. M., Gallin J. I. Evidence for distinct intracellular pools of receptors for C3b and C3bi in human neutrophils. J Immunol. 1985 Apr;134(4):2580–2587. [PubMed] [Google Scholar]
  34. Park L. S., Martin U., Sorensen R., Luhr S., Morrissey P. J., Cosman D., Larsen A. Cloning of the low-affinity murine granulocyte-macrophage colony-stimulating factor receptor and reconstitution of a high-affinity receptor complex. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4295–4299. doi: 10.1073/pnas.89.10.4295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rosales C., Gresham H. D., Brown E. J. Expression of the 50-kDa integrin-associated protein on myeloid cells and erythrocytes. J Immunol. 1992 Oct 15;149(8):2759–2764. [PubMed] [Google Scholar]
  36. Schwartz M. A., Ingber D. E., Lawrence M., Springer T. A., Lechene C. Multiple integrins share the ability to induce elevation of intracellular pH. Exp Cell Res. 1991 Aug;195(2):533–535. doi: 10.1016/0014-4827(91)90407-l. [DOI] [PubMed] [Google Scholar]
  37. Senior R. M., Gresham H. D., Griffin G. L., Brown E. J., Chung A. E. Entactin stimulates neutrophil adhesion and chemotaxis through interactions between its Arg-Gly-Asp (RGD) domain and the leukocyte response integrin. J Clin Invest. 1992 Dec;90(6):2251–2257. doi: 10.1172/JCI116111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Shappell S. B., Toman C., Anderson D. C., Taylor A. A., Entman M. L., Smith C. W. Mac-1 (CD11b/CD18) mediates adherence-dependent hydrogen peroxide production by human and canine neutrophils. J Immunol. 1990 Apr 1;144(7):2702–2711. [PubMed] [Google Scholar]
  39. Wright S. D., Rao P. E., Van Voorhis W. C., Craigmyle L. S., Iida K., Talle M. A., Westberg E. F., Goldstein G., Silverstein S. C. Identification of the C3bi receptor of human monocytes and macrophages by using monoclonal antibodies. Proc Natl Acad Sci U S A. 1983 Sep;80(18):5699–5703. doi: 10.1073/pnas.80.18.5699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Zhou M., Petty H. R. Micro-scission of YAC tumor cells during antibody-dependent cellular cytotoxicity mediated by human neutrophils. Eur J Cell Biol. 1989 Oct;50(1):201–208. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES