Abstract
We have investigated the association of the influenza virus matrix (M1) and nucleoprotein (NP) with the host cell cytoskeletal elements in influenza virus-infected MDCK and MDBK cells. At 6.5 h postinfection, the newly synthesized M1 was Triton X-100 (TX-100) extractable but became resistant to TX-100 extraction during the chase with a t1/2 of 20 min. NP, on the other hand, acquired TX-100 resistance immediately after synthesis. Significant fractions of both M1 and NP remained resistant to differential detergent (Triton X-114, 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate [CHAPS], octylglucoside) extraction, suggesting that M1 and NP were interacting with the cytoskeletal elements. However, the high-molecular-weight form of the viral transmembrane protein hemagglutinin (HA), which had undergone complex glycosylation, also became resistant to TX-100 extraction but was sensitive to octylglucoside detergent extraction, indicating that HA, unlike M1 or NP, was interacting with TX-100-insoluble lipids and not with cytoskeletal elements. Morphological analysis with cytoskeletal disrupting agents demonstrated that M1 and NP were associated with microfilaments in virus-infected cells. However, M1, expressed alone in MDCK or HeLa cells from cloned cDNA or coexpressed with NP, did not become resistant to TX-100 extraction even after a long chase. NP, on the other hand, became TX-100 insoluble as in the virus-infected cells. M1 also did not acquire TX-100 insolubility in ts 56 (a temperature-sensitive mutant with a defect in NP protein)-infected cells at the nonpermissive temperature. Furthermore, early in the infectious cycle in WSN-infected cells, M1 acquired TX-100 resistance very slowly after a long chase and did not acquire TX-100 resistance at all when chased in the presence of cycloheximide. On the other hand, late in the infectious cycle, M1 acquired TX-100 resistance when chased in either the presence or absence of cycloheximide. Taken together, these results demonstrate that M1 and NP interact with host microfilaments in virus-infected cells and that M1 requires other viral proteins or subviral components (possibly viral ribonucleoprotein) for interaction with host cytoskeletal components. The implication of these results for viral morphogenesis is discussed.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barak L. S., Yocum R. R., Nothnagel E. A., Webb W. W. Fluorescence staining of the actin cytoskeleton in living cells with 7-nitrobenz-2-oxa-1,3-diazole-phallacidin. Proc Natl Acad Sci U S A. 1980 Feb;77(2):980–984. doi: 10.1073/pnas.77.2.980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baudin F., Bach C., Cusack S., Ruigrok R. W. Structure of influenza virus RNP. I. Influenza virus nucleoprotein melts secondary structure in panhandle RNA and exposes the bases to the solvent. EMBO J. 1994 Jul 1;13(13):3158–3165. doi: 10.1002/j.1460-2075.1994.tb06614.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ben-Ze'ev A., Duerr A., Solomon F., Penman S. The outer boundary of the cytoskeleton: a lamina derived from plasma membrane proteins. Cell. 1979 Aug;17(4):859–865. doi: 10.1016/0092-8674(79)90326-x. [DOI] [PubMed] [Google Scholar]
- Bohn W., Rutter G., Hohenberg H., Mannweiler K., Nobis P. Involvement of actin filaments in budding of measles virus: studies on cytoskeletons of infected cells. Virology. 1986 Feb;149(1):91–106. doi: 10.1016/0042-6822(86)90090-5. [DOI] [PubMed] [Google Scholar]
- Brown D. A., Rose J. K. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell. 1992 Feb 7;68(3):533–544. doi: 10.1016/0092-8674(92)90189-j. [DOI] [PubMed] [Google Scholar]
- Bucher D., Popple S., Baer M., Mikhail A., Gong Y. F., Whitaker C., Paoletti E., Judd A. M protein (M1) of influenza virus: antigenic analysis and intracellular localization with monoclonal antibodies. J Virol. 1989 Sep;63(9):3622–3633. doi: 10.1128/jvi.63.9.3622-3633.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooper J. A. Effects of cytochalasin and phalloidin on actin. J Cell Biol. 1987 Oct;105(4):1473–1478. doi: 10.1083/jcb.105.4.1473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cudmore S., Cossart P., Griffiths G., Way M. Actin-based motility of vaccinia virus. Nature. 1995 Dec 7;378(6557):636–638. doi: 10.1038/378636a0. [DOI] [PubMed] [Google Scholar]
- Damsky C. H., Sheffield J. B., Tuszynski G. P., Warren L. Is there a role for actin in virus budding? J Cell Biol. 1977 Nov;75(2 Pt 1):593–605. doi: 10.1083/jcb.75.2.593. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Enami M., Enami K. Influenza virus hemagglutinin and neuraminidase glycoproteins stimulate the membrane association of the matrix protein. J Virol. 1996 Oct;70(10):6653–6657. doi: 10.1128/jvi.70.10.6653-6657.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gaedigk-Nitschko K., Schlesinger M. J. Site-directed mutations in Sindbis virus E2 glycoprotein's cytoplasmic domain and the 6K protein lead to similar defects in virus assembly and budding. Virology. 1991 Jul;183(1):206–214. doi: 10.1016/0042-6822(91)90133-v. [DOI] [PubMed] [Google Scholar]
- Giuffre R. M., Tovell D. R., Kay C. M., Tyrrell D. L. Evidence for an interaction between the membrane protein of a paramyxovirus and actin. J Virol. 1982 Jun;42(3):963–968. doi: 10.1128/jvi.42.3.963-968.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greenspan D., Palese P., Krystal M. Two nuclear location signals in the influenza virus NS1 nonstructural protein. J Virol. 1988 Aug;62(8):3020–3026. doi: 10.1128/jvi.62.8.3020-3026.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gregoriades A., Frangione B. Insertion of influenza M protein into the viral lipid bilayer and localization of site of insertion. J Virol. 1981 Oct;40(1):323–328. doi: 10.1128/jvi.40.1.323-328.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griffin J. A., Compans R. W. Effect of cytochalasin B on the maturation of enveloped viruses. J Exp Med. 1979 Aug 1;150(2):379–391. doi: 10.1084/jem.150.2.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griffiths G., Rottier P. Cell biology of viruses that assemble along the biosynthetic pathway. Semin Cell Biol. 1992 Oct;3(5):367–381. doi: 10.1016/1043-4682(92)90022-N. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gujuluva C. N., Kundu A., Murti K. G., Nayak D. P. Abortive replication of influenza virus A/WSN/33 in HeLa229 cells: defective viral entry and budding processes. Virology. 1994 Nov 1;204(2):491–505. doi: 10.1006/viro.1994.1563. [DOI] [PubMed] [Google Scholar]
- Hay A. J. Studies on the formation of the influenza virus envelope. Virology. 1974 Aug;60(2):398–418. doi: 10.1016/0042-6822(74)90335-3. [DOI] [PubMed] [Google Scholar]
- Hesketh J. E., Pryme I. F. Interaction between mRNA, ribosomes and the cytoskeleton. Biochem J. 1991 Jul 1;277(Pt 1):1–10. doi: 10.1042/bj2770001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hiller G., Weber K., Schneider L., Parajsz C., Jungwirth C. Interaction of assembled progeny pox viruses with the cellular cytoskeleton. Virology. 1979 Oct 15;98(1):142–153. doi: 10.1016/0042-6822(79)90533-6. [DOI] [PubMed] [Google Scholar]
- Hovland R., Campbell G., Pryme I., Hesketh J. The mRNAs for cyclin A, c-myc and ribosomal proteins L4 and S6 are associated with cytoskeletal-bound polysomes in HepG2 cells. Biochem J. 1995 Aug 15;310(Pt 1):193–196. doi: 10.1042/bj3100193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kasamatsu H., Lin W., Edens J., Revel J. P. Visualization of antigens attached to cytoskeletal framework in animal cells: colocalization of simian virus 40 Vp1 polypeptide and actin in TC7 cells. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4339–4343. doi: 10.1073/pnas.80.14.4339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klenk H. D., Wöllert W., Rott R., Scholtissek C. Association of influenza virus proteins with cytoplasmic fractions. Virology. 1974 Jan;57(1):28–41. doi: 10.1016/0042-6822(74)90105-6. [DOI] [PubMed] [Google Scholar]
- Klymkowsky M. W. Intermediate filaments: new proteins, some answers, more questions. Curr Opin Cell Biol. 1995 Feb;7(1):46–54. doi: 10.1016/0955-0674(95)80044-1. [DOI] [PubMed] [Google Scholar]
- Krug R. M., Ueda M., Palese P. Temperature-sensitive mutants of influenza WSN virus defective in virus-specific RNA synthesis. J Virol. 1975 Oct;16(4):790–796. doi: 10.1128/jvi.16.4.790-796.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kundu A., Avalos R. T., Sanderson C. M., Nayak D. P. Transmembrane domain of influenza virus neuraminidase, a type II protein, possesses an apical sorting signal in polarized MDCK cells. J Virol. 1996 Sep;70(9):6508–6515. doi: 10.1128/jvi.70.9.6508-6515.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lafont F., Burkhardt J. K., Simons K. Involvement of microtubule motors in basolateral and apical transport in kidney cells. Nature. 1994 Dec 22;372(6508):801–803. doi: 10.1038/372801a0. [DOI] [PubMed] [Google Scholar]
- Lazarowitz S. G., Compans R. W., Choppin P. W. Influenza virus structural and nonstructural proteins in infected cells and their plasma membranes. Virology. 1971 Dec;46(3):830–843. doi: 10.1016/0042-6822(71)90084-5. [DOI] [PubMed] [Google Scholar]
- Li R. A., Palese P., Krystal M. Complementation and analysis of an NP mutant of influenza virus. Virus Res. 1989 Feb;12(2):97–111. doi: 10.1016/0168-1702(89)90057-9. [DOI] [PubMed] [Google Scholar]
- Li S., Xu M., Coelingh K. Electroporation of influenza virus ribonucleoprotein complexes for rescue of the nucleoprotein and matrix genes. Virus Res. 1995 Jul;37(2):153–161. doi: 10.1016/0168-1702(95)00031-k. [DOI] [PubMed] [Google Scholar]
- Liu C., Air G. M. Selection and characterization of a neuraminidase-minus mutant of influenza virus and its rescue by cloned neuraminidase genes. Virology. 1993 May;194(1):403–407. doi: 10.1006/viro.1993.1276. [DOI] [PubMed] [Google Scholar]
- Liu C., Eichelberger M. C., Compans R. W., Air G. M. Influenza type A virus neuraminidase does not play a role in viral entry, replication, assembly, or budding. J Virol. 1995 Feb;69(2):1099–1106. doi: 10.1128/jvi.69.2.1099-1106.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lohmeyer J., Talens L. T., Klenk H. D. Biosynthesis of the influenza virus envelope in abortive infection. J Gen Virol. 1979 Jan;42(1):73–88. doi: 10.1099/0022-1317-42-1-73. [DOI] [PubMed] [Google Scholar]
- Low S. H., Tang B. L., Wong S. H., Hong W. Selective inhibition of protein targeting to the apical domain of MDCK cells by brefeldin A. J Cell Biol. 1992 Jul;118(1):51–62. doi: 10.1083/jcb.118.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loza-Tulimowska M., Michalak T., Semkow R. Attempts at detection of actomyosin associated with influenza virus. Acta Virol. 1981 Jul;25(4):251–253. [PubMed] [Google Scholar]
- Luna E. J., Hitt A. L. Cytoskeleton--plasma membrane interactions. Science. 1992 Nov 6;258(5084):955–964. doi: 10.1126/science.1439807. [DOI] [PubMed] [Google Scholar]
- Lydy S. L., Basak S., Compans R. W. Host cell-dependent lateral mobility of viral glycoproteins. Microb Pathog. 1990 Dec;9(6):375–386. doi: 10.1016/0882-4010(90)90056-v. [DOI] [PubMed] [Google Scholar]
- Melki R., Gaudin Y., Blondel D. Interaction between tubulin and the viral matrix protein of vesicular stomatitis virus: possible implications in the viral cytopathic effect. Virology. 1994 Jul;202(1):339–347. doi: 10.1006/viro.1994.1350. [DOI] [PubMed] [Google Scholar]
- Mitnaul L. J., Castrucci M. R., Murti K. G., Kawaoka Y. The cytoplasmic tail of influenza A virus neuraminidase (NA) affects NA incorporation into virions, virion morphology, and virulence in mice but is not essential for virus replication. J Virol. 1996 Feb;70(2):873–879. doi: 10.1128/jvi.70.2.873-879.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morrison T. G., McGinnes L. J. Cytochalasin D accelerates the release of Newcastle disease virus from infected cells. Virus Res. 1985 Dec;4(1):93–106. doi: 10.1016/0168-1702(85)90023-1. [DOI] [PubMed] [Google Scholar]
- Mortara R. A., Koch G. L. An association between actin and nucleocapsid polypeptides in isolated murine retroviral particles. J Submicrosc Cytol Pathol. 1989 Apr;21(2):295–306. [PubMed] [Google Scholar]
- Murti K. G., Chen M., Goorha R. Interaction of frog virus 3 with the cytomatrix. III. Role of microfilaments in virus release. Virology. 1985 Apr 30;142(2):317–325. doi: 10.1016/0042-6822(85)90340-x. [DOI] [PubMed] [Google Scholar]
- Naim H. Y., Roth M. G. Basis for selective incorporation of glycoproteins into the influenza virus envelope. J Virol. 1993 Aug;67(8):4831–4841. doi: 10.1128/jvi.67.8.4831-4841.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nayak D. P., Jabbar M. A. Structural domains and organizational conformation involved in the sorting and transport of influenza virus transmembrane proteins. Annu Rev Microbiol. 1989;43:465–501. doi: 10.1146/annurev.mi.43.100189.002341. [DOI] [PubMed] [Google Scholar]
- Neame S. J., Isacke C. M. The cytoplasmic tail of CD44 is required for basolateral localization in epithelial MDCK cells but does not mediate association with the detergent-insoluble cytoskeleton of fibroblasts. J Cell Biol. 1993 Jun;121(6):1299–1310. doi: 10.1083/jcb.121.6.1299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ojakian G. K., Schwimmer R. The polarized distribution of an apical cell surface glycoprotein is maintained by interactions with the cytoskeleton of Madin-Darby canine kidney cells. J Cell Biol. 1988 Dec;107(6 Pt 1):2377–2387. doi: 10.1083/jcb.107.6.2377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patterson S., Gross J., Oxford J. S. The intracellular distribution of influenza virus matrix protein and nucleoprotein in infected cells and their relationship to haemagglutinin in the plasma membrane. J Gen Virol. 1988 Aug;69(Pt 8):1859–1872. doi: 10.1099/0022-1317-69-8-1859. [DOI] [PubMed] [Google Scholar]
- Pattnaik A. K., Brown D. J., Nayak D. P. Formation of influenza virus particles lacking hemagglutinin on the viral envelope. J Virol. 1986 Dec;60(3):994–1001. doi: 10.1128/jvi.60.3.994-1001.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pearce-Pratt R., Malamud D., Phillips D. M. Role of the cytoskeleton in cell-to-cell transmission of human immunodeficiency virus. J Virol. 1994 May;68(5):2898–2905. doi: 10.1128/jvi.68.5.2898-2905.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perotti M. E., Tan X., Phillips D. M. Directional budding of human immunodeficiency virus from monocytes. J Virol. 1996 Sep;70(9):5916–5921. doi: 10.1128/jvi.70.9.5916-5921.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pons M. W. The inhibition of influenza virus RNA synthesis by actinomycin D and cycloheximide. Virology. 1973 Jan;51(1):120–128. doi: 10.1016/0042-6822(73)90372-3. [DOI] [PubMed] [Google Scholar]
- Rey O., Nayak D. P. Nuclear retention of M1 protein in a temperature-sensitive mutant of influenza (A/WSN/33) virus does not affect nuclear export of viral ribonucleoproteins. J Virol. 1992 Oct;66(10):5815–5824. doi: 10.1128/jvi.66.10.5815-5824.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rindler M. J., Ivanov I. E., Sabatini D. D. Microtubule-acting drugs lead to the nonpolarized delivery of the influenza hemagglutinin to the cell surface of polarized Madin-Darby canine kidney cells. J Cell Biol. 1987 Feb;104(2):231–241. doi: 10.1083/jcb.104.2.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rutter G., Mannweiler K. Alterations of actin-containing structures in BHK21 cells infected with Newcastle disease virus and vesicular stomatitis virus. J Gen Virol. 1977 Nov;37(2):233–242. doi: 10.1099/0022-1317-37-2-233. [DOI] [PubMed] [Google Scholar]
- Sanders M. C., Wang Y. L. Exogenous nucleation sites fail to induce detectable polymerization of actin in living cells. J Cell Biol. 1990 Feb;110(2):359–365. doi: 10.1083/jcb.110.2.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanderson C. M., Avalos R., Kundu A., Nayak D. P. Interaction of Sendai viral F, HN, and M proteins with host cytoskeletal and lipid components in Sendai virus-infected BHK cells. Virology. 1995 Jun 1;209(2):701–707. doi: 10.1006/viro.1995.1308. [DOI] [PubMed] [Google Scholar]
- Sanderson C. M., Wu H. H., Nayak D. P. Sendai virus M protein binds independently to either the F or the HN glycoprotein in vivo. J Virol. 1994 Jan;68(1):69–76. doi: 10.1128/jvi.68.1.69-76.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scholtissek C., Kruczinna R., Rott R., Klenk H. D. Characteristics of an influenza mutant temperature-sensitive for viral RNA synthesis. Virology. 1974 Apr;58(2):317–322. doi: 10.1016/0042-6822(74)90067-1. [DOI] [PubMed] [Google Scholar]
- Scholtissek C., Rott R. Synthesis in vivo of influenza virus plus and minus strand RNA and its preferential inhibition by antibiotics. Virology. 1970 Apr;40(4):989–996. doi: 10.1016/0042-6822(70)90145-5. [DOI] [PubMed] [Google Scholar]
- Sheshberadaran H., Lamb R. A. Simian virus 5 membrane protein maturation: expression in virus-infected cells and from a eukaryotic vector. Virology. 1991 Aug;183(2):803–809. doi: 10.1016/0042-6822(91)91015-9. [DOI] [PubMed] [Google Scholar]
- Skehel J. J. Early polypeptide synthesis in influenza virus-infected cells. Virology. 1973 Nov;56(1):394–399. doi: 10.1016/0042-6822(73)90320-6. [DOI] [PubMed] [Google Scholar]
- Skibbens J. E., Roth M. G., Matlin K. S. Differential extractability of influenza virus hemagglutinin during intracellular transport in polarized epithelial cells and nonpolar fibroblasts. J Cell Biol. 1989 Mar;108(3):821–832. doi: 10.1083/jcb.108.3.821. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sun H. Q., Kwiatkowska K., Yin H. L. Actin monomer binding proteins. Curr Opin Cell Biol. 1995 Feb;7(1):102–110. doi: 10.1016/0955-0674(95)80051-4. [DOI] [PubMed] [Google Scholar]
- Sundell C. L., Singer R. H. Requirement of microfilaments in sorting of actin messenger RNA. Science. 1991 Sep 13;253(5025):1275–1277. doi: 10.1126/science.1891715. [DOI] [PubMed] [Google Scholar]
- Sveda M. M., Markoff L. J., Lai C. J. Influenza virus hemagglutinin containing an altered hydrophobic carboxy terminus accumulates intracellularly. J Virol. 1984 Jan;49(1):223–228. doi: 10.1128/jvi.49.1.223-228.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tashiro M., Seto J. T., Klenk H. D., Rott R. Possible involvement of microtubule disruption in bipolar budding of a Sendai virus mutant, F1-R, in epithelial MDCK cells. J Virol. 1993 Oct;67(10):5902–5910. doi: 10.1128/jvi.67.10.5902-5910.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whittaker G., Bui M., Helenius A. Nuclear trafficking of influenza virus ribonuleoproteins in heterokaryons. J Virol. 1996 May;70(5):2743–2756. doi: 10.1128/jvi.70.5.2743-2756.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whittaker G., Kemler I., Helenius A. Hyperphosphorylation of mutant influenza virus matrix protein, M1, causes its retention in the nucleus. J Virol. 1995 Jan;69(1):439–445. doi: 10.1128/jvi.69.1.439-445.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yasuda J., Bucher D. J., Ishihama A. Growth control of influenza A virus by M1 protein: analysis of transfectant viruses carrying the chimeric M gene. J Virol. 1994 Dec;68(12):8141–8146. doi: 10.1128/jvi.68.12.8141-8146.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ye Z., Robinson D., Wagner R. R. Nucleus-targeting domain of the matrix protein (M1) of influenza virus. J Virol. 1995 Mar;69(3):1964–1970. doi: 10.1128/jvi.69.3.1964-1970.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang J., Lamb R. A. Characterization of the membrane association of the influenza virus matrix protein in living cells. Virology. 1996 Nov 15;225(2):255–266. doi: 10.1006/viro.1996.0599. [DOI] [PubMed] [Google Scholar]
- Zhirnov O. P. Isolation of matrix protein M1 from influenza viruses by acid-dependent extraction with nonionic detergent. Virology. 1992 Jan;186(1):324–330. doi: 10.1016/0042-6822(92)90090-c. [DOI] [PubMed] [Google Scholar]