Nothing Special   »   [go: up one dir, main page]

Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Jan;70(1):55–61. doi: 10.1128/jvi.70.1.55-61.1996

Complete inhibition of virion assembly in vivo with mutant procapsid RNA essential for phage phi 29 DNA packaging.

M Trottier 1, C Zhang 1, P Guo 1
PMCID: PMC189787  PMID: 8523569

Abstract

A highly efficient method for the inhibition of bacteriophage phi 29 assembly was developed with the use of mutant forms of the viral procapsid (or packaging) RNA (pRNA) indispensable for phi 29 DNA packaging. Phage phi 29 assembly was severely reduced in vitro in the presence of mutant pRNA and completely blocked in vivo when the host cell expressed mutant pRNA. Addition of 45% mutant pRNA resulted in a reduction of infectious virion production by 4 orders of magnitude, indicating that factors involved in viral assembly can be targets for efficient and specific antiviral treatment. The mechanism leading to the high efficiency of inhibition was attributed to two pivotal features. First, the pRNA contains two separate, essential functional domains, one for procapsid binding and the other for a DNA-packaging role other than procapsid binding. Mutation of the DNA-packaging domain resulted in a pRNA with no DNA-packaging activity but intact procapsid binding competence. Second, multiple copies of the pRNA were involved in the packaging of one genome. This higher-order dependence of pRNA in viral replication concomitantly resulted in its higher-order inhibitory effect. This finding suggested that the collective DNA-packaging activity of multiple copies of pRNA could be disrupted by the incorporation of perhaps an individual mutant pRNA into the group. Although this mutant pRNA could not be used for the inhibition of the replication of other viruses directly, the principle of using molecules with two functional domains and multiple-copy involvement as targets for antiviral agents could be applied to certain viral structural proteins, enzymes, and other factors or RNAs involved in the viral life cycle. This principle also implies a strategy for gene therapy, intracellular immunization, or construction of transgenic plants resistant to viral infection.

Full Text

The Full Text of this article is available as a PDF (228.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson D., Bodley J. W. Role of RNA in bacteriophage phi 29 DNA packaging. J Struct Biol. 1990 Jul-Sep;104(1-3):70–74. doi: 10.1016/1047-8477(90)90059-l. [DOI] [PubMed] [Google Scholar]
  2. Bailey S., Wichitwechkarn J., Johnson D., Reilly B. E., Anderson D. L., Bodley J. W. Phylogenetic analysis and secondary structure of the Bacillus subtilis bacteriophage RNA required for DNA packaging. J Biol Chem. 1990 Dec 25;265(36):22365–22370. [PubMed] [Google Scholar]
  3. Bazinet C., King J. The DNA translocating vertex of dsDNA bacteriophage. Annu Rev Microbiol. 1985;39:109–129. doi: 10.1146/annurev.mi.39.100185.000545. [DOI] [PubMed] [Google Scholar]
  4. Black L. W. DNA packaging in dsDNA bacteriophages. Annu Rev Microbiol. 1989;43:267–292. doi: 10.1146/annurev.mi.43.100189.001411. [DOI] [PubMed] [Google Scholar]
  5. Brückner R. A series of shuttle vectors for Bacillus subtilis and Escherichia coli. Gene. 1992 Dec 1;122(1):187–192. doi: 10.1016/0378-1119(92)90048-t. [DOI] [PubMed] [Google Scholar]
  6. Burns C. M., Chan H. L., DuBow M. S. In vitro maturation and encapsidation of the DNA of transposable Mu-like phage D108. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6092–6096. doi: 10.1073/pnas.87.16.6092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Donate L. E., Carrascosa J. L. Characterization of a versatile in vitro DNA-packaging system based on hybrid lambda/phi 29 proheads. Virology. 1991 Jun;182(2):534–544. doi: 10.1016/0042-6822(91)90594-2. [DOI] [PubMed] [Google Scholar]
  8. Grimes S., Anderson D. Cleaving the prohead RNA of bacteriophage phi 29 alters the in vitro packaging of restriction fragments of DNA-gp3. J Mol Biol. 1989 Sep 5;209(1):101–108. doi: 10.1016/0022-2836(89)90173-3. [DOI] [PubMed] [Google Scholar]
  9. Guerrier-Takada C., Gardiner K., Marsh T., Pace N., Altman S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell. 1983 Dec;35(3 Pt 2):849–857. doi: 10.1016/0092-8674(83)90117-4. [DOI] [PubMed] [Google Scholar]
  10. Guo P. X., Bailey S., Bodley J. W., Anderson D. Characterization of the small RNA of the bacteriophage phi 29 DNA packaging machine. Nucleic Acids Res. 1987 Sep 11;15(17):7081–7090. doi: 10.1093/nar/15.17.7081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Guo P. X., Erickson S., Anderson D. A small viral RNA is required for in vitro packaging of bacteriophage phi 29 DNA. Science. 1987 May 8;236(4802):690–694. doi: 10.1126/science.3107124. [DOI] [PubMed] [Google Scholar]
  12. Guo P. X., Erickson S., Xu W., Olson N., Baker T. S., Anderson D. Regulation of the phage phi 29 prohead shape and size by the portal vertex. Virology. 1991 Jul;183(1):366–373. doi: 10.1016/0042-6822(91)90149-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Guo P. X., Rajagopal B. S., Anderson D., Erickson S., Lee C. S. sRNA of phage phi 29 of Bacillus subtilis mediates DNA packaging of phi 29 proheads assembled in Escherichia coli. Virology. 1991 Nov;185(1):395–400. doi: 10.1016/0042-6822(91)90787-c. [DOI] [PubMed] [Google Scholar]
  14. Guo P., Grimes S., Anderson D. A defined system for in vitro packaging of DNA-gp3 of the Bacillus subtilis bacteriophage phi 29. Proc Natl Acad Sci U S A. 1986 May;83(10):3505–3509. doi: 10.1073/pnas.83.10.3505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hatfield L., Hearing P. The NFIII/OCT-1 binding site stimulates adenovirus DNA replication in vivo and is functionally redundant with adjacent sequences. J Virol. 1993 Jul;67(7):3931–3939. doi: 10.1128/jvi.67.7.3931-3939.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kawamura F., Ito J. Transcription of the genome of bacteriophage phi 29: isolation and mapping of the major early mRNA synthesized in vivo and in vitro. J Virol. 1977 Sep;23(3):562–577. doi: 10.1128/jvi.23.3.562-577.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kruger K., Grabowski P. J., Zaug A. J., Sands J., Gottschling D. E., Cech T. R. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell. 1982 Nov;31(1):147–157. doi: 10.1016/0092-8674(82)90414-7. [DOI] [PubMed] [Google Scholar]
  18. Lee C. S., Guo P. A highly sensitive system for the in vitro assembly of bacteriophage phi 29 of Bacillus subtilis. Virology. 1994 Aug 1;202(2):1039–1042. doi: 10.1006/viro.1994.1434. [DOI] [PubMed] [Google Scholar]
  19. Lee C. S., Guo P. In vitro assembly of infectious virions of double-stranded DNA phage phi 29 from cloned gene products and synthetic nucleic acids. J Virol. 1995 Aug;69(8):5018–5023. doi: 10.1128/jvi.69.8.5018-5023.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lee C. S., Guo P. Sequential interactions of structural proteins in phage phi 29 procapsid assembly. J Virol. 1995 Aug;69(8):5024–5032. doi: 10.1128/jvi.69.8.5024-5032.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Martín A. C., López R., García P. Nucleotide sequence and transcription of the left early region of Streptococcus pneumoniae bacteriophage Cp-1 coding for the terminal protein and the DNA polymerase. Virology. 1995 Aug 1;211(1):21–32. doi: 10.1006/viro.1995.1375. [DOI] [PubMed] [Google Scholar]
  22. Murialdo H. Bacteriophage lambda DNA maturation and packaging. Annu Rev Biochem. 1991;60:125–153. doi: 10.1146/annurev.bi.60.070191.001013. [DOI] [PubMed] [Google Scholar]
  23. Parsons B. L., Pickup D. J. Transcription of orthopoxvirus telomeres at late times during infection. Virology. 1990 Mar;175(1):69–80. doi: 10.1016/0042-6822(90)90187-v. [DOI] [PubMed] [Google Scholar]
  24. Reid R. J., Bodley J. W., Anderson D. Characterization of the prohead-pRNA interaction of bacteriophage phi 29. J Biol Chem. 1994 Feb 18;269(7):5157–5162. [PubMed] [Google Scholar]
  25. Reid R. J., Bodley J. W., Anderson D. Identification of bacteriophage phi 29 prohead RNA domains necessary for in vitro DNA-gp3 packaging. J Biol Chem. 1994 Mar 25;269(12):9084–9089. [PubMed] [Google Scholar]
  26. Reid R. J., Zhang F., Benson S., Anderson D. Probing the structure of bacteriophage phi 29 prohead RNA with specific mutations. J Biol Chem. 1994 Jul 15;269(28):18656–18661. [PubMed] [Google Scholar]
  27. Sarver N., Cantin E. M., Chang P. S., Zaia J. A., Ladne P. A., Stephens D. A., Rossi J. J. Ribozymes as potential anti-HIV-1 therapeutic agents. Science. 1990 Mar 9;247(4947):1222–1225. doi: 10.1126/science.2107573. [DOI] [PubMed] [Google Scholar]
  28. Sogo J. M., Inciarte M. R., Corral J., Viñuela E., Salas M. RNA polymerase binding sites and transcription map of the DNA of Bacillus subtilis phage phi29. J Mol Biol. 1979 Feb 5;127(4):411–436. doi: 10.1016/0022-2836(79)90230-4. [DOI] [PubMed] [Google Scholar]
  29. Wichitwechkarn J., Bailey S., Bodley J. W., Anderson D. Prohead RNA of bacteriophage phi 29: size, stoichiometry and biological activity. Nucleic Acids Res. 1989 May 11;17(9):3459–3468. doi: 10.1093/nar/17.9.3459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wichitwechkarn J., Johnson D., Anderson D. Mutant prohead RNAs in the in vitro packaging of bacteriophage phi 29 DNA-gp3. J Mol Biol. 1992 Feb 20;223(4):991–998. doi: 10.1016/0022-2836(92)90257-k. [DOI] [PubMed] [Google Scholar]
  31. Zhang C., Garver K., Guo P. Inhibition of phage phi 29 assembly by antisense oligonucleotides targeting viral pRNA essential for DNA packaging. Virology. 1995 Aug 20;211(2):568–576. doi: 10.1006/viro.1995.1439. [DOI] [PubMed] [Google Scholar]
  32. Zhang C., Lee C. S., Guo P. The proximate 5' and 3' ends of the 120-base viral RNA (pRNA) are crucial for the packaging of bacteriophage phi 29 DNA. Virology. 1994 May 15;201(1):77–85. doi: 10.1006/viro.1994.1267. [DOI] [PubMed] [Google Scholar]
  33. Zhang C., Trottier M., Guo P. Circularly permuted viral pRNA active and specific in the packaging of bacteriophage phi 29 DNA. Virology. 1995 Mar 10;207(2):442–451. doi: 10.1006/viro.1995.1103. [DOI] [PubMed] [Google Scholar]
  34. Zuker M. On finding all suboptimal foldings of an RNA molecule. Science. 1989 Apr 7;244(4900):48–52. doi: 10.1126/science.2468181. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES