Abstract
The use of transgenic plants as vaccine production systems was described recently. We report on the immunological response elicited by two recombinant versions of the glycoprotein S from the swine-transmissible gastroenteritis coronavirus (TGEV) expressed in transgenic plants. Arabidoposis plants were genetically transformed with cDNAs constructs encoding either the N-terminal domain (amino acid residues 1–750) or the full-length glycoprotein S of TGEV, responsible for the neutralizing antibody induction against the virus, under the control of the cauliflower mosaic virus 35S (CaMV 35S) promoter. Genomic DNA and mRNA analyses of leaf extracts from transformed plants demonstrated the incorporation of the foreign cDNA into the arabidopsis genome, as well as their transcription. Expression of recombinant polypeptides were observed in most transgenic plants by ELISA using specific antibodies. Mice immunized with leaf extracts from transgenic plants developed antibodies that reacted specifically with TGEV in ELISA, immunoprecipitated the virus-induced protein, and neutralized the virus infectivity. From these results, we conclude that transgenic plants expressing glycoprotein S polypeptides may possibly be used as a source of recombinant antigen for vaccine production.
Footnotes
M. Zouhair AttasiH. L. Bachrach
References
REFERENCES
- 1.Arakawa T., Chong D.K.X., Langridge W.H.R. Efficacy of a food plant-based oral cholera toxin B subunit vaccine. BioTechniques. 1998;16:292–297. doi: 10.1038/nbt0398-292. [DOI] [PubMed] [Google Scholar]
- 2.Baulcombe D.C., Saunders G.R., Bevan M.W., Mayo M.A., Harrison B.D. Expression of biologically active viral satellite RNA from nuclear genome of transformed plants. Nature. 1986;321:446–449. [Google Scholar]
- 3.Bechtold N., Ellis J., Pelletier G. AgrobacteriumArabidopsis thaliana. C. R. Acad. Sci. Paris Sci. Vie. 1993;316:1194–1199. [Google Scholar]
- 4.Bullido R., Alonso F., Gómez de Moral M., Ezquerra A., Alvarez B., Ortuño E., Dominguez J. Monoclonal antibody 2F4/11 recognizes the α chain of the porcine β2. J. Immunol. Methods. 1996;195:125–134. doi: 10.1016/0022-1759(96)00095-6. [DOI] [PubMed] [Google Scholar]
- 5.Carrillo C., Wigdorovitz A., Oliveros J.C., Zamorano P.I., Sadir A.M., Gómez N., Salinas J., Escribano J.M., Borca M.V. Protective immune response to foot-and-mouth disease virus with VP1 expressed in transgenic plants. J. Virol. 1998;72:1688–1690. doi: 10.1128/jvi.72.2.1688-1690.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Correa I., Jiménez G., Suñé C., Bullido M.J., Enjuanes L. Antigenic structure of E2-glycoprotein of transmissible gastroenteritis coronavirus. Virus Res. 1988;10:77–94. doi: 10.1016/0168-1702(88)90059-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.De Diego M., Laviada M.D., Enjuanes L., Escribano J.M. Epitope specificity of protective lactogenic immunity against swine transmissible gastroenteritis virus. J. Virol. 1992;66:6502–6508. doi: 10.1128/jvi.66.11.6502-6508.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.De Diego M., Rodrı́guez F., Alcaraz C., Gómez N., Alonso C., Escribano J.M. Characterization of the IgA and subclass IgG responses to neutralizing epitopes after infection of pregnant sows with the transmissible gastroenteritis virus or the antigenically related porcine respiratory coronavirus. J. Gen. Virol. 1994;75:2585–2593. doi: 10.1099/0022-1317-75-10-2585. [DOI] [PubMed] [Google Scholar]
- 9.Delmas B., Rasschaert D., Godet M., Gelfi J., Laude H. Four major antigenic sites of the coronavirus transmissible gastroenteritis virus are located on the amino-terminal half of spike glycoprotein S. J. Gen. Virol. 1990;71:1313–1323. doi: 10.1099/0022-1317-71-6-1313. [DOI] [PubMed] [Google Scholar]
- 10.Faye L., Fitchette-Laine A.C., Gomord V., Chekkati A., Delaunay A.M., Driouich A. Detection, biosynthesis and some functions of glycans N-linked to plant secreted proteins. Soc. Exp. Biol. Semin. Ser. 1993;53:213–242. [Google Scholar]
- 11.Garwes D.J., Lucas M.H., Higgins D.A., Pike B.V., Cartwright S.F. Antigenicity of structural components from porcine transmissible gastroenteritis virus. Vet. Microbiol. 1978;3:179–190. [Google Scholar]
- 12.Gebauer F., Posthumus W.P.A., Correa I., Suñé C., Smerdou C., Sánchez C.M., Lenstra J.A., Leloen R.H., Enjuanes L. Residues involved in the antigenic sites of transmissible gastroenteritis coronavirus S glycoprotein. Virology. 1991;183:225–238. doi: 10.1016/0042-6822(91)90135-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Haq T.A., Mason H.S., Clements J.D., Arntzen C.J. Oral immunization with a recombinant bacterial antigen produced in transgenic plants. Science. 1995;268:714–716. doi: 10.1126/science.7732379. [DOI] [PubMed] [Google Scholar]
- 14.Haughn G., Somerville C. Sulfonylurea-resistant mutants ofArabidopsis thaliana. Mol. Gen. Genet. 1986;204:430–434. [Google Scholar]
- 15.Hu S., Bruszewski J., Smallig R., Browne J.K. Immunobiology of Proteins and Peptides. II. Viral and Bacterial Antigens. Plenum Press; New York: 1987. Studies of TGEV spike protein GP195 expressed inE coli. p. 63. [Google Scholar]
- 16.Jiménez G., Correa I., Melgosa M.P., Bullido M.J., Enjuanes L. Critical epitopes in transmissible gastroenteritis virus neutralization. J. Virol. 1986;60:131–139. doi: 10.1128/jvi.60.1.131-139.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Mason H.S., Lam D.M.-K., Arntzen C.J. Expression of hepatitis B surface antigen in transgenic plants. Proc. Natl. Acad. Sci. USA. 1992;89:11745–11749. doi: 10.1073/pnas.89.24.11745. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Mason H.S., Ball J.M., Shi J.-J., Jiang X., Estes M.K., Arntzen C.J. Expression of Norwalk virus capsid protein in transgenic tobacco and potato and its oral immunogenicity in mice. Proc. Natl. Acad. Sci. USA. 1996;93:5335–5340. doi: 10.1073/pnas.93.11.5335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.McGarvey P.B., Hammond J., Dienelt M.M., Hooper D.C., Fu Z.F., Dietzschold B., Koprowski H., Michaels F.H. Expression of the rabies virus glycoprotein in transgenic tomatoes. BioTechnology. 1995;13:1484–1487. doi: 10.1038/nbt1295-1484. [DOI] [PubMed] [Google Scholar]
- 20.Saif L.J., Bohl E.H. Passive immunity in transmissible gastroenteritis of swine: Immunoglobulin classes of milk antibodies after oral-intranasal inoculation of sows with a live low cell culture-passaged virus. Am. J. Vet. Res. 1979;40:115–117. [PubMed] [Google Scholar]
- 21.Sánchez C.M., Jiménez G., Laviada M.D., Correa I., Suñé C., Bullido M.J., Gebauer F., Smerdou C., Callebaut P., Escribano J.M., Enjuanes L. Antigenic homology among coronaviruses related to transmissible gastroenteritis virus. Virology. 1990;174:410–417. doi: 10.1016/0042-6822(90)90094-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Smerdou C., Urniza A., Curtis R., III, Enjuanes L. Characterization of transmissible gastroenteritis coronavirus S protein expression products in avirulentS. typhimurium. Vet. Microbiol. 1996;48:87–100. doi: 10.1016/0378-1135(95)00141-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Tacket C.O., Mason H.S., Losonsky G., Clements J.D., Levine M.M., Arntzen C.J. Immunogenicity in humans of a recombinant bacterial antigen delivered in a transgenic potato. Nat. Med. 1998;4:607–609. doi: 10.1038/nm0598-607. [DOI] [PubMed] [Google Scholar]
- 24.Thanavala Y., Yang Y.-F., Lyons P., Mason H.S., Arntzen C. Immunogenicity of transgenic plant-derived hepatitis B surface antigen. Proc. Natl. Acad. Sci. USA. 1995;92:3358–3361. doi: 10.1073/pnas.92.8.3358. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Torres J.M., Alonso C., Ortega A., Mittal S., Graham F., Enjuanes L. Tropism of human adenovirus type 5-based vectors in swine and their ability to protect against transmissible gastroenteritis coronavirus. J. Virol. 1996;70:3770–3780. doi: 10.1128/jvi.70.6.3770-3780.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Torres J.M., Sánchez C., Suñé C., Smerdou C., Prevec L., Graham F., Enjuanes L. Induction of antibodies protecting against transmissible gastroenteritis coronavirus (TGEV) by recombinant adenovirus expressing TGEV spike protein. Virology. 1995;213:503–516. doi: 10.1006/viro.1995.0023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Wesley R.D., Woods R.D., Correa I., Enjuanes L. Lack of protectionin vivo. Vet. Microbiol. 1988;18:197–203. doi: 10.1016/0378-1135(88)90087-9. [DOI] [PMC free article] [PubMed] [Google Scholar]