Nothing Special   »   [go: up one dir, main page]

Przejdź do zawartości

Ciało algebraicznie domknięte

Z Wikipedii, wolnej encyklopedii

Ciało algebraicznie domknięte – takie ciało, w którym każdy wielomian stopnia co najmniej pierwszego jednej zmiennej ma pierwiastek w [1]

Równoważnie można je zdefiniować jako ciało, które nie ma nietrywialnych rozszerzeń algebraicznych: z tego, że jest rozszerzeniem algebraicznym wynika, że

Każde ciało jest podciałem pewnego ciała algebraicznie domkniętego. Rozszerzenie ciała które jest algebraiczne i jest ciałem algebraicznie domkniętym, nazywamy domknięciem algebraicznym ciała Za przykład niech posłuży ciało liczb rzeczywistych. Ciało to nie jest algebraicznie domknięte: wielomian nie ma pierwiastków w tym ciele. Domknięciem algebraicznym ciała liczb rzeczywistych jest jednak ciało liczb zespolonych (dla powyższego wielomianu pierwiastkami w ciele liczb zespolonych są oraz ).

Ponieważ dla każdego ciała istnieje jego rozszerzenie będące ciałem algebraicznie domkniętym, a zbiór elementów algebraicznych nad należących do jest rozszerzeniem algebraicznym oraz ciałem algebraicznie domkniętym, dla każdego ciała istnieje jego algebraiczne domknięcie.

Twierdzenie mówiące o tym, że ciało liczb zespolonych jest ciałem algebraicznie domkniętym, nazywa się „zasadniczym twierdzeniem algebry” i pociąga za sobą istotne konsekwencje, jak chociażby fakt, że każdą macierz o współczynnikach zespolonych można sprowadzić do postaci Jordana.

Jedną z najważniejszych własności ciał algebraicznie domkniętych jest twierdzenie Hilberta o zerach:

Jeśli jest ciałem algebraicznie domkniętym, to dla każdych liczb naturalnych i dla dowolnych wielomianów o współczynnikach z ciała następujące warunki są równoważne:

  • układ równań ma rozwiązanie w
  • ideał jest ideałem właściwym pierścienia wielomianów

Innymi słowy, taki układ równań nie ma rozwiązań wtedy i tylko wtedy, gdy jest sprzeczny, tzn. gdy istnieją wielomiany o współczynnikach z ciała takie, że

Domknięcie algebraiczne ciała

[edytuj | edytuj kod]

Nie istnieją ciała skończone, algebraicznie domknięte. Oznacza to, że istnieją ciała nieskończone o skończonej charakterystyce. Przykładem takiego ciała może być algebraiczne domknięcie ciała

Dla każdego istnieje jedyne ciało o elementach. Na przykład ciało można reprezentować jako gdzie

Dla każdego wtedy i tylko wtedy, gdy jest dzielnikiem liczby Więc dla każdego można znaleźć skończone ciało zawierające i np ciało Z tego możemy wywnioskować, że suma wszystkich ciał jest znowu ciałem, które oznaczamy

Każdy wielomian ze współczynnikami w ciele ma w rzeczywistości współczynniki w pewnym ciele skończonym więc ma pierwiastek w pewnym skończonym rozszerzeniu ciała to rozszerzenie musi być ciałem skończonym o charakterystyce 3, tzn. pewnym ciałem

Więc ciało (zbiór nieskończony, ale przeliczalny) jest algebraicznie domknięte.

Domknięcie algebraiczne ciała liczb wymiernych

[edytuj | edytuj kod]

Domknięcie algebraiczne ciała liczb wymiernych nazywamy ciałem liczb algebraicznych. Jest ono (przeliczalnym) podciałem ciała liczb zespolonych; elementy ciała nazywamy liczbami algebraicznymi; pozostałe liczby zespolone nazywamy liczbami przestępnymi. Georg Cantor udowodnił, że ciało jest przeliczalne, a ciała i są nieprzeliczalne. Dowód Cantora, używający metod z zapoczątkowanej przez niego teorii monogości, był nową konstrukcją liczb przestępnych; Liouville w 1844 r. znalazł liczby przestępne używając metody z teorii liczb.

Nieprzywiedlność wielomianów

[edytuj | edytuj kod]

Ciało jest ciałem algebraicznie domkniętym wtedy i tylko wtedy, gdy jedynymi nieprzywiedlnymi w nim wielomianami są wielomiany stopnia pierwszego[2].

Przypisy

[edytuj | edytuj kod]
  1. Krzysztof Majcher, Algebra [online], 18 maja 2020, s. 2.
  2. Bolesław Gleichgewicht, Algebra, Oficyna Wydawnicza GiS, Wrocław 2004, ISBN 978-83-89020-35-2, s. 311, Wniosek 16.2.

Bibliografia

[edytuj | edytuj kod]