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We present the analysis of linear stability and causality of the third order relativistic hydrodynamics
derived in the PRC 88, 021903 [1]. Here a third order evolution equation for shear stress tensor is
derived from relativistic Boltzmann equation using Chapman-Enskog expansion. We perturb the
fluid system, which is initially in equilibrium and at rest, by slightly changing the energy density
and fluid velocity to study its propagation. The dispersion relation for longitudinal and transverse
modes of propagation is derived. It was found that there exists an acausal mode in theory around
the static equilibrium. Our results match with the more detailed and elaborate analysis done in
[3].
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1. Introduction

The hot and dense QCD medium created in high-energetic heavy-ion collisions behaves like
a fluid system and is successfully studied by tools of relativistic hydrodynamics. A theory of
relativistic hydrodynamics should be causal and stable so that the disturbance in the fluid medium
propagates with finite velocity and decays in time. Causality is the restriction imposed by special
relativity, which doesn’t allow any information to travel faster than the speed of light. The earliest
formulations of hydrodynamic equations for non-ideal fluids were covariant generalizations of the
Navier-Stokes equations of Newtonian non-perfect fluids by Eckart [4] and Landau-Lifshitz [5].
These are first-order theories that involve parabolic differential equations and violate causality
and face instability problems. There were many attempts to get rid of acausality and remove the
instability of first-order hydrodynamics, and to obtain a hyperbolic second-order theory, which
led to the derivation of Israel-Stewart equations. In this generalized theory, dissipative fluxes
such as heat flux, shear, and bulk stresses are treated as independent variables, and their evolution
equations are hyperbolic in nature. The second-order theories allow the existence of a relaxation
time for dissipative processes, so the system doesn’t return to the equilibrium states instantaneously,
unlike Navier-Stokes theory, which restores causality. Hiscock and Lindblom later showed that the
perturbations evolve causally in Israel-Stewart theory around equilibrium states. It was also shown
that causality ensures the linear stability of homogeneous equilibrium states [6]. Despite the success
of Israel-Stewart theory in explaining a wide range of collective phenomena observed in heavy-ion
collisions, it has resulted in unphysical effects such as reheating of the expanding medium [7] and
negative longitudinal pressure [8]. This motivates the improvisation of the relativistic second-
order theory by incorporating higher-order corrections. In Ref. [1] a new relativistic third-order
evolution equation for the shear stress tensor from kinetic theory is derived. Here we are analyzing
the causality and stability properties of the third-order relativistic hydrodynamics by studying the
evolution of perturbations in the fluid.

2. Analysis

Third order evolution equation for the shear stress tensor, 𝜋𝜇𝜈 derived in Ref. [1, 2] from the
relativistic Boltzmann equation using the Chapman-Enskog method is
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= − ¤𝜋 ⟨𝜇𝜈⟩ + 2𝛽𝜋𝜎

𝜇𝜈 + 2𝜋 ⟨𝜇
𝛾 𝜔𝜈⟩𝛾 − 10

7
𝜋
⟨𝜇
𝛾 𝜎𝜈⟩𝛾 − 4

3
𝜋𝜇𝜈𝜃 + 25

7𝛽𝜋

𝜋𝜌 ⟨𝜇𝜔𝜈⟩𝛾𝜋𝜌𝛾 −
1

3𝛽𝜋

𝜋
⟨𝜇
𝛾 𝜋𝜈⟩𝛾𝜃

− 38
245𝛽𝜋

𝜋𝜇𝜈𝜋𝜌𝛾𝜎𝜌𝛾 −
22

49𝛽𝜋

𝜋𝜌 ⟨𝜇𝜋𝜈⟩𝛾𝜎𝜌𝛾 −
24
35

∇ ⟨𝜇
(
𝜋𝜈⟩𝛾 ¤𝑢𝛾𝜏𝜋

)
+ 4

35
∇ ⟨𝜇

(
𝜏𝜋∇𝛾𝜋

𝜈⟩𝛾
)

− 2
7
∇𝛾

(
𝜏𝜋∇ ⟨𝜇𝜋𝜈⟩𝛾

)
+ 12

7
∇𝛾

(
𝜏𝜋 ¤𝑢 ⟨𝜇𝜋𝜈⟩𝛾

)
− 1

7
∇𝛾

(
𝜏𝜋∇𝛾𝜋 ⟨𝜇𝜈⟩

)
+ 6

7
∇𝛾

(
𝜏𝜋 ¤𝑢𝛾𝜋 ⟨𝜇𝜈⟩

)
− 2

7
𝜏𝜋𝜔

𝜌 ⟨𝜇𝜔𝜈⟩𝛾𝜋𝜌𝛾 −
2
7
𝜏𝜋𝜋

𝜌 ⟨𝜇𝜔𝜈⟩𝛾𝜔𝜌𝛾 −
10
63

𝜏𝜋𝜋
𝜇𝜈𝜃2 + 26

21
𝜏𝜋𝜋

⟨𝜇
𝛾 𝜔𝜈⟩𝛾𝜃, (1)

where we use the notation ¤𝐴 ≡ 𝑢𝜇𝜕𝜇𝐴 for co-moving derivative, 𝜃 ≡ 𝜕𝜇𝑢
𝜇 for the expansion scalar,

𝜎𝜌𝛾 ≡ ∇(𝜌𝑢𝛾) − (𝜃/3)Δ𝜌𝛾 for the velocity stress tensor, 𝜔𝜇𝜈 ≡ (∇𝜇𝑢𝜈 − ∇𝜈𝑢𝜇)/2 is the vorticity
tensor and 𝜏𝜋 is the shear relaxation time. The notation 𝐴 ⟨𝜇𝜈⟩ ≡ Δ

𝜇𝜈

𝛼𝛽
𝐴𝛼𝛽 represents traceless

2



P
o
S
(
P
A
N
I
C
2
0
2
1
)
2
5
0

Stability and Causality of the relativistic third order hydrodynamics Jobin Sebastian

symmetric projection orthogonal to velocity four-vector 𝑢𝜇. The relativistic Navier-Stokes equation
takes the form as follows,

¤𝜖 + (𝜖 + 𝑝)𝜕𝜇𝑢𝜇 − Π𝜇𝜈∇(𝜇𝑢𝜈) = 0 ,
(𝜖 + 𝑝) ¤𝑢𝛼 − ∇𝛼𝑝 + Δ𝛼

𝜈 𝜕𝜇Π
𝜇𝜈 = 0 , (2)

where 𝜖 and 𝑝 are energy density and pressure respectively. We slightly perturb the energy density
and the fluid velocity of the system that is initially in equilibrium and at rest as,

𝜖 = 𝜖0 + 𝛿𝜖 (𝑡, 𝑥), 𝑢𝜇 = (1, ®0) + 𝛿𝑢𝜇 (𝑡, 𝑥). (3)

Where 𝜖0 is the equilibrium energy density. First, we study the longitudinal propagation of the
perturbation. Keeping only perturbations to first order, eq. (2) becomes,

(𝜖0 + 𝑝0)𝜕𝑡𝛿𝑢𝑥 + 𝜕𝑥 𝑝 + 𝜕𝜇𝛿Π
𝜇𝑥 = 0. (4)

We used 𝑝 = 𝑝0 + 𝛿𝑝 and Π𝜇𝜈 = Π
𝜇𝜈

(0) + 𝛿Π𝜇𝜈 . We have to calculate the last term in the L.H.S
of the above equation using eq. (1). There are total 19 terms in the R.H.S of eq. (1). We evaluate
the contribution of each term to 𝛿Π𝜇𝑥 individually considering only perturbations to the first
order. The linear order terms of perturbations are − ¤𝜋 ⟨𝜇𝜈⟩, 2𝛽𝜋𝜎

𝜇𝜈 , 4
35∇

⟨𝜇 (
𝜏𝜋∇𝛾𝜋
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7∇𝛾

(
𝜏𝜋∇𝛾𝜋 ⟨𝜇𝜈⟩ ) . Therefore we obtain,

𝜕𝜇𝛿𝜋
𝜇𝑥 = −4
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2
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𝑥 + (−𝜏𝜋𝜕𝑡 +
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2
𝑥)𝜕𝜇𝛿𝜋𝜇𝑥 , (5)

where 𝜂0 is the unperturbed shear viscosity coefficient. Using eq. (4), the above equation can be
rewritten as,

𝜕𝜇𝛿𝜋
𝜇𝑥 = − 4
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2
𝑥 ((𝜖0 + 𝑝0)𝜕𝑡𝛿𝑢𝑥 + 𝜕𝑥 𝑝) .

Substituting this back in eq. (4) and using the relation 𝜕𝑥 𝑝 =
𝑑𝑝

𝑑𝜖
𝜕𝑥𝜖 = 𝑐2

𝑠𝜕𝑥𝛿𝜖 , one obtains
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4
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3
𝑥𝛿𝜖 = 0,

where 𝑐𝑠 is the speed of sound. Applying Fourier ansatz

𝛿𝜖 = 𝑒𝑖𝜔𝑡−𝑖𝑘𝑥𝛿𝜖𝜔,𝑘 and 𝛿𝑢𝑖 = 𝑒𝑖𝜔𝑡−𝑖𝑘𝑥𝛿𝑢𝑖𝜔,𝑘 ,

one obtains,

𝑖𝜔(𝜖0 + 𝑝0)𝛿𝑢𝑥 −
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where 𝜔 and 𝑘 are frequency and wave number respectively. We find the dispersion relation for the
longitudinal perturbation as shown in the figure.

Now we check the causality and the stability of transverse modes of propagation. So we
consider the y-component of the eq. (2),

(𝜖0 + 𝑝0)𝜕𝑡𝛿𝑢𝑦 + 𝜕𝜇𝛿Π
𝜇𝑦 = 0. (7)

Following the same method we obtain the dispersion relation for transverse modes,

𝑖𝜔(𝜖0 + 𝑝0)
(
1 + 𝑖𝜔𝜏𝜋 + 8

35
𝜏2
𝜋𝑘

2
)
+ 𝜂0𝑘

2 = 0.

Solving this quadratic equation, we get dispersion relation as shown in the figure.

3. Results and Discussions

From the dispersion relations plotted in Fig. 1, we can see that there exists a nonhydrodynamic
mode in both transverse and longitudinal perturbation which increase as the wave number increase
and doesn’t saturate, thus, the theory displays acausal behavior. The transverse modes of third order
theory are purely imaginary, and the imaginary part of longitudinal modes is always positive, so the
theory is stable.
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Figure 1: The imaginary and real parts of the frequency of the longitudinal and the transverse modes for
perturbation around a static fluid. The red and green curves are propagating modes.
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