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ABSTRACT
Artificial intelligence techniques have been used in the industry to control complex
systems; among these proposals, adaptive Proportional, Integrative, Derivative (PID)
controllers are intelligent versions of the most used controller in the industry.
This work presents an adaptive neuron PD controller and a multilayer neural PD
controller for position tracking of a mobile manipulator. Both controllers are trained
by an extended Kalman filter (EKF) algorithm. Neural networks trained with the
EKF algorithm show faster learning speeds and convergence times than the training
based on backpropagation. The integrative term in PID controllers eliminates the
steady-state error, but it provokes oscillations and overshoot. Moreover, the
cumulative error in the integral action may produce windup effects such as high
settling time, poor performance, and instability. The proposed neural PD controllers
adjust their gains dynamically, which eliminates the steady-state error. Then, the
integrative term is not required, and oscillations and overshot are highly reduced.
Removing the integral part also eliminates the need for anti-windup methodologies
to deal with the windup effects. Mobile manipulators are popular due to their mobile
capability combined with a dexterous manipulation capability, which gives them
the potential for many industrial applications. Applicability of the proposed adaptive
neural controllers is presented by simulating experimental results on a KUKA
Youbot mobile manipulator, presenting different tests and comparisons with the
conventional PID controller and an existing adaptive neuron PID controller.
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INTRODUCTION
Artificial intelligence (AI) is actively present in our society; AI is used for decades in
many relevant areas of our society as the industry, science, entertainment, education,
and others (Bryson, 2019). However, it is essential to remark that interest in AI has risen in
the last decade. Due to this interest, recently, many works have been reported in the
literature in many research areas no name some control, internet of things, natural
language processing, machine vision, medicine, robotics, security, social application,
among others (Bryson, 2019; Maglogiannis, Iliadis & Pimenidis, 2020).

Proportional Integral, Derivative (PID) controllers are a well-studied kind of controller,
which are among the most popular controllers in the industry, mainly for their simplicity
(Åström & Hägglund, 1995; Ogata, 2010). The main drawback of PID controllers
is that they are only adequate for a nominal process; they have a bad performance under
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systems uncertainties in operating conditions and changing environmental conditions
(Tian, Tadé & Tang, 1999). Even though they are usually the first approach when facing a
control problem, even more than other adaptive techniques that have reported more
satisfactory results for real-world problems where time delays, unmodeled dynamics and
uncertainties are present (Tahoun, 2017b).

It is well-known that there exist techniques to improve the selection of conventional
PID parameters; however, most of these techniques are offline methodologies and
usually required knowledge about the model of the system, which not always is
available (Johnson & Moradi, 2006; Visioli, 2006; Ogata, 2010). The use of artificial
intelligence on PID controllers has been used as a tool to improve the performance of PID
controllers adapting its parameters online, adjusting them to the changes of the system
under consideration. Some of these techniques require access to the complete state of
the system and information on its uncertainties and delays, and usually complex
calculations (Tahoun 2015, 2017c, 2020). Among these techniques, neural networks
stand out; their characteristics allow the implementation of easy, fast, and robust PID
controllers known as neural PID controllers, which vary mainly on architecture and
training methodology (Rios et al., 2020b; Tahoun & Arafa, 2020; Hernandez-Barragan
et al., 2020).

Neural PID controllers learning capabilities allow them to adapt themselves during
system operation to unmodeled dynamics, communication time-delays, actuator
saturation, among other issues (Ge, Zhang & Lee, 2004; Lopez-Franco et al., 2017;
Sarangapani, 2018; Gomez-Avila, 2019), which clearly is a better approach than fixed
parameters during the whole operation. Neural adaptive PID controllers have been
presented with single neuron and multilayer schemes. The single neuron controllers have
three inputs, which are the proportional, derivative, and integral errors. The output of the
neuron represents the control action (Rivera-Meja, Léon-Rubio & Arzabala-Contreras,
2012; Jiao et al., 2018; Tang et al., 2020). The multilayer controllers consist of a network
with one hidden layer and one node at the output layer. In the hidden layer, three neurons
represent the proportional, integral and derivative gains. The neuron of the output layer
defines the control action. The inputs of this scheme can be the actual state and the
reference (Chen, He & Zhou, 2015; Zeng et al., 2019). But the inputs can also include the
proportional, derivative, and integral errors (Sento & Kitjaidure, 2016). Adaptive neural
PID controllers trained with the extended Kalman filter (EKF) algorithm based algorithms
have proved to show faster learning speed rates and convergence time than adaptive
neural PID based on backpropagation training methods, which makes EKF training based
neural PID controller more suitable for experimental and real-time tests (Hernandez-
Barragan et al., 2020). Also, training algorithms based on Extended Kalman filter (EKF)
for neural networks have proven to reliable for recurrent and feedforward neural networks
for control applications, presenting real-time applications (Haykin, 2004; Sanchez,
Alanis & Loukianov, 2010; Alanis, Arana-Daniel & Lopez-Franco, 2019; Rios et al., 2020a).

Besides the previously mentioned withdraws of PID controllers, a common problem is
the windup effect, which is the result of accumulative error action due to the integral part
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of the controller. This effect produces saturation on actuators and contributes to low-
performance, overshoot, high settling time, and instability, losing controllability (Visioli,
2006; Kumar & Negi, 2012; Hernandez-Barragan et al., 2020), which is the reason why
anti-windup strategies are important when using PID controllers Tahoun (2017a).
Among the proposed anti-windup strategies in the literature are limiter integrator,
back-calculation, and observer approach (Visioli, 2006; Kumar & Negi, 2012; Kheirkhahan,
2017; Angel, Viola & Paez, 2019). The integral term is important because it eliminates the
steady-state error that the proportional term cannot suppress with a fixed proportional
gain. However, the integral action causes oscillations, overshoot, and the windup effect
mainly on physical implementation.

Mobile manipulator robots combine mobile platforms and robotic arms, extending
operational range and functionality, allowing mobile manipulators to accomplish tasks
that are difficult or non-doable for a manipulator or a mobile platform by themselves
(Lin & Goldenberg, 2001; Li & Ge, 2017). Among these applications: construction,
health-care, nuclear reactor maintenance, manufacturing, military operations, and
planetary exploration. Some of those tasks can risk human lives (Lin & Goldenberg, 2001;
Li & Ge, 2017). However, such advantages come with complexity and difficulty when
designing a control strategy (Li & Ge, 2017). When conventional PID strategies are not
enough, and considering what has been previously stated, adaptive intelligent controllers
appeared as plausible solutions, especially the ones based on neural networks.

The contributions of this paper are summarized as follows: In Hernandez-Barragan
et al. (2020), a single neuron PID controller trained with an extended Kalman filter (EKF)
based algorithm and anti-windup effect is proposed, as other neural PID controllers it
adjusts itself online during the operation of the system, even with changes in the nature
of the problem. However, it requires and anti-wind up methodology. The contribution
of this work is the proposal of adaptive neural PD controllers trained with extended
Kalman Filter-based algorithms; the adaptive properties of these controllers allow them to
compensate for the missing integral part, which can cause the windup effect; in this way,
there is no need for an anti-windup methodology as in previous work (Hernandez-
Barragan et al., 2020) and at the same time getting a good performance. The proposed
EKF-based trained PD controllers, single neuron and multilayer adapt their weights
online, eliminating the steady-state error; moreover, oscillations and overshoot are highly
suppressed. The performance of the controllers is shown in simulation and experimental
results on trajectory tracking tasks for a mobile manipulator robot. In simulations, the
proposed controllers are compared against the conventional PID, and an existing single
neuron adaptive PID (SNA-PID) controllers (Tang et al., 2020). In real experiments, a
study on the robustness of the proposed controller under the presence of disturbances and
non-modeled dynamics is presented.

The remaining of this work is organized as follows: first, a summary of the components
of PID controllers and adaptive neural PD controllers. Second, the implementation of
the proposed neural PD controller on mobile manipulators. Third, simulation and
experimental results on a mobile manipulator robot where the performance of proposed
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controllers is shown; experimental tests are implemented on a KUKATM1. Finally,
conclusions are presented.

ADAPTIVE NEURAL PD CONTROLLERS
A basic PID controller consists of applying the sum of three types of control actions,
proportional (P), integral (I) and derivative (D) (Visioli, 2006; Temel, Yagli & Gören, 2013).
Moreover, using those control actions, simpler controllers can be obtained, namely, P, PD
and PI, which may be enough for some applications, especially linear ones and
under regulated conditions. Nevertheless, the PID controller is recognized as the better
of them. Even with the existence of more robust control schemes reported in the literature,
the popularity of PID is mainly due to its simple implementation. Inspire in this
popularity; several works have been proposed to improve the performance of PID
controllers. However, most of those works introduce complex methodologies.

P, PI, PD and PID controllers brief summary
P controller
The primary use of the P controller is to reduce the steady-state error of the system. As the
proportional gain kP increases, the steady-state error decreases. However, the steady-
state error will not be eliminated because increasing kP leads to overshoot, smaller
amplitude, phase margin, faster dynamics, and more sensitivity to noise. This control is
recommended when the system is tolerable to a constant steady-state error.

PI controller

The use of PI controllers is to eliminate the steady-state error resulting from the P
controller. However, it harms the speed of response and system stability. This control is
used when the speed of the system is not an issue. PI controller cannot decrease the rise
time and eliminate the oscillations, and overshoot is always present.

PD controller
PD controller increases system stability by improving control since it can predict the future
error of the system response. Derivative controllers respond to changing error signals,
but they do not respond to constant error signals. Due to this, derivative control D is
combined with proportional control P.

PID controller
Proportional Integral, Derivative controller needs the derivative gain component in
addition to the PI controller to reduce the overshoot and oscillations occurring in the
output response of the system. A control scheme of the PID controller is presented in
Fig. 1. The manual tuning of the proportional KP, integrative KI and derivative KD gains
represent an inconvenience of conventional PID controllers.

Adaptive neuron PD controller
The main disadvantage of conventional PD controllers is that they are not suitable for
nonlinear, time-variant systems. adaptive neural controllers are an alternative to overcome
this issue.

1 KUKA is a registered trademark of
KUKA AG.
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The proposed adaptive single neuron PD (SNPD) controller is illustrated in Fig. 2.
The value e represents the error (1) between the reference yr and the system output y.
The inputs x1 and x2 are defined as the proportional (2) and the derivative (3) errors
(Moradi, Katebi & Johnson, 2001). The weights ω1 and ω2, are adapted online using the
EKF algorithm. The weight ω1 and ω2 represents the proportional gain, and derivative
gain, respectively. The value v is computed as the weighted sum of the inputs of the neuron
(4). Finally, the output of the neuron ŷ is computed with (5), where as activation function
is selected tanh(·). The activation function reacts in the range (−1, 1). However, the
parameter a can be selected to adjust the control action, since the output of the neuron is
directly the control signal u kð Þ ¼ ŷ kð Þ.

e kð Þ ¼ yr kð Þ � y kð Þ (1)

x1 kð Þ ¼ e kð Þ (2)

x2 kð Þ ¼ e kð Þ � e k� 1ð Þ (3)

v kð Þ ¼ x1 kð Þx1 kð Þ þ x2 kð Þx2 kð Þ (4)

ŷ kð Þ ¼ a tanh v kð Þð Þ (5)

The proposed EKF-based training method is described in a section bellow. EKF
provides faster learning rates and convergence time than backpropagation, which is crucial
for online training.

Figure 1 Control PID scheme. Full-size DOI: 10.7717/peerj-cs.393/fig-1

Figure 2 Adaptive single neuron PID controller. Full-size DOI: 10.7717/peerj-cs.393/fig-2
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Adaptive multilayer PD controller
The multilayer network PD (MNPD) scheme is shown in Fig. 3; it consists of a fully
connected neural network with one hidden layer with multiples nodes and one node at the
output layer. The network input is the error and the derivative between a reference
value and the system output. The neural network is trained online using an extended
Kalman filter-based algorithm; the objective is to reduce the tracking error by adapting
online the output of the network, which is the control signal to the system, it is
u kð Þ ¼ ŷ kð Þ.

Consider a neural network as shown in Fig. 3 with 2 input signals and q nodes in the
hidden layer.

The output of the network is given by

riðkÞ ¼ tanh niðkÞð Þ; i ¼ 1 . . . q (6)

niðkÞ ¼
X2
j¼0

v
1ð Þ
ij ðkÞxjðkÞ; x0ðkÞ ¼ þ1 (7)

v1ðkÞ ¼
Xq
k¼0

v
2ð Þ
1j ðkÞukðkÞ; u0ðkÞ ¼ þ1 (8)

ŷðkÞ ¼ v1ðkÞ: (9)

Extended Kalman filter based training algorithm for neural networks
For training of neural networks, the weights of the network become the state to be
estimated by the EKF, with the objective of reducing the neural network error, which in
this case, since the output is the reference minus the system output e(k) = yr(k) − y(k), this

Figure 3 MLP architecture. In this case, the network has one hidden layer whose weights are denoted
by wð1Þ

ij and the output layer has one node and its weights are represented with wð2Þ
1j .

Full-size DOI: 10.7717/peerj-cs.393/fig-3
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is because the neural network output is considered directly as the control signal u(k).
The fact that e is minimized means that the neural PD controller output u is working in
achieving the control obective of tracking the desired reference yr. The neural network is
trained online using an extended Kalman filter-based algorithm (10–12).

K kð Þ ¼ P kð ÞH kð Þ R kð Þ þHT kð ÞP kð ÞH kð Þ� ��1
(10)

v kþ 1ð Þ ¼ v kð Þ þ hK kð Þe kð Þ (11)

P kþ 1ð Þ ¼ P kð Þ � K kð ÞHT kð ÞP kð Þ þQ kð Þ (12)

hij kð Þ ¼ @yi kð Þ
@xj kð Þ

� �
(13)

where x 2 Rn is the weight vector, K 2 Rn�m is the Kalman gain vector with n as the
number of weights, and m the number of outputs of the neural network; P 2 Rn�n,
Q 2 Rn�n, and R 2 Rm�m are covariance matrices of weight estimation error, estimation
noise, and error noise, respectively; h 2 R is the Kalman filter learning rate, andH 2 Rn�m

is a matrix whose entries hij are the derivative of the neural network output with
respect to each weight Eq. (13), yi 2 R is the i-th output of the neural network and
j = 1 ⋯ n, the error e 2 Rm is defined as the difference between the desired output and
the neural network output (Sanchez & Alanis, 2006).

Neural network weights are initialized randomly. The Kalman filter learning rate η is
selected heuristically to minimized e. It should be considered that if η is sufficiently
large, the network could not converge. Conversely, if a lower η is selected, it would take
longer to converge. Moreover, matrices P, Q and R are initialized as diagonal matrices
with initial values chosen heuristically. TheQmatrix is set to deal with process noise, while
the R matrix is set to deal with measurement noise. Metaheuristic algorithms can be used
to optimize the initial values of the Kalman settings (Villaseñor et al., 2018).

Let us remark that matrices H, K and P are bounded (Song & Grizzle, 1992).

Single neuron EKF training algorithm
The EKF algorithm adjusts onlone the weights ω1 and ω2 for the single neuron. The single
neuron scheme is composed with n = 2 (weights) and m = 1 (one output neuron); the
dimension of EKF matrices are K 2 R2�1, P 2 R2�2, Q 2 R2�2, R 2 R1�1 and H 2 R2�1.
The weight vector is defined as x 2 R2 that includes ω1 and ω2, and the error e 2 R is
given by Eq. (1). The matrix H is computed as Eq. (14).

H kð Þ¼ @ŷ kð Þ
@x1 kð Þ

@ŷ kð Þ
@x2 kð Þ

� �T
¼ @ŷ kð Þ

@v kð Þ
@v kð Þ
@x1 kð Þ

@ŷ kð Þ
@v kð Þ

@v kð Þ
@x2 kð Þ

� �T
¼ asech2 v kð Þð Þx1 kð Þ

asech2 v kð Þð Þx2 kð Þ
� �

(14)

Multilayer network EKF training algorithm
The EKF algorithm adjusts online the wights xð1Þ

ij ðkÞ and xð2Þ
j1 ðkÞ for the multilayer

network. The multilayer network scheme is set with n (weights) and m = 1
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(output neuron). The dimension of EKF matrices are K 2 Rn�1, R 2 R1�1 and H 2 Rn�1.
The error e 2 R is given by Eq. (1). The matrix H can be expressed as Eq. (16).

HðkÞ ¼
@ŷðkÞ

@w 1ð Þ
10 ðkÞ

@ŷðkÞ
@w 1ð Þ

11 ðkÞ
� � � @ŷðkÞ

@w 2ð Þ
1q ðkÞ

" #
(15)

¼ ½g n1ðkÞð Þx0ðkÞ � � � g n1ðkÞð ÞxpðkÞ g n2ðkÞð Þx0ðkÞ � � �
g nqðkÞ
� �

xpðkÞ u0ðkÞ u1ðkÞ � � � uqðkÞ� (16)

with

g niðkÞð Þ ¼ w 2ð Þ
1i ðkÞ sech2 niðkÞð Þ� �

; i ¼ 1; . . . ; q (17)

IMPLEMENTATION TO A MOBILE MANIPULATOR FOR
TRAJECTORY TRACKING
This section presents a kinematics model for omnidirectional mobile manipulators.
Then, the main concepts of differential kinematics are introduced for position control.
Finally, the conventional PID and the proposed adaptive PD controllers are provided for
the trajectory tracking of omnidirectional mobile manipulators.

Mobile manipulator kinematics
Mobile manipulators are composed of one or more manipulators attached to a mobile
platform. Conventional mobile robots such as unicycles, differential drives, and car-like
robots increase the workspace of manipulators. However, these platforms have limited
movement capabilities due to their nonholonomic kinematics constraints, Li et al.
(2016). On the other hand, omnidirectional mobile platforms improved the movement
capabilities, allowing moving towards any position and desired orientation (Zhang et al.,
2016; Wu et al., 2017; Kundu et al., 2017). This section introduces a kinematic model of a
mobile manipulator, which consists of a robotic manipulator of n Degrees of Freedom
(DOF) attached to an omnidirectional mobile platform.

The Kinematics chain of mobile manipulators is described in Fig. 4. The homogeneous
matrix wTb defines the position and orientation of the mobile platform. The transformation
bTm is a constant homogeneous matrix between the mobile platform frame and the
manipulator base. The matrix mTe can be computed based on the Denavit-Hartenberg (DH)
model of the manipulator (Spong & Vidyasagar, 2008; Lopez-Franco et al., 2018).

Considering an omnidirectional mobile platform, the pose of the robot with respect to
the world frame w is given by 3 DOF, which are the positions xb and yb, and the orientation
θb. Then, the matrix wTb can be defined as Eq. (18).

wTb ¼
cosðubÞ � sinðubÞ 0 xb
sinðubÞ cosðubÞ 0 yb

0 0 1 0
0 0 0 1

2
664

3
775 (18)
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The matrix bTm is constant, and it adjusts the distance from the mobile platform base
frame b to the manipulator base frame m. The values tx, ty and tz are used to adjust the
distance in the direction of the x-axis, y-axis and z-axis, respectively. If it does not need to
adjust the frame orientation, then matrix bTm can be described by Eq. (19).

bTm ¼
1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

2
664

3
775 (19)

Let consider a joint variable q to represent the platform configuration

qm ¼ xb yb hb½ �T and the manipulator configuration qm ¼ q1 q2 q3 � � � qn½ �T ,
where qi is a joint value for the articulation i. The joint variable for the mobile manipulator
is given by q ¼ qb

T qm
T

� �T
.

Given the joint variable q, the computation of wTe qð Þwhich is the forward kinematics of
the mobile manipulator can be obtained as

wTe qð Þ¼wTb qbð Þ bTm
mTe qmð Þ (20)

where wTe qð Þ represents the end-effector pose respect to the world frame w. The matrix
wTe is expressed as

wTeðqÞ ¼
r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

2
664

3
775 ¼ R t

0 1

� �
(21)

Figure 4 Kinematic chain of mobile manipulators. The transformation wTb is the homogeneous matrix
from the world frame w to the mobile platform base frame b, bTm is the homogeneous matrix from b to
the manipulator base frame m, mTe is the homogeneous matrix from m to the end-effector frame e.

Full-size DOI: 10.7717/peerj-cs.393/fig-4
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where the orientation of the end-effector is represented by the matrix R, and its Cartesian
position is given by the vector t. More information about homogeneous matrices,
manipulators kinematics, and forward kinematics can be found in Spong & Vidyasagar
(2008), Craig (2005) and Sciavicco & Siciliano (2008).

Differential kinematics
The inverse kinematics consists in the computation of the joint variables q given the end-
effector pose 0Tn. This computation can be solved by minimizing an error function using
an iterative process based on the differential kinematics (Sciavicco & Siciliano, 2008).
Differential kinematics aims to find the relationship between the joint velocities _q and the
end-effector velocity _t. The following differential kinematics Eq. (22) gives this relationship

_t ¼ J qð Þ _q (22)

where J is the matrix that relates the contribution of the joint velocities _q to the end-
effector velocity _t. The matrix J is called the geometric Jacobian. This Jacobian matrix can
be computed as Eq. (23).

J qð Þ ¼

@tx
@q1

@tx
@q2

� � � @tx
@qn

@ty
@q1

@ty
@q2

� � � @ty
@qn

@tz
@q1

@tz
@q2

� � � @tz
@qn

2
6666664

3
7777775

(23)

where t ¼ tx ty tz
� �T

is the end-effector position related to the joint variable

q ¼ q1 q2 � � � qn½ �T .
An inverse kinematics approach consists in minimizing the error between an actual

end-effector position t and the desired position t�. This error is defined as e ¼ t� � t.
The error e can be mapped to the joint velocities _q based on the differential kinematics
equation. Eq. (22) is rewritten to compute _q given e as Eq. (24).

_q ¼ J qð Þy_t ¼ J qð Þye (24)

where Jy is the pseudo-inverse of J. The mentioned inverse kinematics approach can be
defined as a first-order algorithm that allows the inversion of a motion trajectory, specified
at the end-effector position into equivalent joint position and velocities (Sciavicco &
Siciliano, 2008).

A robot system with a Jacobian matrix J 2 R3�n where n>3, is considered redundant;
there are more n DOF than necessary to perform a task with 3 DOF. Commonly, the
combination of DOF of the mobile platform and the manipulator represent a redundant
robot. In the case of a redundant robot, the solution Eq. (24) can be generalized into
Eq. (25).

_q ¼ J qð Þyeþ I� J qð ÞyJ qð Þ
� 	

_q0 (25)

Hernandez-Barragan et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.393 10/29

http://dx.doi.org/10.7717/peerj-cs.393
https://peerj.com/computer-science/


where the first term minimizes the error e, the matrix I� JyJ
� 	

allows the protection
of vector _q0 in the null space of J, and I is the identity matrix. In the case that e ¼ 0, the
result of the second term I� JyJ

� 	
_q0 can reconfigure the joint variable q without

changing the end-effector position t.
In this work, it is proposed to design the vector _q0 to avoid singularities based on the

manipulability measure m qð Þ, which is defined as Eq. (26).

m qð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det J qð ÞJ qð ÞT

� 	r
(26)

Then, vector _q0 can be computed as Eq. (27).

_q0 ¼ k0
@m qð Þ
@q

� �
(27)

where k0 > 0. By maximizing the manipulability measure, redundancy is exploited to move
away from singularities. More detailed information about differential kinematics can be
found in Spong & Vidyasagar (2008), Craig (2005) and Sciavicco & Siciliano (2008).

PID control design
To solve a position tracking for the mobile manipulator, the controller has to compute
the joint velocities _q kð Þ at step time k, to control the motion of the mobile manipulator
from the actual end-effector position t kð Þ to the desired position t kð Þ�. This section
introduces the use of a discrete PID to control the mobile manipulator motion based on the
error e kð Þ ¼ t kð Þ� � t kð Þ, which is described as e kð Þ ¼ ex kð Þ ey kð Þ ez kð Þ� �T

.
A discrete PID control (Moradi, Katebi & Johnson, 2001) can be used for each error

ex kð Þ, ey kð Þ and ez kð Þ as follows

ux kð Þ ¼ Kx
P ex kð Þ þ Kx

I

Xk
j¼1

ex jð Þ þ Kx
D ex kð Þ � ex k� 1ð Þ½ � (28)

uy kð Þ ¼ Ky
P ey kð Þ þ Ky

I

Xk
j¼1

ey jð Þ þ Ky
D ey kð Þ � ey k� 1ð Þ� �

(29)

uz kð Þ ¼ Kz
P ez kð Þ þ Kz

I

Xk
j¼1

ez jð Þ þ Kz
D ez kð Þ � ez k� 1ð Þ½ � (30)

where Kx
P , K

x
I and Kx

D are the proportional, integrative and derivative gains for error ex,
respectively. Similarly, the parameters Ky

P, K
y
I and Ky

D are the gains for error ey, and Kz
P, K

z
I

and Kz
D are the gains for error ez. The control output u kð Þ ¼ ux kð Þ uy kð Þ uz kð Þ� �T

can
be mapped to the joint velocities _q kð Þ based on Eq. (25) to control the system. This is

_q kð Þ ¼ J q kð Þð Þyu kð Þ þ I� J q kð Þð ÞyJ q kð Þð Þ
� 	

_q0 (31)
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Neural PD controllers implementation
Both proposed neural PD presented in previous sections are implemented on the
above-described mobile manipulator. Figure 5 shows the general control scheme for both
implementations.

An adaptive neural PD control module is designed to minimize the error ex, ey and θz.
Each control signal (neural PD output) ux, uy and uz, are compute for each control
module. These control signals u kð Þ ¼ ux kð Þ uy kð Þ uz kð Þ� �T

are mapped to the joint
velocities _q kð Þ using Eq. (31) to control the system.

If expression Eq. (31) is multiplied by the Jacobian matrix J q kð Þð Þ, then we have

J q kð Þð Þ _q kð Þ½ � ¼ J q kð Þð Þ J q kð Þð Þyu kð Þ þ I� J q kð Þð ÞyJ q kð Þð Þ
� 	

_q0
h i

(32)

¼ J q kð Þð ÞJ q kð Þð Þyu kð Þ þ J q kð Þð Þ I� J q kð Þð ÞyJ q kð Þð Þ
� 	

_q0 (33)

¼ u kð Þ þ J q kð Þð Þ � J q kð Þð ÞJ q kð Þð ÞyJ q kð Þð Þ
� 	

_q0 (34)

¼ u kð Þ þ J q kð Þð Þ � J q kð Þð Þð Þ _q0 (35)

¼ u kð Þ (36)

which indicates that u kð Þ ¼ J q kð Þð Þ _q kð Þ is a solution of the differential kinematics of
the system, where the matrix J q kð Þð Þ is bounded (Hernandez, Nuño & Alanis, 2016).
Moreover, the computed control signal of the neural controller Eq. (5) is also bounded.
Considering that neural control for system Eq. (31) is a feed forward network control law,
it composed a stable system (Khalil, 2002).

RESULTS
This section shows through simulation and experimental test the performance of the
proposed controllers, the adaptive single neuron PD (SNPD) and multilayer network PD
(MNPD). The controllers are compared against conventional PID controller, and an
existing single neuron adaptive PID (SNA-PID) (Tang et al., 2020). Reference trajectories

Figure 5 Adaptive neural PD control scheme for the position control of mobile manipulators.
The block called Adaptive Neural, can represent the single neuron scheme or the multilayer network
scheme. Full-size DOI: 10.7717/peerj-cs.393/fig-5
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are selected with different degrees of difficulty for both simulations, and experimental tests
on the KUKA YoubotTM mobile manipulator, see Fig. 6. Moreover, experiments show how
the controllers behave in the presence of disturbances and non-modeled dynamics.

The KUKA YoubotTM is composed of a manipulator of 5 DOF, and an omnidirectional
mobile platform of 3 DOF. Respect to the mobile manipulator kinematics, the
transformation wTb can be computed with the mobile platform pose, which is given by xb,
yb and θb, see Eq. (18). The constant transformation bTm is considered to be Eq. (37).

bTm ¼
1 0 0 0:140
0 1 0 0
0 0 1 0:151
0 0 0 1

2
664

3
775 (37)

The values shown in Eq. (37) were obtained based on the KUKA YoubotTM technical
specifications. Finally, the DH table in Table 1, is used to compute the transformation mTe.
The joint variable q for the mobile manipulator is Eq. (38).

q ¼ xb yb ub u1 u2 u3 u4 u5½ �T (38)

where the joint values θ1−θ5 represent the joint configuration of the manipulator.
For simulations and experimental test, the weights for both SNPD and MNPD

controllers are set randomly in every trajectory test. The parameter setting for the EKF are:

Figure 6 Omnidirectional mobile manipulator KUKA YoubotTM. Photo credit: Jesus Hernandez-
Barragan. Full-size DOI: 10.7717/peerj-cs.393/fig-6
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matrices P and Q are initialized as diagonal matrices with Pii ¼ 1 and Qii ¼ 0:1 with i =
1,2,⋯,n, the parameter R ¼ 0:001, the Kalman filter learning rate η = 0.2 and a = 1. These
parameters were chosen heuristically. For PID controller, proportional gains are set as

Kx
P ¼ Ky

P ¼ Kz
P ¼ 1:5, integrative gains Kx

I ¼ Ky
I ¼ Kz

I ¼ 0:001, and derivative gains

Kx
D ¼ Ky

D ¼ Kz
D ¼ 0:5. The gains of the PID controller are also selected heuristically.

The weights for the SNA-PID controller are set randomly. Additionally, the SNA-PID
learning rates are tuned to ηx = ηy = ηz = 1.0 × 10−5 and the proportional coefficient is set to
K = 2.5. The setting for SNA-PID is tuned based on Tang et al. (2020).

The considered trajectories, at step time k are generated as follows:

Circular trajectory
xrðkÞ ¼ 0:5;
yrðkÞ ¼ 0:05 cos 0:2 kpð Þ;
zrðkÞ ¼ 0:45þ 0:05 sin 0:2 kpð Þ:

Rose curve trajectory
xrðkÞ ¼ 0:5;
yrðkÞ ¼ rðkÞ cos 0:2 kpð Þ;
zrðkÞ ¼ 0:45þ rðkÞ sin 0:2 kpð Þ;
rðkÞ ¼ 0:035þ 0:015 cos 0:6 kpð Þ:

Trapezoidal trajectory
xrðkÞ ¼ 0:5;
yrðkÞ ¼ 0:1 � k;
rðkÞ ¼ 0:45þ 0:08 sin 2 yrðkÞpð Þ;

zrðkÞ ¼
0:5 if rðkÞ. 0:5
0:4 if rðkÞ, 0:4
rðkÞ otherwise

8<
: :

Sinusoidal trajectory
yrðkÞ ¼ 0:1 � k;
xrðkÞ ¼ 0:5þ 0:05 cos 2 yrðkÞpð Þ;
zrðkÞ ¼ 0:45þ 0:05 sin 2 yrðkÞpð Þ:

Table 1 DH table for KUKA YoubotTM manipulator. Values a, a and d are parameters of the DH
convention.

Joint a (mm) α (rad) d (mm) θ (rad)

1 33 p/2 147 θ1

2 155 0 0 θ2

3 135 0 0 θ3

4 0 p/2 0 θ4

5 0 0 217.5 θ5
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The desired position for the end-effector is defined as t kð Þ� ¼ xrðkÞ yrðkÞ zrðkÞ½ �T .
The circular and rose curve trajectories are considered for simulations. The rose curve,
trapezoidal and sinusoidal trajectories are considered for real experiments.

Simulations
The first trajectory for simulation is the circular. Although conventional PID controller
presents a good response, their gains remain constant, and they cannot adapt to changes in
the system operating conditions. On the other hand, the MNPD, SNA-PID, and SNPD
approaches can correctly follow the reference once the weights are adjusted.

The system response results for the circular trajectory are given in Fig. 7. The settling
time is almost the same for all the approaches. The conventional PID presents overshoot
and steady-state errors. The SNA-PID controller suppresses overshoot, but it has small
steady-state errors. Although MNPD presents oscillations while the weights are adapting,
the neural algorithms can follow the sinusoidal trajectory better than the PID and
SNA-PID. Moreover, the SNPD controller does not suffer from overshoot.

The root mean square (RMS) and median absolute deviation (MAD) for the circular
trajectory are presented in Table 2. The adaptive approaches present the best results, which
are highlighted in bold. In this case, the SNPD control scheme reportesd the smallest RMS
results in general.

In Fig. 8, the trajectory tracking and velocity control signals for the circular trajectory
are presented. From Figs. 8A to 8D, the PID control passes over the reference caused by the
integral part, and MNPD presents oscillations as expected from the system response.

Figure 7 System response for circular trajectory. (A–C) System responses for the x-axis, y-axis, and
z-axis, respectively. Full-size DOI: 10.7717/peerj-cs.393/fig-7
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However, MNPD, SNA-PID, and SNPD controllers follow the trajectory correctly. As seen
from Figs 8E to 8H, at the first steps adaptive weights compute bigger control signals than
PID. However, it is necessary to reach the reference with a small tracking error.The
adaptation ability of both MNPD and SNPD is also shown.

The same gains and parameters for the four approaches are set for a new desired
trajectory to be tested, and the results are shown in Fig. 9. Similar results can be seen in the
system response. The settling time is similar, and the MNPD present oscillations during
the adaptations of its weights. In this case, PID and SNA-PID controllers present
steady-state errors. However, SNA-PID performs better than PID. Moreover, The PID
controller also has overshoot. The best results are given by SNPD and MNPD.

Table 3 shown the RMS and MAD results for the rose curve trajectory. The adaptive
scheme has been demonstrated to have better results than the conventional PID controller.
In this case, MNPD controller shows the smallest RMS results in general. In contrast,
SNPD shows the best MAD results.

In Fig. 10, the trajectory following, and the velocity control signals for the rose curve
trajectory are reported. From Figs. 8A to 8D can be noticed that the adapting approaches
outperform the conventional PID controller. The SNA-PID controller shows a small
steady-state error, while MNPD and SNPD report the smallest. The SNA-PID control
improved the performance of PID, but it is needed to tune the proportional coefficient K to
improve the performance. As can be seen from Figs. 8E to 8H, at the beginning of the
trajectory, the weights adaptation of the MNPD and the SNPD compute bigger control
signals than SNA-PID and PID; however, this is necessary to reach the reference with a
small tracking error.

Experiments
Real experiments are carried out in two parts. In the first part, the proposed SNPD
controller is compared against the classical PID. In this case, two trajectories are tested for
comparison purposes. In the second part, the robustness of the SNPD controller is tested
under the presence of disturbances and non-modeled dynamics.

In the first part of the experiments, the adaptive SNPD and MNPD controllers
performed similarly in simulations. However, MNPD shows oscillations during the

Table 2 Simulation results for the circular trajectory. The best results are highlighted in bold.

Measure Method ex ey ez

RMS MNPD 8.6035 × 10−4 2.5297 × 10−3 6.7063 × 10−3

SNA-PID 8.1755 × 10−4 9.0910 × 10−3 9.9509 × 10−3

PID 1.0547 × 10−3 1.2872 × 10−2 1.3803 × 10−2

SNPD 7.8284 × 10−4 2.1269 × 10−3 3.5693 × 10−3

MAD MNPD 1.3391 × 10 −4 5.5760 × 10−4 1.3227 × 10−3

SNA-PID 1.8123 × 10−4 8.0183 × 10−3 8.0622 × 10−3

PID 2.1417 × 10−4 1.1419 × 10−2 1.1686 × 10−2

SNPD 1.2753 × 10−4 6.0505 × 10−4 6.4863 × 10−4

Hernandez-Barragan et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.393 16/29

http://dx.doi.org/10.7717/peerj-cs.393
https://peerj.com/computer-science/


Figure 8 Trajectory following and velocity control signal results for the circular trajectory.
(A–D) The trajectory following results. (E–H) The velocity control signal results.

Full-size DOI: 10.7717/peerj-cs.393/fig-8
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adaptations of its weights at the beginning. These oscillations can be eliminated if pre-
trained weights are used instead of initializing them randomly every time. Thus, it is
considered to compare the SNPD controller to the PID controller since PID performed
better than PD. Moreover, the same gains and parameters used for simulation were used
for real-time experiments. The weights in the SNPD were randomly initialized.

In Fig. 11, the system response for both approaches is shown. The real system is not
the same in simulation, and the gains of the conventional PID must be tuned again.
Otherwise, it will not be able to follow the trajectory correctly and present a longer settling

Figure 9 System response results for the rose curve trajectory. (A–C) System responses for the x-axis,
y-axis, and z-axis, respectively. Full-size DOI: 10.7717/peerj-cs.393/fig-9

Table 3 Simulation results for the rose curve trajectory. The best results are highlighted in bold.

Measure Method ex ey ez

RMS MNPD 6.9811 × 10−4 2.1346 × 10−3 4.4524 × 10−3

SNA-PID 8.1755 × 10−4 7.9247 × 10−3 9.0976 × 10−3

PID 1.0547 × 10−3 1.1191 × 10−2 1.2804 × 10−2

SNPD 7.7519 × 10−4 2.1415 × 10−3 3.5652 × 10−3

MAD MNPD 8.7982 × 10−5 3.6619 × 10−4 4.9729 × 10−4

SNA-PID 1.8123 × 10−4 6.8568 × 10−3 7.1826 × 10−3

PID 2.1404 × 10−4 9.1301 × 10−3 9.9235 × 10−3

SNPD 1.2586 × 10−4 5.8940 × 10−4 6.4607 × 10−4
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Figure 10 Trajectory following and velocity control signal results for the rose curve trajectory.
(A–D) The trajectory following results. (E–H) The velocity control signal results.

Full-size DOI: 10.7717/peerj-cs.393/fig-10
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time. In contrast, using the same parameters as in simulation, the SNPD was able to adapt
and showed a shorter settling time.

Table 4 reports the RMS and MAD results for the rose curve trajectory in real
experiments. The SNPD scheme has been demonstrated to have better results than
conventional PID with the smallest RMS and MAD results in general.

The trajectory following and velocity control signals for the rose curve trajectory are
illustrated in Fig. 12. In Figs. 12A and 12B, the response for the rose curve trajectory is
shown. As can be seen, PID cannot follow the trajectory correctly, and it is confirmed in
Table 4. In Figs. 12C and 12D, adaptive SNPD computes bigger control signals than PID.
However, this demonstrates that SNPD is adjusting itself to reject perturbation and
changes during experimental tests.

Figure 11 System response results for the rose curve trajectory in real experiments. (A–C) System
responses for the x-axis, y-axis, and z-axis, respectively. Full-size DOI: 10.7717/peerj-cs.393/fig-11

Table 4 Experimental results for the rose curve trajectory. The best results are highlighted in bold.

Measure Method ex ey ez

RMS SNPD 3.7452 × 10 −3 3.3248 × 10 −3 8.4861 × 10 −3

PID 2.9319 × 10 −3 1.7032 × 10 −2 2.1101 × 10 −2

MAD SNPD 9.5960 × 10 −4 1.1829 × 10 −3 2.0750 × 10 −3

PID 1.3942 × 10 −3 1.2963 × 10 −2 1.6109 × 10 −2
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A new trajectory is tested, and the system response results are shown in Fig. 13.
The SNPD control performed better than PID for the results for the trapezoidal trajectory.
The results exhibited the adaptation ability of the SNPD, while PID control requires the
tune of its gains.

The trajectory following and velocity control signals results for the trapezoidal trajectory
are given in Fig. 14. In Figs. 14A and 14B, the PID scheme reported bigger tracking error
than SNPD controller. From Figs. 14C and 14D, it is clear that bigger control action is
required to be able to follow the trajectory with minimum error tracking. This is achieved
with the online adaptation of SNPD controller.

Finally, Table 5 reported the RMS and MAD results for the trapezoidal trajectory in real
experiments. The SNPD scheme outperformed the PID controller with the smallest RMS
and MAD results in general.

In the second part of the experiments, three tests were performed. In Test 1, a trajectory
tracking on a smooth floor is considered. This test represents an ideal environment. In Test
2, the same trajectory tracking is performed on a rough floor. This test represents the
presence of disturbances. Finally, in Test 3, the same trajectory tracking is performed on
the uneven floor with a load on board of 1.5 kg. This last test represents non-modeled
dynamics. Moreover, since the experiments were carried out on a real robot, there was
measurement noise.

Figure 12 Trajectory following and velocity control signal results for the rose curve trajectory in real
experiments. (A–B) The trajectory following results. (C–D) The velocity control signal results.

Full-size DOI: 10.7717/peerj-cs.393/fig-12
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Figure 13 System response results for the trapezoidal trajectory in real experiments. (A–C) System
responses for the x-axis, y-axis, and z-axis, respectively. Full-size DOI: 10.7717/peerj-cs.393/fig-13

Figure 14 Trajectory following and velocity control signal results for the trapezoidal trajectory in
real experiments. (A–B) The trajectory following results. (C–D) The velocity control signal results.

Full-size DOI: 10.7717/peerj-cs.393/fig-14
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The SNPD controller is considered for this test under the sinusoidal trajectory.
The results for the system response are provided in Fig. 15. The system response results are
very similar for the three tests. This indicates that no adjustment to the controller
parameters is required to handle uncertainties in unmodeled changes in system dynamics.
Moreover, there is no presence of steady-state errors, and the controller reaches the
references within an adequate settling time.

The trajectory following and velocity control signals for these tests are illustrated in
Fig. 16. In Fig. 16A, the results show the correct trajectory following as expected from
the system response results. As can be seen in Figs. 16C and 16D, the SNPD computes
bigger control signals than the results in Fig. 16B. This shows that the weights are
dynamically adapted to reject disturbances and changes in dynamics during the
experimental test

Table 5 Experimental results for the trapezoidal trajectory. The best results are highlighted in bold.

Measure Method ex ey ez

RMS SNPD 3.8064 × 10 −3 3.4122 × 10 −3 8.1596 × 10 −3

PID 3.0025 × 10 −3 5.5684 × 10 −2 1.8825 × 10 −2

MAD SNPD 8.8564 × 10 −4 1.3090 × 10 −3 2.0708 × 10 −3

PID 1.7514 × 10 −3 3.5206 × 10 −2 1.5032 × 10 −2

Figure 15 System response results for the sinusoidal trajectory in real experiments. (A–C) System
responses for the x-axis, y-axis, and z-axis, respectively. Full-size DOI: 10.7717/peerj-cs.393/fig-15
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Figure 16 Trajectory following and velocity control signal results for the sinusoidal trajectory in real
experiments. (A) The trajectory following results. (B–D) The velocity control signal results.

Full-size DOI: 10.7717/peerj-cs.393/fig-16
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Finally, the Table 6 shows the RMS and MAD results for the sinusoidal trajectory.
The SNPD scheme has been demonstrated to have better results than conventional PID
with the smallest RMS and MAD results in general. There is not a big difference between
the RMS and MAD results, which indicates that the proposed SNPD controller is robust to
unmodeled dynamics and disturbances.

CONCLUSIONS
In this work, an adaptive single neuron PD (SNPD) and multilayer network PD (MNPD)
controllers trained with the EKF algorithm were proposed. The performance of these
approaches was considered for trajectory tracking of the KUKA Youbot mobile
manipulator. Simulation and real experiments were performed to compare the classical
PID controller against the proposals. An existing adaptive single neuron controller (SNA-
PID) is also considered for comparison. Simulation and experiment results reported that
conventional PID control reported overshoot and steady-state errors. The SNA-PID
controller highly reduced the overshoot, but it presented small steady-state errors.
In contrast, the adaptive neural PD controllers eliminated the steady-state error and highly
suppressed the overshoot in general. Moreover, adaptive PD schemes show better settling
time and high performance with smaller tracking results. The results also showed that
even without an integral part, the PD neural controllers trained with extended Kalman
filter offer better overall performance than a conventional PID. They present a small
overshoot, and the offset is reduced. Additionally, the experimental results indicate that the
SNPD controller shows a superior system response under perturbations and changes
during the operation that the PID controller. The conventional PID controller requires
the tuning of its gains to improve the performance. The SNPD controller shows better
performance than MNPD, mainly due to more weights present in MNPD. It is shown that
they present similar settling times, and the oscillations present with MNPD can be
eliminated if trained weights are used instead of initializing them randomly every time.
However, it was exposed that this is unnecessary, and both approaches exhibit good
adaptation to uncertainties in the system. One of the main reasons for PI, PD, and PID
controllers’ success is their implementation simplicity. Some works have been proposed
to deal with the drawbacks of the conventional PID, adding in some cases a fair complexity
at implementation time. The proposed adaptive neural PD controllers are easy to
implement, having good performances. Finally, the presented approach considers the

Table 6 Experimental results for the sinusoidal trajectory in real experiments.

Measure Test ex ey ez

RMS Test 1 7.7389 × 10 −3 5.0422 × 10 −3 1.2476 × 10 −2

Test 2 8.2315 × 10 −3 7.2873 × 10 −3 1.2537 × 10 −2

Test 3 8.2503 × 10 −3 6.8967 × 10 −3 1.2678 × 10 −2

MAD Test 1 2.4092 × 10 −3 1.9660 × 10 −3 4.1409 × 10 −3

Test 2 2.9295 × 10 −3 2.5150 × 10 −3 4.1397 × 10 −3

Test 3 2.8684 × 10 −3 4.1865 × 10 −3 4.1863 × 10 −3
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system kinematics to compute a motion trajectory, specified at the end-effector position
into equivalent joint position and velocities. As future work, the system dynamics can
be considered to compute a motion trajectory in terms of position, velocities, and
acceleration based on second-order algorithms.
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