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Abstract

Current multicores suffer from two major limitations: they can only exploit a fraction of

the parallelism available in applications and they are very hard to program. This is because

they are limited to programs with coarse-grained tasks that synchronize infrequently. How-

ever, many applications have abundant parallelism when divided into small tasks (of a few

tens to hundreds of instructions each). Current systems cannot exploit this fine-grained par-

allelism because synchronization and task management overheads overwhelm the benefits

of parallelism.

This thesis presents novel techniques that tackle the scalability and programmability

issues of current multicores. First, Swarm is a parallel architecture that makes fine-grained

parallelism practical by leveraging order as a general synchronization primitive. Swarm

programs consist of tasks with programmer-specified order constraints. Swarm hardware

provides support for fine-grained task management, and executes tasks speculatively and

out of order to scale. Second, Fractal extends Swarm to harness nested speculative paral-

lelism, which is crucial to scale large, complex applications and to compose parallel spec-

ulative algorithms. Third, Amalgam makes more efficient use of speculation resources by

splitting and merging address set signatures to create fixed-size units of speculative work.

Amalgam can improve performance and reduce implementation costs.

Together, these techniques unlock abundant fine-grained parallelism in applications

from a broad set of domains, including graph analytics, databases, machine learning, and

discrete-event simulation. At 256 cores, our system is 40×–512× faster than a single core

system and outperforms state-of-the-art software-only parallel algorithms by one to two

orders of magnitude. Besides achieving near-linear scalability, the resulting programs are

almost as simple as their sequential counterparts, as they do not use explicit synchroniza-

tion.

Thesis Supervisor: Daniel Sanchez

Title: Associate Professor of Electrical Engineering and Computer Science
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1
Introduction

PARALLEL machines are pervasive today—ranging from tiny computers that power smart-

phones, to high-end computers in data centers and supercomputing clusters. These ma-

chines can have hundreds of cores and provide copious compute capability, up to several

teraflops of performance [149] on a single chip.

Yet, only a narrow sliver of individual applications can exploit this available paral-

lelism. This is because current architectures are limited in the kinds of parallelism that can

be effectively expressed and exploited. Modern computer systems exploit parallelism from

problems at two extremes of granularity. At one extreme, systems exploit parallelism at the

granularity of individual instructions through techniques such as out-of-order and super-

scalar execution. This is commonly referred to as instruction-level parallelism (ILP), and

has been the predominant driver of performance improvements over the last three decades.

ILP, however, is restricted by control flow and data dependences. Further, the hardware

costs needed to exploit ILP—such as the instruction scheduling logic and wide register

files—grow quadratically, and hence are not scalable [116].

At the other extreme, systems extract parallelism from applications that can be cast as

coarse-grained tasks (several thousand to a few million instructions) with few data depen-

dences and relatively infrequent synchronization. But such coarse-grained parallelism is

also narrow in scope. It fares well in domains such as dense linear algebra and graphics,

where applications have well-defined accesses to data and few unpredictable control and

data dependences. By contrast, applications in several domains such as graph process-

ing, sparse linear algebra, and discrete-event simulation are ill-served by coarse-grained

parallelism. These applications often rely on pointer-based data structures, and data depen-

dences are dictated by run-time data values that are difficult to predict statically and a poor

match for current techniques.

Between these two extremes lies a wide spectrum of parallelism that has received little

attention. Many applications have substantial parallelism when expressed as fine-grained

tasks of a few tens to hundreds of instructions. Unfortunately, fine-grained tasks cause large

overheads in current systems, because software task management overheads (e.g., schedul-

17
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ing and load balancing) overwhelm the benefits of parallelism. At the same time, exposing

such fine-grained parallelism often necessitates frequent and complex synchronization—

for instance, to handle producer-consumer relationships, or to coordinate accesses to indi-

vidual elements of a data structure. Current systems, however, lack efficient support for

such synchronization.

As a result, today’s programmers are in an unenviable position. While, sequential pro-

gramming is simple and natural, ILP has been yielding diminishing returns over the last

decade [16, 103]. On the other hand, parallel programming often requires heroic program-

ming efforts to overcome the deficiencies of current architectures. And yet, these efforts

may not yield concomitant performance gains. Even worse, the limits of current architec-

tures constrain the imagination of algorithm designers and programmers. It biases them

to only consider algorithms with parallelism that can be exploited by current architectures,

while ignoring more efficient algorithms.

To resolve this conundrum, future parallel systems must provide greater architectural

support for parallelization. This dissertation investigates what essential architectural sup-

port is required in order to mine the abundant, yet untapped, fine-grained parallelism in

applications. Fundamentally, parallelizing a program consists of two main steps: dividing

work into tasks that may run concurrently, and specifying the synchronization of tasks with

potential data dependences to ensure correct behavior. The architecture of a parallel ma-

chine impacts and constrains both the manner and efficacy of these steps. It determines

what forms of parallelism can be expressed, how effectively the parallelism is exposed, and

the ability of the machine to exploit this parallelism and scale to a large number of pro-

cessors. This not only influences how programs are written (or how code is compiled), but

also affects the programmer’s choice of data structures and algorithms.

This dissertation advocates that parallel architectures should provide support for order

as a general synchronization primitive among fine-grained tasks. This is for two reasons.

First, many applications require tasks to execute in a certain order to satisfy the seman-

tics of the algorithm. Enforcing this order in software for fine-grained tasks incurs large

overheads to be practical. Second, support for order naturally captures several complex

synchronization patterns. This support enables parallelizing a wide range of general-pur-

pose applications. With this architectural support, we show that it is possible to extract

parallelism even in the presence of ordering constraints.

1.1 Challenges

We categorize the challenges to successfully exploiting parallelism along two dimensions:

(1) expressing and extracting parallelism, and (2) reducing overheads and improving ef-

ficiency. Current parallel systems are beset with challenges along both these dimensions,

severely impairing their ability to parallelize a wide spectrum of applications.
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1.1.1 Expressing and Extracting Parallelism

A parallel architecture should ideally allow programmers to easily and effectively express

parallelism of all forms and at all levels. This requires architectural support that is suffi-

ciently general to capture many different forms of parallelism in applications. In addition,

the architectural mechanisms must scale to a large number of cores.

Providing general support for synchronization: Parallelism arises in many flavors,

such as data parallelism, task parallelism, pipeline parallelism and more. A common chal-

lenge in exploiting the various forms of parallelism is providing suitable abstractions for

expressing synchronization among tasks. There exist several mechanisms in literature, such

as locks, barriers, atomics, and producer-consumer relationships, to express such synchro-

nization. Among these, a very general form of synchronization is order. With ordered

execution, the tasks in a parallel architecture appear to run in an order (total or partial)

specified by the programmer, even though the architecture may run tasks in parallel. Or-

dered execution is less restrictive than the sequential execution model. Ordered execution

allows tasks to be created out of order and in parallel, and relies on the architecture to en-

force order. By contrast, the sequential execution model consists of a single, serial stream

of instructions or tasks. These form long chains of dependences that preclude them from

being created or executed widely out of order.

Order confers several benefits. First, it is expressive enough to capture several com-

plex synchronization patterns. In addition, many applications require tasks to execute in a

certain order to satisfy the semantics of the algorithm (Section 3.1). Second, using order

allows programmers to write and reason about programs almost like a serial program. This

implicit approach means that the programmer need not, in general, determine whether par-

allelism exists among tasks nor consider how to explicitly express it. While it may seem

that order limits parallelism, there are often opportunities for parallelism among ordered

tasks that can be exploited with suitable architectural techniques. Unfortunately, current

architectures provide limited support for expressing order and extracting parallelism under

order constraints.

Extracting parallelism in the presence of ordering constraints often necessitates support

for speculative execution. Speculative execution allows a processor to execute tasks out

of order in the presence of control and data dependences that are unknown statically. It

enables the processor to seize opportunities for parallel execution without violating true

dependences among tasks. We find that ordering constraints are often specified conserva-

tively, and can be elided subject to true dependences between tasks (Section 3.1). In many

applications, these dependences manifest rarely, but can only be resolved at run-time, ne-

cessitating speculation to uncover parallelism.

Attempts at performing fine-grained ordered speculation in software have yielded scant

benefits due to large overheads [100]. Hardware support for speculation has been provided

in thread-level speculation (TLS) and transactional memory (TM) systems. However, the

execution model for both TM and TLS are limited. TM does not provide support for order.

The TLS execution model targets sequential programs which unnecessarily constrains par-
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allelism in many applications; exposing order in the execution model, by contrast, allows

creating tasks out of order exposing greater parallelism. In addition, both TM and TLS suf-

fer from implementation challenges: TM suffers from poor performance on fine-grained

tasks, while TLS mechanisms scale poorly beyond a few cores (Section 2.4).

Providing modular composability: Parallelizing complex real-world applications is ex-

tremely challenging. Complex programs consist of several layers of interacting compo-

nents, and any given procedure may invoke several nested procedures at other components.

These procedures are often parallelizable. To harness all this parallelism, a parallel system

should support nested parallelism, i.e., the ability to invoke a parallel algorithm within an-

other parallel algorithm. Nested parallelism confers two major benefits. First, it lets the

system exploit parallelism at all levels of the application, dramatically improving scala-

bility. Second, it makes parallel software easy to compose, making it easy to write large,

modular parallel programs.

Nested parallelism is a staple of many parallel languages that extract non-speculative

parallelism, such as NESL, Cilk, and OpenMP [27, 81]. However, nested parallelism has

been difficult to support in systems that perform speculative parallelization. Nesting in

transactional memory systems [20, 206] focus on parallelizing at the coarsest (shallowest)

levels, incurring large overheads that squander their potential. Further, to guarantee atomic-

ity, nested transactions merge their speculative state with their parent, which is often at odds

with the gains realized by parallelization. Finally, transactional memory systems are unable

to express all forms of nested parallelism in applications, such as ordered parallelism.

1.1.2 Reducing Overheads and Improving Efficiency

Scaling to large systems introduces unavoidable latencies and imposes bandwidth con-

straints. Parallel systems must provide low-overhead mechanisms for communication and

synchronization. Further, resource management strategies are also crucial to achieve good

utilization and scalability.

Supporting fine-grained tasks: Many applications have substantial parallelism when

expressed as fine-grained tasks of a few tens to hundreds of instructions, and are also more

naturally expressed in that form. However, the overheads of managing and scheduling

such fine-grained tasks in software can be large. Queue operations and synchronization

through a shared-memory cache hierarchy incur significant latency, thwarting the benefits

of fine-grained parallelism and limiting speedup. Prior work [120,181] has shown that per-

forming task management in hardware can yield significant benefits. But this has largely

been explored in the context of non-speculative systems. Hardware task management in

the speculative context acquires new dimensions—be it for correctness, performance or

scalability. It necessitates new hardware structures (for instance, to manage tasks that may

be aborted due to dependences), different policies (for scheduling or load balancing) and

unique considerations (such as ensuring forward progress, prevention of deadlock and live-



1.2. Contributions 21 �

lock). Unfortunately, prior work on hardware task management fails to address these con-

cerns adequately.

Exploiting locality: To scale effectively, parallelism must not come at the expense of

locality: tasks should be run close to the data they access to avoid global communication

and use caches effectively. The need for locality-aware parallelism is well understood in

non-speculative systems, where prior work has developed programming models to convey

locality, and runtimes and schedulers to exploit it. By contrast, most prior work in specula-

tive architectures has ignored the need for locality-aware parallelism: in TLS, speculative

tasks are executed by available cores without regard for locality [94,170,191]; in TM, prior

work has developed transactional task schedulers that limit concurrency to reduce aborts

under high contention [14, 23, 221]. Limiting concurrency, i.e., controlling when to run

tasks, suffices for small systems. However, scaling to hundreds of cores also requires solv-

ing the spatial mapping problem, i.e., controlling where to run speculative tasks, scheduling

them across the system to minimize data movement.

Along with spatial mapping, it is also important to address load balancing. Load bal-

ancing improves the distribution of tasks across multiple cores, ensuring good utilization,

and consequently better scalability. Load balancing has been studied extensively in the

context of non-speculative systems [2, 2, 29, 91, 179, 220]. However, non-speculative ap-

proaches, such as work-stealing, work poorly in the speculative context because the signals

to detect imbalance are different (Section 3.10).

1.2 Contributions

This dissertation presents novel architectural techniques to unlock ordered and nested spec-

ulative parallelism. Specifically we make the following contributions:

• Swarm is a scalable architecture for unlocking ordered parallelism—a type of par-

allelism that is abundant in many domains, such as simulation, graph analytics, and

databases, but has been difficult to mine with current software and hardware tech-

niques. Swarm successfully scales several challenging applications up to 256 cores

while retaining the programming simplicity of their sequential counterparts.

• Fractal is a new execution model that enables seamless composition of ordered and

unordered speculative parallelism. Our key insight is to employ order to guarantee

atomicity of nested tasks rather than building impractically large atomic units.

• Amalgam is a microarchitectural technique that enables matching the speculation re-

sources allotted to a task, to the granularity of the task. It ensures that speculation

handles diverse task types across applications gracefully without impacting perfor-

mance, while providing area savings.

These techniques were developed collaboratively as part of a multi-year effort involving

several graduate students. The individual chapters detail the specific contributions of this

dissertation in context.
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Swarm: Programs with ordered parallelism have three key features. First, they consist of

tasks that must follow a total or partial order. Second, tasks may have data dependences that

are not known a priori. Third, tasks are not known in advance. Instead, tasks dynamically

create children tasks and schedule them to run at a future time.

We design Swarm (Chapter 3), an architecture that successfully mines ordered paral-

lelism. Swarm relies on a co-designed execution model and microarchitecture to scale

efficiently. Swarm executes tasks speculatively and out of order, and efficiently speculates

thousands of tasks ahead of the earliest active task to uncover enough parallelism. Swarm

adapts existing eager version management (i.e., store speculative data in place and log old

values) and conflict detection schemes [219], and contributes several new techniques that

allow it to scale to large core counts and speculation windows.

In particular, Swarm’s execution model conveys order constraints to hardware without

undue false data dependences. Swarm’s conflict detection scheme leverages eager version-

ing to, upon mispeculation, selectively abort the mispeculated task and its dependents, en-

abling greater scalability. We also design a distributed commit protocol that allows ordered

commits without serialization, supporting multiple commits per cycle with modest commu-

nication. Finally, we develop spatial hints, a technique that conveys program knowledge to

exploit locality and enable high-quality task mappings. We enhance spatial hints through

a novel data-centric load balancer for the speculative context that redistributes tasks in a

locality-aware fashion.

Together, these techniques enable Swarm to scale 10 challenging applications near lin-

early up to 256 cores, outperforming state-of-the-art software parallel implementations by

3− 18×. Besides achieving near-linear scalability on algorithms that are often considered

sequential, the resulting Swarm programs are almost as simple as their sequential counter-

parts.

Fractal: Large, complex programs have speculative parallelism at multiple levels and

often intermix ordered and unordered algorithms. Speculative architectures should sup-

port composition of ordered and unordered algorithms to convey all this nested parallelism

without undue serialization.

Fractal (Chapter 4) presents a new execution model for nested speculative parallelism.

Fractal programs consist of tasks located in a hierarchy of nested domains. Within each

domain, tasks can be ordered or unordered. Any task can create a new subdomain and

enqueue new tasks in that subdomain. All tasks in a domain appear to execute atomically

with respect to tasks outside the domain. Fractal allows seamless composition of ordered

and unordered nested parallelism.

Our Fractal implementation builds on the Swarm architecture and supports arbitrary

nesting levels cheaply. Unlike prior work, our implementation focuses on extracting par-

allelism at the finest (deepest) levels first. It guarantees the atomicity of large domains by

enforcing an order among individual tasks rather than building impractically large atomic

units. This allows the system to manage tiny speculative tasks that are easy to track in hard-

ware, reaping the benefits of fine-grained parallelism, and avoids the problems that plague
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prior nested-parallel HTMs. Together, our contributions make nested parallelism practical

in speculative systems.

Fractal uncovers abundant fine-grained parallelism and scales challenging programs

that have eluded parallelization for decades. In particular, Fractal is the first architecture

that scales the full STAMP suite [134] to hundreds of cores, achieving gmean speedup of

177× at 256 cores and outperforming prior architectures by up to 88×.

Amalgam: Real-world applications are complex and diverse, featuring tasks of varying

sizes. Systems that support speculative parallelization employ probabilistic structures such

as Bloom filters to track the address sets of tasks using a bounded amount of hardware

state [41, 42, 219]. These structures are conservatively sized at design time to handle com-

monly occurring task sizes. This can, however, lead to inefficient utilization for tiny tasks,

while also offering no protection against high false conflict rates for applications with very

large tasks.

Amalgam builds on the Swarm architecture and develops microarchitectural mecha-

nisms to match Bloom filter resources to the size of the task. On the one hand, large address

sets are tracked cooperatively by multiple Bloom filters. On the other hand, multiple tiny

address sets are tracked in concert by a single Bloom filter when possible. Amalgam offers

a new architectural choice unavailable in prior speculative systems: trading off efficiency

of tracking address sets against the degree of ordered speculation at run-time.

Unlike prior speculative architectures, Amalgam gracefully responds to varying task

sizes, improving performance and efficiency. At 256 cores, Amalgam can reduce the area

consumed by Bloom filters by 4× while slightly improving performance.

MORE than a decade after the transition to multicore processors, we remain saddled

with the legacy of sequential architectures developed for the uniprocessor context.

It is imperative that we break free of this mold if we are to realize the promise of paral-

lel computing. We must systematically explore and rigorously enable parallel systems to

both express and efficiently exploit all forms of parallelism available in applications. The

techniques presented in this dissertation represent an important step in this direction. They

are a culmination of a vertically-integrated approach of studying applications and hardware

architectures in concert. These techniques help bridge the semantic gap between hardware

and software in current parallel systems, and enable us to realize a new breed of parallel

architectures that are more versatile, easier to program, and scale to larger systems sizes

efficiently.
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2
Background

THIS chapter presents an overview on parallelism in applications and techniques to ex-

tract these forms of parallelism. We focus on literature that is generally related to the

broad themes of this dissertation. Later chapters discuss literature that is specific to the

techniques presented in those chapters.

2.1 Overview

Fundamentally, parallelizing an application consists of two main steps: organizing the com-

putation of the application into a set of tasks that may execute concurrently, and specifying

the synchronization of tasks with potential data dependences to ensure correct behavior. We

use the term task to refer to a unit of computational work (for example, a short function, or

a set of instructions). The architecture of a parallel machine impacts and constrains both

the manner and efficacy of these steps. The key to building a versatile parallel architecture

is to design an execution model that allows programmers to effectively express parallelism

of all forms and support it with an efficient implementation.

In this chapter, we first describe what kinds of parallelism exist in applications (Sec-

tion 2.2). While parallelism may be classified in many ways, we present a broad taxonomy

that illustrates the challenges in expressing and extracting different forms of parallelism

and informs the architectural support needed to effectively exploit them. We then describe

the range of techniques to extract those forms of parallelism (Section 2.3). And finally,

we review prior architectural support for parallelization and their associated successes and

limitations (Section 2.4).

2.2 Parallelism in Applications

We categorize parallelism in applications along two dimensions—regularity and granu-

larity. The first dimension captures how much information we have about the tasks in
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the application statically, which informs the degree of run-time support needed to effec-

tively parallelize the application. The second dimension captures the size of the tasks in

the application, which informs how much hardware support we need to extract parallelism

effectively.

2.2.1 Regularity of Parallelism

Regular parallelism: Applications have regular parallelism when their tasks and data

dependences among them are known statically. Regular parallelism commonly arises in

applications that manipulate dense matrices and arrays, and have predictable control flow

(e.g, matrix-matrix multiplication). These applications typically comprise loops where

each iteration performs the same operation on a different data element. If the iterations

are independent of one another then they may execute in parallel. Regular parallelism also

manifests in applications with pipeline parallelism. Here computation is partitioned into a

sequence of stages with each stage producing data consumed by the following stage. Stages

may execute in parallel communicating shared data in a deterministic producer-consumer

style. Regular parallelism also arises in other domains such as stencil computation [174]

and fast Fourier transform (FFT) [166].

Irregular parallelism: Applications have irregular parallelism when their tasks or data

dependences among them are unknown statically.1 Instead, tasks create new tasks at run-

time as they find more work to do. Further, the tasks may have data dependences that again

manifest at run-time. Irregular parallelism arises in applications that have unpredictable

control flow, or operate on data structures accessed in complex non-predictable patterns

such as trees and graphs. Examples include Dijkstra’s algorithm [58, 80], Kruskal’s mini-

mum spanning forest algorithm [58], and discrete-event simulation [172].

2.2.2 Granularity of Parallelism

Granularity refers to the size of tasks. Parallelism in applications can arise at various granu-

larities: ranging from single-instruction tasks (instruction-level parallelism), to fine-grained

tasks of a few tens to hundreds of instructions each, to coarse-grained tasks of hundreds of

thousands of instructions each. While finer granularities can expose greater parallelism,

they also impose larger costs—specifically, task creation, communication, and synchro-

nization costs. Thus, the granularity of tasks impacts how much hardware support is re-

quired to get good performance.

1Irregular parallelism has a different connotation in the GPU literature, referring to unstructured compu-

tation with varying amount of work or unstructured memory accesses.
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Figure 2-1: Granularity (X-axis) and regularity (Y-axis) are closely intertwined in determining the

difficulty of extracting parallelism. Instruction-level parallelism of all forms is effectively exploited

modern cores. Multicores can extract coarse-grained parallelism well. However, irregular fine-

grained parallelism is taxing to extract on current systems.

Regularity and granularity are closely intertwined in determining the difficulty in ex-

tracting parallelism. With regular parallelism, we have advance information of what tasks

need to run and when. This enables greater compile-time optimization—such as generation

of parallel schedules before running the application—and therefore incurs fewer run-time

costs. Irregular parallelism, by contrast, demands greater run-time support to discover and

exploit parallelism. Likewise, the cost of managing coarse-grained tasks in software can

be amortized and thus imposes lower overheads to parallelization. By contrast, managing

fine-grained tasks demands greater hardware support.

Figure 2-1 illustrates the difficulty in extracting different forms of parallelism (Sec-

tion 2.3 describes specific techniques). Current multicores exploit coarse-grained regular

parallelism very well, enabled by programming languages, compiler tools and architec-

tural support. Extracting coarse-grained irregular parallelism has seen limited success, the

primary challenges being task management and synchronization. At the other extreme,

modern cores effectively target instruction-level parallelism (ILP) in applications; but ILP

is ill-suited for multicores. However, fine-grained irregular parallelism has been taxing to

extract on current systems. Software-only approaches incur large overheads to be practical.

At the same time, current architectural support is insufficient to mine such parallelism.

As we scale to larger multicores, it becomes imperative to extract all available forms

of parallelism in applications. Amdahl’s Law [9] states that maximum speedup achievable

is limited by the non-parallelizable portion of an application. Given N cores, if the paral-

lelizable fraction of the application, f , is accelerated by a factor N , then the speedup, S,

is given as: S = 1
(1−f)+f/N

. As N increases, the speedup is quickly bounded by 1
1−f

. At

N = 100 cores, even if 99% of the application is parallelizable (f = 0.99), S = 50, and if

the fraction drops to even 95% (f = 0.95), the speedup drops precipitously to S = 17. It

is therefore important to focus on even the hardest forms of parallelism, if we are to realize

the benefits of parallel computing. Hence, this dissertation targets fine-grained irregular

parallelism.
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2.3 Techniques to Express and Extract Parallelism

2.3.1 Parallelizing Applications With Regular Parallelism

For applications with regular parallelism, it is possible to delineate tasks to be executed in

parallel in advance. This may be done manually by the programmer or inferred automati-

cally by the compiler.

Programming language extensions allow programmers to express data parallelism ex-

plicitly using constructs such as parallel-for in OpenMP [150]. Special purpose lan-

guages, such as ZPL [44], have also been proposed for writing data parallel programs.

Language extensions such as Cilk [81] enable programmers to express task parallelism in

applications.

Compiler tools rely on building and analyzing the program dependence graph [75] of

the application. The program dependence graph captures control and data dependences

among tasks of an application. Techniques such as points-to analysis [12, 51, 60, 73, 193]

and shape analysis [47,63,87,92,123] inspect the program dependence graph and identify

tasks that are independent and hence can be executed in parallel. Using these techniques,

compilers can analyze and transform sequential programs into parallel ones.

The runtime systems for these applications tend to be simple, focusing primarily on

load-balancing and priority scheduling of tasks on the critical path [29, 34].

Architectural support for single-instruction multiple-thread (SIMT) execution [129],

common in GPUs, enables better scheduling of coarse-grained parallel tasks. While sup-

port for vectorization [175] and single-instruction multiple-data (SIMD) extensions (such

as SSE and AVX [109]), enable extracting regular data parallelism at the granularity of

individual instructions.

2.3.2 Parallelizing Applications with Irregular Parallelism

Parallelizing applications with irregular parallelism requires greater run-time support. The

program dependence graph cannot be determined at compile-time, so static analysis fails

to find much parallelism in these applications. Run-time approaches to parallelization may

be categorized into two types: speculative and non-speculative.

Non-speculative approaches: Many non-speculative approaches rely on the program-

mer to explicitly delineate tasks and handle synchronization through constructs such as

locks, semaphores, etc. Unfortunately, such manual code parallelization is a time-consuming

and error-prone process. Programmers need to carefully tradeoff parallelism against ease

of programming and performance [105]. Further, explicit synchronization techniques such

as locks are not composable and require programmers to strictly adhere to locking con-

ventions to prevent deadlock and livelock [96]. Finally, in many programs such explicit

synchronization can be conservative because many dependences manifest infrequently at

run-time [165, 207].



2.3. Techniques to Express and Extract Parallelism 29 �

Software libraries and frameworks can abstract the implementation details from the

programmer. Concurrent data structure libraries [37,102,105,128,198] provide tuned con-

current implementations of commonly used data structures such as stacks, lists and queues.

Frameworks such as Galois [142, 155], Ligra [185], and GraphIt [223] focus on providing

suitable abstractions for expressing irregular parallelism in applications, while handling

synchronization and load-balancing under the hood.

Techniques such as inspector-executor [156] and deterministic reservations [25] take a

different approach, building a dependence graph at run-time and executing tasks in parallel

suitably. The inspector-executor approach builds the dependence graph and determines

a schedule for tasks in an inspector phase, followed by an executor phase that executes

the tasks in parallel. Deterministic reservations reserve access to data by different tasks

in a priority order, followed by a commit phase where tasks with successful reservations

execute in parallel and then free reservations to reserved data. These approaches work well

with coarse-grained tasks where the run-time overhead of discovering parallelism can be

amortized by the parallel execution of tasks.

Speculative approaches: In speculative or optimistic parallelization, the system exe-

cutes tasks in parallel assuming that their dependences are not violated. The system soft-

ware or hardware automatically detects dependence violations and recovers from them. If

there is no violation, the results of speculative execution are committed. In case of a viola-

tion, the offending tasks are aborted and re-executed. All speculative systems implement

the following basic mechanisms: (1) conflict detection to track dependence violations, (2)

version management to manage the speculative memory state of a task, and (3) conflict

resolution to determine which task(s) to abort on a dependence violation.

Speculative parallelization is employed widely to exploit parallelism at the granular-

ity of individual instructions in modern processors. Programmers simply write sequential

code. Compilers can analyze the program to expose parallelism, generate an execution

schedule and optimize branches [182]. Architectural support for ILP (Section 2.4.1) can

issue and execute multiple instructions in parallel by performing dynamic dataflow analy-

sis among instructions, handling operations with variable latency, predicting outcomes of

branches, etc. [190].

Speculative parallelization has also been employed to parallelize applications with coarse-

grained tasks, in domains ranging from transactional databases [121, 154, 205] to graph

analytics [142] and discrete-event simulation [77, 112]. However, for applications with

fine-grained tasks of a few tens to hundreds of instructions, the overheads of speculative

parallelization in software are too large to be practical [101]. Further, many software tech-

niques (e.g., ordered commits [100]) induce unnecessary serialization, limiting scalability

even with plentiful speculative parallelism.

Architectural support for speculative parallelization can tackle some of these overheads.

Prior work has proposed hardware techniques for supporting thread-level speculation (TLS)

of sequential loops [94, 170, 191], and hardware transactional memory to perform specula-

tive synchronization [42, 95, 104, 162]. However, both the TLS and TM execution models
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are insufficient for many applications with irregular parallelism (Section 2.4). Further, TLS

mechanisms often scale poorly beyond a few cores, while TM performs poorly with fine-

grained tasks.

2.4 Architectural Support for Parallelization

2.4.1 Instruction-Level Parallelism

Support for instruction-level parallelism (ILP) enables systems to issue multiple indepen-

dent instructions in the same cycle. Modern processors aggressively exploit dynamic ILP

through a slew of techniques such as instruction pipelining [38, 201], superscalar execu-

tion [8, 189], register renaming [89], and out-of-order execution [203].

However, ILP has been yielding diminishing returns in recent years—from delivering

52% annual growth in performance during the 1990s, to a modest 3.5% annual growth in

performance in the late 2000s [72, 103]. Control flow in many programs is complex and

data-dependent. Memory aliasing and branch prediction are challenging to resolve despite

sophisticated techniques. These issues fundamentally limit the number of instructions that

may be issued in parallel [122,158,211]. Current systems only execute one to four instruc-

tions in parallel per cycle on average. Further, the instruction scheduling logic, register file,

and other hardware structures to exploit ILP grow super-linearly as the number of execu-

tion units increases and with larger instruction windows [116]. These structures increase

the area and power consumption, and are harder to engineer at high clock speeds, limit-

ing overall performance. Consequently, ILP remains most suited to extracting parallelism

across the execution units of a single core.

By contrast, Swarm (Chapter 3) operates at the granularity of fine-grained tasks of a few

hundred instructions. Swarm hardware efficiently manages thousands of fine-grained tasks

distributed across several tiles of a multicore. We provide high-throughput ordered commits

of tasks in a distributed fashion without requiring a central locus of control. We develop

scalable speculation mechanisms including selective aborts of dependent tasks, which im-

proves efficiency of speculative execution. Together, these enable Swarm to support an

effective instruction window of hundreds of thousands of instructions across multiple pro-

cessor cores.

2.4.2 Thread-Level Speculation

Thread-level speculation (TLS) allows multiple cores to execute tasks of a single sequen-

tial program in parallel while preserving the appearance of sequential execution. TLS

techniques are focused on extracting fine-grained tasks from sequential programs. By op-

erating on fine-grained tasks executed across multiple cores, TLS systems provide a larger

effective instruction window compared to the instruction window on a single core [36].

In the TLS execution model [94, 194], a sequential instruction stream is divided at

multiple points forming a sequence of tasks, where each task consists of contiguous in-
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structions. Tasks are shipped to different cores, and executed speculatively and in parallel.

Reads and writes from a task may have data dependences with other tasks. TLS systems

ensure that such data dependences are handled properly such that the sequential semantics

of the program are maintained. As tasks execute speculatively, the TLS system checks for

cross-task data dependence violations or conflicts: a violation can occur when a read-after-

write (RAW), write-after-write (WAW), or write-after-read (WAR) dependence executes

out of order. When a conflict arises between two tasks, the one that comes later in program

order is aborted and re-executed.

TLS allows a compiler to automatically parallelize portions of code in the presence

of statically unknown data and control dependences. TLS extracts parallelism whenever

dependences do not manifest at run-time. There are several approaches to delineate an

instruction stream into tasks. The most common way is to split a sequential instruction

stream at the beginning of each iteration of a loop or at the entry and exit points of a

function call [159, 196].

Like most systems that support speculative parallelization, TLS systems implement

three basic mechanisms: conflict detection, version management and conflict resolution.

Conflict detection: Most TLS schemes detect violations in a similar way: data that is

speculatively accessed (e.g., read) is marked with some ordering tag, so that we can de-

tect a later conflicting access (e.g., a write from another task) that should have preceded

the first access in sequential order. Multiscalar processors use a centralized address res-

olution buffer (ARB) structure that observes all memory operations and detects ordering

violations [79, 191]. However, this centralized approach does not scale well. Later propos-

als leverage caches and coherence protocols to detect conflicts [56, 194, 195]. They extend

invalidation messages in the coherence protocol to carry the ordering tag corresponding to

the task—dependence violations are flagged when a cache receives an invalidation message

from a task with an earlier ordering tag. Most TLS systems perform conflict detection in an

eager fashion, i.e., check for conflicts on each memory access during task execution. The

alternative is to detect conflicts in a lazy manner at the end of task execution. However, this

has limited benefits with strictly ordered fine-grained tasks.

Version management: A variety of approaches have been proposed to buffer and man-

age speculative state. In some proposals, tasks buffer unsafe state dynamically in caches [56,

78, 195], write buffers [94], or special buffers [79] to avoid corrupting main memory. In

other proposals, tasks generate a log of updates that allow them to backtrack execution in

case of a violation [85, 222]. Garzaran et al. [84] present a taxonomy of approaches to

manage speculative memory state and the tradeoffs of the various approaches. Broadly,

version management proposals may be categorized as lazy and eager.2 In lazy version

management, speculative data is buffered until a task is safe to commit. Garzaran et al.

2Garzaran et al. [84]’s taxonomy follows a different nomenclature—Future Main Memory (FMM) in their

taxonomy corresponds to eager versioning nomenclature in this dissertation, while all other approaches fall

under the lazy versioning nomenclature in this dissertation.
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also distinguish when the speculative data is merged to memory on a task commit (either

at task commit, or at some time after task commit time). By contrast, in eager versioning,

speculative writes update memory directly and maintain an undo log to restore the origi-

nal contents in case of an abort. Lazy versioning makes aborts fast since it just involves

discarding the buffered speculative state. But commits are slow because they require merg-

ing of speculative state to main memory. By contrast, eager versioning makes commits

fast as the data in memory is already updated. But it makes aborts slow, since it involves

restoring the main memory to a correct state by walking the undo log. Most TLS propos-

als [56, 94, 191, 194] implement lazy versioning—for systems with small number of cores

(<10 cores), these proposals find little difference between the two policies and favor lazy

versioning owing to lower complexity in handling aborts.

Conflict resolution: On detecting a conflict, most TLS proposals [94, 191, 194] abort

the task that caused the violation and all later speculative tasks because they may have

consumed data written by the aborted task. Although more aggressive strategies are possi-

ble (such as squashing only the dependent later speculative tasks), they involve additional

complexity in tracking and resolving reference chains among tasks.

Limitations of TLS: While TLS can extract fine-grained parallelism in applications, it

suffers from two major drawbacks.

1. First, to maintain sequential semantics, the TLS execution model only allows spawn-

ing tasks in program order. However, we find that in many applications tasks are cre-

ated widely out of order (Section 3.1). The control flow constructs of TLS schemes—

loops and method calls—are insufficient to express order constraints among these

tasks, instead necessitating software data structures to queue and schedule these

tasks.

2. Second, TLS mechanisms often scale poorly beyond a few cores. Prior TLS schemes

often abort all later speculative tasks to avoid tracking dependences among all tasks

explicitly. While this is reasonable for small core counts, such unselective aborts

are wasteful at larger core counts, limiting parallelism and scalability. Further, TLS

schemes introduce a serialization bottleneck since they enforce in-order commits

through token passing or by building successor lists [94, 171, 191, 195]. With fine-

grained tasks, this bottleneck can cripple a system’s performance and scalability at

large core counts.

Addressing the limitations of TLS: Swarm (Chapter 3) addresses the limitations of TLS

in the following ways:

1. Swarm presents an execution model based on timestamp-ordered tasks that conveys

ordering constraints explicitly to hardware. New tasks are available to execute as

soon as they are created, exposing more opportunities for parallelism. Hardware is

responsible for queueing tasks and ensuring tasks commit in order.



2.4. Architectural Support for Parallelization 33 �

2. Swarm employs a combination of eager-versioning and timestamp-based conflict de-

tection to perform selective aborts of dependent tasks in a scalable manner. Fur-

ther, Swarm achieves in-order commits without undue serialization by adapting tech-

niques from distributed systems.

2.4.3 Transactional Memory

Transactional memory (TM) was proposed to simplify parallel programming, in particular

the difficulty in managing shared state between threads [104]. TM allows programmers to

declare certain code blocks as transactions. TM guarantees that user-defined transactions

execute in an atomic and isolated manner with respect to other code blocks. Atomicity

requires that all constituent actions in a transaction complete successfully, or that none of

the actions appear to start executing. Isolation requires that transactions not interfere with

each other, i.e., a transaction produces the same result as it would if no other transactions

are executing concurrently. TM frees the programmer from the burden of orchestrating

lock-based synchronization. Further, transactions are readily composable in contrast to

lock-based programming.

TM systems execute multiple transactions in parallel with optimistic concurrency con-

trol as long as they do not conflict. Two transactions conflict if they access the same ad-

dress and one of them writes. If they conflict, one of them is aborted and restarts. Similar to

TLS, TM systems implement three basic mechanisms: version management, conflict detec-

tion, and conflict resolution. TM systems may implement these mechanisms in software or

hardware or a combination of the two. Hardware transactional memory (HTM) implemen-

tations typically incur lower overheads compared to software transactional memory (STM)

implementations.
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LogTM [137], UTM [11],

VTM [163]
MetaTM [164]

Lazy Impractical
TCC [95], FlexTM [184],

BulkTM [42]

Table 2.1: HTM proposals for various points in the TM design space.

TM design space: Unlike TLS, TM systems do not need to support ordered execution

of transactions; they only need to ensure a serializable schedule. This has enabled greater

flexibility in the policies for the three basic mechanisms above. While TLS systems mostly

employ lazy versioning and eager conflict detection, TM systems have explored other com-

binations as listed in Table 2.1. Similar to TLS, eager version management makes commits

fast but aborts slow, while lazy version management offers complementary characteristics.
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With eager conflict detection less work is potentially wasted if a transaction aborts; how-

ever, lazy conflict detection allows more transaction interleavings to successfully commit

and guarantees forward progress. While TLS schemes resolve conflicts by aborting all later

tasks, TM systems have choice in which transaction to abort leading to various conflict res-

olution proposals [11, 31, 42, 95, 111, 137]. Bobba et al. [32] present a taxonomy of the

various policy choices in TM with their associated tradeoffs.

Improving implementation of speculation mechanisms: TM proposals also contribute

several ideas to improving the implementation of the three basic mechanisms. Similar to

TLS, many HTM systems implement data versioning and conflict detection by modifying

the hardware caches and the coherence protocol. The earliest HTM proposal [104] dupli-

cated the data cache, adding a separate transactional cache to track the reads and writes

of a transaction. However, this incurs additional area and latency overhead. Later pro-

posals [162, 204] instead extend the existing data cache lines with speculatively read (SR)

and speculatively written (SW) bits, that are set when a transaction reads and writes a line

respectively. Some proposals [197] also use dedicated buffers to track the read and write

sets. A transaction detects a conflict when it receives a conflicting memory request from

another core for a cache line in its read or write set (i.e., the SR or SW bit of the cache line

is set). The underlying cache coherence protocol provides the mechanisms to communicate

memory requests from different cores (or transactions).

LogTM [137] decouples version management from the data cache. It uses a per-thread

log (allocated in virtual memory) to record older values of addresses being written by the

transaction and writes the new value in place (eager version management). On a commit,

this log is discarded and on an abort, a software handler executes, and restores the original

values into memory by walking the log. LogTM also augments the coherence protocol to

ensure other transactions do not observe speculative writes. LogTM makes eager version

management and eager conflict detection practical, and achieves fast commits while mak-

ing aborts slower. Bulk [42] decouples conflict detection from the data cache by recording

the read and write sets in a hashed signature separate from the data cache. The signatures

provide a compact representation of the address sets. While this reduces the state to track

the address sets, it can introduce false positives (i.e., signal that a transaction has accessed

a location, when in fact it has not), but there are no false negatives. LogTM-SE [219] com-

bines the benefits of LogTM and Bulk to decouple both version management and conflict

detection from the data cache.

Support for nesting: Transactional memory can support nesting to enable software

composition. There are three types of nesting: flat, closed, and open. Flat nesting is

the simplest type of nesting, and simply ignores the existence of nested transactions. In-

stead, all operations are executed as belonging to the parent transaction, resulting in large

monolithic transactions. Aborting a nested transaction causes the parent transaction to be

aborted. With closed nesting, the updates made by a nested transaction become externally

visible only after the parent transaction commits [140]. When a nested transaction aborts,
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the code in the nested transaction is re-executed without aborting the parent transaction,

which often leads to improved performance. With open nesting, the updates of a nested

transaction become externally visible as soon as it commits (even if the parent transaction

has not committed yet) [6, 139]. When a parent transaction aborts, compensation actions

should be executed to undo the effects of the nested transaction. In addition to the seman-

tics of nesting, there are two design choices in how nested transactions execute. Serial

nesting simply executes all nested transactions serially, while parallel nesting can launch

multiple nested transactions on different threads to exploit nested parallelism.

Limitations of TM: TM systems suffer from the following limitations:

1. While support for TM enables efficient lock-free synchronization, TM does not pro-

vide support for order. The TM execution model is also restricted to spawning only

as many transactions as the number of threads, which limits parallelism.

2. While TM can support nesting, many HTMs focus on parallelizing at the coarsest

(shallowest) levels, incurring large overheads that squander the potential of nested

parallelism. To guarantee atomicity, nested transactions merge their speculative state

with their parent, and only the coarse, top-level transaction can commit. This results

in large atomic blocks that are as expensive to track and as prone to abort as large

serial transactions, adds substantial overheads, and suffers from subtle deadlock and

livelock issues [20].

3. To perform conflict detection, many TM systems employ Bloom filters. However,

these Bloom filters are allocated at the task granularity—two Bloom filters per task,

one each to track the read and write sets respectively. Further, these Bloom filters

are conservatively sized at design time. This leads to inefficient utilization for tiny

transactions, while also offering no protection against high false positive rates for

applications with very large transactions.

Addressing the limitations of TM: This dissertation addresses the limitations of TM in

the following ways:

1. Swarm (Chapter 3) presents an execution model based on tasks with programmer-

assigned timestamps to support order. Swarm also provides support for hardware

queueing, thereby supporting many more tasks than number of threads or cores and

exposing more parallelism. Swarm hardware builds on version management and

conflict detection techniques developed for TM. We augment eager versioning with

timestamp-based conflict detection— this supports ordered speculation and enables

selective aborts which uncovers more parallelism. We also develop mechanisms to

perform hierarchical conflict detection to reduce conflict checking traffic.

2. Fractal (Chapter 4) addresses the limitations of nesting in TM. Rather than build-

ing impossibly large atomic units, Fractal orders nested tasks to enforce atomicity.

This allows Fractal to operate at the granularity of fine-grained tasks that are easy to

track in hardware, while also avoiding subtle livelock and deadlock issues in nested
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TM systems. Also, Fractal supports both ordered and unordered nested speculative

parallelism unlike TM.

3. Amalgam (Chapter 5) matches the Bloom filter resources to the task size. Large ad-

dress sets are tracked cooperatively by multiple Bloom filters. On the other hand,

multiple tiny address sets are tracked in concert by a single Bloom filter when possi-

ble.

2.4.4 Fine-grained Messaging and Task Management

Managing fine-grained tasks in software incurs large overheads. Queue operations and

synchronization through a shared-memory cache hierarchy incur significant latency (close

to a hundred cycles [181]), thwarting the benefits of fine-grained parallelism, and limit-

ing speedup. This is only exacerbated at larger core counts making fine-grained paral-

lelism impractical. Prior work has shown that performing task management in hardware

can yield significant benefits. Active messages lower the cost of sending tasks among

cores [148, 210]. Carbon [120] introduces specialized hardware queues and a custom

messaging protocol for enqueuing, dequeuing and distributing tasks across cores. Hard-

ware also implements scheduling and load-balancing that operate concurrently with use-

ful computation, without needing to communicate or synchronize via shared memory.

Asynchronous direct messages [181] expose hardware primitives for sending and asyn-

chronously receiving short messages between cores, enabling software to implement cus-

tom schedulers. Queueing operations do not rely on memory-mapped buffers, instead us-

ing low-latency instructions to send and receive task descriptors directly through registers.

GPUs [215] and Anton 2 [90] feature custom schedulers for non-speculative tasks.

Swarm (Chapter 3) builds on these mechanisms, providing low-overhead asynchronous

messaging for enqueueing and dequeuing tasks, and large hardware queues to manage fine-

grained tasks. However, Swarm tasks are ordered and also run speculatively. Tasks are

prioritized to run according to programmer-assigned timestamps. We manage hardware

queue resources carefully, developing new mechanisms for queue virtualization and queue

resource allocation, that ensure livelock and deadlock freedom. We also develop spatial

hints (Section 3.7), a technique to exploit locality to achieve high-quality task mappings,

and a novel load-balancer for speculative tasks (Section 3.10).

2.5 Bloom Filters

A Bloom filter [28] provides a means to compactly represent a set of n elements. Bloom

filters are a popular choice for tracking address sets of tasks in systems that support specu-

lative parallelization (such as hardware transactional memory) [42,135,180,219]. The filter

is a bit-vector of m bits indexed by k independent hash functions, and supports operations

such as element insertion and membership query.
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Figure 2-2: Bloom filter insertion and query for address a for (a) true Bloom filter and (b) parallel

Bloom filter. The Bloom filter has m bits and k random hash functions.

Figure 2-2a illustrates the operation of a true Bloom filter. At initialization, every bit in

the bit-vector is set to 0. To insert an address a to the set, we compute the k hash values of

the address. Each hash function hi(a) returns a value in the range [0, · · · ,m− 1]. The bits

at the positions indicated by these values are set to 1. To test for membership of an address

a, we compute the results of the k hash functions hi(a) and check the contents of the bits

they point to. If at least one bit is set to 0, the address is not in the signature. If all the bits

are set to 1, either the address is in the set or the insertion of other addresses set these bits

to 1 (a false positive).

Implementing k hash function signatures using an SRAM with k read and write ports

can be area inefficient (as the size of the SRAM cell increases quadratically with the num-

ber or ports) [180]. Hardware implementations of signatures using Bloom filters, instead

use a parallel Bloom filter (Figure 2-2b). Instead of k hash functions, parallel Bloom filters

have k Bloom filters each with m/k−bit-vectors, each with a different hash function. To

insert an address we hash it to set a bit in each of the k filters. The test for membership is

analogous, where we compute the results of the k hash functions and check the correspond-

ing bits in each of the k Bloom filters. If at least one bit is 0, then the address is not in the

set, else we have a match. This design uses smaller single-ported SRAMs instead of larger

multi-ported SRAMS. The parallel Bloom filter can perform similar to a true Bloom filter

but without the area inefficiency. We refer to the m−bit parallel Bloom filter comprising k
single-hash Bloom filters of m/k bits each as a m−bit k−way Bloom filter.
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False positives: Since Bloom filters encode a large space into a compact set, we can

have false positives. For a m−bit k−way parallel Bloom filter, the probability of a false

positive on a membership query, after n elements have been inserted is approximately

given by PFP (n) = [1− (1−k/m)n]k.3 A larger bit-vector (m) decreases the false positive

probability for a given number of insertions (n) independent of the other parameters of the

Bloom filter. Further, as we move to smaller bit-vectors (m) the false positive probability

grows rapidly; thus, in practice we require Bloom filters of a few hundred bits at least

to keep false positive probabilities within acceptable bounds. While larger bit-vectors are

preferable, they also increase the area needed for the filter. In general, a higher number of

hash functions (i.e. larger k) is preferred since it reduces the false positive probability for

small number of insertions (common case), while increasing the false positive probability

at a large number of insertions.

Utility and limitations: Bloom filter membership queries are simple, requiring check-

ing only a small number of bits (as many as the number of hash functions, k). Swarm

(Chapter 3) leverages this property to develop new microarchitectural techniques that al-

low querying several Bloom filters in parallel using a single SRAM read. A key limitation

of Bloom filters is that they often need to be a few hundred bits to keep false positive

probabilities low. This can lead to inefficient utilization when tracking just one or two

64-bit addresses. Prior systems that utilize Bloom filters cannot address this inefficiency.

Amalgam (Chapter 5) develops signature merging to combine multiple tiny address sets

and track them using a single Bloom filter, thereby improving utilization.

3Christensen et al. [52] present an accurate analysis of the false positive probability for Bloom filters. We

use the simpler, approximate equation here to more easily understand the effect of the different parameters

on false positive probability.
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Swarm: A Scalable Architecture

for Ordered Parallelism

This work was conducted in collaboration with Mark C. Jeffrey, Cong Yan, Maleen Abey-

deera, Joel Emer and Daniel Sanchez from MIT. The ideas for the distributed commit pro-

tocol, virtual-time based conflict detection, selective aborts, and spatial hints were devel-

oped collaboratively. This dissertation contributes hierarchical conflict detection using

canaries, the hardware microarchitecture for efficient commit queue checks, and the load-

balancing scheme. This dissertation also contributes to the development of applications

and the simulator—in particular the memory hierarchy, conflict detection and correct han-

dling of aborts, and event-driven simulation infrastructure.

PARALLELISM arises in a variety of flavors. Broadly, we can distinguish two classes

of parallelism, unordered and ordered, that place different demands on the system. In

unordered parallel programs, available tasks can execute and complete in any order. Tasks

may have data dependences that are not known a priori. In this case, the programmer

must use some form of explicit synchronization, such as locks or transactions, to arbitrate

accesses to shared data. Unordered parallelism incurs small overheads in current multicores

as long as tasks synchronize infrequently and are large enough to amortize the costs of

software task management (e.g., scheduling and load balancing).

By contrast, ordered parallel programs consist of tasks that must follow a total or partial

order. Tasks may have data dependences that are unknown a priori, but synchronization is

implicit, determined by their order constraints. When tasks create new children tasks, they

schedule them to run at a future time. Ordered parallelism is abundant in many domains,

such as simulation, graph analytics, and databases. For example, consider a simulator for

a parallel computer. Each task is an event (e.g., executing an instruction in a simulated

core). Each task must run at a specific simulated time (introducing order constraints among

tasks), and modifies a specific component (introducing data dependences among tasks).

Tasks dynamically create other tasks (e.g., a simulated memory access), possibly for other

components (e.g., a simulated cache), and schedule them for a future simulated time.

39
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Prior work has tried to exploit ordered parallelism in software [100,101], but has found

that, in current multicores, runtime overheads negate the benefits of parallelism. This mo-

tivates the need for architectural support. Prior architectural techniques like thread-level

speculation (TLS) [94,171,191,195], which speculatively parallelizes sequential programs,

is also unable to exploit ordered parallelism. This is due to two reasons (Section 3.2): First,

many ordered algorithms have little parallelism when written as sequential programs. To

enforce order constraints, sequential implementations introduce false data dependences

among otherwise independent tasks. For example, a sequential timing simulator uses a

priority queue to store future tasks, and priority queue accesses introduce false data depen-

dences. Second, prior TLS schemes use techniques that scale poorly beyond few cores and

cannot support large speculation windows.

We present Swarm, an architecture that exploits ordered parallelism efficiently. Swarm

relies on a co-designed execution model and microarchitecture to scale. Swarm executes

tasks speculatively and out of order, and speculates thousands of tasks ahead of the earliest

active task to uncover enough parallelism. Swarm adapts existing version management and

conflict detection schemes [219], and contributes new techniques that allow it to scale to

large core counts and speculation windows. Specifically, we contribute the following novel

techniques:

• An execution model based on tasks with programmer-specified timestamps that con-

veys order constraints to hardware without undue false data dependences.

• A hardware task management scheme that (i) features speculative task creation and

dispatch, drastically reducing task management overheads, and (ii) implements a

very large speculation window.

• A scalable conflict detection scheme that leverages eager versioning to, upon mis-

peculation, selectively abort the mispeculated task and its dependents.

• A distributed commit protocol that allows ordered commits without serialization,

supporting multiple commits per cycle with modest communication.

• A technique called spatial hints that uses program knowledge to convey locality that

(i) enables high-quality task mappings (ii) minimizes data movement.

We evaluate Swarm in simulation (Section 3.4 and Section 3.5) using seven challenging

ordered applications: four graph analytics algorithms, two discrete-event simulators, and an

in-memory database. Though they are not our focus, Swarm also scales unordered applica-

tions. At 64 cores, Swarm outperforms sequential implementations of these algorithms by

43–117×, and outperforms state-of-the-art parallel implementations on conventional mul-

ticores by 2.7–18.2×. At 256 cores, Swarm achieves a gmean speedup of 193× over the

single-core performance across our benchmark suite.

In summary, by making ordered execution scalable, Swarm speeds up challenging al-

gorithms that are currently limited by stagnant single-core performance. Moreover, Swarm

simplifies parallel programming, as it frees developers from using error-prone explicit syn-

chronization.
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Figure 3-1: Dijkstra’s single-source shortest paths algorithm (sssp) has plentiful ordered paral-

lelism.

3.1 Motivation

3.1.1 Understanding Ordered Parallelism

Applications with ordered parallelism have three main characteristics [100,155]. First, they

consist of tasks that must follow a total or partial order. Second, tasks are not known in

advance. Instead, tasks dynamically create children tasks, and schedule them to run at a

future time. Task execution order is determined by the algorithm, and it is different from

task creation order. Third, tasks may have data dependences that are not known a priori.

Ordered algorithms are common in many domains. First, they are common in graph

analytics, especially in search problems [100, 155]. Second, they are important in simu-

lating systems whose state evolves over time, such as circuits [136], computers [45, 169],

networks [110, 208], health-care systems [115], and systems of partial differential equa-

tions [99, 127]. Third, they are needed in systems that must maintain externally-imposed

order constraints, such as geo-replicated databases where transactions must appear to exe-

cute in timestamp order [57], or deterministic architectures [64,130] and record-and-replay

systems [108, 216] that constrain the schedule of parallel programs to ensure deterministic

execution.
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To illustrate the challenges in parallelizing these applications, consider Dijkstra’s single-

source shortest paths (sssp) algorithm [58, 80]. sssp finds the shortest distance between

some source node and all other nodes in a graph with weighted edges. Figure 3-1(a) shows

the sequential code for sssp, which uses a priority queue to store tasks. Each task operates

on a single node, and is ordered by its tentative distance to the source node. sssp relies

on task order to guarantee that the first task to visit each node comes from a shortest path.

This task sets the node’s distance and enqueues all its children. Figure 3-1(b) shows an

example graph, and Figure 3-1(c) shows the tasks that sssp executes to process this graph.

Figure 3-1(c) shows the order of each task (its distance to the source node) in the x-axis,

and outlines both parent-child relationships and data dependences. For example, task A at

distance 0, denoted (A, 0), creates children tasks (C, 2) and (B, 3); and tasks (B, 3) and

(B, 4) both access node B, so they have a data dependence.

A distinctive feature of many programs with ordered parallelism is that task creation and

execution order are different: children tasks are not immediately runnable, but are subject

to a global order influenced by all other tasks in the program. For example, in Figure 3-1(c),

(C, 2) creates (B, 4), but running (B, 4) immediately would produce the wrong result, as

(B, 3), created by a different parent, must run first. Sequential implementations of these

programs use scheduling data structures, such as priority or FIFO queues, to process tasks

in the right order. These scheduling structures introduce false data dependences that restrict

parallelism and hinder TLS (Section 3.2).

Order constraints limit non-speculative parallelism. For example, in Figure 3-1(c), only

(B, 4) and (D, 4) can run in parallel without violating correctness. A more attractive option

is to use speculation to elide order constraints. For example, Figure 3-1(d) shows a specula-

tive schedule for sssp tasks. Tasks in the same x-axis position are executed simultaneously.

This schedule achieves 2× parallelism in this small graph; larger graphs allow more paral-

lelism (Section 3.1.2). This schedule produces the correct result because, although it elides

order constraints, it happens to respect data dependences. Unfortunately, data dependences

are not known in advance, so speculative execution must detect dependence violations and

abort offending tasks to preserve correctness.

Recent work has tried to exploit ordered parallelism using speculative software run-

times [100,101], but has found that the overheads of ordered, speculative execution negate

the benefits of parallelism. This motivates the need for hardware support.

3.1.2 Analysis of Ordered Algorithms

To quantify the potential for hardware support and guide our design, we first analyze the

parallelism and task structure of several ordered algorithms.

Benchmarks: We analyze six ordered benchmarks from the domains of graph analytics,

simulation, and databases:

• bfs finds the breadth-first tree of an arbitrary graph.

• sssp is Dijkstra’s algorithm (Section 3.1.1).
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• astar uses the A∗ pathfinding algorithm [97] to find the shortest route between two

points in a road map.

• msf is Kruskal’s minimum spanning forest algorithm [58].

• des is a discrete-event simulator for digital circuits. Each task represents a signal

toggle at a gate input.

• silo is an in-memory OLTP database [205].

Section 3.4 describes their input sets and methodology details.

Analysis tool: We developed a pintool [131] to analyze these programs in x86-64. We

focus on the instruction length, data read and written, and intrinsic data dependences of

tasks, excluding the overheads and serialization introduced by the specific runtime used.

The tool uses a simple runtime that executes tasks sequentially. The tool profiles the

number of instructions executed and addresses read and written (i.e., the read and write sets)

of each task. It filters out reads and writes to the stack, the priority queue used to schedule

tasks, and other run-time data structures such as the memory allocator. With this informa-

tion, the tool finds the critical path length of the algorithm: the sequence of data-dependent

tasks with the largest number of instructions. The tool then finds the maximum achievable

speedup by dividing the sum of instructions of all tasks by the critical path length [217]

(assuming unbounded cores and constant cycles per instruction). Note that this analysis

constrains parallelism only by true data dependences: task order dictates the direction of

data flow in a dependence, but is otherwise superfluous given perfect knowledge of data

dependences.

Table 3.1 summarizes the results of this analysis. We derive three key insights that

guide the design of Swarm:

Insight 1: Parallelism is plentiful. These applications have at least 158× maximum

parallelism (msf), and up to 3440× (bfs). Thus, most order constraints are superfluous,

making speculative execution attractive.

Insight 2: Tasks are small. Tasks are very short, ranging from a few tens of instructions

(bfs, sssp, msf), to a few thousand (silo). Tasks are also relatively uniform: 90th-

percentile instructions per task are close to the mean. Tasks have small read- and write-sets.

For example, sssp tasks read 5.8 64-bit words on average, and write 0.4 words. Small tasks

incur large overheads in software runtimes. Moreover, order constraints prevent runtimes

from grouping tasks into coarser-grain units to amortize overheads. Hardware support for

task management can drastically reduce these overheads.

Insight 3: Need a large speculation window. Table 3.1 also shows the achievable par-

allelism within a limited task window. With a T -task window, the tool does not schedule

an independent task until all work more than T tasks behind has finished. Small windows
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Application bfs sssp astar msf des silo

Maximum

parallelism
3440× 793× 419× 158× 1440× 318×

Parallelism

window=1K
827× 178× 62× 147× 198× 125×

Parallelism

window=64
58× 26× 16× 49× 32× 17×

Instrs
mean 22 32 195 40 296 1969

90th 47 70 508 40 338 2403

Reads
mean 4.0 5.8 22 7.1 50 88

90th 8 11 51 7 57 110

Writes
mean 0.33 0.41 0.26 0.03 10.5 26

90th 1 1 1 0 11 51

Max TLS

parallelism
1.03× 1.10× 1.04× 158× 1.15× 45×

Table 3.1: Maximum achievable parallelism and task characteristics (instructions and 64-bit words

read and written) of representative ordered applications.

severely limit parallelism. For example, parallelism in sssp drops from 793× with an infi-

nite window, to 178× with a 1024-task window, to 26× with a 64-task window. Thus, for

speculation to be effective, the architecture must support many more speculative tasks than

cores.

These insights guide the design of Swarm. Our goal is to approach the maximum

achievable parallelism while incurring only moderate overheads.

3.2 Background on HW Support for Speculative Paral-

lelism

Much prior work has investigated thread-level speculation (TLS) schemes to parallelize

sequential programs [84,94,170,171,191,196]. As discussed in Section 2.4.2, TLS schemes

ship tasks from function calls or loop iterations to different cores, run them speculatively,

and commit them in program order. Although TLS schemes support ordered speculative

execution, we find that two key problems prevent them from exploiting ordered parallelism:

1. False data dependences limit parallelism: To run under TLS, ordered algorithms

must be expressed as sequential programs, but their sequential implementations have lim-

ited parallelism. Consider the code in Figure 3-1(a), where each iteration dequeues a task
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from the priority queue and runs it, potentially enqueuing more tasks. Frequent data de-

pendences in the priority queue, not among tasks themselves, cause frequent conflicts and

aborts. For example, iterations that enqueue high-priority tasks often abort all future itera-

tions.

Table 3.1 shows the maximum speedups that an ideal TLS scheme achieves on sequen-

tial implementations of these algorithms. These results use perfect speculation, an infinite

task window, word-level conflict detection, immediate forwarding of speculative data, and

no communication delays. Yet parallelism is meager in most cases. For example, sssp

has 1.1× parallelism. Only msf and silo show notable speedups, because they need no

queues: their task orders match loop iteration order.

The root problem is that loops and method calls, the control-flow constructs supported

by TLS schemes, are insufficient to express the order constraints among these tasks. By

contrast, Swarm implements a more general execution model with timestamp-ordered tasks

to avoid software queues, and implements hardware priority queues integrated with specu-

lation mechanisms, avoiding spurious aborts due to queue-related references.

2. Scalability bottlenecks: Although prior TLS schemes have developed scalable ver-

sioning and conflict detection schemes, two challenges limit their performance with large

speculation windows and small tasks:

Forwarding vs selective aborts: Most TLS schemes find it is desirable to forward data writ-

ten by an earlier, still-speculative task to later reader tasks. This prevents later tasks from

reading stale data, reducing mispeculations on tight data dependences. However, it creates

complex chains of dependences among speculative tasks. Thus, upon detecting mispecu-

lation, most TLS schemes abort the task that caused the violation and all later speculative

tasks [84,94,171,191,195]. TCC [95] and Bulk [42] are the exception: they do not forward

data and only abort later readers when the earlier writer commits.

We find that forwarding speculative data is crucial for Swarm. However, while aborting

all later tasks is reasonable with small speculative windows (2–16 tasks are typical in prior

work), Swarm has a 4096-task window, and unselective aborts are impractical. To address

this, we contribute a novel conflict detection scheme based on eager version management

that allows both forwarding speculative data and selective aborts of dependent tasks.

Commit serialization: Prior TLS schemes enforce in-order commits by passing a token

among ready-to-commit tasks [94, 171, 191, 195]. Each task can only commit when it has

the token, and passes the token to its immediate successor when it finishes committing.

This approach cannot scale to the commit throughput that Swarm needs. For example, with

100-cycle tasks, a 256-core system should commit 2.56 tasks/cycle on average. Even if

commits were instantaneous, the latency incurred by passing the token makes this through-

put unachievable.

To tackle this problem, we show that, by adapting techniques from distributed systems,

we can achieve in-order commits without serialization, token-passing, or building successor

lists.
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3.3 Swarm: An Architecture for Ordered Parallelism
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Figure 3-2: Swarm system and tile configuration.

Figure 3-2 shows Swarm’s high-level organization. Swarm is a tiled, cache-coherent

chip multiprocessor (CMP). Each tile has a group of simple cores. Each core has small,

private, write-through L1 caches. All cores in a tile share a per-tile L2 cache, and each

tile has a slice of a shared NUCA L3 cache. Each tile features a task unit that queues,

dispatches, and commits tasks. Tiles communicate through a mesh NoC.

Key features: Swarm is optimized to execute short tasks with programmer-specified or-

der constraints. Programmers define the execution order by assigning timestamps to tasks.

Tasks can create children tasks with equal or later timestamps than their own. Tasks appear

to execute in global timestamp order, but Swarm uses speculation to elide order constraints.

Swarm is coherently designed to support a large speculative task window efficiently.

Swarm has no centralized structures: each tile’s task unit queues runnable tasks and main-

tains the speculative state of finished tasks that cannot yet commit. Task units only commu-

nicate when they send new tasks to each other to maintain load balance, and, infrequently,

to determine which finished tasks can be committed.

Swarm speculates far ahead of the earliest active task, and runs tasks even if their par-

ent is still speculative. Figure 3-3(a) shows this process: a task with timestamp 0 is still

running, but tasks with later timestamps and several speculative ancestors are running or

have finished execution. For example, the task with timestamp 51, currently running, has

three still-speculative ancestors, two of which have finished and are waiting to commit (8

and 20) and one that is still running (40).

Allowing tasks with speculative ancestors to execute uncovers significant parallelism,

but may induce aborts that span multiple tasks. For example, in Figure 3-3(b) a new task

with timestamp 35 conflicts with task 40, so 40 is aborted and child task 51 is both aborted

and discarded. These aborts are selective, and only affect tasks whose speculative ancestors

are aborted, or tasks that have read data written by an aborted task.
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Figure 3-3: Example execution of sssp. By executing tasks even if their parents are speculative,

SWARM uncovers ordered parallelism, but may trigger selective aborts.

We describe Swarm in a layered fashion. First, we present Swarm’s execution model

and ISA extensions. Second, we describe Swarm hardware assuming that all queues are un-

bounded. Third, we discuss how Swarm handles bounded queue sizes. Fourth, we present

Swarm’s hardware costs.

3.3.1 Swarm Execution Model

Swarm programs comprise timestamped tasks. Tasks appear to run in timestamp order.

Tasks with the same timestamp may execute in any order, but run atomically—the system

lazily selects an order for them.

A task can create one or more children tasks with an equal or later timestamp than its

own. A child is ordered after its parent, but children with the same timestamp may execute

in any order. Because hardware must track parent-child relations, tasks may create a limited

number of children (8 in our implementation). Tasks that need more children enqueue a

single task that creates them.

We expose these features using a low-level C++ API. Tasks are simply functions with

signature:

void taskFn(timestamp , args...)

Tasks create children tasks by calling:

swarm::enqueue(taskFn, timestamp , [hint,] args...)

The hint is an optional argument that conveys locality information. Hints are described in

detail in Section 3.7. If a task needs more than the maximum number of task descriptor ar-

guments, three 64-bit words in our implementation, the runtime allocates them in memory.

3.3.2 ISA Extensions

Swarm manages and dispatches tasks using hardware task queues. A task is represented

by a descriptor with the following architectural state: the task’s function pointer, a 64-bit

timestamp, and the task’s arguments.
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Figure 3-5: Task creation protocol. Cores send new tasks to other tiles for execution. To track

parent-child relations, parent and child keep a pointer to each other.

Swarm adds instructions to enqueue and dequeue tasks. The enqueue_task instruction

accepts a task descriptor (held in registers) as its input and queues the task for execution. A

thread uses the dequeue_task instruction to start executing a previously-enqueued task.

dequeue_task initiates speculative execution at the task’s function pointer and makes

the task’s timestamp and arguments available (in registers). Task execution ends with a

finish_task instruction.

dequeue_task stalls the core if an executable task is not immediately available, avoid-

ing busy-waiting. When no tasks are left in any task unit and all threads are stalled on

dequeue_task, the algorithm has terminated, and dequeue_task jumps to a configurable

pointer to handle termination.

3.3.3 Task Queuing and Prioritization

The task unit has two main structures:

1. The task queue holds task descriptors (function pointer, timestamp, and arguments).

2. The commit queue holds the speculative state of tasks that have finished execution

but cannot yet commit.

Figure 3-4 shows how these queues are used throughout the task’s lifetime. Each new task

allocates a task queue entry, and holds it until commit time. Each task allocates a commit
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Figure 3-6: Speculative state for each task. Each core and commit queue entry maintains this state.

Read and write sets are implemented with space-efficient Bloom filters.

queue entry when it finishes execution, and also deallocates it at commit time. For now,

assume these queues always have free entries. Section 3.3.8 discusses what happens when

they fill up.

Together, the task queue and commit queue are similar to a reorder buffer, but at task-

level rather than instruction-level. They are separate structures because commit queue en-

tries are larger than task queue entries, and typically fewer tasks are waiting to commit than

to execute. However, unlike in a reorder buffer, tasks do not arrive in priority order. Both

structures manage their free space with a freelist and allocate entries independently of task

priority order, as shown in Figure 3-4.

Task enqueues: When a core creates a new task (through enqueue_task), it sends the

task to a randomly-chosen target tile following the protocol in Figure 3-5. Parent and child

track each other using task pointers. A task pointer is simply the tuple (tile, task queue position).
This tuple uniquely identifies a task because it stays in the same task queue position

throughout its lifetime.

Task prioritization: Tasks are prioritized for execution in timestamp order. When a core

calls dequeue_task, the highest-priority idle task is selected for execution. Since task

queues do not hold tasks in priority order, an auxiliary order queue is used to find this task.

The order queue can be cheaply implemented with two small ternary content-addressable

memories (TCAMs) with as many entries as the task queue (e.g., 256), each of which stores

a 64-bit timestamp. With Panigrahy and Sharma’s PIDR_OPT method [153], finding the

next task to dispatch requires a single lookup in both TCAMs, and each insertion (task cre-

ation) and deletion (task commit or squash) requires two lookups in both TCAMs. SRAM-

based implementations are also possible, but we find the small TCAMs to have a moderate

cost (Section 3.3.9).

3.3.4 Speculative Execution and Versioning

The key requirements for speculative execution in Swarm are allowing fast commits and a

large speculative window. To this end, we adopt eager versioning, storing speculative data
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in place and logging old values. Eager versioning makes commits fast, but aborts are slow.

However, Swarm’s execution model makes conflicts rare, so eager versioning is the right

tradeoff.

Eager versioning is common in hardware transactional memories [96, 137, 219], which

do not perform ordered execution or speculative data forwarding. By contrast, most TLS

systems use lazy versioning (buffering speculative data in caches) or more expensive mul-

tiversioning [42, 84, 94, 95, 157, 170, 171, 191, 195, 196] to limit the cost of aborts. Some

early TLS schemes are eager [84, 222], and they still suffer from the limitations discussed

in Section 3.2.

Swarm’s speculative execution borrows from LogTM and LogTM-SE [137, 180, 219].

Our key contributions over these and other speculation schemes are (i) conflict detection

(Section 3.3.5) and selective abort techniques (Section 3.3.6) that leverage Swarm’s hier-

archical memory system and Bloom filter signatures to scale to large speculative windows,

and (ii) a technique that exploits Swarm’s large commit queues to achieve high-throughput

commits (Section 3.3.7).

Figure 3-6 shows the per-task state needed to support speculation: read- and write-set

signatures, an undo log pointer, and child pointers. Each core and commit queue entry

holds this state.

A successful dequeue_task instruction jumps to the task’s code pointer and initiates

speculation. Since speculation happens at the task level, there are no register checkpoints,

unlike in HTM and TLS. Like in LogTM-SE, as the task executes, hardware automatically

performs conflict detection on every read and write (Section 3.3.5). Then, it inserts the read

and written addresses into the Bloom filters, and, for every write, it saves the old memory

value in a memory-resident undo log. Stack addresses are not conflict-checked or logged.

When a task finishes execution, it allocates a commit queue entry; stores the read and

write set signatures, undo log pointer, and children pointers there; and frees the core for

another task.

3.3.5 Virtual Time-Based Conflict Detection

Conflict detection is based on a priority order that respects both programmer-assigned time-

stamps and parent-child relationships. Conflicts are detected at cache line granularity.

Unique virtual time: Tasks may have the same programmer-assigned timestamp. How-

ever, conflict detection has much simpler rules if tasks follow a total order. Therefore, tasks

are assigned a unique virtual time when they are dequeued for execution. Unique virtual

time is the 128-bit tuple (programmer timestamp, dequeue cycle, tile id). The (dequeue cy-

cle, tile id) pair is unique since at most one dequeue per cycle is permitted at a tile. Conflicts

are resolved using this unique virtual time, which tasks preserve until they commit.

Unique virtual times incorporate the ordering needs of programmer-assigned time-

stamps and parent-child relations: children always start execution after their parents, so
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a parent always has a smaller dequeue cycle than its child, and thus a smaller unique virtual

time, even when parent and child have the same timestamp.

Conflicts and forwarding: Conflicts arise when a task accesses a line that was previously

accessed by a later-virtual time task. Suppose two tasks, t1 and t2, are running or finished,

and t2 has a later virtual time. A read of t1 to a line written by t2 or a write to a line read

or written by t2 causes t2 to abort. However, t2 can access data written by t1 even if t1 is

still speculative. Thanks to eager versioning, t2 automatically uses the latest copy of the

data—there is no need for speculative data forwarding logic [84].
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Figure 3-7: Local, tile, and global conflict detection for an access that misses in the L1 and L2.

Hierarchical conflict detection: Swarm exploits the cache hierarchy to reduce conflict

checks. Figure 3-7 shows the different types of checks performed in an access:

1. The L1 is managed as described below to ensure L1 hits are conflict-free.

2. L1 misses are checked against other tasks in the tile (both in other cores and in the

commit queue).

3. L2 misses, or L2 hits where a virtual time check (described below) fails, are checked

against tasks in other tiles. As in LogTM [137], the L3 directory uses memory-

backed sticky bits to only check tiles whose tasks may have accessed the line. Sticky

bits are managed exactly as in LogTM.

Any of these conflicts trigger task aborts.

Using caches to filter checks: The key invariant that allows caches to filter checks is that,

when a task with virtual time T installs a line in the (L1 or L2) cache, that line has no

conflicts with tasks of virtual time > T . As long as the line stays cached with the right

coherence permissions, it stays conflict-free. Because conflicts happen when tasks access
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lines out of virtual time order, if another task with virtual time U > T accesses the line, it

is also guaranteed to have no conflicts.

However, accesses from a task with virtual time U < T must trigger conflict checks, as

another task with intermediate virtual time X , U < X < T , may have accessed the line.

U ’s access does not conflict with T ’s, but may conflict with X’s. For example, suppose a

task with virtual time X = 2 writes line A. Then, task T = 3 in another core reads A. This

is not a conflict with X’s write, so A is installed in T ’s L1. The core then finishes T and

dequeues a task U = 1 that reads A. Although A is in the L1, U has a conflict with X’s

write.

We handle this issue with two changes. First, when a core dequeues a task with a

smaller virtual time than the one it just finished, it flushes the L1. Because L1s are small

and write-through, this is fast, simply requiring to flash-clear the valid bits. Second, each

L2 line has an associated canary virtual time, which stores the lowest task virtual time

that need not perform a global check. For efficiency, lines in the same L2 set share the

same canary virtual time. For simplicity, this is the maximum virtual time of the tasks that

installed each of the lines in the set, and is updated every time a line is installed.

0 1 0 1 0 0 1 0

1 0 0 1 1 0 1 0

…

Read- or write-set Bloom filter for i-th commit queue entry

hash1 hashk

0 i C-1 0 i C-1

0 0 0 1 0 0 1 0

…

Entries with

potential conflicts

Figure 3-8: Commit queues store read- and write-set Bloom filters by columns, so a single access

reads bit from all entries. All entries are checked in parallel.

Efficient commit queue checks: Although caches reduce the frequency of conflict checks,

all tasks in the tile must be checked on every L2 access and on some global checks. To

allow large commit queues (e.g., 64 tasks/queue), commit queue checks must be efficient.

To this end, we leverage that checking a K-way Bloom filter only requires reading one bit

from each way. As shown in Figure 3-8, Bloom filter ways are stored in columns, so a

single 64-bit access per way reads all the necessary bits. Reading and ANDing all ways

yields a word that indicates potential conflicts. For each queue entry whose position in this

word is set, its virtual time is checked; those with virtual time higher than the issuing task’s

must be aborted.
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Figure 3-9: Selective abort protocol. Suppose (A, 1) must abort after it writes 0x10. (A, 1)’s abort

squashes child (D, 4) and grandchild (E, 5). During rollback, A also aborts (C, 3), which read A’s

speculative write to 0x10. (B, 2) is independent and thus not aborted.

3.3.6 Selective Aborts

Upon a conflict, Swarm aborts the later task and all its dependents: its children and other

tasks that have accessed data written by the aborting task. Hardware aborts each task t in

three steps:

1. Notify t’s children to abort and be removed from their task queues.

2. Walk t’s undo log in LIFO order, restoring old values. If one of these writes conflicts

with a later-virtual time task, wait for it to abort and continue t’s rollback.

3. Clear t’s signatures and free its commit queue entry.

Applied recursively, this procedure selectively aborts all dependent tasks, as shown

in Figure 3-9. This scheme has two key benefits. First, it reuses the conflict-detection

logic used in normal operation. Undo-log writes (e.g., A’s second wr 0x10 in Figure 3-

9) are normal conflict-checked writes, issued with the task’s timestamp to detect all later

readers and writers. Second, this scheme does not explicitly track data dependences among

tasks. Instead, it uses the conflict-detection protocol to recover them as needed. This is

important, because any task may have served speculative data to many other tasks, which

would make explicit tracking expensive. For example, tracking all possible dependences on

a 1024-task window using bit-vectors, as proposed in prior work [55, 161], would require

1024× 1023 ≃1 Mbit of state.

3.3.7 Scalable Ordered Commits

To achieve high-throughput commits, Swarm adapts the virtual time algorithm [112], com-

mon in parallel discrete event simulation [76]. Figure 3-10 shows this protocol. Tiles

periodically send the smallest unique virtual time of any unfinished (running or idle) task

to an arbiter. Idle tasks do not yet have a unique virtual time and use (timestamp, current
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Figure 3-10: Global virtual time commit protocol.

cycle, tile id) for the purposes of this algorithm. The arbiter computes the minimum virtual

time of all unfinished tasks, called the global virtual time (GVT), and broadcasts it to all

tiles. To preserve ordering, only tasks with virtual time < GVT can commit.

The key insight is that, by combining the virtual time algorithm with Swarm’s large

commit queues, commit costs are amortized over many tasks. A single GVT update often

causes many finished tasks to commit. For example, if in Figure 3-10 the GVT jumps from

(80,100,2) to (98,550,1), all tasks with virtual time (80,100,2)< t <(98,550,1) can commit.

GVT updates happen sparingly (e.g., every 200 cycles) to limit bandwidth. Less frequent

updates reduce bandwidth but increase commit queue occupancy.

In addition, eager versioning makes commits fast: a task commits by freeing its task and

commit queue entries, a single-cycle operation. Thus, if a long-running task holds the GVT

for some time, once it finishes, commit queues quickly drain and catch up to execution.

Compared with prior TLS schemes that use successor lists and token passing to rec-

oncile order (Section 3.2), this scheme does not even require finding the successor and

predecessor of each task, and does not serialize commits.

For the system sizes we evaluate, a single GVT arbiter suffices. Larger systems may

need a hierarchy of arbiters.

3.3.8 Handling Limited Queue Sizes

The per-tile task and commit queues may fill up, requiring a few simple actions to ensure

correct operation.
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Task queue virtualization: Applications may create an unbounded number of tasks and

schedule them for a future time. Swarm uses an overflow/underflow mechanism to give the

illusion of unbounded hardware task queues [90, 120, 181]. When the per-tile task queue

is nearly full, the task unit dispatches a special, non-speculative coalescer task to one of

the cores. This coalescer task removes several non-speculative, idle task descriptors with

high programmer-assigned timestamps from the task queue, stores them in memory, and

enqueues a splitter task that will re-enqueue the overflowed tasks.

Note that only non-speculative task queue entries can be moved to software. These (i)

are idle, and (ii) have no parent (i.e., their parent has already committed). When all entries

are speculative, we need another approach.

Virtual time-based allocation: The task and commit queues may also fill up with spec-

ulative tasks. The general rule to avoid deadlock due to resource exhaustion is to always

prioritize earlier-virtual time tasks, aborting other tasks with later virtual times if needed.

For example, if a tile speculates far ahead, fills up its commit queue, and then receives a

task that precedes all other speculative tasks, the tile must let the preceding task execute to

avoid deadlock. This results in three specific policies for the commit queue, cores, and task

queue.

Commit queue: If task t finishes execution, the commit queue is full, and t precedes any of

the tasks in the commit queue, it aborts the highest-virtual time finished task and takes its

commit queue entry. Otherwise, t stalls its core, waiting for an entry.

Cores: If task t arrives at the task queue, the commit queue is full, and t precedes all tasks

in cores, t aborts the highest-virtual time task and takes its core.

Task queue: Suppose task t arrives at a task unit but the task queue is full. If some tasks are

non-speculative, then a coalescer is running, so the task waits for a free entry. If all tasks

in the task queue are speculative, the enqueued request is NACK’d (instead of ACK’d as

in Figure 3-5) and the parent task stalls, and retries the enqueue using linear backoff. To

avoid deadlock, we leverage that when a task’s unique virtual time matches the GVT, it is

the smallest-virtual time task in the system, and cannot be aborted. This task need not keep

track of its children (no child pointers), and when those children are sent to another tile,

they can be overflowed to memory if the task queue is full. This ensures that the GVT task

makes progress, avoiding deadlock.

3.3.9 Analysis of Hardware Costs

We now describe Swarm’s overheads. Swarm adds task units, a GVT arbiter, and modifies

cores and L2s.

Table 3.2 shows the per-entry sizes, total queue sizes, and area estimates for the main

task unit structures: task queue, commit queue, and order queue. All numbers are for one

per-tile task unit. We assume a 16-tile, 64-core system as in Figure 3-2, with 256 task queue

entries (64 per core) and 64 commit queue entries (16 per core). We use CACTI [202] for

the task and commit queue SRAM areas (using 32 nm ITRS-HP logic) and scaled numbers
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Entries Entry size Size Est. area

Task queue 256 51 B 12.75 KB 0.056 mm2

Commit filters 64 16×32 B 32 KB (2-port) 0.304 mm2

queue other 64 36 B 2.25 KB 0.012 mm2

Order queue 256 2×8 B 4 KB (TCAM) 0.175 mm2

Table 3.2: Sizes and estimated areas of main task unit structures.

from a commercial 28 nm TCAM [10] for the order queue area. Task queues use single-port

SRAMs. Commit queues use several dual-port SRAMs for the Bloom filters (Figure 3-8),

which are 2048-bit, 8-way in our implementation, and a single-port SRAM for all other

state (unique virtual time, undo log pointer, and child pointers).

Overall, these structures consume 0.55 mm2 per 4-core tile, or 8.8 mm2 per chip, a mi-

nor cost. Enqueues and dequeues access the order queue TCAM, which consumes ∼70pJ

per access [146]. Moreover, queue operations happen sparingly (e.g. with 100-cycle tasks,

one enqueue and dequeue every 25 cycles), so energy costs are small.

The GVT arbiter is simple. It buffers a virtual time per tile, and periodically broadcasts

the minimum one.

Cores are augmented with enqueue/dequeue/finish_task instructions (Section 3.3.2),

the speculative state in Figure 3-6 (530 bytes), a 128-bit unique virtual time, and logic to

insert addresses into Bloom filters and to, on each store, write the old value to an undo log.

Finally, the L2 uses a 128-bit canary virtual time per set. For an 8-way cache with 64 B

lines, this adds 2.6% extra state.

In summary, Swarm’s costs are moderate, and, in return, confer significant speedups.

3.4 Experimental Methodology

Modeled system: We use a cycle-accurate, event-driven simulator based on Pin [131,

152] to model Swarm systems of up to 256 cores, as shown in Figure 3-2, with parame-

ters in Table 3.3. We use detailed core, cache, network, and main memory models, and

simulate all Swarm execution overheads (e.g., running mispeculating tasks until they abort,

simulating conflict check and rollback delays and traffic, etc.). Our configuration is similar

to the 256-core Kalray MPPA [62], though with a faster clock (the MPPA is a low-power

part) and about 2× on-chip memory (the MPPA uses a relatively old 28 nm process).

We model in-order, single-issue cores. Cores run the x86-64 ISA. We use the decoder

and functional-unit latencies of zsim’s core model, which have been validated against Ne-

halem [178]. Cores are scoreboarded and stall-on-use, permitting multiple memory re-

quests in flight.

Benchmarks: We use the six ordered benchmarks mentioned in Section 3.1.2: bfs,

sssp, astar, msf, des, and silo. We port two other ordered benchmarks:
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Cores

256 cores in 64 tiles (4 cores/tile), 2 GHz, x86-64 ISA;

8B-wide ifetch, 2-level bpred with 256×9-bit BHSRs +

512×2-bit PHT, single-issue, 4-entry ld/st buffers

L1 caches 16 KB, per-core, split D/I, 8-way, 2-cycle latency

L2 caches 256 KB, per-tile, 8-way, inclusive, 7-cycle latency

L3 cache
64 MB, shared, static NUCA [117] (1 MB bank/tile),

16-way, inclusive, 9-cycle bank latency

Coherence MESI, 64 B lines, in-cache directories

NoC
16×16 mesh, 128-bit links, X-Y routing, 1 cycle/hop

when going straight, 2 cycles on turns (like Tile64 [213])

Main mem 4 controllers at chip edges, 120-cycle latency

Queues
64 task queue entries/core (16384 total),

16 commit queue entries/core (4096 total)

Swarm

instrs
5 cycles per enqueue/dequeue/finish_task

Conflicts

2 Kbit 8-way Bloom filters, H3 hash functions [40]

Tile checks take 5 cycles (Bloom filters) + 1 cycle per

timestamp compared in the commit queue

Commits Tiles send updates to GVT arbiter every 200 cycles

Spills
Coalescers fire when a task queue is 85% full

Coalescers spill up to 15 tasks each

Table 3.3: Configuration of the 256-core system.

• color uses the largest-degree-first heuristic [212] to assign distinct colors to adja-

cent graph vertices. This heuristic produces high-quality results and is thus most

frequently used, but it is hard to parallelize.

• nocsim is a detailed network-on-chip simulator derived from GARNET [3]. Each

task simulates an event at a component of a router.

We also port two unordered benchmarks from STAMP [134]:

• genome performs gene sequencing.

• kmeans implements K-means clustering.

We implement transactions with tasks of equal timestamp, so that they can commit in any

order. As in prior work in transaction scheduling [14, 221] (Section 3.11.4), we break

the original threaded code into tasks that can be scheduled asynchronously and generate

children tasks as they find more work to do. Table 3.4 details the applications’ provenance

and input sets.

For most benchmarks, we use tuned serial and state-of-the-art parallel versions from

existing suites (Table 3.4). We then port each serial implementation to Swarm. Swarm

versions use fine-grained tasks, but use the same data structures and perform the same

work as the serial version, so differences between serial and Swarm versions stem from

parallelism, not other optimizations.
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Source Input
Swarm 1-core

Run-time Perf vs serial

bfs PBFS [124] hugetric-00020 [18, 61] 3.59 Bcycles −18%

sssp Galois [155] East USA roads [1] 3.21 Bcycles +33%

astar Own Germany roads [151] 1.97 Bcycles +1%

color [98] com-youtube [126] 1.65 Bcycles +54%

des Galois [155] csaArray32 1.92 Bcycles +70%

nocsim GARNET [3] 16x16 mesh, tornado traffic 22.37 Bcycles +68%

silo [205] TPC-C, 4 whs, 32 Ktxns 2.83 Bcycles +16%
msf PBBS [186] kronecker_logn16 [18, 61] 2.16 Bcycles +2%

genome STAMP [134] -g4096 -s48 -n1048576 2.30 Bcycles +1%

kmeans STAMP [134] -m40 -n40 -i rnd-n16K-d24-c16 8.56 Bcycles +2%

Table 3.4: Benchmark information: source implementations, inputs, run-times on a 1-core Swarm

system, 1-core speedups over tuned serial implementations.

We wrote our own tuned serial and Swarm astar implementations. astar is notori-

ously difficult to parallelize—to scale, prior work in parallel pathfinding sacrifices solution

quality for speed [35]. Thus, we do not have a software-only parallel implementation.

We port silo to show that Swarm can extract ordered parallelism from applications

that are typically considered unordered. Database transactions are unordered in silo. We

decompose each transaction into many small ordered tasks to exploit intra-transaction par-

allelism. Tasks from different transactions use disjoint timestamp ranges to preserve atom-

icity. This exposes significant fine-grained parallelism within and across transactions.

Input sets: We use a varied set of inputs, often from standard collections such as DI-

MACS (Table 3.4). bfs operates on an unstructured mesh; sssp and astar use large road

maps; msf uses a Kronecker graph; des simulates an array of carry-select adders; and

silo runs the TPC-C benchmark on 4 warehouses. color operates on a YouTube social

graph [126]. nocsim simulates a 16x16 mesh with tornado traffic at a per-tile injection rate

of 0.06. STAMP benchmarks use inputs between the recommended “+” and “++” sizes,

to achieve a run time large enough to evaluate 256-core systems, yet small enough to be

simulated in reasonable time. We fix the number of kmeans iterations to 40 for consistency

across runs.

All benchmarks have serial run-times of over one billion cycles (Table 3.4). We have

evaluated other inputs (e.g., random and scale-free graphs), and qualitative differences are

not affected. Note that some inputs can offer plentiful trivial parallelism to a software

algorithm. For example, on large, shallow graphs (e.g., 10 M nodes and 10 levels), a simple

bulk-synchronous bfs that operates on one level at a time scales well [124]. But we use

a graph with 7.1 M nodes and 2799 levels, so bfs must speculate across levels to uncover

enough parallelism.

For each benchmark, we fast-forward to the start of the parallel region (skipping initial-

ization), and report results for the full parallel region. We perform enough runs to achieve

95% confidence intervals ≤ 1%.
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Idealized memory allocation: Dynamic memory allocation is not simulated in detail,

and a scalable solution is left to future work. Only des, nocsim and silo tasks allocate

memory frequently, and data dependences in the system’s memory allocator serialize them.

In principle, we could build a task-aware allocator with per-core memory pools to avoid

serialization. However, building high-performance allocators is complex [86,183]. Instead,

the simulator allocates and frees memory in a task-aware way. Freed memory is not reused

until the freeing task commits to avoid spurious dependences. Each allocator operation

incurs a 30-cycle cost. For fairness, serial and software-parallel implementations also use

this allocator. We believe this simplification will not significantly affect des, nocsim and

silo results when simulated in detail.

3.5 Evaluation of Swarm

We evaluate Swarm systems of 1- to 64-cores here using the six ordered benchmarks de-

scribed in Section 3.1.2. We introduce mechanisms that enable Swarm to exploit locality

in order to scale up to 256-cores in Section 3.7, and evaluate the full suite of applications

then. We first compare Swarm with alternative implementations, then analyze its behavior

in depth.

3.5.1 Swarm Scalability

Figure 3-11 shows Swarm’s performance on 1- to 64-core systems. In this experiment,

per-core queue and L2/L3 capacities are kept constant as the system grows, so systems

with more cores have higher queue and cache capacities. This captures performance per

unit area.

Each line in Figure 3-11 shows the speedup of a single application over a 1-core sys-

tem (i.e., its self-relative speedup). At 64 cores, speedups range from 51× (msf) to 122×
(sssp), demonstrating high scalability. In addition to parallelism, the larger queues and L3

of larger systems also affect performance, causing super-linear speedups in some bench-

marks (sssp, bfs, and astar). We tease apart the contribution of these factors in Sec-

tion 3.5.3.

3.5.2 Swarm vs Software Implementations

Figure 3-12 compares the performance of the Swarm and software-only versions of each

benchmark. Each graph shows the speedup of the Swarm and software-parallel versions

over the tuned serial version running on a system of the same size, from 1 to 64 cores. As

in Figure 3-11, queue and L2/L3 capacities scale with the number of cores.

Swarm outperforms the serial versions by 43–117×, and the software-parallel versions

by 2.7–18.2×. We analyze the reasons for these speedups for each application.
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Figure 3-12: Speedup of SWARM and state-of-the-art software-parallel implementations from 1 to

64 cores, relative to a tuned serial implementation running on a system of the same size.

bfs: Serial bfs does not need a priority queue. It uses an efficient FIFO queue to store

the set of nodes to visit. At 1 core, Swarm is 33% slower than serial bfs; however, Swarm

scales to 43× at 64 cores. By contrast, the software-parallel version, PBFS [124], scales to

6.0×, then slows down beyond 24 cores. PBFS only works on a single level of the graph at

a time, while Swarm speculates across multiple levels.

sssp: Serial sssp uses a priority queue. Swarm is 32% faster at one core, and 117× faster

at 64 cores. The software-parallel version uses the Bellman-Ford algorithm [58]. Bellman-

Ford visits nodes out of order to increase parallelism, but wastes work in doing so. Threads

in Bellman-Ford communicate infrequently to limit overheads [100], wasting much more

work than Swarm’s speculative execution. As a result, Bellman-Ford sssp scales to 14×
at 64 cores, 8.1× slower than Swarm.

astar: Our tuned serial astar uses a priority queue to store tasks [58]. Swarm outper-

forms it by 2% at one core, and by 66× at 64 cores.

msf: The serial and software-parallel msf versions sort edges by weight to process them

in order. Our Swarm implementation instead does this sort implicitly through the task

queues, enqueuing one task per edge and using its weight as the timestamp. This allows

Swarm to overlap the sort and edge-processing phases. Swarm outperforms the serial ver-

sion by 70% at one core and 61× at 64 cores. The software-parallel msf uses software
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Figure 3-13: Speedup of SWARM and software silo with 64, 16, 4, and 1 TPC-C warehouses.

speculation via deterministic reservations [25], and scales to 19× at 64 cores, 3.1× slower

than Swarm.

des: Serial des uses a priority queue to simulate events in time order. Swarm outperforms

the serial version by 23% at one core, and by 57× at 64 cores. The software-parallel version

uses the Chandy-Misra-Bryant (CMB) algorithm [136, 192]. CMB exploits the simulated

communication latencies among components to safely execute some events out of order

(e.g., if two nodes have a 10-cycle simulated latency, they can be simulated up to 9 cycles

away). CMB scales to 21× at 64 cores, 2.7× slower than Swarm. Half of Swarm’s speedup

comes from exploiting speculative parallelism, and the other half from reducing overheads.

silo: Serial silo runs database transactions sequentially without synchronization. Swarm

outperforms serial silo by 10% at one core, and by 57× at 64 cores. The software-

parallel version uses a carefully optimized protocol to achieve high transaction rates [205].

Software-parallel silo scales to 8.8× at 64 threads, 6.4× slower than Swarm. The reason

is fine-grained parallelism: in Swarm, each task reads or writes at most one tuple. This

exposes parallelism within and across database transactions, and reduces the penalty of

conflicts, as only small, dependent tasks are aborted instead of full transactions.

Swarm’s benefits on silo heavily depend on the amount of coarse-grained parallelism,

which is mainly determined by the number of TPC-C warehouses. To quantify this effect,

Figure 3-13 shows the speedups of Swarm and software-parallel silo with 64, 16, 4, and 1

warehouses. With 64 warehouses, software-parallel silo scales linearly up to 64 cores and

is 4% faster than Swarm. With fewer warehouses, database transactions abort frequently,

limiting scalability. With a single warehouse, software-parallel silo scales to only 2.7×.

By contrast, Swarm exploits fine-grained parallelism within each transaction, and scales

well even with a single warehouse, by 49× at 64 cores, 18.2× faster than software-parallel

silo.

Overall, these results show that Swarm outperforms a wide range of parallel algorithms,

even when they use application-specific optimizations. Moreover, Swarm implementations

use no explicit synchronization and are simpler, which is itself valuable.
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Figure 3-14: Breakdown of total core cycles for SWARM systems with 1 to 64 cores. Most time is

spent executing tasks that are ultimately committed.

3.5.3 Swarm Analysis

We now analyze the behavior of different benchmarks in more detail to gain insights about

Swarm.

Cycle breakdowns: Figure 3-14 shows the breakdown of aggregate core cycles. Each

set of bars shows results for a single application as the system scales from 1 to 64 cores.

The height of each bar is the sum of cycles spent by all cores, normalized by the cycles of

the 1-core system (lower is better). With linear scaling, all bars would have a height of 1.0;

higher and lower bars indicate sub- and super-linear scaling, respectively. Each bar shows

the breakdown of cycles spent executing tasks that are ultimately committed, tasks that

are later aborted, spilling tasks from the hardware task queue (using coalescer and splitter

tasks, Section 3.3.8), and stalled.

Swarm spends most of the cycles executing tasks that later commit. At 64 cores, aborted

work ranges from 1% (bfs) to 27% (des) of cycles. All graph benchmarks spend signif-

icant time spilling tasks to memory, especially with few cores (e.g., 47% of cycles for

single-core astar). In all benchmarks but msf, spill overheads shrink as the system grows

and task queue capacity increases; msf enqueues millions of edges consecutively, so larger

task queues do not reduce spills. Finally, cores rarely stall due to full or empty queues.

Only astar and msf spend more than 5% of cycles stalled at 64 cores: 27% and 8%,

respectively.

Figure 3-14 also shows the factors that contribute to super-linear scaling in Figure 3-

11. First, larger task queues can capture a higher fraction of runnable tasks, reducing spills.

Second, larger caches can better fit the working set, reducing the cycles spent executing

committed tasks (e.g., silo). However, beyond 4–8 cores, the longer hit latency of the

larger NUCA L3 counters its higher hit rate in most cases, increasing execution cycles.

Speedups with idealizations: To factor out the impact of queues and memory system

on scalability, we consider systems with two idealizations: unbounded queues, which fac-
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Speedups 1c vs 1c-base 64c vs 1c-base 64c vs 1c

SWARM baseline 1× 77× 77×
+ unbounded queues 1.4× 87× 61×

+ 0-cycle mem system 5× 274× 54×

Table 3.5: gmean speedups with progressive idealizations: unbounded queues and a zero-cycle

memory system (1c-base = 1-core SWARM baseline without idealizations).
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tor out task spills, and an ideal memory system with 0-cycle delays for all accesses and

messages. Table 3.5 shows the gmean speedups when these idealizations are progressively

applied. The left and middle columns show 1- and 64-core speedups, respectively, over

the 1-core baseline (without idealizations). While idealizations help both cases, they have

a larger impact on the 1-core system. Therefore, the 64-core speedups relative to the 1-

core system with the same idealizations (right column) are lower. With all idealizations,

this speedup is purely due to exploiting parallelism; 64-core Swarm is able to mine 54×
parallelism on average (46×–63×).

Queue occupancies: Figure 3-15 shows the average number of task queue and commit

queue entries used across the 64-core system. Both queues are often highly utilized. Com-

mit queues can hold up to 1024 finished tasks (64 per tile). On average, they hold from 216

in des to 821 in astar. This shows that cores often execute tasks out of order, and these

tasks wait a significant time until they commit—a large speculative window is crucial, as

the analysis in Section 3.1.2 showed. The 4096-entry task queues are also well utilized,

with average occupancies between 1157 (silo) and 2712 (msf) entries.

Network traffic breakdown: Figure 3-16 shows the NoC traffic breakdown at 64 cores

(16 tiles). The cumulative injection rate per tile remains well below the saturation injec-

tion rate (32 GB/s). Each bar shows the contributions of memory accesses (between the

L2s and L3) issued during normal execution, tasks enqueues to other tiles, abort traffic

(including child abort messages and rollback memory accesses), and GVT updates. Task
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Figure 3-17: Sensitivity of 64-core SWARM to commit queue and Bloom filter sizes.

enqueues, aborts, and GVT updates increase network traffic by 15% on average. Thus,

Swarm imposes small overheads on traffic and communication energy.

Conflict detection energy: Conflict detection requires Bloom filter checks—performed

in parallel over commit queue entries (Figure 3-7)—and for those entries where the Bloom

filter reports a match, a virtual time check to see whether the task needs to be aborted. Both

events happen relatively rarely. Each tile performs one Bloom filter check every 8.0 cycles

on average (from 2.5 cycles in msf to 13 cycles in bfs). Each tile performs one timestamp

check every 49 cycles on average (from 6 cycles in msf to 143 cycles in astar). Hence,

Swarm’s conflict detection imposes acceptable energy overheads.

Canary virtual times: To lower overheads, all lines in the same L2 set share a common

canary virtual time. This causes some unnecessary global conflict checks, but we find

the falsely unfiltered checks are infrequent. At 64 cores, using precise per-line canary

virtual times reduces global conflict checks by 10.3% on average, and improves application

performance by less than 1%.

3.5.4 Sensitivity Studies

We explore Swarm’s sensitivity to several design parameters at 64 cores:

Commit queue size: Figure 3-17a shows the speedups of different applications as we

sweep aggregate commit queue entries from 128 (8 tasks per tile) to unbounded; the default

is 1024 entries. Commit queues are fundamental to performance: fewer than 512 entries

degrade performance considerably. More than 1024 entries confer moderate performance

boosts to some applications. We conclude that 1024 entries strikes a good balance between

performance and implementation cost for the benchmarks we study.
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down of core cycles (top), queue lengths (middle), and task commits and aborts (bottom) for each

tile.

Bloom filter configuration: Figure 3-17b shows the relative performance of different

Bloom filter configurations. The default 2048-bit 8-way Bloom filters achieve performance

within 10% of perfect conflict detection. Smaller Bloom filters cause frequent false posi-

tives and aborts in silo and des, which have the tasks with the largest footprint. However,

bfs, sssp, and msf tasks access little data, so they are insensitive to Bloom filter size.

Frequency of GVT updates: Swarm is barely sensitive to the frequency of GVT updates.

As we vary the period between GVT updates from 50 cycles to 800 cycles (the default is

200 cycles), performance at 64 cores drops from 0.1% in sssp to 3.0% in msf.

3.5.5 Swarm Case Study: astar

Finally, we present a case study of astar running on a 16-core, 4-tile system to analyze

Swarm’s time-varying behavior. Figure 3-18 depicts several per-tile metrics, sampled every

500 cycles, over a 100 Kcycle interval: the breakdown of core cycles (top row), commit and

task queue lengths (middle row), and tasks commit and abort events (bottom row). Each

column shows these metrics for a single tile.

Figure 3-18 shows that task queues are highly utilized throughout the interval. As task

queues approach their capacity, coalescer tasks kick in, spilling tasks to memory. Commit

queues, however, show varied occupancy. As tasks are executed out of order, they use

a commit queue entry until they are safe to commit (or are aborted). Most of the time,

commit queues are large enough to decouple execution and commit orders, and tiles spend

the vast majority of time executing worker tasks.

Occasionally, however, commit queues fill up and cause the cores to stall. For example,

tiles stall around the 40 Kcycle mark as they wait for a few straggler tasks to finish. The last

of those stragglers finishes at 43 Kcycles, and the subsequent GVT update commits a large

number of erstwhile speculative tasks, freeing up substantial commit queue space. These

events explain astar’s sensitivity to commit queue size as seen in Figure 3-17a.

Finally, note that although queues fill up rarely, commits tend to happen in bursts

throughout the run. This shows that fast commits are important, as they enable Swarm

to quickly turn around commit queue entries.
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3.6 Scaling Swarm to Larger System Sizes: Need For Spa-

tial Mapping

By default, Swarm sends new tasks to a random tile. While this is good for load balance, it

leads to increased data movement costs as we scale to larger system sizes, and consequently

reduced performance. To resolve this, we develop spatial hints, a technique that uses pro-

gram knowledge to achieve high-quality task mappings that minimizes data movement. At

first glance, it might seem that spatial mapping and speculation are at odds: achieving a

good spatial mapping requires knowing the data accessed by each task, but the key ad-

vantage of speculation is precisely that one need not know the data accessed by each task.

However, we find that there is a wide gray area: in many applications, most of the data

accessed is known at run-time when the task is created. Thus, there is ample information to

achieve high-quality spatial task mappings. Beyond reducing data movement, high-quality

mappings also enhance parallelism by making most conflicts local. Finally, while hints

improve locality and reduce conflicts, they can also cause load imbalance. We thus de-

sign a load balancer that leverages hints to redistribute tasks across tiles in a locality-aware

fashion.
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Figure 3-19: Performance of Random, Stealing, Hints, and LBHints schedulers on des: (a) speedup

relative to 1-core Swarm, and (b) breakdown of total core cycles at 256 cores, relative to Random.

To explore the impact of spatial task mapping, we compare the performance of the des

benchmark under different schedulers. We simulate systems of up to 256 cores as shown

in Figure 3-2, with parameters as in Table 3.3. We compare four schedulers:

• Random is Swarm’s default task mapping strategy. New tasks are sent to a random

tile for load balance.

• Stealing is an idealized work-stealing scheduler, the most common scheduler in

non-speculative programs [2, 29]. New tasks are enqueued to the local tile, and tiles

that run out of tasks steal tasks from a victim tile. To evaluate stealing in the best

possible light, we do not simulate any stealing overheads: out-of-work tiles instan-

taneously find the tile with the most idle tasks and steal the earliest-timestamp task.

Work-stealing is sensitive to the stealing policies used (Section 3.11.5). We studied

a wide range of policies, both in terms of victim tile selection (random, nearest-
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neighbor, most-loaded) and task selection within a victim tile (earliest-timestamp,

random, latest-timestamp) and empirically found the selected policies to perform

best overall for our benchmarks.

• Hints is our hint-based spatial task mapping scheme.

• LBHints is our hint-based load balancer.

In des, Hints maps each gate in the simulated circuit to a specific, statically chosen

tile. New tasks are sent to the tile where the gate they operate on is mapped (Section 3.7).

LBHints enhances Hints by periodically remapping gates across tiles to equalize their load

(Section 3.10).

Two factors make spatial mapping in des possible. First, each task operates on a single

gate. Second, this gate is known at run-time when the task is created. As we will see later,

good spatial mappings are possible even when these conditions are not completely met (i.e.,

tasks access multiple pieces of data, or some of the data they access is not known at task

creation time). Also, note that even when we know all data accesses, speculation is still

needed, as tasks can be created out of order and executed in the wrong order.

Figure 3-19a compares the performance of different schemes on 1- to 256-core sys-

tems. Each line shows the speedup relative to a 1-core Swarm system (all schedulers are

equivalent at 1 core). Stealing performs worst, scaling to 52× at 256 cores. Random

peaks at 144 cores, scaling to 91×, and drops to 49× at 256 cores. Hints scales to 186×,

and LBHints performs best, with a 236× speedup at 256 cores.

Figure 3-19b yields further insights into these differences. The height of each bar in

Figure 3-19b is the sum of cycles spent by all cores, normalized to the cycles of Random

(lower is better). Each bar shows the breakdown of cycles spent executing tasks that are

ultimately committed, eventually aborted, cycles stalled on a full queue, and spent in other

overheads. Most cycles are spent running committed tasks, aborted tasks, or in queue stalls,

and trends are widely different across schemes.

Committed cycles mainly depend on locality: in the absence of conflicts, the only dif-

ference is memory stalls. Random has the highest committed cycles (most stalls), while

Hints and LBHints have the lowest, as gates are held in nearby private caches. Stealing

has slightly higher committed cycles, as it often keeps tasks for nearby gates in the same

tile.

Differences in aborted cycles are higher. In des, conflict frequency depends highly on

how closely tasks from different tiles follow timestamp order. Random and LBHints keep

tiles running tasks with close-by timestamps. However, conflicts in LBHints are local, and

thus much faster, and LBHints serializes tasks that operate on the same gate. For these

reasons, LBHints spends the fewest cycles on aborts. Hints is less balanced, so it incurs

more conflicts than LBHints. Finally, in Stealing, tiles run tasks widely out of order, as

stealing from the most loaded tile is not a good strategy to maintain order in des (as we will

see, this is a good strategy in other cases). This causes both significant aborts and queue

stalls in Stealing, as commit queues fill up. These effects hinder Stealing’s scalability.

Overall, these results show that hints can yield significant gains by reducing both aborts

and data movement.
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3.7 Spatial Task Mapping with Hints

We now describe spatial hints, a general technique that leverages application-level knowl-

edge to achieve high-quality task mappings. A hint is simply an abstract integer value,

given at task creation time, that denotes the data likely to be accessed by a task. Hardware

leverages hints to map tasks likely to access the same data to the same location.

Hints are conveyed as shown in the API described in Section 3.3.1. The hint can take

one of three values:

• A 64-bit integer value that conveys the data likely to be accessed. The programmer

is free to choose what this integer represents (e.g., addresses, object ids, etc.). The

only guideline is that tasks likely to access the same data should have the same hint.

• NOHINT, used when the programmer does not know what data will be accessed.

• SAMEHINT, which assigns the parent’s hint to the child task.

We employ unused bits in the enqueue_task instruction opcode to represent whether

the new task is tagged with an integer hint, NOHINT, or SAMEHINT. If tagged with an integer

hint, we pass that value through another register.

3.7.1 Hardware Mechanisms

Hardware leverages hints in two ways:

1. Spatial task mapping: When a core creates a new task, the local task unit uses the

hint to determine its destination tile. The task unit hashes the 64-bit hint down to a tile ID

(e.g., 6 bits for 64 tiles), then sends the task descriptor to the selected tile. SAMEHINT tasks

are queued to the local task queue, and NOHINT tasks are sent to a random tile.

2. Serializing conflicting tasks: Since two tasks with the same hint are likely to conflict,

we enhance the task dispatch logic to avoid running them concurrently. Specifically, tasks

carry a 16-bit hash of their hint throughout their lifetime. By default, the task unit selects

the earliest-timestamp idle task for execution. Instead, we check whether that candidate

task’s hint hash matches one of the already-running tasks. If there is a match and the

already-running task has an earlier timestamp, the task unit skips the candidate and tries

the idle task with the next lowest timestamp.

Using 16-bit hashed hints instead of full hints requires less storage and simplifies the

dispatch logic. Their lower resolution introduces a negligible false-positive match proba-

bility (6 · 10−5 with four cores per tile).

Overheads: These techniques add small overheads:

• 6- and 16-bit hash functions at each tile to compute the tile ID and hashed hint.

• An extra 16 bits per task descriptor. Descriptors are sent through the network (so

hints add some traffic) and stored in task queues. In our chosen configuration, each

tile’s task queue requires 512 extra bytes.

• Four 16-bit comparators used during task dispatch.
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3.7.2 Adding Hints to Benchmarks

Task Funcs Hint patterns

bfs 1 Cache line of vertex

sssp 1 Cache line of vertex

astar 1 Cache line of vertex

color 3 Cache line of vertex

des 8 Logic gate ID

nocsim 10 Router ID

silo 16 (Table ID, primary key)

genome 10 Elem addr, map key, NO/SAMEHINT

kmeans 5 Cache line of point, cluster ID

Table 3.6: Benchmark information: number of task functions, and hint patterns used.

We add hints to nine of the benchmarks described in Table 3.4. Table 3.6 summarizes

the strategies used to assign hints to each benchmark. We observe that a few common

patterns arise naturally when adding hints to these applications. We explain each of these

patterns through a representative application.

Cache-line address: Our graph analytics applications (bfs, sssp, astar, and color)

are vertex-centric [132]: each task operates on one vertex and visits its neighbors. For

example, Listing 3.1 shows the single task function of sssp. Given the distance to the

source of vertex v, the task visits each neighbor n; if the projected distance to n is reduced,

n’s distance is updated and a new task created for n. Tasks appear to execute in timestamp

order, i.e. the projected distance to the source.

void ssspTask(Timestamp pathDist , Vertex* v) {
if (pathDist == v->distance)
for (Vertex* n : v->neighbors) {
uint64_t projected = pathDist + length(v,n);
if (projected < n->distance) {
n->distance = projected;
swarm::enqueue(ssspTask,

projected /*Timestamp*/,
cacheLine(n) /*Hint*/, n);

}
}

}
Listing 3.1: Hint-tagged sssp task.

Each task’s hint is the cache-line address of the vertex it visits. Every task iterates over its

vertex’s neighbor list. This incurs two levels of indirection: one from the vertex to walk its

neighbor list, and another from each neighbor to access and modify the neighbor’s distance.

Using the line address of the vertex lets us perform all the accesses to each neighbor list

from a single tile, improving locality; however, each distance is accessed from different
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tasks, so hints do not help with those accesses. We use cache-line addresses because several

vertices reside on the same line, allowing us to exploit spatial locality.

bfs, astar, and color have similar structure, so we also use the visited vertex’s line

address as the hint. The limiting aspect of this strategy is that it fails to localize a large

fraction of accesses (e.g., to distance in sssp), because each task accesses state from

multiple vertices. This coarse-grain structure is natural for software implementations (e.g.,

sequential and parallel Galois sssp are written this way), but we will later see that fine-

grained versions make hints much more effective.

Object IDs: In des and nocsim each task operates on one system component: a logic

gate, or an NoC router component (e.g. its VC allocator), respectively. Similar to the graph

algorithms, a task creates children tasks for its neighbors. In contrast to graph algorithms,

each task only accesses state from its own component.

We tag simulator tasks with the gate ID and router ID, respectively. In des, using the

gate ID is equivalent to using its line address, as each gate spans one line. Since each

nocsim task operates on a router component, using component IDs or addresses as hints

might seem appealing. However, components within the same router create tasks (events)

for each other very often, and share state (e.g., pipeline registers) frequently. We find it is

important to keep this communication local to a tile, which we achieve by using the coarser

router IDs as hints.

Abstract unique IDs: In silo, each database transaction consists of tens of tasks. Each

task reads or updates a tuple in a specific table. This tuple’s address is not known at task

creation time: the task must first traverse a tree to find it. Thus, unlike in prior benchmarks,

hints cannot be concrete addresses. However, we know enough information to uniquely

identify the tuple at task creation time: its table and primary key. Therefore, we compute

the task’s hint by concatenating these values. This way, tasks that access same tuple map

to the same tile.

NOHINT and SAMEHINT: In genome, we do not know the data that one of its transac-

tions, T, will access when the transaction is created. However, T spawns other transactions

that access the same data as T. Therefore, we enqueue T with NOHINT, and its children with

SAMEHINT to exploit parent-child locality.

Multiple patterns: Several benchmarks have different tasks that require different strate-

gies. For instance, kmeans has two types of tasks: findCluster operates on a single

point, determining its closest cluster centroid and updating the point’s membership; and

updateCluster updates the coordinates of the new centroid. findCluster uses the

point’s cache line as a hint, while updateCluster uses the centroid’s ID. genome also

uses a variety of patterns, as shown in Table 3.6.
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In summary, a task can be tagged with a spatial hint when some of the data it accesses

can be identified (directly or abstractly) at task creation time. In all applications, integer

hints are either addresses or IDs. Often, we can use either; we use whichever is easier to

compute (e.g., if we already have a pointer to the object, we use addresses; if have its ID

and would e.g., need to index into an array to find its address, we use IDs). It may be helpful

to assign a coarse hint, i.e., one that covers more data than is accessed by the specific task,

either to exploit spatial locality when tasks share the same cache line (e.g. sssp, kmeans),

or to group tasks with frequent communication (e.g. nocsim).

3.8 Evaluation of Spatial Hints
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Figure 3-20: Classification of memory accesses.

3.8.1 Effectiveness of Hints

We first perform an architecture-independent analysis to evaluate the effectiveness of hints.

We profile all the memory accesses made by committing tasks, and use this to classify each

memory location in two dimensions: read-only vs. read-write, and single-hint vs. multi-

hint. We classify data as read-only if, during its lifetime (from allocation to deallocation

time), it is read at least 1000 times per write (this includes data that is initialized once, then

read widely); we classify data as single-hint if more than 90% of accesses come from tasks

of a single hint. We select fixed thresholds for simplicity, but results are mostly insensitive

to their specific values.

Figure 3-20 classifies data accesses according to these categories. Each bar shows the

breakdown of accesses for one application. We classify accesses in five types: those made

to arguments,1 and those made to non-argument data of each of the four possible types

(multi-/single-hint, read-only/read-write).

1Swarm passes up to three 64-bit arguments per task through registers, and additional arguments through

memory; this analysis considers both types of arguments equally.
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Figure 3-20 reveals two interesting trends. First, on all applications, a significant frac-

tion of read-only data is single-hint. Therefore, we expect hints to improve cache reuse

by mapping tasks that use the same data to the same tile. All applications except nocsim

also have a significant amount of multi-hint read-only accesses; often, these are accesses

to a small amount of global data, which caches well. Second, hint effectiveness is more

mixed for read-write data: in des, nocsim, silo, and kmeans, most read-write data is

single-hint, while multi-hint read-write data dominates in bfs, sssp, astar, color, and

genome. Read-write data is more critical, as mapping tasks that write the same data to the

same tile not only improves locality, but also reduces conflicts.

In summary, hints effectively localize a significant fraction of accesses to read-only

data, and, in 4 out of 9 applications, most accesses to read-write data (fine-grained versions

in Section 3.9 will improve this to 8 out of 9). We now evaluate the impact of these results

on performance.

3.8.2 Comparison of Schedulers
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Figure 3-21: Speedup of different schedulers from 1 to 256 cores, relative to a 1-core system. We

simulate systems with K ×K tiles for K ≤ 8.
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Figure 3-21 compares the scalability of the Random, Stealing, and Hints schedulers

on 1–256-core systems, similar to Figure 3-19a.

Overall, at 256 cores, Hints performs at least as well as Random (astar) or outper-

forms it by 16% (color) to 13× (kmeans). At 256 cores, Hints scales from 39.4× (color)

to 279× (bfs). Hints outperforms Random across all core counts except on kmeans at

16–160 cores, where Hints is hampered by imbalance (hint-based load balancing will ad-

dress this). While Hints and Random follow similar trends, Stealing’s performance is

spotty. On the one hand, Stealing is the best scheduler in bfs and sssp, outperforming

Hints by up to 65%. On the other hand, Stealing is the worst scheduler in most other

ordered benchmarks, and tracks Random on unordered ones.
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Figure 3-22: Breakdown of (a) core cycles and (b) NoC data transferred at 256 cores, under

Random, Stealing, and Hints schedulers. Each bar is normalized to Random’s.

Figure 3-22 gives more insight into these results by showing core cycle and network

traffic breakdowns at 256 cores. Each bar of Figure 3-22a shows the breakdown of cy-

cles spent (i) running tasks that are ultimately committed, (ii) running tasks that are later
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aborted, (iii) spilling tasks from the hardware task queues, (iv) stalled on a full task or

commit queue, or (v) stalled due to lack of tasks. Each bar of Figure 3-22b shows the

breakdown of data transferred over the NoC (in total flits injected), including (i) memory

accesses (between L2s and LLC, or LLC and main memory), (ii) abort traffic (including

child abort messages and rollback memory accesses), (iii) tasks enqueued to remote tiles,

and (iv) GVT updates (for commits). In both cases, results are relative to Random’s. We

first compare Hints and Random, then discuss Stealing.

Hints vs. Random: Beyond outperforming Random, Hints also improves efficiency,

substantially reducing cycles wasted to aborted tasks and network traffic. Performance

and efficiency gains are highly dependent on the fraction of accesses to single-hint data

(Section 3.8.1).

In graph analytics benchmarks, Hints achieves negligible (astar) to moderate im-

provements (bfs, sssp, color). bfs, sssp, and color have a substantial number of

single-hint read-only accesses. These accesses cache well, reducing memory stalls. This

results in a lower number of committed-task cycles and lower network traffic. However,

cycles wasted on aborted tasks barely change, because nearly all accesses to contentious

read-write data are multi-hint. In short, improvements in these benchmarks stem from lo-

cality of single-hint read-only accesses; since these are infrequent in astar, Hints barely

improves its performance.

In des, nocsim, and silo, Hints significantly outperforms Random, from 1.4× (silo)

to 3.8× (des). In these benchmarks, many read-only and most read-write accesses are to

single-hint data. As in graph analytics benchmarks, Hints reduces committed cycles and

network traffic. Moreover, aborted cycles and network traffic drop dramatically, by up to

6× and 7× (des), respectively. With Hints, these benchmarks are moderately limited by

load imbalance, which manifests as stalls in nocsim and aborts caused by running too

far-ahead tasks in des and silo.

Hints has the largest impact on the two unordered benchmarks, genome and kmeans.

It outperforms Random by up to 13× and reduces network traffic by up to 32× (kmeans).

For kmeans, these gains arise because Hints localizes and serializes all single-hint read-

write accesses to the small amount of highly-contended data (the K cluster centroids).

However, co-locating the many accessor tasks of one centroid to one tile causes imbalance.

This manifests in two ways: (i) Random outperforms Hints from 16–160 cores in Fig-

ure 3-21, and (ii) empty stalls are the remaining overhead at 256 cores. Hint-based load

balancing addresses this problem (Section 3.10). In contrast to kmeans, genome has both

single- and multi-hint read-write data, but Hints virtually eliminates aborts. Accesses to

multi-hint read-write data rarely contend, while accesses to single-hint read-write data are

far more contentious. Beyond 64 cores, both schedulers approach the limit of concurrency,

dominated by an application phase with low parallelism; this phase manifests as empty

cycles in Figure 3-22a.
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Stealing: Stealing shows disparate performance across benchmarks, despite careful tun-

ing and idealizations (Section 3.6). Stealing suffers from two main pathologies. First,

Stealing often fails to keep tiles running tasks of roughly similar timestamps, which hurts

several ordered benchmarks. Second, when few tasks are available, Stealing moves tasks

across tiles too aggressively, which hurts the unordered benchmarks.

Interestingly, although they are ordered, bfs and sssp perform best under Stealing.

Because most visited vertices expand the fringe of vertices to visit, Stealing manages to

keep tiles balanced with relatively few steals, and keeps most tasks for neighboring nodes in

the same tile. Because each task accesses a vertex and its neighbors (Listing 3.1), Stealing

enjoys good locality, achieving the lowest committed cycles and network traffic. bfs and

sssp tolerate Stealing’s looser cross-tile order well, so Stealing outperforms the other

schedulers.

Stealing performs poorly in other ordered benchmarks. This happens because stealing

the earliest task from the most loaded tile is insufficient to keep all tiles running tasks with

close-by timestamps. Instead, some tiles run tasks that are too far ahead in program order.

In astar and color, this causes a large increase in commit queue stalls, which dominate

execution. In des and silo, this causes both commit queue stalls and aborts, as tasks that

run too early mispeculate frequently. nocsim also suffers from commit queue stalls and

aborts, but to a smaller degree, so Stealing outperforms Random but underperforms Hints

at 256 cores.

By contrast, genome and kmeans are unordered, so they do not suffer from Stealing’s

loose cross-tile order. Stealing tracks Random’s performance up to 64 cores. However,

these applications have few tasks per tile at large core counts, and Stealing underperforms

Random because it rebalances tasks too aggressively. In particular, it sometimes steals

tasks that have already run, but have aborted. Rerunning these aborted tasks at the same

tile, as Random does, incurs fewer misses, as the tasks have already built up locality at the

tile.

3.9 Improving Locality and Parallelism with Fine-Grained

Tasks

We now analyze the relationship between task granularity and hint effectiveness. We show

that programs can often be restructured to use finer-grained tasks, which make hints more

effective.

For example, consider the coarse-grained implementation of sssp in Listing 3.1. This

implementation causes vertex distances to be read and written from multiple tasks, which

renders hints ineffective for read-write data. Instead, Listing 3.2 shows an equivalent ver-

sion of sssp where each task operates on the data (distance and neighbor list) of a single

node.

Instead of setting the distances of all its neighbors, this task launches one child task per

neighbor. Each task accesses its own distance. This transformation generates substantially
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void ssspTaskFG(Timestamp pathDist , Vertex* v) {
if (v->distance == UNSET) {
v->distance = pathDist;
for (Vertex* n : v->neighbors)
swarm::enqueue(ssspTaskFG ,

pathDist + length(v,n) /*Timestamp*/,
cacheLine(n) /*Hint*/, n);

}
}

Listing 3.2: Fine-grain sssp implementation.

more tasks, as each vertex is often visited multiple times. In a serial or parallel version with

software scheduling, the coarse-grained approach is more efficient, as a memory access is

cheaper than creating additional tasks. But in large multicores with hardware schedul-

ing, this tradeoff reverses: sending a task across the chip is cheaper than incurring global

conflicts and serialization.

We have also adapted three other benchmarks with significant multi-hint read-write

accesses. bfs and astar follow a similar approach to sssp. In color, each task operates

on a vertex, reads from all neighboring vertices, and updates its own; our fine-grained

version splits this operation into four types of tasks, each of which reads or writes at most

one vertex.

We do not consider finer-grain versions of des, nocsim, silo, or kmeans because they

already have negligible multi-hint read-write accesses, and it is not clear how to make their

tasks smaller. We believe a finer-grain genome would be beneficial, but this would require

turning it into an ordered program to be able to break transactions into smaller tasks while

retaining atomicity [114].

Tradeoffs: In general, fine-grained tasks yield two benefits: (i) improved parallelism,

and, (ii) with hints, improved locality and reduced conflicts. However, fine-grained tasks

also introduce two sources of overhead: (i) additional work (e.g., when a coarse-grained

task is broken into multiple tasks, several fine-grained tasks may need to read or compute

the same data), and (ii) more pressure on the scheduler.
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Effectiveness of Hints: Figure 3-23 compares the memory accesses of coarse-grained

(CG) and fine-grained (FG) versions. Figure 3-23 is similar to Figure 3-20, but bars are

normalized to the CG version, so the height of each FG bar denotes how many more ac-

cesses it makes. Figure 3-23 shows that FG versions make hints much more effective:

virtually all accesses to read-write data become single-hint, and more read-only accesses

become single-hint. Nevertheless, this comes at the expense of extra accesses (and work):

from 8% more accesses in sssp, to 4.6× more in color (2.6× discounting arguments).

3.9.1 Evaluation

Figure 3-24 compares the scalability of CG and FG versions under the three schedulers.

Speedups are relative to the CG versions at one core. Figure 3-25 shows cycle and network

traffic breakdowns, with results normalized to CG under Random (as in Figure 3-22).

Overall, FG versions improve Hints uniformly, while they have mixed results with Ran-

dom and Stealing.

In bfs and sssp, FG versions improve scalability and reduce data movement, compen-

sating for their moderate increase in work. Figure 3-25a shows that Hints improve locality

(fewer committed cycles) and reduce aborts. As a result, FG versions under Hints incur

much lower traffic (Figure 3-25b), up to 4.8× lower than CG under Hints and 7.7× lower

than CG under Random in sssp.

astar’s FG version does not outperform CG: though it reduces aborts, the smaller tasks

stress commit queues more, increasing stalls (Figure 3-25a). Nonetheless, FG improves

efficiency and reduces traffic by 61% over CG under Hints (Figure 3-25b).
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Figure 3-25: Breakdown of (a) core cycles and (b) NoC data transferred in fine-grained versions

at 256 cores, under Random, Stealing, and Hints. Each bar is normalized to the coarse-grained

version under Random (as in Figure 3-22).

color’s FG version performs significantly more work than CG, which is faster below

64 cores. Beyond 64 cores, however, FG reduces aborts dramatically (Figure 3-25a), out-

performing CG under Hints by 93%.

Finally, comparing the relative contributions of tasks sent in Figure 3-25b vs. Figure 3-

22b shows that, although the amount of task data transferred across tiles becomes signifi-

cant, the reduction of memory access traffic more than offsets this scheduling overhead.

In summary, fine-grained versions substantially improve the performance and efficiency

of Hints. This is not always the case for Random or Stealing, as they do not exploit the

locality benefits of fine-grained tasks.

3.10 Data-Centric Load Balancing

While hint-based task mapping improves locality and reduces conflicts, it may cause load

imbalance. For example, in nocsim, routers in the middle of the simulated mesh handle

more traffic than edge routers, so more tasks operate on them, and their tiles become over-

loaded. We address this problem by dynamically remapping hints across tiles to equalize

their load.

We have designed a new load balancer because non-speculative ones work poorly. For

example, applying stealing to hint-based task mapping hurts performance. The key reason

is that load is hard to measure: non-speculative schemes use queued tasks as a proxy for
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load, but with speculation, underloaded tiles often do not run out of tasks—rather, they run

too far ahead and suffer more frequent aborts or full-queue stalls.
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Figure 3-26: Hardware modifications of hint-based load balancer.

Instead, we have found that the number of committed cycles is a better proxy for load.

Therefore, our load balancer remaps hints across tiles to balance their committed cycles

per unit time. Our design has three components:

1. Configurable hint-to-tile mapping with buckets: Instead of hashing a hint to pro-

duce a tile ID directly, we introduce a reconfigurable level of indirection. As shown in

Figure 3-26(a), when a new task is created, the task unit hashes its hint to produce a bucket,

which it uses to index into a tile map and obtain the destination tile’s ID, to which it sends

the task.

The tile map is a table that stores one tile ID for every bucket. To achieve fine-enough

granularity, the number of buckets should be larger than the number of tiles. We find 16

buckets/tile works well, so at 256 cores (64 tiles) we use a 1024-bucket tile map. Each tile

needs a fixed 10-bit hint-to-bucket hash function and a 1024×6-bit tile map (768 bytes).

We periodically reconfigure the tile map to balance load. The mapping is static between

reconfigurations, allowing tasks to build locality at a particular tile.

2. Profiling committed cycles per bucket: Accurate reconfigurations require profiling

the distribution of committed cycles across buckets. Each tile profiles cycles locally, using

three modifications shown in Figure 3-26(b). First, like the hashed hint (Section 3.7.1),

tasks carry their bucket value throughout their lifetime. Second, when a task finishes exe-

cution, the task unit records the number of cycles it took to run. Third, if the task commits,

the tile adds its cycles to the appropriate entry of the per-bucket committed cycle counters.

A naive design would require each tile to have as many committed cycle counters as

buckets (e.g., 1024 at 256 cores). However, each tile only executes tasks from the buckets

that map to it; this number of mapped buckets is 16 per tile on average. We implement

the committed cycle counters as a tagged structure with enough counters to sample 2×
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this average (i.e., 32 counters in our implementation). Overall, profiling hardware takes

∼600 bytes per tile.

3. Reconfigurations: Initially, the tile map divides buckets uniformly among tiles. Peri-

odically (every 500 Kcycles in our implementation), a core reads the per-bucket committed

cycle counters from all tiles and uses them to update the tile map, which it sends to all tiles.

The reconfiguration algorithm is straightforward. It computes the total committed cy-

cles per tile, and sorts tiles from least to most loaded. It then greedily donates buckets from

overloaded to underloaded tiles. To avoid oscillations, the load balancer does not seek to

completely equalize load at once. Rather, an underloaded tile can only reduce its deficit

(difference from the average load) by a fraction f (80% in our implementation). Similarly,

an overloaded tile can only reduce its surplus by a fraction f . Reconfigurations are infre-

quent, and the software handler completes them in ∼50 Kcycles (0.04% of core cycles at

256 cores).
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3.10.1 Evaluation

Figure 3-27 reports the scalability of applications with our hint-based load balancer, de-

noted LBHints. LBHints improves performance on four applications, and neither helps nor

hurts performance on the other five.

In des, LBHints outperforms Hints by 27%, scaling to 236×. As described in Sec-

tion 3.6, in des load imbalance causes aborts as some tiles run too far ahead; LBHints’s

gains come from reducing aborts, as shown in Figure 3-28. In nocsim, LBHints outper-

forms Hints by 27%, scaling to 325×, and in kmeans, LBHints outperforms Hints by 17%,

scaling to 192×. These gains come from reducing empty stalls, commit queue stalls, and

aborts. Finally, LBHints improves silo by a modest 1.5% at 256 cores, and by 18% at 144

cores. In all cases, LBHints does not sacrifice locality (same committed cycles as Hints)

and yields smooth speedups.

Finally, we also evaluated using other signals as a proxy for load in the hint-based load

balancer. Using the number of idle tasks in each tile to estimate load performs signifi-

cantly worse than LBHints. At 256 cores, this variant improves performance over Hints by

12% on nocsim and 2% on silo, and degrades performance by 9% on des and 1.2% on

kmeans. This happens because balancing the number of idle tasks does not always balance

the amount of useful work across tiles.

3.10.2 Putting It All Together

Together, the techniques we have presented make speculative parallelism practical at large

core counts. Across our nine applications, Random achieves 58× gmean speedup at 256

cores; Hints achieves 146×; with the fine-grained versions from Section 3.9 instead of

their coarse-grained counterparts, Hints scales to 179× (while Random scales to 62×

only); and LBHints scales to 193× gmean.2

2The corresponding harmonic-mean speedups are 25× for Random, 117× for Hints, 146× for Hints with

fine-grained versions, and 154× for LBHints.



� 82 Chapter 3. Swarm

3.11 Additional Related Work

3.11.1 Limits of Parallelism

Prior work has studied the limits of instruction-level parallelism under several idealizations,

including a large or infinite instruction window, perfect branch prediction and memory

disambiguation, and simple program transformations to remove unnecessary data depen-

dences [17,39,71,74,83,122,145,158,211]. Similar to our limit study, these analyses find

that parallelism is often plentiful (>1000×), but very large instruction windows are needed

to exploit it (>100K instructions [122, 158]). Our oracle tool focuses on task-level par-

allelism, so it misses intra-task parallelism, which is necessarily limited with short tasks.

Instead, we focus on removing superfluous dependences in scheduling data structures, un-

covering large amounts of parallelism for ordered applications.

3.11.2 Thread-Level Speculation

Several TLS schemes expose timestamps to software for different purposes, such as letting

the compiler schedule loop iterations in Stampede [195], speculating across barriers in

TCC [95], and supporting out-of-order spawn of speculative function calls in Renau et

al. [171]. These schemes work well for their intended purposes, but cannot queue or buffer

tasks with arbitrary timestamps—they can only spawn new work if there is a free hardware

context. Software scheduling would be required to sidestep this limitation, which, as we

have seen, would introduce false data dependences and limit parallelism.

3.11.3 Scalable Software Priority Queues

Prior work has developed shared-memory priority queues that scale with the number of

cores [7, 214], but they do so by relaxing priority order. This restricts them to benchmarks

that admit order violations, and loss of order means threads often execute useless work far

from the critical path [100, 101]. Nikas et al. [147] use hardware transactional memory

to partially parallelize priority queue operations, accelerating sssp by 1.8× on 14 cores.

Instead, we dispense with shared-memory priority queues: Swarm uses distributed and

load-balanced priority queues, and uses speculation to maintain order.

3.11.4 Scheduling in Speculative Parallelism

Speculative execution models have seen relatively little attention with regards to optimizing

locality.

Ordered parallelism: Thread-Level Speculation (TLS) schemes dispatch tasks to threads

as they become available, without concern for locality [84, 94, 170, 171, 191, 196]. TLS
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schemes targeted systems with few cores, but cache misses hinder TLS scalability even at

small scales [82].

Unordered parallelism: TM programs are commonly structured as threads that execute

a fixed sequence of transactions [42, 95, 137]. Prior work has observed that it is often

beneficial to structure code as a collection of transactional tasks, and schedule them across

threads using a variety of hardware and software techniques [14,15,23,24,66,68,177,221].

Prior transactional schedulers focus on limiting concurrency, not spatial task mapping.

These schemes are either reactive or predictive. ATS [221], CAR-STM [67], and Steal-on-

Abort [14] serialize aborted transactions after the transaction they conflicted with, avoiding

repeated conflicts. PTS [23], BFGTS [24], Shrink [68], and HARP [15] instead predict con-

flicts by observing the read- and write-sets of prior transactions, and serialize transactions

that are predicted to conflict. Unlike predictive schemes, we avoid conflicts by leveraging

program hints. Hints reduce conflicts more effectively than prior predictive schedulers,

and require much simpler hardware. Moreover, unlike prior transactional schedulers, our

approach does not rely on centralized scheduling structures or frequent broadcasts, so it

scales to hundreds of cores.

A limitation of our approach vs. predictive transaction schedulers is that programmers

must specify hints. We have shown that it is easy to provide accurate hints. It may be pos-

sible to automate this process, e.g. through static analysis or profile-guided optimization;

we defer this to future work.

Data partitioning: Kulkarni et al. [119] propose a software speculative runtime that ex-

ploits partitioning to improve locality. Data structures are statically divided into a few

coarse partitions, and partitions are assigned to cores. The runtime maps tasks that oper-

ate on a particular partition to its assigned core, and reduces overheads by synchronizing

at partition granularity. Schism [59] applies a similar approach to transactional databases.

These techniques work well only when data structures can be easily divided into partitions

that are both balanced and capture most parent-child task relations, so that most enqueues

do not leave the partition. Many algorithms do not meet these conditions. While we show

that simple hint assignments that do not rely on careful static partitioning work well, more

sophisticated mappings may help some applications. For example, in des, mapping adja-

cent gates to nearby tiles may reduce communication, at the expense of complicating load

balancing. We leave this exploration to future work.

Distributed transactional memory: Prior work has proposed STMs for distributed sys-

tems [33, 106, 176]. Some of these schemes, like ClusterSTM [33], allow migrating a

transaction across machines instead of fetching remotely-accessed data. However, their in-

terface is more onerous than hints: in ClusterSTM, programmers must know exactly how

data is laid out across machines, and must manually migrate transactions across specific

processors. Moreover, these techniques are dominated by the high cost of remote accesses

and migrations [33], so load balancing is not an issue.
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3.11.5 Scheduling in Non-Speculative Parallelism

In contrast to speculative models, prior work for non-speculative parallelism has devel-

oped many techniques to improve locality, often tailored to specific program traits [2, 4,

29, 48, 107, 141, 187, 218, 220]. Work-stealing [2, 29] is the most widely used technique.

Work-stealing attempts to keep parent and child tasks together, which is near-optimal for

divide-and-conquer algorithms, and as we have seen, minimizes data movement in some

benchmarks (e.g., bfs and sssp in Section 3.8). Due to its low overheads, work-stealing is

the foundation of most parallel runtimes [70,118,168], which extend it to improve locality

by stealing from nearby cores or limiting the footprint of tasks [2, 91, 179, 220], or to im-

plement priorities [125, 143, 179]. Prior work within the Galois project [100, 125, 155] has

found that irregular programs (including software-parallel versions of several of our bench-

marks) are highly sensitive to scheduling overheads and policies, and has proposed tech-

niques to synthesize adequate schedulers [143, 160]. Likewise, we find that work-stealing

is sensitive to the specific policies it uses.

In contrast to these schemes, we have shown that a simple hardware task scheduling

policy can provide robust, high performance across a wide range of benchmarks. Hints

enable high-quality spatial mappings and produce a balanced work distribution. Hardware

task scheduling makes hints practical. Whereas a software scheduler would spend hundreds

of cycles per remote enqueue on memory stalls and synchronization, a hardware scheduler

can send short tasks asynchronously, incurring very low overheads on tasks as small as few

tens of instructions. Prior work has also investigated hardware-accelerated scheduling, but

has done so in the context of work-stealing [120, 181] and domain-specific schedulers [90,

215].

3.12 Summary

We have presented Swarm, a novel architecture that unlocks abundant but hard-to-exploit

ordered parallelism. Swarm relies on a novel execution model based on timestamped tasks

that decouples task creation and execution order, and a microarchitecture that performs

speculative, out-of-order task execution and implements a large speculation window ef-

ficiently. Swarm achieves order-of-magnitude speedups on programs with ordered par-

allelism, which are key in emerging domains such as graph analytics, data mining, and

in-memory databases.

Swarm defies conventional wisdom in two ways. First, conventional wisdom says that

order constraints fundamentally limit parallelism. However, we have shown that it is possi-

ble to maintain a large speculation window efficiently, so that only true data dependencies

limit parallelism. Second, now that energy efficiency is the key challenge facing com-

puter systems, conventional wisdom says we should shun speculative parallelization, which

wastes energy on mispeculations. However, we have shown that speculation unlocks plen-

tiful ordered parallelism, which can be traded for efficiency in many ways, e.g., through

simpler cores or slower clocks.
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Finally, Swarm shows that hardware-software co-design is a promising strategy to un-

lock challenging types of parallelism and simplify parallel programming.
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4
Fractal: An Execution Model for

Fine-Grain Nested Speculative
Parallelism

This work was conducted in collaboration with Mark C. Jeffrey, Maleen Abeydeera, Hyun

Ryong Lee, Victor Ying, Joel Emer and Daniel Sanchez from MIT. The Fractal execution

model was developed collaboratively. This thesis contributes the hardware implementation

of Fractal, and the mechanisms and implementation of zooming.

SYSTEMS that support speculative parallelization, such as hardware transactional mem-

ory (HTM) or thread-level speculation (TLS), have two major benefits over non-speculative

systems: they uncover abundant parallelism in many challenging applications [95,114] and

simplify parallel programming [173]. But these systems suffer from limited support for

nested speculative parallelism, i.e., the ability to invoke a speculative parallel algorithm

within another speculative parallel algorithm. This causes three problems. First, it sacri-

fices substantial parallelism and limits the algorithms supported by these systems. Second,

it disallows composing parallel algorithms, making it hard to write modular parallel pro-

grams. Third, it biases programmers to write coarse-grained speculative tasks, which are

more expensive to support in hardware.

For example, consider the problem of parallelizing a transactional database. A natural

approach is to use HTM and to make each database transaction a memory transaction. Each

transaction executes on a thread, and the HTM system guarantees atomicity among concur-

rent transactions, detecting conflicting loads and stores on the fly, and aborting transactions

to avoid serializability violations.

Unfortunately, this HTM approach faces significant challenges. First, each transaction

must run on a single thread, but database transactions often consist of many queries or

updates that could run in parallel. The HTM approach thus sacrifices this intra-transaction,

fine-grained parallelism. Second, long transactions often have large read and write sets,

which make conflicts and aborts more likely. These aborts often waste many operations

87
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that were not affected by the conflict. Third, supporting large read/write sets in hardware is

costly. Hardware can track small read/write sets cheaply, e.g., using private caches [95,191]

or small Bloom filters [42, 219]. But these tracking structures have limited capacity and

force transactions that overflow them to serialize, even when they have no conflicts [30,

95, 219]. Beyond these problems, HTM’s unordered execution semantics are insufficient

for programs with ordered parallelism, where speculative tasks must appear to execute in a

program-specified order [114].

The Swarm architecture (Chapter 3) can address some of these problems. By exposing

timestamps to programs, Swarm can parallelize more algorithms than prior ordered spec-

ulation techniques, like TLS; Swarm also supports unordered, HTM-style execution. As

a result, Swarm often uncovers abundant fine-grained parallelism. But Swarm’s software-

visible timestamps can only convey very limited forms of nested parallelism, and they

cause two key issues in this regard (Section 4.1). Timestamps make nested algorithms hard

to compose, as algorithms at different nesting levels must agree on a common meaning

for the timestamp. Timestamps also over-serialize nested algorithms, as they impose more

order constraints than needed.

For instance, in the example above, Swarm can be used to break each database trans-

action into many small, ordered tasks. This exploits intra-transaction parallelism, and, at

256 cores, it is 21× faster than running operations within each transaction serially (Sec-

tion 4.1.2). However, to maintain atomicity among database transactions, the programmer

must needlessly order database transactions and must carefully assign timestamps to tasks

within each transaction.

These problems are far from specific to database transactions. In general, large pro-

grams have speculative parallelism at multiple levels and often intermix ordered and un-

ordered algorithms. Speculative architectures should support composition of ordered and

unordered algorithms to convey all this nested parallelism without undue serialization.

We present two main contributions that achieve these goals. Our first contribution is

Fractal, a new execution model for nested speculative parallelism. Fractal programs con-

sist of tasks located in a hierarchy of nested domains. Within each domain, tasks can be

ordered or unordered. Any task can create a new subdomain and enqueue new tasks in that

subdomain. All tasks in a domain appear to execute atomically with respect to tasks outside

the domain.

Fractal allows seamless composition of ordered and unordered nested parallelism. In

the above example, each database transaction starts as a single task that runs in an un-

ordered, root domain. Each of these unordered tasks creates an ordered subdomain in

which it enqueues tasks for the different operations within the transaction. In the event of

a conflict between tasks in two different transactions, Fractal selectively aborts conflicting

tasks, rather than aborting all tasks in any one transaction. In fact, other tasks from the two

transactions may continue to execute in parallel.

Our second contribution is a simple implementation of Fractal that builds on Swarm

and supports arbitrary nesting levels cheaply (Section 4.3). Our implementation focuses on

extracting parallelism at the finest (deepest) levels first. This is in stark contrast with current
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HTMs. Most HTMs only support serial execution of nested transactions, forgoing intra-

transaction parallelism. A few HTMs support parallel nested transactions [20,206], but they

parallelize at the coarsest levels, suffer from subtle deadlock and livelock conditions, and

impose large overheads because they merge the speculative state of nested transactions [19,

20]. The Fractal execution model lets our implementation avoid these problems. Beyond

exploiting more parallelism, focusing on fine-grained tasks reduces the hardware costs of

speculative execution.

We demonstrate Fractal’s performance and programmability benefits through several

case studies (Section 4.1) and a broad evaluation (Section 4.5). Fractal uncovers abundant

fine-grained parallelism on large programs. For example, ports of the STAMP benchmark

suite to Fractal outperform baseline HTM implementations by up to 88× at 256 cores. As

a result, while several of the original STAMP benchmarks cannot reach even 10× scaling,

Fractal makes all STAMP benchmarks scale well to 256 cores.

4.1 Motivation

We motivate Fractal through three case studies that highlight its key benefits: uncovering

abundant parallelism, improving programmability, and avoiding over-serialization. Since

Fractal subsumes prior speculative execution models (HTM, TLS, and Swarm), all case

studies use the Fractal architecture (Section 4.3), and we compare applications written in

Fractal vs. other execution models. This approach lets us focus on the effect of different

Fractal features. Our implementation does not add overheads to programs that do not use

Fractal’s features.

4.1.1 Fractal Uncovers Abundant Parallelism

Consider the maxflow problem, which finds the maximum amount of flow that can be

pushed from a source to a sink node in a network (a graph with directed edges labeled with

capacities). Push-relabel is a fast and widely used maxflow algorithm [50], but it is hard to

parallelize [22,155]. Push-relabel tags each node with a height. It initially gives heights of

0 to the sink, N (the number of nodes) to the source, and 1 to every other node. Nodes are

temporarily allowed to have excess flow, i.e., have more incoming flow than outgoing flow.

Nodes with excess flow are considered active and can push this flow to lower-height nodes.

The algorithm processes one active node at a time, attempting to push flow to neighbor

nodes and potentially making them active. When an active node cannot push its excess

flow, it increases its height to the minimum value that allows pushing flow to a neighbor

(this is called a relabel). The algorithm processes active nodes in arbitrary order until no

active nodes are left.

To be efficient, push-relabel must use a heuristic that periodically recomputes node

heights. Global relabeling [50] is a commonly used heuristic that updates many node

heights by performing a breadth-first search on a subset of the graph. Global relabeling

takes a significant fraction of the total work, typically 10–40% of instructions [13].
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Figure 4-1: Execution timeline of (a) maxflow-flat, which consists of unordered tasks and does not

exploit nested parallelism, and (b) maxflow-fractal, which exploits the nested ordered parallelism

within global relabel.

Since push-relabel can process active nodes in an arbitrary order, it can be parallelized

using transactional tasks of two types [155, 167]. An active-node task processes a single

node, and may enqueue other tasks to process newly-activated nodes. A global-relabel

task performs a global relabel operation. Each task must run atomically, since tasks access

data from multiple neighbors and must observe a consistent state. We call this implemen-

tation maxflow-flat.

We simulate maxflow-flat on systems of up to 256 cores. (See Section 4.4 for

methodology details.) At 256 cores, maxflow-flat scales to 4.9× only. Figure 4-1a

illustrates the reason for this limited speedup: while active-node tasks are short, each

global-relabel task is long, and queries and updates many nodes. When a global-rela-

bel task runs, it conflicts with and serializes many active-node tasks.

Fortunately, each global-relabel task performs a breadth-first search, which has plen-

tiful ordered speculative parallelism. Fractal lets us exploit this nested parallelism, running

the breadth-first search in parallel while maintaining its atomicity with respect to other ac-

tive-node tasks. To achieve this, we develop a maxflow-fractal implementation where

each global-relabel task creates an ordered subdomain, in which it executes a parallel

breadth-first search using fine-grained ordered tasks, as shown in Figure 4-2. A global-

relabel task and its subdomain appear as a single atomic unit with respect to other tasks

in the (unordered) root domain. Figure 4-1b illustrates how this improves parallelism and

efficiency. As a result, Figure 4-3 shows that maxflow-fractal achieves a speedup of

322× at 256 cores (over maxflow-flat on one core).
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Fractal is the first architecture that effectively exploits maxflow’s fine-grained nested

parallelism: neither HTM, nor TLS, nor Swarm can support the combination of unordered

and ordered parallelism maxflow has. Prior software-parallel push-relabel algorithms at-

tempted to exploit this fine-grained parallelism [13,155,167], but the overheads of software

speculation and scheduling negated the benefits of additional parallelism (in maxflow-

fractal, each task is 373 cycles on average). We also evaluated two state-of-the-art

software implementations: prsn [22] and Galois [155]. On 1–256 cores, they achieve

maximum speedups of only 4.9× and 8.3× over maxflow-flat at one core, respectively.

4.1.2 Fractal Eases Parallel Programming

Beyond improving performance, Fractal’s support for nested parallelism eases parallel pro-

gramming because it enables parallel composition. Programmers can write multiple self-

contained, modular parallel algorithms and compose them without sacrificing performance:

when a parallel algorithm invokes another parallel algorithm, Fractal can exploit paral-

lelism at both caller and callee.

In the previous case study, only Fractal was able to uncover nested parallelism. In

some applications, prior architectures can also exploit the nested parallelism that Fractal

uncovers, but they do so at the expense of composability.

Consider the transactional database example introduced earlier. Conventional HTMs

run each database transaction in a single thread, and exploit coarse-grained inter-transaction

parallelism only. But each database transaction has plentiful ordered parallelism. Fractal

can exploit both inter- and intra-transaction parallelism by running each transaction in its

own ordered subdomain, just as each global relabel runs in its own ordered subdomain in

Figure 4-2. We apply both approaches to the silo in-memory database [205]. Figure 4-4

shows that, at 256 cores, silo-fractal scales to 206×, while silo-flat scales to 9.7×

only, 21× slower than silo-fractal.

Figure 4-4 also shows that silo-swarm, the Swarm version of silo, achieves simi-

lar performance to silo-fractal (silo-swarm is 4.5% slower). Figure 4-5 illustrates
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Figure 4-5: silo-swarm uses disjoint

timestamp ranges for different database

transactions, sacrificing composability.

silo-swarm’s implementation: the transaction-launching code assigns disjoint timestamp

ranges to transactions (10 contiguous timestamps per transaction in Figure 4-5), and each

transaction enqueues tasks only within this range (e.g., 10–19 for TXN 2 in Figure 4-5).

silo-swarm uses the same fine-grained tasks as silo-fractal, exposing plentiful paral-

lelism and reducing the penalty of conflicts [114]. For example, in Figure 4-5, if the tasks at

timestamps 13 and 24 conflict, only one task must abort, rather than any whole transaction.

Since Swarm does not provide architectural support for nested parallelism, approach-

ing Fractal’s performance comes at the expense of composability. silo-swarm couples

the transaction-launching code and the code within each transaction: both modules must

know the number of tasks per transaction, so that they can agree on the semantics of each

timestamp. Moreover, a fixed-size timestamp makes it hard to allocate sufficient timestamp

ranges in complex applications with many nesting levels or where the number of tasks in

each level is dynamically determined. Fractal avoids these issues by providing direct sup-

port for nested parallelism.

Prior HTMs have supported composable nested parallel transactions, but they suffer

from deadlock and livelock conditions, impose large overheads, and sacrifice most of the

benefits of fine-grained parallelism because each nested transaction merges its speculative

state with its parent’s [19, 20]. We compare Fractal and parallel nesting HTMs in detail

in Section 4.6, after discussing Fractal’s implementation. Beyond these issues, parallel

nesting HTMs do not support ordered parallelism, so they would not help maxflow or

silo.

4.1.3 Fractal Avoids Over-serialization

Beyond forgoing composability, supporting fine-grained parallelism through manually-

specified ordering can cause over-serialization.

1The speedups here vary marginally from Chapter 3 due to a slightly different system configuration.
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Consider the maximal independent set algorithm (mis), which, given a graph, finds a

set of nodes S such that no two nodes in S are adjacent, and each node not in S is adjacent

to some node in S.

mis can be easily parallelized with unordered, atomic tasks [186]. We call this imple-

mentation mis-flat. Each task operates on a node and its neighbors. If the node has not

yet been visited, the task visits both the node and its neighbors, adding the node to the set

and marking its neighbors as excluded from the set. mis-flat creates one task for each

node in the graph, and finishes when all these tasks have executed. Figure 4-6 shows that,

on an R-MAT graph with 8 million nodes and 168 million edges, mis-flat scales to 98×

at 256 cores.
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Figure 4-6: Speedup of different

mis versions on 1–256 cores.

mis-flat misses a source of nested parallelism: when

a node is added to the set, its neighbors may be visited

and excluded in parallel. This yields great benefits when

nodes have many neighbors. mis-fractal defines two

task types: include and exclude. An include task checks

whether a node has already been visited. If it has not, it

adds the node to the set and creates an unordered subdo-

main to run exclude tasks for the node’s neighbors. An

exclude task permanently excludes a node from the set.

Domains guarantee a node and its neighbors are visited

atomically while allowing many tasks of both types to run

in parallel. Figure 4-6 shows that mis-fractal scales to

145× at 256 cores, 48% faster than mis-flat.

Swarm cannot exploit this parallelism as effectively. Swarm can only guarantee atom-

icity for groups of tasks if the program specifies a total order among groups (as in silo).

We follow this approach to implement mis-swarm: every include task is assigned a unique

timestamp, and it shares its timestamp with any exclude tasks it enqueues. This imposes

more order constraints than mis-fractal, where there is no order among tasks in the

root domain. Figure 4-6 shows that mis-swarm scales to 117×, 24% slower than mis-

fractal, as unnecessary order constraints cause more aborted work.2

In summary, conveying the atomicity needs of nested parallelism through a fixed order

limits parallel execution. Fractal allows programs to convey nested parallelism without

undue order constraints.

4.2 Fractal Execution Model

Figure 4-7 illustrates the key elements of the Fractal execution model. Fractal programs

consist of tasks in a hierarchy of nested domains. Each task may access arbitrary data, and

may create child tasks as it finds new work to do. For example, in Figure 4-7 task C creates

children D and E. When each task is created, it is enqueued to a specific domain.

2mis-swarm’s order constraints make it deterministic, which some users may find desirable [25, 64].
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Figure 4-7: Elements of the Fractal execution model. Arrows point from parent to child tasks.

Parents enqueue their children into ordered domains where tasks have timestamps, such as A’s

and M’s subdomains, or unordered domains, such as the other three domains.

Semantics within a domain: Each domain provides either unordered or timestamp-

ordered execution semantics. In an unordered domain, Fractal chooses an arbitrary order

among tasks that respects parent-child dependences, i.e., children are ordered after their

parents. For example, in Figure 4-7, task C’s children D and E must appear to run after C,

but task D can appear to run either before or after task E. These semantics are similar to

TM’s: all tasks execute atomically and in isolation.

In an ordered domain, each task has a program-specified timestamp. A task can enqueue

child tasks to the same domain with any timestamp equal to or greater than its own. Fractal

guarantees that tasks appear to run in increasing timestamp order. If multiple tasks have

the same timestamp, Fractal arbitrarily chooses an order among them. This order always

respects parent-child dependences. Timestamps let programs convey their specific order

requirements, e.g., the order that events need to run in a simulator. For example, in Figure 4-

7, the timestamps of tasks F, G, L, and H ensure they appear to run in that fixed order. These

semantics are the same as Swarm’s [114].

Semantics across domains: Each task can create a single subdomain and enqueue tasks

into it. For example, in Figure 4-7, task B creates a new subdomain and enqueues F and G

into it. These tasks may themselves create their own subdomains. For example, F creates a

subdomain and enqueues I into it.

Fractal provides strong atomicity guarantees across domains to allow parallel compo-

sition of speculative algorithms. All tasks in a domain appear to execute after the task that

creates the domain and are not interleaved with tasks outside their domain. In other words,

any non-root domain together with its creator appears to execute as a single atomic unit in

isolation. For example, since F is ordered before G in B’s subdomain, all tasks in F’s sub-

domain (I, J, and K) must appear to execute immediately after F and before G. Furthermore,
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void exclude(Node& n) {
n.state = EXCLUDED;

}

void include(Node& n) {
if (n.state == UNVISITED) {
n.state = INCLUDED;
fractal::create_subdomain(UNORDERED);
for (Node& ngh: n.neighbors)
fractal::enqueue_sub(exclude, ngh);

}
}

Listing 4.1: Fractal implementation of mis tasks.

void include(Node& n) {
if (n.state == UNVISITED) {
n.state = INCLUDED;
forall (Node& ngh: n.neighbors)
ngh.state = EXCLUDED;

}
}
Listing 4.2: Pseudocode for Fractal implementation of mis’s include using the high-level interface.

although no task in B’s subdomain is ordered with respect to any task in D’s subdomain,

tasks in B’s and D’s subdomains are guaranteed not to be interleaved.

Tasks may also enqueue child tasks to their immediate enclosing domain, or super-

domain. For example, in Figure 4-7, K in F’s subdomain enqueues L to B’s subdomain.

This lets a task delegate enqueuing future work to descendants within the subdomain it

creates. A task cannot enqueue children to any domain beyond the domain it belongs to, its

superdomain, and the single subdomain it may create.

4.2.1 Programming Interface

We first expose Fractal’s features through a simple low-level C++ interface, then com-

plement it with a high-level, OpenMP-style interface that makes it easier to write Fractal

applications.

Low-level interface: Listing 4.1 illustrates the key features of the low-level Fractal inter-

face by showing the implementation of the mis-fractal tasks described in Section 4.1.3.

A task is described by its function, arguments, and ordering properties. Task functions

can take arbitrary arguments but do not return values. Tasks create children by call-

ing one of three enqueue functions with the appropriate task function and arguments:

fractal::enqueue places the child task in the same domain as the caller, fractal::enqueue_-

sub places the child in the caller’s subdomain, and fractal::enqueue_super places the

child in the caller’s superdomain. If the destination domain is ordered, the enqueuing func-

tion also takes the child task’s timestamp. This isn’t the case in Listing 4.1, as mis is

unordered.
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Before calling fractal::enqueue_sub to place tasks in a subdomain, a task must call

fractal::create_subdomain exactly once to specify the subdomain’s ordering seman-

tics: unordered, or ordered with 32- or 64-bit timestamps. In Listing 4.1, each include

task may create an unordered subdomain to atomically run exclude tasks for all its neigh-

bors. The initialization code (not shown) creates an include task for every node in an

unordered root domain.

Task enqueue functions also take one optional argument, a spatial hint. Hints aid the

system in performing locality-aware task mapping and load balancing. Hints are orthogonal

to Fractal. We adopt them because we study systems of up to 256 cores, and several of our

benchmarks suffer from poor locality without hints, which limits their scalability beyond

tens of cores.

High-level interface: Although our low-level interface is simple, breaking straight-line

code into many task functions can be tedious. To ease this burden, we implement a high-

level interface in the style of OpenMP and OpenTM [21]. Table 4.1 details its main con-

structs, and Listing 4.2 shows it in action with pseudocode for include. Nested paral-

lelism is expressed using forall, which automatically creates an unordered subdomain

and enqueues each loop iteration as a separate task. This avoids breaking code into small

functions like exclude. These constructs can be arbitrarily nested. Our actual syntax is

slightly more complicated because we do not modify the compiler, and we implement these

constructs using macros.3

4.3 Fractal Implementation

Our Fractal implementation seeks three desirable properties. First, the architecture should

perform fine-grained speculation, carrying out conflict resolution and commits at the level

of individual tasks, not complete domains. This avoids the granularity issues of nested

parallel HTMs (Section 4.6). Second, creating a domain should be cheap, as domains with

few tasks are common (e.g., mis in Section 4.1.3). Third, while the architecture should

support unbounded nesting depth to enable software composition, parallelism compounds

quickly with depth, so hardware only needs to support a few concurrent depths.

To meet these objectives, our Fractal implementation builds on Swarm, and dynami-

cally chooses a task commit order that satisfies Fractal’s semantics. We first briefly recap

the Swarm microarchitecture, then introduce the modifications needed to support Fractal.

The baseline Swarm microarchitecture is as described in Section 3.3. We have cache-

coherent tiled multicore (Figure 3-2). Each tile has a group of simple cores, each with its

own private L1 cache. All cores in a tile share an L2 cache, and each tile has a slice of a

fully-shared L3 cache. Every tile is augmented with a task unit that queues, dispatches, and

3 The difference between the pseudocode in Listing 4.2 and our actual code is that we have to tag the end

of control blocks, i.e., using forall_begin(...) {...} forall_end();. This could be avoided with

compiler support, as in OpenMP.
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Function Description

forall
Atomic unordred loop. Enqueues each iteration as as a

task in a new unordered subdomain.

forall_ordered
Atomic ordered loop. Enqueues tasks to a new ordered

subdomain, using the iteration index as a timestamp.

forall_reduce Atomic unordered loop with a reduction variable.

forall_reduce_-

ordered
Atomic ordered loop with a reduction variable.

parallel Execute multiple code blocks as parallel tasks.

parallel_reduce
Execute multiple code blocks as parallel tasks, followed

by a reduction.

enqueue_all
Enqueues a sequence of tasks with the same (or no)

timestamp.

enqueue_all_ordered Enqueues a sequence of tasks with a range of timestamps.

task

Starts a new task in the middle of a function. Implicitly

encapsulates the rest of the function into a lambda, then

enqueues it. Useful to break long functions into smaller

tasks.

callcc

Call with current continuation [199]. Allows calling a

function that might enqueue tasks, returning control to

the caller by invoking its continuation. The continuation

runs as a separate task.

Table 4.1: High-level interface functions.

commits tasks. The architecture executes tasks speculatively and out of order to scale. We

incorporate the low-overhead hardware task management, large task queues, scalable data-

dependence speculation techniques, and high-throughput ordered commits as described in

Section 3.3.
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Figure 4-8: Swarm VT construction.

Swarm maintains a consistent order among tasks

by giving a unique virtual time (VT) to each task

when it is dispatched. Swarm VTs are 128-bit inte-

gers that extend the 64-bit program-assigned time-

stamp with a 64-bit tiebreaker. This tiebreaker is

the concatenation of the dispatch cycle and tile id,

as shown in Figure 4-8. Thus, Swarm VTs break

ties among same-timestamp tasks sensibly (priori-

tizing older tasks), and they satisfy Swarm’s seman-

tics (they order a child task after its parent, since the

child is always dispatched at a later cycle). However, Fractal needs a different schema to

match its semantics.



� 98 Chapter 4. Fractal

4.3.1 Fractal Virtual Time

Fractal assigns a fractal virtual time (fractal VT) to each task. This fractal VT is the con-

catenation of one or more domain virtual times (domain VTs).

Domain VTs order all tasks in a domain and are constructed similarly to Swarm VTs.

In an ordered domain, each task’s domain VT is the concatenation of its 32- or 64-bit

timestamp and a tiebreaker. In an unordered domain, tasks do not have timestamps, so

each task’s domain VT is just a tiebreaker, assigned at dispatch time.

Fractal uses 32-bit rather than 64-bit tiebreakers for efficiency. As in Swarm, each

tiebreaker is the concatenation of dispatch cycle and tile id, which orders parents before

children. While 32-bit tiebreakers are efficient, they can wrap around. Section 4.3.3 dis-

cusses how Fractal handles wrap-arounds. Figure 4-9 illustrates the possible formats of a

domain VT, which can take 32, 64, or 96 bits.

23 56:4

23 56:4

56:4

32 bit

tiebreakers
64-bit

timestamp

32-bit timestamp

Unordered

+

+

= 96 bits

= 64 bits

= 32 bits

Figure 4-9: Domain VT formats.

23, 45:2 57:4
96 bits 32 bits

64-bit ordered
domain virtual time

Unordered domain
virtual time

Four unordered domain virtual times

56:4

4 × 32 bits

76:1 94:389:2

Figure 4-10: Example 128-bit fractal VTs.

Fractal VTs enforce a total order among tasks in the system. This order satisfies Fractal’s

semantics across domains: all tasks within each domain are ordered immediately after the

domain’s creator and before any other tasks outside the domain. These semantics can be

implemented with two simple rules. First, the fractal VT of a task in the root domain is

just its root domain VT. Second, the fractal VT of any other task is equal to its domain VT

appended to the fractal VT of the task that created its domain. Figure 4-10 shows some

example fractal VT formats. A task’s fractal VT is thus made up of one domain VT for

each enclosing domain. Two fractal VTs can be compared with a natural lexicographic

comparison.

Fractal VTs are easy to support in hardware. We use a fixed-width field in the task

descriptor to store each fractal VT, 128 bits in our implementation. Fractal VTs smaller

than 128 bits are right-padded with zeros. This fixed-width format makes comparing frac-

tal VTs easy, requiring conventional 128-bit comparators. With a 128-bit budget, Fractal

hardware can support up to four levels of nesting, depending on the sizes of domain VTs.

Section 4.3.2 describes how to support levels beyond those that can be represented in 128

bits.
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Figure 4-11: Fractal VTs in action.

Figure 4-11 shows fractal VTs in a system with three domains: an unordered root do-

main, B’s subdomain (ordered with 64-bit timestamps), and D’s subdomain (unordered).

Idle tasks do not have tiebreakers, which are assigned on dispatch. Any two dispatched

tasks can be ordered by comparing their fractal VTs. For example, F (in B’s subdomain)

is ordered after B, but before M (in D’s subdomain). Fractal performs fine-grained spec-

ulation by using the total order among running tasks to commit and resolve conflicts at

the level of individual tasks. For example, although all tasks in B’s subdomain must stay

atomic with respect to tasks in any other domain, Fractal can commit tasks B and F in-

dividually, without waiting for G and H to finish. Fractal guarantees that B’s subdomain

executes atomically because G and H are ordered before any of the remaining uncommitted

tasks.

Fractal VTs also make it trivial to create a new domain. In hardware, enqueuing to a

subdomain simply requires including the parent’s full fractal VT in the child’s task descrip-

tor. For instance, when B enqueues F in Figure 4-11, it tags F with (45:2; 1)—B’s fractal

VT (45:2) followed by F’s timestamp (1). Similarly, enqueues to the same domain use the

enqueuer’s fractal VT without its final domain VT (e.g., when A enqueues C, C’s fractal

VT uses no more bits than A’s), and enqueues to the superdomain use the enqueuer’s fractal

VT without its final two domain VTs.

In summary, fractal VTs capture all the information needed for ordering and task en-

queues, so these operations do not rely on centralized structures. Moreover, the rules of

fractal VT construction automatically enforce Fractal’s semantics across domains while

performing speculation only at the level of fine-grained tasks—no tracking is done at the

level of whole domains.

4.3.2 Supporting Unbounded Nesting

Large applications may consist of parallel algorithms nested with arbitrary depth. Fractal

supports this unbounded nesting depth by spilling tasks from shallower domains to mem-

ory. These spilled tasks are filled back into the system after deeper domains finish. This
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Figure 4-12: Starting from Figure 4-11, zooming in allows F to create and enqueue to a subdomain

by shifting fractal VTs.

process, which we call zooming, is conceptually similar to the stack spill-fill mechanism

in architectures with register windows [93]. Zooming in allows Fractal to continue fine-

grained speculation among tasks in deeper domains, without requiring additional structures

to track speculative state. Note that, although zooming is involved, it imposes negligible

overheads: zooming is not needed in our full applications (which use two nesting levels),

and it happens infrequently in microbenchmarks (Section 4.5.3).

Zooming in spills tasks from the shallowest active domain, which we call the base do-

main, to make space for deeper domains. Suppose that, in Figure 4-11, F in B’s subdomain

wants to create an unordered subdomain and enqueue a child into it. The child’s fractal VT

must include a new subdomain VT, but no bits are available to the right of F’s fractal VT.

To solve this, F issues a zoom-in request to the central arbiter with its fractal VT.

Figure 4-12 illustrates the actions taken during a zoom-in. To avoid priority inversion,

the task that requests the zoom-in waits until the base domain task that shares its base do-

main VT commits. This guarantees that no active base domain tasks precede the requesting

task. In our example, F waits until B commits. Figure 4-12a shows the state of the sys-
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tem at this point—note that F and all other tasks in B’s subdomain precede the remaining

base-domain tasks. The arbiter broadcasts the zoom-in request and saves any timestamp

component of the base domain VT to an in-memory stack. In Figure 4-12a, the base domain

is unordered so there is no timestamp for the arbiter to save.

Each zoom-in proceeds in two steps. First, all tasks in the base domain are spilled to

memory. For simplicity, speculative state is never spilled. Instead, any base-domain tasks

that are running or have finished are aborted first, which recursively aborts and eliminates

their descendants. Figure 4-12b shows the state of the system after these aborts. Note

how D’s abort eliminates M and D’s entire subdomain. Although spilling tasks to memory

is complex, it reuses the spilling mechanism already present in Swarm [114]: task units

dispatch coalescer tasks that remove base-domain tasks from task queues, store them in

memory, and enqueue a splitter task that will later re-enqueue the spilled tasks. The splitter

task is deprioritized relative to all regular tasks. Figure 4-12c shows the state of the system

once all base-domain tasks have been spilled. A new splitter task, S, will re-enqueue D and

E to the root domain when it runs.

In the second step of zooming in, the system turns the outermost subdomain into the

base domain. At this point, all tasks belong to one subdomain (B’s subdomain in our

example), so their fractal VTs all begin with the same base domain VT. This common

prefix may be eliminated while preserving order relations. Each tile walks its task queues

and modifies the fractal VTs of all tasks by shifting out the common base domain VT.

Each tile also modifies its canary VTs, which enable the L2 to filter conflict checks [114].

Overall, this requires modifying a few tens to hundreds of fractal VTs per tile (in our

implementation, up to 256 in the task queue and up to 128 canaries). Figure 4-12d shows

the state of the system after zooming in. B’s subdomain has become the base domain. This

process has freed 32 bits of fractal VT, so F can enqueue I into its new subdomain.

Zooming out reverses the effects of zooming in. It is triggered when a task in the base

domain wants to enqueue to its superdomain. The enqueuing task first waits until all tasks

preceding it have committed. Then, it sends a zoom-out request to the central arbiter with

its fractal VT. If the previous base domain was ordered, the central arbiter pops a timestamp

from its stack to broadcast with the zoom-out request.

Zooming out restores the previous base domain: Each tile walks its task queues, right-

shifting each fractal VT and adding back the base domain timestamp, if any. The restored

base domain VT has its tiebreaker set to zero, but this does not change any order relations

because the domain from which we are zooming out contains all the earliest active tasks.

Avoiding quiescence: As explained so far, the system would have to be completely qui-

esced while fractal VTs are being shifted. This overhead is small—a few hundred cycles—

but introducing mechanisms to quiesce the whole system would add complexity. Instead,

we use an alternating-bit protocol [200] to let tasks continue running while fractal VTs are

modified. Each fractal VT entry in the system has an extra bit that is flipped on each zoom
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in/out operation. When the bits of two fractal VTs being compared differ, one of them is

shifted appropriately to perform the comparison.

4.3.3 Handling Tiebreaker Wrap-arounds

Using 32-bit tiebreakers makes fractal VTs compact, but causes tiebreakers to wrap around

every few tens of milliseconds. Since domains can exist for long periods of time, the range

of existing tiebreakers must be compacted to make room for new ones. When tiebreakers

are about to wrap around, the system walks every fractal VT and performs the following

actions:

1. Subtract 231 (half the range) with saturate-to-0 from each tiebreaker in the fractal VT

(i.e., flip the MSB from 1 to 0, or zero all the bits if the MSB was 0).

2. If a task’s final tiebreaker is 0 after subtraction and the task is not the earliest unfin-

ished task, abort it.

When this process finishes, all tiebreakers are < 231, so the system continues assigning

tiebreakers from 231.

This exploits the property that, if the task that created a domain precedes all other active

tasks, its tiebreaker can be set to zero without affecting order relations. If the task is aborted

because its tiebreaker is set to 0, any subdomain it created will be squashed. In practice, we

find this has no effect on performance, because, to be aborted, a task would have to remain

speculative for far longer than we observe in any benchmark.

4.3.4 Putting It All Together

Our Fractal implementation adds small hardware overheads over Swarm. (Swarm itself

imposes modest overheads to implement speculative execution [114].) Each fractal VT

consumes five additional bits beyond Swarm’s 128: four to encode its format (14 possibili-

ties), and one for the alternating-bit protocol. This adds storage overheads of 240 bytes per

4-core tile. Fractal also adds simple logic to each tile to walk and modify fractal VTs—

for zooming and tiebreaker wrap-arounds—and adds a shifter to fractal VT comparators to

handle the alternating-bit protocol.

Fractal makes small changes to the ISA: it modifies the enqueue instruction and adds

a create_subdomain instruction. Task enqueue messages carry a fractal VT without the

final tiebreaker (up to 96+5 bits) compared to the 64-bit timestamp in Swarm.

Finally, in our implementation, zoom-in/out requests and tiebreaker wrap-arounds are

handled by the global virtual time arbiter (the unit that runs the ordered-commit protocol).

This adds a few message types between this arbiter and the tiles to carry out the steps in

each of these operations. The arbiter must manage a simple in-memory stack to save and

restore base domain timestamps.
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4.4 Experimental Methodology

Modeled system: We use the same methodology as the previous chapter (Section 3.4).

We model Fractal systems of up to 256 cores, as shown in Figure 3-2, with parameters in

Table 4.2. Swarm parameters (task and commit queue sizes, etc.) match those in Table 3.3.

Similar to Section 3.4, we keep per-core L2/L3 sizes and queue capacities constant across

system sizes. This captures performance per unit area. As a result, larger systems have

higher queue and cache capacities, which sometimes cause superlinear speedups.

Fractal instructions

5 cycles per

enqueue/dequeue/finish_task

2 cycles per create_subdomain instruction

Fractal VT 128 bits per task descriptor

Table 4.2: Configuration of the 256-core Fractal system. Core, memory system, and Swarm pa-

rameters as listed in Table 3.3.

Application Input
1-core runtime

(B cycles)

S
w

a
rm

color [98] com-youtube [126] 0.968

msf [186] kron_g500-logn16 [18, 61] 0.717

silo [205] TPC-C, 4 whs, 32 Ktxns 2.98

S
T

A
M

P
[1

3
4

]

ssca2 -s15 -i1.0 -u1.0 -l6 -p6 10.6

vacation -n4 -q60 -u90 -r1048576 -t262144 4.31

genome -g4096 -s48 -n1048576 2.26

kmeans -m40 -n40 -i rand-n16384-d24-c16 8.75

intruder -a10 -l64 -s32768 2.12

yada -a15 -i ttimeu100000.2 3.41

labyrinth random-x128-y128-z5-n128 4.41

bayes -v32 -r4096 -n10 -p40 -i2 -e8 -s1 8.81

maxflow [22] rmf-wide [50, 88], 65 K nodes, 314 K edges 16.7

mis [186] R-MAT [43], 8 M nodes, 168 M edges 1.34

Table 4.3: Benchmark information: source implementations, inputs, and execution time on a single-

core system.

Benchmarks: Table 4.3 reports the benchmarks we evaluate. Benchmarks have 1-core

run-times of about 1 B cycles or longer. We use three existing Swarm benchmarks, which

we adapt to Fractal; Fractal implementations of the eight STAMP benchmarks [134]; and

two new Fractal benchmarks: maxflow, adapted from prsn [22], and mis, adapted from

PBBS [186].

Benchmarks adapted from Swarm use their same inputs. msf includes an optimization

to filter out non-spanning edges efficiently [25]. This optimization improves absolute per-
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formance but reduces the amount of highly parallel work, so msf has lower scalability than

the unoptimized Swarm version [114].

STAMP benchmarks use inputs between the recommended “+” and “++” sizes, to

achieve a run-time large enough to evaluate 256-core systems, yet small enough to be

simulated in reasonable time.

maxflow uses rmf-wide [88], one of the harder graph families from the DIMACS

maxflow challenge [22]. mis uses an R-MAT graph [43], which has a power-law distri-

bution.

We fast-forward each benchmark to the start of its parallel region (skipping initializa-

tion), and report results for the full parallel region. On all benchmarks except bayes, we

perform enough runs to achieve 95% confidence intervals ≤ 1%. bayes is highly non-

deterministic, so we report its average results with 95% confidence intervals over 50 runs.

4.5 Evaluation

We now analyze the benefits of Fractal in depth. As in Section 4.1, we begin with ap-

plications where Fractal uncovers abundant fine-grained parallelism through nesting. We

then discuss Fractal’s benefits from avoiding over-serialization. Finally, we characterize

the performance overheads of zooming to support deeper nesting.

Perf. vs serial Avg task length

Nesting type@ 1-core (cycles)

flat fractal flat fractal

maxflow 0.92× 0.68× 3260 373 unord →֒ ord-32b

labyrinth 1× 0.62× 16 M 220 unord →֒ ord-32b

bayes 1× 1.11× 1.8 M 3590 unord →֒ unord

silo 1.14× 1.10× 80 K 3420 unord →֒ ord-32b

mis 0.79× 0.26× 162 115 unord →֒ unord

color 1.06× 0.80× 633 96 ord-32b →֒ ord-32b

msf 3.1× 1.73× 113 49 ord-64b →֒ unord

Table 4.4: Benchmarks with parallel nesting: performance of 1-core flat/fractal vs tuned serial

versions (higher is better), average task lengths, and nesting semantics.

4.5.1 Fractal Uncovers Abundant Parallelism

Fractal’s support for nested parallelism greatly benefits three benchmarks: maxflow, as

well as labyrinth and bayes, the two least scalable benchmarks from STAMP.
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maxflow , as discussed in Section 4.1.1, is limited by long global-relabel tasks. Our

fractal version performs the breadth-first search nested within each global relabel in

parallel.

labyrinth finds non-overlapping paths between pairs of (start, end) cells on a 3D grid.

Each transaction operates on one pair: it finds the shortest path on the grid and claims

the cells on the path for itself. In the STAMP implementation, each transaction performs

this shortest-path search sequentially. Our fractal version runs the shortest-path search

nested within each transaction in parallel, using an ordered subdomain.

bayes learns the structure of a Bayesian network, a DAG where nodes denote random

variables and edges denote conditional dependencies among variables. bayes spends most

time deciding whether to insert, remove, or reverse network edges. Evaluating each de-

cision requires performing many queries to an ADTree data structure, which efficiently

represents probability estimates. In the STAMP implementation, each transaction evalu-

ates and applies an insert/remove/reverse decision. Since the ADTree queries performed

depend on the structure of the network, transactions serialize often. Our fractal ver-

sion runs ADTree queries nested within each transaction in parallel, using an unordered

subdomain.

Table 4.4 compares the 1-core performance and average task lengths of flat and

fractal versions. flat versions of these benchmarks have long, unordered transactions

(up to 16 M cycles). fractal versions have much smaller tasks (up to 3590 cycles on av-

erage in bayes). These short tasks hurt serial performance (by up to 38% in labyrinth),

but expose plentiful intra-domain parallelism (e.g., a parallel breadth-first search), yielding

great scalability.

Beyond limiting parallelism, the long transactions of flat versions have large read-

/write sets that often overflow Fractal’s Bloom filters, causing false-positive aborts. There-

fore, we also present results under an idealized, precise conflict detection scheme that does

not incur false positives. High false positive rates are not specific to Fractal—prior HTMs

used similarly-sized Bloom filters [42, 135, 180, 219].

Figure 4-13a shows the performance of the flat and fractal versions when scaling

from 1- to 256-core systems. All speedups reported are over the 1-core flat version.

Solid lines show speedups when using Bloom filters, while dashed ones show speedups

under precise conflict detection. flat versions scale poorly, especially when using Bloom

filters: the maximum speedups across all system sizes range from 1.0× (labyrinth at

1 core) to 4.9× (maxflow). By contrast, fractal versions scale much better, from 88×

(labyrinth) to 322× (maxflow).4

Figure 4-13b gives more insight into these differences by showing the percentage of

cycles that cores spend on different activities: (i) running tasks that are ultimately com-

4 Note that systems with more tiles have higher cache and queue capacities, which sometimes cause

superlinear speedups (Section 4.4).
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Figure 4-13: Performance of flat and fractal versions of applications with abundant nested

parallelism, using Bloom filter–based or Precise conflict detection.

mitted, (ii) running tasks that are later aborted, (iii) spilling tasks from the hardware task

queues, (iv) stalled on a full task or commit queue, or (v) stalled due to lack of tasks. Each

group of bars shows results for a different application at 256 cores.

Figure 4-13b shows that flat versions suffer from lack of work caused by insuffi-

cient parallelism, and stalls caused by long tasks that eventually become the earliest ac-

tive task and prevent others from committing. Moreover, most of the work performed

by flat versions is aborted as tasks have large read/write sets and frequently conflict.

labyrinth-flat and bayes-flat also suffer frequent false-positive aborts that hurt per-

formance with Bloom filter conflict detection. Although precise conflict detection helps

labyrinth-flat and bayes-flat, both benchmarks still scale poorly (to 4.3× and 6.8×,

respectively) due to insufficient parallelism.

By contrast, fractal versions spend most cycles executing useful work, and aborted

cycles are relatively small, from 7% (bayes) to 24% (maxflow). fractal versions per-

form just as well with Bloom filters as with precise conflict detection. These results shows

that exploiting fine-grained nested speculative parallelism is an effective way to scale chal-

lenging applications.
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4.5.2 Fractal Avoids Over-serialization

Fractal’s support for nested parallelism avoids over-serialization on four benchmarks: silo,

mis, color, and msf. Swarm can exploit nested parallelism in these benchmarks by im-

posing a total order among coarse-grained operations or groups of tasks (Section 4.1.3).

Section 4.1 showed that this has a negligible effect on silo, so we focus on the other three

applications.

mis, color, and msf are graph-processing applications. Their flat versions perform

operations on multiple graph nodes that can be parallelized but must remain atomic—e.g.,

in mis, adding a node to the independent set and excluding its neighbors (Section 4.1.3).

mis-flat is unordered, while color-flat and msf-flat visit nodes in a partial order

(e.g., color visits larger-degree nodes first). Our fractal versions use one subdomain

per coarse-grained operation to exploit this nested parallelism (Table 4.4). The swarm-fg

versions of these benchmarks use the same fine-grained tasks as fractal but use a unique

timestamp or timestamp range per coarse-grained operation to guarantee atomicity, impos-

ing a fixed order among coarse-grained operations.
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Figure 4-14: Performance of flat, swarm-fg, and fractal versions of applications where Swarm

extracts nested parallelism through strict ordering, but Fractal outperforms it by avoiding undue

serialization.

Figure 4-14 shows the scalability and cycle breakdowns for these benchmarks. flat

versions achieve the lowest speedups, from 26× (msf at 64 cores) to 98× (mis). Fig-
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ure 4-14b shows that they are dominated by aborts, which take up to 73% of cycles in

color-flat, and empty cycles caused by insufficient parallelism in msf and mis. In

msf-flat, frequent aborts hurt performance beyond 64 cores.

By contrast, fractal versions achieve the highest performance, from 40× (msf) to

145× (mis). At 256 cores, the majority of time is spent on committed work, although

aborts are still noticeable (up to 30% of cycles in color). While fractal versions perform

better at 256 cores, their tiny tasks impose higher overheads, so they underperform flat

on small core counts. This is most apparent in msf, where fractal tasks are just 49 cycles

on average (Table 4.4).

Finally, swarm-fg versions follow the same scaling trends as fractal ones, but over-

serialization makes them 6% (color), 24% (mis), and 93% (msf) slower. Figure 4-14b

shows that these slowdowns primarily stem from more frequent aborts. This is because

in swarm-fg versions, conflict resolution priority is static (determined by timestamps),

while in fractal versions, it is based on the dynamic execution order (determined by

tiebreakers). In summary, these results show that Fractal makes fine-grained parallelism

more attractive by avoiding needless order constraints.

4.5.3 Zooming Overheads

Although our Fractal implementation supports unbounded nesting (Section 4.3.2), two

nesting levels suffice for all the benchmarks we evaluate. Larger programs should require

deeper nesting. Therefore, we use a microbenchmark to characterize the overheads of Frac-

tal’s zooming technique.

Our microbenchmark stresses Fractal by creating many nested domains that contain

few tasks each. Specifically, it generates a depth-8 tree of nested domains with fanout F .

All tasks perform a small, fixed amount of work (1500 cycles). Non-leaf tasks then create

an unordered subdomain and enqueue F children into it. We sweep both the fanout (F = 4
to 12) and the maximum number of concurrent levels D in Fractal, from 2 (64-bit fractal

VTs) to 8 (256-bit fractal VTs). At D = 8, the system does not perform any zooming. Our

default hardware configuration supports up to 4 concurrent levels.

Figure 4-15a reports performance on a 1-core system. Each group of bars shows re-

sults for a single fanout, and bars within a group show how performance changes as the

maximum concurrent levels D grows from 2 to 8. Performance is relative to the D = 8,

no-zooming system. Using a 1-core system lets us focus on the overheads of zooming

without factoring in limited parallelism. Larger fanouts and concurrent levels increase the

amount of work executed between zooming operations, reducing overheads. Nonetheless,

overheads are modest even for F = 4 and D = 2 (21% slowdown).

Figure 4-15b reports performance on a 256-core system. Supporting a limited num-

ber of levels reduces parallelism, especially with small fanouts, which hurts performance.

Nonetheless, as long as F ≥ 8, supporting at least four levels keeps overheads small.

All of our applications have much higher parallelism than 8 concurrent tasks in at least

one of their two nesting levels, and often in both. Therefore, on applications with deeper
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Figure 4-15: Performance of zoom-tree microbenchmark for different fanouts F , as we vary the

number of concurrent levels D supported in hardware. a) Fractal imposes only modest overheads

even for small F , D, b) fanouts ≥ 8, as seen in most of our applications, impose negligible over-

heads.

nesting, zooming should not limit performance in most cases. However, these are care-

fully coded applications that avoid unnecessary nesting. Nesting could be overused (e.g.,

increasing the nesting depth at every intermediate step of a divide-and-conquer algorithm),

which would limit parallelism. To avoid this, a compiler pass may be able to safely flatten

unnecessary nesting levels. We leave this to future work.

4.5.4 Discussion

We considered 18 benchmarks to evaluate Fractal: all eight from Swarm [113, 114], all

eight from STAMP [134], as well as maxflow and mis. We looked for opportunities to

exploit nested parallelism, focusing on benchmarks with limited speedups. In summary,

Fractal benefits 7 out of these 18 benchmarks. We did not find opportunities to exploit

nested parallelism in the five Swarm benchmarks not presented here (bfs, sssp, astar,

des, and nocsim). These benchmarks already use fine-grained tasks and scale well to 256

cores.

Figure 4-16 shows how each STAMP benchmark scales when using different Fractal

features. All speedups reported are over the 1-core TM version. The TM lines show the

performance of the original STAMP transactions ported to Swarm tasks. Three applications

(intruder, labyrinth, and bayes) barely scale, while two (yada and kmeans) scale

well at small core counts but suffer on larger systems. By contrast, Fractal’s features make

all STAMP applications scale, although speedups are not only due to nesting. First, the

TM versions of intruder and yada use software task queues that limit their scalability.

Refactoring them to use Swarm/Fractal hardware task queues [114] makes them scale.

Second, spatial hints [113] improves genome and makes kmeans scale. Finally, as we

saw in Section 4.5.1, Fractal’s support for nesting makes labyrinth and bayes scale.

Therefore, Fractal is the first architecture that scales the full STAMP suite to hundreds of

cores, achieving a gmean speedup of 177× at 256 cores.
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Figure 4-16: Different Fractal features make all STAMP applications scale well to 256 cores.

4.6 Related Work

4.6.1 Nesting in Transactional Memory

Serial nesting: Most HTMs support serial execution of nested transactions, which makes

transactional code easy to compose but forgoes intra-transaction parallelism. Nesting can

be trivially supported by ignoring the boundaries of all nested transactions, treating them

as part of the top-level one. Some HTMs exploit nesting to implement partial aborts [138]:

they track the speculative state of a nested transaction separately while it executes, so con-

flicts that occur while the nested transaction runs do not abort the top-level one.

Even with partial aborts, HTMs ultimately merge nested speculative state into the top-

level transaction, resulting in large atomic regions that are hard to support in hardware [11,

31, 53, 54] and make conflicts more likely.

Prior work has explored relaxed nesting semantics, like open nesting [133,138,144] and

early release [188], which relax isolation to improve performance. Fractal is orthogonal to

these techniques and could be extended to support them, but we do not see the need on the

applications we study.
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Parallel nesting: Some TM systems support running nested transactions in parallel [140]:

a transaction can launch multiple nested transactions and wait for them to finish. Nested

transactions may run in parallel and can observe updates from their parent transaction. As

in serial nesting, when a nested transaction finishes, its speculative state is merged with its

parent’s. When all nested transactions finish, the parent transaction resumes execution.

Most of this work has been in software TM (STM) implementations [5, 19, 65, 209],

but these suffer from even higher overheads than flat STMs. Vachharajani [206, Ch. 7] and

FaNTM [20] introduce hardware support to reduce parallel nesting overheads. Even with

hardware support, parallel-nesting HTMs yield limited gains—e.g., FaNTM is often slower

than a flat HTM, and moderately outperforms it (by up to 40%) only on a microbenchmark.

Parallel-nesting TMs suffer from three main problems. First, nested transactions merge

their speculative state with their parent’s, and only the coarse, top-level transaction can

commit. This results in large atomic blocks that are as expensive to track and as prone to

abort as large serial transactions. By contrast, Fractal performs fine-grained speculation, at

the level of individual tasks. It never merges the speculative state of tasks, and relies on

ordering tasks to guarantee the atomicity of nested domains.

Second, because the parent transaction waits for its nested transactions to finish, there

is a cyclic dependence between the parent and its nested transactions. This introduces

many subtle problems, including data races with the parent, deadlock, and livelock [20].

Workarounds for these issues are complex and sacrifice performance (e.g., a nested transac-

tion eventually aborts all its ancestors for livelock avoidance [20]). By contrast, all depen-

dences in Fractal are acyclic, from parents to children, which avoids these issues. Fractal

supports the fork-join semantics of parallel-nesting TMs by having nested transactions en-

queue their parent’s continuation.

Finally, parallel-nesting TMs do not support ordered speculative parallelism. By con-

trast, Fractal supports arbitrary nesting of ordered and unordered parallelism, which accel-

erates a broader range of applications.

4.6.2 Thread-Level Speculation

A few TLS systems use timestamps internally, but do not let programs control them [95,

171, 195]. Renau et al. [171] use timestamps to allow out-of-order task spawn. Each task

carries a timestamp range, and splits it in half when it spawns a successor. This approach

could be adapted to support the order constraints required by nesting. However, while this

technique works well at the scale it was evaluated (4 speculative tasks), it would require

an impractical number of timestamp bits at the scale we consider (4096 speculative tasks).

Moreover, this technique would cause over-serialization and does not support exposing

timestamps to programs.
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4.6.3 Nesting With Non-speculative Parallelism

Nesting is supported by most parallel programming languages, such as OpenMP [70]. In

many languages, such as NESL [26], Cilk [81], and X10 [46], nesting is the natural way to

express parallelism. Supporting nested parallelism in these non-speculative systems is easy

because parallel tasks have no atomicity requirements: they either operate on disjoint data

or use explicit synchronization, such as locks [49] or dataflow annotations [69], to avoid

data races. Though nested non-speculative parallelism is often sufficient, many algorithms

need speculation to be parallelized efficiently [155]. By making nested speculative paral-

lelism practical, Fractal brings the benefits of composability and fine-grained parallelism

to a broader set of programs.

4.7 Summary

We have presented Fractal, a new execution model for fine-grained nested speculative paral-

lelism. Fractal lets programmers compose ordered and unordered algorithms without undue

serialization. Our Fractal implementation builds on the Swarm architecture and relies on

a dynamically chosen task order to perform fine-grained speculation, operating at the level

of individual tasks. Our implementation sidesteps the scalability issues of parallel-nesting

HTMs and requires simple hardware. We have shown that Fractal can parallelize a broader

range of applications than prior work, and outperforms prior speculative architectures by

up to 88×.
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Amalgam: Matching Speculation
Resources to Application Needs

A vital function addressed by systems that support speculative parallelism is how to

correctly maintain the data dependences across tasks of an application. This involves

tracking the address sets (either reads or writes) of tasks to enable conflict detection. Since

real world applications are complex and diverse, any design needs to efficiently handle

tasks of varying sizes, and in particular support tracking arbitrarily large address sets.

Hardware signatures are a promising solution to track the read and write sets of a

task [42]. A hardware signature supports an approximate representation of an unbounded

set of addresses with a bounded amount of state. The size of the signature affects the

performance—false positives can lead to unnecessary aborts—and impacts the implemen-

tation costs (area and energy). We focus on Bloom-filter based hardware signatures, which

are a popular solution in many speculative architectures. All prior hardware techniques

that support speculative parallelism allocate Bloom filters at the granularity of tasks—one

Bloom filter each to track the read and write set of a task. Further, these Bloom filters are

conservatively sized at design time to ensure low false positive rates across the spectrum of

commonly occurring task sizes, as anticipated by the system designer. This can, however,

lead to inefficient utilization for tiny tasks, while also offering no protection against high

false positive rates for applications with very large tasks. Ideally, we would like to match

the Bloom filter resources to the size of the address set being tracked.

The Swarm architecture affords this capability by providing a pool of Bloom filters

in hardware as part of the commit queue (Chapter 3). Unlike TM and TLS systems that

maintain only one read and one write Bloom filter per core, Swarm’s hardware support for

queueing provides many more Bloom filters than the number of cores. This provides the

architecture choice on how to apportion these Bloom filters to various tasks.

This chapter presents Amalgam, a microarchitectural technique that enables matching

the Bloom filter resources to the size of the task address sets. We enhance the Swarm

hardware architecture with two mechanisms to achieve this. Signature splitting breaks

113
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Application
Read Set Size Write Set Size

Median 90th Max Median 90th Max

astar 2 13 13 0 1 2

color 5 10 12164 1 1 451

bfs 4 5 6 0 1 1

mis 1 2 5 0 1 1

sssp 3 7 10 0 1 1

intruder 27 55 152 3 3 27

vacation 62 132 248 3 10 27

nocsim 5 18 1486 1 6 2519

silo 37 43 315 4 12 77

kmeans 9 72 72 1 3 10

Table 5.1: Address set size of tasks (in 64-byte cache lines) of representative applications.

up a large address set into multiple smaller address subsets, tracking each subset using

one Bloom filter from the hardware pool. Signature merging combines multiple small

address sets tracking them together using a single Bloom filter from the hardware pool.

Both mechanisms tradeoff the efficiency of tracking the address sets (and associated false

positive rates), against the speculation window offered to applications.

Amalgam enables Swarm to respond gracefully to tasks of different sizes. We eval-

uate Amalgam in simulation, across several design points using different sizes of Bloom

filters and different commit queue sizes. At 256 cores, Amalgam using small Bloom filters

(512-bit 8-way) achieves 5% higher performance than Swarm with conservatively-sized,

larger Bloom filters (2048-bit 8-way). Unlike Swarm, where individual application perfor-

mance can degrade by up to 14× due to mismatch in Bloom filter resources and task size,

Amalgam’s performance is congruent to the net available Bloom filter resources on chip.

Amalgam can improve performance for a given system configuration, or reduce implemen-

tation costs, reducing the commit queue area by up to 4× without impacting performance.

5.1 Motivation

5.1.1 Application Tasks are Diverse

To illustrate the diversity in application tasks, we profile the size of the read and write set of

tasks across different applications from Swarm and STAMP benchmark suite (Section 3.4).

Table 5.1 summarizes the results. First, tasks across different applications have different

median address set sizes, ranging from 1 64-byte cache line in mis to 62 64-byte cache lines

in vacation. While vacation might benefit from using large Bloom filters, say 2048-bit

8-way, the same filter is clearly wasteful for mis. Second, tasks within an application can

also exhibit significant diversity. mis and bfs have uniformly small address sets. However,

color and nocsim show greater variance. Extremely large footprints, such as in color,

result in several false conflicts even with 2048-bit Bloom filters. As we shall see in Sec-
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tion 5.1.2 even a few tasks with large footprint can cause false conflicts with several other

tasks over a long period during the course of execution, severely degrading performance.

5.1.2 Impact of Bloom Filter Size on Performance
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Figure 5-1: Sensitivity of application performance to various Bloom filter sizes (512: 512-bit 8-way,

1K: 1024-bit 8-way, 2K: 2048-bit 8-way) compared to idealized precise address set tracking. Most

ordered applications have fine-grained tasks with small footprints and are insensitive to Bloom filter

size.

The diversity in tasks, both within and across applications, means that the size of the

Bloom filter impacts performance to varying degrees for different applications. Figure 5-1

reports the relative performance of a 256-core Swarm system when using different Bloom

filter sizes as well as with an idealized precise tracking of address sets (see Section 5.3

for methodology, modeled system). For example, astar has tasks with small address sets,

and is accordingly unaffected by the size of the Bloom filter. By contrast, vacation has

tasks with large address sets, and sees performance drop by 15× when using 512-bit 8-way

Bloom filters compared to tracking address sets precisely. The smaller Bloom filters re-

sult in larger false positive rates, which translate to more aborts and reduced performance.

color has relatively small median and 90th percentile address set size. However, the pres-

ence of even a few large tasks leads to several false conflicts, resulting in severely degraded

performance. With precise tracking, color achieves 20% higher performance than when

using 2048-bit 8-way Bloom filters, and 45% higher performance than using 512-bit 8-way

Bloom filters.

5.1.3 Impact of Commit Queue Size on Performance

The size of the commit queue corresponds to the window of speculation offered to the ap-

plication. For ordered applications, the window of speculation impacts the parallelism that

can be uncovered. Figure 5-2 reports the relative performance of a 256-core Swarm system

when using different commit queue sizes. Increasing the commit queue size improves per-

formance for all ordered applications. Many of the ordered applications have fine-grained
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Figure 5-2: Sensitivity of application performance to commit queue size (32, 64, 128 entries per tile)

when using idealized precise address set tracking. Unordered applications are insensitive to the

commit queue size, while performance of ordered applications improves with larger commit queue

size. All numbers are normalized to execution time with 64 commit queue entries per tile.

tasks with small address sets. Using large Bloom filters—which are the dominant contribu-

tor to commit queue area—is wasteful for these applications. At the same time, we cannot

make the Bloom filter too small even to track tiny address sets—as seen in Section 2.5

small bit-vectors lead to much higher false positive probability. Instead, tracking multiple

tiny address sets using the same Bloom filter can lead to more efficient utilization without

impacting performance adversely. Unordered applications are largely unimpacted by the

commit queue size because the their tasks commit quickly. Tasks either abort on conflict,

or commit immediately on completion. However, as seen in Section 5.1.2, these applica-

tions are sensitive to Bloom filter size. Thus, leveraging the unused Bloom filters in the

commit queue to track large address sets more effectively can reduce the false positive rate

and improve performance.

5.2 Amalgam Design

Amalgam builds on the Swarm architecture as described in Chapter 3. Amalgam enhances

Swarm to match Bloom filter resources to the address footprint of the tasks. We focus

on the Bloom filter since they are the dominant contributor to the speculative state of the

task (occupying more than 90% of the commit queue area, see Section 3.3.9), and because

they impact the performance of applications (Section 5.1). While Swarm allots each task a

single read and write Bloom filter from the pool, in Amalgam, we manage these filters more

carefully. We augment the Swarm hardware with two mechanisms: signature splitting and

signature merging. We first describe these mechanisms qualitatively, and then analyze the

microarchitecture in more detail in Section 5.2.3.

5.2.1 Signature Splitting

Signature splitting responds to tasks with large address footprints. Large address sets incur

higher false positive probability, and consequently lead to more aborts and reduced perfor-
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mance. Signature splitting enables tracking a large address set across several Bloom filters.

Each Bloom filter tracks a subset of addresses thus keeping the individual false positive

probability low. In concert, the Bloom filters track the large address set without affecting

the correctness of conflict resolution.

Modifications to the core: To perform signature splitting, we augment every core with

threshold counters, one each for the read and write Bloom filter, as shown in Figure 5-3. On

every load and store performed by a speculative task, each threshold counter determines if

the corresponding address set for this task should be split. If the decision of either threshold

counter is to split the address set, the core transfers both the read and write Bloom filters

at the core to the local tile’s commit queue, and requests a new slot in the commit queue to

store the new Bloom filters for the remainder of the task execution. It also clears its local

read and write Bloom filters, tracking all future loads and stores by the tasks with fresh

Bloom filters.

Core
Threshold 

Counter

Occupancy

0 1 0 1 1…Bloom filter

Load/Store

Should split?

Update suitable 
Bloom filter

1 1 0 1 0…

Write 

Occupancy

Read

Threshold 

CounterLoad/Store

(a) Threshold counters query occupancy of the Bloom filters.

Core
Threshold 

Counter

Occupancy

0 0 0 0 0…Bloom filter

Load/Store

Should split?

Update suitable 
Bloom filter

0 0 0 0 0…

Write 

Occupancy

Read

Threshold 

CounterLoad/StoreSend read and write 
Bloom filters to local task unit, 

clear local Bloom filters

0 1 0 . . . 1 1

(b) On a split, transfer Bloom filters to local task unit. Clear local Bloom filters and track addresses using fresh
Bloom filters.

Figure 5-3: Signature splitting allows Amalgam to track large address sets across multiple Bloom

filters.
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Modifications to the task unit: When a core sends a request to split an address set, the

local task unit checks if Bloom filters (one each for read and write sets) is available from

the pool. If filters are available, then the Bloom filters transferred from the core are stored

at the existing Bloom filters associated with the task. The new filters are then associated

with the same task. If filters are not available, the task unit simply stores the transferred

Bloom filters to the existing Bloom filters associated with the task without allocating any

new filters. When it receives the fresh Bloom filters from the core in the future, it simply

merges them into the current Bloom filter using a bitwise-OR. During conflict checks, since

multiple Bloom filters may be associated with the same task, a potential conflict flagged by

any of the Bloom filters, causes all the filters associated with the task to be cleared after the

task is aborted. The microarchitecture is described in greater detail in Section 5.2.3.

Threshold counter: We employ a simple threshold counter to determine if an address

set should be split. For a given Bloom filter size, we determine the number of elements

(Tn) at which the false positive probability exceeds a threshold (TFP ). We translate Tn to

the occupancy—defined as the number of bits set—of the Bloom filter at Tn elements using

the formula Tn = m
k
ln( m

m−Ts

), where Ts is the number of bits set to 1 in the m−bit k− way

Bloom filter. We refer to Ts as the occupancy threshold. When the occupancy of the Bloom

filter exceeds Ts the counter determines that the address set is too large, and asserts a split

request.

5.2.2 Signature Merging

Signature merging handles tasks with small address footprints. Small address sets result

in inefficient utilization of Bloom filter resources. For example, for an astar task that

accesses a single 64-bit address, using a 2048-bit Bloom filter is wasteful. At the same

time, we cannot simply size Bloom filters for the smallest task footprint—small Bloom

filters incur very high false positive probability which causes significant degradation in

performance. Signature merging, instead, merges multiple small address sets, tracking

them together using a single Bloom filter. This improves the utilization of the Bloom filter,

and effectively increases the speculation window offered to the application.

Modifications to the task unit: We trigger signature merging in a lazy manner. When

the task unit has a task available to run, but the commit queue is full (i.e., we have no

available Bloom filters in the pool), the task unit attempts to merge two Bloom filters and

free one of them for the new task. The candidates for merging are selected as per the

merging policy (see below). If no candidates are available for merging, the core stalls

as before. If two candidate filters are found, they are merged by a simple bitwise-OR

operation. All tasks associated with these filters then point to the merged filter. The other

filter is finally cleared and allotted to the new task. If a conflict is flagged on a merged

Bloom filter (i.e., multiple tasks point to are tracked by the same Bloom filter), then the

virtual times of the tasks are compared to the incoming conflict check request’s virtual time
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to determine which tasks must be aborted. The microarchitecture is described in greater

detail in Section 5.2.3.

Merging policies: We implement a simple greedy policy to select candidate Bloom

filters for merging. The occupancy table stores the occupancy of different Bloom filters.

We walk the occupancy table in order and find the first two Bloom filters whose sum of

occupancies is less than occupancy threshold, and merge them. This simple policy reaps

most of the benefits of signature merging, while keeping hardware overheads modest.

5.2.3 Amalgam Microarchitecture

Core: Modifications to the core for signature splitting are simple and require minimal

hardware. The shadow Bloom filter incurs a few additional bits per core, the splitting

predictor is just a comparator, and we have a simple state machine to handle copying and

clearing of the shadow Bloom filter.

Task Unit: Figure 5-4 shows the hardware additions to the task unit, compared to base-

line Swarm. Swarm’s commit queue comprises two structures that hold the speculative

state of tasks that have finished execution but cannot yet commit: (i) task metadata table,

which holds the virtual time, undo log pointer, and child pointers, and (ii) Bloom filters

to track the read and write address sets. Bloom filters account for more than 90% of the

commit queue area, and thus primarily limit the speculation window.

Amalgam’s additions are shown in orange. Signature splitting does not require any

additional storage. When a task’s address set is split, we simply copy over the virtual time

and undo log pointer to the entry corresponding to the new Bloom filter in the task metadata

table. We re-purpose one of the child pointers to point to the new entry in the task metadata

table—this reuses the child task mechanisms to handle task commit and abort correctly.

Signature merging necessitates additional storage. Amalgam adds multiple ways to the

task metadata table to track the metadata of tasks associated with merged Bloom filters.

The way table denotes which ways of a particular entry in the metadata table are valid. We

define a degree of merging (d), that defines the maximum number of ways, and hence the

maximum number of tasks that may be tracked together by a single Bloom filter. The oc-

cupancy table tracks the occupancy of each Bloom filter and is used to determine candidate

Bloom filters for merging.

Figure 5-4b illustrates the operation on a merge. Say tasks 1 and 2 are merged. The

candidate filters are merged by a simple bitwise-OR operation. The metadata of one of the

merged tasks, say task 2, is moved to entry 1, way 2. Bits W1 and W2 are then set on entry

1 of the way table to indicate this Bloom filter is merged and tracks the address sets of two

tasks. If a merged Bloom filter signals a conflict, the virtual times of all the associated tasks

are compared and aborts triggered accordingly. This construction allows for easy access

to the virtual times during conflict checks, ensuring that conflict checks remain fast. At
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(a) State of commit queue structures before a signature merge.

VT Undo Log Ptr Child Ptrs

145 0xB245 …

.

.

.

.

.

.

.

.

.

Read/Write Bloom Filter W1 W2 … Wd

1

0

.

.

.

1

0

.

.

.

…

…

.

.

.

0

0

.

.

.

11101…110

.

.

.

1

2

3

CQsize

.

.

.

Task Metadata Table

.

.

.

.

.

.

123 0xA123 …

.

.

.

1

CQsize

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

d
 w

ays

W1

W2

W3

Wd
.

.

27

0

.

.

.

Occupancy 

Table

Way TableBloom Filters

(b) Bloom filters 1 and 2 are merged. Entries in the metadata table are moved and bits in the way
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Figure 5-4: Modifications to the baseline Swarm task unit for Amalgam. The commit queue com-

prises a task metadata table, the Bloom filters, a way table, and an occupancy table. Amalgam

additions are shown in orange. Figures (a) and (b) show the state of different structures before and

after a signature merge.

the same time, the implicit indexing into the additional entries of the metadata table keep

hardware overheads low.

We find that a degree of merging (d) of 2 is sufficient to reap most of the gains of

signature merging. Compared to a baseline system with 2048-bit Bloom filters and CQsize

of 64, this increases the commit queue area by 6%. Halving the CQsize to 32 nearly halves

the overall area of the commit queue thus obviating the 6% overhead, while providing the

same or better performance compared to the baseline system with CQsize = 64.

5.3 Methodology

Modeled system: We use the same methodology as previous chapters (Section 3.4). We

model a 256-core Swarm system, as shown in Figure 3-2, with parameters in Table 5.2.
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False probability threshold (TFP ) 0.05%

Degree of merging (d) 2

Table 5.2: Configuration of the 256-core Amalgam system. Core, memory system, and Swarm

parameters as listed in Table 3.3.

Benchmarks: We use 9 Swarm applications and 8 applications from the STAMP bench-

mark suite to evaluate Amalgam. Amalgam impacts the performance of 10 applications

(listed in Table 5.1), and hence we evaluate those in detail. For the remaining applications,

performance is unaffected by Amalgam.

5.4 Evaluation

We first evaluate the performance of Amalgam against a baseline Swarm system at different

design points, and then analyze its behavior in depth.

5.4.1 Amalgam vs. Swarm

Figure 5-5 shows the gmean execution time across the benchmark applications for different

design points on both the Swarm architecture and with Amalgam. We report the geometric

mean (gmean) execution time for the 10 applications where Amalgam affects performance.

All design points are evaluated on a 256-core system with parameters as in Table 5.2,

but varying the commit queue size and the Bloom filter size. We evaluate two commit

queue sizes (64 and 32 entries per tile), and three Bloom filter configurations (512-bit

8-way, 1024-bit 8-way and 2048-bit 8-way), as well as an idealized precise address set

tracking scheme. We label the design points as CommitQueueSize-BloomFilterSize. All

performance numbers are normalized to the baseline parameters in Table 5.2 (i.e., with 64

commit queue entries per tile and 2048-bit 8-way Bloom filters).

Large Bloom filters (2048-bit or 1024-bit) result in few false conflicts. However, at

512-bits the false positive probability increases for several unordered applications and is

the dominant cause for increased gmean execution time. 64-512 is 43% slower than 64-2K,

while 32-512 is 47% slower than 32-2K. Signature splitting successfully overcomes this

problem—the Amalgam variants with 512-bit Bloom filter match the gmean performance

using larger Bloom filters.

Smaller commit queue sizes decrease the speculation window, and reduce performance

for most ordered applications. Thus, 32-2K is 17% slower than 64-2K, while 32-512 is

20% slower than 64-512. Signature merging reclaims most of this performance loss.

Overall, Amalgam handles tasks of varying sizes gracefully regardless of Bloom filter

or commit queue sizes. Amalgam can help improve performance at the same area, or

match the performance while offering area savings. 32-1K with Amalgam matches the

performance of 64-2K at 1/4th the area for Bloom filter resources (saving 0.228mm2, 24
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Figure 5-5: Gmean execution time of Swarm and Amalgam at 256-cores for various design points—

64, 32 commit queue entries per tile, and 512-bit 8-way (512), 1024-bit 8-way (1K) and 2048-bit 8-

way (2K) Bloom filters. P represents an idealized precise address set tracking scheme. Amalgam

gracefully responds to tasks of varying sizes regardless of Bloom filter size and number of commit

queue entries.

KB of 2-port SRAM per tile), while 32-512 achieves within 6% of the performance of 64-

2K at 1/8th the area for Bloom filter resources (saving 0.266mm2, 28 KB of 2-port SRAM

area per tile).

5.4.2 Amalgam Analysis

We analyze the behavior of different benchmarks in greater detail to understand the differ-

ences in performance of Amalgam compared to Swarm. In Figure 5-6, the height of each

bar is the sum of cycles spent by all cores, normalized to the cycles spent with 64 commit

queue entries and 2048-bit 8-way Bloom filters (64-2K). Each bar shows the percentage of

cycles that cores spend on different activities: (i) running tasks that are ultimately commit-

ted, (ii) running tasks that are later aborted, (iii) stalled on a full task or commit queue, or

(iv) other (queue spills or stalled due to lack of tasks). Each group of bars shows results for

a different application at 256 cores. We analyze only two Bloom filter configurations here

for simplicity: 2048-bit 8-way and 512-bit 8-way. We evaluate both Swarm and Amalgam

with 32 and 64 commit queue entries for both Bloom filter configurations. For simplicity,

we show the cycle breakdown for four representative applications. Other applications with

qualitatively similar behavior are identified in the text.

vacation has tasks with large address sets. This leads to high false positive rates

when tracked with a 512-bit 8-way Bloom filter. Compared to 2048-bit Bloom filters,
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Figure 5-6: Breakdown of core cycles at 256-cores for four representative applications. All numbers

are normalized to the 2048-bit 8-way Bloom filter with 64 commit queue entries. Amalgam reduces

aborts due to false conflicts when application tasks have large address sets by performing signature

splitting ((a), (b) and (c)). Amalgam reduces commit queue stalls by merging tasks with tiny address

sets ((b) and (d)).

512-bit Bloom filters show significantly higher aborts and accordingly lower performance

(Figure 5-6a). Amalgam overcomes this through signature splitting, reducing the abort

rate and improving performance. At 64 commit queue entries, Amalgam performs slightly

better than with 2048-bit Bloom filters, and improves performance over Swarm by 14×.

However, at 32 commit queue entries, signature splitting introduces a few commit queue

stalls as multiple Bloom filters are used to track large tasks. However, the gains from the

reduced false conflict rate are more significant, effectively improving performance by 12×

compared to Swarm. Other unordered applications from the STAMP benchmark suite such

as intruder exhibit similar behavior as vacation.

Ordered applications color and nocsim (Figure 5-6c, Figure 5-6b) also benefit from

signature splitting on some of their larger tasks. Similar to vacation, signature splitting

reduces aborts arising from false conflicts for color. This improves performance by 40%
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and 20% compared to Swarm at 512-bit Bloom filters and 2048-bit Bloom filters respec-

tively, for both commit queue configurations. nocsim, however, benefits from both sig-

nature splitting and signature merging, with the latter reducing commit queue stalls. This

improves performance by 70% over Swarm at 512-bit Bloom filters for both commit queue

configurations. The remaining ordered applications mostly have fine-grained tasks that do

not require signature splitting. Most of the benefits for these applications arise from sig-

nature merging providing a larger speculation window, and reducing commit queue stalls.

Signature merging has a greater impact when the hardware has smaller number of commit

queue entries, which places more pressure on the commit queue. Thus, mis sees a 39%

improvement in performance compared to Swarm with 32 commit queue entries, almost

matching the performance with 64 commit queue entries at 512-bit Bloom filters. Other

ordered applications, astar, bfs and sssp also benefit from signature merging in a similar

manner.

5.4.3 Sensitivity Studies

We explore Amalgam’s sensitivity to different parameters at 256 cores.

Degree of merging: We sweep the degree of merging (d) from d = 2 to d = 10. With the

greedy merge policy, the gmean speedup does not vary by more than 2% across different

different degrees of merging. We use d = 2 since it reaps all the benefits while incurring

minimal hardware overhead in the task metadata table and index table.

Occupancy threshold: We explore different choices for the false positive probability

TFP and correspondingly the occupancy threshold for splitting and merging Ts. We find

that TFP < 0.05% sets a suitable threshold for avoiding false conflicts for different sizes

of Bloom filters. Lower values of TFP increase the number of splits for applications with

large tasks. With the exception of vacation performance of most applications remains

unchanged even at lower TFP . vacation suffers a 10% reduction in performance due

to greater splitting resulting in more commit queue stalls. Applications that benefit from

merging have fine-grained tasks and are unaffected by lower values of TFP .

5.5 Summary

We have presented Amalgam, a microarchitectural technique that enables matching Bloom

filter resources for speculation to task size. Amalgam enables Swarm to respond grace-

fully to tasks of different sizes. By efficiently utilizing available Bloom filter resources

on chip, Amalgam can improve performance for a given system configuration, or reduce

implementation costs without impacting performance.
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Conclusions and Future Work

TO conclude this dissertation, we summarize the contributions of this dissertation and

outline areas for future work.

6.1 Contributions

Current multicores are limited in the range of parallelism they can exploit in applications.

In particular, they cannot harness fine-grained parallelism that is crucial to scaling many

applications and enabling widespread parallelism. This is because current systems lack ef-

ficient support for fine-grained tasks and synchronization. Our key insight is that order is a

simple, general and powerful synchronization primitive. We have shown that architectural

support for order unlocks abundant fine-grained parallelism in applications. Specifically

we have made the following contributions:

• Swarm, an architecture that successfully mines ordered parallelism, which is abun-

dant, but difficult to exploit using current software and hardware techniques. Swarm

relies on a co-designed execution model and microarchitecture to scale efficiently.

Swarm executes tasks speculatively and out of order, and efficiently speculates thou-

sands of tasks ahead of the earliest active task to uncover enough parallelism. Swarm

adapts existing eager version management and conflict detection schemes, and con-

tributes several new techniques that allow it to scale to large core counts and specu-

lation windows.

• Fractal, a new execution model for nested speculative parallelism that supports both

unordered and ordered speculation. Fractal decouples atomicity from parallelism by

introducing the notion of a domain. Fractal programs consist of tasks located in a

hierarchy of nested domains. Any task can create a new subdomain, and all tasks

in a domain appear to execute atomically with respect to tasks outside the domain.

125
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Our Fractal implementation builds on the Swarm architecture and supports arbitrary

nesting levels cheaply. Unlike prior work, our implementation focuses on extracting

parallelism at the finest (deepest) levels first. It guarantees the atomicity of large

domains by enforcing an order among individual tasks rather than building impracti-

cally large atomic units. This allows the system to manage tiny speculative tasks that

are easy to track in hardware, reaping the benefits of fine-grained parallelism, and

avoids the problems that plague prior nested-parallel HTMs.

• Amalgam, a microarchitectural technique that enables matching the speculation re-

sources allotted to a task to the task size. Signature splitting tracks large address sets

cooperatively using multiple Bloom filters, and signature merging tracks multiple

small address sets using a single Bloom filter. Amalgam gracefully handles diverse

tasks across applications and improves the efficiency of speculative execution reduc-

ing implementation costs.

Our results demonstrate significant improvements in performance for applications from

a broad set of domains, some of which have eluded successful parallelization for decades.

Besides achieving near-linear scalability, the resulting programs are almost as simple as

their sequential counterparts, as they do not use explicit synchronization.

6.2 Future Work

The techniques in this dissertation open a number of avenues for future work, described

below:

• Eliminating the need for global cache coherence: Cache coherence is a staple of

modern multicores. While coherence protocols can scale to thousands of cores, their

added complexity and overhead make them undesirable at very large scales, e.g., in

a machine spanning multiple boards or racks. Accurate spatial hints can make global

coherence unnecessary: if all accesses to shared read-write data are localized within

a tile, the coherence protocol becomes superfluous across tiles. We have shown that

hints effectively localize the vast majority of read-write accesses with fine-grained

tasks. Further, Fractal allows a task to be divided at any arbitrary point. Thus, if a

task needs data from a different tile, its context can be migrated automatically while

preserving atomicity and without requiring global coherence.

• Towards a practical auto-parallelizing compiler: Automatic parallelization has proven

daunting, with limited success despite decades of work. Without support for specu-

lative execution, parallelizing compilers are limited by the precision of dependence

analysis, and cannot effectively decompose even simple algorithms into parallel tasks.

But even with speculative execution, prior parallelizing compilers have attained lim-
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ited speedups. A key part of the problem is that the speculative execution models

targeted by these compilers (e.g., TLS) do not support composition. Therefore, prior

TLS compilers have focused on parallelizing a single control structure (e.g., a for

loop) at a time. This is insufficient in large programs, where parallelism often arises

across function and compilation unit boundaries. Fractal’s support for unrestricted

nesting enables compilers to exploit parallelism across multiple control regions in a

clean fashion, while maintaining their atomicity and order requirements. This could

lay the groundwork towards realizing a practical auto-parallelizing compiler.

• Silicon implementations and deeper understanding of components: This dissertation

has studied and developed the broad architectural techniques for exploiting ordered

and nested speculative parallelism. However, a deeper understanding is required

for each of the components developed in this thesis, including a comprehensive ex-

ploration of the design space (e.g., size of the task queue, commit queue, number

of cores per tile etc.), an extensive evaluation of various policies (e.g., admission,

eviction and spilling policies for the task and commit queue, etc.), and a thorough

understanding of the cost-performance tradeoffs to guide an actual implementation.

Real silicon implementations can not only crystallize these efforts, but also provide

confidence on the practicality of the ideas developed in this dissertation. A first step

could be an FPGA implementation to serve as a vehicle to validate the correctness

of the architectural techniques we have proposed. This effort could also lead to the

development of stand-alone accelerators for specific applications (such as discrete-

event simulation or graph analytics).

• Development of tools and theory to analyze and understand speculation performance:

Programmers can benefit from tools that identify and help diagnose scalability bot-

tlenecks and performance pathologies. Speculative execution demands new tools and

techniques, for example to determine cause for aborts, identify resource constraints

(such as task and commit queue resources), creation and visualization of parallelism

profiles, and more. The development of a more rigorous theory on speculative ex-

ecution could not only aid our understanding of the benefits of speculation, but im-

portantly identify the limitations of speculative execution. This can also guide the

design of performance models and offer stronger guarantees on the performance of

speculation (e.g., given the ideal parallelism in an application, can we guarantee un-

der specific circumstances that speculative execution will deliver within a constant

factor of the ideal parallelism?). The development of such tools and theories would

encourage adoption of the techniques developed in this dissertation by programmers

and computer architects.

• Hardware and software co-design: We believe the design process in this disserta-

tion could serve as a template for developing future parallel architectures. We adopt

a vertically-integrated approach of studying the software and hardware architecture
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in concert to understand the scalability challenges of applications. We also co-design

the execution model and architectural support sidestepping the limitations of prior

hardware- and software-only approaches. We believe that this design approach gen-

eralizes beyond this dissertation: many inefficiencies in current parallel systems are

caused by a semantic gap between hardware and software, and innovating across the

hardware-software interface is an effective way to bridge this gap. New interfaces

could allow applications to convey which tasks are resilient to conflicts to reduce

aborts (e.g., in iterative methods where conflicting updates cause small, temporary

errors that do not jeopardize convergence), or capture application semantics such

as commutativity to avoid aborts, or to express what tasks are safe to execute non-

speculatively. These could also be coupled with other techniques such as approxi-

mate computing where strict accuracy is not essential. Importantly, such an approach

compels system designers to carefully consider the problem to be solved, the char-

acteristics of the range of algorithms to solve the problem, and the requisite software

and hardware support to realize the best performance.

THIS dissertation has laid a solid foundation for exploiting fine-grained speculative par-

allelism. We hope the techniques we have developed provide guidance to computer

architects in designing versatile parallel systems. More broadly, we hope this work paves

the path towards a world where parallelism is pervasive and parallel programming is the

default.
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