WO2024135504A1 - Electric current sensor - Google Patents
Electric current sensor Download PDFInfo
- Publication number
- WO2024135504A1 WO2024135504A1 PCT/JP2023/044734 JP2023044734W WO2024135504A1 WO 2024135504 A1 WO2024135504 A1 WO 2024135504A1 JP 2023044734 W JP2023044734 W JP 2023044734W WO 2024135504 A1 WO2024135504 A1 WO 2024135504A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- core
- bus bar
- protrusion
- detection element
- magnetic field
- Prior art date
Links
- 238000001514 detection method Methods 0.000 claims abstract description 270
- 230000005856 abnormality Effects 0.000 claims description 21
- 230000000694 effects Effects 0.000 description 20
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 15
- 239000000758 substrate Substances 0.000 description 15
- 230000006866 deterioration Effects 0.000 description 14
- 230000007423 decrease Effects 0.000 description 13
- 230000035945 sensitivity Effects 0.000 description 12
- 238000004364 calculation method Methods 0.000 description 9
- 230000008859 change Effects 0.000 description 9
- 239000000696 magnetic material Substances 0.000 description 9
- 230000003247 decreasing effect Effects 0.000 description 5
- 230000004907 flux Effects 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 229910000889 permalloy Inorganic materials 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- -1 polybutylene terephthalate Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R15/00—Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
- G01R15/14—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
- G01R15/20—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
Definitions
- This disclosure relates to a current sensor.
- a current sensor As described in Patent Document 1, a current sensor is known that includes a bus bar through which a current flows, a core into which the bus bar is inserted and through which a magnetic field generated by the current flowing through the bus bar passes, and a sensor chip that serves as a detection element and is disposed in the gap of the core. In this current sensor, the strength of the magnetic field passing through the gap is detected by the sensor chip, thereby detecting the current flowing through the bus bar.
- two bus bars may be inserted into the core for current detection.
- the strength of the magnetic field generated by the current flowing through the two bus bars, which have different current directions, is detected by the sensor chip, and the current flowing through the bus bars is detected.
- the gap there are places where the directions of the magnetic fields generated by the current flowing through the two bus bars are opposite to each other, and therefore there are places where the two magnetic fields cancel each other out.
- the direction of the magnetic field generated by the current flowing through the two bus bars is from the gap toward the bottom of the core located on the opposite side to the gap, and therefore there are places where the two magnetic fields are difficult to cancel each other out.
- An object of the present disclosure is to provide a current sensor that suppresses deterioration in current detection accuracy.
- a current sensor comprising: a first bus bar formed in a plate shape and through which a current flows in one of the longitudinal directions; a second bus bar formed in a plate shape aligned with the first bus bar at a distance from the first bus bar in the width direction of the first bus bar and through which a current flows in a direction opposite to the direction of the current flowing in the first bus bar; a core hole into which the first bus bar and the second bus bar are inserted; a first end face facing the width direction, a second end face facing the first end face in the width direction, and a gap forming portion formed by the first end face and the second end face and including a gap connecting the core hole to the outside; a core lateral portion connected to the gap forming portion and extending in the thickness direction of the first bus bar; and a core bottom portion connected to the core lateral portion and extending in the width direction, forming a core hole together with the gap forming portion and the core lateral portion; and a core disposed in
- a detection element that detects the strength of a combined magnetic field of a magnetic field generated by a current flowing through the second bus bar in a direction from the first end face to the second end face and a magnetic field generated by a current flowing through the second bus bar in a direction from the second end face to the first end face, and outputs a signal according to the strength of the detected magnetic field.
- the first bus bar has a first opposing surface that faces the second bus bar in the width direction
- the second bus bar has a second opposing surface that faces the first bus bar in the width direction
- the first end surface and the second end surface are located between the first opposing surface and the second opposing surface in the width direction
- the gap forming portion includes a core inner surface and a core protrusion
- the core inner surface is a surface of the gap forming portion that faces inward in the thickness direction
- the core protrusion is a current sensor that protrudes in the thickness direction from a range between a surface of the core inner surface that passes through the first opposing surface and the gap forming portion and is perpendicular to the width direction, and a surface that passes through the second opposing surface and the gap forming portion and is perpendicular to the width direction.
- the magnetic field lines of the magnetic field generated by the first bus bar and the second bus bar pass through the core protrusion. Therefore, the area around the core protrusion becomes a location where the magnetic fields generated by the currents flowing through the first bus bar and the second bus bar are less likely to cancel each other out. Also, since the core protrusion protrudes in the thickness direction from the inner surface of the core, the detection element is more likely to move away from the location where the magnetic fields generated by the currents flowing through the first bus bar and the second bus bar are less likely to cancel each other out, compared to when the core protrusion is not formed. Therefore, the change in the signal value of the detection element caused by the misalignment of the detection element is smaller, compared to when the core protrusion is not formed. Therefore, the detection accuracy of the magnetic field strength by the detection element is prevented from decreasing, and the decrease in current detection accuracy is prevented.
- FIG. 2 is a configuration diagram of an on-board charger in which the current sensor of the first embodiment is used.
- FIG. Cross-sectional view taken along line III-III in Figure 2.
- FIG. 4 is a cross-sectional view of a current sensor of a comparative example.
- FIG. 2 is a cross-sectional view of the current sensor according to the first embodiment.
- 11 is a graph showing the relationship between the amount of deviation of a detection element from a reference position and the rate of change in signal value due to deviation from the reference position relative to the signal value of the detection element at the reference position.
- 11 is a graph showing the relationship between the amount of deviation of a detection element from a reference position and the rate of change in signal value due to deviation from the reference position relative to the signal value of the detection element at the reference position.
- FIG. 11 is a cross-sectional view of a current sensor according to a second embodiment.
- FIG. 13 is a cross-sectional view of a current sensor according to a third embodiment.
- FIG. 13 is a cross-sectional view of a current sensor according to a fourth embodiment.
- FIG. 13 is a cross-sectional view of a current sensor according to a fifth embodiment.
- FIG. 13 is a cross-sectional view of a current sensor according to a sixth embodiment.
- FIG. 13 is a cross-sectional view of a current sensor according to a seventh embodiment.
- FIG. 13 is a cross-sectional view of a current sensor according to an eighth embodiment.
- FIG. 11 is a graph showing the relationship between the amount of deviation of a detection element from a reference position and the rate of change in signal value due to deviation from the reference position relative to the signal value of the detection element at the reference position.
- FIG. 13 is a cross-sectional view of a current sensor according to a ninth embodiment.
- FIG. 23 is a cross-sectional view of a current sensor according to a tenth embodiment.
- FIG. 23 is a cross-sectional view of a current sensor according to an eleventh embodiment.
- FIG. 23 is a perspective view of a current sensor according to a twelfth embodiment.
- FIG. 23 is a cross-sectional view of a current sensor in a modified example of the twelfth embodiment.
- FIG. 23 is a cross-sectional view of a current sensor in a modified example of the twelfth embodiment.
- FIG. 23 is a cross-sectional view of a current sensor in a modified example of the twelfth embodiment.
- FIG. 23 is a cross-sectional view of a current sensor in a modified example of the twelfth embodiment.
- FIG. 23 is a cross-sectional view of a current sensor in a modified example of the twelfth embodiment.
- the current sensor of this embodiment is used, for example, in an on-board charger 10 as shown in Fig. 1. First, the on-board charger 10 will be described.
- the on-board charger 10 includes a battery 12, a charger 14, and a current sensor 20.
- the battery 12 is a rechargeable secondary battery, such as a nickel-metal hydride battery or a lithium-ion battery.
- the battery 12 corresponds to a load.
- the charger 14 is equipped with an AC-DC converter and the like, and converts AC power from a grid power source into DC power. Furthermore, the charger 14 supplies this converted DC power to the battery 12, thereby charging the battery 12.
- the charger 14 corresponds to a power source.
- the current sensor 20 detects the current flowing between the battery 12 and the charger 14. Based on the detected current, the current sensor 20 also determines whether or not there is an electrical leakage abnormality between the battery 12 and the charger 14. Details of the current sensor 20 will be described later.
- the on-board charger 10 is configured as described above. Next, we will explain the current sensor 20.
- the current sensor 20 includes a first bus bar 21, a second bus bar 22, a core 25, a detection unit 30, lead wires 35, a substrate 40, a determination unit 45, and a case 50.
- the first bus bar 21 is formed in a plate shape.
- the first bus bar 21 is made of copper or the like and is therefore conductive. If necessary, the surface of the first bus bar 21 is plated to prevent oxidation of the surface.
- One end of the first bus bar 21 is connected to one end of the charger 14. The other end of the first bus bar 21 is connected to one end of the battery 12. As described below, a current flows through the first bus bar 21 in one direction along the longitudinal direction DL of the first bus bar 21.
- the longitudinal direction DL of the first bus bar 21 will be simply referred to as the longitudinal direction DL.
- the width direction DW of the first bus bar 21 will be simply referred to as the width direction DW.
- the thickness direction DT of the first bus bar 21 will be simply referred to as the thickness direction DT.
- the first bus bar 21 includes a first opposing surface 211.
- the first opposing surface 211 faces the second bus bar 22 (described later) in the width direction DW.
- the first opposing surface 211 is a surface that is perpendicular to the width direction DW and corresponds to a surface that intersects with the width direction DW.
- the second bus bar 22 is arranged in the width direction DW with a gap between it and the first bus bar 21.
- the second bus bar 22 is formed in a plate shape, similar to the first bus bar 21.
- the second bus bar 22 is made of copper or the like, and is therefore conductive.
- the surface of the second bus bar 22 is plated to prevent oxidation of the surface, as necessary.
- One end of the second bus bar 22 is connected to the other end of the battery 12.
- the other end of the second bus bar 22 is connected to the other end of the charger 14.
- a series circuit is formed by the battery 12, the charger 14, and the current sensor 20. As described below, a current flows through the second bus bar 22 in a direction opposite to the direction of the current flowing through the first bus bar 21.
- the second bus bar 22 also includes a second opposing surface 222.
- the second opposing surface 222 faces the first opposing surface 211 of the first bus bar 21 in the width direction DW. Furthermore, the second opposing surface 222 is a surface that is perpendicular to the width direction DW and corresponds to a surface that intersects with the width direction DW.
- the core 25 is formed in a C-shape from a soft magnetic material such as permalloy or directional electromagnetic steel plate.
- the core 25 is formed, for example, by bending a plate of soft magnetic material into a C-shape.
- the core 25 further has a gap forming portion 26, a core side portion 27, a core bottom portion 28, and a core hole 29.
- the gap forming portion 26 is formed in a plate shape extending in the width direction DW. Furthermore, the gap forming portion 26 is separated from the first bus bar 21 and the second bus bar 22 in the thickness direction DT. Furthermore, the gap forming portion 26 includes a first end face 261, a second end face 262, a gap 265, a first core inner surface 271, a first core protrusion 281, a second core inner surface 272, and a second core protrusion 282.
- the first end face 261 faces the width direction DW.
- the second end face 262 faces the width direction DW and faces the first end face 261 in the width direction DW. Furthermore, when the first end face 261 is projected in the width direction DW, the second end face 262 overlaps with the projected first end face 261.
- the gap 265 is a space defined by the first end face 261 and the second end face 262. Furthermore, the gap 265 is connected to the core hole 29 and the outside of the core 25, which will be described later. Furthermore, the first end face 261, the second end face 262, and the gap 265 are located between the first opposing surface 211 and the second opposing surface 222 in the width direction DW.
- the first core inner surface 271 is a surface of the gap forming portion 26 that faces inward in the thickness direction DT and faces the first bus bar 21 in the thickness direction DT. Furthermore, when the first bus bar 21 is projected in the thickness direction DT, the first core inner surface 271 overlaps with the projected first bus bar 21.
- the surface that passes through the first opposing surface 211 and the gap forming portion 26 and is perpendicular to the width direction DW is defined as the first surface S1.
- the surface that passes through the second opposing surface 222 and the gap forming portion 26 and is perpendicular to the width direction DW is defined as the second surface S2.
- the first core protrusion 281 protrudes in the thickness direction DT from the range between the first surface S1 and the second surface S2 of the first core inner surface 271, in this case, the range between the first surface S1 and the first end surface 261. Furthermore, the first core protrusion 281 is formed, for example, in a rectangular prism shape. Note that the first core protrusion 281 is not limited to being formed in a rectangular prism shape, and may be formed, for example, in a polygonal prism shape, a cylindrical shape, an elliptical cylinder shape, a hemisphere shape, a semi-elliptical sphere shape, etc.
- the maximum length of the first core protrusion 281 in the width direction DW is defined as the first protrusion width Wp1.
- the distance from the first opposing surface 211 to the first end surface 261 in the width direction DW is defined as the first distance Wb1.
- the first protrusion width Wp1 is set to be less than or equal to the first distance Wb1, i.e., Wp1 ⁇ Wb1.
- the second core inner surface 272 is a surface of the gap forming portion 26 that faces inward in the thickness direction DT and faces the second bus bar 22 in the thickness direction DT. Furthermore, when the second bus bar 22 is projected in the thickness direction DT, the second core inner surface 272 overlaps with the projected second bus bar 22.
- the second core protrusion 282 protrudes in the thickness direction DT from the range between the first surface S1 and the second surface S2 of the second core inner surface 272, in this case, the range between the second surface S2 and the second end surface 262. Furthermore, the second core protrusion 282 is formed, for example, in a rectangular prism shape. Note that the second core protrusion 282 is not limited to being formed in a rectangular prism shape, and may be formed, for example, in a polygonal prism shape, a cylindrical shape, an elliptical cylinder shape, a hemisphere shape, a semi-elliptical sphere shape, etc.
- the maximum length of the second core protrusion 282 in the width direction DW is defined as the second protrusion width Wp2.
- the distance from the second opposing surface 222 to the second end surface 262 in the width direction DW is defined as the second distance Wb2.
- the second protrusion width Wp2 is set to be less than or equal to the second distance Wb2, i.e., Wp2 ⁇ Wb2.
- the core horizontal portion 27 is connected to the gap forming portion 26.
- the core horizontal portion 27 extends in the thickness direction DT from the boundary between the core horizontal portion 27 and the gap forming portion 26.
- the lateral inner corner C_in_top which is the inner corner at the boundary between the core horizontal portion 27 and the gap forming portion 26, is rounded.
- the core horizontal portion 27 is separated from the first bus bar 21 and the second bus bar 22 in the width direction DW.
- the core bottom 28 is connected to the core side 27. Furthermore, the core bottom 28 extends in the width direction DW, passing through the first surface S1 and the second surface S2. In addition, the bottom inner corner C_in_btm, which is the inner corner at the boundary between the core bottom 28 and the core side 27, is rounded. Furthermore, the magnetic permeability of the core bottom 28 is smaller than that of the core side 27, that is, the magnetic permeability of the core side 27 is larger than that of the core bottom 28. As a result, the linear region of the magnetic flux density of the core side 27 relative to the magnetic field strength is larger than the linear region of the magnetic flux density of the core bottom 28 relative to the magnetic field strength. For this reason, magnetic saturation of the core side 27 is easily suppressed. Note that the magnetic permeability refers to, for example, the maximum magnetic permeability, which is the maximum value of the change in magnetic flux density relative to the magnetic field strength.
- the core bottom 28 also includes a bottom inner surface 280.
- the bottom inner surface 280 faces inward in the thickness direction DT. Furthermore, the bottom inner surface 280 faces the first bus bar 21 and the second bus bar 22 in the thickness direction DT.
- the core hole 29 is a space formed by the gap forming portion 26, the core side portion 27, and the core bottom portion 28. In addition, a portion of the first bus bar 21 and the second bus bar 22 are inserted into the core hole 29.
- the minimum distance from the first end face 261 to the second end face 262 in the width direction DW is the gap distance Gap.
- the maximum distance from the inner surface of the gap forming portion 26 to the inner surface of the core bottom portion 28 in the thickness direction DT is the inner surface distance Tch.
- the maximum distance between the inner surfaces of the core lateral portions 27 that face each other in the width direction DW is the lateral portion distance Wsi.
- the distance between the inner faces, Tch is greater than the gap distance, Gap, i.e., Tch>Gap. Furthermore, the distance between the lateral portions, Wsi, is greater than the distance between the inner faces, Tch, i.e., Wsi>Tch. Therefore, Wsi>Tch>Gap.
- the detection unit 30 is disposed in the gap 265. Therefore, when the first end face 261 is projected in the width direction DW, the detection unit 30 overlaps with the projected first end face 261. Furthermore, when the second end face 262 is projected in the width direction DW, the detection unit 30 overlaps with the projected second end face 262. Furthermore, the detection unit 30 includes a detection element 31 and an IC (not shown), etc. Note that IC is an abbreviation for Integrated Circuit.
- the detection element 31 is a Hall element, a TMR element, a GMR element, an AMR element, or the like.
- the detection element 31 detects the strength of the magnetic field in the width direction DW, which is the strength of the magnetic field obtained by combining the magnetic field in the first direction Dm1 and the magnetic field in the second direction Dm2, as described later.
- the detection element 31 outputs a signal corresponding to the strength of the detected magnetic field to the outside, for example, a voltage corresponding to the strength of the detected magnetic field.
- TMR is an abbreviation for Tunnel Magneto Resistive.
- GMR is an abbreviation for Giant Magneto Resistive.
- AMR is an abbreviation for Anisotropic Magneto Resistive.
- the first direction Dm1 is the direction from the first end face 261 to the second end face 262.
- the second direction Dm2 is the direction from the second end face 262 to the first end face 261.
- the gap center plane So_Gap the plane that passes through the center of the first end face 261 in the thickness direction DT and is perpendicular to the thickness direction DT.
- the detection element 31 is disposed on the gap center plane So_Gap.
- the gap center plane So_Gap may be a plane that passes through the center of the second end face 262 in the thickness direction DT and is perpendicular to the thickness direction DT.
- the lead wires 35 are connected to the detection unit 30.
- the board 40 is a printed circuit board.
- the board 40 is also connected to the lead wires 35 by soldering or the like.
- the determination unit 45 is mainly composed of an IC and a microcomputer, and includes a CPU, ROM, flash memory, RAM, I/O, drive circuit, AD converter, low-pass filter, communication circuit, and a bus line connecting these components.
- the determination unit 45 is disposed on the board 40.
- the determination unit 45 acquires a signal from the detection element 31 via the lead wire 35 and the board 40 by executing a program stored in the ROM of the determination unit 45.
- the determination unit 45 calculates the leakage current M_leak that has occurred between the battery 12 and the charger 14 based on the acquired signal, and determines whether or not there is a leakage current abnormality.
- the determination unit 45 outputs a signal according to this determination result to an external device such as an alarm device (not shown) via a terminal (not shown).
- the case 50 is formed by injection molding using a thermoplastic resin such as polybutylene terephthalate.
- the case 50 is also formed with a collar (not shown). An external shaft or the like is inserted into this collar to connect the case 50 to the outside. This fixes the current sensor 20 to the outside.
- the case 50 has a core accommodating chamber 52, a substrate accommodating chamber 54, a first opening 61 and a second opening 62.
- the core 25 is housed in the core housing chamber 52.
- a resin such as urethane (not shown) is filled into the core housing chamber 52 between the inner surface of the case 50 and the surface of the core 25 by insert molding or the like. This seals the core housing chamber 52, protecting each part such as the core 25.
- the substrate housing chamber 54 houses the detection unit 30, the lead wires 35, the substrate 40, and the determination unit 45. In addition, since the detection unit 30 is disposed in the gap 265, the substrate housing chamber 54 is formed on the gap 265 side of the case 50.
- a portion of the first opening 61 is inserted into the core hole 29 on the first bus bar 21 side. Also, a portion of the first bus bar 21 is inserted into the space of the first opening 61. Furthermore, the first opening 61 includes a first opening surface 610 and a first opening protrusion 612.
- the first opening surface 610 faces the first bus bar 21 in the width direction DW and thickness direction DT.
- the first opening protrusion 612 protrudes from the first opening surface 610 towards the first bus bar 21. This brings the first opening protrusion 612 into contact with the first bus bar 21. This determines the positioning of the case 50 and the first bus bar 21. Furthermore, a space is formed between the first opening surface 610 and the first bus bar 21.
- a portion of the second opening 62 is inserted into the core hole 29 on the second bus bar 22 side. Also, a portion of the second bus bar 22 is inserted into the space of the second opening 62. Furthermore, the second opening 62 includes a second opening surface 620 and a second opening protrusion 622.
- the second opening surface 620 faces the second bus bar 22 in the width direction DW and thickness direction DT.
- the second opening protrusion 622 protrudes from the second opening surface 620 toward the second bus bar 22. This brings the second opening protrusion 622 into contact with the second bus bar 22. This determines the positioning of the case 50 and the second bus bar 22. Furthermore, a space is formed between the second opening surface 620 and the second bus bar 22.
- the current sensor 20 of the first embodiment is configured as described above. Next, we will explain how the current sensor 20 detects current and determines an abnormal leakage current.
- one end of the first bus bar 21 is connected to one end of the charger 14.
- the other end of the first bus bar 21 is connected to one end of the battery 12.
- One end of the second bus bar 22 is connected to the other end of the battery 12.
- the other end of the second bus bar 22 is connected to the other end of the charger 14. Therefore, when the battery 12 is charged by the charger 14, as shown in FIG. 1 and FIG. 3, a first current Ic1 flows from the charger 14 to the battery 12 via the first bus bar 21.
- a second current Ic2 flows from the battery 12 to the charger 14 via the second bus bar 22.
- the first current Ic1 flowing through the first bus bar 21 generates a circumferential magnetic field centered on an axis that passes through the first bus bar 21 and extends in the longitudinal direction DL.
- This generated magnetic field causes magnetic field lines to pass through the first bus bar 21 side of the gap forming portion 26.
- Some of the magnetic field lines that pass through this gap forming portion 26 pass through the first bus bar 21 side of the core bottom 28 via the first core protrusion 281 and the core hole 29.
- some of the magnetic field lines that pass through this gap forming portion 26 pass from the first end face 261 through the gap 265 and the detection element 31 to the second end face 262.
- the second current Ic2 flowing through the second bus bar 22 generates a circumferential magnetic field centered on an axis that passes through the second bus bar 22 and extends in the longitudinal direction DL.
- This generated magnetic field causes magnetic field lines to pass through the second bus bar 22 side of the gap forming portion 26.
- Some of the magnetic field lines that pass through this gap forming portion 26 pass through the second core protrusion 282 and the core hole 29 to the second bus bar 22 side of the core bottom 28.
- Some of the magnetic field lines that pass through this gap forming portion 26 pass from the second end face 262 through the gap 265 and the detection element 31 to the first end face 261.
- the detection element 31 detects the strength of the combined magnetic field of the first direction Dm1 and the second direction Dm2. As a result, the detection element 31 detects the first current Ic1 and the second current Ic2. The detection element 31 also outputs a signal corresponding to the strength of the detected magnetic field to the determination unit 45 via the lead wire 35 and the substrate 40.
- the battery 12, charger 14, and current sensor 20 are connected in series, and therefore the first current Ic1 and the second current Ic2 are the same. Therefore, the strength of the magnetic field in the first direction Dm1 and the strength of the magnetic field in the second direction Dm2 applied to the detection element 31 are the same. Furthermore, the first direction Dm1 is opposite to the second direction Dm2. Therefore, in this case, the strength of the combined magnetic field of the magnetic field in the first direction Dm1 and the magnetic field in the second direction Dm2 applied to the detection element 31 is zero.
- the first current Ic1 and the second current Ic2 are different. Therefore, the strength of the magnetic field in the first direction Dm1 and the strength of the magnetic field in the second direction Dm2 applied to the detection element 31 are different. Therefore, the absolute value of the strength of the magnetic field obtained by combining the magnetic fields in the first direction Dm1 and the second direction Dm2 applied to the detection element 31 becomes greater than zero.
- the determination unit 45 therefore calculates the leakage current amount M_leak based on the signal from the detection element 31, and compares this calculated leakage current amount M_leak with the threshold value M_leak_th. In this way, the determination unit 45 determines whether or not there is a leakage current abnormality between the battery 12 and the charger 14.
- the threshold value M_leak_th is set by experiment, simulation, etc. so that a leakage current abnormality can be determined.
- the determination unit 45 calculates the leakage current amount M_leak from the signal of the detection element 31 and the map.
- the map for calculating the leakage current amount M_leak is set by experiments, simulations, etc. For example, with this map, the calculated leakage current amount M_leak increases as the absolute value increases.
- the determination unit 45 determines that there is no leakage current abnormality, i.e., the current flow between the battery 12 and the charger 14 is normal. Furthermore, when the calculated leakage current amount M_leak is equal to or greater than the threshold value M_leak_th, the determination unit 45 determines that there is a leakage current abnormality between the battery 12 and the charger 14. Furthermore, the determination unit 45 outputs a signal according to this determination result to an external device such as an alarm device (not shown) via a terminal (not shown) or the like.
- the current sensor 20 detects current and determines leakage current anomalies. Next, we will explain how the current sensor 20 prevents a decrease in current detection accuracy.
- the first core protrusion 281 and the second core protrusion 282 are not formed.
- the gap 265 there are places where the directions of the magnetic fields generated by the first current Ic1 and the second current Ic2 are opposite to each other, and therefore there are places where the two magnetic fields cancel each other out.
- the direction of the magnetic field generated by the current flowing through the first bus bar 21 and the second bus bar 22 is from the gap 265 toward the core bottom 28, and therefore there are places where the two magnetic fields do not cancel each other out easily.
- the magnetic field density around the ends of the first end face 261 and the second end face 262 on the core hole 29 side is relatively large.
- the gap forming portion 26 includes a first core inner surface 271, a first core protrusion 281, a second core inner surface 272, and a second core protrusion 282.
- the first core inner surface 271 and the second core inner surface 272 are surfaces facing inward in the thickness direction DT.
- the first core protrusion 281 protrudes in the thickness direction DT from the range of the first core inner surface 271 between the first surface S1 and the second surface S2.
- the second core protrusion 282 protrudes in the thickness direction DT from the range of the second core inner surface 272, the first surface S1, and the second surface S2.
- the magnetic field lines that pass through the second bus bar 22 side of the gap forming portion 26 pass through the second core protrusion 282.
- the magnetic field lines that pass through the second core protrusion 282 pass through the core hole 29 and the second bus bar 22 side of the core bottom 28. For this reason, the area around the second core protrusion 282 is where the magnetic fields generated by the first current Ic1 and the second current Ic2 are unlikely to cancel each other out.
- the first core protrusion 281 protrudes in the thickness direction DT from the first core inner surface 271
- the second core protrusion 282 protrudes in the thickness direction DT from the second core inner surface 272. Therefore, the detection element 31 is more likely to move away from a location where the magnetic fields generated by the first current Ic1 and the second current Ic2 are less likely to cancel each other out, compared to a case in which the first core protrusion 281 and the second core protrusion 282 are not formed.
- the change in the signal value of the detection element 31 caused by the position of the detection element 31 in the width direction DW being shifted from the reference position is smaller than when the first core protrusion 281 and the second core protrusion 282 are not formed. This suppresses the deterioration of the detection accuracy of the magnetic field strength by the detection element 31, and suppresses the deterioration of the current detection accuracy.
- ⁇ X is the amount of deviation of the detection element 31 from the reference position in the width direction DW.
- the amount of deviation in the first direction Dm1 is the amount of deviation in the positive direction of ⁇ X.
- the reference position of the detection element 31 is, for example, the center of the gap 265.
- S is the signal value of the detection element 31.
- Sb is the signal value of the detection element 31 at the reference position.
- ⁇ S is the ratio of the change in the signal value caused by the deviation from the reference position to the signal value of the detection element 31 at the reference position, and is expressed as (S-Sb)/Sb.
- REF and a dashed line show ⁇ S versus ⁇ X when the first core projection 281 and the second core projection 282 are not formed.
- a solid line shows ⁇ S versus ⁇ X when the first core projection 281 and the second core projection 282 are formed.
- the current sensor 20 also provides the following advantages:
- the first core protrusion 281 is separated from the core bottom 28 in the thickness direction DT.
- the second core protrusion 282 is separated from the core bottom 28 in the thickness direction DT.
- the magnetic resistance between the first core protrusion 281 and the core bottom 28 is larger than when the first core protrusion 281 and the core bottom 28 are in contact. Therefore, the magnetic field lines that pass through the first bus bar 21 side of the gap forming portion 26 not only pass through the first core protrusion 281, but also easily pass from the first end face 261 to the second end face 262 via the gap 265 and the detection element 31. Also, compared to when the second core protrusion 282 and the core bottom 28 are in contact, the magnetic resistance between the second core protrusion 282 and the core bottom 28 is larger.
- the magnetic field lines that pass through the second bus bar 22 side of the gap forming portion 26 not only pass through the second core protrusion 282, but also easily pass from the second end face 262 to the first end face 261 via the gap 265 and the detection element 31. Therefore, the number of magnetic field lines that pass through the detection element 31 increases, and the sensitivity of the detection element 31 increases. This increases the SNR. This prevents a decrease in the accuracy of the detection of the magnetic field strength by the detection element 31, and therefore prevents a decrease in the accuracy of the current detection. Note that SNR is an abbreviation for Signal Noise Ratio.
- the first protrusion width Wp1 is equal to or less than the first distance Wb1, i.e., Wp1 ⁇ Wb1.
- the second protrusion width Wp2 is equal to or less than the second distance Wb2, i.e., Wp2 ⁇ Wb2.
- the magnetic resistance of the first core protrusion 281 is larger than when Wp1>Wb1. Therefore, the magnetic field lines that pass through the first bus bar 21 side of the gap forming portion 26 not only pass through the first core protrusion 281, but also easily pass from the first end face 261 to the second end face 262 via the gap 265 and the detection element 31.
- the magnetic resistance of the second core protrusion 282 is larger than when Wp2>Wb2. Therefore, the magnetic field lines that pass through the second bus bar 22 side of the gap forming portion 26 not only pass through the second core protrusion 282, but also easily pass from the second end face 262 to the first end face 261 via the gap 265 and the detection element 31.
- the number of magnetic field lines that pass through the detection element 31 increases, and the sensitivity of the detection element 31 increases. Therefore, the SNR increases. Therefore, the deterioration of the detection accuracy of the magnetic field strength by the detection element 31 is suppressed, and the deterioration of the current detection accuracy is suppressed.
- the detection element 31 is disposed on the gap center plane So_Gap. This makes it easier for the detection element 31 to separate from the first core protrusion 281 and the second core protrusion 282 compared to when the detection element 31 is disposed closer to the core hole 29 than the gap center plane So_Gap. For this reason, the detection element 31 is more likely to separate from a location where the magnetic fields generated by the first current Ic1 and the second current Ic2 are less likely to cancel each other out. This prevents a decrease in the accuracy of the detection of the magnetic field strength by the detection element 31, and therefore prevents a decrease in current detection accuracy.
- the determination unit 45 determines whether or not there is an abnormality between the battery 12 and the charger 14 based on the signal output from the detection element 31. As a result, an abnormality is detected between the battery 12 and the charger 14.
- the inner surface distance Tch is greater than the gap distance Gap, i.e., Tch>Gap.
- the magnetic resistance of the core hole 29 is greater than when the inner surface distance Tch is equal to or less than the gap distance Gap. Therefore, the magnetic field lines that pass through the first bus bar 21 side of the gap forming portion 26 not only pass through the core hole 29, but also tend to pass from the first end face 261 to the second end face 262 via the gap 265 and the detection element 31. Also, the magnetic field lines that pass through the second bus bar 22 side of the gap forming portion 26 not only pass through the core hole 29, but also tend to pass from the second end face 262 to the first end face 261 via the gap 265 and the detection element 31.
- the number of magnetic field lines passing through the detection element 31 increases, and the sensitivity of the detection element 31 increases, resulting in a higher SNR.
- the change in the signal value of the detection element 31 caused by the position of the detection element 31 in the width direction DW shifting from the reference position is smaller than when the inner surface distance Tch is equal to or less than the gap distance Gap. Therefore, the detection accuracy of the magnetic field strength by the detection element 31 is suppressed from decreasing, and the current detection accuracy is suppressed from decreasing.
- ⁇ X, S, Sb, and ⁇ S are the same as above.
- the inner surface distance Tch is equal to or less than the gap distance Gap, that is, when Tch ⁇ Gap, ⁇ S with respect to ⁇ X is shown by REF and a dashed line. Furthermore, when the inner surface distance Tch is greater than the gap distance Gap, that is, when Tch>Gap, ⁇ S with respect to ⁇ X is shown by a solid line.
- the distance between the lateral portions Wsi is greater than the distance between the inner surfaces Tch, i.e., Wsi>Tch.
- the width direction DW component of the magnetic field in the gap forming portion 26 becomes larger compared to when the horizontal portion distance Wsi is equal to or smaller than the inner surface distance Tch. Therefore, the magnetic field lines that pass through the first bus bar 21 side of the gap forming portion 26 tend to pass from the first end face 261 to the second end face 262 via the gap 265 and the detection element 31. Also, the magnetic field lines that pass through the second bus bar 22 side of the gap forming portion 26 tend to pass from the second end face 262 to the first end face 261 via the gap 265 and the detection element 31. Therefore, the number of magnetic field lines passing through the detection element 31 increases, and the sensitivity of the detection element 31 increases. Therefore, the SNR increases. Therefore, the deterioration of the detection accuracy of the magnetic field strength by the detection element 31 is suppressed, and the deterioration of the current detection accuracy is suppressed.
- the lateral inner corner C_in_top is rounded.
- the bottom inner corner C_in_btm is rounded.
- the magnetic path length inside the core 25 is shortened, and the strength of the demagnetizing field inside the core 25 is increased. This suppresses the magnetic flux density of the core 25. This suppresses magnetic saturation of the core 25.
- the case 50 has a first opening 61 and a second opening 62.
- the first opening 61 includes a first opening surface 610 and a first opening protrusion 612.
- the first opening protrusion 612 is in contact with the first bus bar 21, thereby positioning the case 50 and the first bus bar 21, and a space is formed between the first opening surface 610 and the first bus bar 21.
- the second opening 62 includes a second opening surface 620 and a second opening protrusion 622.
- the second opening protrusion 622 is in contact with the second bus bar 22, thereby positioning the case 50 and the second bus bar 22, and a space is formed between the second opening surface 620 and the second bus bar 22.
- the second embodiment is different from the first embodiment in the arrangement of the detection elements 31.
- the rest is similar to the first embodiment.
- the detection element 31 is positioned on the opposite side of the gap center plane So_Gap from the core hole 29.
- the current sensor 20 of the second embodiment is configured as described above. This second embodiment also provides the same effects as the first embodiment.
- the third embodiment differs from the first embodiment in the arrangement of the detection elements 31. The rest is similar to the first embodiment.
- the first core protrusion 281 includes a first protrusion surface 2810.
- the first protrusion surface 2810 faces the width direction DW.
- the first protrusion surface 2810 is a surface perpendicular to the width direction DW and corresponds to a surface that intersects with the width direction DW.
- the first protrusion surface 2810 is located on the same plane as the first end surface 261. Note that the first protrusion surface 2810 is not limited to being located on the same plane as the first end surface 261, and does not have to be located on the same plane as the first end surface 261.
- the second core projection 282 also includes a second projection surface 2820.
- the second projection surface 2820 faces the width direction DW. Furthermore, the second projection surface 2820 is a surface perpendicular to the width direction DW and corresponds to a surface intersecting the width direction DW.
- the second projection surface 2820 also faces the first end surface 261 and the first projection surface 2810 in the width direction DW. Furthermore, here, the second projection surface 2820 is located on the same plane as the second end surface 262. Note that the second projection surface 2820 is not limited to being located on the same plane as the second end surface 262, and does not have to be located on the same plane as the second end surface 262.
- the plane that passes through the center in the thickness direction DT of the surface where the first protrusion surface 2810 and the first end surface 261 are joined and is perpendicular to the thickness direction DT is defined as the central plane Sop.
- the detection element 31 is disposed on the central plane Sop.
- the central plane Sop may be a plane that passes through the center in the thickness direction DT of the surface where the second protrusion surface 2820 and the second end surface 262 are joined and is perpendicular to the thickness direction DT.
- the current sensor 20 of the third embodiment is configured as described above.
- the third embodiment also provides the same effects as the first embodiment.
- the fourth embodiment differs from the third embodiment in the arrangement of the detection elements 31.
- the rest is similar to the third embodiment.
- the detection element 31 is positioned on the opposite side of the center plane Sop from the core hole 29.
- the current sensor 20 of the fourth embodiment is configured as described above. This fourth embodiment also provides the same effects as the third embodiment.
- the fifth embodiment is different from the first embodiment in the shape of the core 25.
- the rest is similar to the first embodiment.
- the gap forming portion 26 does not include a first core protrusion 281 and a second core protrusion 282. Furthermore, the core bottom 28 includes a recess 605 in addition to the bottom inner surface 280.
- the plane that passes through the center of the first bus bar 21 in the width direction DW and is perpendicular to the width direction DW is defined as the first center plane Sob1. Furthermore, the plane that passes through the center of the second bus bar 22 in the width direction DW and is perpendicular to the width direction DW is defined as the second center plane Sob2.
- the recess 605 is recessed in the thickness direction DT from the range of the bottom inner surface 280 between the first center plane Sob1 and the second center plane Sob2.
- the maximum length of the recess 605 in the width direction DW is the recess width Wcr. Furthermore, the distance from the first center plane Sob1 to the second center plane Sob2 in the width direction DW is the center-to-center distance Wob. Furthermore, the maximum distance from the inner surface of the gap forming portion 26 to the bottom surface 606 of the recess 605 in the thickness direction DT is the recess distance Tcb.
- the recess width Wcr is equal to or less than the center-to-center distance Wob, i.e., Wcr ⁇ Wob. Furthermore, the recess distance Tcb is greater than the gap distance Gap, i.e., Tcb>Gap.
- the current sensor 20 of the fifth embodiment is configured as described above.
- the fifth embodiment also provides the same effects as the first embodiment.
- the fifth embodiment also provides the effects described below.
- the core bottom 28 includes a bottom inner surface 280 and a recess 605.
- the bottom inner surface 280 faces the thickness direction DT.
- the recess 605 is recessed in the thickness direction DT from the range of the bottom inner surface 280 between the first center plane Sob1 and the second center plane Sob2.
- the recess width Wcr is equal to or smaller than the center distance Wob.
- the recess distance Tcb is greater than the gap distance Gap.
- the magnetic resistance of the core hole 29 is larger than when the recess 605 is not formed. Therefore, the magnetic field lines that pass through the first bus bar 21 side of the gap forming portion 26 not only pass through the core hole 29, but also easily pass from the first end face 261 to the second end face 262 via the gap 265 and the detection element 31. Also, the magnetic field lines that pass through the second bus bar 22 side of the gap forming portion 26 not only pass through the core hole 29, but also easily pass from the second end face 262 to the first end face 261 via the gap 265 and the detection element 31. Therefore, the number of magnetic field lines passing through the detection element 31 increases, and the sensitivity of the detection element 31 increases. Therefore, the SNR increases. Therefore, the deterioration of the detection accuracy of the magnetic field strength by the detection element 31 is suppressed, and the deterioration of the current detection accuracy is suppressed.
- the sixth embodiment is different from the fifth embodiment in the shape of the recess 605.
- the rest is the same as the fifth embodiment.
- the recess 605 is recessed in the thickness direction DT from the area between the first surface S1 and the second surface S2 of the bottom inner surface 280.
- the maximum distance from the first opposing surface 211 to the second opposing surface 222 in the width direction DW is the busbar distance Wbb.
- the recess width Wcr is set to be less than or equal to the busbar distance Wbb, i.e., Wcr ⁇ Wbb.
- the current sensor 20 of the sixth embodiment is configured as described above.
- the sixth embodiment also achieves the same effects as the fifth embodiment.
- the seventh embodiment is different from the fifth embodiment in the shape of the recess 605.
- the rest is similar to the fifth embodiment.
- a plane that passes through the first end face 261 and the core bottom 28 and is perpendicular to the width direction DW is defined as a first passing plane Si1.
- a plane that passes through the second end face 262 and the core bottom 28 and is perpendicular to the width direction DW is defined as a second passing plane Si2.
- the recess 605 is recessed in the thickness direction DT from the range between the first passing surface Si1 and the second passing surface Si2 on the bottom inner surface 280. Furthermore, the recess width Wcr is set to be equal to or smaller than the gap distance Gap, i.e., Wcr ⁇ Gap.
- the current sensor 20 of the seventh embodiment is configured as described above.
- the seventh embodiment also provides the same effects as the fifth embodiment.
- the eighth embodiment differs from the first embodiment in the shapes of a first core projection 281 and a second core projection 282. The rest is similar to the first embodiment.
- the first core protrusion 281 protrudes in the thickness direction DT from the first core outer surface 291 instead of protruding from the first core inner surface 271.
- the first core protrusion 281 protrudes in the thickness direction DT from the range of the first core outer surface 291 between the first surface S1 and the second surface S2, here, the range between the first surface S1 and the first end surface 261.
- the first core outer surface 291 is the outer surface of the gap forming portion 26 on the first bus bar 21 side, and is the surface of the gap forming portion 26 facing outward in the thickness direction DT.
- the second core protrusion 282 protrudes in the thickness direction DT from the second core outer surface 292.
- the second core protrusion 282 protrudes in the thickness direction DT from the range of the second core outer surface 292 between the first surface S1 and the second surface S2, here, the range between the second surface S2 and the second end surface 262.
- the second core outer surface 292 is the outer surface of the gap forming portion 26 on the second bus bar 22 side, and is the surface of the gap forming portion 26 facing outward in the thickness direction DT.
- the current sensor 20 of the eighth embodiment is configured as described above.
- the eighth embodiment also provides the same effects as the first embodiment.
- the eighth embodiment also provides the effects described below.
- the gap forming portion 26 includes a first core outer surface 291, a first core protrusion 281, a second core outer surface 292, and a second core protrusion 282.
- the first core outer surface 291 and the second core outer surface 292 are surfaces facing outward in the thickness direction DT.
- the first core protrusion 281 protrudes in the thickness direction DT from the range of the first core outer surface 291 between the first surface S1 and the second surface S2.
- the second core protrusion 282 protrudes in the thickness direction DT from the range of the second core outer surface 292 between the first surface S1 and the second surface S2.
- the magnetic field lines that pass through the first bus bar 21 side of the gap forming portion 26 pass through the first core projection 281.
- the magnetic field lines that pass through the first core projection 281 pass through the second end face 262 via the gap 265.
- the magnetic field lines that pass through the first core projection 281 pass through the detection element 31. Therefore, in addition to the magnetic field lines from the first end face 261, the magnetic field lines from the first core projection 281 pass through the detection element 31.
- some of the magnetic field lines that pass through the second bus bar 22 side of the gap forming portion 26 pass through the second core projection 282.
- the magnetic field lines that pass through the second core projection 282 pass through the first end face 261 via the gap 265.
- the magnetic field lines that pass through the second core projection 282 pass through the detection element 31. Therefore, in addition to the magnetic field lines from the second end face 262, the magnetic field lines from the second core projection 282 pass through the detection element 31. Therefore, the number of magnetic field lines passing through the detection element 31 increases, and the sensitivity of the detection element 31 increases. This increases the SNR.
- the change in the signal value of the detection element 31 caused by the position of the detection element 31 in the width direction DW shifting from the reference position is smaller than when the first core projection 281 and the second core projection 282 are not formed. This prevents the detection accuracy of the magnetic field strength by the detection element 31 from decreasing, thereby preventing the decrease in current detection accuracy.
- ⁇ X, S, Sb, and ⁇ S are the same as above.
- ⁇ S relative to ⁇ X when the first core projection 281 and the second core projection 282 are not formed is shown by REF and a dashed line.
- ⁇ S relative to ⁇ X when the first core projection 281 and the second core projection 282 are formed is shown by a solid line.
- Ninth embodiment differs from the eighth embodiment in the arrangement of the detection elements 31. The rest is similar to the eighth embodiment.
- the detection element 31 is positioned on the opposite side of the gap center plane So_Gap from the core hole 29.
- the current sensor 20 of the ninth embodiment is configured as described above. This ninth embodiment also provides the same effects as the eighth embodiment.
- Tenth embodiment The tenth embodiment differs from the eighth embodiment in the arrangement of the detection elements 31. The rest is the same as the eighth embodiment.
- the detection element 31 is disposed on the central plane Sop.
- the central plane Sop is a plane that passes through the center in the thickness direction DT of the surface where the first protrusion surface 2810 and the first end surface 261 are joined, and is perpendicular to the thickness direction DT.
- the first protrusion surface 2810 is the surface of the first core protrusion 281 that faces the width direction DW.
- the current sensor 20 of the tenth embodiment is configured as described above.
- the tenth embodiment also provides the same effects as the eighth embodiment.
- the eleventh embodiment differs from the tenth embodiment in the arrangement of the detection elements 31.
- the rest is similar to the tenth embodiment.
- the detection element 31 is positioned on the opposite side of the center plane Sop from the core hole 29.
- the current sensor 20 of the eleventh embodiment is configured as described above.
- the eleventh embodiment also achieves the same effects as the tenth embodiment.
- the shape of the core 25 is different from that of the first embodiment.
- the shape of the detection unit 30 is different from that of the first embodiment.
- the current sensor 20 includes a first lead wire 351 and a second lead wire 352 instead of the lead wire 35.
- the arrangement of the substrate 40 and the shape of the substrate accommodating chamber 54 are different from those of the first embodiment.
- the current detection and leakage anomaly determination by the current sensor 20 are different from those of the first embodiment.
- the present embodiment is similar to the first embodiment.
- the core bottom 28 includes, in addition to the bottom inner surface 280, a first bottom protrusion 601, a second bottom protrusion 602, and a recess 605.
- the first bottom protrusion 601 protrudes in the thickness direction DT from the range of the bottom inner surface 280 between the first surface S1 and the first passing surface Si1. Furthermore, when the first core protrusion 281 is projected in the thickness direction DT, the first bottom protrusion 601 overlaps with the projected first core protrusion 281.
- the maximum length of the first bottom protrusion 601 in the width direction DW is defined as the first width Wx1.
- the first width Wx1 is equal to or less than the first distance Wb1, i.e., Wx1 ⁇ Wb1.
- the first width Wx1 is the same as the first protrusion width Wp1. Note that “same” here includes the manufacturing error range.
- the first width Wx1 is not limited to being the same as the first protrusion width Wp1, and may be different from the first protrusion width Wp1.
- the second bottom protrusion 602 protrudes in the thickness direction DT from the range of the bottom inner surface 280 between the second surface S2 and the second passing surface Si2. Furthermore, when the second core protrusion 282 is projected in the thickness direction DT, the second bottom protrusion 602 overlaps with the projected second core protrusion 282.
- the maximum length of the second bottom protrusion 602 in the width direction DW is defined as the second width Wx2.
- the second width Wx2 is equal to or less than the second distance Wb2, i.e., Wx2 ⁇ Wb2.
- the second width Wx2 is equal to the second protrusion width Wp2. Note that the second width Wx2 is not limited to being equal to the second protrusion width Wp2, and may be different from the second protrusion width Wp2.
- the recess 605 is recessed in the thickness direction DT from the area of the bottom inner surface 280 between the first bottom protrusion 601 and the second bottom protrusion 602.
- the minimum distance from the first bottom protrusion 601 to the second bottom protrusion 602 in the width direction DW is the inter-protrusion distance Wpb.
- the recess width Wcr is set to be less than or equal to the inter-protrusion distance Wpb, i.e., Wcr ⁇ Wpb.
- the detection unit 30 is disposed in the core hole 29. Furthermore, the detection unit 30 includes a first detection element 311 and a second detection element 312 instead of the detection element 31.
- the first detection element 311 and the second detection element 312 are, like the detection element 31, a Hall element, a TMR element, a GMR element, an AMR element, or the like.
- the first detection element 311 is disposed between the first core protrusion 281 and the first bottom protrusion 601.
- the first detection element 311 detects the strength of the magnetic field in the thickness direction DT, which is the strength of the magnetic field in the direction from the first core protrusion 281 to the first bottom protrusion 601, as described below.
- the first detection element 311 outputs to the outside a signal corresponding to the strength of the detected magnetic field, for example, a voltage corresponding to the strength of the detected magnetic field.
- the second detection element 312 is disposed between the second core protrusion 282 and the second bottom protrusion 602. Furthermore, the second detection element 312 detects the strength of the magnetic field in the thickness direction DT, in this case, the strength of the magnetic field in the direction from the second core protrusion 282 to the second bottom protrusion 602, as described below. The second detection element 312 also outputs to the outside a signal corresponding to the strength of the detected magnetic field, for example, a voltage corresponding to the strength of the detected magnetic field.
- the first lead wire 351 is connected to the first detection element 311.
- the second lead wire 352 is connected to the second detection element 312. Furthermore, the first lead wire 351 and the second lead wire 352 are connected to the substrate 40 by soldering or the like.
- the determination unit 45 acquires a signal from the first detection element 311 via the first lead wire 351 and the board 40 by executing a program stored in the ROM of the determination unit 45. The determination unit 45 also acquires a signal from the second detection element 312 via the second lead wire 352 and the board 40. Based on these acquired signals, the determination unit 45 further calculates the amount of leakage current M_leak that has occurred between the battery 12 and the charger 14, and determines whether or not there is a leakage current abnormality. The determination unit 45 also outputs a signal according to this determination result to an external device, such as an alarm device (not shown), via a terminal (not shown) or the like.
- an external device such as an alarm device (not shown), via a terminal (not shown) or the like.
- the substrate accommodating chamber 54 accommodates the detection unit 30, the first lead wire 351, the second lead wire 352, and the substrate 40. Since the detection unit 30 is disposed near the center of the core hole 29, the substrate accommodating chamber 54 is formed on the longitudinal direction DL side of the case 50.
- the current sensor 20 of the twelfth embodiment is configured as described above. Next, we will explain how the current sensor 20 detects current and determines an abnormality in the leakage current.
- the first current Ic1 flowing through the first bus bar 21 When the battery 12 is charged by the charger 14, as shown in FIG. 20, the first current Ic1 flowing through the first bus bar 21 generates a circumferential magnetic field centered on an axis that passes through the first bus bar 21 and extends in the longitudinal direction DL. This generated magnetic field causes magnetic field lines to pass through the first bus bar 21 side of the gap forming portion 26. A portion of the magnetic field lines that pass through the gap forming portion 26 passes through the first core protrusion 281, the core hole 29, the first detection element 311, and the first bottom protrusion 601, and passes through the first bus bar 21 side of the core bottom 28.
- the magnetic field lines from the first core protrusion 281 toward the first bottom protrusion 601 pass through the first detection element 311, so that the first detection element 311 detects the strength of the magnetic field in the thickness direction DT of the magnetic field generated by the first current Ic1. As a result, the first detection element 311 detects the first current Ic1. The first detection element 311 also outputs a signal corresponding to the strength of the detected magnetic field to the determination unit 45 via the first lead wire 351 and the substrate 40.
- the second current Ic2 flowing through the second bus bar 22 generates a circumferential magnetic field centered on an axis that passes through the second bus bar 22 and extends in the longitudinal direction DL.
- This generated magnetic field causes magnetic field lines to pass through the second bus bar 22 side of the gap forming portion 26.
- a portion of the magnetic field lines that have passed through the gap forming portion 26 passes through the second bus bar 22 side of the core bottom 28 via the second core protrusion 282, the core hole 29, the second detection element 312, and the second bottom protrusion 602.
- the second detection element 312 detects the strength of the magnetic field in the thickness direction DT of the magnetic field generated by the second current Ic2. As a result, the second detection element 312 detects the second current Ic2. The second detection element 312 also outputs a signal corresponding to the strength of the detected magnetic field to the determination unit 45 via the second lead wire 352 and the substrate 40.
- the battery 12, charger 14, and current sensor 20 are connected in series, and therefore the first current Ic1 and the second current Ic2 are the same. Therefore, the strength of the magnetic field in the thickness direction DT applied to the first detection element 311 and the strength of the magnetic field in the thickness direction DT applied to the second detection element 312 are the same. Also, the direction from the first core protrusion 281 to the first bottom protrusion 601 is the same as the direction from the second core protrusion 282 to the second bottom protrusion 602. Therefore, in this case, the value obtained by subtracting the signal value of the second detection element 312 from the signal value of the first detection element 311 is zero.
- the absolute value of the value obtained by subtracting the signal value of the second detection element 312 from the signal value of the first detection element 311 will be greater than zero.
- the determination unit 45 calculates a value obtained by subtracting the value related to the signal of the second detection element 312 from the value related to the signal of the first detection element 311.
- the determination unit 45 also calculates the leakage current amount M_leak based on this subtracted value, and compares this calculated leakage current amount M_leak with the threshold value M_leak_th. In this way, the determination unit 45 determines whether or not there is a leakage current abnormality between the battery 12 and the charger 14.
- the determination unit 45 calculates the leakage current amount M_leak from the absolute value of this subtraction value and a map.
- the map for calculating the leakage current amount M_leak is set by experiments, simulations, etc. For example, with this map, the calculated leakage current amount M_leak increases as the absolute value of the subtraction value increases.
- the determination unit 45 determines that there is no leakage current abnormality, i.e., the current flow between the battery 12 and the charger 14 is normal. Furthermore, when the calculated leakage current amount M_leak is equal to or greater than the threshold value M_leak_th, the determination unit 45 determines that there is a leakage current abnormality between the battery 12 and the charger 14. Furthermore, the determination unit 45 outputs a signal according to this determination result to an external device such as an alarm device (not shown) via a terminal (not shown) or the like.
- the current sensor 20 of the twelfth embodiment detects current and determines leakage current anomalies.
- the twelfth embodiment also provides the same effects as the first embodiment.
- the twelfth embodiment also provides the effects described below.
- the first detection element 311 detects the strength of the magnetic field generated by the current flowing through the first bus bar 21, and the magnetic field generated by the current flowing through the first bus bar 21 is affected by the magnetic field generated by the current flowing through the second bus bar 22. Therefore, the signal output from the first detection element 311 includes magnetic field noise generated by the current flowing through the second bus bar 22.
- the second detection element 312 detects the strength of the magnetic field generated by the current flowing through the second bus bar 22, and the magnetic field generated by the current flowing through the second bus bar 22 is affected by the magnetic field generated by the current flowing through the first bus bar 21. Therefore, the signal output from the second detection element 312 includes magnetic field noise generated by the current flowing through the first bus bar 21. Therefore, due to these magnetic field noises, the detection accuracy of the magnetic field strength by the first detection element 311 and the second detection element 312 decreases, and the current detection accuracy decreases.
- the determination unit 45 subtracts the value related to the signal of the second detection element 312 from the value related to the signal of the first detection element 311.
- the determination unit 45 serves as a calculation unit that calculates a value related to the current flowing through the first bus bar 21 and the second bus bar 22, in this case, a value related to the leakage current amount M_leak.
- the magnetic field noise generated by the current flowing through the first bus bar 21 and the magnetic field noise generated by the current flowing through the second bus bar 22 cancel each other out. Therefore, the noise contained in the values related to the current flowing through the first bus bar 21 and the second bus bar 22 is reduced, and the SNR is increased. Therefore, the deterioration of the current detection accuracy is suppressed.
- the determination unit 45 determines that there is an abnormality between the battery 12 and the charger 14 based on the value obtained by subtracting the value related to the signal of the second detection element 312 from the value related to the signal of the first detection element 311. As a result, an abnormality is detected between the battery 12 and the charger 14.
- the gap forming portion 26 includes a first core inner surface 271, a first core protrusion 281, a second core inner surface 272, and a second core protrusion 282.
- the first detection element 311 is disposed between the first core protrusion 281 and the core bottom 28.
- the second detection element 312 is disposed between the second core protrusion 282 and the core bottom 28.
- the magnetic field lines that pass through the first bus bar 21 side of the gap forming portion 26 pass through the first core protrusion 281.
- the magnetic resistance between the first core protrusion 281 and the core bottom 28 is smaller than when the first core protrusion 281 is not formed. Therefore, the magnetic field lines that pass through the first core protrusion 281 are more likely to pass through the core bottom 28 via the core hole 29 and the first detection element 311. Therefore, the number of magnetic field lines that pass through the first detection element 311 is increased, and the sensitivity of the first detection element 311 is increased.
- some of the magnetic field lines that pass through the second bus bar 22 side of the gap forming portion 26 pass through the second core protrusion 282.
- the magnetic resistance between the second core protrusion 282 and the core bottom 28 is smaller than when the second core protrusion 282 is not formed. Therefore, the magnetic field lines that pass through the second core protrusion 282 are more likely to pass through the core bottom 28 via the core hole 29 and the second detection element 312. Therefore, the number of magnetic field lines passing through the second detection element 312 increases, and the sensitivity of the second detection element 312 increases. As a result, the SNR of the value subtracted by the determination unit 45 increases. Therefore, the deterioration of the current detection accuracy is suppressed.
- the core bottom 28 includes a bottom inner surface 280, a first bottom protrusion 601, and a second bottom protrusion 602.
- the first detection element 311 is disposed between the first core protrusion 281 and the first bottom protrusion 601.
- the second detection element 312 is disposed between the second core protrusion 282 and the second bottom protrusion 602.
- the magnetic resistance between the first core projection 281 and the core bottom 28 is smaller than when the first bottom projection 601 is not formed. Therefore, the magnetic field lines that pass through the first core projection 281 are more likely to pass through the first bottom projection 601 via the core hole 29 and the first detection element 311. Therefore, the number of magnetic field lines that pass through the first detection element 311 is increased, and the sensitivity of the first detection element 311 is increased.
- the magnetic resistance between the second core projection 282 and the core bottom 28 is smaller than when the second bottom projection 602 is not formed. Therefore, the magnetic field lines that pass through the second core projection 282 are more likely to pass through the second bottom projection 602 via the core hole 29 and the second detection element 312.
- the number of magnetic field lines that pass through the second detection element 312 is increased, and the sensitivity of the second detection element 312 is increased. For these reasons, the SNR of the value subtracted by the determination unit 45 is increased. Therefore, the deterioration of the current detection accuracy is suppressed.
- the core bottom 28 includes a recess 605.
- the recess 605 is recessed in the thickness direction DT from the area of the bottom inner surface 280 between the first bottom protrusion 601 and the second bottom protrusion 602.
- the magnetic resistance between the first bottom protrusion 601 and the second bottom protrusion 602 is larger than when the recess 605 is not formed. Therefore, the magnetic field lines that pass through the first core protrusion 281 are less likely to pass through the second bottom protrusion 602 via the core hole 29, and are more likely to pass through the first bottom protrusion 601 via the core hole 29 and the first detection element 311. Therefore, the number of magnetic field lines passing through the first detection element 311 increases, and the sensitivity of the first detection element 311 increases.
- the magnetic field lines that pass through the second core protrusion 282 are less likely to pass through the first bottom protrusion 601 via the core hole 29, and are more likely to pass through the second bottom protrusion 602 via the core hole 29 and the second detection element 312. Therefore, the number of magnetic field lines passing through the second detection element 312 increases, and the sensitivity of the second detection element 312 increases. For these reasons, the SNR of the value subtracted by the determination unit 45 increases. This prevents the current detection accuracy from decreasing.
- the recess 605 may be recessed from the bottom outer surface 285 in the thickness direction DT, as shown in Fig. 22.
- the recess 605 is recessed in the thickness direction DT from the range between the first bottom protrusion 601 and the second bottom protrusion 602 on the bottom outer surface 285.
- the bottom outer surface 285 is the surface of the core bottom 28 facing outward in the thickness direction DT.
- the core bottom 28 may have a hole 287 instead of the recess 605.
- the hole 287 is a bottomed hole or a through hole formed in the range between the first bottom protrusion 601 and the second bottom protrusion 602 of the core bottom 28 and extending in the longitudinal direction DL. Even with this configuration, the same effect as the twelfth embodiment can be achieved.
- the core bottom 28 does not have to have the first bottom protrusion 601, the second bottom protrusion 602, and the recess 605.
- the first detection element 311 is disposed in the range of the core hole 29 between the first core protrusion 281 and the core bottom 28.
- the second detection element 312 is disposed in the range of the core hole 29 between the second core protrusion 282 and the core bottom 28. Even in this form, the same effect as the twelfth embodiment is achieved.
- the gap forming portion 26 does not have to have the first core protrusion 281 and the second core protrusion 282.
- the first detection element 311 is disposed in the range of the core hole 29 between the gap forming portion 26 and the first bottom protrusion 601.
- the second detection element 312 is disposed in the range of the core hole 29 between the gap forming portion 26 and the second bottom protrusion 602. Even in this form, the same effect as in the twelfth embodiment is achieved.
- the gap forming portion 26 may not have the first core protrusion 281 and the second core protrusion 282, and the core bottom 28 may not have the first bottom protrusion 601, the second bottom protrusion 602, and the recess 605.
- the first detection element 311 is arranged in the range between the first surface S1 and the first passing surface Si1 of the core hole 29.
- the second detection element 312 is arranged in the range between the second surface S2 and the second passing surface Si2 of the core hole 29. Even in this form, the same effect as in the twelfth embodiment is achieved.
- the first surface S1 is a surface that passes through the first opposing surface 211 and is perpendicular to the width direction DW.
- the second surface S2 is a surface that passes through the second opposing surface 222 and is perpendicular to the width direction DW.
- the first passing surface Si1 is a surface that passes through the first end surface 261 and is perpendicular to the width direction DW.
- the second passing plane Si2 is a plane that passes through the second end face 262 and is perpendicular to the width direction DW.
- the determination unit, calculation unit, and method thereof described in the present disclosure may be realized by a dedicated computer provided by configuring a processor and memory programmed to execute one or more functions embodied in a computer program.
- the determination unit, calculation unit, and method thereof described in the present disclosure may be realized by a dedicated computer provided by configuring a processor with one or more dedicated hardware logic circuits.
- the determination unit, calculation unit, and method thereof described in the present disclosure may be realized by one or more dedicated computers configured by combining a processor and memory programmed to execute one or more functions with a processor configured with one or more hardware logic circuits.
- the computer program may be stored in a computer-readable non-transient tangible recording medium as instructions executed by the computer.
- the current sensor 20 is used in the on-board charger 10.
- the current sensor 20 is not limited to being used in the on-board charger 10.
- the current sensor 20 may detect the current flowing from the power source to a load such as manufacturing equipment, thereby determining whether or not there is a leakage current between the power source and a load such as manufacturing equipment.
- the current sensor 20 may be used in a building such as a house, and may detect the current flowing from the power source of the building to a load such as electrical equipment, thereby determining whether or not there is a leakage current between the power source and a load such as electrical equipment.
- the core 25 is formed by bending a plate-shaped soft magnetic material into a C-shape, but this is not limiting.
- the core 25 may be formed by wire-cutting a plate-shaped soft magnetic material.
- the core 25 may also be formed by wrapping a sheet-shaped soft magnetic material around it. In this case, an adhesive material is used to prevent peeling between the soft magnetic materials.
- the core 25 may be formed by overlapping and laminating sheet-shaped soft magnetic materials. In this case, multiple soft magnetic materials are formed into a sheet shape by press processing, and the sheet-shaped soft magnetic materials are laminated by dowel crimping.
- the core 25 is laminated with plate-shaped permalloy.
- the hysteresis characteristics of the core 25 are improved compared to when the core 25 is laminated with plate-shaped directional electromagnetic steel sheets.
- the core 25 is formed with plate-shaped directional electromagnetic steel sheets. In this case, compared to when the core 25 is formed with permalloy, material costs are reduced, and the cost of the current sensor 20 can be reduced.
- the determination unit 45 is disposed on the substrate 40, but this is not limited to the above.
- the determination unit 45 may be provided in an external device, such as an ECU, disposed outside the current sensor 20.
- ECU is an abbreviation for Electronic Control Unit.
- the number of core protrusions and bottom protrusions is not limited to two.
- the number of core protrusions and bottom protrusions may be at least one.
- the number of recesses 605 is one, but is not limited to this and may be two or more.
- the first bus bar 21 and the second bus bar 22 are formed in a plate shape, but they are not limited to this and may be formed in a rod shape, column shape, etc. Therefore, here, the first bus bar 21 and the second bus bar 22 being formed in a plate shape also means that the first bus bar 21 and the second bus bar 22 are formed in a rod shape, column shape, etc.
- two bus bars may be inserted into the core for current detection.
- the strength of the magnetic field generated by the current flowing through the two bus bars, which have different current directions, is detected by the sensor chip, and the current flowing through the bus bars is detected.
- the gap there are places where the directions of the magnetic fields generated by the current flowing through the two bus bars are opposite to each other, and therefore there are places where the two magnetic fields cancel each other out.
- the direction of the magnetic field generated by the current flowing through the two bus bars is from the gap toward the bottom of the core located on the opposite side to the gap, and therefore there are places where the two magnetic fields are difficult to cancel each other out.
- An object of the present disclosure is to provide a current sensor that suppresses deterioration in current detection accuracy.
- a current sensor comprising: A first bus bar (21) formed in a plate shape and through which a current (Ic1) flows in one direction of a longitudinal direction (DL); a second bus bar (22) formed in a plate shape arranged in a width direction (DW) of the first bus bar at a distance from the first bus bar, and through which a current (Ic2) flows in a direction opposite to a direction of a current flowing through the first bus bar; a core (25) having a core hole (29) into which the first bus bar and the second bus bar are inserted, a gap forming portion (26) including a first end face (261) facing the width direction, a second end face (262) facing the first end face in the width direction, and a gap (265) formed by the first end face and the second end face and communicating the core hole with the outside, a core horizontal portion (27) connected to the gap forming portion and extending in a thickness direction (DT) of the first bus bar, and a core bottom portion (28) connected to the core horizontal portion and
- So_Gap a plane
- the core projection includes projection surfaces (2810, 2820) facing the width direction, A current sensor described in any one of points 1-1 to 1-3, wherein the detection element is arranged on a plane (Sop) that passes through the center in the thickness direction of the surface where the protrusion surface and the first end surface are joined and is perpendicular to the thickness direction.
- the core projection includes projection surfaces (2810, 2820) facing the width direction, A current sensor described in any one of viewpoints 1-1 to 1-3, wherein the detection element passes through the center in the thickness direction of the surface where the protrusion surface and the first end surface are joined and is positioned on the opposite side of the core hole from a plane (Sop) perpendicular to the thickness direction.
- the first bus bar is connected to one end of a power source and one end of a load
- the second bus bar is connected to the other end of the power source and the other end of the load
- the current sensor according to any one of aspects 1-1 to 1-7, further comprising a judgment unit (45) that judges whether or not there is an abnormality between the power supply and the load based on a signal output from the detection element.
- a current sensor comprising: A first bus bar (21) formed in a plate shape and through which a current (Ic1) flows in one direction of a longitudinal direction (DL); a second bus bar (22) formed in a plate shape arranged in a width direction (DW) of the first bus bar at a distance from the first bus bar, and through which a current (Ic2) flows in a direction opposite to a direction of a current flowing through the first bus bar; a core (25) having a core hole (29) into which the first bus bar and the second bus bar are inserted, a gap forming portion (26) including a first end face (261) facing the width direction, a second end face (262) facing the first end face in the width direction, and a gap (265) formed by the first end face and the second end face and communicating the core hole with the outside, a core horizontal portion (27) connected to the gap forming portion and extending in a thickness direction (DT) of the first bus bar, and a core bottom portion (28) connected to the core horizontal portion and
- the first bus bar is connected to one end of a power source and one end of a load
- the second bus bar is connected to the other end of the power source and the other end of the load
- the current sensor according to any one of aspects 2-1 to 2-4, further comprising a judgment unit (45) that judges whether or not there is an abnormality between the power supply and the load based on a signal output from the detection element.
- a current sensor comprising: A first bus bar (21) formed in a plate shape and through which a current (Ic1) flows in one direction of a longitudinal direction (DL); a second bus bar (22) formed in a plate shape arranged in a width direction (DW) of the first bus bar at a distance from the first bus bar, and through which a current (Ic2) flows in a direction opposite to a direction of a current flowing through the first bus bar; a core (25) having a core hole (29) into which the first bus bar and the second bus bar are inserted, a gap forming portion (26) including a first end face (261) facing the width direction, a second end face (262) facing the first end face in the width direction, and a gap (265) formed by the first end face and the second end face and communicating the core hole with the outside, a core horizontal portion (27) connected to the gap forming portion and extending in a thickness direction (DT) of the first bus bar, and a core bottom portion (28) connected to the core horizontal portion and
- the recess is recessed in the thickness direction from a range of the bottom inner surface between a surface (S1) that passes through the first opposing surface and the core bottom and is perpendicular to the width direction, and a surface (S2) that passes through the second opposing surface and the core bottom and is perpendicular to the width direction,
- the recess is recessed in the thickness direction from a range of the bottom inner surface between a plane (Si1) that passes through the first end face and the core bottom and is perpendicular to the width direction, and a plane (Si2) that passes through the second end face and the core bottom and is perpendicular to the width direction,
- Si1 that passes through the first end face and the core bottom and is perpendicular to the width direction
- Si2 that passes through the second end face and the core bottom and is perpendicular to the width direction
- the first bus bar is connected to one end of a power source and one end of a load
- the second bus bar is connected to the other end of the power source and the other end of the load
- the current sensor according to any one of Aspects 3-1 to 3-3, further comprising a judgment unit (45) that judges whether or not there is an abnormality between the power supply and the load based on a signal output from the detection element.
- a current sensor comprising: A first bus bar (21) formed in a plate shape and through which a current (Ic1) flows in one direction of a longitudinal direction (DL); a second bus bar (22) formed in a plate shape arranged in a width direction (DW) of the first bus bar at a distance from the first bus bar, and through which a current (Ic2) flows in a direction opposite to a direction of a current flowing through the first bus bar; a core (25) having a core hole (29) into which the first bus bar and the second bus bar are inserted, a gap forming portion (26) including a first end face (261) facing the width direction, a second end face (262) facing the first end face in the width direction, and a gap (265) formed by the first end face and the second end face and communicating the core hole with the outside, a core horizontal portion (27) connected to the gap forming portion and extending in a thickness direction (DT) of the first bus bar, and a core bottom portion (28) connected to the core horizontal portion and
- [Point 4-2] A current sensor described in Viewpoint 4-1, wherein the length (Wp1, Wp2) of the core protrusion in the width direction is equal to or less than the distance (Wb1, Wb2) from the first opposing surface to the first end surface in the width direction.
- [Point 4-3] The current sensor according to aspect 4-1 or 4-2, wherein the detection element is arranged on a plane (So_Gap) that passes through the center of the first end face in the thickness direction and is perpendicular to the thickness direction.
- the core projection includes projection surfaces (2810, 2820) facing the width direction, A current sensor according to aspect 4-1 or 4-2, wherein the detection element is arranged on a plane (Sop) that passes through the center in the thickness direction of the surface where the protrusion surface and the first end surface are joined and is perpendicular to the thickness direction.
- the core projection includes projection surfaces (2810, 2820) facing the width direction, A current sensor described in viewpoint 4-1 or 4-2, wherein the detection element passes through the center in the thickness direction of the surface where the protrusion surface and the first end surface are joined and is positioned on the opposite side of the core hole from a plane (Sop) perpendicular to the thickness direction.
- the first bus bar is connected to one end of a power source and one end of a load
- the second bus bar is connected to the other end of the power source and the other end of the load
- the current sensor according to any one of aspects 4-1 to 4-6, further comprising a judgment unit (45) that judges whether or not there is an abnormality between the power supply and the load based on a signal output from the detection element.
- two bus bars and two sensor chips may be inserted into the core for current detection.
- the directions of current flowing through the two bus bars are different from each other.
- the first sensor chip detects the strength of the magnetic field generated by the current flowing through the first bus bar
- the second sensor chip detects the strength of the magnetic field generated by the current flowing through the second bus bar. In this way, the current flowing through the first bus bar and the second bus bar is detected.
- the first sensor chip detects the strength of the magnetic field generated by the current flowing through the first bus bar
- the magnetic field generated by the current flowing through the first bus bar is affected by the magnetic field generated by the current flowing through the second bus bar.
- the signal output from the first sensor chip includes magnetic field noise generated by the current flowing through the second bus bar.
- the second sensor chip detects the strength of the magnetic field generated by the current flowing through the second bus bar
- the magnetic field generated by the current flowing through the second bus bar is affected by the magnetic field generated by the current flowing through the first bus bar. Therefore, the signal output from the second sensor chip contains magnetic field noise generated by the current flowing through the first bus bar, and the magnetic field noise reduces the accuracy of detection of the magnetic field strength by the first sensor chip and the second sensor chip, thereby reducing the accuracy of current detection.
- An object of the present disclosure is to provide a current sensor that suppresses deterioration in current detection accuracy.
- a current sensor comprising: A first bus bar (21) formed in a plate shape and through which a current (Ic1) flows in one direction of a longitudinal direction (DL); a second bus bar (22) formed in a plate shape arranged in a width direction (DW) of the first bus bar at a distance from the first bus bar, and through which a current (Ic2) flows in a direction opposite to a direction of a current flowing through the first bus bar; a core (25) having a core hole (29) into which the first bus bar and the second bus bar are inserted, a gap forming portion (26) including a first end face (261) facing the width direction, a second end face (262) facing the first end face in the width direction, and a gap (265) formed by the first end face and the second end face and communicating the core hole with the outside, a core horizontal portion (27) connected to the gap forming portion and extending in a thickness direction (DT) of the first bus bar, and a core bottom portion (28) connected to the core horizontal portion and
- the first bus bar is connected to one end of a power source and one end of a load
- the second bus bar is connected to the other end of the power source and the other end of the load
- the current sensor described in Viewpoint 5-1 wherein the calculation unit determines whether or not there is an abnormality between the power supply and the load based on a value obtained by subtracting a value related to the signal of the second detection element from a value related to the signal of the first detection element.
- the gap forming portion includes a first core inner surface (271), a first core projection (281), a second core inner surface (272), and a second core projection (282), the first core inner surface is a surface of the gap forming portion facing inward in the thickness direction, and overlaps with the projected first bus bar when the first bus bar is projected in the thickness direction; the first core protrusion protrudes in the thickness direction from a range of the first core inner surface between the first surface and the first end surface, the first detection element is disposed between the first core projection and the core bottom, the second core inner surface is a surface of the gap forming portion facing inward in the thickness direction, and overlaps with the projected second bus bar when the second bus bar is projected in the thickness direction; the second core projection protrudes in the thickness direction from a range of the second core inner surface between the second surface and the second end surface,
- the current sensor according to aspect 5-1 or 5-2, wherein the second detection element is disposed between the second core projection and the core bottom.
- the core bottom includes a bottom inner surface (280), a first bottom protrusion (601), and a second bottom protrusion (602);
- the bottom inner surface is a surface of the core bottom facing inward in the thickness direction, the first bottom protrusion protrudes from the bottom inner surface in the thickness direction, and overlaps with the first core protrusion when the first core protrusion is projected in the thickness direction;
- the second bottom protrusion protrudes from the bottom inner surface in the thickness direction, and overlaps with the second core protrusion when the second core protrusion is projected in the thickness direction;
- the first sensing element is disposed between the first core projection and the first bottom projection;
- the current sensor according to aspect 5-3, wherein the second detection element is disposed between the second core projection and the second bottom projection.
- the first passing surface and the second passing surface pass through the core bottom,
- the core bottom includes a bottom inner surface (280), a first bottom protrusion (601), and a second bottom protrusion (602);
- the bottom inner surface is a surface of the core bottom facing inward in the thickness direction, the first bottom protrusion protrudes in the thickness direction from a range of the bottom inner surface between the first surface and the first passing surface, the second bottom protrusion protrudes in the thickness direction from a range of the bottom inner surface between the second surface and the second passing surface, the first detection element is disposed between the gap forming portion and the first bottom protrusion;
- the current sensor according to aspect 5-1 or 5-2, wherein the second detection element is disposed between the gap forming portion and the second bottom protrusion.
- the core bottom includes a recess (605); The current sensor according to aspect 5-4 or 5-5, wherein the recess is recessed in the thickness direction from a range of the bottom inner surface between the first bottom protrusion and the second bottom protrusion.
- the core bottom includes a bottom outer surface (285) and a recess (605); The bottom outer surface is a surface of the core bottom facing outward in the thickness direction, The current sensor according to aspect 5-4 or 5-5, wherein the recess is recessed in the thickness direction from a range of the bottom outer surface between the first bottom protrusion and the second bottom protrusion.
- a current sensor comprising: A first bus bar (21) formed in a plate shape and through which a current (Ic1) flows in one direction of a longitudinal direction (DL); a second bus bar (22) formed in a plate shape arranged in a width direction (DW) of the first bus bar at a distance from the first bus bar, and through which a current (Ic2) flows in a direction opposite to a direction of a current flowing through the first bus bar; a core (25) having a core hole (29) into which the first bus bar and the second bus bar are inserted, a gap forming portion (26) including a first end face (261) facing the width direction, a second end face (262) facing the first end face in the width direction, and a gap (265) formed by the first end
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
Abstract
An electric current sensor (20) comprises a first busbar (21), a second busbar (22), a core (25), and a detection element (31). A first end surface (261) and a second end surface (262) of a gap forming part (26) that forms a gap (265) in the core (25) are located between a first opposed surface (211) of the first busbar (21) and a second opposed surface (222) of the second busbar (22) in the width direction DW. The gap forming part (26) includes core inner surfaces (271, 272) and core protrusions (281, 282). The core inner surfaces (271, 272) are surfaces of the gap forming part 26 that face inward in the thickness direction DT. The core protrusions (281, 282) protrude in the thickness direction (DT) from an area of the core inner surfaces (271, 272) that is located between a first plane (S1) and a second plane (S2).
Description
本出願は、2022年12月22日に出願された日本特許出願番号2022-205795号に基づくもので、ここにその記載内容が参照により組み入れられる。
This application is based on Japanese Patent Application No. 2022-205795, filed on December 22, 2022, the contents of which are incorporated herein by reference.
本開示は、電流センサに関するものである。
This disclosure relates to a current sensor.
従来、特許文献1の記載のように、電流が流れるバスバと、バスバが挿入されているとともにバスバを流れる電流によって発生する磁界が通過するコアと、コアのギャップに配置された検出素子としてのセンサチップとを備える電流センサが知られている。この電流センサでは、ギャップを通過する磁界の強さがセンサチップにて検出されることにより、バスバに流れる電流が検出される。
As described in Patent Document 1, a current sensor is known that includes a bus bar through which a current flows, a core into which the bus bar is inserted and through which a magnetic field generated by the current flowing through the bus bar passes, and a sensor chip that serves as a detection element and is disposed in the gap of the core. In this current sensor, the strength of the magnetic field passing through the gap is detected by the sensor chip, thereby detecting the current flowing through the bus bar.
特許文献1に記載された電流センサにおいて、電流検出のために、コアに挿入されるバスバが2つ備えられることがある。この場合、例えば、電流方向が互いに異なる2つのバスバに流れる電流によって発生する磁界の強さがセンサチップにて検出されることにより、バスバに流れる電流が検出される。このとき、ギャップ内において、2つのバスバに流れる電流によって発生する磁界の方向が互いに逆方向となる箇所が生じることから、2つの磁界が互いに打ち消し合う箇所が生じる。また、ギャップ内において、2つのバスバに流れる電流によって発生する磁界の方向がギャップからギャップとは反対側に位置するコアの底部に向かう方向となる箇所が生じることから、2つの磁界が互いに打ち消し合いにくい箇所が生じる。これらのため、ギャップ内の磁界の勾配が大きくなる。これにより、センサチップの位置がずれることで、センサチップによる磁界の強さの検出精度が低下する。したがって、このとき、電流検出精度が低下する。
本開示は、電流検出精度の低下を抑制する電流センサを提供することを目的とする。 In the current sensor described inPatent Document 1, two bus bars may be inserted into the core for current detection. In this case, for example, the strength of the magnetic field generated by the current flowing through the two bus bars, which have different current directions, is detected by the sensor chip, and the current flowing through the bus bars is detected. At this time, in the gap, there are places where the directions of the magnetic fields generated by the current flowing through the two bus bars are opposite to each other, and therefore there are places where the two magnetic fields cancel each other out. In addition, in the gap, there are places where the direction of the magnetic field generated by the current flowing through the two bus bars is from the gap toward the bottom of the core located on the opposite side to the gap, and therefore there are places where the two magnetic fields are difficult to cancel each other out. For these reasons, the gradient of the magnetic field in the gap becomes large. As a result, the position of the sensor chip is shifted, and the detection accuracy of the magnetic field strength by the sensor chip decreases. Therefore, at this time, the current detection accuracy decreases.
An object of the present disclosure is to provide a current sensor that suppresses deterioration in current detection accuracy.
本開示は、電流検出精度の低下を抑制する電流センサを提供することを目的とする。 In the current sensor described in
An object of the present disclosure is to provide a current sensor that suppresses deterioration in current detection accuracy.
本開示の1つの観点によれば、電流センサであって、板状に形成されているとともに、長手方向のうち一方向の電流が流れる第1バスバと、第1バスバと間隔を空けて第1バスバの幅方向に並んで板状に形成されているとともに、第1バスバに流れる電流の方向とは逆方向の電流が流れる第2バスバと、第1バスバおよび第2バスバが挿入されているコア穴と、幅方向を向いている第1端面、第1端面と幅方向に対向している第2端面、および、第1端面と第2端面とによって形成されているとともにコア穴と外部とに連通するギャップを含むギャップ形成部と、ギャップ形成部に接続されているとともに第1バスバの厚み方向に延びているコア横部と、コア横部に接続されて幅方向に延びているとともにギャップ形成部およびコア横部とでコア穴を形成するコア底部と、を有するコアと、ギャップに配置されているとともに、第1バスバに流れる電流によって発生する磁界のうち第1端面から第2端面に向かう方向の磁界と、第2バスバに流れる電流によって発生する磁界のうち第2端面から第1端面に向かう方向の磁界とが合わされた磁界の強さを検出し、検出した磁界の強さに応じた信号を出力する検出素子と、を備え、第1バスバは、第2バスバと幅方向に対向する第1対向面を有し、第2バスバは、第1バスバと幅方向に対向する第2対向面を有し、第1端面および第2端面は、幅方向において、第1対向面および第2対向面の間に位置しており、ギャップ形成部は、コア内面と、コア突起と、を含み、コア内面は、ギャップ形成部のうち厚み方向内側を向いている面であって、コア突起は、コア内面のうち、第1対向面およびギャップ形成部を通るとともに幅方向と直交する面ならびに第2対向面およびギャップ形成部を通るとともに幅方向と直交する面の間の範囲から厚み方向に突出している電流センサである。
According to one aspect of the present disclosure, there is provided a current sensor comprising: a first bus bar formed in a plate shape and through which a current flows in one of the longitudinal directions; a second bus bar formed in a plate shape aligned with the first bus bar at a distance from the first bus bar in the width direction of the first bus bar and through which a current flows in a direction opposite to the direction of the current flowing in the first bus bar; a core hole into which the first bus bar and the second bus bar are inserted; a first end face facing the width direction, a second end face facing the first end face in the width direction, and a gap forming portion formed by the first end face and the second end face and including a gap connecting the core hole to the outside; a core lateral portion connected to the gap forming portion and extending in the thickness direction of the first bus bar; and a core bottom portion connected to the core lateral portion and extending in the width direction, forming a core hole together with the gap forming portion and the core lateral portion; and a core disposed in the gap and generating a current generated by a current flowing in the first bus bar. and a detection element that detects the strength of a combined magnetic field of a magnetic field generated by a current flowing through the second bus bar in a direction from the first end face to the second end face and a magnetic field generated by a current flowing through the second bus bar in a direction from the second end face to the first end face, and outputs a signal according to the strength of the detected magnetic field. The first bus bar has a first opposing surface that faces the second bus bar in the width direction, and the second bus bar has a second opposing surface that faces the first bus bar in the width direction, the first end surface and the second end surface are located between the first opposing surface and the second opposing surface in the width direction, the gap forming portion includes a core inner surface and a core protrusion, the core inner surface is a surface of the gap forming portion that faces inward in the thickness direction, and the core protrusion is a current sensor that protrudes in the thickness direction from a range between a surface of the core inner surface that passes through the first opposing surface and the gap forming portion and is perpendicular to the width direction, and a surface that passes through the second opposing surface and the gap forming portion and is perpendicular to the width direction.
これにより、第1バスバおよび第2バスバによって発生する磁界の磁力線は、コア突起を通過する。このため、コア突起周辺が、第1バスバおよび第2バスバに流れる電流によって発生する磁界が互いに打ち消し合いにくい箇所となる。また、コア突起がコア内面から厚み方向に突出しているため、検出素子は、コア突起が形成されていない場合と比較して、第1バスバおよび第2バスバに流れる電流によって発生する磁界が互いに打ち消し合いにくい箇所から離れやすい。したがって、検出素子の位置のずれによって生じる検出素子の信号値の変化が、コア突起が形成されていない場合と比較して小さくなる。よって、検出素子による磁界の強さの検出精度が低下することが抑制されるため、電流検出精度の低下が抑制される。
As a result, the magnetic field lines of the magnetic field generated by the first bus bar and the second bus bar pass through the core protrusion. Therefore, the area around the core protrusion becomes a location where the magnetic fields generated by the currents flowing through the first bus bar and the second bus bar are less likely to cancel each other out. Also, since the core protrusion protrudes in the thickness direction from the inner surface of the core, the detection element is more likely to move away from the location where the magnetic fields generated by the currents flowing through the first bus bar and the second bus bar are less likely to cancel each other out, compared to when the core protrusion is not formed. Therefore, the change in the signal value of the detection element caused by the misalignment of the detection element is smaller, compared to when the core protrusion is not formed. Therefore, the detection accuracy of the magnetic field strength by the detection element is prevented from decreasing, and the decrease in current detection accuracy is prevented.
なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。
The reference symbols in parentheses attached to each component indicate an example of the correspondence between the component and the specific components described in the embodiments described below.
以下、実施形態について図面を参照しつつ説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付し、その説明を省略する。
The following embodiments will be described with reference to the drawings. Note that in the following embodiments, parts that are identical or equivalent to each other will be given the same reference numerals and their description will be omitted.
(第1実施形態)
本実施形態の電流センサは、例えば、図1に示すようなオンボードチャージャ10に用いられる。まず、このオンボードチャージャ10について説明する。 First Embodiment
The current sensor of this embodiment is used, for example, in an on-board charger 10 as shown in Fig. 1. First, the on-board charger 10 will be described.
本実施形態の電流センサは、例えば、図1に示すようなオンボードチャージャ10に用いられる。まず、このオンボードチャージャ10について説明する。 First Embodiment
The current sensor of this embodiment is used, for example, in an on-
オンボードチャージャ10は、バッテリ12、充電器14および電流センサ20を備える。
The on-board charger 10 includes a battery 12, a charger 14, and a current sensor 20.
バッテリ12は、充放電可能な二次電池であって、例えば、ニッケル水素電池、リチウムイオン電池である。また、バッテリ12は、ここでは、負荷に相当する。
The battery 12 is a rechargeable secondary battery, such as a nickel-metal hydride battery or a lithium-ion battery. Here, the battery 12 corresponds to a load.
充電器14は、ACDCコンバータ等を備えていることにより、系統電力源からの交流電力を直流電力に変換する。さらに、充電器14は、この変換した直流電力をバッテリ12に供給することにより、バッテリ12を充電させる。また、充電器14は、ここでは、電源に相当する。
The charger 14 is equipped with an AC-DC converter and the like, and converts AC power from a grid power source into DC power. Furthermore, the charger 14 supplies this converted DC power to the battery 12, thereby charging the battery 12. Here, the charger 14 corresponds to a power source.
電流センサ20は、バッテリ12および充電器14の間に流れる電流を検出する。また、電流センサ20は、この検出した電流に基づいて、例えば、バッテリ12および充電器14の間において漏電異常があるか否かを判定する。この電流センサ20の詳細については、後述する。
The current sensor 20 detects the current flowing between the battery 12 and the charger 14. Based on the detected current, the current sensor 20 also determines whether or not there is an electrical leakage abnormality between the battery 12 and the charger 14. Details of the current sensor 20 will be described later.
以上のように、オンボードチャージャ10は、構成されている。次に、電流センサ20について説明する。
The on-board charger 10 is configured as described above. Next, we will explain the current sensor 20.
電流センサ20は、図2および図3に示すように、第1バスバ21、第2バスバ22、コア25、検出部30、リード線35、基板40、判定部45およびケース50等を備える。
As shown in Figures 2 and 3, the current sensor 20 includes a first bus bar 21, a second bus bar 22, a core 25, a detection unit 30, lead wires 35, a substrate 40, a determination unit 45, and a case 50.
第1バスバ21は、板状に形成されている。また、第1バスバ21は、銅等で形成されていることにより、導電性を有する。さらに、第1バスバ21の表面には、必要に応じて表面の酸化を防ぐためのメッキが施されている。また、第1バスバ21の一端は、充電器14の一端に接続されている。さらに、第1バスバ21の他端は、バッテリ12の一端に接続されている。また、第1バスバ21には、後述するように、第1バスバ21の長手方向DLのうち一方向の電流が流れる。
The first bus bar 21 is formed in a plate shape. The first bus bar 21 is made of copper or the like and is therefore conductive. If necessary, the surface of the first bus bar 21 is plated to prevent oxidation of the surface. One end of the first bus bar 21 is connected to one end of the charger 14. The other end of the first bus bar 21 is connected to one end of the battery 12. As described below, a current flows through the first bus bar 21 in one direction along the longitudinal direction DL of the first bus bar 21.
ここで、以下では、便宜的に、第1バスバ21の長手方向DLを、単に長手方向DLと記載する。さらに、第1バスバ21の幅方向DWを、単に幅方向DWと記載する。また、第1バスバ21の厚み方向DTを、単に厚み方向DTと記載する。
Hereinafter, for the sake of convenience, the longitudinal direction DL of the first bus bar 21 will be simply referred to as the longitudinal direction DL. Furthermore, the width direction DW of the first bus bar 21 will be simply referred to as the width direction DW. Furthermore, the thickness direction DT of the first bus bar 21 will be simply referred to as the thickness direction DT.
さらに、第1バスバ21は、第1対向面211を含む。第1対向面211は、後述の第2バスバ22と幅方向DWに対向している。また、第1対向面211は、幅方向DWと直交する面であって、幅方向DWと交差する面に対応する。
Furthermore, the first bus bar 21 includes a first opposing surface 211. The first opposing surface 211 faces the second bus bar 22 (described later) in the width direction DW. The first opposing surface 211 is a surface that is perpendicular to the width direction DW and corresponds to a surface that intersects with the width direction DW.
第2バスバ22は、第1バスバ21と間隔を空けて幅方向DWに並んでいる。また、第2バスバ22は、第1バスバ21と同様に、板状に形成されている。さらに、第2バスバ22は、銅等で形成されていることにより、導電性を有する。また、第2バスバ22の表面には、必要に応じて表面の酸化を防ぐためのメッキが施されている。さらに、第2バスバ22の一端は、バッテリ12の他端に接続されている。また、第2バスバ22の他端は、充電器14の他端に接続されている。したがって、バッテリ12、充電器14および電流センサ20によって直列回路が形成されている。さらに、第2バスバ22には、後述するように、第1バスバ21に流れる電流の方向とは逆方向の電流が流れる。
The second bus bar 22 is arranged in the width direction DW with a gap between it and the first bus bar 21. The second bus bar 22 is formed in a plate shape, similar to the first bus bar 21. The second bus bar 22 is made of copper or the like, and is therefore conductive. The surface of the second bus bar 22 is plated to prevent oxidation of the surface, as necessary. One end of the second bus bar 22 is connected to the other end of the battery 12. The other end of the second bus bar 22 is connected to the other end of the charger 14. Thus, a series circuit is formed by the battery 12, the charger 14, and the current sensor 20. As described below, a current flows through the second bus bar 22 in a direction opposite to the direction of the current flowing through the first bus bar 21.
また、第2バスバ22は、第2対向面222を含む。第2対向面222は、第1バスバ21の第1対向面211と幅方向DWに対向している。さらに、第2対向面222は、幅方向DWと直交する面であって、幅方向DWと交差する面に対応する。
The second bus bar 22 also includes a second opposing surface 222. The second opposing surface 222 faces the first opposing surface 211 of the first bus bar 21 in the width direction DW. Furthermore, the second opposing surface 222 is a surface that is perpendicular to the width direction DW and corresponds to a surface that intersects with the width direction DW.
コア25は、パーマロイや方向性電磁鋼板等の軟磁性材料でC字状に形成されている。また、コア25は、例えば、板状の軟磁性材料がC字状に曲げ加工されることにより形成されている。さらに、コア25は、ギャップ形成部26、コア横部27、コア底部28およびコア穴29を有する。
The core 25 is formed in a C-shape from a soft magnetic material such as permalloy or directional electromagnetic steel plate. The core 25 is formed, for example, by bending a plate of soft magnetic material into a C-shape. The core 25 further has a gap forming portion 26, a core side portion 27, a core bottom portion 28, and a core hole 29.
ギャップ形成部26は、幅方向DWに延びる板状に形成されている。また、ギャップ形成部26は、厚み方向DTにおいて第1バスバ21および第2バスバ22と離れている。さらに、ギャップ形成部26は、第1端面261、第2端面262、ギャップ265、第1コア内面271、第1コア突起281、第2コア内面272および第2コア突起282を含む。
The gap forming portion 26 is formed in a plate shape extending in the width direction DW. Furthermore, the gap forming portion 26 is separated from the first bus bar 21 and the second bus bar 22 in the thickness direction DT. Furthermore, the gap forming portion 26 includes a first end face 261, a second end face 262, a gap 265, a first core inner surface 271, a first core protrusion 281, a second core inner surface 272, and a second core protrusion 282.
第1端面261は、幅方向DWを向いている。第2端面262は、幅方向DWを向いているとともに、第1端面261と幅方向DWに対向している。また、第2端面262は、第1端面261を幅方向DWに投影したとき、投影した第1端面261と重なる。ギャップ265は、第1端面261および第2端面262によって区画形成されている空間である。さらに、ギャップ265は、後述のコア穴29およびコア25の外部に連通している。また、第1端面261、第2端面262およびギャップ265は、幅方向DWにおいて、第1対向面211および第2対向面222の間に位置している。
The first end face 261 faces the width direction DW. The second end face 262 faces the width direction DW and faces the first end face 261 in the width direction DW. Furthermore, when the first end face 261 is projected in the width direction DW, the second end face 262 overlaps with the projected first end face 261. The gap 265 is a space defined by the first end face 261 and the second end face 262. Furthermore, the gap 265 is connected to the core hole 29 and the outside of the core 25, which will be described later. Furthermore, the first end face 261, the second end face 262, and the gap 265 are located between the first opposing surface 211 and the second opposing surface 222 in the width direction DW.
第1コア内面271は、ギャップ形成部26のうち、厚み方向DT内側を向いているとともに第1バスバ21と厚み方向DTに対向している面である。さらに、第1コア内面271は、第1バスバ21を厚み方向DTに投影したとき、投影した第1バスバ21と重なる。
The first core inner surface 271 is a surface of the gap forming portion 26 that faces inward in the thickness direction DT and faces the first bus bar 21 in the thickness direction DT. Furthermore, when the first bus bar 21 is projected in the thickness direction DT, the first core inner surface 271 overlaps with the projected first bus bar 21.
ここで、第1対向面211およびギャップ形成部26を通るとともに幅方向DWと直交する面を第1面S1とする。また、第2対向面222およびギャップ形成部26を通るとともに幅方向DWと直交する面を第2面S2とする。
Here, the surface that passes through the first opposing surface 211 and the gap forming portion 26 and is perpendicular to the width direction DW is defined as the first surface S1. Also, the surface that passes through the second opposing surface 222 and the gap forming portion 26 and is perpendicular to the width direction DW is defined as the second surface S2.
そして、第1コア突起281は、第1コア内面271のうち、第1面S1および第2面S2の間の範囲、ここでは、第1面S1および第1端面261の間の範囲から厚み方向DTに突出している。さらに、第1コア突起281は、例えば、四角柱状に形成されている。なお、第1コア突起281は、四角柱状に形成されていることに限定されないで、例えば、多角柱状、円柱状、楕円柱状、半球状、半楕円球状等に形成されてもよい。
The first core protrusion 281 protrudes in the thickness direction DT from the range between the first surface S1 and the second surface S2 of the first core inner surface 271, in this case, the range between the first surface S1 and the first end surface 261. Furthermore, the first core protrusion 281 is formed, for example, in a rectangular prism shape. Note that the first core protrusion 281 is not limited to being formed in a rectangular prism shape, and may be formed, for example, in a polygonal prism shape, a cylindrical shape, an elliptical cylinder shape, a hemisphere shape, a semi-elliptical sphere shape, etc.
また、ここで、幅方向DWにおける第1コア突起281の最大長さを第1突起幅Wp1とする。さらに、幅方向DWにおける第1対向面211から第1端面261までの距離を第1距離Wb1とする。そして、第1突起幅Wp1は、第1距離Wb1以下とされている、すなわち、Wp1≦Wb1とされている。
Here, the maximum length of the first core protrusion 281 in the width direction DW is defined as the first protrusion width Wp1. Furthermore, the distance from the first opposing surface 211 to the first end surface 261 in the width direction DW is defined as the first distance Wb1. The first protrusion width Wp1 is set to be less than or equal to the first distance Wb1, i.e., Wp1≦Wb1.
第2コア内面272は、ギャップ形成部26のうち、厚み方向DT内側を向いているとともに第2バスバ22と厚み方向DTに対向している面である。さらに、第2コア内面272は、第2バスバ22を厚み方向DTに投影したとき、投影した第2バスバ22と重なる。
The second core inner surface 272 is a surface of the gap forming portion 26 that faces inward in the thickness direction DT and faces the second bus bar 22 in the thickness direction DT. Furthermore, when the second bus bar 22 is projected in the thickness direction DT, the second core inner surface 272 overlaps with the projected second bus bar 22.
第2コア突起282は、第2コア内面272のうち、第1面S1および第2面S2の間の範囲、ここでは、第2面S2および第2端面262の間の範囲から厚み方向DTに突出している。さらに、第2コア突起282は、例えば、四角柱状に形成されている。なお、第2コア突起282は、四角柱状に形成されていることに限定されないで、例えば、多角柱状、円柱状、楕円柱状、半球状、半楕円球状等に形成されてもよい。
The second core protrusion 282 protrudes in the thickness direction DT from the range between the first surface S1 and the second surface S2 of the second core inner surface 272, in this case, the range between the second surface S2 and the second end surface 262. Furthermore, the second core protrusion 282 is formed, for example, in a rectangular prism shape. Note that the second core protrusion 282 is not limited to being formed in a rectangular prism shape, and may be formed, for example, in a polygonal prism shape, a cylindrical shape, an elliptical cylinder shape, a hemisphere shape, a semi-elliptical sphere shape, etc.
また、ここで、幅方向DWにおける第2コア突起282の最大長さを第2突起幅Wp2とする。さらに、幅方向DWにおける第2対向面222から第2端面262までの距離を第2距離Wb2とする。そして、第2突起幅Wp2は、第2距離Wb2以下とされている、すなわち、Wp2≦Wb2とされている。
Here, the maximum length of the second core protrusion 282 in the width direction DW is defined as the second protrusion width Wp2. Furthermore, the distance from the second opposing surface 222 to the second end surface 262 in the width direction DW is defined as the second distance Wb2. The second protrusion width Wp2 is set to be less than or equal to the second distance Wb2, i.e., Wp2≦Wb2.
コア横部27は、ギャップ形成部26に接続されている。また、コア横部27は、コア横部27とギャップ形成部26との境界部から厚み方向DTに延びている。さらに、コア横部27とギャップ形成部26との境界部における内側の角部である横内側角部C_in_topがR形状になっている。また、コア横部27は、幅方向DWにおいて第1バスバ21および第2バスバ22と離れている。
The core horizontal portion 27 is connected to the gap forming portion 26. The core horizontal portion 27 extends in the thickness direction DT from the boundary between the core horizontal portion 27 and the gap forming portion 26. The lateral inner corner C_in_top, which is the inner corner at the boundary between the core horizontal portion 27 and the gap forming portion 26, is rounded. The core horizontal portion 27 is separated from the first bus bar 21 and the second bus bar 22 in the width direction DW.
コア底部28は、コア横部27に接続されている。さらに、コア底部28は、幅方向DWに延びていることにより、第1面S1および第2面S2を通る。また、コア底部28とコア横部27との境界部における内側の角部である底内側角部C_in_btmがR形状になっている。さらに、コア底部28の透磁率は、コア横部27の透磁率よりも小さくなっている、すなわち、コア横部27の透磁率がコア底部28の透磁率よりも大きくなっている。これにより、磁界の強さに対するコア横部27の磁束密度の線形領域は、磁界の強さに対するコア底部28の磁束密度の線形領域よりも大きくなる。このため、コア横部27の磁気飽和が抑制されやすくなっている。なお、透磁率とは、例えば、磁界の強さに対する磁束密度の変化量の最大値である最大透磁率をいう。
The core bottom 28 is connected to the core side 27. Furthermore, the core bottom 28 extends in the width direction DW, passing through the first surface S1 and the second surface S2. In addition, the bottom inner corner C_in_btm, which is the inner corner at the boundary between the core bottom 28 and the core side 27, is rounded. Furthermore, the magnetic permeability of the core bottom 28 is smaller than that of the core side 27, that is, the magnetic permeability of the core side 27 is larger than that of the core bottom 28. As a result, the linear region of the magnetic flux density of the core side 27 relative to the magnetic field strength is larger than the linear region of the magnetic flux density of the core bottom 28 relative to the magnetic field strength. For this reason, magnetic saturation of the core side 27 is easily suppressed. Note that the magnetic permeability refers to, for example, the maximum magnetic permeability, which is the maximum value of the change in magnetic flux density relative to the magnetic field strength.
また、コア底部28は、底部内面280を含む。底部内面280は、厚み方向DT内側を向いている。さらに、底部内面280は、第1バスバ21および第2バスバ22と厚み方向DTに対向している。
The core bottom 28 also includes a bottom inner surface 280. The bottom inner surface 280 faces inward in the thickness direction DT. Furthermore, the bottom inner surface 280 faces the first bus bar 21 and the second bus bar 22 in the thickness direction DT.
コア穴29は、ギャップ形成部26、コア横部27およびコア底部28によって形成されている空間である。また、コア穴29には、第1バスバ21および第2バスバ22の一部が挿入されている。
The core hole 29 is a space formed by the gap forming portion 26, the core side portion 27, and the core bottom portion 28. In addition, a portion of the first bus bar 21 and the second bus bar 22 are inserted into the core hole 29.
ここで、幅方向DWにおける第1端面261から第2端面262までの最小距離をギャップ距離Gapとする。さらに、厚み方向DTにおけるギャップ形成部26の内面からコア底部28の内面までの最大距離を内面間距離Tchとする。また、幅方向DWに互いに対向しているコア横部27の内面同士の間の最大距離を横部間距離Wsiとする。
Here, the minimum distance from the first end face 261 to the second end face 262 in the width direction DW is the gap distance Gap. Furthermore, the maximum distance from the inner surface of the gap forming portion 26 to the inner surface of the core bottom portion 28 in the thickness direction DT is the inner surface distance Tch. Moreover, the maximum distance between the inner surfaces of the core lateral portions 27 that face each other in the width direction DW is the lateral portion distance Wsi.
そして、内面間距離Tchは、ギャップ距離Gapよりも大きくなっている、すなわち、Tch>Gapとされている。さらに、横部間距離Wsiは、内面間距離Tchよりも大きくなっている、すなわち、Wsi>Tchとされている。したがって、Wsi>Tch>Gapとされている。
The distance between the inner faces, Tch, is greater than the gap distance, Gap, i.e., Tch>Gap. Furthermore, the distance between the lateral portions, Wsi, is greater than the distance between the inner faces, Tch, i.e., Wsi>Tch. Therefore, Wsi>Tch>Gap.
検出部30は、ギャップ265に配置されている。このため、検出部30は、第1端面261を幅方向DWに投影したとき、投影した第1端面261と重なる。また、検出部30は、第2端面262を幅方向DWに投影したとき、投影した第2端面262と重なる。さらに、検出部30は、検出素子31および図示しないIC等を含む。なお、ICは、Integrated Circuitの略である。
The detection unit 30 is disposed in the gap 265. Therefore, when the first end face 261 is projected in the width direction DW, the detection unit 30 overlaps with the projected first end face 261. Furthermore, when the second end face 262 is projected in the width direction DW, the detection unit 30 overlaps with the projected second end face 262. Furthermore, the detection unit 30 includes a detection element 31 and an IC (not shown), etc. Note that IC is an abbreviation for Integrated Circuit.
検出素子31は、ホール素子、TMR素子、GMR素子およびAMR素子等である。また、検出素子31は、幅方向DWの磁界の強さ、ここでは、後述するように、第1方向Dm1の磁界と第2方向Dm2の磁界とが合わされた磁界の強さを検出する。さらに、検出素子31は、この検出した磁界の強さに応じた信号、例えば、この検出した磁界の強さに応じた電圧を外部に出力する。なお、TMRは、Tunnel Magneto Resistiveの略である。GMRは、Giant Magneto Resistiveの略である。AMRは、Anisotropic Magneto Resistiveの略である。第1方向Dm1は、第1端面261から第2端面262に向かう方向である。第2方向Dm2は、第2端面262から第1端面261に向かう方向である。
The detection element 31 is a Hall element, a TMR element, a GMR element, an AMR element, or the like. The detection element 31 detects the strength of the magnetic field in the width direction DW, which is the strength of the magnetic field obtained by combining the magnetic field in the first direction Dm1 and the magnetic field in the second direction Dm2, as described later. The detection element 31 outputs a signal corresponding to the strength of the detected magnetic field to the outside, for example, a voltage corresponding to the strength of the detected magnetic field. Note that TMR is an abbreviation for Tunnel Magneto Resistive. GMR is an abbreviation for Giant Magneto Resistive. AMR is an abbreviation for Anisotropic Magneto Resistive. The first direction Dm1 is the direction from the first end face 261 to the second end face 262. The second direction Dm2 is the direction from the second end face 262 to the first end face 261.
ここで、厚み方向DTにおける第1端面261の中心を通るとともに厚み方向DTと直交する面をギャップ中心面So_Gapとする。そして、検出素子31は、ギャップ中心面So_Gap上に配置されている。なお、ギャップ中心面So_Gapは、厚み方向DTにおける第2端面262の中心を通るとともに厚み方向DTと直交する面であってもよい。
Here, the plane that passes through the center of the first end face 261 in the thickness direction DT and is perpendicular to the thickness direction DT is defined as the gap center plane So_Gap. The detection element 31 is disposed on the gap center plane So_Gap. Note that the gap center plane So_Gap may be a plane that passes through the center of the second end face 262 in the thickness direction DT and is perpendicular to the thickness direction DT.
リード線35は、検出部30と接続されている。基板40は、プリント基板である。また、基板40は、はんだ付け等によりリード線35と接続されている。
The lead wires 35 are connected to the detection unit 30. The board 40 is a printed circuit board. The board 40 is also connected to the lead wires 35 by soldering or the like.
判定部45は、ICおよびマイコン等を主体として構成されており、CPU、ROM、フラッシュメモリ、RAM、I/O、駆動回路、ADコンバータ、ローパスフィルタ、通信回路およびこれらの構成を接続するバスライン等を備えている。また、判定部45は、基板40に配置されている。さらに、判定部45は、判定部45のROMに記憶されたプログラムを実行することにより、リード線35および基板40を介して、検出素子31からの信号を取得する。また、判定部45は、この取得した信号に基づいて、バッテリ12および充電器14の間にて生じた漏電量M_leakを算出するとともに、漏電異常があるか否かを判定する。さらに、判定部45は、この判定結果に応じた信号を、図示しないターミナル等を介して、図示しない警報装置等の外部装置に出力する。
The determination unit 45 is mainly composed of an IC and a microcomputer, and includes a CPU, ROM, flash memory, RAM, I/O, drive circuit, AD converter, low-pass filter, communication circuit, and a bus line connecting these components. The determination unit 45 is disposed on the board 40. The determination unit 45 acquires a signal from the detection element 31 via the lead wire 35 and the board 40 by executing a program stored in the ROM of the determination unit 45. The determination unit 45 calculates the leakage current M_leak that has occurred between the battery 12 and the charger 14 based on the acquired signal, and determines whether or not there is a leakage current abnormality. The determination unit 45 outputs a signal according to this determination result to an external device such as an alarm device (not shown) via a terminal (not shown).
ケース50は、例えば、ポリブチレンテレフタレート等の熱可塑性樹脂で射出成形されることにより形成されている。また、ケース50には、図示しないカラーが形成されている。このカラーに外部のシャフト等が挿入されることによって、ケース50と外部とが接続される。これにより、電流センサ20と外部とが固定される。
The case 50 is formed by injection molding using a thermoplastic resin such as polybutylene terephthalate. The case 50 is also formed with a collar (not shown). An external shaft or the like is inserted into this collar to connect the case 50 to the outside. This fixes the current sensor 20 to the outside.
さらに、ケース50は、コア収容室52、基板収容室54、第1開口部61および第2開口部62を有する。
Furthermore, the case 50 has a core accommodating chamber 52, a substrate accommodating chamber 54, a first opening 61 and a second opening 62.
コア収容室52には、コア25が収容されている。また、ケース50の内面とコア25の表面との間には、図示しないウレタン等の樹脂が、インサート成形等されることによりコア収容室52に充填されている。これにより、コア収容室52が封止されることから、コア25等の各部品が保護される。
The core 25 is housed in the core housing chamber 52. In addition, a resin such as urethane (not shown) is filled into the core housing chamber 52 between the inner surface of the case 50 and the surface of the core 25 by insert molding or the like. This seals the core housing chamber 52, protecting each part such as the core 25.
基板収容室54では、検出部30、リード線35、基板40および判定部45が収容されている。また、検出部30がギャップ265に配置されるため、基板収容室54は、ケース50のうちギャップ265側に形成されている。
The substrate housing chamber 54 houses the detection unit 30, the lead wires 35, the substrate 40, and the determination unit 45. In addition, since the detection unit 30 is disposed in the gap 265, the substrate housing chamber 54 is formed on the gap 265 side of the case 50.
第1開口部61の一部は、コア穴29のうち第1バスバ21側に挿入されている。また、第1開口部61の空間には、第1バスバ21の一部が挿入されている。さらに、第1開口部61は、第1開口部面610および第1開口部突起612を含む。
A portion of the first opening 61 is inserted into the core hole 29 on the first bus bar 21 side. Also, a portion of the first bus bar 21 is inserted into the space of the first opening 61. Furthermore, the first opening 61 includes a first opening surface 610 and a first opening protrusion 612.
第1開口部面610は、幅方向DWおよび厚み方向DTに第1バスバ21と対向している。第1開口部突起612は、第1開口部面610から第1バスバ21に向かって突出している。これにより、第1開口部突起612は、第1バスバ21と接触している。このため、ケース50と第1バスバ21との位置決めがされる。さらに、第1開口部面610および第1バスバ21の間に空間が形成されている。
The first opening surface 610 faces the first bus bar 21 in the width direction DW and thickness direction DT. The first opening protrusion 612 protrudes from the first opening surface 610 towards the first bus bar 21. This brings the first opening protrusion 612 into contact with the first bus bar 21. This determines the positioning of the case 50 and the first bus bar 21. Furthermore, a space is formed between the first opening surface 610 and the first bus bar 21.
第2開口部62の一部は、コア穴29のうち第2バスバ22側に挿入されている。また、第2開口部62の空間には、第2バスバ22の一部が挿入されている。さらに、第2開口部62は、第2開口部面620および第2開口部突起622を含む。
A portion of the second opening 62 is inserted into the core hole 29 on the second bus bar 22 side. Also, a portion of the second bus bar 22 is inserted into the space of the second opening 62. Furthermore, the second opening 62 includes a second opening surface 620 and a second opening protrusion 622.
第2開口部面620は、幅方向DWおよび厚み方向DTに第2バスバ22と対向している。第2開口部突起622は、第2開口部面620から第2バスバ22に向かって突出している。これにより、第2開口部突起622は、第2バスバ22と接触している。このため、ケース50と第2バスバ22との位置決めがされる。さらに、第2開口部面620および第2バスバ22の間に空間が形成されている。
The second opening surface 620 faces the second bus bar 22 in the width direction DW and thickness direction DT. The second opening protrusion 622 protrudes from the second opening surface 620 toward the second bus bar 22. This brings the second opening protrusion 622 into contact with the second bus bar 22. This determines the positioning of the case 50 and the second bus bar 22. Furthermore, a space is formed between the second opening surface 620 and the second bus bar 22.
以上のように、第1実施形態の電流センサ20は、構成されている。次に、電流センサ20による電流検出および漏電異常判定について説明する。
The current sensor 20 of the first embodiment is configured as described above. Next, we will explain how the current sensor 20 detects current and determines an abnormal leakage current.
図1に示すように、第1バスバ21の一端は、充電器14の一端に接続されている。また、第1バスバ21の他端は、バッテリ12の一端に接続されている。さらに、第2バスバ22の一端は、バッテリ12の他端に接続されている。また、第2バスバ22の他端は、充電器14の他端に接続されている。このため、バッテリ12が充電器14により充電されるとき、図1および図3に示すように、充電器14から第1バスバ21を経由してバッテリ12に第1電流Ic1が流れる。また、バッテリ12から第2バスバ22を経由して充電器14に第2電流Ic2が流れる。
As shown in FIG. 1, one end of the first bus bar 21 is connected to one end of the charger 14. The other end of the first bus bar 21 is connected to one end of the battery 12. One end of the second bus bar 22 is connected to the other end of the battery 12. The other end of the second bus bar 22 is connected to the other end of the charger 14. Therefore, when the battery 12 is charged by the charger 14, as shown in FIG. 1 and FIG. 3, a first current Ic1 flows from the charger 14 to the battery 12 via the first bus bar 21. A second current Ic2 flows from the battery 12 to the charger 14 via the second bus bar 22.
このとき、第1バスバ21を流れる第1電流Ic1により、第1バスバ21を通るとともに長手方向DLに延びる軸を中心とする周方向の磁界が発生する。この発生した磁界により、磁力線がギャップ形成部26のうち第1バスバ21側を通過する。このギャップ形成部26を通過した磁力線の一部は、第1コア突起281およびコア穴29を経由してコア底部28のうち第1バスバ21側を通過する。また、このギャップ形成部26を通過した磁力線の一部は、第1端面261からギャップ265および検出素子31を経由して第2端面262を通過する。
At this time, the first current Ic1 flowing through the first bus bar 21 generates a circumferential magnetic field centered on an axis that passes through the first bus bar 21 and extends in the longitudinal direction DL. This generated magnetic field causes magnetic field lines to pass through the first bus bar 21 side of the gap forming portion 26. Some of the magnetic field lines that pass through this gap forming portion 26 pass through the first bus bar 21 side of the core bottom 28 via the first core protrusion 281 and the core hole 29. In addition, some of the magnetic field lines that pass through this gap forming portion 26 pass from the first end face 261 through the gap 265 and the detection element 31 to the second end face 262.
また、このとき、第2バスバ22を流れる第2電流Ic2により、第2バスバ22を通るとともに長手方向DLに延びる軸を中心とする周方向の磁界が発生する。この発生した磁界により、磁力線がギャップ形成部26のうち第2バスバ22側を通過する。このギャップ形成部26を通過した磁力線の一部は、第2コア突起282およびコア穴29を経由してコア底部28の第2バスバ22側を通過する。また、このギャップ形成部26を通過した磁力線の一部は、第2端面262からギャップ265および検出素子31を経由して第1端面261を通過する。
At this time, the second current Ic2 flowing through the second bus bar 22 generates a circumferential magnetic field centered on an axis that passes through the second bus bar 22 and extends in the longitudinal direction DL. This generated magnetic field causes magnetic field lines to pass through the second bus bar 22 side of the gap forming portion 26. Some of the magnetic field lines that pass through this gap forming portion 26 pass through the second core protrusion 282 and the core hole 29 to the second bus bar 22 side of the core bottom 28. Some of the magnetic field lines that pass through this gap forming portion 26 pass from the second end face 262 through the gap 265 and the detection element 31 to the first end face 261.
したがって、このとき、第1方向Dm1の磁力線と第2方向Dm2の磁力線とが検出素子31を通過するため、検出素子31は、第1方向Dm1の磁界と第2方向Dm2の磁界とが合わされた磁界の強さを検出する。これにより、検出素子31は、第1電流Ic1および第2電流Ic2を検出する。また、検出素子31は、この検出した磁界の強さに応じた信号を、リード線35および基板40を介して判定部45に出力する。
At this time, the magnetic field lines in the first direction Dm1 and the magnetic field lines in the second direction Dm2 pass through the detection element 31, so the detection element 31 detects the strength of the combined magnetic field of the first direction Dm1 and the second direction Dm2. As a result, the detection element 31 detects the first current Ic1 and the second current Ic2. The detection element 31 also outputs a signal corresponding to the strength of the detected magnetic field to the determination unit 45 via the lead wire 35 and the substrate 40.
ここで、バッテリ12および充電器14の間における電流の流れが正常である場合、例えば、漏電等が生じていない場合、バッテリ12、充電器14および電流センサ20が直列に接続されていることから、第1電流Ic1と第2電流Ic2とは同じである。このため、検出素子31にかかる第1方向Dm1の磁界の強さと第2方向Dm2の磁界の強さとが同じになる。さらに、第1方向Dm1は、第2方向Dm2と逆方向である。したがって、この場合、検出素子31にかかる第1方向Dm1の磁界と第2方向Dm2の磁界とが合わされた磁界の強さは、ゼロになる。
Here, if the current flow between the battery 12 and the charger 14 is normal, for example, if no leakage current or the like is occurring, the battery 12, charger 14, and current sensor 20 are connected in series, and therefore the first current Ic1 and the second current Ic2 are the same. Therefore, the strength of the magnetic field in the first direction Dm1 and the strength of the magnetic field in the second direction Dm2 applied to the detection element 31 are the same. Furthermore, the first direction Dm1 is opposite to the second direction Dm2. Therefore, in this case, the strength of the combined magnetic field of the magnetic field in the first direction Dm1 and the magnetic field in the second direction Dm2 applied to the detection element 31 is zero.
また、バッテリ12および充電器14の間において漏電が生じた場合、第1電流Ic1と第2電流Ic2とが異なる。このため、検出素子31にかかる第1方向Dm1の磁界の強さと第2方向Dm2の磁界の強さとが異なる。よって、検出素子31にかかる第1方向Dm1の磁界と第2方向Dm2の磁界とが合わされた磁界の強さの絶対値がゼロよりも大きくなる。
Furthermore, if a leakage current occurs between the battery 12 and the charger 14, the first current Ic1 and the second current Ic2 are different. Therefore, the strength of the magnetic field in the first direction Dm1 and the strength of the magnetic field in the second direction Dm2 applied to the detection element 31 are different. Therefore, the absolute value of the strength of the magnetic field obtained by combining the magnetic fields in the first direction Dm1 and the second direction Dm2 applied to the detection element 31 becomes greater than zero.
したがって、判定部45は、検出素子31からの信号に基づいて漏電量M_leakを算出するとともに、この算出した漏電量M_leakと閾値M_leak_thとを比較する。これにより、判定部45は、バッテリ12および充電器14の間において漏電異常があるか否かを判定する。なお、閾値M_leak_thは、漏電異常が判定されるように、実験やシミュレーション等により設定される。
The determination unit 45 therefore calculates the leakage current amount M_leak based on the signal from the detection element 31, and compares this calculated leakage current amount M_leak with the threshold value M_leak_th. In this way, the determination unit 45 determines whether or not there is a leakage current abnormality between the battery 12 and the charger 14. The threshold value M_leak_th is set by experiment, simulation, etc. so that a leakage current abnormality can be determined.
具体的には、判定部45は、検出素子31の信号とマップとから、漏電量M_leakを算出する。なお、漏電量M_leakを算出するためのマップは、実験やシミュレーション等により設定されている。例えば、このマップにより、上記絶対値が大きくなることに伴って、算出される漏電量M_leakは、大きくなる。
Specifically, the determination unit 45 calculates the leakage current amount M_leak from the signal of the detection element 31 and the map. The map for calculating the leakage current amount M_leak is set by experiments, simulations, etc. For example, with this map, the calculated leakage current amount M_leak increases as the absolute value increases.
そして、判定部45は、この算出した漏電量M_leakが閾値M_leak_th未満であるとき、漏電異常がない、すなわち、バッテリ12および充電器14の間における電流の流れが正常であると判定する。また、判定部45は、この算出した漏電量M_leakが閾値M_leak_th以上であるとき、バッテリ12および充電器14の間において漏電異常があると判定する。さらに、判定部45は、この判定結果に応じた信号を、図示しないターミナル等を介して、図示しない警報装置等の外部装置に出力する。
Then, when the calculated leakage current amount M_leak is less than the threshold value M_leak_th, the determination unit 45 determines that there is no leakage current abnormality, i.e., the current flow between the battery 12 and the charger 14 is normal. Furthermore, when the calculated leakage current amount M_leak is equal to or greater than the threshold value M_leak_th, the determination unit 45 determines that there is a leakage current abnormality between the battery 12 and the charger 14. Furthermore, the determination unit 45 outputs a signal according to this determination result to an external device such as an alarm device (not shown) via a terminal (not shown) or the like.
以上のように、電流センサ20は、電流検出および漏電異常判定を行う。次に、電流センサ20により、電流検出精度の低下が抑制されることについて説明する。
As described above, the current sensor 20 detects current and determines leakage current anomalies. Next, we will explain how the current sensor 20 prevents a decrease in current detection accuracy.
ここで、図4に示すように、比較例として、第1コア突起281および第2コア突起282が形成されていないとする。この場合、ギャップ265内において、第1電流Ic1および第2電流Ic2によって発生する磁界の方向が互いに逆方向となる箇所が生じることから、2つの磁界が互いに打ち消し合う箇所が生じる。また、ギャップ265内において、第1バスバ21および第2バスバ22に流れる電流によって発生する磁界の方向がギャップ265からコア底部28に向かう方向となる箇所が生じることから、2つの磁界が互いに打ち消し合いにくい箇所が生じる。ここでは、第1端面261および第2端面262のコア穴29側の端周辺の磁界密度が比較的大きくなる。これらのため、ギャップ265内の磁界の勾配が大きくなる。これにより、検出素子31の位置がずれることで、検出素子31による磁界の強さの検出精度が低下する。したがって、このとき、電流検出精度が低下する。なお、図4において、2つの磁界が互いに打ち消し合う箇所および打ち消し合いにくい箇所を示すため、磁界密度が比較的大きい箇所がドット柄で示されている。
Here, as shown in FIG. 4, as a comparative example, the first core protrusion 281 and the second core protrusion 282 are not formed. In this case, in the gap 265, there are places where the directions of the magnetic fields generated by the first current Ic1 and the second current Ic2 are opposite to each other, and therefore there are places where the two magnetic fields cancel each other out. In addition, in the gap 265, there are places where the direction of the magnetic field generated by the current flowing through the first bus bar 21 and the second bus bar 22 is from the gap 265 toward the core bottom 28, and therefore there are places where the two magnetic fields do not cancel each other out easily. Here, the magnetic field density around the ends of the first end face 261 and the second end face 262 on the core hole 29 side is relatively large. For these reasons, the gradient of the magnetic field in the gap 265 is large. As a result, the position of the detection element 31 is shifted, and the detection accuracy of the magnetic field strength by the detection element 31 is reduced. Therefore, at this time, the current detection accuracy is reduced. In Figure 4, areas where the magnetic field density is relatively high are shown with a dotted pattern to show areas where the two magnetic fields cancel each other out and areas where they do not cancel each other out easily.
これに対して、本実施形態の電流センサ20では、ギャップ形成部26は、第1コア内面271、第1コア突起281、第2コア内面272および第2コア突起282を含む。第1コア内面271および第2コア内面272は、厚み方向DT内側を向いている面である。第1コア突起281は、第1コア内面271のうち、第1面S1および第2面S2の間の範囲から厚み方向DTに突出している。第2コア突起282は、第2コア内面272、第1面S1および第2面S2の間の範囲から厚み方向DTに突出している。
In contrast, in the current sensor 20 of this embodiment, the gap forming portion 26 includes a first core inner surface 271, a first core protrusion 281, a second core inner surface 272, and a second core protrusion 282. The first core inner surface 271 and the second core inner surface 272 are surfaces facing inward in the thickness direction DT. The first core protrusion 281 protrudes in the thickness direction DT from the range of the first core inner surface 271 between the first surface S1 and the second surface S2. The second core protrusion 282 protrudes in the thickness direction DT from the range of the second core inner surface 272, the first surface S1, and the second surface S2.
これにより、ギャップ形成部26のうち第1バスバ21側を通過した磁力線の一部は、第1コア突起281を通過する。第1コア突起281を通過した磁力線は、コア穴29およびコア底部28の第1バスバ21側を通過する。このため、第1電流Ic1および第2電流Ic2によって発生する磁界が互いに打ち消し合いにくい箇所が、図5に示すように、第1コア突起281周辺となる。なお、図5において、2つの磁界が互いに打ち消し合う箇所および打ち消し合いにくい箇所を示すため、磁界密度が比較的大きい箇所がドット柄で示されている。
As a result, some of the magnetic field lines that pass through the first bus bar 21 side of the gap forming portion 26 pass through the first core protrusion 281. The magnetic field lines that pass through the first core protrusion 281 pass through the core hole 29 and the first bus bar 21 side of the core bottom 28. For this reason, the area where the magnetic fields generated by the first current Ic1 and the second current Ic2 do not cancel each other out easily is around the first core protrusion 281, as shown in FIG. 5. Note that in FIG. 5, areas where the magnetic field density is relatively high are shown with a dot pattern to show the areas where the two magnetic fields cancel each other out and the areas where they do not cancel each other out easily.
また、ギャップ形成部26のうち第2バスバ22側を通過した磁力線の一部は、第2コア突起282を通過する。第2コア突起282を通過した磁力線は、コア穴29およびコア底部28の第2バスバ22側を通過する。このため、第1電流Ic1および第2電流Ic2によって発生する磁界が互いに打ち消し合いにくい箇所が、第2コア突起282周辺となる。
In addition, some of the magnetic field lines that pass through the second bus bar 22 side of the gap forming portion 26 pass through the second core protrusion 282. The magnetic field lines that pass through the second core protrusion 282 pass through the core hole 29 and the second bus bar 22 side of the core bottom 28. For this reason, the area around the second core protrusion 282 is where the magnetic fields generated by the first current Ic1 and the second current Ic2 are unlikely to cancel each other out.
さらに、第1コア突起281は、第1コア内面271から厚み方向DTに突出しているとともに、第2コア突起282が第2コア内面272から厚み方向DTに突出している。このため、検出素子31は、第1コア突起281および第2コア突起282が形成されていない場合と比較して、第1電流Ic1および第2電流Ic2によって発生する磁界が互いに打ち消し合いにくい箇所から離れやすい。
Furthermore, the first core protrusion 281 protrudes in the thickness direction DT from the first core inner surface 271, and the second core protrusion 282 protrudes in the thickness direction DT from the second core inner surface 272. Therefore, the detection element 31 is more likely to move away from a location where the magnetic fields generated by the first current Ic1 and the second current Ic2 are less likely to cancel each other out, compared to a case in which the first core protrusion 281 and the second core protrusion 282 are not formed.
したがって、図6に示すように、幅方向DWにおける検出素子31の位置が基準位置からずれることによって生じる検出素子31の信号値の変化が、第1コア突起281および第2コア突起282が形成されていない場合と比較して小さい。よって、検出素子31による磁界の強さの検出精度が低下することが抑制されるため、電流検出精度の低下が抑制される。なお、図6において、ΔXは、幅方向DWにおける検出素子31の基準位置からのずれ量である。また、ここでは、第1方向Dm1のずれ量が、ΔXの正方向のずれ量とされている。さらに、検出素子31の基準位置は、例えば、ギャップ265の中心である。Sは、検出素子31の信号値である。Sbは、基準位置における検出素子31の信号値である。ΔSは、基準位置における検出素子31の信号値に対する基準位置からのずれによって生じる信号値の変化の割合であって、(S-Sb)/Sbで表される。第1コア突起281および第2コア突起282が形成されていない場合のΔXに対するΔSがREFと破線とで示されている。第1コア突起281および第2コア突起282が形成されている場合のΔXに対するΔSが実線で示されている。
6, the change in the signal value of the detection element 31 caused by the position of the detection element 31 in the width direction DW being shifted from the reference position is smaller than when the first core protrusion 281 and the second core protrusion 282 are not formed. This suppresses the deterioration of the detection accuracy of the magnetic field strength by the detection element 31, and suppresses the deterioration of the current detection accuracy. In FIG. 6, ΔX is the amount of deviation of the detection element 31 from the reference position in the width direction DW. Also, here, the amount of deviation in the first direction Dm1 is the amount of deviation in the positive direction of ΔX. Furthermore, the reference position of the detection element 31 is, for example, the center of the gap 265. S is the signal value of the detection element 31. Sb is the signal value of the detection element 31 at the reference position. ΔS is the ratio of the change in the signal value caused by the deviation from the reference position to the signal value of the detection element 31 at the reference position, and is expressed as (S-Sb)/Sb. REF and a dashed line show ΔS versus ΔX when the first core projection 281 and the second core projection 282 are not formed. A solid line shows ΔS versus ΔX when the first core projection 281 and the second core projection 282 are formed.
また、電流センサ20では、下記に記載する効果も奏する。
The current sensor 20 also provides the following advantages:
[1-1]第1コア突起281は、厚み方向DTにおいてコア底部28と離れている。また、第2コア突起282は、厚み方向DTにおいてコア底部28と離れている。
[1-1] The first core protrusion 281 is separated from the core bottom 28 in the thickness direction DT. The second core protrusion 282 is separated from the core bottom 28 in the thickness direction DT.
これにより、第1コア突起281とコア底部28とが接触している場合と比較して、第1コア突起281およびコア底部28の間の磁気抵抗が大きくなる。このため、ギャップ形成部26のうち第1バスバ21側を通過した磁力線は、第1コア突起281を通過するだけでなく、第1端面261からギャップ265および検出素子31を経由して第2端面262を通過しやすくなる。また、第2コア突起282とコア底部28とが接触している場合と比較して、第2コア突起282およびコア底部28の間の磁気抵抗が大きくなる。このため、ギャップ形成部26のうち第2バスバ22側を通過した磁力線は、第2コア突起282を通過するだけでなく、第2端面262からギャップ265および検出素子31を経由して第1端面261を通過しやすくなる。したがって、検出素子31を通過する磁力線の数が多くなることから、検出素子31の感度が大きくなる。このため、SNRが大きくなる。よって、検出素子31による磁界の強さの検出精度の低下が抑制されることから、電流検出精度の低下が抑制される。なお、SNRは、Signal Noise Ratioの略である。
Therefore, the magnetic resistance between the first core protrusion 281 and the core bottom 28 is larger than when the first core protrusion 281 and the core bottom 28 are in contact. Therefore, the magnetic field lines that pass through the first bus bar 21 side of the gap forming portion 26 not only pass through the first core protrusion 281, but also easily pass from the first end face 261 to the second end face 262 via the gap 265 and the detection element 31. Also, compared to when the second core protrusion 282 and the core bottom 28 are in contact, the magnetic resistance between the second core protrusion 282 and the core bottom 28 is larger. Therefore, the magnetic field lines that pass through the second bus bar 22 side of the gap forming portion 26 not only pass through the second core protrusion 282, but also easily pass from the second end face 262 to the first end face 261 via the gap 265 and the detection element 31. Therefore, the number of magnetic field lines that pass through the detection element 31 increases, and the sensitivity of the detection element 31 increases. This increases the SNR. This prevents a decrease in the accuracy of the detection of the magnetic field strength by the detection element 31, and therefore prevents a decrease in the accuracy of the current detection. Note that SNR is an abbreviation for Signal Noise Ratio.
[1-2]第1突起幅Wp1は、第1距離Wb1以下とされている、すなわち、Wp1≦Wb1とされている。また、第2突起幅Wp2は、第2距離Wb2以下とされている、すなわち、Wp2≦Wb2とされている。
[1-2] The first protrusion width Wp1 is equal to or less than the first distance Wb1, i.e., Wp1≦Wb1. The second protrusion width Wp2 is equal to or less than the second distance Wb2, i.e., Wp2≦Wb2.
これにより、第1コア突起281の磁気抵抗が、Wp1>Wb1である場合と比較して大きくなる。このため、ギャップ形成部26のうち第1バスバ21側を通過した磁力線は、第1コア突起281を通過するだけでなく、第1端面261からギャップ265および検出素子31を経由して第2端面262を通過しやすくなる。また、第2コア突起282の磁気抵抗が、Wp2>Wb2である場合と比較して大きくなる。このため、ギャップ形成部26のうち第2バスバ22側を通過した磁力線は、第2コア突起282を通過するだけでなく、第2端面262からギャップ265および検出素子31を経由して第1端面261を通過しやすくなる。したがって、検出素子31を通過する磁力線の数が多くなることから、検出素子31の感度が大きくなる。このため、SNRが大きくなる。よって、検出素子31による磁界の強さの検出精度の低下が抑制されることから、電流検出精度の低下が抑制される。
As a result, the magnetic resistance of the first core protrusion 281 is larger than when Wp1>Wb1. Therefore, the magnetic field lines that pass through the first bus bar 21 side of the gap forming portion 26 not only pass through the first core protrusion 281, but also easily pass from the first end face 261 to the second end face 262 via the gap 265 and the detection element 31. In addition, the magnetic resistance of the second core protrusion 282 is larger than when Wp2>Wb2. Therefore, the magnetic field lines that pass through the second bus bar 22 side of the gap forming portion 26 not only pass through the second core protrusion 282, but also easily pass from the second end face 262 to the first end face 261 via the gap 265 and the detection element 31. Therefore, the number of magnetic field lines that pass through the detection element 31 increases, and the sensitivity of the detection element 31 increases. Therefore, the SNR increases. Therefore, the deterioration of the detection accuracy of the magnetic field strength by the detection element 31 is suppressed, and the deterioration of the current detection accuracy is suppressed.
[1-3]検出素子31は、ギャップ中心面So_Gap上に配置されている。これにより、検出素子31は、ギャップ中心面So_Gapよりもコア穴29側に配置されている場合と比較して、第1コア突起281および第2コア突起282と離れやすい。このため、検出素子31は、第1電流Ic1および第2電流Ic2によって発生する磁界が互いに打ち消し合いにくい箇所から離れやすい。したがって、検出素子31による磁界の強さの検出精度が低下することが抑制されるため、電流検出精度の低下が抑制される。
[1-3] The detection element 31 is disposed on the gap center plane So_Gap. This makes it easier for the detection element 31 to separate from the first core protrusion 281 and the second core protrusion 282 compared to when the detection element 31 is disposed closer to the core hole 29 than the gap center plane So_Gap. For this reason, the detection element 31 is more likely to separate from a location where the magnetic fields generated by the first current Ic1 and the second current Ic2 are less likely to cancel each other out. This prevents a decrease in the accuracy of the detection of the magnetic field strength by the detection element 31, and therefore prevents a decrease in current detection accuracy.
[1-4]判定部45は、検出素子31から出力された信号に基づいて、バッテリ12および充電器14の間において異常があるか否かを判定する。これにより、バッテリ12および充電器14の間において異常が検出される。
[1-4] The determination unit 45 determines whether or not there is an abnormality between the battery 12 and the charger 14 based on the signal output from the detection element 31. As a result, an abnormality is detected between the battery 12 and the charger 14.
[1-5]内面間距離Tchは、ギャップ距離Gapよりも大きくなっている、すなわち、Tch>Gapとされている。
[1-5] The inner surface distance Tch is greater than the gap distance Gap, i.e., Tch>Gap.
これにより、内面間距離Tchがギャップ距離Gap以下である場合と比較して、コア穴29の磁気抵抗が大きくなる。このため、ギャップ形成部26のうち第1バスバ21側を通過した磁力線は、コア穴29を通過するだけでなく、第1端面261からギャップ265および検出素子31を経由して第2端面262を通過しやすくなる。また、ギャップ形成部26のうち第2バスバ22側を通過した磁力線は、コア穴29を通過するだけでなく、第2端面262からギャップ265および検出素子31を経由して第1端面261を通過しやすくなる。
As a result, the magnetic resistance of the core hole 29 is greater than when the inner surface distance Tch is equal to or less than the gap distance Gap. Therefore, the magnetic field lines that pass through the first bus bar 21 side of the gap forming portion 26 not only pass through the core hole 29, but also tend to pass from the first end face 261 to the second end face 262 via the gap 265 and the detection element 31. Also, the magnetic field lines that pass through the second bus bar 22 side of the gap forming portion 26 not only pass through the core hole 29, but also tend to pass from the second end face 262 to the first end face 261 via the gap 265 and the detection element 31.
したがって、検出素子31を通過する磁力線の数が多くなることから、検出素子31の感度が大きくなるため、SNRが大きくなる。よって、図7に示すように、幅方向DWにおける検出素子31の位置が基準位置からずれることによって生じる検出素子31の信号値の変化が、内面間距離Tchがギャップ距離Gap以下である場合と比較して小さい。したがって、検出素子31による磁界の強さの検出精度が低下することが抑制されるため、電流検出精度の低下が抑制される。なお、図7において、ΔX、S、Sb、ΔSは、上記と同様である。また、内面間距離Tchがギャップ距離Gap以下である場合、すなわち、Tch≦Gapである場合のΔXに対するΔSがREFと破線とで示されている。さらに、内面間距離Tchがギャップ距離Gapよりも大きい場合、すなわち、Tch>Gapである場合のΔXに対するΔSが実線で示されている。
Therefore, the number of magnetic field lines passing through the detection element 31 increases, and the sensitivity of the detection element 31 increases, resulting in a higher SNR. As a result, as shown in FIG. 7, the change in the signal value of the detection element 31 caused by the position of the detection element 31 in the width direction DW shifting from the reference position is smaller than when the inner surface distance Tch is equal to or less than the gap distance Gap. Therefore, the detection accuracy of the magnetic field strength by the detection element 31 is suppressed from decreasing, and the current detection accuracy is suppressed from decreasing. In FIG. 7, ΔX, S, Sb, and ΔS are the same as above. Also, when the inner surface distance Tch is equal to or less than the gap distance Gap, that is, when Tch≦Gap, ΔS with respect to ΔX is shown by REF and a dashed line. Furthermore, when the inner surface distance Tch is greater than the gap distance Gap, that is, when Tch>Gap, ΔS with respect to ΔX is shown by a solid line.
[1-6]横部間距離Wsiは、内面間距離Tchよりも大きくなっている、すなわち、Wsi>Tchとされている。
[1-6] The distance between the lateral portions Wsi is greater than the distance between the inner surfaces Tch, i.e., Wsi>Tch.
これにより、横部間距離Wsiが内面間距離Tch以下である場合と比較して、ギャップ形成部26における磁界の幅方向DWの成分が大きくなる。このため、ギャップ形成部26のうち第1バスバ21側を通過した磁力線は、第1端面261からギャップ265および検出素子31を経由して第2端面262を通過しやすくなる。また、ギャップ形成部26のうち第2バスバ22側を通過した磁力線は、第2端面262からギャップ265および検出素子31を経由して第1端面261を通過しやすくなる。したがって、検出素子31を通過する磁力線の数が多くなることから、検出素子31の感度が大きくなる。このため、SNRが大きくなる。よって、検出素子31による磁界の強さの検出精度の低下が抑制されることから、電流検出精度の低下が抑制される。
As a result, the width direction DW component of the magnetic field in the gap forming portion 26 becomes larger compared to when the horizontal portion distance Wsi is equal to or smaller than the inner surface distance Tch. Therefore, the magnetic field lines that pass through the first bus bar 21 side of the gap forming portion 26 tend to pass from the first end face 261 to the second end face 262 via the gap 265 and the detection element 31. Also, the magnetic field lines that pass through the second bus bar 22 side of the gap forming portion 26 tend to pass from the second end face 262 to the first end face 261 via the gap 265 and the detection element 31. Therefore, the number of magnetic field lines passing through the detection element 31 increases, and the sensitivity of the detection element 31 increases. Therefore, the SNR increases. Therefore, the deterioration of the detection accuracy of the magnetic field strength by the detection element 31 is suppressed, and the deterioration of the current detection accuracy is suppressed.
[1-7]横内側角部C_in_topは、R形状になっている。また、底内側角部C_in_btmは、R形状になっている。
[1-7] The lateral inner corner C_in_top is rounded. The bottom inner corner C_in_btm is rounded.
これにより、コア25の内部の磁路長が短くなることから、コア25の内部の反磁界の強さが大きくなる。このため、コア25の磁束密度が抑制される。したがって、コア25の磁気飽和が抑制される。
As a result, the magnetic path length inside the core 25 is shortened, and the strength of the demagnetizing field inside the core 25 is increased. This suppresses the magnetic flux density of the core 25. This suppresses magnetic saturation of the core 25.
[1-8]ケース50は、第1開口部61および第2開口部62を有する。第1開口部61は、第1開口部面610および第1開口部突起612を含む。第1開口部突起612が第1バスバ21と接触していることにより、ケース50と第1バスバ21との位置決めがされているとともに、第1開口部面610および第1バスバ21の間に空間が形成されている。第2開口部62は、第2開口部面620および第2開口部突起622を含む。第2開口部突起622が第2バスバ22と接触していることにより、ケース50と第2バスバ22との位置決めがされているとともに、第2開口部面620および第2バスバ22の間に空間が形成されている。これらの空間により、第1バスバ21および第2バスバ22に電流が流れることによって発生した熱がケース50に伝わりにくくなる。このため、ケース50から検出素子31に熱が伝わりにくくなる。したがって、検出素子31の特性変化および故障が抑制される。
[1-8] The case 50 has a first opening 61 and a second opening 62. The first opening 61 includes a first opening surface 610 and a first opening protrusion 612. The first opening protrusion 612 is in contact with the first bus bar 21, thereby positioning the case 50 and the first bus bar 21, and a space is formed between the first opening surface 610 and the first bus bar 21. The second opening 62 includes a second opening surface 620 and a second opening protrusion 622. The second opening protrusion 622 is in contact with the second bus bar 22, thereby positioning the case 50 and the second bus bar 22, and a space is formed between the second opening surface 620 and the second bus bar 22. These spaces make it difficult for heat generated by current flowing through the first bus bar 21 and the second bus bar 22 to be transmitted to the case 50. As a result, heat is difficult to be transmitted from the case 50 to the detection element 31. This prevents characteristic changes and failures of the detection element 31.
(第2実施形態)
第2実施形態では、検出素子31の配置が第1実施形態と異なる。これ以外は、第1実施形態と同様である。 Second Embodiment
The second embodiment is different from the first embodiment in the arrangement of thedetection elements 31. The rest is similar to the first embodiment.
第2実施形態では、検出素子31の配置が第1実施形態と異なる。これ以外は、第1実施形態と同様である。 Second Embodiment
The second embodiment is different from the first embodiment in the arrangement of the
検出素子31は、図8に示すように、ギャップ中心面So_Gapよりもコア穴29とは反対側に配置されている。
As shown in FIG. 8, the detection element 31 is positioned on the opposite side of the gap center plane So_Gap from the core hole 29.
以上のように、第2実施形態の電流センサ20は、構成されている。この第2実施形態においても、第1実施形態と同様の効果を奏する。
The current sensor 20 of the second embodiment is configured as described above. This second embodiment also provides the same effects as the first embodiment.
(第3実施形態)
第3実施形態では、検出素子31の配置が第1実施形態と異なる。これ以外は、第1実施形態と同様である。 Third Embodiment
The third embodiment differs from the first embodiment in the arrangement of thedetection elements 31. The rest is similar to the first embodiment.
第3実施形態では、検出素子31の配置が第1実施形態と異なる。これ以外は、第1実施形態と同様である。 Third Embodiment
The third embodiment differs from the first embodiment in the arrangement of the
ここで、図9に示すように、第1コア突起281は、第1突起面2810を含む。第1突起面2810は、幅方向DWを向いている。また、第1突起面2810は、幅方向DWと直交する面であって、幅方向DWと交差する面に対応する。さらに、ここでは、第1突起面2810は、第1端面261と同一面上に位置している。なお、第1突起面2810は、第1端面261と同一面上に位置していることに限定されないで、第1端面261と同一面上に位置していなくてもよい。
Here, as shown in FIG. 9, the first core protrusion 281 includes a first protrusion surface 2810. The first protrusion surface 2810 faces the width direction DW. The first protrusion surface 2810 is a surface perpendicular to the width direction DW and corresponds to a surface that intersects with the width direction DW. Furthermore, here, the first protrusion surface 2810 is located on the same plane as the first end surface 261. Note that the first protrusion surface 2810 is not limited to being located on the same plane as the first end surface 261, and does not have to be located on the same plane as the first end surface 261.
また、第2コア突起282は、第2突起面2820を含む。第2突起面2820は、幅方向DWを向いている。さらに、第2突起面2820は、幅方向DWと直交する面であって、幅方向DWと交差する面に対応する。また、第2突起面2820は、第1端面261および第1突起面2810と幅方向DWに対向している。さらに、ここでは、第2突起面2820は、第2端面262と同一面上に位置している。なお、第2突起面2820は、第2端面262と同一面上に位置していることに限定されないで、第2端面262と同一面上に位置していなくてもよい。
The second core projection 282 also includes a second projection surface 2820. The second projection surface 2820 faces the width direction DW. Furthermore, the second projection surface 2820 is a surface perpendicular to the width direction DW and corresponds to a surface intersecting the width direction DW. The second projection surface 2820 also faces the first end surface 261 and the first projection surface 2810 in the width direction DW. Furthermore, here, the second projection surface 2820 is located on the same plane as the second end surface 262. Note that the second projection surface 2820 is not limited to being located on the same plane as the second end surface 262, and does not have to be located on the same plane as the second end surface 262.
また、ここで、第1突起面2810および第1端面261を合わせた面の厚み方向DTにおける中心を通るとともに厚み方向DTと直交する面を中心面Sopとする。そして、検出素子31は、中心面Sop上に配置されている。なお、中心面Sopは、第2突起面2820および第2端面262を合わせた面の厚み方向DTにおける中心を通るとともに厚み方向DTと直交する面であってもよい。
Here, the plane that passes through the center in the thickness direction DT of the surface where the first protrusion surface 2810 and the first end surface 261 are joined and is perpendicular to the thickness direction DT is defined as the central plane Sop. The detection element 31 is disposed on the central plane Sop. Note that the central plane Sop may be a plane that passes through the center in the thickness direction DT of the surface where the second protrusion surface 2820 and the second end surface 262 are joined and is perpendicular to the thickness direction DT.
以上のように、第3実施形態の電流センサ20は、構成されている。この第3実施形態においても、第1実施形態と同様の効果を奏する。
The current sensor 20 of the third embodiment is configured as described above. The third embodiment also provides the same effects as the first embodiment.
(第4実施形態)
第4実施形態では、検出素子31の配置が第3実施形態と異なる。これ以外は、第3実施形態と同様である。 Fourth Embodiment
The fourth embodiment differs from the third embodiment in the arrangement of thedetection elements 31. The rest is similar to the third embodiment.
第4実施形態では、検出素子31の配置が第3実施形態と異なる。これ以外は、第3実施形態と同様である。 Fourth Embodiment
The fourth embodiment differs from the third embodiment in the arrangement of the
検出素子31は、図10に示すように、中心面Sopよりもコア穴29とは反対側に配置されている。
As shown in FIG. 10, the detection element 31 is positioned on the opposite side of the center plane Sop from the core hole 29.
以上のように、第4実施形態の電流センサ20は、構成されている。この第4実施形態においても、第3実施形態と同様の効果を奏する。
The current sensor 20 of the fourth embodiment is configured as described above. This fourth embodiment also provides the same effects as the third embodiment.
(第5実施形態)
第5実施形態では、コア25の形態が第1実施形態と異なる。これ以外は、第1実施形態と同様である。 Fifth Embodiment
The fifth embodiment is different from the first embodiment in the shape of thecore 25. The rest is similar to the first embodiment.
第5実施形態では、コア25の形態が第1実施形態と異なる。これ以外は、第1実施形態と同様である。 Fifth Embodiment
The fifth embodiment is different from the first embodiment in the shape of the
具体的には、図11に示すように、ギャップ形成部26は、第1コア突起281および第2コア突起282を含まない。また、コア底部28は、底部内面280に加えて、凹部605を含む。
Specifically, as shown in FIG. 11, the gap forming portion 26 does not include a first core protrusion 281 and a second core protrusion 282. Furthermore, the core bottom 28 includes a recess 605 in addition to the bottom inner surface 280.
ここで、幅方向DWにおける第1バスバ21の中心を通るとともに幅方向DWと直交する面を第1中心面Sob1とする。さらに、幅方向DWにおける第2バスバ22の中心を通るとともに幅方向DWと直交する面を第2中心面Sob2とする。
Here, the plane that passes through the center of the first bus bar 21 in the width direction DW and is perpendicular to the width direction DW is defined as the first center plane Sob1. Furthermore, the plane that passes through the center of the second bus bar 22 in the width direction DW and is perpendicular to the width direction DW is defined as the second center plane Sob2.
そして、凹部605は、底部内面280のうち第1中心面Sob1および第2中心面Sob2の間の範囲から厚み方向DTに凹んでいる。
The recess 605 is recessed in the thickness direction DT from the range of the bottom inner surface 280 between the first center plane Sob1 and the second center plane Sob2.
また、ここで、幅方向DWにおける凹部605の最大長さを凹部幅Wcrとする。さらに、幅方向DWにおける第1中心面Sob1から第2中心面Sob2までの距離を中心間距離Wobとする。また、厚み方向DTにおけるギャップ形成部26の内面から凹部605の底面606までの最大距離を凹部距離Tcbとする。
Here, the maximum length of the recess 605 in the width direction DW is the recess width Wcr. Furthermore, the distance from the first center plane Sob1 to the second center plane Sob2 in the width direction DW is the center-to-center distance Wob. Furthermore, the maximum distance from the inner surface of the gap forming portion 26 to the bottom surface 606 of the recess 605 in the thickness direction DT is the recess distance Tcb.
そして、凹部幅Wcrは、中心間距離Wob以下とされている、すなわち、Wcr≦Wobとされている。さらに、凹部距離Tcbは、ギャップ距離Gapよりも大きくなっている、すなわち、Tcb>Gapとされている。
The recess width Wcr is equal to or less than the center-to-center distance Wob, i.e., Wcr≦Wob. Furthermore, the recess distance Tcb is greater than the gap distance Gap, i.e., Tcb>Gap.
以上のように、第5実施形態の電流センサ20は、構成されている。この第5実施形態においても、第1実施形態と同様の効果を奏する。また、第5実施形態では、下記に記載する効果も奏する。
The current sensor 20 of the fifth embodiment is configured as described above. The fifth embodiment also provides the same effects as the first embodiment. The fifth embodiment also provides the effects described below.
[2]コア底部28は、底部内面280と、凹部605と、を含む。底部内面280は、厚み方向DTを向いている面である。凹部605は、底部内面280のうち、第1中心面Sob1および第2中心面Sob2の間の範囲から厚み方向DTに凹んでいる。また、凹部幅Wcrは、中心間距離Wob以下とされている。さらに、凹部距離Tcbは、ギャップ距離Gapよりも大きくなっている。
[2] The core bottom 28 includes a bottom inner surface 280 and a recess 605. The bottom inner surface 280 faces the thickness direction DT. The recess 605 is recessed in the thickness direction DT from the range of the bottom inner surface 280 between the first center plane Sob1 and the second center plane Sob2. The recess width Wcr is equal to or smaller than the center distance Wob. Furthermore, the recess distance Tcb is greater than the gap distance Gap.
これにより、コア穴29の磁気抵抗が、凹部605が形成されていない場合と比較して大きくなる。このため、ギャップ形成部26のうち第1バスバ21側を通過した磁力線は、コア穴29を通過するだけでなく、第1端面261からギャップ265および検出素子31を経由して第2端面262を通過しやすくなる。また、ギャップ形成部26のうち第2バスバ22側を通過した磁力線は、コア穴29を通過するだけでなく、第2端面262からギャップ265および検出素子31を経由して第1端面261を通過しやすくなる。したがって、検出素子31を通過する磁力線の数が多くなることから、検出素子31の感度が大きくなる。このため、SNRが大きくなる。よって、検出素子31による磁界の強さの検出精度の低下が抑制されることから、電流検出精度の低下が抑制される。
As a result, the magnetic resistance of the core hole 29 is larger than when the recess 605 is not formed. Therefore, the magnetic field lines that pass through the first bus bar 21 side of the gap forming portion 26 not only pass through the core hole 29, but also easily pass from the first end face 261 to the second end face 262 via the gap 265 and the detection element 31. Also, the magnetic field lines that pass through the second bus bar 22 side of the gap forming portion 26 not only pass through the core hole 29, but also easily pass from the second end face 262 to the first end face 261 via the gap 265 and the detection element 31. Therefore, the number of magnetic field lines passing through the detection element 31 increases, and the sensitivity of the detection element 31 increases. Therefore, the SNR increases. Therefore, the deterioration of the detection accuracy of the magnetic field strength by the detection element 31 is suppressed, and the deterioration of the current detection accuracy is suppressed.
(第6実施形態)
第6実施形態では、凹部605の形態が第5実施形態と異なる。これ以外は、第5実施形態と同様である。 Sixth Embodiment
The sixth embodiment is different from the fifth embodiment in the shape of therecess 605. The rest is the same as the fifth embodiment.
第6実施形態では、凹部605の形態が第5実施形態と異なる。これ以外は、第5実施形態と同様である。 Sixth Embodiment
The sixth embodiment is different from the fifth embodiment in the shape of the
具体的には、図12に示すように、凹部605は、底部内面280のうち第1面S1および第2面S2の間の範囲から厚み方向DTに凹んでいる。
Specifically, as shown in FIG. 12, the recess 605 is recessed in the thickness direction DT from the area between the first surface S1 and the second surface S2 of the bottom inner surface 280.
ここで、幅方向DWにおける第1対向面211から第2対向面222までの最大距離をバスバ間距離Wbbとする。そして、凹部幅Wcrは、バスバ間距離Wbb以下とされている、すなわち、Wcr≦Wbbとされている。
Here, the maximum distance from the first opposing surface 211 to the second opposing surface 222 in the width direction DW is the busbar distance Wbb. The recess width Wcr is set to be less than or equal to the busbar distance Wbb, i.e., Wcr≦Wbb.
以上のように、第6実施形態の電流センサ20は、構成されている。この第6実施形態においても、第5実施形態と同様の効果を奏する。
The current sensor 20 of the sixth embodiment is configured as described above. The sixth embodiment also achieves the same effects as the fifth embodiment.
(第7実施形態)
第7実施形態では、凹部605の形態が第5実施形態と異なる。これ以外は、第5実施形態と同様である。 Seventh Embodiment
The seventh embodiment is different from the fifth embodiment in the shape of therecess 605. The rest is similar to the fifth embodiment.
第7実施形態では、凹部605の形態が第5実施形態と異なる。これ以外は、第5実施形態と同様である。 Seventh Embodiment
The seventh embodiment is different from the fifth embodiment in the shape of the
ここで、図13に示すように、第1端面261およびコア底部28を通るとともに幅方向DWと直交する面を第1通過面Si1とする。また、第2端面262およびコア底部28を通るとともに幅方向DWと直交する面を第2通過面Si2とする。
Here, as shown in FIG. 13, a plane that passes through the first end face 261 and the core bottom 28 and is perpendicular to the width direction DW is defined as a first passing plane Si1. Also, a plane that passes through the second end face 262 and the core bottom 28 and is perpendicular to the width direction DW is defined as a second passing plane Si2.
そして、凹部605は、底部内面280のうち第1通過面Si1および第2通過面Si2の間の範囲から厚み方向DTに凹んでいる。さらに、凹部幅Wcrは、ギャップ距離Gap以下とされている、すなわち、Wcr≦Gapとされている。
The recess 605 is recessed in the thickness direction DT from the range between the first passing surface Si1 and the second passing surface Si2 on the bottom inner surface 280. Furthermore, the recess width Wcr is set to be equal to or smaller than the gap distance Gap, i.e., Wcr≦Gap.
以上のように、第7実施形態の電流センサ20は、構成されている。この第7実施形態においても、第5実施形態と同様の効果を奏する。
The current sensor 20 of the seventh embodiment is configured as described above. The seventh embodiment also provides the same effects as the fifth embodiment.
(第8実施形態)
第8実施形態では、第1コア突起281および第2コア突起282の形態が第1実施形態と異なる。これ以外は、第1実施形態と同様である。 Eighth embodiment
The eighth embodiment differs from the first embodiment in the shapes of afirst core projection 281 and a second core projection 282. The rest is similar to the first embodiment.
第8実施形態では、第1コア突起281および第2コア突起282の形態が第1実施形態と異なる。これ以外は、第1実施形態と同様である。 Eighth embodiment
The eighth embodiment differs from the first embodiment in the shapes of a
具体的には、図14に示すように、第1コア突起281は、第1コア内面271から突出していることに代えて、第1コア外面291から厚み方向DTに突出している。また、第1コア突起281は、第1コア外面291のうち、第1面S1および第2面S2の間の範囲、ここでは、第1面S1および第1端面261の間の範囲から厚み方向DTに突出している。なお、第1コア外面291は、ギャップ形成部26の第1バスバ21側の外面であって、ギャップ形成部26のうち厚み方向DT外側を向いている面である。
Specifically, as shown in FIG. 14, the first core protrusion 281 protrudes in the thickness direction DT from the first core outer surface 291 instead of protruding from the first core inner surface 271. The first core protrusion 281 protrudes in the thickness direction DT from the range of the first core outer surface 291 between the first surface S1 and the second surface S2, here, the range between the first surface S1 and the first end surface 261. The first core outer surface 291 is the outer surface of the gap forming portion 26 on the first bus bar 21 side, and is the surface of the gap forming portion 26 facing outward in the thickness direction DT.
第2コア突起282は、第2コア内面272から突出していることに代えて、第2コア外面292から厚み方向DTに突出している。また、第2コア突起282は、第2コア外面292のうち、第1面S1および第2面S2の間の範囲、ここでは、第2面S2および第2端面262の間の範囲から厚み方向DTに突出している。なお、第2コア外面292は、ギャップ形成部26の第2バスバ22側の外面であって、ギャップ形成部26のうち厚み方向DT外側を向いている面である。
Instead of protruding from the second core inner surface 272, the second core protrusion 282 protrudes in the thickness direction DT from the second core outer surface 292. The second core protrusion 282 protrudes in the thickness direction DT from the range of the second core outer surface 292 between the first surface S1 and the second surface S2, here, the range between the second surface S2 and the second end surface 262. The second core outer surface 292 is the outer surface of the gap forming portion 26 on the second bus bar 22 side, and is the surface of the gap forming portion 26 facing outward in the thickness direction DT.
以上のように、第8実施形態の電流センサ20は、構成されている。この第8実施形態においても、第1実施形態と同様の効果を奏する。また、第8実施形態では、下記に記載する効果も奏する。
The current sensor 20 of the eighth embodiment is configured as described above. The eighth embodiment also provides the same effects as the first embodiment. The eighth embodiment also provides the effects described below.
[3]ギャップ形成部26は、第1コア外面291、第1コア突起281、第2コア外面292および第2コア突起282を含む。第1コア外面291および第2コア外面292は、厚み方向DT外側を向いている面である。第1コア突起281は、第1コア外面291のうち、第1面S1および第2面S2の間の範囲から厚み方向DTに突出している。第2コア突起282は、第2コア外面292のうち、第1面S1および第2面S2の間の範囲から厚み方向DTに突出している。
[3] The gap forming portion 26 includes a first core outer surface 291, a first core protrusion 281, a second core outer surface 292, and a second core protrusion 282. The first core outer surface 291 and the second core outer surface 292 are surfaces facing outward in the thickness direction DT. The first core protrusion 281 protrudes in the thickness direction DT from the range of the first core outer surface 291 between the first surface S1 and the second surface S2. The second core protrusion 282 protrudes in the thickness direction DT from the range of the second core outer surface 292 between the first surface S1 and the second surface S2.
これにより、ギャップ形成部26のうち第1バスバ21側を通過した磁力線の一部は、第1コア突起281を通過する。第1コア突起281を通過した磁力線は、ギャップ265を経由して第2端面262を通過する。このとき、第1コア突起281を通過した磁力線は、検出素子31を通過する。このため、検出素子31には、第1端面261からの磁力線に加えて、第1コア突起281からの磁力線が通過する。また、ギャップ形成部26のうち第2バスバ22側を通過した磁力線の一部は、第2コア突起282を通過する。第2コア突起282を通過した磁力線は、ギャップ265を経由して第1端面261を通過する。このとき、第2コア突起282を通過した磁力線は、検出素子31を通過する。このため、検出素子31には、第2端面262からの磁力線に加えて、第2コア突起282からの磁力線が通過する。したがって、検出素子31を通過する磁力線の数が多くなることから、検出素子31の感度が大きくなる。このため、SNRが大きくなる。
As a result, some of the magnetic field lines that pass through the first bus bar 21 side of the gap forming portion 26 pass through the first core projection 281. The magnetic field lines that pass through the first core projection 281 pass through the second end face 262 via the gap 265. At this time, the magnetic field lines that pass through the first core projection 281 pass through the detection element 31. Therefore, in addition to the magnetic field lines from the first end face 261, the magnetic field lines from the first core projection 281 pass through the detection element 31. Also, some of the magnetic field lines that pass through the second bus bar 22 side of the gap forming portion 26 pass through the second core projection 282. The magnetic field lines that pass through the second core projection 282 pass through the first end face 261 via the gap 265. At this time, the magnetic field lines that pass through the second core projection 282 pass through the detection element 31. Therefore, in addition to the magnetic field lines from the second end face 262, the magnetic field lines from the second core projection 282 pass through the detection element 31. Therefore, the number of magnetic field lines passing through the detection element 31 increases, and the sensitivity of the detection element 31 increases. This increases the SNR.
よって、図15に示すように、幅方向DWにおける検出素子31の位置が基準位置からずれることによって生じる検出素子31の信号値の変化が、第1コア突起281および第2コア突起282が形成されていない場合と比較して小さい。したがって、検出素子31による磁界の強さの検出精度が低下することが抑制されるため、電流検出精度の低下が抑制される。なお、図15において、ΔX、S、Sb、ΔSは、上記と同様である。また、第1コア突起281および第2コア突起282が形成されていない場合のΔXに対するΔSがREFと破線とで示されている。さらに、第1コア突起281および第2コア突起282が形成されている場合のΔXに対するΔSが実線で示されている。
Therefore, as shown in FIG. 15, the change in the signal value of the detection element 31 caused by the position of the detection element 31 in the width direction DW shifting from the reference position is smaller than when the first core projection 281 and the second core projection 282 are not formed. This prevents the detection accuracy of the magnetic field strength by the detection element 31 from decreasing, thereby preventing the decrease in current detection accuracy. Note that in FIG. 15, ΔX, S, Sb, and ΔS are the same as above. Also, ΔS relative to ΔX when the first core projection 281 and the second core projection 282 are not formed is shown by REF and a dashed line. Furthermore, ΔS relative to ΔX when the first core projection 281 and the second core projection 282 are formed is shown by a solid line.
(第9実施形態)
第9実施形態では、検出素子31の配置が第8実施形態と異なる。これ以外は、第8実施形態と同様である。 Ninth embodiment
The ninth embodiment differs from the eighth embodiment in the arrangement of thedetection elements 31. The rest is similar to the eighth embodiment.
第9実施形態では、検出素子31の配置が第8実施形態と異なる。これ以外は、第8実施形態と同様である。 Ninth embodiment
The ninth embodiment differs from the eighth embodiment in the arrangement of the
検出素子31は、図16に示すように、ギャップ中心面So_Gapよりもコア穴29とは反対側に配置されている。
As shown in FIG. 16, the detection element 31 is positioned on the opposite side of the gap center plane So_Gap from the core hole 29.
以上のように、第9実施形態の電流センサ20は、構成されている。この第9実施形態においても、第8実施形態と同様の効果を奏する。
The current sensor 20 of the ninth embodiment is configured as described above. This ninth embodiment also provides the same effects as the eighth embodiment.
(第10実施形態)
第10実施形態では、検出素子31の配置が第8実施形態と異なる。これ以外は、第8実施形態と同様である。 Tenth embodiment
The tenth embodiment differs from the eighth embodiment in the arrangement of thedetection elements 31. The rest is the same as the eighth embodiment.
第10実施形態では、検出素子31の配置が第8実施形態と異なる。これ以外は、第8実施形態と同様である。 Tenth embodiment
The tenth embodiment differs from the eighth embodiment in the arrangement of the
検出素子31は、図17に示すように、中心面Sop上に配置されている。なお、上記したように、中心面Sopは、第1突起面2810および第1端面261を合わせた面の厚み方向DTにおける中心を通るとともに厚み方向DTと直交する面である。また、第1突起面2810は、第1コア突起281のうち幅方向DWを向いている面である。
As shown in FIG. 17, the detection element 31 is disposed on the central plane Sop. As described above, the central plane Sop is a plane that passes through the center in the thickness direction DT of the surface where the first protrusion surface 2810 and the first end surface 261 are joined, and is perpendicular to the thickness direction DT. The first protrusion surface 2810 is the surface of the first core protrusion 281 that faces the width direction DW.
以上のように、第10実施形態の電流センサ20は、構成されている。この第10実施形態においても、第8実施形態と同様の効果を奏する。
The current sensor 20 of the tenth embodiment is configured as described above. The tenth embodiment also provides the same effects as the eighth embodiment.
(第11実施形態)
第11実施形態では、検出素子31の配置が第10実施形態と異なる。これ以外は、第10実施形態と同様である。 Eleventh Embodiment
The eleventh embodiment differs from the tenth embodiment in the arrangement of thedetection elements 31. The rest is similar to the tenth embodiment.
第11実施形態では、検出素子31の配置が第10実施形態と異なる。これ以外は、第10実施形態と同様である。 Eleventh Embodiment
The eleventh embodiment differs from the tenth embodiment in the arrangement of the
検出素子31は、図18に示すように、中心面Sopよりもコア穴29とは反対側に配置されている。
As shown in FIG. 18, the detection element 31 is positioned on the opposite side of the center plane Sop from the core hole 29.
以上のように、第11実施形態の電流センサ20は、構成されている。この第11実施形態においても、第10実施形態と同様の効果を奏する。
The current sensor 20 of the eleventh embodiment is configured as described above. The eleventh embodiment also achieves the same effects as the tenth embodiment.
(第12実施形態)
第12実施形態では、コア25の形態が第1実施形態と異なる。さらに、検出部30の形態が第1実施形態と異なる。また、電流センサ20は、リード線35に代えて、第1リード線351および第2リード線352を備える。さらに、基板40の配置および基板収容室54の形態が第1実施形態と異なる。また、電流センサ20による電流検出および漏電異常判定が第1実施形態と異なる。これら以外は、第1実施形態と同様である。 Twelfth Embodiment
In the twelfth embodiment, the shape of thecore 25 is different from that of the first embodiment. Furthermore, the shape of the detection unit 30 is different from that of the first embodiment. Moreover, the current sensor 20 includes a first lead wire 351 and a second lead wire 352 instead of the lead wire 35. Furthermore, the arrangement of the substrate 40 and the shape of the substrate accommodating chamber 54 are different from those of the first embodiment. Furthermore, the current detection and leakage anomaly determination by the current sensor 20 are different from those of the first embodiment. Other than these, the present embodiment is similar to the first embodiment.
第12実施形態では、コア25の形態が第1実施形態と異なる。さらに、検出部30の形態が第1実施形態と異なる。また、電流センサ20は、リード線35に代えて、第1リード線351および第2リード線352を備える。さらに、基板40の配置および基板収容室54の形態が第1実施形態と異なる。また、電流センサ20による電流検出および漏電異常判定が第1実施形態と異なる。これら以外は、第1実施形態と同様である。 Twelfth Embodiment
In the twelfth embodiment, the shape of the
具体的には、図19~図21に示すように、コア底部28は、底部内面280に加えて、第1底部突起601、第2底部突起602および凹部605を含む。
Specifically, as shown in Figures 19 to 21, the core bottom 28 includes, in addition to the bottom inner surface 280, a first bottom protrusion 601, a second bottom protrusion 602, and a recess 605.
第1底部突起601は、底部内面280のうち第1面S1および第1通過面Si1の間の範囲から厚み方向DTに突出している。さらに、第1底部突起601は、第1コア突起281を厚み方向DTに投影したとき、投影した第1コア突起281と重なる。
The first bottom protrusion 601 protrudes in the thickness direction DT from the range of the bottom inner surface 280 between the first surface S1 and the first passing surface Si1. Furthermore, when the first core protrusion 281 is projected in the thickness direction DT, the first bottom protrusion 601 overlaps with the projected first core protrusion 281.
また、ここで、幅方向DWにおける第1底部突起601の最大長さを第1幅Wx1とする。そして、第1幅Wx1は、第1距離Wb1以下とされている、すなわち、Wx1≦Wb1とされている。さらに、第1幅Wx1は、第1突起幅Wp1と同じとされている。なお、ここでは、「同じ」は、製造誤差範囲を含む。また、第1幅Wx1は、第1突起幅Wp1と同じであることに限定されないで、第1突起幅Wp1と異なっていてもよい。
Here, the maximum length of the first bottom protrusion 601 in the width direction DW is defined as the first width Wx1. The first width Wx1 is equal to or less than the first distance Wb1, i.e., Wx1≦Wb1. Furthermore, the first width Wx1 is the same as the first protrusion width Wp1. Note that "same" here includes the manufacturing error range. The first width Wx1 is not limited to being the same as the first protrusion width Wp1, and may be different from the first protrusion width Wp1.
第2底部突起602は、底部内面280のうち第2面S2および第2通過面Si2の間の範囲から厚み方向DTに突出している。さらに、第2底部突起602は、第2コア突起282を厚み方向DTに投影したとき、投影した第2コア突起282と重なる。
The second bottom protrusion 602 protrudes in the thickness direction DT from the range of the bottom inner surface 280 between the second surface S2 and the second passing surface Si2. Furthermore, when the second core protrusion 282 is projected in the thickness direction DT, the second bottom protrusion 602 overlaps with the projected second core protrusion 282.
また、ここで、幅方向DWにおける第2底部突起602の最大長さを第2幅Wx2とする。そして、第2幅Wx2は、第2距離Wb2以下とされている、すなわち、Wx2≦Wb2とされている。さらに、第2幅Wx2は、第2突起幅Wp2と同じとされている。なお、第2幅Wx2は、第2突起幅Wp2と同じであることに限定されないで、第2突起幅Wp2と異なっていてもよい。
Here, the maximum length of the second bottom protrusion 602 in the width direction DW is defined as the second width Wx2. The second width Wx2 is equal to or less than the second distance Wb2, i.e., Wx2≦Wb2. Furthermore, the second width Wx2 is equal to the second protrusion width Wp2. Note that the second width Wx2 is not limited to being equal to the second protrusion width Wp2, and may be different from the second protrusion width Wp2.
凹部605は、底部内面280のうち第1底部突起601および第2底部突起602の間の範囲から厚み方向DTに凹んでいる。
The recess 605 is recessed in the thickness direction DT from the area of the bottom inner surface 280 between the first bottom protrusion 601 and the second bottom protrusion 602.
ここで、幅方向DWにおける第1底部突起601から第2底部突起602までの最小距離を突起間距離Wpbとする。そして、凹部幅Wcrは、突起間距離Wpb以下とされている、すなわち、Wcr≦Wpbとされている。
Here, the minimum distance from the first bottom protrusion 601 to the second bottom protrusion 602 in the width direction DW is the inter-protrusion distance Wpb. The recess width Wcr is set to be less than or equal to the inter-protrusion distance Wpb, i.e., Wcr≦Wpb.
検出部30は、ここでは、コア穴29に配置されている。さらに、検出部30は、検出素子31に代えて、第1検出素子311および第2検出素子312を含む。第1検出素子311および第2検出素子312は、検出素子31と同様に、ホール素子、TMR素子、GMR素子およびAMR素子等である。
Here, the detection unit 30 is disposed in the core hole 29. Furthermore, the detection unit 30 includes a first detection element 311 and a second detection element 312 instead of the detection element 31. The first detection element 311 and the second detection element 312 are, like the detection element 31, a Hall element, a TMR element, a GMR element, an AMR element, or the like.
また、第1検出素子311は、第1コア突起281および第1底部突起601の間に配置されている。さらに、第1検出素子311は、厚み方向DTの磁界の強さ、ここでは、後述するように、第1コア突起281から第1底部突起601に向かう方向の磁界の強さを検出する。また、第1検出素子311は、この検出した磁界の強さに応じた信号、例えば、この検出した磁界の強さに応じた電圧を外部に出力する。
The first detection element 311 is disposed between the first core protrusion 281 and the first bottom protrusion 601. The first detection element 311 detects the strength of the magnetic field in the thickness direction DT, which is the strength of the magnetic field in the direction from the first core protrusion 281 to the first bottom protrusion 601, as described below. The first detection element 311 outputs to the outside a signal corresponding to the strength of the detected magnetic field, for example, a voltage corresponding to the strength of the detected magnetic field.
第2検出素子312は、第2コア突起282および第2底部突起602の間に配置されている。さらに、第2検出素子312は、厚み方向DTの磁界の強さ、ここでは、後述するように、第2コア突起282から第2底部突起602に向かう方向の磁界の強さを検出する。また、第2検出素子312は、この検出した磁界の強さに応じた信号、例えば、この検出した磁界の強さに応じた電圧を外部に出力する。
The second detection element 312 is disposed between the second core protrusion 282 and the second bottom protrusion 602. Furthermore, the second detection element 312 detects the strength of the magnetic field in the thickness direction DT, in this case, the strength of the magnetic field in the direction from the second core protrusion 282 to the second bottom protrusion 602, as described below. The second detection element 312 also outputs to the outside a signal corresponding to the strength of the detected magnetic field, for example, a voltage corresponding to the strength of the detected magnetic field.
第1リード線351は、図21に示すように、第1検出素子311と接続されている。第2リード線352は、第2検出素子312と接続されている。さらに、第1リード線351および第2リード線352は、はんだ付け等により基板40と接続されている。
As shown in FIG. 21, the first lead wire 351 is connected to the first detection element 311. The second lead wire 352 is connected to the second detection element 312. Furthermore, the first lead wire 351 and the second lead wire 352 are connected to the substrate 40 by soldering or the like.
判定部45は、判定部45のROMに記憶されたプログラムを実行することにより、第1リード線351および基板40を介して、第1検出素子311からの信号を取得する。また、判定部45は、第2リード線352および基板40を介して、第2検出素子312からの信号を取得する。さらに、判定部45は、これらの取得した信号に基づいて、バッテリ12および充電器14の間に生じた漏電量M_leakを算出するとともに、漏電異常があるか否かを判定する。また、判定部45は、この判定結果に応じた信号を、図示しないターミナル等を介して、図示しない警報装置等の外部装置に出力する。
The determination unit 45 acquires a signal from the first detection element 311 via the first lead wire 351 and the board 40 by executing a program stored in the ROM of the determination unit 45. The determination unit 45 also acquires a signal from the second detection element 312 via the second lead wire 352 and the board 40. Based on these acquired signals, the determination unit 45 further calculates the amount of leakage current M_leak that has occurred between the battery 12 and the charger 14, and determines whether or not there is a leakage current abnormality. The determination unit 45 also outputs a signal according to this determination result to an external device, such as an alarm device (not shown), via a terminal (not shown) or the like.
基板収容室54では、検出部30、第1リード線351、第2リード線352および基板40が収容されている。また、検出部30がコア穴29の中央付近に配置されるため、基板収容室54は、ケース50のうち長手方向DL側に形成されている。
The substrate accommodating chamber 54 accommodates the detection unit 30, the first lead wire 351, the second lead wire 352, and the substrate 40. Since the detection unit 30 is disposed near the center of the core hole 29, the substrate accommodating chamber 54 is formed on the longitudinal direction DL side of the case 50.
以上のように、第12実施形態の電流センサ20は、構成されている。次に、電流センサ20による電流検出および漏電異常判定について説明する。
The current sensor 20 of the twelfth embodiment is configured as described above. Next, we will explain how the current sensor 20 detects current and determines an abnormality in the leakage current.
バッテリ12が充電器14により充電されるとき、図20に示すように、第1バスバ21を流れる第1電流Ic1により、第1バスバ21を通るとともに長手方向DLに延びる軸を中心とする周方向の磁界が発生する。この発生した磁界により、磁力線がギャップ形成部26のうち第1バスバ21側を通過する。このギャップ形成部26を通過した磁力線の一部は、第1コア突起281、コア穴29、第1検出素子311および第1底部突起601を経由して、コア底部28のうち第1バスバ21側を通過する。
When the battery 12 is charged by the charger 14, as shown in FIG. 20, the first current Ic1 flowing through the first bus bar 21 generates a circumferential magnetic field centered on an axis that passes through the first bus bar 21 and extends in the longitudinal direction DL. This generated magnetic field causes magnetic field lines to pass through the first bus bar 21 side of the gap forming portion 26. A portion of the magnetic field lines that pass through the gap forming portion 26 passes through the first core protrusion 281, the core hole 29, the first detection element 311, and the first bottom protrusion 601, and passes through the first bus bar 21 side of the core bottom 28.
したがって、このとき、第1コア突起281から第1底部突起601に向かう方向の磁力線が第1検出素子311を通過するため、第1検出素子311は、第1電流Ic1によって発生する磁界のうち厚み方向DTの磁界の強さを検出する。これにより、第1検出素子311は、第1電流Ic1を検出する。また、第1検出素子311は、この検出した磁界の強さに応じた信号を、第1リード線351および基板40を介して判定部45に出力する。
At this time, the magnetic field lines from the first core protrusion 281 toward the first bottom protrusion 601 pass through the first detection element 311, so that the first detection element 311 detects the strength of the magnetic field in the thickness direction DT of the magnetic field generated by the first current Ic1. As a result, the first detection element 311 detects the first current Ic1. The first detection element 311 also outputs a signal corresponding to the strength of the detected magnetic field to the determination unit 45 via the first lead wire 351 and the substrate 40.
また、このとき、第2バスバ22を流れる第2電流Ic2により、第2バスバ22を通るとともに長手方向DLに延びる軸を中心とする周方向の磁界が発生する。この発生した磁界により、磁力線がギャップ形成部26のうち第2バスバ22側を通過する。このギャップ形成部26を通過した磁力線の一部は、第2コア突起282、コア穴29、第2検出素子312および第2底部突起602を経由して、コア底部28のうち第2バスバ22側を通過する。
At this time, the second current Ic2 flowing through the second bus bar 22 generates a circumferential magnetic field centered on an axis that passes through the second bus bar 22 and extends in the longitudinal direction DL. This generated magnetic field causes magnetic field lines to pass through the second bus bar 22 side of the gap forming portion 26. A portion of the magnetic field lines that have passed through the gap forming portion 26 passes through the second bus bar 22 side of the core bottom 28 via the second core protrusion 282, the core hole 29, the second detection element 312, and the second bottom protrusion 602.
よって、このとき、第2コア突起282から第2底部突起602に向かう方向の磁力線が第2検出素子312を通過するため、第2検出素子312は、第2電流Ic2によって発生する磁界のうち厚み方向DTの磁界の強さを検出する。これにより、第2検出素子312は、第2電流Ic2を検出する。また、第2検出素子312は、この検出した磁界の強さに応じた信号を、第2リード線352および基板40を介して判定部45に出力する。
At this time, the magnetic field lines from the second core protrusion 282 toward the second bottom protrusion 602 pass through the second detection element 312, so the second detection element 312 detects the strength of the magnetic field in the thickness direction DT of the magnetic field generated by the second current Ic2. As a result, the second detection element 312 detects the second current Ic2. The second detection element 312 also outputs a signal corresponding to the strength of the detected magnetic field to the determination unit 45 via the second lead wire 352 and the substrate 40.
ここで、バッテリ12および充電器14の間における電流の流れが正常である場合、例えば、漏電等が生じていない場合、バッテリ12、充電器14および電流センサ20が直列に接続されていることから、第1電流Ic1と第2電流Ic2とは同じである。このため、第1検出素子311にかかる厚み方向DTの磁界の強さと、第2検出素子312にかかる厚み方向DTの磁界の強さとが同じになる。また、第1コア突起281から第1底部突起601に向かう方向は、第2コア突起282から第2底部突起602に向かう方向と同じである。したがって、この場合、第1検出素子311の信号値から第2検出素子312の信号値を減算した値は、ゼロになる。
Here, if the current flow between the battery 12 and the charger 14 is normal, for example, if no leakage current or the like is occurring, the battery 12, charger 14, and current sensor 20 are connected in series, and therefore the first current Ic1 and the second current Ic2 are the same. Therefore, the strength of the magnetic field in the thickness direction DT applied to the first detection element 311 and the strength of the magnetic field in the thickness direction DT applied to the second detection element 312 are the same. Also, the direction from the first core protrusion 281 to the first bottom protrusion 601 is the same as the direction from the second core protrusion 282 to the second bottom protrusion 602. Therefore, in this case, the value obtained by subtracting the signal value of the second detection element 312 from the signal value of the first detection element 311 is zero.
また、バッテリ12および充電器14の間において漏電が生じた場合、第1電流Ic1と第2電流Ic2とが異なる。このため、第1検出素子311の信号値と第2検出素子312の信号値が異なる。よって、第1検出素子311の信号値から第2検出素子312の信号値を減算した値の絶対値がゼロよりも大きくなる。
Furthermore, if a leakage current occurs between the battery 12 and the charger 14, the first current Ic1 and the second current Ic2 will be different. Therefore, the signal value of the first detection element 311 will be different from the signal value of the second detection element 312. Therefore, the absolute value of the value obtained by subtracting the signal value of the second detection element 312 from the signal value of the first detection element 311 will be greater than zero.
よって、判定部45は、第1検出素子311の信号に関する値から第2検出素子312の信号に関する値を減算した値を算出する。また、判定部45は、この減算した値に基づいて漏電量M_leakを算出するとともに、この算出した漏電量M_leakと閾値M_leak_thとを比較する。これにより、判定部45は、バッテリ12および充電器14の間において漏電異常があるか否かを判定する。
Therefore, the determination unit 45 calculates a value obtained by subtracting the value related to the signal of the second detection element 312 from the value related to the signal of the first detection element 311. The determination unit 45 also calculates the leakage current amount M_leak based on this subtracted value, and compares this calculated leakage current amount M_leak with the threshold value M_leak_th. In this way, the determination unit 45 determines whether or not there is a leakage current abnormality between the battery 12 and the charger 14.
具体的には、判定部45は、この減算した値の絶対値とマップとから、漏電量M_leakを算出する。なお、漏電量M_leakを算出するためのマップは、実験やシミュレーション等により設定されている。例えば、このマップにより、上記減算した値の絶対値が大きくなることに伴って、算出される漏電量M_leakは、大きくなる。
Specifically, the determination unit 45 calculates the leakage current amount M_leak from the absolute value of this subtraction value and a map. The map for calculating the leakage current amount M_leak is set by experiments, simulations, etc. For example, with this map, the calculated leakage current amount M_leak increases as the absolute value of the subtraction value increases.
そして、判定部45は、この算出した漏電量M_leakが閾値M_leak_th未満であるとき、漏電異常がない、すなわち、バッテリ12および充電器14の間における電流の流れが正常であると判定する。また、判定部45は、この算出した漏電量M_leakが閾値M_leak_th以上であるとき、バッテリ12および充電器14の間において漏電異常があると判定する。さらに、判定部45は、この判定結果に応じた信号を、図示しないターミナル等を介して、図示しない警報装置等の外部装置に出力する。
Then, when the calculated leakage current amount M_leak is less than the threshold value M_leak_th, the determination unit 45 determines that there is no leakage current abnormality, i.e., the current flow between the battery 12 and the charger 14 is normal. Furthermore, when the calculated leakage current amount M_leak is equal to or greater than the threshold value M_leak_th, the determination unit 45 determines that there is a leakage current abnormality between the battery 12 and the charger 14. Furthermore, the determination unit 45 outputs a signal according to this determination result to an external device such as an alarm device (not shown) via a terminal (not shown) or the like.
以上のように、第12実施形態の電流センサ20は、電流検出および漏電異常判定を行う。この第12実施形態においても、第1実施形態と同様の効果を奏する。また、第12実施形態では、下記に記載する効果も奏する。
As described above, the current sensor 20 of the twelfth embodiment detects current and determines leakage current anomalies. The twelfth embodiment also provides the same effects as the first embodiment. The twelfth embodiment also provides the effects described below.
[4-1]ここで、第1検出素子311は、第1バスバ21に流れる電流によって発生する磁界の強さを検出するところ、第1バスバ21に流れる電流によって発生する磁界は、第2バスバ22に流れる電流によって発生する磁界の影響を受ける。このため、第1検出素子311から出力される信号には、第2バスバ22に流れる電流によって発生する磁界ノイズが含まれる。また、第2検出素子312は、第2バスバ22に流れる電流によって発生する磁界の強さを検出するところ、第2バスバ22に流れる電流によって発生する磁界は、第1バスバ21に流れる電流によって発生する磁界の影響を受ける。このため、第2検出素子312から出力される信号には、第1バスバ21に流れる電流によって発生する磁界ノイズが含まれる。したがって、これらの磁界ノイズにより、第1検出素子311および第2検出素子312による磁界の強さの検出精度が低下するため、電流検出精度が低下する。
[4-1] Here, the first detection element 311 detects the strength of the magnetic field generated by the current flowing through the first bus bar 21, and the magnetic field generated by the current flowing through the first bus bar 21 is affected by the magnetic field generated by the current flowing through the second bus bar 22. Therefore, the signal output from the first detection element 311 includes magnetic field noise generated by the current flowing through the second bus bar 22. Also, the second detection element 312 detects the strength of the magnetic field generated by the current flowing through the second bus bar 22, and the magnetic field generated by the current flowing through the second bus bar 22 is affected by the magnetic field generated by the current flowing through the first bus bar 21. Therefore, the signal output from the second detection element 312 includes magnetic field noise generated by the current flowing through the first bus bar 21. Therefore, due to these magnetic field noises, the detection accuracy of the magnetic field strength by the first detection element 311 and the second detection element 312 decreases, and the current detection accuracy decreases.
これに対して、第12実施形態の電流センサ20では、判定部45は、第1検出素子311の信号に関する値から第2検出素子312の信号に関する値を減算する。これにより、判定部45は、第1バスバ21および第2バスバ22に流れる電流に関する値、ここでは、漏電量M_leakに関する値を算出する算出部としての役割を果たす。
In contrast, in the current sensor 20 of the twelfth embodiment, the determination unit 45 subtracts the value related to the signal of the second detection element 312 from the value related to the signal of the first detection element 311. As a result, the determination unit 45 serves as a calculation unit that calculates a value related to the current flowing through the first bus bar 21 and the second bus bar 22, in this case, a value related to the leakage current amount M_leak.
上記減算により、第1バスバ21に流れる電流によって発生する磁界ノイズと、第2バスバ22に流れる電流によって発生する磁界ノイズとが互いに打ち消し合う。このため、第1バスバ21および第2バスバ22に流れる電流に関する値に含まれるノイズが減少することから、SNRが大きくなる。よって、電流検出精度の低下が抑制される。
By the above subtraction, the magnetic field noise generated by the current flowing through the first bus bar 21 and the magnetic field noise generated by the current flowing through the second bus bar 22 cancel each other out. Therefore, the noise contained in the values related to the current flowing through the first bus bar 21 and the second bus bar 22 is reduced, and the SNR is increased. Therefore, the deterioration of the current detection accuracy is suppressed.
[4-2]判定部45は、第1検出素子311の信号に関する値から第2検出素子312の信号に関する値を減算した値に基づいて、バッテリ12および充電器14の間における異常があると判定する。これにより、バッテリ12および充電器14の間において異常が検出される。
[4-2] The determination unit 45 determines that there is an abnormality between the battery 12 and the charger 14 based on the value obtained by subtracting the value related to the signal of the second detection element 312 from the value related to the signal of the first detection element 311. As a result, an abnormality is detected between the battery 12 and the charger 14.
[4-3]ギャップ形成部26は、第1コア内面271、第1コア突起281、第2コア内面272および第2コア突起282を含む。また、第1検出素子311は、第1コア突起281およびコア底部28の間に配置されている。さらに、第2検出素子312は、第2コア突起282およびコア底部28の間に配置されている。
[4-3] The gap forming portion 26 includes a first core inner surface 271, a first core protrusion 281, a second core inner surface 272, and a second core protrusion 282. The first detection element 311 is disposed between the first core protrusion 281 and the core bottom 28. The second detection element 312 is disposed between the second core protrusion 282 and the core bottom 28.
これにより、ギャップ形成部26のうち第1バスバ21側を通過した磁力線の一部は、第1コア突起281を通過する。また、第1コア突起281およびコア底部28の間の磁気抵抗は、第1コア突起281が形成されていない場合と比較して小さくなる。このため、第1コア突起281を通過した磁力線は、コア穴29および第1検出素子311を経由して、コア底部28を通過しやすくなる。したがって、第1検出素子311を通過する磁力線の数が多くなることから、第1検出素子311の感度が大きくなる。さらに、ギャップ形成部26のうち第2バスバ22側を通過した磁力線の一部は、第2コア突起282を通過する。また、第2コア突起282およびコア底部28の間の磁気抵抗は、第2コア突起282が形成されていない場合と比較して小さくなる。このため、第2コア突起282を通過した磁力線は、コア穴29および第2検出素子312を経由して、コア底部28を通過しやすくなる。よって、第2検出素子312を通過する磁力線の数が多くなることから、第2検出素子312の感度が大きくなる。これらのため、判定部45によって減算される値のSNRが大きくなる。したがって、電流検出精度の低下が抑制される。
As a result, some of the magnetic field lines that pass through the first bus bar 21 side of the gap forming portion 26 pass through the first core protrusion 281. In addition, the magnetic resistance between the first core protrusion 281 and the core bottom 28 is smaller than when the first core protrusion 281 is not formed. Therefore, the magnetic field lines that pass through the first core protrusion 281 are more likely to pass through the core bottom 28 via the core hole 29 and the first detection element 311. Therefore, the number of magnetic field lines that pass through the first detection element 311 is increased, and the sensitivity of the first detection element 311 is increased. Furthermore, some of the magnetic field lines that pass through the second bus bar 22 side of the gap forming portion 26 pass through the second core protrusion 282. In addition, the magnetic resistance between the second core protrusion 282 and the core bottom 28 is smaller than when the second core protrusion 282 is not formed. Therefore, the magnetic field lines that pass through the second core protrusion 282 are more likely to pass through the core bottom 28 via the core hole 29 and the second detection element 312. Therefore, the number of magnetic field lines passing through the second detection element 312 increases, and the sensitivity of the second detection element 312 increases. As a result, the SNR of the value subtracted by the determination unit 45 increases. Therefore, the deterioration of the current detection accuracy is suppressed.
[4-4]コア底部28は、底部内面280と、第1底部突起601と、第2底部突起602と、を含む。また、第1検出素子311は、第1コア突起281および第1底部突起601の間に配置されている。さらに、第2検出素子312は、第2コア突起282および第2底部突起602の間に配置されている。
[4-4] The core bottom 28 includes a bottom inner surface 280, a first bottom protrusion 601, and a second bottom protrusion 602. The first detection element 311 is disposed between the first core protrusion 281 and the first bottom protrusion 601. The second detection element 312 is disposed between the second core protrusion 282 and the second bottom protrusion 602.
第1コア突起281およびコア底部28の間の磁気抵抗は、第1底部突起601が形成されていない場合と比較して小さくなる。このため、第1コア突起281を通過した磁力線は、コア穴29および第1検出素子311を経由して、第1底部突起601を通過しやすくなる。したがって、第1検出素子311を通過する磁力線の数が多くなることから、第1検出素子311の感度が大きくなる。また、第2コア突起282およびコア底部28の間の磁気抵抗は、第2底部突起602が形成されていない場合と比較して小さくなる。このため、第2コア突起282を通過した磁力線は、コア穴29および第2検出素子312を経由して、第2底部突起602を通過しやすくなる。よって、第2検出素子312を通過する磁力線の数が多くなることから、第2検出素子312の感度が大きくなる。これらのため、判定部45によって減算される値のSNRが大きくなる。したがって、電流検出精度の低下が抑制される。
The magnetic resistance between the first core projection 281 and the core bottom 28 is smaller than when the first bottom projection 601 is not formed. Therefore, the magnetic field lines that pass through the first core projection 281 are more likely to pass through the first bottom projection 601 via the core hole 29 and the first detection element 311. Therefore, the number of magnetic field lines that pass through the first detection element 311 is increased, and the sensitivity of the first detection element 311 is increased. In addition, the magnetic resistance between the second core projection 282 and the core bottom 28 is smaller than when the second bottom projection 602 is not formed. Therefore, the magnetic field lines that pass through the second core projection 282 are more likely to pass through the second bottom projection 602 via the core hole 29 and the second detection element 312. Therefore, the number of magnetic field lines that pass through the second detection element 312 is increased, and the sensitivity of the second detection element 312 is increased. For these reasons, the SNR of the value subtracted by the determination unit 45 is increased. Therefore, the deterioration of the current detection accuracy is suppressed.
[4-5]コア底部28は、凹部605を含む。凹部605は、底部内面280のうち、第1底部突起601および第2底部突起602の間の範囲から厚み方向DTに凹んでいる。
[4-5] The core bottom 28 includes a recess 605. The recess 605 is recessed in the thickness direction DT from the area of the bottom inner surface 280 between the first bottom protrusion 601 and the second bottom protrusion 602.
これにより、第1底部突起601および第2底部突起602の間の磁気抵抗は、凹部605が形成されていない場合と比較して大きくなる。このため、第1コア突起281を通過した磁力線は、コア穴29を経由して第2底部突起602を通過しにくくなることから、コア穴29および第1検出素子311を経由して、第1底部突起601を通過しやすくなる。したがって、第1検出素子311を通過する磁力線の数が多くなることから、第1検出素子311の感度が大きくなる。また、第2コア突起282を通過した磁力線は、コア穴29を経由して第1底部突起601を通過しにくくなることから、コア穴29および第2検出素子312を経由して、第2底部突起602を通過しやすくなる。よって、第2検出素子312を通過する磁力線の数が多くなることから、第2検出素子312の感度が大きくなる。これらのため、判定部45によって減算される値のSNRが大きくなる。したがって、電流検出精度の低下が抑制される。
As a result, the magnetic resistance between the first bottom protrusion 601 and the second bottom protrusion 602 is larger than when the recess 605 is not formed. Therefore, the magnetic field lines that pass through the first core protrusion 281 are less likely to pass through the second bottom protrusion 602 via the core hole 29, and are more likely to pass through the first bottom protrusion 601 via the core hole 29 and the first detection element 311. Therefore, the number of magnetic field lines passing through the first detection element 311 increases, and the sensitivity of the first detection element 311 increases. In addition, the magnetic field lines that pass through the second core protrusion 282 are less likely to pass through the first bottom protrusion 601 via the core hole 29, and are more likely to pass through the second bottom protrusion 602 via the core hole 29 and the second detection element 312. Therefore, the number of magnetic field lines passing through the second detection element 312 increases, and the sensitivity of the second detection element 312 increases. For these reasons, the SNR of the value subtracted by the determination unit 45 increases. This prevents the current detection accuracy from decreasing.
(第12実施形態の変形例)
第12実施形態において、凹部605は、底部内面280から凹んでいることに代えて、例えば、図22に示すように、底部外面285から厚み方向DTに凹んでいてもよい。また、この場合、凹部605は、底部外面285のうち第1底部突起601および第2底部突起602の間の範囲から厚み方向DTに凹んでいる。このような形態であっても、第12実施形態と同様の効果を奏する。なお、底部外面285は、コア底部28のうち厚み方向DT外側を向いている面である。 (Modification of the twelfth embodiment)
In the twelfth embodiment, instead of being recessed from the bottominner surface 280, the recess 605 may be recessed from the bottom outer surface 285 in the thickness direction DT, as shown in Fig. 22. In this case, the recess 605 is recessed in the thickness direction DT from the range between the first bottom protrusion 601 and the second bottom protrusion 602 on the bottom outer surface 285. Even in this form, the same effect as in the twelfth embodiment is achieved. Note that the bottom outer surface 285 is the surface of the core bottom 28 facing outward in the thickness direction DT.
第12実施形態において、凹部605は、底部内面280から凹んでいることに代えて、例えば、図22に示すように、底部外面285から厚み方向DTに凹んでいてもよい。また、この場合、凹部605は、底部外面285のうち第1底部突起601および第2底部突起602の間の範囲から厚み方向DTに凹んでいる。このような形態であっても、第12実施形態と同様の効果を奏する。なお、底部外面285は、コア底部28のうち厚み方向DT外側を向いている面である。 (Modification of the twelfth embodiment)
In the twelfth embodiment, instead of being recessed from the bottom
また、図23に示すように、コア底部28は、凹部605に代えて、穴287を有してもよい。穴287は、コア底部28のうち第1底部突起601および第2底部突起602の間の範囲に形成されているとともに、長手方向DLに延びている有底穴または貫通穴である。このような形態であっても、第12実施形態と同様の効果を奏する。
Also, as shown in FIG. 23, the core bottom 28 may have a hole 287 instead of the recess 605. The hole 287 is a bottomed hole or a through hole formed in the range between the first bottom protrusion 601 and the second bottom protrusion 602 of the core bottom 28 and extending in the longitudinal direction DL. Even with this configuration, the same effect as the twelfth embodiment can be achieved.
また、図24に示すように、コア底部28は、第1底部突起601、第2底部突起602および凹部605を有していなくてもよい。この場合、第1検出素子311は、コア穴29のうち第1コア突起281およびコア底部28の間の範囲に配置される。さらに、第2検出素子312は、コア穴29のうち第2コア突起282およびコア底部28の間の範囲に配置される。このような形態であっても、第12実施形態と同様の効果を奏する。
Also, as shown in FIG. 24, the core bottom 28 does not have to have the first bottom protrusion 601, the second bottom protrusion 602, and the recess 605. In this case, the first detection element 311 is disposed in the range of the core hole 29 between the first core protrusion 281 and the core bottom 28. Furthermore, the second detection element 312 is disposed in the range of the core hole 29 between the second core protrusion 282 and the core bottom 28. Even in this form, the same effect as the twelfth embodiment is achieved.
また、図25に示すように、ギャップ形成部26は、第1コア突起281および第2コア突起282を有していなくてもよい。この場合、第1検出素子311は、コア穴29のうちギャップ形成部26および第1底部突起601の間の範囲に配置される。さらに、第2検出素子312は、コア穴29のうちギャップ形成部26および第2底部突起602の間の範囲に配置される。このような形態であっても、第12実施形態と同様の効果を奏する。
Also, as shown in FIG. 25, the gap forming portion 26 does not have to have the first core protrusion 281 and the second core protrusion 282. In this case, the first detection element 311 is disposed in the range of the core hole 29 between the gap forming portion 26 and the first bottom protrusion 601. Furthermore, the second detection element 312 is disposed in the range of the core hole 29 between the gap forming portion 26 and the second bottom protrusion 602. Even in this form, the same effect as in the twelfth embodiment is achieved.
また、図26に示すように、ギャップ形成部26は、第1コア突起281および第2コア突起282を有していない、かつ、コア底部28が第1底部突起601、第2底部突起602および凹部605を有していなくてもよい。この場合、第1検出素子311は、コア穴29のうち、第1面S1および第1通過面Si1の間の範囲に配置される。さらに、第2検出素子312は、コア穴29のうち、第2面S2および第2通過面Si2の間の範囲に配置される。このような形態であっても、第12実施形態と同様の効果を奏する。なお、上記したように、第1面S1は、第1対向面211を通るとともに幅方向DWと直交する面である。また、第2面S2は、第2対向面222を通るとともに幅方向DWと直交する面である。さらに、第1通過面Si1は、第1端面261を通るとともに幅方向DWと直交する面である。また、第2通過面Si2は、第2端面262を通るとともに幅方向DWと直交する面である。
26, the gap forming portion 26 may not have the first core protrusion 281 and the second core protrusion 282, and the core bottom 28 may not have the first bottom protrusion 601, the second bottom protrusion 602, and the recess 605. In this case, the first detection element 311 is arranged in the range between the first surface S1 and the first passing surface Si1 of the core hole 29. Furthermore, the second detection element 312 is arranged in the range between the second surface S2 and the second passing surface Si2 of the core hole 29. Even in this form, the same effect as in the twelfth embodiment is achieved. As described above, the first surface S1 is a surface that passes through the first opposing surface 211 and is perpendicular to the width direction DW. Furthermore, the second surface S2 is a surface that passes through the second opposing surface 222 and is perpendicular to the width direction DW. Furthermore, the first passing surface Si1 is a surface that passes through the first end surface 261 and is perpendicular to the width direction DW. The second passing plane Si2 is a plane that passes through the second end face 262 and is perpendicular to the width direction DW.
(他の実施形態)
本開示は、上記実施形態に限定されるものではなく、上記実施形態に対して、適宜変更が可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。 Other Embodiments
The present disclosure is not limited to the above-described embodiments, and appropriate modifications can be made to the above-described embodiments. Furthermore, in each of the above-described embodiments, it goes without saying that the elements constituting the embodiments are not necessarily essential, except in cases where they are particularly clearly stated as essential or where they are clearly considered essential in principle.
本開示は、上記実施形態に限定されるものではなく、上記実施形態に対して、適宜変更が可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。 Other Embodiments
The present disclosure is not limited to the above-described embodiments, and appropriate modifications can be made to the above-described embodiments. Furthermore, in each of the above-described embodiments, it goes without saying that the elements constituting the embodiments are not necessarily essential, except in cases where they are particularly clearly stated as essential or where they are clearly considered essential in principle.
本開示に記載の判定部、算出部およびその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサおよびメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の判定部、算出部およびその手法は、一つ以上の専用ハードウエア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の判定部、算出部およびその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサおよびメモリと一つ以上のハードウエア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。
The determination unit, calculation unit, and method thereof described in the present disclosure may be realized by a dedicated computer provided by configuring a processor and memory programmed to execute one or more functions embodied in a computer program. Alternatively, the determination unit, calculation unit, and method thereof described in the present disclosure may be realized by a dedicated computer provided by configuring a processor with one or more dedicated hardware logic circuits. Alternatively, the determination unit, calculation unit, and method thereof described in the present disclosure may be realized by one or more dedicated computers configured by combining a processor and memory programmed to execute one or more functions with a processor configured with one or more hardware logic circuits. Furthermore, the computer program may be stored in a computer-readable non-transient tangible recording medium as instructions executed by the computer.
上記各実施形態では、電流センサ20は、オンボードチャージャ10に用いられている。これに対して、電流センサ20は、オンボードチャージャ10に用いられることに限定されない。例えば、電流センサ20は、電源から製造設備等の負荷に流れる電流を検出することにより、電源および製造設備等の負荷の間において漏電異常があるか否かを判定してもよい。また、例えば、電流センサ20は、住宅等の建物に用いられてもよく、建物の電源から電気機器等の負荷に流れる電流を検出することにより、電源および電気機器等の負荷の間において漏電異常があるか否かを判定してもよい。
In each of the above embodiments, the current sensor 20 is used in the on-board charger 10. In contrast, the current sensor 20 is not limited to being used in the on-board charger 10. For example, the current sensor 20 may detect the current flowing from the power source to a load such as manufacturing equipment, thereby determining whether or not there is a leakage current between the power source and a load such as manufacturing equipment. Also, for example, the current sensor 20 may be used in a building such as a house, and may detect the current flowing from the power source of the building to a load such as electrical equipment, thereby determining whether or not there is a leakage current between the power source and a load such as electrical equipment.
上記各実施形態では、コア25は、板状の軟磁性材料がC字状に曲げ加工されることにより形成されているところ、これに限定されない。例えば、コア25は、板状の軟磁性材料がワイヤカットされることにより形成されてもよい。また、コア25は、シート状の軟磁性材料が巻き付けられることにより形成されてもよい。この場合、軟磁性材料間の剥離を防ぐために接着材料が用いられる。さらに、コア25は、シート状の軟磁性材料が重ね合わされて積層されることにより形成されてもよい。この場合、複数の軟磁性材料がプレス加工されることによりシート状に形成され、シート状の軟磁性材料がダボカシメされることにより、積層される。
In each of the above embodiments, the core 25 is formed by bending a plate-shaped soft magnetic material into a C-shape, but this is not limiting. For example, the core 25 may be formed by wire-cutting a plate-shaped soft magnetic material. The core 25 may also be formed by wrapping a sheet-shaped soft magnetic material around it. In this case, an adhesive material is used to prevent peeling between the soft magnetic materials. Furthermore, the core 25 may be formed by overlapping and laminating sheet-shaped soft magnetic materials. In this case, multiple soft magnetic materials are formed into a sheet shape by press processing, and the sheet-shaped soft magnetic materials are laminated by dowel crimping.
また、コア25が板状のパーマロイで積層されたとする。このとき、コア25が板状の方向性電磁鋼板で積層されるときと比較して、コア25のヒステリシス特性が向上する。さらに、コア25が板状の方向性電磁鋼板で形成されたとする。このとき、コア25がパーマロイで形成されるときと比較して、材料費が削減されるため、電流センサ20のコストを削減することができる。
In addition, suppose that the core 25 is laminated with plate-shaped permalloy. In this case, the hysteresis characteristics of the core 25 are improved compared to when the core 25 is laminated with plate-shaped directional electromagnetic steel sheets. Furthermore, suppose that the core 25 is formed with plate-shaped directional electromagnetic steel sheets. In this case, compared to when the core 25 is formed with permalloy, material costs are reduced, and the cost of the current sensor 20 can be reduced.
上記各実施形態では、判定部45は、基板40に配置されているところ、これに限定されない。判定部45は、例えば、電流センサ20の外部に配置されるECU等の外部装置に備えられてもよい。なお、ECUは、Electronic Control Unitの略である。
In each of the above embodiments, the determination unit 45 is disposed on the substrate 40, but this is not limited to the above. The determination unit 45 may be provided in an external device, such as an ECU, disposed outside the current sensor 20. ECU is an abbreviation for Electronic Control Unit.
上記実施形態において、コア突起および底部突起は、それぞれ2つ形成されているところ、コア突起および底部突起の数は、2つであることに限定されない。コア突起および底部突起の数は、少なくとも1つあればよい。また、凹部605の数は、1つであるところ、これに限定されないで、2つ以上であってもよい。
In the above embodiment, two core protrusions and two bottom protrusions are formed, but the number of core protrusions and bottom protrusions is not limited to two. The number of core protrusions and bottom protrusions may be at least one. Also, the number of recesses 605 is one, but is not limited to this and may be two or more.
上記各実施形態では、充電器14から第1バスバ21、バッテリ12、第2バスバ22の順に電流が流れる。これに対して、充電器14から第2バスバ22、バッテリ12、第1バスバ21の順に電流が流れてもよい。この場合、第1バスバ21および第2バスバ22に流れる電流の方向が上記各実施形態とは逆方向となることから、第1バスバ21および第2バスバ22によって発生する磁界の向きは、上記各実施形態とは逆方向となる。この場合であっても、上記各実施形態と同様の効果を奏する。
In each of the above embodiments, current flows from the charger 14 to the first bus bar 21, the battery 12, and the second bus bar 22 in this order. Alternatively, current may flow from the charger 14 to the second bus bar 22, the battery 12, and the first bus bar 21 in this order. In this case, the direction of current flowing through the first bus bar 21 and the second bus bar 22 is opposite to that in each of the above embodiments, and therefore the direction of the magnetic field generated by the first bus bar 21 and the second bus bar 22 is opposite to that in each of the above embodiments. Even in this case, the same effects as in each of the above embodiments are achieved.
上記各実施形態では、第1バスバ21および第2バスバ22は、板状に形成されているところ、これに限定されないで、棒状や柱状等に形成されてもよい。したがって、ここでは、第1バスバ21および第2バスバ22が板状に形成されていることは、第1バスバ21および第2バスバ22が棒状や柱状等に形成されていることの意味も含むものとする。
In each of the above embodiments, the first bus bar 21 and the second bus bar 22 are formed in a plate shape, but they are not limited to this and may be formed in a rod shape, column shape, etc. Therefore, here, the first bus bar 21 and the second bus bar 22 being formed in a plate shape also means that the first bus bar 21 and the second bus bar 22 are formed in a rod shape, column shape, etc.
上記各実施形態は、適宜組み合わされてもよい。
The above embodiments may be combined as appropriate.
(本開示の観点)
上記の通りの実施形態および変形例についての説明から明らかなように、本明細書による開示は、少なくとも、以下の観点を含む。 (Aspects of the present disclosure)
As is apparent from the above description of the embodiments and modifications, the disclosure of this specification includes at least the following aspects.
上記の通りの実施形態および変形例についての説明から明らかなように、本明細書による開示は、少なくとも、以下の観点を含む。 (Aspects of the present disclosure)
As is apparent from the above description of the embodiments and modifications, the disclosure of this specification includes at least the following aspects.
(課題)
特許文献1に記載された電流センサにおいて、電流検出のために、コアに挿入されるバスバが2つ備えられることがある。この場合、例えば、電流方向が互いに異なる2つのバスバに流れる電流によって発生する磁界の強さがセンサチップにて検出されることにより、バスバに流れる電流が検出される。このとき、ギャップ内において、2つのバスバに流れる電流によって発生する磁界の方向が互いに逆方向となる箇所が生じることから、2つの磁界が互いに打ち消し合う箇所が生じる。また、ギャップ内において、2つのバスバに流れる電流によって発生する磁界の方向がギャップからギャップとは反対側に位置するコアの底部に向かう方向となる箇所が生じることから、2つの磁界が互いに打ち消し合いにくい箇所が生じる。これらのため、ギャップ内の磁界の勾配が大きくなる。これにより、センサチップの位置がずれることで、センサチップによる磁界の強さの検出精度が低下する。したがって、このとき、電流検出精度が低下する。
本開示は、電流検出精度の低下を抑制する電流センサを提供することを目的とする。 (assignment)
In the current sensor described inPatent Document 1, two bus bars may be inserted into the core for current detection. In this case, for example, the strength of the magnetic field generated by the current flowing through the two bus bars, which have different current directions, is detected by the sensor chip, and the current flowing through the bus bars is detected. At this time, in the gap, there are places where the directions of the magnetic fields generated by the current flowing through the two bus bars are opposite to each other, and therefore there are places where the two magnetic fields cancel each other out. In addition, in the gap, there are places where the direction of the magnetic field generated by the current flowing through the two bus bars is from the gap toward the bottom of the core located on the opposite side to the gap, and therefore there are places where the two magnetic fields are difficult to cancel each other out. For these reasons, the gradient of the magnetic field in the gap becomes large. As a result, the position of the sensor chip is shifted, and the detection accuracy of the magnetic field strength by the sensor chip decreases. Therefore, at this time, the current detection accuracy decreases.
An object of the present disclosure is to provide a current sensor that suppresses deterioration in current detection accuracy.
特許文献1に記載された電流センサにおいて、電流検出のために、コアに挿入されるバスバが2つ備えられることがある。この場合、例えば、電流方向が互いに異なる2つのバスバに流れる電流によって発生する磁界の強さがセンサチップにて検出されることにより、バスバに流れる電流が検出される。このとき、ギャップ内において、2つのバスバに流れる電流によって発生する磁界の方向が互いに逆方向となる箇所が生じることから、2つの磁界が互いに打ち消し合う箇所が生じる。また、ギャップ内において、2つのバスバに流れる電流によって発生する磁界の方向がギャップからギャップとは反対側に位置するコアの底部に向かう方向となる箇所が生じることから、2つの磁界が互いに打ち消し合いにくい箇所が生じる。これらのため、ギャップ内の磁界の勾配が大きくなる。これにより、センサチップの位置がずれることで、センサチップによる磁界の強さの検出精度が低下する。したがって、このとき、電流検出精度が低下する。
本開示は、電流検出精度の低下を抑制する電流センサを提供することを目的とする。 (assignment)
In the current sensor described in
An object of the present disclosure is to provide a current sensor that suppresses deterioration in current detection accuracy.
[観点1-1]
電流センサであって、
板状に形成されているとともに、長手方向(DL)のうち一方向の電流(Ic1)が流れる第1バスバ(21)と、
前記第1バスバと間隔を空けて前記第1バスバの幅方向(DW)に並んで板状に形成されているとともに、前記第1バスバに流れる電流の方向とは逆方向の電流(Ic2)が流れる第2バスバ(22)と、
前記第1バスバおよび前記第2バスバが挿入されているコア穴(29)と、前記幅方向を向いている第1端面(261)、前記第1端面と前記幅方向に対向している第2端面(262)、および、前記第1端面と前記第2端面とによって形成されているとともに前記コア穴と外部とに連通するギャップ(265)を含むギャップ形成部(26)と、前記ギャップ形成部に接続されているとともに前記第1バスバの厚み方向(DT)に延びているコア横部(27)と、前記コア横部に接続されて前記幅方向に延びているとともに前記ギャップ形成部および前記コア横部とで前記コア穴を形成するコア底部(28)と、を有するコア(25)と、
前記ギャップに配置されているとともに、前記第1バスバに流れる電流によって発生する磁界のうち前記第1端面から前記第2端面に向かう方向(Dm1)の磁界と、前記第2バスバに流れる電流によって発生する磁界のうち前記第2端面から前記第1端面に向かう方向(Dm2)の磁界とが合わされた磁界の強さを検出し、検出した磁界の強さに応じた信号を出力する検出素子(31)と、
を備え、
前記第1バスバは、前記第2バスバと前記幅方向に対向する第1対向面(211)を有し、
前記第2バスバは、前記第1バスバと前記幅方向に対向する第2対向面(222)を有し、
前記第1端面および前記第2端面は、前記幅方向において、前記第1対向面および前記第2対向面の間に位置しており、
前記ギャップ形成部は、コア内面(271、272)と、コア突起(281、282)と、を含み、
前記コア内面は、前記ギャップ形成部のうち前記厚み方向内側を向いている面であって、
前記コア突起は、前記コア内面のうち、前記第1対向面および前記ギャップ形成部を通るとともに前記幅方向と直交する面(S1)ならびに前記第2対向面および前記ギャップ形成部を通るとともに前記幅方向と直交する面(S2)の間の範囲から前記厚み方向に突出している電流センサ。
[観点1-2]
前記コア突起は、前記厚み方向において前記コア底部と離れている観点1-1に記載の電流センサ。
[観点1-3]
前記幅方向における前記コア突起の長さ(Wp1、Wp2)は、前記幅方向における前記第1対向面から前記第1端面までの距離(Wb1、Wb2)以下とされている観点1-1または1-2に記載の電流センサ。
[観点1-4]
前記検出素子は、前記厚み方向における前記第1端面の中心を通るとともに前記厚み方向と直交する面(So_Gap)上に配置されている観点1-1ないし1-3のいずれか1つに記載の電流センサ。
[観点1-5]
前記検出素子は、前記厚み方向における前記第1端面の中心を通るとともに前記厚み方向と直交する面(So_Gap)よりも前記コア穴とは反対側に配置されている観点1-1ないし1-3のいずれか1つに記載の電流センサ。
[観点1-6]
前記コア突起は、前記幅方向を向いている突起面(2810、2820)を含み、
前記検出素子は、前記突起面および前記第1端面を合わせた面の前記厚み方向における中心を通るとともに前記厚み方向と直交する面(Sop)上に配置されている観点1-1ないし1-3のいずれか1つに記載の電流センサ。
[観点1-7]
前記コア突起は、前記幅方向を向いている突起面(2810、2820)を含み、
前記検出素子は、前記突起面および前記第1端面を合わせた面の前記厚み方向における中心を通るとともに前記厚み方向と直交する面(Sop)よりも前記コア穴とは反対側に配置されている観点1-1ないし1-3のいずれか1つに記載の電流センサ。
[観点1-8]
前記第1バスバは、電源の一端および負荷の一端と接続されており、
前記第2バスバは、前記電源の他端および前記負荷の他端と接続されており、
前記電流センサは、前記検出素子から出力された信号に基づいて、前記電源および前記負荷の間において異常があるか否かを判定する判定部(45)をさらに備える観点1-1ないし1-7のいずれか1つに記載の電流センサ。 [Point 1-1]
A current sensor comprising:
A first bus bar (21) formed in a plate shape and through which a current (Ic1) flows in one direction of a longitudinal direction (DL);
a second bus bar (22) formed in a plate shape arranged in a width direction (DW) of the first bus bar at a distance from the first bus bar, and through which a current (Ic2) flows in a direction opposite to a direction of a current flowing through the first bus bar;
a core (25) having a core hole (29) into which the first bus bar and the second bus bar are inserted, a gap forming portion (26) including a first end face (261) facing the width direction, a second end face (262) facing the first end face in the width direction, and a gap (265) formed by the first end face and the second end face and communicating the core hole with the outside, a core horizontal portion (27) connected to the gap forming portion and extending in a thickness direction (DT) of the first bus bar, and a core bottom portion (28) connected to the core horizontal portion and extending in the width direction and forming the core hole together with the gap forming portion and the core horizontal portion;
a detection element (31) that is disposed in the gap, detects the intensity of a combined magnetic field of a magnetic field generated by a current flowing through the first bus bar in a direction (Dm1) from the first end face to the second end face, and a magnetic field generated by a current flowing through the second bus bar in a direction (Dm2) from the second end face to the first end face, and outputs a signal according to the intensity of the detected magnetic field;
Equipped with
The first bus bar has a first opposing surface (211) opposing the second bus bar in the width direction,
The second bus bar has a second opposing surface (222) opposing the first bus bar in the width direction,
the first end surface and the second end surface are located between the first opposing surface and the second opposing surface in the width direction,
The gap forming portion includes a core inner surface (271, 272) and a core protrusion (281, 282),
The core inner surface is a surface of the gap forming portion facing inward in the thickness direction,
The core protrusion is a current sensor that protrudes in the thickness direction from a range of the core inner surface between a surface (S1) that passes through the first opposing surface and the gap forming portion and is perpendicular to the width direction, and a surface (S2) that passes through the second opposing surface and the gap forming portion and is perpendicular to the width direction.
[Point 1-2]
The current sensor according to aspect 1-1, wherein the core protrusion is spaced apart from the core bottom in the thickness direction.
[Point 1-3]
A current sensor described in aspect 1-1 or 1-2, wherein the length (Wp1, Wp2) of the core protrusion in the width direction is equal to or less than the distance (Wb1, Wb2) from the first opposing surface to the first end surface in the width direction.
[Point 1-4]
The current sensor according to any one of aspects 1-1 to 1-3, wherein the detection element is arranged on a plane (So_Gap) that passes through the center of the first end face in the thickness direction and is perpendicular to the thickness direction.
[Point 1-5]
A current sensor described in any one of viewpoints 1-1 to 1-3, wherein the detection element is arranged on the opposite side of the core hole from a plane (So_Gap) that passes through the center of the first end face in the thickness direction and is perpendicular to the thickness direction.
[Point 1-6]
The core projection includes projection surfaces (2810, 2820) facing the width direction,
A current sensor described in any one of points 1-1 to 1-3, wherein the detection element is arranged on a plane (Sop) that passes through the center in the thickness direction of the surface where the protrusion surface and the first end surface are joined and is perpendicular to the thickness direction.
[Point 1-7]
The core projection includes projection surfaces (2810, 2820) facing the width direction,
A current sensor described in any one of viewpoints 1-1 to 1-3, wherein the detection element passes through the center in the thickness direction of the surface where the protrusion surface and the first end surface are joined and is positioned on the opposite side of the core hole from a plane (Sop) perpendicular to the thickness direction.
[Point 1-8]
The first bus bar is connected to one end of a power source and one end of a load,
the second bus bar is connected to the other end of the power source and the other end of the load,
The current sensor according to any one of aspects 1-1 to 1-7, further comprising a judgment unit (45) that judges whether or not there is an abnormality between the power supply and the load based on a signal output from the detection element.
電流センサであって、
板状に形成されているとともに、長手方向(DL)のうち一方向の電流(Ic1)が流れる第1バスバ(21)と、
前記第1バスバと間隔を空けて前記第1バスバの幅方向(DW)に並んで板状に形成されているとともに、前記第1バスバに流れる電流の方向とは逆方向の電流(Ic2)が流れる第2バスバ(22)と、
前記第1バスバおよび前記第2バスバが挿入されているコア穴(29)と、前記幅方向を向いている第1端面(261)、前記第1端面と前記幅方向に対向している第2端面(262)、および、前記第1端面と前記第2端面とによって形成されているとともに前記コア穴と外部とに連通するギャップ(265)を含むギャップ形成部(26)と、前記ギャップ形成部に接続されているとともに前記第1バスバの厚み方向(DT)に延びているコア横部(27)と、前記コア横部に接続されて前記幅方向に延びているとともに前記ギャップ形成部および前記コア横部とで前記コア穴を形成するコア底部(28)と、を有するコア(25)と、
前記ギャップに配置されているとともに、前記第1バスバに流れる電流によって発生する磁界のうち前記第1端面から前記第2端面に向かう方向(Dm1)の磁界と、前記第2バスバに流れる電流によって発生する磁界のうち前記第2端面から前記第1端面に向かう方向(Dm2)の磁界とが合わされた磁界の強さを検出し、検出した磁界の強さに応じた信号を出力する検出素子(31)と、
を備え、
前記第1バスバは、前記第2バスバと前記幅方向に対向する第1対向面(211)を有し、
前記第2バスバは、前記第1バスバと前記幅方向に対向する第2対向面(222)を有し、
前記第1端面および前記第2端面は、前記幅方向において、前記第1対向面および前記第2対向面の間に位置しており、
前記ギャップ形成部は、コア内面(271、272)と、コア突起(281、282)と、を含み、
前記コア内面は、前記ギャップ形成部のうち前記厚み方向内側を向いている面であって、
前記コア突起は、前記コア内面のうち、前記第1対向面および前記ギャップ形成部を通るとともに前記幅方向と直交する面(S1)ならびに前記第2対向面および前記ギャップ形成部を通るとともに前記幅方向と直交する面(S2)の間の範囲から前記厚み方向に突出している電流センサ。
[観点1-2]
前記コア突起は、前記厚み方向において前記コア底部と離れている観点1-1に記載の電流センサ。
[観点1-3]
前記幅方向における前記コア突起の長さ(Wp1、Wp2)は、前記幅方向における前記第1対向面から前記第1端面までの距離(Wb1、Wb2)以下とされている観点1-1または1-2に記載の電流センサ。
[観点1-4]
前記検出素子は、前記厚み方向における前記第1端面の中心を通るとともに前記厚み方向と直交する面(So_Gap)上に配置されている観点1-1ないし1-3のいずれか1つに記載の電流センサ。
[観点1-5]
前記検出素子は、前記厚み方向における前記第1端面の中心を通るとともに前記厚み方向と直交する面(So_Gap)よりも前記コア穴とは反対側に配置されている観点1-1ないし1-3のいずれか1つに記載の電流センサ。
[観点1-6]
前記コア突起は、前記幅方向を向いている突起面(2810、2820)を含み、
前記検出素子は、前記突起面および前記第1端面を合わせた面の前記厚み方向における中心を通るとともに前記厚み方向と直交する面(Sop)上に配置されている観点1-1ないし1-3のいずれか1つに記載の電流センサ。
[観点1-7]
前記コア突起は、前記幅方向を向いている突起面(2810、2820)を含み、
前記検出素子は、前記突起面および前記第1端面を合わせた面の前記厚み方向における中心を通るとともに前記厚み方向と直交する面(Sop)よりも前記コア穴とは反対側に配置されている観点1-1ないし1-3のいずれか1つに記載の電流センサ。
[観点1-8]
前記第1バスバは、電源の一端および負荷の一端と接続されており、
前記第2バスバは、前記電源の他端および前記負荷の他端と接続されており、
前記電流センサは、前記検出素子から出力された信号に基づいて、前記電源および前記負荷の間において異常があるか否かを判定する判定部(45)をさらに備える観点1-1ないし1-7のいずれか1つに記載の電流センサ。 [Point 1-1]
A current sensor comprising:
A first bus bar (21) formed in a plate shape and through which a current (Ic1) flows in one direction of a longitudinal direction (DL);
a second bus bar (22) formed in a plate shape arranged in a width direction (DW) of the first bus bar at a distance from the first bus bar, and through which a current (Ic2) flows in a direction opposite to a direction of a current flowing through the first bus bar;
a core (25) having a core hole (29) into which the first bus bar and the second bus bar are inserted, a gap forming portion (26) including a first end face (261) facing the width direction, a second end face (262) facing the first end face in the width direction, and a gap (265) formed by the first end face and the second end face and communicating the core hole with the outside, a core horizontal portion (27) connected to the gap forming portion and extending in a thickness direction (DT) of the first bus bar, and a core bottom portion (28) connected to the core horizontal portion and extending in the width direction and forming the core hole together with the gap forming portion and the core horizontal portion;
a detection element (31) that is disposed in the gap, detects the intensity of a combined magnetic field of a magnetic field generated by a current flowing through the first bus bar in a direction (Dm1) from the first end face to the second end face, and a magnetic field generated by a current flowing through the second bus bar in a direction (Dm2) from the second end face to the first end face, and outputs a signal according to the intensity of the detected magnetic field;
Equipped with
The first bus bar has a first opposing surface (211) opposing the second bus bar in the width direction,
The second bus bar has a second opposing surface (222) opposing the first bus bar in the width direction,
the first end surface and the second end surface are located between the first opposing surface and the second opposing surface in the width direction,
The gap forming portion includes a core inner surface (271, 272) and a core protrusion (281, 282),
The core inner surface is a surface of the gap forming portion facing inward in the thickness direction,
The core protrusion is a current sensor that protrudes in the thickness direction from a range of the core inner surface between a surface (S1) that passes through the first opposing surface and the gap forming portion and is perpendicular to the width direction, and a surface (S2) that passes through the second opposing surface and the gap forming portion and is perpendicular to the width direction.
[Point 1-2]
The current sensor according to aspect 1-1, wherein the core protrusion is spaced apart from the core bottom in the thickness direction.
[Point 1-3]
A current sensor described in aspect 1-1 or 1-2, wherein the length (Wp1, Wp2) of the core protrusion in the width direction is equal to or less than the distance (Wb1, Wb2) from the first opposing surface to the first end surface in the width direction.
[Point 1-4]
The current sensor according to any one of aspects 1-1 to 1-3, wherein the detection element is arranged on a plane (So_Gap) that passes through the center of the first end face in the thickness direction and is perpendicular to the thickness direction.
[Point 1-5]
A current sensor described in any one of viewpoints 1-1 to 1-3, wherein the detection element is arranged on the opposite side of the core hole from a plane (So_Gap) that passes through the center of the first end face in the thickness direction and is perpendicular to the thickness direction.
[Point 1-6]
The core projection includes projection surfaces (2810, 2820) facing the width direction,
A current sensor described in any one of points 1-1 to 1-3, wherein the detection element is arranged on a plane (Sop) that passes through the center in the thickness direction of the surface where the protrusion surface and the first end surface are joined and is perpendicular to the thickness direction.
[Point 1-7]
The core projection includes projection surfaces (2810, 2820) facing the width direction,
A current sensor described in any one of viewpoints 1-1 to 1-3, wherein the detection element passes through the center in the thickness direction of the surface where the protrusion surface and the first end surface are joined and is positioned on the opposite side of the core hole from a plane (Sop) perpendicular to the thickness direction.
[Point 1-8]
The first bus bar is connected to one end of a power source and one end of a load,
the second bus bar is connected to the other end of the power source and the other end of the load,
The current sensor according to any one of aspects 1-1 to 1-7, further comprising a judgment unit (45) that judges whether or not there is an abnormality between the power supply and the load based on a signal output from the detection element.
[観点2-1]
電流センサであって、
板状に形成されているとともに、長手方向(DL)のうち一方向の電流(Ic1)が流れる第1バスバ(21)と、
前記第1バスバと間隔を空けて前記第1バスバの幅方向(DW)に並んで板状に形成されているとともに、前記第1バスバに流れる電流の方向とは逆方向の電流(Ic2)が流れる第2バスバ(22)と、
前記第1バスバおよび前記第2バスバが挿入されているコア穴(29)と、前記幅方向を向いている第1端面(261)、前記第1端面と前記幅方向に対向している第2端面(262)、および、前記第1端面と前記第2端面とによって形成されているとともに前記コア穴と外部とに連通するギャップ(265)を含むギャップ形成部(26)と、前記ギャップ形成部に接続されているとともに前記第1バスバの厚み方向(DT)に延びているコア横部(27)と、前記コア横部に接続されて前記幅方向に延びているとともに前記ギャップ形成部および前記コア横部とで前記コア穴を形成するコア底部(28)と、を有するコア(25)と、
前記ギャップに配置されているとともに、前記第1バスバに流れる電流によって発生する磁界のうち前記第1端面から前記第2端面に向かう方向(Dm1)の磁界と、前記第2バスバに流れる電流によって発生する磁界のうち前記第2端面から前記第1端面に向かう方向(Dm2)の磁界とが合わされた磁界の強さを検出し、検出した磁界の強さに応じた信号を出力する検出素子(31)と、
を備え、
前記厚み方向における前記ギャップ形成部の内面から前記コア底部の内面までの距離である内面間距離(Tch)は、前記幅方向における前記第1端面から前記第2端面までの距離(Gap)よりも大きくなっている電流センサ。
[観点2-2]
前記幅方向に互いに対向している前記コア横部の内面同士の間の距離(Wsi)は、前記内面間距離よりも大きくなっている観点2-1に記載の電流センサ。
[観点2-3]
前記ギャップ形成部と前記コア横部との境界部における内側の角部である横内側角部(C_in_top)は、R形状になっている観点2-1または2-2に記載の電流センサ。
[観点2-4]
前記コア横部と前記コア底部との境界部における内側の角部である底内側角部(C_in_btm)は、R形状になっている観点2-1ないし2-3のいずれか1つに記載の電流センサ。
[観点2-5]
前記第1バスバは、電源の一端および負荷の一端と接続されており、
前記第2バスバは、前記電源の他端および前記負荷の他端と接続されており、
前記電流センサは、前記検出素子から出力された信号に基づいて、前記電源および前記負荷の間において異常があるか否かを判定する判定部(45)をさらに備える観点2-1ないし2-4のいずれか1つに記載の電流センサ。 [Point 2-1]
A current sensor comprising:
A first bus bar (21) formed in a plate shape and through which a current (Ic1) flows in one direction of a longitudinal direction (DL);
a second bus bar (22) formed in a plate shape arranged in a width direction (DW) of the first bus bar at a distance from the first bus bar, and through which a current (Ic2) flows in a direction opposite to a direction of a current flowing through the first bus bar;
a core (25) having a core hole (29) into which the first bus bar and the second bus bar are inserted, a gap forming portion (26) including a first end face (261) facing the width direction, a second end face (262) facing the first end face in the width direction, and a gap (265) formed by the first end face and the second end face and communicating the core hole with the outside, a core horizontal portion (27) connected to the gap forming portion and extending in a thickness direction (DT) of the first bus bar, and a core bottom portion (28) connected to the core horizontal portion and extending in the width direction and forming the core hole together with the gap forming portion and the core horizontal portion;
a detection element (31) that is disposed in the gap, detects the intensity of a combined magnetic field of a magnetic field generated by a current flowing through the first bus bar in a direction (Dm1) from the first end face to the second end face, and a magnetic field generated by a current flowing through the second bus bar in a direction (Dm2) from the second end face to the first end face, and outputs a signal according to the intensity of the detected magnetic field;
Equipped with
A current sensor in which an inner-to-inner-surface distance (Tch), which is the distance from the inner surface of the gap forming portion to the inner surface of the core bottom in the thickness direction, is greater than a distance (Gap) from the first end face to the second end face in the width direction.
[Point 2-2]
The current sensor according to aspect 2-1, wherein a distance (Wsi) between inner surfaces of the core horizontal portions facing each other in the width direction is greater than the distance between the inner surfaces.
[Point 2-3]
The current sensor according to aspect 2-1 or 2-2, wherein a lateral inner corner (C_in_top), which is an inner corner at the boundary between the gap forming portion and the core lateral portion, is rounded.
[Point 2-4]
The current sensor according to any one of Aspects 2-1 to 2-3, wherein a bottom inner corner (C_in_btm), which is an inner corner at the boundary between the core side portion and the core bottom, is rounded.
[Point 2-5]
The first bus bar is connected to one end of a power source and one end of a load,
the second bus bar is connected to the other end of the power source and the other end of the load,
The current sensor according to any one of aspects 2-1 to 2-4, further comprising a judgment unit (45) that judges whether or not there is an abnormality between the power supply and the load based on a signal output from the detection element.
電流センサであって、
板状に形成されているとともに、長手方向(DL)のうち一方向の電流(Ic1)が流れる第1バスバ(21)と、
前記第1バスバと間隔を空けて前記第1バスバの幅方向(DW)に並んで板状に形成されているとともに、前記第1バスバに流れる電流の方向とは逆方向の電流(Ic2)が流れる第2バスバ(22)と、
前記第1バスバおよび前記第2バスバが挿入されているコア穴(29)と、前記幅方向を向いている第1端面(261)、前記第1端面と前記幅方向に対向している第2端面(262)、および、前記第1端面と前記第2端面とによって形成されているとともに前記コア穴と外部とに連通するギャップ(265)を含むギャップ形成部(26)と、前記ギャップ形成部に接続されているとともに前記第1バスバの厚み方向(DT)に延びているコア横部(27)と、前記コア横部に接続されて前記幅方向に延びているとともに前記ギャップ形成部および前記コア横部とで前記コア穴を形成するコア底部(28)と、を有するコア(25)と、
前記ギャップに配置されているとともに、前記第1バスバに流れる電流によって発生する磁界のうち前記第1端面から前記第2端面に向かう方向(Dm1)の磁界と、前記第2バスバに流れる電流によって発生する磁界のうち前記第2端面から前記第1端面に向かう方向(Dm2)の磁界とが合わされた磁界の強さを検出し、検出した磁界の強さに応じた信号を出力する検出素子(31)と、
を備え、
前記厚み方向における前記ギャップ形成部の内面から前記コア底部の内面までの距離である内面間距離(Tch)は、前記幅方向における前記第1端面から前記第2端面までの距離(Gap)よりも大きくなっている電流センサ。
[観点2-2]
前記幅方向に互いに対向している前記コア横部の内面同士の間の距離(Wsi)は、前記内面間距離よりも大きくなっている観点2-1に記載の電流センサ。
[観点2-3]
前記ギャップ形成部と前記コア横部との境界部における内側の角部である横内側角部(C_in_top)は、R形状になっている観点2-1または2-2に記載の電流センサ。
[観点2-4]
前記コア横部と前記コア底部との境界部における内側の角部である底内側角部(C_in_btm)は、R形状になっている観点2-1ないし2-3のいずれか1つに記載の電流センサ。
[観点2-5]
前記第1バスバは、電源の一端および負荷の一端と接続されており、
前記第2バスバは、前記電源の他端および前記負荷の他端と接続されており、
前記電流センサは、前記検出素子から出力された信号に基づいて、前記電源および前記負荷の間において異常があるか否かを判定する判定部(45)をさらに備える観点2-1ないし2-4のいずれか1つに記載の電流センサ。 [Point 2-1]
A current sensor comprising:
A first bus bar (21) formed in a plate shape and through which a current (Ic1) flows in one direction of a longitudinal direction (DL);
a second bus bar (22) formed in a plate shape arranged in a width direction (DW) of the first bus bar at a distance from the first bus bar, and through which a current (Ic2) flows in a direction opposite to a direction of a current flowing through the first bus bar;
a core (25) having a core hole (29) into which the first bus bar and the second bus bar are inserted, a gap forming portion (26) including a first end face (261) facing the width direction, a second end face (262) facing the first end face in the width direction, and a gap (265) formed by the first end face and the second end face and communicating the core hole with the outside, a core horizontal portion (27) connected to the gap forming portion and extending in a thickness direction (DT) of the first bus bar, and a core bottom portion (28) connected to the core horizontal portion and extending in the width direction and forming the core hole together with the gap forming portion and the core horizontal portion;
a detection element (31) that is disposed in the gap, detects the intensity of a combined magnetic field of a magnetic field generated by a current flowing through the first bus bar in a direction (Dm1) from the first end face to the second end face, and a magnetic field generated by a current flowing through the second bus bar in a direction (Dm2) from the second end face to the first end face, and outputs a signal according to the intensity of the detected magnetic field;
Equipped with
A current sensor in which an inner-to-inner-surface distance (Tch), which is the distance from the inner surface of the gap forming portion to the inner surface of the core bottom in the thickness direction, is greater than a distance (Gap) from the first end face to the second end face in the width direction.
[Point 2-2]
The current sensor according to aspect 2-1, wherein a distance (Wsi) between inner surfaces of the core horizontal portions facing each other in the width direction is greater than the distance between the inner surfaces.
[Point 2-3]
The current sensor according to aspect 2-1 or 2-2, wherein a lateral inner corner (C_in_top), which is an inner corner at the boundary between the gap forming portion and the core lateral portion, is rounded.
[Point 2-4]
The current sensor according to any one of Aspects 2-1 to 2-3, wherein a bottom inner corner (C_in_btm), which is an inner corner at the boundary between the core side portion and the core bottom, is rounded.
[Point 2-5]
The first bus bar is connected to one end of a power source and one end of a load,
the second bus bar is connected to the other end of the power source and the other end of the load,
The current sensor according to any one of aspects 2-1 to 2-4, further comprising a judgment unit (45) that judges whether or not there is an abnormality between the power supply and the load based on a signal output from the detection element.
[観点3-1]
電流センサであって、
板状に形成されているとともに、長手方向(DL)のうち一方向の電流(Ic1)が流れる第1バスバ(21)と、
前記第1バスバと間隔を空けて前記第1バスバの幅方向(DW)に並んで板状に形成されているとともに、前記第1バスバに流れる電流の方向とは逆方向の電流(Ic2)が流れる第2バスバ(22)と、
前記第1バスバおよび前記第2バスバが挿入されているコア穴(29)と、前記幅方向を向いている第1端面(261)、前記第1端面と前記幅方向に対向している第2端面(262)、および、前記第1端面と前記第2端面とによって形成されているとともに前記コア穴と外部とに連通するギャップ(265)を含むギャップ形成部(26)と、前記ギャップ形成部に接続されているとともに前記第1バスバの厚み方向(DT)に延びているコア横部(27)と、前記コア横部に接続されて前記幅方向に延びているとともに前記ギャップ形成部および前記コア横部とで前記コア穴を形成するコア底部(28)と、を有するコア(25)と、
前記ギャップに配置されているとともに、前記第1バスバに流れる電流によって発生する磁界のうち前記第1端面から前記第2端面に向かう方向(Dm1)の磁界と、前記第2バスバに流れる電流によって発生する磁界のうち前記第2端面から前記第1端面に向かう方向(Dm2)の磁界とが合わされた磁界の強さを検出し、検出した磁界の強さに応じた信号を出力する検出素子(31)と、
を備え、
前記第1バスバは、前記第2バスバと前記幅方向に対向する第1対向面(211)を有し、
前記第2バスバは、前記第1バスバと前記幅方向に対向する第2対向面(222)を有し、
前記第1端面および前記第2端面は、前記幅方向において、前記第1対向面および前記第2対向面の間に位置しており、
前記コア底部は、底部内面(280)と、凹部(605)と、を含み、
前記底部内面は、前記厚み方向内側を向いている面であって、
前記凹部は、前記底部内面のうち、前記幅方向における前記第1バスバの中心を通るとともに前記幅方向と直交する面である第1中心面(Sob1)および前記幅方向における前記第2バスバの中心を通るとともに前記幅方向と直交する面である第2中心面(Sob2)の間の範囲から前記厚み方向に凹んでおり、
前記幅方向における前記凹部の長さである凹部幅(Wcr)は、前記幅方向における前記第1中心面から前記第2中心面までの距離(Wob)以下とされており、
前記厚み方向における前記ギャップ形成部の内面から前記凹部の底面(606)までの距離(Tcb)は、前記幅方向における前記第1端面から前記第2端面までの距離であるギャップ距離(Gap)よりも大きくなっている電流センサ。
[観点3-2]
前記凹部は、前記底部内面のうち、前記第1対向面および前記コア底部を通るとともに前記幅方向と直交する面(S1)ならびに前記第2対向面および前記コア底部を通るとともに前記幅方向と直交する面(S2)の間の範囲から前記厚み方向に凹んでおり、
前記凹部幅は、前記幅方向における前記第1対向面から前記第2対向面までの距離(Wbb)以下とされている観点3-1に記載の電流センサ。
[観点3-3]
前記凹部は、前記底部内面のうち、前記第1端面および前記コア底部を通るとともに前記幅方向と直交する面(Si1)ならびに前記第2端面および前記コア底部を通るとともに前記幅方向と直交する面(Si2)の間の範囲から前記厚み方向に凹んでおり、
前記凹部幅は、前記ギャップ距離以下とされている観点3-1に記載の電流センサ。
[観点3-4]
前記第1バスバは、電源の一端および負荷の一端と接続されており、
前記第2バスバは、前記電源の他端および前記負荷の他端と接続されており、
前記電流センサは、前記検出素子から出力された信号に基づいて、前記電源および前記負荷の間において異常があるか否かを判定する判定部(45)をさらに備える観点3-1ないし3-3のいずれか1つに記載の電流センサ。 [Point 3-1]
A current sensor comprising:
A first bus bar (21) formed in a plate shape and through which a current (Ic1) flows in one direction of a longitudinal direction (DL);
a second bus bar (22) formed in a plate shape arranged in a width direction (DW) of the first bus bar at a distance from the first bus bar, and through which a current (Ic2) flows in a direction opposite to a direction of a current flowing through the first bus bar;
a core (25) having a core hole (29) into which the first bus bar and the second bus bar are inserted, a gap forming portion (26) including a first end face (261) facing the width direction, a second end face (262) facing the first end face in the width direction, and a gap (265) formed by the first end face and the second end face and communicating the core hole with the outside, a core horizontal portion (27) connected to the gap forming portion and extending in a thickness direction (DT) of the first bus bar, and a core bottom portion (28) connected to the core horizontal portion and extending in the width direction and forming the core hole together with the gap forming portion and the core horizontal portion;
a detection element (31) that is disposed in the gap, detects the intensity of a combined magnetic field of a magnetic field generated by a current flowing through the first bus bar in a direction (Dm1) from the first end face to the second end face, and a magnetic field generated by a current flowing through the second bus bar in a direction (Dm2) from the second end face to the first end face, and outputs a signal according to the intensity of the detected magnetic field;
Equipped with
The first bus bar has a first opposing surface (211) opposing the second bus bar in the width direction,
The second bus bar has a second opposing surface (222) opposing the first bus bar in the width direction,
the first end surface and the second end surface are located between the first opposing surface and the second opposing surface in the width direction,
The core bottom includes a bottom inner surface (280) and a recess (605);
The bottom inner surface is a surface facing inward in the thickness direction,
the recess is recessed in the thickness direction from a range of the bottom inner surface between a first center plane (Sob1) that passes through a center of the first bus bar in the width direction and is a plane perpendicular to the width direction and a second center plane (Sob2) that passes through a center of the second bus bar in the width direction and is a plane perpendicular to the width direction,
A recess width (Wcr), which is a length of the recess in the width direction, is equal to or less than a distance (Wob) from the first center plane to the second center plane in the width direction,
A current sensor in which the distance (Tcb) from the inner surface of the gap forming portion in the thickness direction to the bottom surface (606) of the recess is greater than a gap distance (Gap) which is the distance from the first end surface to the second end surface in the width direction.
[Point 3-2]
the recess is recessed in the thickness direction from a range of the bottom inner surface between a surface (S1) that passes through the first opposing surface and the core bottom and is perpendicular to the width direction, and a surface (S2) that passes through the second opposing surface and the core bottom and is perpendicular to the width direction,
The current sensor according to aspect 3-1, wherein the recess width is equal to or smaller than the distance (Wbb) from the first opposing surface to the second opposing surface in the width direction.
[Point 3-3]
the recess is recessed in the thickness direction from a range of the bottom inner surface between a plane (Si1) that passes through the first end face and the core bottom and is perpendicular to the width direction, and a plane (Si2) that passes through the second end face and the core bottom and is perpendicular to the width direction,
The current sensor according to aspect 3-1, wherein the recess width is equal to or smaller than the gap distance.
[Point 3-4]
The first bus bar is connected to one end of a power source and one end of a load,
the second bus bar is connected to the other end of the power source and the other end of the load,
The current sensor according to any one of Aspects 3-1 to 3-3, further comprising a judgment unit (45) that judges whether or not there is an abnormality between the power supply and the load based on a signal output from the detection element.
電流センサであって、
板状に形成されているとともに、長手方向(DL)のうち一方向の電流(Ic1)が流れる第1バスバ(21)と、
前記第1バスバと間隔を空けて前記第1バスバの幅方向(DW)に並んで板状に形成されているとともに、前記第1バスバに流れる電流の方向とは逆方向の電流(Ic2)が流れる第2バスバ(22)と、
前記第1バスバおよび前記第2バスバが挿入されているコア穴(29)と、前記幅方向を向いている第1端面(261)、前記第1端面と前記幅方向に対向している第2端面(262)、および、前記第1端面と前記第2端面とによって形成されているとともに前記コア穴と外部とに連通するギャップ(265)を含むギャップ形成部(26)と、前記ギャップ形成部に接続されているとともに前記第1バスバの厚み方向(DT)に延びているコア横部(27)と、前記コア横部に接続されて前記幅方向に延びているとともに前記ギャップ形成部および前記コア横部とで前記コア穴を形成するコア底部(28)と、を有するコア(25)と、
前記ギャップに配置されているとともに、前記第1バスバに流れる電流によって発生する磁界のうち前記第1端面から前記第2端面に向かう方向(Dm1)の磁界と、前記第2バスバに流れる電流によって発生する磁界のうち前記第2端面から前記第1端面に向かう方向(Dm2)の磁界とが合わされた磁界の強さを検出し、検出した磁界の強さに応じた信号を出力する検出素子(31)と、
を備え、
前記第1バスバは、前記第2バスバと前記幅方向に対向する第1対向面(211)を有し、
前記第2バスバは、前記第1バスバと前記幅方向に対向する第2対向面(222)を有し、
前記第1端面および前記第2端面は、前記幅方向において、前記第1対向面および前記第2対向面の間に位置しており、
前記コア底部は、底部内面(280)と、凹部(605)と、を含み、
前記底部内面は、前記厚み方向内側を向いている面であって、
前記凹部は、前記底部内面のうち、前記幅方向における前記第1バスバの中心を通るとともに前記幅方向と直交する面である第1中心面(Sob1)および前記幅方向における前記第2バスバの中心を通るとともに前記幅方向と直交する面である第2中心面(Sob2)の間の範囲から前記厚み方向に凹んでおり、
前記幅方向における前記凹部の長さである凹部幅(Wcr)は、前記幅方向における前記第1中心面から前記第2中心面までの距離(Wob)以下とされており、
前記厚み方向における前記ギャップ形成部の内面から前記凹部の底面(606)までの距離(Tcb)は、前記幅方向における前記第1端面から前記第2端面までの距離であるギャップ距離(Gap)よりも大きくなっている電流センサ。
[観点3-2]
前記凹部は、前記底部内面のうち、前記第1対向面および前記コア底部を通るとともに前記幅方向と直交する面(S1)ならびに前記第2対向面および前記コア底部を通るとともに前記幅方向と直交する面(S2)の間の範囲から前記厚み方向に凹んでおり、
前記凹部幅は、前記幅方向における前記第1対向面から前記第2対向面までの距離(Wbb)以下とされている観点3-1に記載の電流センサ。
[観点3-3]
前記凹部は、前記底部内面のうち、前記第1端面および前記コア底部を通るとともに前記幅方向と直交する面(Si1)ならびに前記第2端面および前記コア底部を通るとともに前記幅方向と直交する面(Si2)の間の範囲から前記厚み方向に凹んでおり、
前記凹部幅は、前記ギャップ距離以下とされている観点3-1に記載の電流センサ。
[観点3-4]
前記第1バスバは、電源の一端および負荷の一端と接続されており、
前記第2バスバは、前記電源の他端および前記負荷の他端と接続されており、
前記電流センサは、前記検出素子から出力された信号に基づいて、前記電源および前記負荷の間において異常があるか否かを判定する判定部(45)をさらに備える観点3-1ないし3-3のいずれか1つに記載の電流センサ。 [Point 3-1]
A current sensor comprising:
A first bus bar (21) formed in a plate shape and through which a current (Ic1) flows in one direction of a longitudinal direction (DL);
a second bus bar (22) formed in a plate shape arranged in a width direction (DW) of the first bus bar at a distance from the first bus bar, and through which a current (Ic2) flows in a direction opposite to a direction of a current flowing through the first bus bar;
a core (25) having a core hole (29) into which the first bus bar and the second bus bar are inserted, a gap forming portion (26) including a first end face (261) facing the width direction, a second end face (262) facing the first end face in the width direction, and a gap (265) formed by the first end face and the second end face and communicating the core hole with the outside, a core horizontal portion (27) connected to the gap forming portion and extending in a thickness direction (DT) of the first bus bar, and a core bottom portion (28) connected to the core horizontal portion and extending in the width direction and forming the core hole together with the gap forming portion and the core horizontal portion;
a detection element (31) that is disposed in the gap, detects the intensity of a combined magnetic field of a magnetic field generated by a current flowing through the first bus bar in a direction (Dm1) from the first end face to the second end face, and a magnetic field generated by a current flowing through the second bus bar in a direction (Dm2) from the second end face to the first end face, and outputs a signal according to the intensity of the detected magnetic field;
Equipped with
The first bus bar has a first opposing surface (211) opposing the second bus bar in the width direction,
The second bus bar has a second opposing surface (222) opposing the first bus bar in the width direction,
the first end surface and the second end surface are located between the first opposing surface and the second opposing surface in the width direction,
The core bottom includes a bottom inner surface (280) and a recess (605);
The bottom inner surface is a surface facing inward in the thickness direction,
the recess is recessed in the thickness direction from a range of the bottom inner surface between a first center plane (Sob1) that passes through a center of the first bus bar in the width direction and is a plane perpendicular to the width direction and a second center plane (Sob2) that passes through a center of the second bus bar in the width direction and is a plane perpendicular to the width direction,
A recess width (Wcr), which is a length of the recess in the width direction, is equal to or less than a distance (Wob) from the first center plane to the second center plane in the width direction,
A current sensor in which the distance (Tcb) from the inner surface of the gap forming portion in the thickness direction to the bottom surface (606) of the recess is greater than a gap distance (Gap) which is the distance from the first end surface to the second end surface in the width direction.
[Point 3-2]
the recess is recessed in the thickness direction from a range of the bottom inner surface between a surface (S1) that passes through the first opposing surface and the core bottom and is perpendicular to the width direction, and a surface (S2) that passes through the second opposing surface and the core bottom and is perpendicular to the width direction,
The current sensor according to aspect 3-1, wherein the recess width is equal to or smaller than the distance (Wbb) from the first opposing surface to the second opposing surface in the width direction.
[Point 3-3]
the recess is recessed in the thickness direction from a range of the bottom inner surface between a plane (Si1) that passes through the first end face and the core bottom and is perpendicular to the width direction, and a plane (Si2) that passes through the second end face and the core bottom and is perpendicular to the width direction,
The current sensor according to aspect 3-1, wherein the recess width is equal to or smaller than the gap distance.
[Point 3-4]
The first bus bar is connected to one end of a power source and one end of a load,
the second bus bar is connected to the other end of the power source and the other end of the load,
The current sensor according to any one of Aspects 3-1 to 3-3, further comprising a judgment unit (45) that judges whether or not there is an abnormality between the power supply and the load based on a signal output from the detection element.
[観点4-1]
電流センサであって、
板状に形成されているとともに、長手方向(DL)のうち一方向の電流(Ic1)が流れる第1バスバ(21)と、
前記第1バスバと間隔を空けて前記第1バスバの幅方向(DW)に並んで板状に形成されているとともに、前記第1バスバに流れる電流の方向とは逆方向の電流(Ic2)が流れる第2バスバ(22)と、
前記第1バスバおよび前記第2バスバが挿入されているコア穴(29)と、前記幅方向を向いている第1端面(261)、前記第1端面と前記幅方向に対向している第2端面(262)、および、前記第1端面と前記第2端面とによって形成されているとともに前記コア穴と外部とに連通するギャップ(265)を含むギャップ形成部(26)と、前記ギャップ形成部に接続されているとともに前記第1バスバの厚み方向(DT)に延びているコア横部(27)と、前記コア横部に接続されて前記幅方向に延びているとともに前記ギャップ形成部および前記コア横部とで前記コア穴を形成するコア底部(28)と、を有するコア(25)と、
前記ギャップに配置されているとともに、前記第1バスバに流れる電流によって発生する磁界のうち前記第1端面から前記第2端面に向かう方向(Dm1)の磁界と、前記第2バスバに流れる電流によって発生する磁界のうち前記第2端面から前記第1端面に向かう方向(Dm2)の磁界とが合わされた磁界の強さを検出し、検出した磁界の強さに応じた信号を出力する検出素子(31)と、
を備え、
前記第1バスバは、前記第2バスバと前記幅方向に対向する第1対向面(211)を有し、
前記第2バスバは、前記第1バスバと前記幅方向に対向する第2対向面(222)を有し、
前記第1端面および前記第2端面は、前記幅方向において、前記第1対向面および前記第2対向面の間に位置しており、
前記ギャップ形成部は、コア外面(291、292)と、コア突起(272、282)と、を含み、
前記コア外面は、前記ギャップ形成部のうち前記厚み方向外側を向いている面であって、
前記コア突起は、前記コア外面のうち、前記第1対向面および前記ギャップ形成部を通るとともに前記幅方向と直交する面(S1)ならびに前記第2対向面および前記ギャップ形成部を通るとともに前記幅方向と直交する面(S2)の間の範囲から前記厚み方向に突出している電流センサ。
[観点4-2]
前記幅方向における前記コア突起の長さ(Wp1、Wp2)は、前記幅方向における前記第1対向面から前記第1端面までの距離(Wb1、Wb2)以下とされている観点4-1に記載の電流センサ。
[観点4-3]
前記検出素子は、前記厚み方向における前記第1端面の中心を通るとともに前記厚み方向と直交する面(So_Gap)上に配置されている観点4-1または4-2に記載の電流センサ。
[観点4-4]
前記検出素子は、前記厚み方向における前記第1端面の中心を通るとともに前記厚み方向と直交する面(So_Gap)よりも前記コア穴とは反対側に配置されている観点4-1または4-2に記載の電流センサ。
[観点4-5]
前記コア突起は、前記幅方向を向いている突起面(2810、2820)を含み、
前記検出素子は、前記突起面および前記第1端面を合わせた面の前記厚み方向における中心を通るとともに前記厚み方向と直交する面(Sop)上に配置されている観点4-1または4-2に記載の電流センサ。
[観点4-6]
前記コア突起は、前記幅方向を向いている突起面(2810、2820)を含み、
前記検出素子は、前記突起面および前記第1端面を合わせた面の前記厚み方向における中心を通るとともに前記厚み方向と直交する面(Sop)よりも前記コア穴とは反対側に配置されている観点4-1または4-2に記載の電流センサ。
[観点4-7]
前記第1バスバは、電源の一端および負荷の一端と接続されており、
前記第2バスバは、前記電源の他端および前記負荷の他端と接続されており、
前記電流センサは、前記検出素子から出力された信号に基づいて、前記電源および前記負荷の間において異常があるか否かを判定する判定部(45)をさらに備える観点4-1ないし4-6のいずれか1つに記載の電流センサ。 [Point 4-1]
A current sensor comprising:
A first bus bar (21) formed in a plate shape and through which a current (Ic1) flows in one direction of a longitudinal direction (DL);
a second bus bar (22) formed in a plate shape arranged in a width direction (DW) of the first bus bar at a distance from the first bus bar, and through which a current (Ic2) flows in a direction opposite to a direction of a current flowing through the first bus bar;
a core (25) having a core hole (29) into which the first bus bar and the second bus bar are inserted, a gap forming portion (26) including a first end face (261) facing the width direction, a second end face (262) facing the first end face in the width direction, and a gap (265) formed by the first end face and the second end face and communicating the core hole with the outside, a core horizontal portion (27) connected to the gap forming portion and extending in a thickness direction (DT) of the first bus bar, and a core bottom portion (28) connected to the core horizontal portion and extending in the width direction and forming the core hole together with the gap forming portion and the core horizontal portion;
a detection element (31) that is disposed in the gap, detects the intensity of a combined magnetic field of a magnetic field generated by a current flowing through the first bus bar in a direction (Dm1) from the first end face to the second end face, and a magnetic field generated by a current flowing through the second bus bar in a direction (Dm2) from the second end face to the first end face, and outputs a signal according to the intensity of the detected magnetic field;
Equipped with
The first bus bar has a first opposing surface (211) opposing the second bus bar in the width direction,
The second bus bar has a second opposing surface (222) opposing the first bus bar in the width direction,
the first end surface and the second end surface are located between the first opposing surface and the second opposing surface in the width direction,
The gap forming portion includes a core outer surface (291, 292) and a core protrusion (272, 282),
The core outer surface is a surface of the gap forming portion facing outward in the thickness direction,
The core protrusion is a current sensor that protrudes in the thickness direction from a range of the core outer surface between a surface (S1) that passes through the first opposing surface and the gap forming portion and is perpendicular to the width direction, and a surface (S2) that passes through the second opposing surface and the gap forming portion and is perpendicular to the width direction.
[Point 4-2]
A current sensor described in Viewpoint 4-1, wherein the length (Wp1, Wp2) of the core protrusion in the width direction is equal to or less than the distance (Wb1, Wb2) from the first opposing surface to the first end surface in the width direction.
[Point 4-3]
The current sensor according to aspect 4-1 or 4-2, wherein the detection element is arranged on a plane (So_Gap) that passes through the center of the first end face in the thickness direction and is perpendicular to the thickness direction.
[Point 4-4]
A current sensor according to aspect 4-1 or 4-2, wherein the detection element is arranged on the opposite side of the core hole from a plane (So_Gap) that passes through the center of the first end face in the thickness direction and is perpendicular to the thickness direction.
[Point 4-5]
The core projection includes projection surfaces (2810, 2820) facing the width direction,
A current sensor according to aspect 4-1 or 4-2, wherein the detection element is arranged on a plane (Sop) that passes through the center in the thickness direction of the surface where the protrusion surface and the first end surface are joined and is perpendicular to the thickness direction.
[Points 4-6]
The core projection includes projection surfaces (2810, 2820) facing the width direction,
A current sensor described in viewpoint 4-1 or 4-2, wherein the detection element passes through the center in the thickness direction of the surface where the protrusion surface and the first end surface are joined and is positioned on the opposite side of the core hole from a plane (Sop) perpendicular to the thickness direction.
[Point 4-7]
The first bus bar is connected to one end of a power source and one end of a load,
the second bus bar is connected to the other end of the power source and the other end of the load,
The current sensor according to any one of aspects 4-1 to 4-6, further comprising a judgment unit (45) that judges whether or not there is an abnormality between the power supply and the load based on a signal output from the detection element.
電流センサであって、
板状に形成されているとともに、長手方向(DL)のうち一方向の電流(Ic1)が流れる第1バスバ(21)と、
前記第1バスバと間隔を空けて前記第1バスバの幅方向(DW)に並んで板状に形成されているとともに、前記第1バスバに流れる電流の方向とは逆方向の電流(Ic2)が流れる第2バスバ(22)と、
前記第1バスバおよび前記第2バスバが挿入されているコア穴(29)と、前記幅方向を向いている第1端面(261)、前記第1端面と前記幅方向に対向している第2端面(262)、および、前記第1端面と前記第2端面とによって形成されているとともに前記コア穴と外部とに連通するギャップ(265)を含むギャップ形成部(26)と、前記ギャップ形成部に接続されているとともに前記第1バスバの厚み方向(DT)に延びているコア横部(27)と、前記コア横部に接続されて前記幅方向に延びているとともに前記ギャップ形成部および前記コア横部とで前記コア穴を形成するコア底部(28)と、を有するコア(25)と、
前記ギャップに配置されているとともに、前記第1バスバに流れる電流によって発生する磁界のうち前記第1端面から前記第2端面に向かう方向(Dm1)の磁界と、前記第2バスバに流れる電流によって発生する磁界のうち前記第2端面から前記第1端面に向かう方向(Dm2)の磁界とが合わされた磁界の強さを検出し、検出した磁界の強さに応じた信号を出力する検出素子(31)と、
を備え、
前記第1バスバは、前記第2バスバと前記幅方向に対向する第1対向面(211)を有し、
前記第2バスバは、前記第1バスバと前記幅方向に対向する第2対向面(222)を有し、
前記第1端面および前記第2端面は、前記幅方向において、前記第1対向面および前記第2対向面の間に位置しており、
前記ギャップ形成部は、コア外面(291、292)と、コア突起(272、282)と、を含み、
前記コア外面は、前記ギャップ形成部のうち前記厚み方向外側を向いている面であって、
前記コア突起は、前記コア外面のうち、前記第1対向面および前記ギャップ形成部を通るとともに前記幅方向と直交する面(S1)ならびに前記第2対向面および前記ギャップ形成部を通るとともに前記幅方向と直交する面(S2)の間の範囲から前記厚み方向に突出している電流センサ。
[観点4-2]
前記幅方向における前記コア突起の長さ(Wp1、Wp2)は、前記幅方向における前記第1対向面から前記第1端面までの距離(Wb1、Wb2)以下とされている観点4-1に記載の電流センサ。
[観点4-3]
前記検出素子は、前記厚み方向における前記第1端面の中心を通るとともに前記厚み方向と直交する面(So_Gap)上に配置されている観点4-1または4-2に記載の電流センサ。
[観点4-4]
前記検出素子は、前記厚み方向における前記第1端面の中心を通るとともに前記厚み方向と直交する面(So_Gap)よりも前記コア穴とは反対側に配置されている観点4-1または4-2に記載の電流センサ。
[観点4-5]
前記コア突起は、前記幅方向を向いている突起面(2810、2820)を含み、
前記検出素子は、前記突起面および前記第1端面を合わせた面の前記厚み方向における中心を通るとともに前記厚み方向と直交する面(Sop)上に配置されている観点4-1または4-2に記載の電流センサ。
[観点4-6]
前記コア突起は、前記幅方向を向いている突起面(2810、2820)を含み、
前記検出素子は、前記突起面および前記第1端面を合わせた面の前記厚み方向における中心を通るとともに前記厚み方向と直交する面(Sop)よりも前記コア穴とは反対側に配置されている観点4-1または4-2に記載の電流センサ。
[観点4-7]
前記第1バスバは、電源の一端および負荷の一端と接続されており、
前記第2バスバは、前記電源の他端および前記負荷の他端と接続されており、
前記電流センサは、前記検出素子から出力された信号に基づいて、前記電源および前記負荷の間において異常があるか否かを判定する判定部(45)をさらに備える観点4-1ないし4-6のいずれか1つに記載の電流センサ。 [Point 4-1]
A current sensor comprising:
A first bus bar (21) formed in a plate shape and through which a current (Ic1) flows in one direction of a longitudinal direction (DL);
a second bus bar (22) formed in a plate shape arranged in a width direction (DW) of the first bus bar at a distance from the first bus bar, and through which a current (Ic2) flows in a direction opposite to a direction of a current flowing through the first bus bar;
a core (25) having a core hole (29) into which the first bus bar and the second bus bar are inserted, a gap forming portion (26) including a first end face (261) facing the width direction, a second end face (262) facing the first end face in the width direction, and a gap (265) formed by the first end face and the second end face and communicating the core hole with the outside, a core horizontal portion (27) connected to the gap forming portion and extending in a thickness direction (DT) of the first bus bar, and a core bottom portion (28) connected to the core horizontal portion and extending in the width direction and forming the core hole together with the gap forming portion and the core horizontal portion;
a detection element (31) that is disposed in the gap, detects the intensity of a combined magnetic field of a magnetic field generated by a current flowing through the first bus bar in a direction (Dm1) from the first end face to the second end face, and a magnetic field generated by a current flowing through the second bus bar in a direction (Dm2) from the second end face to the first end face, and outputs a signal according to the intensity of the detected magnetic field;
Equipped with
The first bus bar has a first opposing surface (211) opposing the second bus bar in the width direction,
The second bus bar has a second opposing surface (222) opposing the first bus bar in the width direction,
the first end surface and the second end surface are located between the first opposing surface and the second opposing surface in the width direction,
The gap forming portion includes a core outer surface (291, 292) and a core protrusion (272, 282),
The core outer surface is a surface of the gap forming portion facing outward in the thickness direction,
The core protrusion is a current sensor that protrudes in the thickness direction from a range of the core outer surface between a surface (S1) that passes through the first opposing surface and the gap forming portion and is perpendicular to the width direction, and a surface (S2) that passes through the second opposing surface and the gap forming portion and is perpendicular to the width direction.
[Point 4-2]
A current sensor described in Viewpoint 4-1, wherein the length (Wp1, Wp2) of the core protrusion in the width direction is equal to or less than the distance (Wb1, Wb2) from the first opposing surface to the first end surface in the width direction.
[Point 4-3]
The current sensor according to aspect 4-1 or 4-2, wherein the detection element is arranged on a plane (So_Gap) that passes through the center of the first end face in the thickness direction and is perpendicular to the thickness direction.
[Point 4-4]
A current sensor according to aspect 4-1 or 4-2, wherein the detection element is arranged on the opposite side of the core hole from a plane (So_Gap) that passes through the center of the first end face in the thickness direction and is perpendicular to the thickness direction.
[Point 4-5]
The core projection includes projection surfaces (2810, 2820) facing the width direction,
A current sensor according to aspect 4-1 or 4-2, wherein the detection element is arranged on a plane (Sop) that passes through the center in the thickness direction of the surface where the protrusion surface and the first end surface are joined and is perpendicular to the thickness direction.
[Points 4-6]
The core projection includes projection surfaces (2810, 2820) facing the width direction,
A current sensor described in viewpoint 4-1 or 4-2, wherein the detection element passes through the center in the thickness direction of the surface where the protrusion surface and the first end surface are joined and is positioned on the opposite side of the core hole from a plane (Sop) perpendicular to the thickness direction.
[Point 4-7]
The first bus bar is connected to one end of a power source and one end of a load,
the second bus bar is connected to the other end of the power source and the other end of the load,
The current sensor according to any one of aspects 4-1 to 4-6, further comprising a judgment unit (45) that judges whether or not there is an abnormality between the power supply and the load based on a signal output from the detection element.
(課題)
特許文献1に記載された電流センサにおいて、電流検出のために、コアに挿入されるバスバとセンサチップとがそれぞれ2つ備えられることがある。この場合、例えば、2つのバスバに流れる電流の方向は、互いに異なる。また、第1のセンサチップは、第1のバスバに流れる電流によって発生する磁界の強さを検出し、第2のセンサチップが第2のバスバに流れる電流によって発生する磁界の強さを検出する。これにより、第1のバスバおよび第2のバスバに流れる電流が検出される。しかし、第1のセンサチップは、第1のバスバに流れる電流によって発生する磁界の強さを検出するところ、第1のバスバに流れる電流によって発生する磁界は、第2のバスバに流れる電流によって発生する磁界の影響を受ける。このため、第1のセンサチップから出力される信号には、第2のバスバに流れる電流によって発生する磁界ノイズが含まれる。また、第2のセンサチップは、第2のバスバに流れる電流によって発生する磁界の強さを検出するところ、第2のバスバに流れる電流によって発生する磁界は、第1のバスバに流れる電流によって発生する磁界の影響を受ける。このため、第2のセンサチップから出力される信号には、第1のバスバに流れる電流によって発生する磁界ノイズが含まれる。したがって、これらの磁界ノイズにより、第1のセンサチップおよび第2のセンサチップによる磁界の強さの検出精度が低下するため、電流検出精度が低下する。
本開示は、電流検出精度の低下を抑制する電流センサを提供することを目的とする。 (assignment)
In the current sensor described inPatent Document 1, two bus bars and two sensor chips may be inserted into the core for current detection. In this case, for example, the directions of current flowing through the two bus bars are different from each other. In addition, the first sensor chip detects the strength of the magnetic field generated by the current flowing through the first bus bar, and the second sensor chip detects the strength of the magnetic field generated by the current flowing through the second bus bar. In this way, the current flowing through the first bus bar and the second bus bar is detected. However, while the first sensor chip detects the strength of the magnetic field generated by the current flowing through the first bus bar, the magnetic field generated by the current flowing through the first bus bar is affected by the magnetic field generated by the current flowing through the second bus bar. For this reason, the signal output from the first sensor chip includes magnetic field noise generated by the current flowing through the second bus bar. In addition, while the second sensor chip detects the strength of the magnetic field generated by the current flowing through the second bus bar, the magnetic field generated by the current flowing through the second bus bar is affected by the magnetic field generated by the current flowing through the first bus bar. Therefore, the signal output from the second sensor chip contains magnetic field noise generated by the current flowing through the first bus bar, and the magnetic field noise reduces the accuracy of detection of the magnetic field strength by the first sensor chip and the second sensor chip, thereby reducing the accuracy of current detection.
An object of the present disclosure is to provide a current sensor that suppresses deterioration in current detection accuracy.
特許文献1に記載された電流センサにおいて、電流検出のために、コアに挿入されるバスバとセンサチップとがそれぞれ2つ備えられることがある。この場合、例えば、2つのバスバに流れる電流の方向は、互いに異なる。また、第1のセンサチップは、第1のバスバに流れる電流によって発生する磁界の強さを検出し、第2のセンサチップが第2のバスバに流れる電流によって発生する磁界の強さを検出する。これにより、第1のバスバおよび第2のバスバに流れる電流が検出される。しかし、第1のセンサチップは、第1のバスバに流れる電流によって発生する磁界の強さを検出するところ、第1のバスバに流れる電流によって発生する磁界は、第2のバスバに流れる電流によって発生する磁界の影響を受ける。このため、第1のセンサチップから出力される信号には、第2のバスバに流れる電流によって発生する磁界ノイズが含まれる。また、第2のセンサチップは、第2のバスバに流れる電流によって発生する磁界の強さを検出するところ、第2のバスバに流れる電流によって発生する磁界は、第1のバスバに流れる電流によって発生する磁界の影響を受ける。このため、第2のセンサチップから出力される信号には、第1のバスバに流れる電流によって発生する磁界ノイズが含まれる。したがって、これらの磁界ノイズにより、第1のセンサチップおよび第2のセンサチップによる磁界の強さの検出精度が低下するため、電流検出精度が低下する。
本開示は、電流検出精度の低下を抑制する電流センサを提供することを目的とする。 (assignment)
In the current sensor described in
An object of the present disclosure is to provide a current sensor that suppresses deterioration in current detection accuracy.
[観点5-1]
電流センサであって、
板状に形成されているとともに、長手方向(DL)のうち一方向の電流(Ic1)が流れる第1バスバ(21)と、
前記第1バスバと間隔を空けて前記第1バスバの幅方向(DW)に並んで板状に形成されているとともに、前記第1バスバに流れる電流の方向とは逆方向の電流(Ic2)が流れる第2バスバ(22)と、
前記第1バスバおよび前記第2バスバが挿入されているコア穴(29)と、前記幅方向を向いている第1端面(261)、前記第1端面と前記幅方向に対向している第2端面(262)、および、前記第1端面と前記第2端面とによって形成されているとともに前記コア穴と外部とに連通するギャップ(265)を含むギャップ形成部(26)と、前記ギャップ形成部に接続されているとともに前記第1バスバの厚み方向(DT)に延びているコア横部(27)と、前記コア横部に接続されて前記幅方向に延びているとともに前記ギャップ形成部および前記コア横部とで前記コア穴を形成するコア底部(28)と、を有するコア(25)と、
前記第1バスバに流れる電流によって発生する磁界のうち前記厚み方向の磁界の強さを検出し、検出した磁界の強さに応じた信号を出力する第1検出素子(311)と、
前記第2バスバに流れる電流によって発生する磁界のうち前記厚み方向の磁界の強さを検出し、検出した磁界の強さに応じた信号を出力する第2検出素子(312)と、
前記第1検出素子および前記第2検出素子からの信号に基づいて、前記第1バスバおよび前記第2バスバに流れる電流に関する値を算出する算出部(45)と、
を備え、
前記第1バスバは、前記第2バスバと前記幅方向に対向する第1対向面(211)を有し、
前記第2バスバは、前記第1バスバと前記幅方向に対向する第2対向面(222)を有し、
前記第1端面および前記第2端面は、前記幅方向において、前記第1対向面および前記第2対向面の間に位置しており、
前記第1検出素子は、前記コア穴のうち、前記第1対向面を通るとともに前記幅方向と直交する面である第1面(S1)および前記第1端面を通るとともに前記幅方向と直交する面である第1通過面(Si1)の間の範囲に配置されており、
前記第2検出素子は、前記コア穴のうち、前記第2対向面を通るとともに前記幅方向と直交する面である第2面(S2)および前記第2端面を通るとともに前記幅方向と直交する面である第2通過面(Si2)の間の範囲に配置されており、
前記算出部は、前記第1検出素子の信号に関する値から前記第2検出素子の信号に関する値を減算することにより、前記第1バスバおよび前記第2バスバに流れる電流に関する値を算出する電流センサ。
[観点5-2]
前記第1バスバは、電源の一端および負荷の一端と接続されており、
前記第2バスバは、前記電源の他端および前記負荷の他端と接続されており、
前記算出部は、前記第1検出素子の信号に関する値から前記第2検出素子の信号に関する値を減算した値に基づいて、前記電源および前記負荷の間において異常があるか否かを判定する観点5-1に記載の電流センサ。
[観点5-3]
前記ギャップ形成部は、第1コア内面(271)と、第1コア突起(281)と、第2コア内面(272)と、第2コア突起(282)と、を含み、
前記第1コア内面は、前記ギャップ形成部のうち前記厚み方向内側を向いている面であって、前記第1バスバを前記厚み方向に投影したとき、投影した前記第1バスバと重なり、
前記第1コア突起は、前記第1コア内面のうち前記第1面および前記第1端面の間の範囲から前記厚み方向に突出しており、
前記第1検出素子は、前記第1コア突起および前記コア底部の間に配置されており、
前記第2コア内面は、前記ギャップ形成部のうち前記厚み方向内側を向いている面であって、前記第2バスバを前記厚み方向に投影したとき、投影した前記第2バスバと重なり、
前記第2コア突起は、前記第2コア内面のうち前記第2面および前記第2端面の間の範囲から前記厚み方向に突出しており、
前記第2検出素子は、前記第2コア突起および前記コア底部の間に配置されている観点5-1または5-2に記載の電流センサ。
[観点5-4]
前記コア底部は、底部内面(280)と、第1底部突起(601)と、第2底部突起(602)と、を含み、
前記底部内面は、前記コア底部のうち前記厚み方向内側を向いている面であって、
前記第1底部突起は、前記底部内面から前記厚み方向に突出しているとともに、前記第1コア突起を前記厚み方向に投影したとき、投影した前記第1コア突起と重なり、
前記第2底部突起は、前記底部内面から前記厚み方向に突出しているとともに、前記第2コア突起を前記厚み方向に投影したとき、投影した前記第2コア突起と重なり、
前記第1検出素子は、前記第1コア突起および前記第1底部突起の間に配置されており、
前記第2検出素子は、前記第2コア突起および前記第2底部突起の間に配置されている観点5-3に記載の電流センサ。
[観点5-5]
前記第1通過面および前記第2通過面は、前記コア底部を通り、
前記コア底部は、底部内面(280)と、第1底部突起(601)と、第2底部突起(602)と、を含み、
前記底部内面は、前記コア底部のうち前記厚み方向内側を向いている面であって、
前記第1底部突起は、前記底部内面のうち前記第1面および前記第1通過面の間の範囲から前記厚み方向に突出しており、
前記第2底部突起は、前記底部内面のうち前記第2面および前記第2通過面の間の範囲から前記厚み方向に突出しており、
前記第1検出素子は、前記ギャップ形成部および前記第1底部突起の間に配置されており、
前記第2検出素子は、前記ギャップ形成部および前記第2底部突起の間に配置されている観点5-1または5-2に記載の電流センサ。
[観点5-6]
前記コア底部は、凹部(605)を含み、
前記凹部は、前記底部内面のうち前記第1底部突起および前記第2底部突起の間の範囲から前記厚み方向に凹んでいる観点5-4または5-5に記載の電流センサ。
[観点5-7]
前記コア底部は、底部外面(285)と、凹部(605)と、を含み、
前記底部外面は、前記コア底部のうち前記厚み方向外側を向いている面であって、
前記凹部は、前記底部外面のうち前記第1底部突起および前記第2底部突起の間の範囲から前記厚み方向に凹んでいる観点5-4または5-5に記載の電流センサ。
[観点5-8]
前記コア底部は、穴(287)を含み、
前記穴は、前記コア底部のうち前記第1底部突起および前記第2底部突起の間の範囲に形成されているとともに前記長手方向に延びている観点5-4または5-5に記載の電流センサ。
[観点5-9]
電流センサであって、
板状に形成されているとともに、長手方向(DL)のうち一方向の電流(Ic1)が流れる第1バスバ(21)と、
前記第1バスバと間隔を空けて前記第1バスバの幅方向(DW)に並んで板状に形成されているとともに、前記第1バスバに流れる電流の方向とは逆方向の電流(Ic2)が流れる第2バスバ(22)と、
前記第1バスバおよび前記第2バスバが挿入されているコア穴(29)と、前記幅方向を向いている第1端面(261)、前記第1端面と前記幅方向に対向している第2端面(262)、および、前記第1端面と前記第2端面とによって形成されているとともに前記コア穴と外部とに連通するギャップ(265)を含むギャップ形成部(26)と、前記ギャップ形成部に接続されているとともに前記第1バスバの厚み方向(DT)に延びているコア横部(27)と、前記コア横部に接続されて前記幅方向に延びているとともに前記ギャップ形成部および前記コア横部とで前記コア穴を形成するコア底部(28)と、を有するコア(25)と、
前記第1バスバに流れる電流によって発生する磁界のうち前記厚み方向の磁界の強さを検出し、検出した磁界の強さに応じた信号を出力する第1検出素子(311)と、
前記第2バスバに流れる電流によって発生する磁界のうち前記厚み方向の磁界の強さを検出し、検出した磁界の強さに応じた信号を出力する第2検出素子(312)と、
前記第1検出素子および前記第2検出素子からの信号に基づいて、前記第1バスバおよび前記第2バスバに流れる電流に関する値を算出する算出部(45)と、
を備え、
前記第1バスバは、前記第2バスバと前記幅方向に対向する第1対向面(211)を有し、
前記第2バスバは、前記第1バスバと前記幅方向に対向する第2対向面(222)を有し、
前記第1端面および前記第2端面は、前記幅方向において、前記第1対向面および前記第2対向面の間に位置しており、
前記第1検出素子は、前記コア穴のうち、前記第1対向面を通るとともに前記幅方向と直交する面である第1面(S1)および前記第1端面を通るとともに前記幅方向と直交する面である第1通過面(Si1)の間の範囲に配置されており、
前記第2検出素子は、前記コア穴のうち、前記第2対向面を通るとともに前記幅方向と直交する面である第2面(S2)および前記第2端面を通るとともに前記幅方向と直交する面である第2通過面(Si2)の間の範囲に配置されており、
前記算出部は、前記第1検出素子の信号に関する値から前記第2検出素子の信号に関する値を減算することにより、前記第1バスバおよび前記第2バスバに流れる電流に関する値を算出し、
前記ギャップ形成部は、第1コア内面(271)と、第1コア突起(281)と、第2コア内面(272)と、第2コア突起(282)と、を含み、
前記第1コア内面は、前記ギャップ形成部のうち前記厚み方向内側を向いている面であって、前記第1バスバを前記厚み方向に投影したとき、投影した前記第1バスバと重なり、
前記第1コア突起は、前記第1コア内面のうち前記第1面および前記第1端面の間の範囲から前記厚み方向に突出しており、
前記第2コア内面は、前記ギャップ形成部のうち前記厚み方向内側を向いている面であって、前記第2バスバを前記厚み方向に投影したとき、投影した前記第2バスバと重なり、
前記第2コア突起は、前記第2コア内面のうち前記第2面および前記第2端面の間の範囲から前記厚み方向に突出しており、
前記コア底部は、底部内面(280)と、第1底部突起(601)と、第2底部突起(602)と、を含み、
前記底部内面は、前記コア底部のうち前記厚み方向内側を向いている面であって、
前記第1底部突起は、前記底部内面から前記厚み方向に突出しているとともに、前記第1コア突起を前記厚み方向に投影したとき、投影した前記第1コア突起と重なり、
前記第2底部突起は、前記底部内面から前記厚み方向に突出しているとともに、前記第2コア突起を前記厚み方向に投影したとき、投影した前記第2コア突起と重なり、
前記第1検出素子は、前記第1コア突起および前記第1底部突起の間に配置されており、
前記第2検出素子は、前記第2コア突起および前記第2底部突起の間に配置されている電流センサ。
[観点5-10]
前記コア底部は、凹部(605)を含み、
前記凹部は、前記底部内面のうち前記第1底部突起および前記第2底部突起の間の範囲から前記厚み方向に凹んでいる観点5-9に記載の電流センサ。 [Point 5-1]
A current sensor comprising:
A first bus bar (21) formed in a plate shape and through which a current (Ic1) flows in one direction of a longitudinal direction (DL);
a second bus bar (22) formed in a plate shape arranged in a width direction (DW) of the first bus bar at a distance from the first bus bar, and through which a current (Ic2) flows in a direction opposite to a direction of a current flowing through the first bus bar;
a core (25) having a core hole (29) into which the first bus bar and the second bus bar are inserted, a gap forming portion (26) including a first end face (261) facing the width direction, a second end face (262) facing the first end face in the width direction, and a gap (265) formed by the first end face and the second end face and communicating the core hole with the outside, a core horizontal portion (27) connected to the gap forming portion and extending in a thickness direction (DT) of the first bus bar, and a core bottom portion (28) connected to the core horizontal portion and extending in the width direction and forming the core hole together with the gap forming portion and the core horizontal portion;
A first detection element (311) that detects the strength of a magnetic field in the thickness direction among magnetic fields generated by a current flowing through the first bus bar and outputs a signal corresponding to the detected magnetic field strength;
a second detection element (312) that detects the strength of a magnetic field in the thickness direction among magnetic fields generated by a current flowing through the second bus bar and outputs a signal according to the detected magnetic field strength;
a calculation unit (45) that calculates a value related to a current flowing through the first bus bar and the second bus bar based on signals from the first detection element and the second detection element;
Equipped with
The first bus bar has a first opposing surface (211) opposing the second bus bar in the width direction,
The second bus bar has a second opposing surface (222) opposing the first bus bar in the width direction,
the first end surface and the second end surface are located between the first opposing surface and the second opposing surface in the width direction,
The first detection element is disposed in a range between a first surface (S1) of the core hole, the first surface passing through the first opposing surface and perpendicular to the width direction, and a first passing surface (Si1) of the core hole, the first surface passing through the first end surface and perpendicular to the width direction,
The second detection element is disposed in a range between a second surface (S2) of the core hole, the second surface passing through the second opposing surface and perpendicular to the width direction, and a second passing surface (Si2) of the core hole, the second surface passing through the second end surface and perpendicular to the width direction,
The current sensor wherein the calculation unit calculates a value related to the current flowing through the first bus bar and the second bus bar by subtracting a value related to the signal of the second detection element from a value related to the signal of the first detection element.
[Point 5-2]
The first bus bar is connected to one end of a power source and one end of a load,
the second bus bar is connected to the other end of the power source and the other end of the load,
The current sensor described in Viewpoint 5-1, wherein the calculation unit determines whether or not there is an abnormality between the power supply and the load based on a value obtained by subtracting a value related to the signal of the second detection element from a value related to the signal of the first detection element.
[Point 5-3]
The gap forming portion includes a first core inner surface (271), a first core projection (281), a second core inner surface (272), and a second core projection (282),
the first core inner surface is a surface of the gap forming portion facing inward in the thickness direction, and overlaps with the projected first bus bar when the first bus bar is projected in the thickness direction;
the first core protrusion protrudes in the thickness direction from a range of the first core inner surface between the first surface and the first end surface,
the first detection element is disposed between the first core projection and the core bottom,
the second core inner surface is a surface of the gap forming portion facing inward in the thickness direction, and overlaps with the projected second bus bar when the second bus bar is projected in the thickness direction;
the second core projection protrudes in the thickness direction from a range of the second core inner surface between the second surface and the second end surface,
The current sensor according to aspect 5-1 or 5-2, wherein the second detection element is disposed between the second core projection and the core bottom.
[Point 5-4]
The core bottom includes a bottom inner surface (280), a first bottom protrusion (601), and a second bottom protrusion (602);
The bottom inner surface is a surface of the core bottom facing inward in the thickness direction,
the first bottom protrusion protrudes from the bottom inner surface in the thickness direction, and overlaps with the first core protrusion when the first core protrusion is projected in the thickness direction;
the second bottom protrusion protrudes from the bottom inner surface in the thickness direction, and overlaps with the second core protrusion when the second core protrusion is projected in the thickness direction;
the first sensing element is disposed between the first core projection and the first bottom projection;
The current sensor according to aspect 5-3, wherein the second detection element is disposed between the second core projection and the second bottom projection.
[Point 5-5]
The first passing surface and the second passing surface pass through the core bottom,
The core bottom includes a bottom inner surface (280), a first bottom protrusion (601), and a second bottom protrusion (602);
The bottom inner surface is a surface of the core bottom facing inward in the thickness direction,
the first bottom protrusion protrudes in the thickness direction from a range of the bottom inner surface between the first surface and the first passing surface,
the second bottom protrusion protrudes in the thickness direction from a range of the bottom inner surface between the second surface and the second passing surface,
the first detection element is disposed between the gap forming portion and the first bottom protrusion;
The current sensor according to aspect 5-1 or 5-2, wherein the second detection element is disposed between the gap forming portion and the second bottom protrusion.
[Points 5-6]
The core bottom includes a recess (605);
The current sensor according to aspect 5-4 or 5-5, wherein the recess is recessed in the thickness direction from a range of the bottom inner surface between the first bottom protrusion and the second bottom protrusion.
[Points 5-7]
The core bottom includes a bottom outer surface (285) and a recess (605);
The bottom outer surface is a surface of the core bottom facing outward in the thickness direction,
The current sensor according to aspect 5-4 or 5-5, wherein the recess is recessed in the thickness direction from a range of the bottom outer surface between the first bottom protrusion and the second bottom protrusion.
[Point 5-8]
The core bottom includes a hole (287);
The current sensor according to aspect 5-4 or 5-5, wherein the hole is formed in the range of the core bottom between the first bottom protrusion and the second bottom protrusion and extends in the longitudinal direction.
[Point 5-9]
A current sensor comprising:
A first bus bar (21) formed in a plate shape and through which a current (Ic1) flows in one direction of a longitudinal direction (DL);
a second bus bar (22) formed in a plate shape arranged in a width direction (DW) of the first bus bar at a distance from the first bus bar, and through which a current (Ic2) flows in a direction opposite to a direction of a current flowing through the first bus bar;
a core (25) having a core hole (29) into which the first bus bar and the second bus bar are inserted, a gap forming portion (26) including a first end face (261) facing the width direction, a second end face (262) facing the first end face in the width direction, and a gap (265) formed by the first end face and the second end face and communicating the core hole with the outside, a core horizontal portion (27) connected to the gap forming portion and extending in a thickness direction (DT) of the first bus bar, and a core bottom portion (28) connected to the core horizontal portion and extending in the width direction and forming the core hole together with the gap forming portion and the core horizontal portion;
A first detection element (311) that detects the strength of a magnetic field in the thickness direction among magnetic fields generated by a current flowing through the first bus bar and outputs a signal corresponding to the detected magnetic field strength;
a second detection element (312) that detects the strength of a magnetic field in the thickness direction among magnetic fields generated by a current flowing through the second bus bar and outputs a signal according to the detected magnetic field strength;
a calculation unit (45) that calculates a value related to a current flowing through the first bus bar and the second bus bar based on signals from the first detection element and the second detection element;
Equipped with
The first bus bar has a first opposing surface (211) opposing the second bus bar in the width direction,
The second bus bar has a second opposing surface (222) opposing the first bus bar in the width direction,
the first end surface and the second end surface are located between the first opposing surface and the second opposing surface in the width direction,
The first detection element is disposed in a range between a first surface (S1) of the core hole, the first surface passing through the first opposing surface and perpendicular to the width direction, and a first passing surface (Si1) of the core hole, the first surface passing through the first end surface and perpendicular to the width direction,
The second detection element is disposed in a range between a second surface (S2) of the core hole, the second surface passing through the second opposing surface and perpendicular to the width direction, and a second passing surface (Si2) of the core hole, the second surface passing through the second end surface and perpendicular to the width direction,
the calculation unit calculates a value related to a current flowing through the first bus bar and the second bus bar by subtracting a value related to a signal of the second detection element from a value related to the signal of the first detection element;
The gap forming portion includes a first core inner surface (271), a first core projection (281), a second core inner surface (272), and a second core projection (282),
the first core inner surface is a surface of the gap forming portion facing inward in the thickness direction, and overlaps with the projected first bus bar when the first bus bar is projected in the thickness direction;
the first core protrusion protrudes in the thickness direction from a range of the first core inner surface between the first surface and the first end surface,
the second core inner surface is a surface of the gap forming portion facing inward in the thickness direction, and overlaps with the projected second bus bar when the second bus bar is projected in the thickness direction;
the second core projection protrudes in the thickness direction from a range of the second core inner surface between the second surface and the second end surface,
The core bottom includes a bottom inner surface (280), a first bottom protrusion (601), and a second bottom protrusion (602);
The bottom inner surface is a surface of the core bottom facing inward in the thickness direction,
the first bottom protrusion protrudes from the bottom inner surface in the thickness direction, and overlaps with the first core protrusion when the first core protrusion is projected in the thickness direction;
the second bottom protrusion protrudes from the bottom inner surface in the thickness direction, and overlaps with the second core protrusion when the second core protrusion is projected in the thickness direction;
the first sensing element is disposed between the first core projection and the first bottom projection;
The second sensing element is a current sensor disposed between the second core projection and the second bottom projection.
[Point 5-10]
The core bottom includes a recess (605);
The current sensor according to aspect 5-9, wherein the recess is recessed in the thickness direction from a range of the bottom inner surface between the first bottom protrusion and the second bottom protrusion.
電流センサであって、
板状に形成されているとともに、長手方向(DL)のうち一方向の電流(Ic1)が流れる第1バスバ(21)と、
前記第1バスバと間隔を空けて前記第1バスバの幅方向(DW)に並んで板状に形成されているとともに、前記第1バスバに流れる電流の方向とは逆方向の電流(Ic2)が流れる第2バスバ(22)と、
前記第1バスバおよび前記第2バスバが挿入されているコア穴(29)と、前記幅方向を向いている第1端面(261)、前記第1端面と前記幅方向に対向している第2端面(262)、および、前記第1端面と前記第2端面とによって形成されているとともに前記コア穴と外部とに連通するギャップ(265)を含むギャップ形成部(26)と、前記ギャップ形成部に接続されているとともに前記第1バスバの厚み方向(DT)に延びているコア横部(27)と、前記コア横部に接続されて前記幅方向に延びているとともに前記ギャップ形成部および前記コア横部とで前記コア穴を形成するコア底部(28)と、を有するコア(25)と、
前記第1バスバに流れる電流によって発生する磁界のうち前記厚み方向の磁界の強さを検出し、検出した磁界の強さに応じた信号を出力する第1検出素子(311)と、
前記第2バスバに流れる電流によって発生する磁界のうち前記厚み方向の磁界の強さを検出し、検出した磁界の強さに応じた信号を出力する第2検出素子(312)と、
前記第1検出素子および前記第2検出素子からの信号に基づいて、前記第1バスバおよび前記第2バスバに流れる電流に関する値を算出する算出部(45)と、
を備え、
前記第1バスバは、前記第2バスバと前記幅方向に対向する第1対向面(211)を有し、
前記第2バスバは、前記第1バスバと前記幅方向に対向する第2対向面(222)を有し、
前記第1端面および前記第2端面は、前記幅方向において、前記第1対向面および前記第2対向面の間に位置しており、
前記第1検出素子は、前記コア穴のうち、前記第1対向面を通るとともに前記幅方向と直交する面である第1面(S1)および前記第1端面を通るとともに前記幅方向と直交する面である第1通過面(Si1)の間の範囲に配置されており、
前記第2検出素子は、前記コア穴のうち、前記第2対向面を通るとともに前記幅方向と直交する面である第2面(S2)および前記第2端面を通るとともに前記幅方向と直交する面である第2通過面(Si2)の間の範囲に配置されており、
前記算出部は、前記第1検出素子の信号に関する値から前記第2検出素子の信号に関する値を減算することにより、前記第1バスバおよび前記第2バスバに流れる電流に関する値を算出する電流センサ。
[観点5-2]
前記第1バスバは、電源の一端および負荷の一端と接続されており、
前記第2バスバは、前記電源の他端および前記負荷の他端と接続されており、
前記算出部は、前記第1検出素子の信号に関する値から前記第2検出素子の信号に関する値を減算した値に基づいて、前記電源および前記負荷の間において異常があるか否かを判定する観点5-1に記載の電流センサ。
[観点5-3]
前記ギャップ形成部は、第1コア内面(271)と、第1コア突起(281)と、第2コア内面(272)と、第2コア突起(282)と、を含み、
前記第1コア内面は、前記ギャップ形成部のうち前記厚み方向内側を向いている面であって、前記第1バスバを前記厚み方向に投影したとき、投影した前記第1バスバと重なり、
前記第1コア突起は、前記第1コア内面のうち前記第1面および前記第1端面の間の範囲から前記厚み方向に突出しており、
前記第1検出素子は、前記第1コア突起および前記コア底部の間に配置されており、
前記第2コア内面は、前記ギャップ形成部のうち前記厚み方向内側を向いている面であって、前記第2バスバを前記厚み方向に投影したとき、投影した前記第2バスバと重なり、
前記第2コア突起は、前記第2コア内面のうち前記第2面および前記第2端面の間の範囲から前記厚み方向に突出しており、
前記第2検出素子は、前記第2コア突起および前記コア底部の間に配置されている観点5-1または5-2に記載の電流センサ。
[観点5-4]
前記コア底部は、底部内面(280)と、第1底部突起(601)と、第2底部突起(602)と、を含み、
前記底部内面は、前記コア底部のうち前記厚み方向内側を向いている面であって、
前記第1底部突起は、前記底部内面から前記厚み方向に突出しているとともに、前記第1コア突起を前記厚み方向に投影したとき、投影した前記第1コア突起と重なり、
前記第2底部突起は、前記底部内面から前記厚み方向に突出しているとともに、前記第2コア突起を前記厚み方向に投影したとき、投影した前記第2コア突起と重なり、
前記第1検出素子は、前記第1コア突起および前記第1底部突起の間に配置されており、
前記第2検出素子は、前記第2コア突起および前記第2底部突起の間に配置されている観点5-3に記載の電流センサ。
[観点5-5]
前記第1通過面および前記第2通過面は、前記コア底部を通り、
前記コア底部は、底部内面(280)と、第1底部突起(601)と、第2底部突起(602)と、を含み、
前記底部内面は、前記コア底部のうち前記厚み方向内側を向いている面であって、
前記第1底部突起は、前記底部内面のうち前記第1面および前記第1通過面の間の範囲から前記厚み方向に突出しており、
前記第2底部突起は、前記底部内面のうち前記第2面および前記第2通過面の間の範囲から前記厚み方向に突出しており、
前記第1検出素子は、前記ギャップ形成部および前記第1底部突起の間に配置されており、
前記第2検出素子は、前記ギャップ形成部および前記第2底部突起の間に配置されている観点5-1または5-2に記載の電流センサ。
[観点5-6]
前記コア底部は、凹部(605)を含み、
前記凹部は、前記底部内面のうち前記第1底部突起および前記第2底部突起の間の範囲から前記厚み方向に凹んでいる観点5-4または5-5に記載の電流センサ。
[観点5-7]
前記コア底部は、底部外面(285)と、凹部(605)と、を含み、
前記底部外面は、前記コア底部のうち前記厚み方向外側を向いている面であって、
前記凹部は、前記底部外面のうち前記第1底部突起および前記第2底部突起の間の範囲から前記厚み方向に凹んでいる観点5-4または5-5に記載の電流センサ。
[観点5-8]
前記コア底部は、穴(287)を含み、
前記穴は、前記コア底部のうち前記第1底部突起および前記第2底部突起の間の範囲に形成されているとともに前記長手方向に延びている観点5-4または5-5に記載の電流センサ。
[観点5-9]
電流センサであって、
板状に形成されているとともに、長手方向(DL)のうち一方向の電流(Ic1)が流れる第1バスバ(21)と、
前記第1バスバと間隔を空けて前記第1バスバの幅方向(DW)に並んで板状に形成されているとともに、前記第1バスバに流れる電流の方向とは逆方向の電流(Ic2)が流れる第2バスバ(22)と、
前記第1バスバおよび前記第2バスバが挿入されているコア穴(29)と、前記幅方向を向いている第1端面(261)、前記第1端面と前記幅方向に対向している第2端面(262)、および、前記第1端面と前記第2端面とによって形成されているとともに前記コア穴と外部とに連通するギャップ(265)を含むギャップ形成部(26)と、前記ギャップ形成部に接続されているとともに前記第1バスバの厚み方向(DT)に延びているコア横部(27)と、前記コア横部に接続されて前記幅方向に延びているとともに前記ギャップ形成部および前記コア横部とで前記コア穴を形成するコア底部(28)と、を有するコア(25)と、
前記第1バスバに流れる電流によって発生する磁界のうち前記厚み方向の磁界の強さを検出し、検出した磁界の強さに応じた信号を出力する第1検出素子(311)と、
前記第2バスバに流れる電流によって発生する磁界のうち前記厚み方向の磁界の強さを検出し、検出した磁界の強さに応じた信号を出力する第2検出素子(312)と、
前記第1検出素子および前記第2検出素子からの信号に基づいて、前記第1バスバおよび前記第2バスバに流れる電流に関する値を算出する算出部(45)と、
を備え、
前記第1バスバは、前記第2バスバと前記幅方向に対向する第1対向面(211)を有し、
前記第2バスバは、前記第1バスバと前記幅方向に対向する第2対向面(222)を有し、
前記第1端面および前記第2端面は、前記幅方向において、前記第1対向面および前記第2対向面の間に位置しており、
前記第1検出素子は、前記コア穴のうち、前記第1対向面を通るとともに前記幅方向と直交する面である第1面(S1)および前記第1端面を通るとともに前記幅方向と直交する面である第1通過面(Si1)の間の範囲に配置されており、
前記第2検出素子は、前記コア穴のうち、前記第2対向面を通るとともに前記幅方向と直交する面である第2面(S2)および前記第2端面を通るとともに前記幅方向と直交する面である第2通過面(Si2)の間の範囲に配置されており、
前記算出部は、前記第1検出素子の信号に関する値から前記第2検出素子の信号に関する値を減算することにより、前記第1バスバおよび前記第2バスバに流れる電流に関する値を算出し、
前記ギャップ形成部は、第1コア内面(271)と、第1コア突起(281)と、第2コア内面(272)と、第2コア突起(282)と、を含み、
前記第1コア内面は、前記ギャップ形成部のうち前記厚み方向内側を向いている面であって、前記第1バスバを前記厚み方向に投影したとき、投影した前記第1バスバと重なり、
前記第1コア突起は、前記第1コア内面のうち前記第1面および前記第1端面の間の範囲から前記厚み方向に突出しており、
前記第2コア内面は、前記ギャップ形成部のうち前記厚み方向内側を向いている面であって、前記第2バスバを前記厚み方向に投影したとき、投影した前記第2バスバと重なり、
前記第2コア突起は、前記第2コア内面のうち前記第2面および前記第2端面の間の範囲から前記厚み方向に突出しており、
前記コア底部は、底部内面(280)と、第1底部突起(601)と、第2底部突起(602)と、を含み、
前記底部内面は、前記コア底部のうち前記厚み方向内側を向いている面であって、
前記第1底部突起は、前記底部内面から前記厚み方向に突出しているとともに、前記第1コア突起を前記厚み方向に投影したとき、投影した前記第1コア突起と重なり、
前記第2底部突起は、前記底部内面から前記厚み方向に突出しているとともに、前記第2コア突起を前記厚み方向に投影したとき、投影した前記第2コア突起と重なり、
前記第1検出素子は、前記第1コア突起および前記第1底部突起の間に配置されており、
前記第2検出素子は、前記第2コア突起および前記第2底部突起の間に配置されている電流センサ。
[観点5-10]
前記コア底部は、凹部(605)を含み、
前記凹部は、前記底部内面のうち前記第1底部突起および前記第2底部突起の間の範囲から前記厚み方向に凹んでいる観点5-9に記載の電流センサ。 [Point 5-1]
A current sensor comprising:
A first bus bar (21) formed in a plate shape and through which a current (Ic1) flows in one direction of a longitudinal direction (DL);
a second bus bar (22) formed in a plate shape arranged in a width direction (DW) of the first bus bar at a distance from the first bus bar, and through which a current (Ic2) flows in a direction opposite to a direction of a current flowing through the first bus bar;
a core (25) having a core hole (29) into which the first bus bar and the second bus bar are inserted, a gap forming portion (26) including a first end face (261) facing the width direction, a second end face (262) facing the first end face in the width direction, and a gap (265) formed by the first end face and the second end face and communicating the core hole with the outside, a core horizontal portion (27) connected to the gap forming portion and extending in a thickness direction (DT) of the first bus bar, and a core bottom portion (28) connected to the core horizontal portion and extending in the width direction and forming the core hole together with the gap forming portion and the core horizontal portion;
A first detection element (311) that detects the strength of a magnetic field in the thickness direction among magnetic fields generated by a current flowing through the first bus bar and outputs a signal corresponding to the detected magnetic field strength;
a second detection element (312) that detects the strength of a magnetic field in the thickness direction among magnetic fields generated by a current flowing through the second bus bar and outputs a signal according to the detected magnetic field strength;
a calculation unit (45) that calculates a value related to a current flowing through the first bus bar and the second bus bar based on signals from the first detection element and the second detection element;
Equipped with
The first bus bar has a first opposing surface (211) opposing the second bus bar in the width direction,
The second bus bar has a second opposing surface (222) opposing the first bus bar in the width direction,
the first end surface and the second end surface are located between the first opposing surface and the second opposing surface in the width direction,
The first detection element is disposed in a range between a first surface (S1) of the core hole, the first surface passing through the first opposing surface and perpendicular to the width direction, and a first passing surface (Si1) of the core hole, the first surface passing through the first end surface and perpendicular to the width direction,
The second detection element is disposed in a range between a second surface (S2) of the core hole, the second surface passing through the second opposing surface and perpendicular to the width direction, and a second passing surface (Si2) of the core hole, the second surface passing through the second end surface and perpendicular to the width direction,
The current sensor wherein the calculation unit calculates a value related to the current flowing through the first bus bar and the second bus bar by subtracting a value related to the signal of the second detection element from a value related to the signal of the first detection element.
[Point 5-2]
The first bus bar is connected to one end of a power source and one end of a load,
the second bus bar is connected to the other end of the power source and the other end of the load,
The current sensor described in Viewpoint 5-1, wherein the calculation unit determines whether or not there is an abnormality between the power supply and the load based on a value obtained by subtracting a value related to the signal of the second detection element from a value related to the signal of the first detection element.
[Point 5-3]
The gap forming portion includes a first core inner surface (271), a first core projection (281), a second core inner surface (272), and a second core projection (282),
the first core inner surface is a surface of the gap forming portion facing inward in the thickness direction, and overlaps with the projected first bus bar when the first bus bar is projected in the thickness direction;
the first core protrusion protrudes in the thickness direction from a range of the first core inner surface between the first surface and the first end surface,
the first detection element is disposed between the first core projection and the core bottom,
the second core inner surface is a surface of the gap forming portion facing inward in the thickness direction, and overlaps with the projected second bus bar when the second bus bar is projected in the thickness direction;
the second core projection protrudes in the thickness direction from a range of the second core inner surface between the second surface and the second end surface,
The current sensor according to aspect 5-1 or 5-2, wherein the second detection element is disposed between the second core projection and the core bottom.
[Point 5-4]
The core bottom includes a bottom inner surface (280), a first bottom protrusion (601), and a second bottom protrusion (602);
The bottom inner surface is a surface of the core bottom facing inward in the thickness direction,
the first bottom protrusion protrudes from the bottom inner surface in the thickness direction, and overlaps with the first core protrusion when the first core protrusion is projected in the thickness direction;
the second bottom protrusion protrudes from the bottom inner surface in the thickness direction, and overlaps with the second core protrusion when the second core protrusion is projected in the thickness direction;
the first sensing element is disposed between the first core projection and the first bottom projection;
The current sensor according to aspect 5-3, wherein the second detection element is disposed between the second core projection and the second bottom projection.
[Point 5-5]
The first passing surface and the second passing surface pass through the core bottom,
The core bottom includes a bottom inner surface (280), a first bottom protrusion (601), and a second bottom protrusion (602);
The bottom inner surface is a surface of the core bottom facing inward in the thickness direction,
the first bottom protrusion protrudes in the thickness direction from a range of the bottom inner surface between the first surface and the first passing surface,
the second bottom protrusion protrudes in the thickness direction from a range of the bottom inner surface between the second surface and the second passing surface,
the first detection element is disposed between the gap forming portion and the first bottom protrusion;
The current sensor according to aspect 5-1 or 5-2, wherein the second detection element is disposed between the gap forming portion and the second bottom protrusion.
[Points 5-6]
The core bottom includes a recess (605);
The current sensor according to aspect 5-4 or 5-5, wherein the recess is recessed in the thickness direction from a range of the bottom inner surface between the first bottom protrusion and the second bottom protrusion.
[Points 5-7]
The core bottom includes a bottom outer surface (285) and a recess (605);
The bottom outer surface is a surface of the core bottom facing outward in the thickness direction,
The current sensor according to aspect 5-4 or 5-5, wherein the recess is recessed in the thickness direction from a range of the bottom outer surface between the first bottom protrusion and the second bottom protrusion.
[Point 5-8]
The core bottom includes a hole (287);
The current sensor according to aspect 5-4 or 5-5, wherein the hole is formed in the range of the core bottom between the first bottom protrusion and the second bottom protrusion and extends in the longitudinal direction.
[Point 5-9]
A current sensor comprising:
A first bus bar (21) formed in a plate shape and through which a current (Ic1) flows in one direction of a longitudinal direction (DL);
a second bus bar (22) formed in a plate shape arranged in a width direction (DW) of the first bus bar at a distance from the first bus bar, and through which a current (Ic2) flows in a direction opposite to a direction of a current flowing through the first bus bar;
a core (25) having a core hole (29) into which the first bus bar and the second bus bar are inserted, a gap forming portion (26) including a first end face (261) facing the width direction, a second end face (262) facing the first end face in the width direction, and a gap (265) formed by the first end face and the second end face and communicating the core hole with the outside, a core horizontal portion (27) connected to the gap forming portion and extending in a thickness direction (DT) of the first bus bar, and a core bottom portion (28) connected to the core horizontal portion and extending in the width direction and forming the core hole together with the gap forming portion and the core horizontal portion;
A first detection element (311) that detects the strength of a magnetic field in the thickness direction among magnetic fields generated by a current flowing through the first bus bar and outputs a signal corresponding to the detected magnetic field strength;
a second detection element (312) that detects the strength of a magnetic field in the thickness direction among magnetic fields generated by a current flowing through the second bus bar and outputs a signal according to the detected magnetic field strength;
a calculation unit (45) that calculates a value related to a current flowing through the first bus bar and the second bus bar based on signals from the first detection element and the second detection element;
Equipped with
The first bus bar has a first opposing surface (211) opposing the second bus bar in the width direction,
The second bus bar has a second opposing surface (222) opposing the first bus bar in the width direction,
the first end surface and the second end surface are located between the first opposing surface and the second opposing surface in the width direction,
The first detection element is disposed in a range between a first surface (S1) of the core hole, the first surface passing through the first opposing surface and perpendicular to the width direction, and a first passing surface (Si1) of the core hole, the first surface passing through the first end surface and perpendicular to the width direction,
The second detection element is disposed in a range between a second surface (S2) of the core hole, the second surface passing through the second opposing surface and perpendicular to the width direction, and a second passing surface (Si2) of the core hole, the second surface passing through the second end surface and perpendicular to the width direction,
the calculation unit calculates a value related to a current flowing through the first bus bar and the second bus bar by subtracting a value related to a signal of the second detection element from a value related to the signal of the first detection element;
The gap forming portion includes a first core inner surface (271), a first core projection (281), a second core inner surface (272), and a second core projection (282),
the first core inner surface is a surface of the gap forming portion facing inward in the thickness direction, and overlaps with the projected first bus bar when the first bus bar is projected in the thickness direction;
the first core protrusion protrudes in the thickness direction from a range of the first core inner surface between the first surface and the first end surface,
the second core inner surface is a surface of the gap forming portion facing inward in the thickness direction, and overlaps with the projected second bus bar when the second bus bar is projected in the thickness direction;
the second core projection protrudes in the thickness direction from a range of the second core inner surface between the second surface and the second end surface,
The core bottom includes a bottom inner surface (280), a first bottom protrusion (601), and a second bottom protrusion (602);
The bottom inner surface is a surface of the core bottom facing inward in the thickness direction,
the first bottom protrusion protrudes from the bottom inner surface in the thickness direction, and overlaps with the first core protrusion when the first core protrusion is projected in the thickness direction;
the second bottom protrusion protrudes from the bottom inner surface in the thickness direction, and overlaps with the second core protrusion when the second core protrusion is projected in the thickness direction;
the first sensing element is disposed between the first core projection and the first bottom projection;
The second sensing element is a current sensor disposed between the second core projection and the second bottom projection.
[Point 5-10]
The core bottom includes a recess (605);
The current sensor according to aspect 5-9, wherein the recess is recessed in the thickness direction from a range of the bottom inner surface between the first bottom protrusion and the second bottom protrusion.
Claims (8)
- 電流センサであって、
板状に形成されているとともに、長手方向(DL)のうち一方向の電流(Ic1)が流れる第1バスバ(21)と、
前記第1バスバと間隔を空けて前記第1バスバの幅方向(DW)に並んで板状に形成されているとともに、前記第1バスバに流れる電流の方向とは逆方向の電流(Ic2)が流れる第2バスバ(22)と、
前記第1バスバおよび前記第2バスバが挿入されているコア穴(29)と、前記幅方向を向いている第1端面(261)、前記第1端面と前記幅方向に対向している第2端面(262)、および、前記第1端面と前記第2端面とによって形成されているとともに前記コア穴と外部とに連通するギャップ(265)を含むギャップ形成部(26)と、前記ギャップ形成部に接続されているとともに前記第1バスバの厚み方向(DT)に延びているコア横部(27)と、前記コア横部に接続されて前記幅方向に延びているとともに前記ギャップ形成部および前記コア横部とで前記コア穴を形成するコア底部(28)と、を有するコア(25)と、
前記ギャップに配置されているとともに、前記第1バスバに流れる電流によって発生する磁界のうち前記第1端面から前記第2端面に向かう方向(Dm1)の磁界と、前記第2バスバに流れる電流によって発生する磁界のうち前記第2端面から前記第1端面に向かう方向(Dm2)の磁界とが合わされた磁界の強さを検出し、検出した磁界の強さに応じた信号を出力する検出素子(31)と、
を備え、
前記第1バスバは、前記第2バスバと前記幅方向に対向する第1対向面(211)を有し、
前記第2バスバは、前記第1バスバと前記幅方向に対向する第2対向面(222)を有し、
前記第1端面および前記第2端面は、前記幅方向において、前記第1対向面および前記第2対向面の間に位置しており、
前記ギャップ形成部は、コア内面(271、272)と、コア突起(281、282)と、を含み、
前記コア内面は、前記ギャップ形成部のうち前記厚み方向内側を向いている面であって、
前記コア突起は、前記コア内面のうち、前記第1対向面および前記ギャップ形成部を通るとともに前記幅方向と直交する面(S1)ならびに前記第2対向面および前記ギャップ形成部を通るとともに前記幅方向と直交する面(S2)の間の範囲から前記厚み方向に突出している電流センサ。 A current sensor comprising:
A first bus bar (21) formed in a plate shape and through which a current (Ic1) flows in one direction of a longitudinal direction (DL);
a second bus bar (22) formed in a plate shape arranged in a width direction (DW) of the first bus bar at a distance from the first bus bar, and through which a current (Ic2) flows in a direction opposite to a direction of a current flowing through the first bus bar;
a core (25) having a core hole (29) into which the first bus bar and the second bus bar are inserted, a gap forming portion (26) including a first end face (261) facing the width direction, a second end face (262) facing the first end face in the width direction, and a gap (265) formed by the first end face and the second end face and communicating the core hole with the outside, a core horizontal portion (27) connected to the gap forming portion and extending in a thickness direction (DT) of the first bus bar, and a core bottom portion (28) connected to the core horizontal portion and extending in the width direction and forming the core hole together with the gap forming portion and the core horizontal portion;
a detection element (31) that is disposed in the gap, detects the intensity of a combined magnetic field of a magnetic field generated by a current flowing through the first bus bar in a direction (Dm1) from the first end face to the second end face, and a magnetic field generated by a current flowing through the second bus bar in a direction (Dm2) from the second end face to the first end face, and outputs a signal according to the intensity of the detected magnetic field;
Equipped with
The first bus bar has a first opposing surface (211) opposing the second bus bar in the width direction,
The second bus bar has a second opposing surface (222) opposing the first bus bar in the width direction,
the first end surface and the second end surface are located between the first opposing surface and the second opposing surface in the width direction,
The gap forming portion includes a core inner surface (271, 272) and a core protrusion (281, 282),
The core inner surface is a surface of the gap forming portion facing inward in the thickness direction,
The core protrusion is a current sensor that protrudes in the thickness direction from a range of the core inner surface between a surface (S1) that passes through the first opposing surface and the gap forming portion and is perpendicular to the width direction, and a surface (S2) that passes through the second opposing surface and the gap forming portion and is perpendicular to the width direction. - 前記コア突起は、前記厚み方向において前記コア底部と離れている請求項1に記載の電流センサ。 The current sensor according to claim 1, wherein the core protrusion is spaced apart from the core bottom in the thickness direction.
- 前記幅方向における前記コア突起の長さ(Wp1、Wp2)は、前記幅方向における前記第1対向面から前記第1端面までの距離(Wb1、Wb2)以下とされている請求項1または2に記載の電流センサ。 The current sensor according to claim 1 or 2, wherein the length (Wp1, Wp2) of the core protrusion in the width direction is equal to or less than the distance (Wb1, Wb2) from the first opposing surface to the first end surface in the width direction.
- 前記検出素子は、前記厚み方向における前記第1端面の中心を通るとともに前記厚み方向と直交する面(So_Gap)上に配置されている請求項1または2に記載の電流センサ。 The current sensor according to claim 1 or 2, wherein the detection element is disposed on a plane (So_Gap) that passes through the center of the first end face in the thickness direction and is perpendicular to the thickness direction.
- 前記検出素子は、前記厚み方向における前記第1端面の中心を通るとともに前記厚み方向と直交する面(So_Gap)よりも前記コア穴とは反対側に配置されている請求項1または2に記載の電流センサ。 The current sensor according to claim 1 or 2, wherein the detection element is disposed on the opposite side of the core hole from a plane (So_Gap) that passes through the center of the first end face in the thickness direction and is perpendicular to the thickness direction.
- 前記コア突起は、前記幅方向を向いている突起面(2810、2820)を含み、
前記検出素子は、前記突起面および前記第1端面を合わせた面の前記厚み方向における中心を通るとともに前記厚み方向と直交する面(Sop)上に配置されている請求項1または2に記載の電流センサ。 The core projection includes projection surfaces (2810, 2820) facing the width direction,
The current sensor according to claim 1 or 2, wherein the detection element is disposed on a plane (Sop) that passes through a center in the thickness direction of a surface where the protrusion surface and the first end surface are joined and is perpendicular to the thickness direction. - 前記コア突起は、前記幅方向を向いている突起面(2810、2820)を含み、
前記検出素子は、前記突起面および前記第1端面を合わせた面の前記厚み方向における中心を通るとともに前記厚み方向と直交する面(Sop)よりも前記コア穴とは反対側に配置されている請求項1または2に記載の電流センサ。 The core projection includes projection surfaces (2810, 2820) facing the width direction,
The current sensor according to claim 1 or 2, wherein the detection element is arranged on the opposite side of the core hole from a plane (Sop) that passes through the center in the thickness direction of the surface where the protrusion surface and the first end surface are joined and is perpendicular to the thickness direction. - 前記第1バスバは、電源の一端および負荷の一端と接続されており、
前記第2バスバは、前記電源の他端および前記負荷の他端と接続されており、
前記電流センサは、前記検出素子から出力された信号に基づいて、前記電源および前記負荷の間において異常があるか否かを判定する判定部(45)をさらに備える請求項1または2に記載の電流センサ。 The first bus bar is connected to one end of a power source and one end of a load,
the second bus bar is connected to the other end of the power source and the other end of the load,
3. The current sensor according to claim 1, further comprising a determination unit (45) that determines whether or not an abnormality exists between the power supply and the load based on the signal output from the detection element.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022205795A JP2024090120A (en) | 2022-12-22 | 2022-12-22 | Current sensor |
JP2022-205795 | 2022-12-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024135504A1 true WO2024135504A1 (en) | 2024-06-27 |
Family
ID=91588782
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/044734 WO2024135504A1 (en) | 2022-12-22 | 2023-12-13 | Electric current sensor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024090120A (en) |
WO (1) | WO2024135504A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003215169A (en) * | 2002-01-21 | 2003-07-30 | Yazaki Corp | Method of manufacturing core for contactless type sensor, core for contactless type sensor, and non-contact type sensor |
US20100148907A1 (en) * | 2008-12-17 | 2010-06-17 | General Electric Company | Current transformer and electrical monitoring system |
JP2011112559A (en) * | 2009-11-27 | 2011-06-09 | Autonetworks Technologies Ltd | Current sensor |
JP2011242276A (en) * | 2010-05-19 | 2011-12-01 | Auto Network Gijutsu Kenkyusho:Kk | Current sensor |
JP2012159445A (en) * | 2011-02-02 | 2012-08-23 | Mitsubishi Electric Corp | Dc leakage detecting device |
JP2015072281A (en) * | 2009-12-28 | 2015-04-16 | Tdk株式会社 | Magnetic field detector and current sensor |
JP2017049182A (en) * | 2015-09-03 | 2017-03-09 | 日立金属株式会社 | Leak detector |
-
2022
- 2022-12-22 JP JP2022205795A patent/JP2024090120A/en active Pending
-
2023
- 2023-12-13 WO PCT/JP2023/044734 patent/WO2024135504A1/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003215169A (en) * | 2002-01-21 | 2003-07-30 | Yazaki Corp | Method of manufacturing core for contactless type sensor, core for contactless type sensor, and non-contact type sensor |
US20100148907A1 (en) * | 2008-12-17 | 2010-06-17 | General Electric Company | Current transformer and electrical monitoring system |
JP2011112559A (en) * | 2009-11-27 | 2011-06-09 | Autonetworks Technologies Ltd | Current sensor |
JP2015072281A (en) * | 2009-12-28 | 2015-04-16 | Tdk株式会社 | Magnetic field detector and current sensor |
JP2011242276A (en) * | 2010-05-19 | 2011-12-01 | Auto Network Gijutsu Kenkyusho:Kk | Current sensor |
JP2012159445A (en) * | 2011-02-02 | 2012-08-23 | Mitsubishi Electric Corp | Dc leakage detecting device |
JP2017049182A (en) * | 2015-09-03 | 2017-03-09 | 日立金属株式会社 | Leak detector |
Also Published As
Publication number | Publication date |
---|---|
JP2024090120A (en) | 2024-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6350785B2 (en) | Inverter device | |
KR100686323B1 (en) | High precision current sensor | |
US7528593B2 (en) | Current measuring device | |
US11041887B2 (en) | Current sensor | |
US20190293733A1 (en) | Current sensor | |
US10634703B2 (en) | Current sensor | |
JP4321412B2 (en) | Current measuring device | |
WO2012046547A1 (en) | Current sensor | |
WO2024135504A1 (en) | Electric current sensor | |
JP2013242301A (en) | Current sensor | |
JP5057245B2 (en) | Current sensor | |
JP2012037377A (en) | Current sensor | |
JP7452398B2 (en) | current sensor | |
JP4813029B2 (en) | Current measuring device | |
CN111466003B (en) | Reactor with current sensor | |
US12146900B2 (en) | Current measurement system | |
WO2023090228A1 (en) | Current sensor | |
JP2014098634A (en) | Current sensor | |
WO2023209967A1 (en) | Current sensor device, current sensor device array, and power converting device | |
US20230029921A1 (en) | Current measurement system | |
JP2023073966A (en) | current sensor | |
JP2021047147A (en) | Current sensor | |
CN118202253A (en) | Current sensor | |
JP2015034774A (en) | Current detection system, current detection method, and charge control device | |
JP2018091780A (en) | Current sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23906869 Country of ref document: EP Kind code of ref document: A1 |