WO2024193435A1 - 一种振动模组、压电扬声器及终端设备 - Google Patents
一种振动模组、压电扬声器及终端设备 Download PDFInfo
- Publication number
- WO2024193435A1 WO2024193435A1 PCT/CN2024/081686 CN2024081686W WO2024193435A1 WO 2024193435 A1 WO2024193435 A1 WO 2024193435A1 CN 2024081686 W CN2024081686 W CN 2024081686W WO 2024193435 A1 WO2024193435 A1 WO 2024193435A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- diaphragm
- cantilever
- vibration
- vibration module
- cantilever structure
- Prior art date
Links
- 239000002245 particle Substances 0.000 claims description 27
- 239000011159 matrix material Substances 0.000 claims description 15
- 239000012528 membrane Substances 0.000 claims description 10
- 210000005069 ears Anatomy 0.000 claims description 9
- 238000009423 ventilation Methods 0.000 claims 3
- 238000010586 diagram Methods 0.000 description 83
- 239000000463 material Substances 0.000 description 15
- 239000010410 layer Substances 0.000 description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- 238000009826 distribution Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 230000007246 mechanism Effects 0.000 description 9
- 230000004044 response Effects 0.000 description 7
- 238000004026 adhesive bonding Methods 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 4
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 4
- 238000005452 bending Methods 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 235000012771 pancakes Nutrition 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001755 vocal effect Effects 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R9/00—Transducers of moving-coil, moving-strip, or moving-wire type
- H04R9/02—Details
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R9/00—Transducers of moving-coil, moving-strip, or moving-wire type
- H04R9/06—Loudspeakers
Definitions
- the present application relates to the technical field of loudspeakers, and in particular to a vibration module, a piezoelectric loudspeaker and a terminal device.
- a speaker also known as a receiver, is a sound presentation unit.
- SPK also known as a receiver
- micro speakers account for a relatively large proportion of the audio industry market.
- SPL sound pressure level
- dB decibel
- the present application provides a vibration module, a piezoelectric speaker and a terminal device.
- the vibration module has a large vibration area and vibration amplitude, can improve the sound pressure level of the piezoelectric speaker and achieve a stable amplitude output.
- the present application provides a vibration module, which can be used as a vibration part of a piezoelectric speaker to vibrate and generate sound.
- the vibration module includes a base and a vibration unit.
- the base can provide support for the vibration unit.
- the vibration unit specifically includes a cantilever structure, a diaphragm structure and a connection structure.
- the cantilever structure is provided with a piezoelectric area, and the piezoelectric area includes a piezoelectric material, which can be deformed when powered on, so that the cantilever structure vibrates.
- the cantilever structure has a fixed end and a free end, and its free end is symmetrically distributed about the fixed end.
- the fixed end of the cantilever structure is fixed to the base, and the free end of the cantilever structure is suspended relative to the base.
- a sound cavity can be formed between the cantilever structure and the base, and the sound cavity can also be considered as a back cavity.
- the piezoelectric area is energized and deformed, the free end of the cantilever structure can vibrate relative to the fixed end, thereby realizing the vibration of the cantilever structure.
- the diaphragm structure is arranged at intervals on the side of the cantilever structure away from the base, and the edge of the diaphragm structure is connected to the free end of the cantilever structure through the connection structure, so that there is a gap between the diaphragm structure and the cantilever structure.
- the cantilever structure and the diaphragm structure are distributed along the vibration direction of the diaphragm, so that the diaphragm has a larger distribution area.
- the edge of the diaphragm structure is connected to the free end of the cantilever structure through a connecting structure, which can increase the vibration amplitude of the diaphragm structure.
- the diaphragm structure can be driven to vibrate from the edge of the diaphragm structure. Since the free end of the cantilever structure is symmetrically distributed relative to the fixed end, the diaphragm structure can be driven to vibrate as a whole, and the vibration amplitude of the diaphragm structure can be kept relatively stable.
- the connecting structure is provided with a flexible connecting portion, and the stiffness of the flexible connecting portion along the connection direction of the cantilever structure and the diaphragm structure is less than the stiffness of the cantilever structure and the diaphragm structure.
- the flexible connecting portion will deform along the connection direction of the cantilever structure and the diaphragm structure to compensate for the size difference caused by the structural mismatch between the diaphragm structure and the cantilever structure during vibration.
- the vibration module provided by the present application has a diaphragm structure with a larger distribution area and a larger vibration amplitude.
- the amplitude of the diaphragm structure is relatively stable at all locations during vibration.
- the flexible connection portion provided in the connection structure can avoid mechanical structural constraints on the cantilever structure and the diaphragm structure during vibration. In terms of sound presentation, the vibration module can enable the piezoelectric speaker to achieve a better sound pressure level and a more stable amplitude output.
- connection structure and the cantilever structure are an integrated structure; and/or, the connection structure and the diaphragm structure are an integrated structure.
- Such a structural design can simplify manufacturing and reduce production costs.
- cantilever structure and the diaphragm structure are separate structures, different structural designs can be made for the cantilever structure and the diaphragm structure according to different application requirements.
- the cantilever structure and the diaphragm structure are an integrated structure. It can be considered that the cantilever structure, the diaphragm structure, and the connection structure have an integrated structure.
- a vibration unit can be prepared by a plate through a process such as bending, further reducing production costs.
- the flexible connection part may include a hollow structure.
- the hollow structure reduces the material stiffness of the flexible connection part, thereby reducing the stiffness of the flexible connection part along the connection direction of the cantilever structure and the diaphragm structure, making it easier for the flexible connection part to stretch or contract along the connection direction of the cantilever structure and the diaphragm structure during vibration.
- a flexible film may be covered on the hollow structure to prevent air leakage from having a negative impact on the sound pressure level performance of the piezoelectric speaker.
- the cantilever structure, the diaphragm structure, and the connecting structure are independent structures, and the connecting structure is connected to the cantilever.
- a support structure may be provided on one side of the cantilever structure facing the diaphragm structure, and the connecting structure is connected between the diaphragm structure and the support structure. The support structure allows a certain gap to exist between the cantilever structure and the diaphragm structure.
- the flexible connection part on the connection structure may include a flexible matrix and rigid particles dispersed in the flexible matrix.
- the flexible matrix can ensure the flexibility of the flexible connection part, so that the rigidity of the flexible connection part in the connection direction between the cantilever structure and the diaphragm structure is reduced.
- the rigidity of the rigid particles is greater than the rigidity of the flexible matrix, and the structural form of the flexible connection part can be maintained.
- the rigid particles may be columns, and the height direction of the columns is perpendicular to the connection direction between the cantilever structure and the diaphragm structure.
- the rigid particles are spherical or ellipsoidal.
- the distribution state of the rigid particles may not be limited, and they may be distributed in layers along the thickness direction of the flexible connection portion.
- the base includes a base and a fixing portion
- the base may be an annular frame
- the fixing portion is in a strip shape.
- the annular frame is disposed on the side of the cantilever structure away from the diaphragm structure, and a vibration module sound cavity is formed between the inner wall of the annular frame and the cantilever structure.
- the fixing portion is in a strip shape, and the two ends of the fixing portion are respectively fixed to two opposite inner walls of the annular frame.
- the cantilever structure in the vibration unit is fixed to the fixing portion
- the cantilever structure has two free ends along the extension direction of the fixing portion, and the two free ends of the cantilever structure are axially symmetrically distributed with respect to the fixing portion.
- the diaphragm structure connected to the free end of the cantilever structure may also be axially symmetrically distributed.
- two first pits are provided on the annular frame, and the two first pits are respectively located at the two ends of the length direction of the fixing part.
- two matching ears are provided on the vibration unit, and the two matching ears can be accommodated in the two first pits one by one.
- the annular surrounding frame can also be provided with a second pit, and the two ends of the fixing part are respectively fixed in the second pit.
- the second pit can be arranged in the first pit.
- the base is a flat base
- the fixing portion is a support column.
- the fixing portion is columnar
- the fixing portion is arranged on the side of the bottom plate facing the vibration unit and protrudes from the bottom plate.
- the center of the vibration unit is fixed to the fixing portion, and the free end of the cantilever structure is centrally symmetrically distributed about the axis of the support column.
- the sound cavity of the vibration module is formed between the cantilever structure of the vibration unit and the bottom plate.
- a step surface is provided on the circumferential surface of the fixing portion.
- the cantilever structure of the vibration unit can be fixed on the step surface by gluing.
- the space between the cantilever structure of the vibration unit and the base can be considered as the sound cavity of the vibration module.
- a plurality of vents are provided on the base, and the vents penetrate the base in the direction from the vibration unit to the base to connect the sound cavity with the outside space. Possibly, the plurality of vents can be arranged to be evenly distributed around the fixing portion.
- a gap may be provided on the cantilever structure, and the gap may further reduce the mechanical constraint during vibration.
- the extending direction of the gap is the direction from the fixed end of the cantilever structure to the free end.
- the vibration unit further includes a mass structure.
- the mass structure may be fixed near the free end of the cantilever structure.
- the mass structure may be disposed at any location of the diaphragm structure.
- the mass structure may be disposed to be centrally symmetrically distributed about the fixed portion. The introduction of the mass structure may reduce the quality factor of the piezoelectric speaker, flatten the sound pressure curve of the piezoelectric speaker, improve the low-frequency response, and achieve the purpose of suppressing the first-order resonant frequency.
- the vibration unit further includes a flexible membrane.
- the flexible membrane may be disposed on the surface of the cantilever structure in an attached manner, specifically, on the surface of the cantilever structure facing the diaphragm structure or on the surface of the cantilever structure facing away from the diaphragm structure.
- the vibration module may further include a basin frame and an auxiliary diaphragm.
- the base is fixed to the bottom of the basin frame, and the auxiliary diaphragm covers the top opening of the basin frame.
- a space can be enclosed between the basin frame and the auxiliary diaphragm.
- the base and the vibration unit can be accommodated in the space.
- the auxiliary diaphragm can be partially or completely attached to the surface of the diaphragm structure that is away from the cantilever structure. When the cantilever structure drives the diaphragm structure to vibrate, the auxiliary diaphragm can be driven to vibrate together.
- the size of the auxiliary diaphragm can be set to be larger than the size of the diaphragm structure, so that the positive projection of the diaphragm structure on the auxiliary diaphragm is located within the surface range of the auxiliary diaphragm facing the diaphragm structure.
- Both the auxiliary diaphragm and the diaphragm structure can be used as the diaphragm of the vibration module.
- the auxiliary diaphragm can expand the diaphragm area of the vibration module and further improve the sound pressure level of the piezoelectric speaker.
- the present application further provides a piezoelectric speaker, which includes a circuit board, a shell, and a vibration module provided by the technical solution of the first aspect.
- the circuit board has a first surface and a second surface that are arranged opposite to each other, the shell is fixed to the first surface of the circuit board, and a accommodating cavity is formed between the shell and the first surface.
- the shell is provided with a sound outlet hole connected to the accommodating cavity, and the sound outlet hole runs through the shell.
- the vibration module is fixed to the first surface of the circuit board and is located in the accommodating cavity. Since the above-mentioned vibration module has a larger vibration area and vibration amplitude, and the vibration amplitude is relatively smoother, the piezoelectric speaker can achieve a higher sound pressure level and a flatter sound pressure curve, presenting a better sound effect.
- the piezoelectric speaker further includes an integrated circuit chip, which is disposed on the first surface of the circuit and is located in the accommodating cavity.
- a solder pad is also disposed on the second surface of the circuit board.
- the piezoelectric region in the cantilever structure of the vibration module is electrically connected to the integrated circuit chip, and the piezoelectric region can be controlled by the integrated circuit chip to drive the cantilever structure to vibrate.
- the circuit board is provided with an opening, which passes through the circuit board and is connected to the acoustic cavity of the vibration module to maintain the pressure in the acoustic cavity.
- the present application provides a terminal device, which may be an electronic device with a need to produce sound.
- the terminal device includes a housing and a piezoelectric speaker provided in the second aspect.
- the piezoelectric speaker is disposed in the housing, and a speaker hole is disposed on the housing.
- the position of the speaker hole corresponds to the position of the piezoelectric speaker, and the sound emitted by the piezoelectric speaker can be directed to the external space.
- the piezoelectric speaker has a higher sound pressure level, so that the terminal device can have a good sound effect and enhance the consumer's experience.
- FIG1 is a schematic diagram of the structure of a piezoelectric speaker in the prior art
- FIG2 is a schematic diagram of the structure of a terminal device provided in an embodiment of the present application.
- FIG3a is a schematic structural diagram of a piezoelectric speaker provided in an embodiment of the present application.
- FIG3b is a schematic structural diagram of a vibration module provided in an embodiment of the present application.
- FIG4 is a schematic structural diagram of a vibration module provided in an embodiment of the present application.
- FIG5 is a schematic diagram of the structure of a base in a vibration module provided in an embodiment of the present application.
- FIG6a is a top view of a vibration module provided in an embodiment of the present application.
- FIG6b is a schematic diagram of the cross-sectional structure at M1-M1 in FIG6a;
- FIG7a is a schematic structural diagram of a vibration unit in a vibration module provided in an embodiment of the present application.
- FIG7b is a top view of a vibration module provided in an embodiment of the present application.
- FIG8a is a top view of a base in a vibration module provided in an embodiment of the present application.
- FIG8b is a schematic diagram of the cross-sectional structure at M2-M2 in FIG8a;
- FIG9a is a top view of a surrounding frame in a vibration module provided in an embodiment of the present application.
- FIG9b is a schematic diagram of the cross-sectional structure at M3-M3 in FIG9a;
- FIG9c is a top view of a base in a vibration module provided in an embodiment of the present application.
- FIG9d is a schematic diagram of the cross-sectional structure at M4-M4 in FIG9c;
- FIG10a is a top view of a vibration module provided in an embodiment of the present application.
- FIG10b is a schematic diagram of the cross-sectional structure at M5-M5 in FIG10a;
- FIG11a is a schematic structural diagram of a vibration unit in a vibration module provided in an embodiment of the present application.
- FIG. 11 b is a schematic diagram of a plate structure used to form the vibration unit in FIG. 11 a ;
- FIG. 11c is a front view of a vibration unit in a vibration module provided in an embodiment of the present application.
- FIG13a is a top view of a vibration module provided in an embodiment of the present application.
- FIG13b is a schematic diagram of the cross-sectional structure at M6-M6 in FIG13a;
- FIG13c is a schematic cross-sectional structure diagram of a vibration module provided in an embodiment of the present application.
- FIG13d is a schematic cross-sectional structure diagram of a vibration module provided in an embodiment of the present application.
- FIG13e is a schematic cross-sectional structure diagram of a vibration module provided in an embodiment of the present application.
- FIG13f is a schematic cross-sectional structure diagram of a vibration module provided in an embodiment of the present application.
- FIG13g is a schematic cross-sectional structure diagram of a vibration module provided in an embodiment of the present application.
- FIG14a is a schematic diagram of the structure of a vibration unit in a vibration module provided in an embodiment of the present application.
- FIG14b is a top view of a vibration module provided in an embodiment of the present application.
- FIG14c is a schematic diagram of the cross-sectional structure at M7-M7 in FIG14b;
- FIG15a is a schematic cross-sectional structure diagram of a vibration module provided in an embodiment of the present application.
- FIG15c is a schematic cross-sectional structure diagram of a vibration module provided in an embodiment of the present application.
- FIG16a is a schematic structural diagram of a vibration unit in a vibration module provided in an embodiment of the present application.
- FIG16b is a top view of a vibration module provided in an embodiment of the present application.
- FIG16c is a schematic diagram of the cross-sectional structure at M8-M8 in FIG16b;
- FIG17a is a schematic structural diagram of a vibration unit in a vibration module provided in an embodiment of the present application.
- FIG17b is a bottom view of a vibration module provided in an embodiment of the present application.
- FIG17c is a schematic diagram of the cross-sectional structure at M9-M9 in FIG17b;
- FIG18 is a schematic diagram of the structure of a vibration unit in a vibration module provided in an embodiment of the present application.
- FIG19a is a schematic structural diagram of a flexible connection portion in a vibration module provided in an embodiment of the present application.
- FIG19b is a schematic diagram of a partial structure of a flexible connection portion in a vibration module provided in an embodiment of the present application.
- FIG20a is a schematic structural diagram of a flexible connection portion in a vibration module provided in an embodiment of the present application.
- FIG20b is a schematic structural diagram of a flexible connection portion in a vibration module provided in an embodiment of the present application.
- FIG20c is a schematic structural diagram of a flexible connection portion in a vibration module provided in an embodiment of the present application.
- FIG20d is a schematic structural diagram of a flexible connection portion in a vibration module provided in an embodiment of the present application.
- FIG20e is a schematic structural diagram of a flexible connection portion in a vibration module provided in an embodiment of the present application.
- FIG21a is a schematic diagram of the structure of a vibration unit in a vibration module provided in an embodiment of the present application.
- FIG21 b is a schematic structural diagram of a vibration unit in a vibration module provided in an embodiment of the present application.
- FIG22a is a schematic structural diagram of a flexible connection portion in a vibration module provided in an embodiment of the present application.
- FIG22b is a schematic cross-sectional structure diagram of a flexible connection portion in a vibration module provided in an embodiment of the present application.
- FIG22c is a schematic cross-sectional structure diagram of a flexible connection portion in a vibration module provided in an embodiment of the present application.
- FIG22d is a schematic structural diagram of a flexible connection portion in a vibration module provided in an embodiment of the present application.
- FIG22e is a schematic cross-sectional structure diagram of a flexible connection portion in a vibration module provided in an embodiment of the present application.
- FIG23a is a schematic structural diagram of a flexible connection portion in a vibration module provided in an embodiment of the present application.
- FIG23b is a schematic cross-sectional structure diagram of a flexible connection portion in a vibration module provided in an embodiment of the present application.
- FIG23c is a schematic structural diagram of a flexible connection portion in a vibration module provided in an embodiment of the present application.
- FIG23d is a schematic cross-sectional structure diagram of a flexible connection portion in a vibration module provided in an embodiment of the present application.
- FIG24a is a schematic structural diagram of a vibration module provided in an embodiment of the present application.
- FIG24b is a top view of a vibration module provided in an embodiment of the present application.
- FIG24e is a schematic cross-sectional structure diagram of a vibration module provided in an embodiment of the present application.
- FIG26 is a schematic cross-sectional view of a vibration module provided in an embodiment of the present application.
- FIG27 is a schematic structural diagram of a vibration module provided in an embodiment of the present application.
- FIG28 is a schematic diagram of the structure of a base in a vibration module provided in an embodiment of the present application.
- FIG29a is a schematic diagram of the structure of a vibration unit in a vibration module provided in an embodiment of the present application.
- FIG30a is a top view of a vibration module provided in an embodiment of the present application.
- FIG30b is a schematic diagram of the cross-sectional structure at V1-V1 in FIG30a;
- FIG31a is a schematic diagram of the structure of a vibration unit in a vibration module provided in an embodiment of the present application.
- FIG31 b is a schematic cross-sectional structure diagram of a vibration module provided in an embodiment of the present application.
- FIG31c is a schematic cross-sectional structure diagram of a vibration module provided in an embodiment of the present application.
- FIG32a is a schematic structural diagram of a diaphragm structure in a vibration module provided in an embodiment of the present application.
- FIG32b is a schematic structural diagram of a diaphragm structure in a vibration module provided in an embodiment of the present application.
- FIG33 is a schematic diagram of the structure of a vibration module provided in an embodiment of the present application.
- FIG34a is a schematic structural diagram of a vibration unit in a vibration module provided in an embodiment of the present application.
- FIG34b is an exploded view of a vibration unit in a vibration module provided in an embodiment of the present application.
- FIG35 is a top view of a vibration module provided in an embodiment of the present application.
- FIG36a is a schematic structural diagram of a diaphragm structure in a vibration module provided in an embodiment of the present application.
- FIG36b is a schematic structural diagram of a diaphragm structure in a vibration module provided in an embodiment of the present application.
- FIG37a is a schematic diagram of the structure of a vibration unit in a vibration module provided in an embodiment of the present application.
- FIG37b is a schematic diagram of the structure of a vibration unit in a vibration module provided in an embodiment of the present application.
- FIG38 is a schematic diagram of the cross-sectional structure of a vibration module provided in an embodiment of the present application.
- 1000-terminal device 100-piezoelectric speaker; 200-display module; 2001-receiving hole; 300-external speaker; 400-non-external speaker; 500-housing; 5001-frame; 5002-back cover; 5003-speaker hole; 10-vibration module; 20-circuit board; 201-opening; 30-housing; 301-sound outlet hole; 40-integrated circuit chip; 1-base; 11-fixing part; 111-first column; 112-second column; 12-base; 121-first pit; 122-second pit; 123-air vent; 2-vibration unit; 21-cantilever structure; 211-piezoelectric area; 212-flexible membrane; 22-diaphragm structure; 22a-first diaphragm substructure; 22b-second diaphragm substructure; 23-connecting structure; 231-first structure; 232-second structure; 23a-first connecting substructure; 23b-second connecting substructure; 24-connecting part; 25-flexible film;
- a speaker can be used as a sound-generating unit to present sound.
- micro speakers account for an increasingly higher proportion in the audio market.
- Current micro speakers include dynamic and balanced iron types.
- dynamic micro speakers have relatively mature technology and relatively low prices. They have the advantages of a wide frequency response range and good sound field effects in terms of audio performance, but they have the defects of easy sound leakage and low volume energy efficiency.
- Balanced iron micro speakers have small volume energy consumption, are not easy to leak sound, have the advantages of high sound resolution and flat frequency response curve, but are expensive and have high application scenario limitations.
- the advantages of dynamic micro speakers and balanced iron micro speakers are combined, such as a combination of coil and iron, one coil and multiple iron, and multiple coils and multiple iron.
- a coil-ceramic speaker that combines a dynamic coil and a piezoelectric, with the dynamic coil responsible for low frequencies and the piezoelectric responsible for high frequencies.
- these unit combination micro speakers can achieve certain sound effects, the frequency response and output differences between different units require complex acoustic design and tuning operations. The tuning operation has a certain failure rate. If the tuning fails, the product will be scrapped, which limits the development of micro speakers in this unit combination form.
- the embodiments of the present application provide a vibration module, a piezoelectric speaker and a terminal device.
- the piezoelectric speaker can achieve a higher sound pressure level and present a better sound effect.
- the piezoelectric speaker includes a basin frame mechanism 1-1, an acoustic diaphragm 1-2, and a driving mechanism 1-3.
- An air chamber W is formed between the acoustic diaphragm 1-2 and the basin frame mechanism 1-1.
- the air chamber W is located between the acoustic diaphragm 1-2 and the basin frame mechanism 1-1, as shown by a dotted line.
- the driving mechanism 1-3 includes a piezoelectric material.
- the driving mechanism 1-3 When an AC voltage is applied to the driving mechanism 1-3, the driving mechanism 1-3 generates a bending moment, forcing the acoustic diaphragm 1-2 to vibrate, thereby generating a sound pressure output.
- the vibration of the acoustic diaphragm 1-2 is simplified to a piston on an infinite baffle, the calculation formula for the effective sound pressure output of the piezoelectric speaker is:
- z is the distance from the acoustic diaphragm 1-2 to the audience
- Pe (z) is the effective sound pressure output when the distance from the acoustic diaphragm 1-2 to the audience is z
- P(z) is the sound pressure amplitude when the distance from the acoustic diaphragm 1-2 to the audience is z
- ⁇ is the air density
- S is the area of the acoustic diaphragm 1-2
- ⁇ is the amplitude at the radial distance
- f is the vibration frequency of the acoustic diaphragm 1-2.
- the sound pressure level of the piezoelectric speaker can be further simplified as:
- Pref is the reference sound pressure level
- the sound pressure level is defined as the common logarithm of the ratio of the effective sound pressure output Pe (z) to the reference sound pressure Pref .
- the high sound pressure level depends on parameters such as a higher amplitude ⁇ of the acoustic diaphragm 1-2 and a larger area S of the acoustic diaphragm 1-2.
- the piezoelectric speaker provided in the embodiment of the present application can achieve a higher sound pressure level by increasing the amplitude ⁇ of the acoustic diaphragm 1-2 and the area S of the acoustic diaphragm 1-2.
- references to "one embodiment” or “some embodiments” etc. described in this specification mean that a particular feature, structure or characteristic described in conjunction with the embodiment is included in one or more embodiments of the present application.
- the phrases “in one embodiment”, “in some other embodiments”, “in some other embodiments”, etc. appearing in different places in this specification do not necessarily refer to the same embodiment, but mean “one or more but not all embodiments", unless otherwise specifically emphasized.
- the terms “including”, “comprising”, “having” and their variations all mean “including but not limited to”, unless otherwise specifically emphasized.
- “A and/or B” includes three cases: “A”, “B” and “A and B”.
- the embodiment of the present application provides a terminal device 1000, which may include but is not limited to a mobile phone, a tablet computer, a laptop computer, an ultra-mobile personal computer (UMPC), a handheld computer, a touch-screen TV, an intercom, a netbook, a point of sale (POS) terminal, a personal digital assistant (PDA), and a wearable device such as a headset, a Bluetooth glasses or a virtual reality device, etc., and the mobile terminal or fixed terminal, all of which have an acoustic transducer.
- a terminal device 1000 of the embodiment shown in FIG2 is described by taking a mobile phone as an example.
- the terminal device 1000 may include a display module 200, an external speaker 300, a non-external speaker 400, and a housing 500.
- the external speaker 300 can be considered as a speaker
- the non-external speaker 400 can be considered as an earpiece.
- the housing 500 includes a frame 5001 and a back cover 5002, and the frame 5001 is connected to the edge of the back cover 5002.
- the frame 5001 and the back cover 5002 can be an integrally formed structure, or they can be formed into an integral structure by assembly.
- the housing 500 is provided with a speaker hole 5003.
- the number of the speaker holes 5003 can be one or more. Exemplarily, the number of the speaker holes 5003 is multiple, and the multiple speaker holes 5003 are provided in the frame 5001.
- the speaker hole 5003 connects the inside of the terminal device 1000 with the outside of the terminal device 1000.
- the external speaker 300 and the non-external speaker 400 are both located on the inner side of the frame 5001 and between the display module 200 and the back cover 5002, and are therefore shown in dotted lines.
- the sound emitted by the external speaker 300 can be transmitted to the outside of the terminal device 1000 through the speaker hole 5003 to realize the sound playback function of the terminal device 1000.
- the display module 200 is provided with a receiver hole 2001, and the sound emitted by the non-external speaker 400 can be transmitted to the outside of the terminal device 1000 through the receiver hole 2001 to realize the sound playback function of the terminal device 1000.
- the terminal device 1000 provided in the embodiment of the present application also includes conventional structures such as a mainboard, a processor, a memory, and a battery, which are not described in detail here.
- the embodiment of the present application provides a piezoelectric speaker 100.
- the external speaker 300 and/or the non-external speaker 400 in the terminal device shown in Fig. 2 may adopt the piezoelectric speaker 100.
- the piezoelectric speaker 100 includes a vibration module 10, a circuit board 20, and a housing 30.
- the circuit board 20 has a first surface B1 and a second surface B2 that are arranged opposite to each other.
- the housing 30 is fixed to the first surface B1 of the circuit board 20, and a cavity can be formed between the housing 30 and the first surface B1, which is a receiving cavity N.
- One or more sound outlet holes 301 are also arranged on the housing 30, and the sound outlet holes 301 penetrate the housing 30 so that the receiving cavity N can be connected to the outside.
- the vibration module 10 is specifically arranged on the first surface B1 of the circuit board 20 and is located in the receiving cavity N.
- a sound cavity A can be formed between the vibration module 10 and the first surface B1 of the circuit board 20.
- the vibration module 10 vibrates to push the air in the receiving cavity N to make a sound, and the sound can be transmitted to the outside space through the sound outlet holes 301, so that the piezoelectric speaker 100 can make a sound.
- the vibration principle of the vibration module 10 in the piezoelectric speaker 100 is piezoelectric drive, so the vibration module 10 contains piezoelectric material, which will be introduced later.
- the circuit board 20 is further provided with an opening 201 penetrating the first surface B1 and the second surface B2 . The opening 201 allows the acoustic cavity A to communicate with the outside and maintains the pressure in the acoustic cavity A.
- the piezoelectric speaker 100 may also include an integrated circuit chip 40, which is specifically disposed on the first surface B1 of the circuit board 20 and is located in the accommodating cavity N.
- the integrated circuit chip 40 is electrically connected to the piezoelectric material in the vibration module 10 to provide electrical energy to the piezoelectric material and control the piezoelectric material.
- a pad H is disposed on the second surface B2 of the circuit board 20, and the circuit board 20 can be soldered with other components or traces through the pad H. The number and position of the pad H are not specifically limited.
- the vibration module 10 includes a base 1 and a vibration unit 2, and the base 1 is used to provide support for the vibration unit 2.
- the vibration unit 2 includes a piezoelectric material, and the piezoelectric material can undergo structural deformation when powered on to make the vibration unit 2 vibrate, thereby pushing the air to make sound.
- the base 1 exemplarily includes a base 12 and a fixed portion 11, and the base 12 can be centrally symmetrically distributed about the fixed portion 11.
- the vibration unit 2 includes a cantilever structure 21, a diaphragm structure 22 and a connecting structure 23.
- a piezoelectric area 211 is provided on the cantilever structure 21.
- the cantilever structure 21 has a fixed end a2 and a free end a1, and the fixed end a1 is fixed to the fixed portion 11 of the base 1.
- the free end a1 is symmetrically distributed about the fixed end a2, and the symmetrical distribution includes centrally symmetrical distribution or axially symmetrical distribution. It can be considered that the portion of the cantilever structure 21 fixed to the fixed portion 11 is the fixed end a2, and the edge portion of the cantilever structure 21 away from the fixed portion 11 is the free end a1.
- the diaphragm structure 22 is arranged on a side of the cantilever structure 21 away from the base 1, and the diaphragm structure 22 and the cantilever structure 21 are spaced apart.
- the diaphragm structure 22 is connected to the free end a2 of the cantilever structure 21 through the connecting structure 23. It can also be considered that the diaphragm structure 22 is symmetrically distributed about the fixed portion 11. Among them, the symmetrical distribution may be an axisymmetric distribution, and may also be a center-symmetrical distribution.
- a piezoelectric zone 211 is provided on the cantilever structure 21.
- the piezoelectric zone 211 is not structurally limited as long as it has a piezoelectric effect. Specifically, the piezoelectric zone 211 can be a single-layer (unimorph), a double-layer (bimorph), a multilayer (multilayer) or a push-pull (push-pull).
- the piezoelectric zone 211 can be implemented in the form of one zone, multiple zones, etc.
- the piezoelectric region 211 is energized during operation.
- each cantilever structure 21 is provided with one or more piezoelectric regions 211
- different piezoelectric regions 211 of the same cantilever structure 21 or piezoelectric regions 211 on different cantilever structures 21 can be electrically connected in series, in parallel, or in a mixed manner.
- the piezoelectric region 211 is exemplified as a block, and the piezoelectric region 211 is provided on the surface of the cantilever structure 21 facing the diaphragm structure 22.
- a sound cavity is formed between the cantilever structure 21 and the base 12.
- A, the vocal cavity A can also be considered as the back cavity.
- connection structure 23 is provided with a flexible connection portion R.
- the stiffness of the flexible connection portion R is less than the stiffness of the cantilever structure 21 and the diaphragm structure 22, and the flexible connection portion R has the performance of stretching or contraction.
- the direction of the force with which the cantilever structure 21 pulls the diaphragm structure 22 can be considered as the direction in which the diaphragm structure 22 connects to the cantilever structure domain 21.
- the connection direction between the diaphragm structure 22 and the cantilever structure 21 is also the direction in which the flexible connection portion R is pulled when the vibration unit 2 vibrates.
- stiffness refers to the ability of a material or structure to resist elastic deformation when subjected to force.
- the stiffness of the flexible connection portion R is less than the stiffness of the cantilever structure 21 and the diaphragm structure 22, so that the flexible connection portion R can produce a larger extension or shortening, thereby weakening the vibration constraint of the vibration unit 2, and can also compensate for the size mismatch between the diaphragm structure 22 and the cantilever structure 21 during vibration, thereby preventing the size mismatch between the diaphragm structure 22 and the cantilever structure 21 from affecting the sound presentation, and also preventing the vibration unit 2 from being pulled and damaged.
- the diaphragm structure 22 is connected to the free end a1 of the cantilever structure 21 through the connection structure 23, and there is no connection limit at other positions, so that the diaphragm structure 22 can achieve a larger vibration amplitude when vibrating.
- the connection method of the diaphragm structure 22 connected to the free end a1 of the cantilever structure 21 through the connection structure 23 allows the cantilever structure 21 to drive the overall vibration of the entire diaphragm structure 22 through the connection structure 23.
- the amplitude difference at each position is relatively small, and the amplitude output is relatively stable, so that the piezoelectric speaker 100 can have a good performance in terms of near-field sound pressure level.
- the cantilever structure 21 is located on the side of the diaphragm structure 22 facing the base 1. Such a position distribution makes the cantilever structure 21 and the diaphragm structure 22 arranged up and down.
- the area of the diaphragm structure 22 can be related to the extension distance of the cantilever structure 21.
- the diaphragm structure 22 can be extended to the edge of the cantilever structure 21 away from the fixed part 11, so that the diaphragm structure 22 can almost occupy the entire upper surface of the cantilever structure 21 away from the base 1, so as to achieve a larger vibration area.
- the diaphragm structure 22 in the vibration module 10 provided in the embodiment of the present application has a larger vibration amplitude and vibration area, which can improve the sound pressure level of the piezoelectric speaker 100 and achieve a better sound presentation effect.
- the base 12 is specifically an annular frame, and the annular frame is illustratively a rectangle.
- a first direction X, a second direction Y and a third direction Z are set.
- the first direction X, the second direction Y and the third direction Z are perpendicular to each other, forming a three-dimensional reference coordinate system.
- the length direction of the base 12 is parallel to the first direction X
- the width direction is parallel to the second direction Y
- the height is parallel to the third direction Z.
- the fixing portion 11 is in the shape of an elongated strip, and the two ends of the fixing portion 11 are respectively connected to the two inner walls of the base 12 opposite to each other along the second direction Y.
- the shape of the vibration unit 2 is similar to that of the base 12. In a direction perpendicular to the third direction Z, there is a gap between the vibration unit 2 and the inner wall of the base 12 to reserve space for the vibration unit 2 to vibrate.
- the cantilever structure 21 and the diaphragm structure 22 are arranged at intervals along the third direction Z and connected by a connecting structure 23, so that the cantilever structure 21 and the diaphragm structure 22 are distributed up and down as shown in FIG4 .
- the cantilever structure 21 is provided with a piezoelectric area 211, which is shown in a block shape and is arranged on the side of the cantilever structure 21 facing the diaphragm structure 22.
- the fixed end a2 of the cantilever structure 21 is fixed to the fixed part 11, and the cantilever structure 21 has two free ends a1 symmetrically arranged about the fixed end a2.
- the diaphragm structure 22 is connected to the two free ends a1 one by one through two connecting structures 23, respectively.
- the vibration of the cantilever structure 21 can drive the diaphragm structure 22 to vibrate through the connecting structure 23.
- the vibration direction of the diaphragm structure 22 is parallel to the third direction Z.
- FIG5 shows the specific structure of the base 1 , where the base 12 is an annular frame, and the fixing portion 11 can divide the internal space of the base 12 into two spaces opposite to each other along the first direction X.
- the fixing portion 11 When the fixing portion 11 is connected to the center position of two inner walls opposite to each other along the second direction Y of the base 12 , the fixing portion 11 can divide the base 12 into two equal spaces along the first direction X.
- the top view of the vibration module 10 shown in FIG6a is a view of the vibration unit 2 from the side of the diaphragm structure 22 along the third direction Z to the side of the cantilever structure 21.
- the central part of the vibration unit 2 is fixed to the fixing part 11, and the two sides of the vibration unit 2 are relatively suspended.
- the surface shown by the vibration unit 2 is actually the surface of the diaphragm structure 22. Possibly, part of the connection structure 23 can also be seen from this perspective.
- FIG6b is a schematic diagram of the cross-sectional structure at M1-M1 in FIG6a.
- the cantilever structure 21 in the vibration unit 2 is fixed to the fixed portion 11, and the diaphragm structure 22 is located on the side of the cantilever structure 21 away from the fixed portion 11, and the edge of the diaphragm structure 22 along the first direction X is connected to the edge of the cantilever structure 21 along the first direction X.
- the cantilever structure 21 is in a "clamped-free" state with one end fixed and the other end suspended.
- the edge of the cantilever structure 21 away from the fixed portion 11 may vibrate, and then drive the diaphragm structure 22 to vibrate through the connecting structure 23.
- the portion of the cantilever structure 21 fixed to the fixed portion 11 is the fixed end a2
- the edge portion of the cantilever structure 21 away from the fixed portion 11 is the fixed end a2.
- the diaphragm structure 22 is connected to the two free ends a1 of the cantilever structure 21 through two connecting structures 23, so that the cantilever structure 21 can drive the entire diaphragm structure 22 to vibrate through two symmetrical free ends a1.
- the "cantilever" formed by the cantilever structure 21 in the embodiment of the present application can be considered as the extension of the fixed part 11 to the cavity between the inner wall of the fixed part 11 and the base 12.
- the shape of the cantilever structure 21 is only an example, and the cantilever that can be formed by the cantilever structure 21 can be one or more.
- the cantilever structure 21 can be linear or bent. When the cantilever structure 21 has multiple cantilevers, the multiple cantilever structures 21 can be of equal width or unequal width.
- the multiple cantilever structures 21 can be of equal length or unequal length. This application is not limited.
- the cantilever structure 21 of the vibration unit 2 is connected to the top of the fixed portion 11 of the base 1, and a sound cavity A is formed between the cantilever structure 21 and the base 12.
- the sound cavity A specifically refers to the space between the cantilever structure 21 and the base 12.
- the fixed portion 11 divides the sound cavity A into two parts.
- the cantilever structure 21 is fixed to the fixed portion 11 along the center of the first direction X, so that the vibration unit 2 is axially symmetrically distributed relative to the fixed portion 11.
- the vibration unit 2 is provided with a matching ear P.
- two matching ears P are provided along the second direction Y, and the two matching ears P are specifically located on both sides of the cantilever structure 21 for connecting the fixing portion 11.
- FIG7a only shows one of the matching ears P.
- the vibration unit 2 is fixed to the base 1, as shown in FIG7b , the matching ears P can be fixed to the bases 12 at both ends of the fixing portion 11.
- the fixing portion 11 here is blocked by the vibration unit 2 and shown as a dotted line.
- the provision of the matching ears P can enhance the connection stability of the vibration unit 2.
- two first pits 121 may be provided on the base 12, and the two first pits 121 are respectively located at the two ends of the fixing portion 11.
- FIG8b shows a schematic diagram of the cross-sectional structure at M2-M2 in FIG8a, and the first pit 121 corresponds to the position of the fixing portion 11.
- the size of the first pit 121 may be larger than the size of the fixing portion 11.
- the first pit 121 is axially symmetrically distributed about the fixing portion 11.
- the first pit 121 can be used to accommodate the matching ear P of the vibration unit 2.
- the base 12 may also be provided with a second recess 122.
- the second recess 122 may be provided at the first recess 121.
- FIG9b shows a schematic cross-sectional structure diagram at M3-M3 in FIG9a , wherein the opening of the second recess 122 is located at the bottom of the first recess 121, and the second recess 122 is used to install the fixing portion 11.
- FIG9d shows a schematic diagram of the cross-sectional structure at M3-M3 in FIG9c.
- the vibration module 10 provided in the embodiment of the present application can be divided into a first area U1 and a second area U2 along the first direction X from the edge position of the vibration unit 2 pointed to by the fixed portion 11, that is, the direction indicated by the dotted arrow in FIG10a.
- the second area U2 of the vibration unit 2 includes two parts, which are respectively distributed on both sides of the first area U1 along the first direction X, and the second area U2 is axially symmetrically distributed about the first area U1.
- the connection structure 23 for connecting the cantilever structure 21 and the diaphragm structure 22 is located in the second area U2.
- the dividing line between the first area U1 and the second area U2 defines and distinguishes the connection structure 23 from the diaphragm structure 22 and the connection structure 23.
- the second area U2 can be considered as the area near the free end a1 of the cantilever structure 21, and it can also be considered that the second area U2 is the location of the connection structure 23.
- the flexible connection portion R provided on the connection structure 23 can be provided approximately at the same layer as the cantilever structure 21, can also be provided approximately at the same layer as the diaphragm structure 22, and can also be located between the cantilever structure 21 and the diaphragm structure 22 along the third direction Z.
- connection structure 23 can be considered as a structure divided from a functional point of view, which is specifically located near the free end a1 of the cantilever structure 21.
- the cantilever structure 21, the diaphragm structure 22, and the connection structure 23 will be specifically and exemplarily described through different vibration units 2.
- Fig. 10b a schematic diagram of the cross-sectional structure at M5-M5 in Fig. 10a.
- the flexible connection portion R on the connection structure 23 can be considered to be located between the cantilever structure 21 and the diaphragm structure 22.
- the stiffness of the flexible connection portion R is less than the stiffness of the cantilever structure 21 and the diaphragm structure 22.
- the free end a1 of the cantilever structure 21 is connected to the diaphragm structure 22 through the connection structure 23.
- the connection structure 23 between the cantilever structure 21 and the diaphragm structure 22 is located in the second area U2 of the vibration unit 2.
- a flexible connection part R is provided in the connection structure 23.
- the flexible connection part R can compensate for the size mismatch caused by the vibration of the cantilever structure 21 and the diaphragm structure 22 by deformation. It can also increase the vibration amplitude of the diaphragm structure 22, thereby increasing the sound pressure level of the piezoelectric speaker 100. It should be understood that the deformation of the cantilever structure 21 and the diaphragm structure 22 during vibration can also be considered as the extension or contraction of the cantilever structure 21 and the diaphragm structure 22 along the connection direction.
- a vibration unit 2 as shown in FIG11a, the cantilever structure 21, the diaphragm structure 22 and the connecting structure 23 are an integrated structure, and the vibration unit 2 can be formed by bending a plate as shown in FIG11b.
- the cantilever structure 21 is located in the middle position.
- the diaphragm structure 22 is divided into two parts, namely the first diaphragm substructure 22a and the second diaphragm substructure 22b.
- each connecting structure 23 is provided with a flexible connecting portion R.
- the first diaphragm substructure 22a and the second diaphragm substructure 22b are symmetrically distributed about the cantilever structure 21, and the two connecting structures 23 are symmetrically distributed about the cantilever structure 21.
- the first diaphragm substructure 22a has a first side v1 away from the cantilever structure 21, and the second diaphragm substructure 22b has a second side v2 away from the cantilever structure 21.
- the flexible connection portion R is disposed between the cantilever structure 21 and the diaphragm structure 22.
- the first diaphragm substructure 22a and the second diaphragm substructure 22b of the diaphragm structure 22 are bent opposite to each other relative to the cantilever structure 21 to the state shown in Figure 11a, and the first side edge v1 of the first diaphragm substructure 22a is connected to the second side edge v2 of the second diaphragm substructure 22b, and the first diaphragm substructure 22a and the second diaphragm substructure 22b can constitute the entire diaphragm structure 22.
- the plate shown in FIG11b can also be regarded as a formed sheet, which can be formed by stamping, precision laser processing, or etching. Among them, the etching method has a relatively high precision. In the process of bending the plate shown in FIG11b to form the structure of FIG11a, it can be curled with the help of tooling.
- FIG. 11c shows a front view of the vibration unit 2, in which the diaphragm structure 22 and the cantilever structure 21 are opposite to each other along the vibration direction of the diaphragm structure 22, and the flexible connection portion R is located at the bend of the vibration unit 2.
- the connection structure 23 for connecting the diaphragm structure 22 and the cantilever structure 21 is located in the second area U2 of the vibration unit 2.
- the diaphragm structure 22 can be driven to vibrate through the connection structure 23, and the flexible connection portion R can solve the vibration transmission matching problem between the cantilever structure 21 and the diaphragm structure 22 by deformation.
- the first side edge v1 of the first diaphragm substructure 22a and the second side edge v2 of the second diaphragm substructure 22b of the diaphragm structure 22 may be connected together by gluing or welding.
- the first side edge v1 of the first diaphragm substructure 22a and the second side edge v2 of the second diaphragm substructure 22b may be connected together by a connector C, and the connector C may be connected to the first diaphragm substructure 22a and the second diaphragm substructure 22b simultaneously by gluing, welding, etc.
- the connector C may be one or more, and the number of the connectors C is not limited here.
- FIG13a shows a top view of the vibration module 10 having the vibration unit 2 shown in FIG12, i.e., a view of the vibration unit 2 from the side of the diaphragm structure 22 along the third direction Z-direction cantilever structure 21.
- FIG13b shows a schematic cross-sectional structure diagram at M6-M6 in FIG13a.
- the cantilever structure 21, the diaphragm structure 22, and the connection structure 23 of the vibration unit 2 are an integrated structure, and the connection structure 23 located in the second area U2 is provided with a flexible connection portion R.
- the piezoelectric region 211 is exemplified as a block structure, and the piezoelectric region 211 can be fixed on the cantilever structure 21, and the piezoelectric region 211 is symmetrically distributed about the fixed portion 11.
- two piezoelectric regions 211 are provided, and the two piezoelectric regions 211 are divided into two parts, which are respectively arranged on both sides of the fixed portion 11 along the first direction X.
- the two piezoelectric regions 211 can respectively correspond to the parts of the cantilever structure 21 distributed along the first direction X on both sides of the fixed portion 11.
- the piezoelectric region 211 is disposed on the side of the cantilever structure 21 facing the diaphragm structure 22.
- the piezoelectric region 211 is disposed on the side of the cantilever structure 21 facing away from the diaphragm structure 22.
- the piezoelectric region 211 is disposed on the side of the cantilever structure 21 facing the diaphragm structure 22 and the side facing away from the diaphragm structure 22.
- the piezoelectric region 211 is composited on the cantilever structure 21, that is, the piezoelectric region 211 is a part of the cantilever structure 21.
- the piezoelectric zone 211 can be set at a position close to the fixed portion 11. That is, the piezoelectric zone 211 can be set near the fixed end of the cantilever structure 21. Or as shown in Figure 13f, the piezoelectric zone 211 is set at a position of the cantilever structure 21 away from the fixed portion 11. That is, the piezoelectric zone 211 can be set near the free end a1 of the cantilever structure 21. Or, as described in Figure 13g, for the portion of the cantilever structure 21 located on one side of the fixed portion 11 along the first direction X, the piezoelectric zone 211 can be respectively provided near the fixed end a2 and near the free end a1.
- the structure and position of the piezoelectric zone 211 are also only illustrative.
- the entire cantilever structure 21 can be made of piezoelectric material, and the piezoelectric zone 211 is equivalent to being a structure with the cantilever structure 21.
- the cantilever structure 21 and the diaphragm structure 22 can be independently constructed so that the diaphragm structure 22 and the cantilever structure 21 can be made of different materials, sizes, thicknesses, etc. according to the needs. Designed so that the vibration module 10 meets the sound pressure level requirements of the piezoelectric speaker 100,
- the cantilever structure 21 and the diaphragm structure 22 are independent structures, the connecting structure 23 and the diaphragm structure 22 are an integrated structure, and the flexible connecting portion R on the connecting structure 23 can be provided on the same layer as the diaphragm structure 22. Specifically, the flexible connecting portion R can be located at the edge of the connecting structure 23 for connecting the diaphragm structure 22.
- the cantilever structure 21 is planar, and there are two connecting structures 23, and the two connecting structures 23 correspond to the positions of the free ends a1 of the cantilever structure 21, respectively.
- the connecting structure 23 and the cantilever structure 21 are connected to the free end a1 of the cantilever structure 21 via the connecting portion 24.
- the connecting portion 24 here can be an adhesive or the like.
- FIG14b shows a top view of the vibration module 10 having the vibration unit 2 shown in FIG14a, i.e., a view of the vibration unit 2 from the side of the diaphragm structure 22 along the third direction Z-direction cantilever structure 21.
- the connection structure 23 is located in the second area U2 of the vibration unit 2.
- FIG14c is a schematic diagram of the cross-sectional structure at M7-M7 in FIG14b, in which the flexible connection portion R is arranged on the same layer as the diaphragm structure 22.
- the vibration module 10 may further include a flexible film 25.
- the flexible film 25 may cover and seal the hollow structure K of the flexible connection part R on the connection structure 23 to prevent the influence of air leakage of the flexible connection part R on the sound pressure level of the piezoelectric speaker 100.
- the flexible film 25 may be arranged on the side of the diaphragm structure 22 away from the cantilever structure 21.
- the flexible film 25 may be arranged on the side of the diaphragm structure 22 facing the cantilever structure 21.
- the flexible film 25 may be a whole film, and its size may be equivalent to the sum of the sizes of the diaphragm structure 22 and the connection structure 23. As shown in FIG. 15c, the flexible film 25 may also be a hollow structure K that only covers the flexible connection part R. It should be understood that when the cantilever structure 21 drives the diaphragm structure 22 to vibrate through the connecting portion 24 and the connecting structure 23 , the flexible connecting portion R is pulled, and the flexible film 25 will be pulled accordingly, while the flexible film 25 will keep covering the hollow structure K.
- a vibration unit 2 has a connection structure 23 and a diaphragm structure 22 as an integrated structure.
- the cantilever structure 21 is planar, and the connection structure 23 is bent at both ends along the first direction X and connected to the free end a1 of the cantilever structure 21 through a connection portion 24.
- the connection portion 24 here can be an adhesive or the like.
- FIG16b shows a top view of the vibration module 10 having the vibration unit 2 shown in FIG16a, i.e., a view of the vibration unit 2 from the side of the diaphragm structure 22 along the third direction Z to the side of the cantilever structure 21.
- the connection structure 23 is located in the second area U2 of the vibration unit 2.
- FIG16c is a schematic diagram of the cross-sectional structure at M8-M8 in FIG16b.
- the flexible connection part R is located between the diaphragm structure 22 and the cantilever structure 21, and the orthographic projection of the flexible connection part R on the cantilever structure 21 falls outside the diaphragm structure 22.
- the connecting structure 23 and the diaphragm structure 22 are made into an integrated structure, and the diaphragm structure 22 and the cantilever structure 21 can be optimized with different materials, sizes, and thicknesses to achieve better sound effects.
- the cantilever structure 21 and the diaphragm structure 22 are independent structures, and the connection structure 23 and the cantilever structure 21 are an integrated structure.
- the cantilever structure 21 is planar, and the flexible connection portion R can be located at the edge of the connection structure 23 for connecting the free end a1 of the cantilever structure 21. It can be considered that the flexible connection portion R is arranged in the same layer as the cantilever structure 21.
- the two ends of the diaphragm structure 22 along the first direction X are respectively connected to the connection structure 23 by the connection portion 24.
- the connection portion 24 here can be an adhesive or the like.
- FIG17b shows a bottom view of the vibration module 10 having the vibration unit 2 shown in FIG17a, i.e., a view of the vibration module 10 viewed from the side of the base 1 along the third direction Z-direction diaphragm structure 22.
- the connection structure 23 is located in the second area U2 of the vibration unit 2.
- FIG17c is a schematic diagram of the cross-sectional structure at M9-M9 in FIG17b, in which the connection structure 23 is arranged at the part of the cantilever structure 21 located in the second area U2, and the orthographic projection of the flexible connection portion R on the diaphragm structure 22 falls on both sides of the cantilever structure 21.
- the diaphragm structure 22 can remain seamless as a whole, thereby avoiding the problem that the gap in the diaphragm structure 22 has an adverse effect on the sound pressure level of the piezoelectric speaker 100.
- the structure shown in Figures 15a and 15b that requires the addition of a flexible film 25 at least one process step is reduced.
- the vibration unit 2, the diaphragm structure 22 and the cantilever structure 21 are relatively independent, and the connection structure 23 for connecting the diaphragm structure 22 and the cantilever structure 21 is divided into a first connection substructure 23a and a second connection substructure 23b.
- the first connection substructure 23a and the diaphragm structure 22 are an integral structure
- the second connection substructure 23b and the cantilever structure 21 are an integral structure.
- the first connection substructure 23a and the second connection substructure 23b are connected by a connection portion 24.
- a flexible connection portion R is exemplarily provided on the first connection substructure 23a, and the flexible connection portion R has an integral structure with the diaphragm structure 22 and is arranged on the same layer.
- a flexible connection portion R is also exemplarily provided on the second connection substructure 23b, and the flexible connection portion R has an integral structure with the cantilever structure 21 and is arranged on the same layer.
- the vibration unit 2 of this structure will have a larger amplitude, but it should be noted that there are equivalent to two flexible connection portions R between the diaphragm structure 22 and the cantilever structure 21, and the vibration unit 2 will produce a certain phase shift during the vibration process.
- the manufacturing process of the vibration unit 2 is relatively simple, and the purpose of reducing production costs can be achieved by simplifying manufacturing.
- the connection structure 23 and the cantilever structure 21 are an integrated structure or the connection structure 23 and the diaphragm structure 22 are an integrated structure
- the cantilever structure 21 and the diaphragm structure 22 can have separate design requirements, that is, the cantilever structure 21 and the diaphragm structure 22 can be optimized with different materials, thicknesses, and sizes to meet the vibration requirements.
- this structure can also simplify the process and reduce costs to a certain extent.
- the flexible connection part R may include a hollow structure K. As shown in FIG. 19a , the flexible connection part R may divide the connection structure 23 into a first structure body 231 and a second structure body 232 along a set direction, and the set direction is the connection direction of the diaphragm structure 22 and the cantilever structure 21. In other words, the cantilever structure 21 and the diaphragm structure 22 in the vibration unit 2 are connected together along the set direction.
- the hollow structure K makes the rigidity of the flexible connection part R along the set direction smaller than the rigidity of the diaphragm structure 22 and the cantilever structure 21.
- the flexible connection part R includes a connection unit J, which is composed of a short arm b1 parallel to the set direction and a long arm b2 perpendicular to the set direction, thereby forming a hollow structure K at the flexible connection part R.
- the number and combination of the short arms b1 and the long arms b2 are not limited, and the hollow structure K is mainly formed by connecting and combining a plurality of short arms b1 and a plurality of long arms b2 on the flexible connection part R to reduce the rigidity of the flexible connection part R in the set direction.
- connection units J are provided between the first structure 231 and the second structure 232, and the two connection units J form a flexible connection portion R.
- the structure of each connection unit J can be shown in FIG. 19b , and the connection unit J is formed by connecting “short arm b1-long arm b2-short arm b1-long arm b2-short arm b1” in sequence.
- the stiffness of the connection unit J along the set direction is less than the stiffness along the direction perpendicular to the set direction, so that the stiffness of the flexible connection portion R along the set direction is less than the stiffness of the diaphragm structure 22 and the cantilever structure 21.
- the hollow structure K of the flexible connection part R may also have deformations as shown in Figures 20a, 20b, 20c and 20d. Among them, in Figure 20a, the morphological distribution of the hollow structure K is different from that in Figure 19a.
- the hollow structure K is also formed by a combination of multiple long arms and short arms, but the hollow structure K includes a closed hollow area.
- the hollow structure K in Figure 20b is formed by multiple hollow structures K in Figure 20a in an array perpendicular to the set direction.
- the hollow structure K in Figure 20c is a plurality of hollow structures K in Figure 20a arranged in multiple groups in a left-right staggered manner.
- the hollow structure K in Figure 20d is a deformation of the hollow structure K in Figure 20a, so that the shape of the hollow structure K changes.
- the hollow structure K can be a plurality of elliptical holes, and the long axis direction of the ellipse is perpendicular to the set direction.
- the structure of the hollow structure K is not limited to the above examples, and there may be other implementation methods, as long as the stiffness of the flexible connection part R along the set direction is smaller than the stiffness of the cantilever structure 21 and the diaphragm structure 22.
- a vibration unit 2 is exemplified, in which the cantilever structure 21, the diaphragm structure 22 and the connecting structure 23 are independent structures.
- the connecting structure 23 is connected between the edge of the cantilever structure 21 and the edge of the diaphragm structure 22.
- the edge of the diaphragm structure 22 can be bent and extended to one side of the cantilever structure 21, so that a certain distance is maintained between the diaphragm structure 22 and the cantilever structure 21.
- the cantilever structure 21 and the diaphragm structure 22 can be selected to have a planar structure, and a supporting structure 26 is introduced between the cantilever structure 21 and the diaphragm structure 22.
- the supporting structure 26 is arranged between the cantilever structure 21 and the connecting structure 23. The supporting structure 26 enables the diaphragm structure 22 to maintain a certain distance relative to the cantilever structure 21.
- connection structure 23 may be made of a composite material to form a flexible connection portion R as a whole.
- the connection structure 23 may include a flexible matrix r1 and rigid particles r2 filled in the flexible matrix r1.
- the connection structure 23 is a composite material, and the entire connection structure 23 may be considered as a flexible connection portion R.
- the rigid particles r2 have a greater rigidity than the flexible matrix r1.
- the rigid particles r2 may be columns, and the rigid particles r2 herein are exemplified as cylinders, and a plurality of cylinders are arranged in the flexible matrix r1.
- the rigid particles r2 of the cylinders are arranged in layers in the thickness direction in the flexible matrix r1, and the height direction of the rigid particles r2 of the cylinders is perpendicular to the set direction, so that the rigidity of the connection structure 23 in the set direction is less than the rigidity of the cantilever structure 21 and the diaphragm structure 22.
- the rigid particles r2 are arranged in one layer, and the height direction of the rigid particles r2 is perpendicular to the set direction and perpendicular to the thickness direction of the flexible matrix r1.
- the rigid particles r2 are arranged in two layers by way of example, and the height direction of the rigid particles r2 is perpendicular to the set direction and parallel to the thickness direction of the flexible substrate r1.
- the arrangement of the rigid particles r2 can also be irregularly distributed, as long as the rigid particles r2 are arranged in the flexible substrate r1 so that the rigidity of the connection structure 23 along the set direction is less than the rigidity of the cantilever structure 21 and the diaphragm structure 22.
- the rigid particles r2 may be spherical.
- the spherical rigid particles r2 are arrayed in the flexible matrix r1, and the plane where the spherical rigid particles r2 are arranged is parallel to the set direction, so that the rigidity of the connection structure 23 along the set direction is less than the rigidity of the cantilever structure 21 and the diaphragm structure 22.
- the rigid particles r2 may also be ellipsoidal.
- connection structure 23 the ellipsoidal rigid particles r2 may be arranged so that the long axis direction is perpendicular to the set direction, which is conducive to the connection structure 23 as a flexible connection part R to achieve a rigidity along the set direction that is less than the rigidity of the cantilever structure 21 and the diaphragm structure 22.
- connection structure 23 is a composite material
- a hollow structure K can also be provided in the connection structure 23 to separate the composite material and the hollow structure K.
- the structures K together form a flexible connection portion R, which can reduce the stiffness of the flexible connection portion R along the connection direction between the cantilever structure 21 and the diaphragm structure 22 .
- a vibration module 10 as shown in FIG. 24a can be provided with a mass structure 27 on the vibration unit 2.
- the mass structure 27 is exemplarily provided on the diaphragm structure 22 and is located at both ends of the diaphragm structure 22 along the first direction X.
- the cantilever structure 21, the diaphragm structure 22, and the connecting structure 23 are independent of each other, and the connecting structure 23 is connected between the free end a1 of the cantilever structure 21 and the diaphragm structure 22.
- FIG. 24b shows a top view of the diaphragm module 10, that is, a view from the side of the diaphragm structure 22 to the side of the cantilever structure 21.
- FIG. 24c shows a schematic diagram of the cross-sectional structure at M10-M10 in FIG. 24b.
- the flexible connection part R is not shown here.
- the mass structure 27 can also be set at any other position of the diaphragm structure 22 as shown in Figure 24d.
- the mass structure 27 is exemplarily set at the center position of the diaphragm structure 22.
- the mass structure 27 can also be set near the free end a1 of the cantilever structure 21.
- the introduction of the mass structure 27 can reduce the quality factor of the piezoelectric speaker 100 during the vibration of the vibration unit 2, and then can flatten the sound pressure curve and improve the low-frequency response. It should be understood that based on the structure of the vibration unit 2, the setting of the mass structure 27 should be centrally symmetrically distributed with the middle part 11 as the center, so that the structure of the vibration module 10 remains relatively stable.
- a flexible membrane 212 may be further provided on the cantilever structure 21.
- the flexible membrane 212 exemplarily covers the surface of the cantilever structure 21 facing the diaphragm structure 22.
- the provision of the flexible membrane 212 can constrain the vibration of the cantilever structure 21 to a certain extent, thereby reducing the quality factor of the speaker, and further flattening the sound pressure curve and improving the low-frequency response.
- the vibration unit 2 is polygonal, exemplified as an octagon.
- the center line of the vibration unit 2 coincides with the center line of the base 12, and the vibration unit 2 is in a ring array with respect to the fixed portion 11.
- the vibration unit 2 includes a cantilever structure 21, a diaphragm structure 22, and a connecting structure 23.
- the connecting structure 23 is exemplarily an integrated structure with the diaphragm structure 22, and the flexible connecting portion R provided on the connecting structure 23 is not shown here. Both the cantilever structure 21 and the diaphragm structure 22 are octagonal, the connecting structure 23 is located at the edge of the diaphragm structure 22, and the connecting structure 23 is exemplarily connected by a connecting portion 24.
- the center of the cantilever structure 21 is the fixed end a2.
- the edge position of the cantilever structure 21 can be considered as the free end a1.
- the cantilever structure 21 has a fixed end a2 located in the center and a plurality of free ends a1 or annular free ends a2 distributed in an annular manner.
- the direction from the fixed end a2 of the cantilever structure 21 to the free end a1 is the radial direction of the cantilever structure 21 .
- the structure of the base 1 is specifically shown in FIG. 28 .
- the circumferential surface of the fixing portion 11 is formed with a step surface T, and the vibration unit 2 is fixed at the step surface T.
- the circumferential surface of the fixing portion 11 is a surface parallel to the axis Q. It can be considered that the fixing portion 11 includes a first column 111 and a second column 112.
- the first column 111 is fixed on the base 12, and the second column 112 is located on the side of the first column 111 away from the base 12.
- the first column 111 and the second column 112 can be an integral structure.
- the first column 111 and the second column 112 are both exemplified as coaxial cylinders, and the center lines of the first column 111 and the second column 112 are colinear with the axis Q.
- the radial dimension of the first column 111 is greater than the radial dimension of the second column 112, so that a step surface T is formed on the circumferential surface of the fixing portion 11.
- the structure of the vibration unit 2 can be shown in Figure 29a, in which the diaphragm structure 22 is blocked and not shown.
- Figure 29b shows an exploded view of the vibration unit 2.
- the cantilever structure 21 is in the shape of an octagonal flat plate with an octagonal hole D in the center.
- the hole D on the cantilever structure 21 can also be circular.
- the vibration unit 2 is fixed to the fixing portion 11 of the base 1, the hole D of the cantilever structure 21 can be adapted to the fixing portion 11 to fix the cantilever structure 21 to the fixing portion 11.
- the structure of the diaphragm structure 22 is similar in shape to the cantilever structure 21, and the connecting structure 23 is an integrated structure with the diaphragm structure 22 and is located at the edge of the diaphragm structure 22.
- the connecting portion 24 is an octagonal annular structure, and the edge of the cantilever structure 21 and the connecting structure 23 can be connected together through the annular connecting portion 24.
- FIG30a shows a top view of the vibration module 10, that is, a view of the vibration unit 2 from the side of the diaphragm structure 22 along the third direction Z-direction cantilever structure 21.
- the vibration unit 2 can be divided into a first area U1 and a second area U2.
- the first area U1 is an octagon
- the second area U2 is an octagon surrounding the first area U1. Ring-shaped.
- the connecting structure 23 in the vibration module 10 can be arranged in the second area U2. It should be understood that the second area U2 can be considered to be located near the free end a1 of the cantilever structure 21.
- the connecting structure 23 and the diaphragm structure 22 have an integral structure, and it can be considered that the flexible connecting portion R on the connecting structure 23 will also have an integral structure with the diaphragm structure 22.
- the connecting structure 23 can also be an integral structure with the cantilever structure 21, or the connecting structure 23 is independently arranged between the cantilever structure 21 and the diaphragm structure 22.
- FIG30b shows a schematic diagram of the cross-sectional structure at V1-V1 in FIG30a, where the piezoelectric region 211 is not shown.
- the cantilever structure 21 is fixed to the step of the fixing portion 11 by gluing or the like.
- the portion of the cantilever structure 21 used to connect the fixing portion 11 can be considered as the fixed end of the cantilever structure 21, and the edge portion of the cantilever structure 21 radially away from the fixing portion 11 can be considered as the free end of the cantilever structure 21.
- the connecting structure 23 is located at the edge of the diaphragm structure 22 and is an integral structure with the diaphragm structure 22, and the connecting structure 23 is connected to the free end of the cantilever structure 21 through the connecting portion 24.
- the flexible connecting portion R on the connecting structure 23 is exemplarily arranged in the same layer as the diaphragm structure 22, and the orthographic projection of the flexible connecting portion R on the cantilever structure 21 is located outside the range of the orthographic projection of the diaphragm structure 22 on the cantilever structure 21.
- the orthographic projection here refers to the projection on the cantilever structure 21 along the extension direction of the axis Q.
- the space between the cantilever structure 21 and the base 12 can be considered as the acoustic cavity A of the vibration module 10.
- the vent 123 can connect the acoustic cavity A to the outside.
- FIG31a illustrates a possible arrangement of a piezoelectric region 211 on a cantilever structure 21.
- the piezoelectric region 211 is illustrated as an octagonal ring and is arranged around the hole D of the cantilever structure 21.
- FIG31b shows a schematic cross-sectional structure diagram of a vibration module 10 having the vibration unit 2 illustrated in FIG31a, and the piezoelectric region 211 can be fixed on the step surface T of the fixing portion 11 as a part of the cantilever structure 21.
- FIG31c shows a schematic cross-sectional structure diagram of another vibration module 10, in which the cantilever structure 21 has two piezoelectric regions 211, and the two piezoelectric regions 211 are respectively located on the side of the cantilever structure 21 facing the diaphragm structure 22 and the side facing the base 12.
- connection structure 23 and the diaphragm structure 22 are an integral structure, and the connection structure 23 is arranged around the edge of the diaphragm structure 22. It can be considered that the flexible connection portion R on the connection structure 23 has an integral structure with the diaphragm structure 22.
- the flexible connection portion R is exemplarily provided with a connection unit J, and the connection unit J can form a hollow structure K on the flexible connection portion R.
- the entire edge of the diaphragm structure 22 is connected to the edge of the cantilever structure 21 through the connecting structure 23.
- the cantilever structure 21 vibrates and drives the diaphragm structure 22 to vibrate
- the circumferential edge of the diaphragm structure 22 is driven at the same time, so that the entire diaphragm structure 22 can vibrate along the third direction Z, and the amplitude output is relatively stable and uniform, so that the piezoelectric speaker 100 can obtain a uniform sound pressure level in the near field.
- the connecting structure 23 and the diaphragm structure 22 are an integrated structure, in order to enable the diaphragm structure 22 to meet the vibration deformation of the cantilever structure 21, as shown in further reference to Figure 32b, the connecting structure 23 can be interrupted to form a gap E.
- the connecting structure 23 expands radially outwardly along the diaphragm structure 22 without being affected by the circumferential direction, and the vibration radiation is more uniform, which can improve the flexibility of the diaphragm structure 22 and enable the diaphragm structure 22 to meet the vibration requirements.
- a flexible film 25 can be provided to cover the hollow structure K, which is not illustrated here.
- a vibration module 10 has a cylindrical vibration unit 2.
- the cantilever structure 21 is in the shape of a circular plate, and the diaphragm structure 22 is also in the shape of a circular plate.
- the connecting structure 23 is exemplarily an integrated structure with the diaphragm structure 22 and is arranged at the edge of the diaphragm structure 22, and the connecting structure 23 is connected via a circular connecting portion 24.
- the hole D on the cantilever structure 21 is circular.
- FIG35 shows a top view of the vibration module 10, i.e., a view of the vibration unit 2 from the side of the diaphragm structure 22 along the third direction Z-direction cantilever structure 21.
- the vibration unit 2 has a first area U1 and a second area U2.
- the first area U1 is an octagon
- the second area U2 is a ring-shaped octagon.
- the connection structure 23 in the vibration unit 2 can be arranged in the second area U2, and the connection structure 23 is exemplarily provided with a flexible connection portion R arranged on the same layer as the diaphragm structure 22.
- FIG36a shows a schematic diagram of a diaphragm structure 22, wherein the connection structure 23 and the diaphragm structure 22 are an integrated structure and are arranged at the edge of the diaphragm structure 22, and the flexible connection portion R on the connection structure 23 has a hollow structure K.
- the rigidity of the flexible connection portion R is less than the rigidity of the diaphragm structure 22.
- an interruption process may be performed on the connection structure 23 to form a notch E.
- the vibration unit 2 may further be provided with a gap F on the cantilever structure 21 or the diaphragm structure 22, and the gap F may reduce the constraint of the diaphragm unit when vibrating out of the plane.
- the length direction of the gap F may be from the fixed end a2 of the cantilever structure 21 to the free end a1.
- the extension direction of the gap F may be This is considered to be the radial direction of the vibration unit 2 .
- the vibration module 10 provided in the embodiment of the present application can also be coupled with a traditional dynamic diaphragm.
- the vibration module 10 also includes a basin frame 31 and an auxiliary diaphragm 32.
- the structure of the base 1 and the vibration unit 2 is exemplified by the structure in Figure 31c.
- the bottom of the basin frame 31 is fixed to the base 12 of the base 1, and the basin frame 31 extends around to form a basin shape.
- the auxiliary diaphragm 32 covers and is connected to the top opening of the basin frame 31, so that the auxiliary diaphragm 32 and the basin frame 31 can accommodate the above-mentioned vibration unit 2 and the base 1.
- the auxiliary diaphragm 32 is fixedly connected to the diaphragm structure 22 in the vibration unit 2. Specifically, the auxiliary diaphragm 32 is partially or completely attached to the side of the diaphragm structure 22 away from the cantilever structure 21. The positive projection of the diaphragm structure 22 on the auxiliary diaphragm 32 is located within the range of the auxiliary diaphragm 32.
- the cantilever structure 21 vibrates, it drives the diaphragm structure 22 to vibrate.
- the diaphragm structure 22 can drive the auxiliary diaphragm 32 to vibrate.
- the vibration area is equivalent to the area of the auxiliary diaphragm 32, which increases the vibration area of the vibration module 10 and is beneficial to further improve the sound pressure level of the piezoelectric speaker 100.
- the vibration module 10 provided in the embodiment of the present application can be applied to the piezoelectric speaker 100.
- the vibration area of the diaphragm can be increased.
- the edge of the diaphragm structure 22 is connected to the vicinity of the free end of the cantilever structure 21, which can make the sound field output of the piezoelectric speaker 100 more uniform during the vibration of the diaphragm structure 22.
- the diaphragm structure 22 and the cantilever structure 21 are connected by a connecting structure 23, and a flexible connecting portion R is provided on the connecting structure 23, so that the diaphragm structure 22 can achieve a larger vibration amplitude during the vibration driven by the cantilever structure 21.
- the diaphragm structure 22 can have a larger vibration area and a larger vibration amplitude.
- the piezoelectric speaker 100 having the vibration module 10 can achieve a higher sound pressure level and a smoother sound output to present a better sound effect.
- the vibration module 10 can also be coupled with a dynamic diaphragm to achieve a better sound pressure level performance.
- the terminal device with the piezoelectric speaker 100 can have better sound effects and enhance the user experience of consumers.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Piezo-Electric Transducers For Audible Bands (AREA)
Abstract
本申请涉及扬声器技术领域,尤其涉及到一种振动模组、压电扬声器及终端设备。振动模组包括基座和振动单元;振动单元包括悬臂结构、振膜结构和连接结构;悬臂结构设置有压电区;悬臂结构具有固定端以及自由端,固定端固定于基座,自由端关于固定端呈对称分布;振膜结构间隔设置于悬臂结构背离基座的一侧;连接结构连接于振膜结构的边缘与悬臂结构的自由端之间;连接结构包括柔性连接部;沿连接结构连接振膜结构和悬臂结构的方向,柔性连接部的刚度小于悬臂结构和振膜结构的刚度。该振动模组具有较大振动面积和振动幅度,能够提高压电扬声器的声压级并达到平稳的振幅输出。
Description
相关申请的交叉引用
本申请要求在2023年03月23日提交中华人民共和国国家知识产权局、申请号为202310320339.9、申请名称为“一种振动模组、压电扬声器及终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及扬声器技术领域,尤其涉及到一种振动模组、压电扬声器及终端设备。
扬声器(speaker,SPK),也可称作受话器,是一种声音呈现单元。微型扬声器作为发声单元中的一种,其体量在音频工业市场领域具有比较大的占比。
随着科技的发展,对微型扬声器的表现提出了更高的要求。目前的微型扬声器的声压级提高受到结构限制,不能满足声音较高水平呈现的需求。其中,声压级(sound pressure level,SPL)表示声压的大小或声音的强弱,单位为分贝(dB)。
发明内容
本申请提供了一种振动模组、压电扬声器及终端设备,该振动模组具有较大振动面积和振动幅度,能够提高压电扬声器的声压级并达到平稳的振幅输出。
第一方面,本申请提供了一种振动模组,该振动模组可以作为压电扬声器的振动部分振动发声。该振动模组包括基座和振动单元基座可以为振动单元提供支撑。振动单元具体包括悬臂结构、振膜结构和连接结构。悬臂结构设置有压电区,压电区包括有压电材料,可以在通电状态下发生变形,从而使得悬臂结构振动。悬臂结构具有固定端和自由端,其自由端关于固定端呈对称分布。悬臂结构的固定端固定于基座,悬臂结构的自由端相对基座悬空,悬臂结构与底座之间能够形成声腔,该声腔也可以认为是背腔。当压电区通电变形,悬臂结构的自由端可以相对固定端发生振动,实现悬臂结构的振动。振膜结构间隔设置于悬臂结构背离基座的一侧,振膜结构的边缘通过连接结构与悬臂结构的自由端连接,从而振膜结构与悬臂结构之间存在间隙。将悬臂结构和振膜结构沿振膜的振动方向分布,使得振膜具有更大的分布面积。振膜结构的边缘通过连接结构连接于悬臂结构的自由端,能够增大振膜结构的振动幅度。当悬臂结构发生振动,可以自振膜结构的边缘驱动振膜结构振动。由于悬臂结构的自由端相对固定端呈对称分布,可以带动振膜结构整体发生振动,振膜结构的振动幅度可以保持相对平稳。连接结构设置有柔性连接部,沿悬臂结构和振膜结构的连接方向,该柔性连接部的刚度小于悬臂结构和振膜结构的刚度。在悬臂结构带动振膜结构振动时,柔性连接部将沿悬臂结构和振膜结构的连接方向发生变形,弥补振膜结构与悬臂结构在振动时结构不匹配所造成尺寸差。
本申请提供的振动模组,振膜结构具有更大的分布面积以及更大的振动幅度。振膜结构各处在振动时的振幅相对平稳。连接结构设置的柔性连接部能够避免悬臂结构和振膜结构在振动时机械结构上的约束。在声音呈现方面,该振动模组能够使压电扬声器达到更好的声压级以及更平稳的振幅输出。
在一种可能的实现方式中,连接结构与悬臂结构为一体式结构;和/或,连接结构与振膜结构为一体式结构。这样的结构设计,可以简化制造,降低生产成本。当悬臂结构和振膜结构是单独的结构时,可以根据不同的应用需求对悬臂结构和振膜结构进行不同的结构设计。
可能地,悬臂结构与振膜结构为一体式结构。可以认为,悬臂结构、振膜结构、连接结构具有一体式结构。在这种结构中,可以通过一块板材通过弯折等工艺制备形成振动单元,进一步降低生产成本。
在上述实现方式中,柔性连接部可以包括镂空结构。镂空结构的设置,使得柔性连接部处的材料刚度降低,从而使柔性连接部沿悬臂结构和振膜结构连接方向上的刚度降低,方便柔性连接部在振动时沿悬臂结构和振膜结构连接方向拉伸或收缩。为了防止漏气,可以在镂空结构上覆盖设置柔性薄膜,避免漏气对压电扬声器的声压级表现造成负面影响。
在一种可能的实现方式中,悬臂结构、振膜结构、连接结构是相互独立的结构,连接结构连接于悬
臂结构和振膜结构之间。具体地,悬臂结构朝向振膜结构的一侧可以设置有支撑结构,连接结构连接于振膜结构与支撑结构之间。支撑结构使得悬臂结构和振膜结构之间存在一定的间隙。
其中,连接结构上的柔性连接部可以包括柔性基体和分散于柔性基体内的刚性颗粒。柔性基体可以保证柔性连接部的柔性,使得柔性连接部在悬臂结构与振膜结构连接方向上的刚度降低。刚性颗粒的刚度大于柔性基体的刚度,可以保持柔性连接部结构形态。
其中,刚性颗粒可以为柱体,柱体的高度方向垂直于悬臂结构与振膜结构的连接方向。或者,刚性颗粒为球形或椭球形。对于刚性颗粒的分布状态可以不做限定,可以沿柔性连接部的厚度方向层状分布。
一种可能实现的方式中,基座包括底座和固定部,底座可以为环形围框,固定部为条形。具体地,环形围框设置于悬臂结构背离振膜结构的一侧,环形围框的内壁与悬臂结构之间形成振动模组声腔。固定部呈条形,固定部的两端分别固定于环形围框的两个相对的内壁。当振动单元中的悬臂结构固定于固定部,沿固定部的延伸方向,悬臂结构具有两个自由端,悬臂结构的两个自由端关于固定部呈轴对称分布。连接于悬臂结构自由端的振膜结构也可以呈轴对称分布。
为了方便安装振动单元,在环形围框上设置有两个第一凹坑,两个第一凹坑分别位于固定部长度方向的两端。对应在振动单元上设置有两个匹配耳,两个匹配耳可以一一对应地容置于该两个第一凹坑内。
为了安装固定部,环形围框还可以设置第二凹坑,固定部的两端分别固定在第二凹坑内。其中,第二凹坑可以设置于第一凹坑内。
在一种可能实现的方式中,底座为平板状的底座,固定部为支撑柱。在该结构中,固定部为柱状,固定部设置于底板朝向振动单元的一侧并凸出于底板。振动单元的中心固定到固定部,且悬臂结构的自由端关于支撑柱的轴心线呈中心对称分布。此时,振动单元的悬臂结构与底板之间形成振动模组的声腔。
为了方便安装振动单元,固定部的周向表面设置有台阶面。在安装时,可以将振动单元的悬臂结构通过胶粘的方式固定在台阶面上。
在这种结构中,振动单元的悬臂结构与底座之间可以认为是振动模组的声腔。在底座上设置有多个通气孔,该通气孔沿振动单元指向基座的方向贯穿底座,以连通声腔与外界空间。可能地,可以将多个通气孔设置为环绕固定部均匀分布。
在一些可能实现的方式中,悬臂结构上可以设置有缝隙,缝隙可以进一步降低振动时的机械约束。可能地,缝隙的延伸方向为悬臂结构的固定端指向自由端的方向。
在一些可能实现的方式中,振动单元还包括质量结构。质量结构可以固定于悬臂结构的自由端附近。或者,质量结构可以设置于振膜结构的任意处。其中,质量结构可以设置为关于固定部呈中心对称分布。质量结构的引入,可以降低压电扬声器的质量因数,平坦化压电扬声器的声压曲线,提高低频响应,达到抑制一阶谐振频率的目的。
在一些可能实现的方式中,振动单元还包括柔性膜。柔性膜可以以贴附的方式设置在悬臂结构的表面,具体可以位于悬臂结构朝向振膜结构的表面或悬臂结构背离振膜结构的表面。
在一些可能实现的方式中,振动模组还可以包括盆架和辅助振膜。基座固定于盆架的底部,辅助振膜覆盖于盆架的顶部开口处,盆架与辅助振膜之间能够围设形成一空间。基座和振动单元可以被容纳于该空间内。辅助振膜可以部分或全部贴附于振膜结构背离悬臂结构的表面,在悬臂结构驱动振膜结构振动时,可以带动辅助振膜一起振动。可以将辅助振膜的尺寸设置为大于振膜结构的尺寸,使得振膜结构在辅助振膜上的正投影位于辅助振膜朝向振膜结构的表面范围内。辅助振膜和振膜结构都可以作为振动模组的振膜,辅助振膜可以扩大振动模组的振膜面积,进一步提高压电扬声器的声压级。
第二方面,本申请还提供一种压电扬声器,该压电扬声器包括电路板、壳体以及上述第一方面技术方案提供的振动模组。电路板具有相对设置的第一表面和第二表面,壳体固定于电路板的第一表面,壳体与第一表面之间形成有容纳腔。壳体设置有与容纳腔连通的出声孔,出声孔贯穿壳体。振动模组固定于电路板的第一表面并位于容纳腔内。由于上述振动模组具有更大的振动面积和振动幅度,且振动幅度相对更平稳,使得该压电扬声器能够达到更高的声压级与更平坦的声压曲线,呈现更好的声音效果。
在一种可能实现的方式中,压电扬声器还包括集成电路芯片,该集成电路芯片设置于电路的第一表面并位于容纳腔内。电路板的第二表面还设置有焊盘。振动模组的悬臂结构中的压电区与该集成电路芯片电连接,可以通过集成电路芯片控制压电区以驱动悬臂结构振动。
在一种可能实现的方式中,电路板设置有开孔,该开孔贯穿电路板并与振动模组的声腔连通,以维持声腔内的压强。
第三方面,本申请提供一种终端设备,该终端设备可以是具有发声需求的电子设备。终端设备包括外壳以及上述第二方面提供的压电扬声器。其中,压电扬声器设置于外壳内,在外壳上设置有扬声孔,扬声孔的位置与压电扬声器的位置对应,可以将压电扬声器发出的声音导向外部空间。该压电扬声器具有更高的声压级,使得终端设备能够具有很好的声音效果,提升消费者的使用体验。
图1为现有技术中的一种压电扬声器的结构示意图;
图2为本申请实施例提供的一种终端设备的结构示意图;
图3a为本申请实施例提供的一种压电扬声器的结构示意图;
图3b为本申请实施例提供的一种振动模组的结构示意图;
图4为本申请实施例提供的一种振动模组的结构示意图;
图5为本申请实施例提供的一种振动模组中基座的结构示意图;
图6a为本申请实施例提供的一种振动模组的俯视图;
图6b为图6a中M1-M1处的剖面结构示意图;
图7a为本申请实施例提供的一种振动模组中振动单元的结构示意图;
图7b为本申请实施例提供的一种振动模组的俯视图;
图8a为本申请实施例提供的一种振动模组中基座的俯视图;
图8b为图8a中M2-M2处的剖面结构示意图;
图9a为本申请实施例提供的一种振动模组中围框的俯视图;
图9b为图9a中M3-M3处的剖面结构示意图;
图9c为本申请实施例提供的一种振动模组中基座的俯视图;
图9d为图9c中M4-M4处的剖面结构示意图;
图10a为本申请实施例提供的一种振动模组的俯视图;
图10b为图10a中M5-M5处的剖面结构示意图;
图11a为本申请实施例提供的一种振动模组中振动单元的结构示意图;
图11b为用于形成图11a中的振动单元的板材结构示意图;
图11c为本申请实施例提供的一种振动模组中振动单元的主视图;
图12为本申请实施例提供的一种振动模组中振动单元的结构示意图;
图13a为本申请实施例提供的一种振动模组的俯视图;
图13b为图13a中M6-M6处的剖面结构示意图;
图13c为本申请实施例提供的一种振动模组的剖面结构示意图;
图13d为本申请实施例提供的一种振动模组的剖面结构示意图;
图13e为本申请实施例提供的一种振动模组的剖面结构示意图;
图13f为本申请实施例提供的一种振动模组的剖面结构示意图;
图13g为本申请实施例提供的一种振动模组的剖面结构示意图;
图14a为本申请实施例提供的一种振动模组中振动单元的结构示意图;
图14b为本申请实施例提供的一种振动模组的俯视图;
图14c为图14b中M7-M7处的剖面结构示意图;
图15a为本申请实施例提供的一种振动模组的剖面结构示意图;
图15b为本申请实施例提供的一种振动模组的剖面结构示意图;
图15c为本申请实施例提供的一种振动模组的剖面结构示意图;
图16a为本申请实施例提供的一种振动模组中振动单元的结构示意图;
图16b为本申请实施例提供的一种振动模组的俯视图;
图16c为图16b中M8-M8处的剖面结构示意图;
图17a为本申请实施例提供的一种振动模组中振动单元的结构示意图;
图17b为本申请实施例提供的一种振动模组的仰视图;
图17c为图17b中M9-M9处的剖面结构示意图;
图18为本申请实施例提供的一种振动模组中振动单元的结构示意图;
图19a为本申请实施例提供的一种振动模组中柔性连接部的结构示意图;
图19b为本申请实施例提供的一种振动模组中柔性连接部的局部结构示意图;
图20a为本申请实施例提供的一种振动模组中柔性连接部的结构示意图;
图20b为本申请实施例提供的一种振动模组中柔性连接部的结构示意图;
图20c为本申请实施例提供的一种振动模组中柔性连接部的结构示意图;
图20d为本申请实施例提供的一种振动模组中柔性连接部的结构示意图;
图20e为本申请实施例提供的一种振动模组中柔性连接部的结构示意图;
图21a为本申请实施例提供的一种振动模组中振动单元的结构示意图;
图21b为本申请实施例提供的一种振动模组中振动单元的结构示意图;
图22a为本申请实施例提供的一种振动模组中柔性连接部的结构示意图;
图22b为本申请实施例提供的一种振动模组中柔性连接部的剖面结构示意图;
图22c为本申请实施例提供的一种振动模组中柔性连接部的剖面结构示意图;
图22d为本申请实施例提供的一种振动模组中柔性连接部的结构示意图;
图22e为本申请实施例提供的一种振动模组中柔性连接部的剖面结构示意图;
图23a为本申请实施例提供的一种振动模组中柔性连接部的结构示意图;
图23b为本申请实施例提供的一种振动模组中柔性连接部的剖面结构示意图;
图23c为本申请实施例提供的一种振动模组中柔性连接部的结构示意图;
图23d为本申请实施例提供的一种振动模组中柔性连接部的剖面结构示意图;
图24a为本申请实施例提供的一种振动模组的结构示意图;
图24b为本申请实施例提供的一种振动模组的俯视图;
图24c为图24b中M10-M10处的剖面结构示意图;
图24d为本申请实施例提供的一种振动模组的剖面结构示意图;
图24e为本申请实施例提供的一种振动模组的剖面结构示意图;
图25为本申请实施例提供的一种振动模组的剖面结构示意图;
图26为本申请实施例提供的一种振动模组的剖面结构示意图;
图27为本申请实施例提供的一种振动模组的结构示意图;
图28为本申请实施例提供的一种振动模组中基座的结构示意图;
图29a为本申请实施例提供的一种振动模组中振动单元的结构示意图;
图29b为本申请实施例提供的一种振动模组中振动单元的爆炸图;
图30a为本申请实施例提供的一种振动模组的俯视图;
图30b为图30a中V1-V1处的剖面结构示意图;
图31a为本申请实施例提供的一种振动模组中振动单元的结构示意图;
图31b为本申请实施例提供的一种振动模组的剖面结构示意图;
图31c为本申请实施例提供的一种振动模组的剖面结构示意图;
图32a为本申请实施例提供的一种振动模组中振膜结构的结构示意图;
图32b为本申请实施例提供的一种振动模组中振膜结构的结构示意图;
图33为本申请实施例提供的一种振动模组的结构示意图;
图34a为本申请实施例提供的一种振动模组中振动单元的结构示意图;
图34b为本申请实施例提供的一种振动模组中振动单元的爆炸图;
图35为本申请实施例提供的一种振动模组的俯视图;
图36a为本申请实施例提供的一种振动模组中振膜结构的结构示意图;
图36b为本申请实施例提供的一种振动模组中振膜结构的结构示意图;
图37a为本申请实施例提供的一种振动模组中振动单元的结构示意图;
图37b为本申请实施例提供的一种振动模组中振动单元的结构示意图;
图38为本申请实施例提供的一种振动模组的剖面结构示意图。
附图标记:
1000-终端设备;100-压电扬声器;200-显示模组;2001-受话孔;300-外放扬声器;400-非外放扬声器;500-外壳;5001-边框;5002-后盖;5003-扬声孔;10-振动模组;20-电路板;201-开孔;30-壳体;
301-出声孔;40-集成电路芯片;1-基座;11-固定部;111-第一柱体;112-第二柱体;12-底座;121-第一凹坑;122-第二凹坑;123-透气孔;2-振动单元;21-悬臂结构;211-压电区;212-柔性膜;22-振膜结构;22a-第一振膜子结构;22b-第二振膜子结构;23-连接结构;231-第一结构体;232-第二结构体;23a-第一连接子结构;23b-第二连接子结构;24-连接部;25-柔性薄膜;26-支撑结构;27-质量结构;31-盆架;32-辅助振膜;1-1-盆架机构;1-2-声学振膜;1-3-驱动机构;
A-声腔;B1-第一表面;B2-第二表面;C-连接件;D-孔洞;E-缺口;F-缝隙;H-焊盘;N-容纳腔;R-柔性连接部;K-镂空结构;J-连接单元;P-匹配耳;T-台阶;Q-轴线;W-气室;X-第一方向;Y-第二方向;Z-第三方向;a1-自由端;a2-固定端;r1-柔性基体;r2-刚性颗粒;v1-第一侧边;v2-第二侧边。
扬声器能够作为一种发声单元,用于呈现声音。随着终端设备的小型化发展,微型扬声器在音频市场的占比越来越高。目前的微型扬声器包括动圈式、动铁式等。其中,动圈微型扬声器技术较为成熟,价格也比较低,在音频表现方面具有频响范围广、声场效果好的优点,但是存在易漏音的缺陷,体积能效也不高。动铁微型扬声器体积能耗小,不易漏音,具有声解析度高、频响曲线平坦的优点,但是价格昂贵,应用场景局限性高。在一些设计中,结合了动圈微型扬声器和动铁微型扬声器的优点,例如圈铁结合、一圈多铁、多圈多铁等形式。或者,还有一种动圈与压电结合的圈瓷形式的扬声器,动圈负责低频,压电负责高频。虽然这些单元组合形式的微型扬声器能够取得一定的声音效果,但是不同单元所存在的频响与输出差异,需要进行复杂的声学设计和调音操作。其中的调音操作具有一定的失败率,若调音失败则产品报废,使得这种单元组合形式的微型扬声器的发展受限。
基于此,本申请实施例提供一种振动模组、压电扬声器及终端设备,该压电扬声器在能够取得较高的声压级,呈现较好的声音效果。
关于压电扬声器,可以参照图1所示的简化结构。压电扬声器包括由盆架机构1-1、声学振膜1-2、驱动机构1-3,声学振膜1-2与盆架机构1-1之间形成气室W。气室W位于声学振膜1-2与盆架机构1-1之间,以虚线示出。驱动机构1-3包括压电材料,当施加交流电压到驱动机构1-3时,驱动机构1-3会产生弯矩,迫使声学振膜1-2振动,从而产生声压输出。当声学振膜1-2的振动简化为无限挡板上的活塞时,压电扬声器的有效声压输出的计算公式为:
其中,z为声学振膜1-2到听众的距离,Pe(z)为声学振膜1-2到听众的距离为z时的有效声压输出,P(z)为距离为声学振膜1-2到听众的距离为z时的声压幅值,ρ为空气密度,S为声学振膜1-2的面积,ω为径向距离处的振幅,f为声学振膜1-2的振动频率。
基于上述原理,压电扬声器的声压级可以进一步简化为:
其中,Pref为参考声压级。即声压级定义为有效声压输出Pe(z)与参考声压Pref的比值取常用对数。
可以看出,在声学振膜1-2到听众的距离z保持一定的情况下,高声压级依赖于更高的声学振膜1-2的振幅ω、更大的声学振膜1-2的面积S等参数。本申请实施例所提供的压电扬声器能够通过增大声学振膜1-2的振幅ω和声学振膜1-2的面积S来取得更高的声压级。
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。在本
申请实施例中,“A和/或B”包括“A”、“B”以及“A和B”三种情况。
如图2所示,本申请实施例提供一种终端设备1000,该终端设备1000可以包括但不限于手机、平板电脑、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、手持计算机、触控电视、对讲机、上网本、销售终端(point of sale,POS)机、个人数字助理(personal digital assistant,PDA),以及可穿戴设备例如耳机、蓝牙眼镜或虚拟现实设备等移动终端或固定终端,这些终端设备都具有声学换能器。图2所示实施例的终端设备1000以手机为例进行阐述。
终端设备1000可以包括显示模组200、外放扬声器300、非外放扬声器400以及外壳500。其中,外放扬声器300可以认为是喇叭,非外放扬声器400可以认为是听筒。外壳500包括边框5001和后盖5002,边框5001连接后盖5002的边缘。边框5001与后盖5002可以是一体成型结构,也可以通过组装方式形成一体式结构。外壳500设有扬声孔5003。扬声孔5003的数量可以为一个或多个。示例性地,扬声孔5003的数量为多个,多个扬声孔5003设于边框5001。扬声孔5003连通终端设备1000的内部与终端设备1000的外部。外放扬声器300及非外放扬声器400均位于边框5001内侧,且位于显示模组200与后盖5002之间,因此以虚线示出。外放扬声器300发出的声音能够经扬声孔5003传输至终端设备1000的外部,以实现终端设备1000的声音播放功能。显示模组200上设置有受话孔2001,非外放扬声器400发出的声音可以经受话孔2001传输至终端设备1000的外部,以实现终端设备1000的声音播放功能。应当理解,本申请实施例所提供的终端设备1000还包括有主板、处理器、存储器以及电池等常规结构,此处并未展开介绍。
如图3a所示,本申请实施例提供一种压电扬声器100。图2所示的终端设备中的外放扬声器300和/或非外放扬声器400可以该采用该压电扬声器100。
参照图3a,压电扬声器100包括振动模组10、电路板20、壳体30。电路板20具有相对设置的第一表面B1和第二表面B2。壳体30固定于电路板20的第一表面B1,壳体30与第一表面B1之间能够形成一空腔,该空腔为容纳腔N。在壳体30上还设置有一个或多个出声孔301,出声孔301贯穿壳体30使得容纳腔N能够与外界连通。振动模组10具体设置在电路板20的第一表面B1并位于容纳腔N内。振动模组10与电路板20的第一表面B1之间能够形成声腔A。在工作中,振动模组10振动推动容纳腔N内的空气发声,声音可以穿过出声孔301传到外界空间,实现压电扬声器100的发声。应当理解,压电扬声器100中的振动模组10的振动原理为压电驱动,因此,振动模组10中包含有压电材料,将在后文中介绍。一般地,电路板20还设置有贯穿第一表面B1与第二表面B2的开孔201,该开孔201使得声腔A与外界连通,维持声腔A内的压强。
压电扬声器100还可以包括集成电路芯片40,集成电路芯片40具体设置于电路板20的第一表面B1并位于容纳腔N内。集成电路芯片40与振动模组10中的压电材料电连接,以向该压电材料提供电能并对压电材料进行控制。在电路板20的第二表面B2设置焊盘H,电路板20可以通过焊盘H焊接其他元器件或走线。焊盘H的数量与位置不做具体限定。
示例性地,振动模组10的结构如图3b所示。振动模组10包括基座1和振动单元2,基座1用于为振动单元2提供支撑。振动单元2包括有压电材料,压电材料能够在通电的情况下发生结构变形使得振动单元2振动,进而推动空气发声。基座1示例性地包括底座12和固定部11,底座12可以关于固定部11呈中心对称分布。振动单元2包括悬臂结构21、振膜结构22和连接结构23。悬臂结构21上设置有压电区211。悬臂结构21具有固定端a2和自由端a1,固定端a1固定于基座1的固定部11。自由端a1关于固定端a2呈对称分布,对称分布包括中心对称分布或轴对称分布。可以认为,悬臂结构21固定于固定部11的部分为固定端a2,悬臂结构21远离固定部11的边缘部分为自由端a1。振膜结构22设置于悬臂结构21远离基座1的一侧,且振膜结构22与悬臂结构21之间间隔设置,振膜结构22通过连接结构23连接于悬臂结构21的自由端a2,也可以认为,振膜结构22关于固定部11呈对称分布。其中,对称分布可能是轴对称分布,还可能是中心对称分布。悬臂结构21上设置有压电区211,压电区211不做结构上的限定,只要具有压电效应即可。具体地,压电区211可以为单层式(unimorph)、双层式(bimorph)、多层式(multilayer)或推拉式(push-pull)。当悬臂结构21设置有压电区211,压电区211可以是一个区、多个区等实现方式。压电区211在工作中会通电,当悬臂结构21设置有多个,而每个悬臂结构21设置有一个或多个压电区211,同一悬臂结构21的不同压电区211之间或不同的悬臂结构21上的压电区211之间可以以串联、并联、混联的方式实现电连接。此处,压电区211示例为块状,压电区211设置于悬臂结构21朝向振膜结构22的表面。悬臂结构21与底座12之间形成有声腔
A,该声腔A也可以认为是背腔。
连接结构23设置有柔性连接部R,沿悬臂结构21和振膜结构22的连接方向,柔性连接部R的刚度小于悬臂结构21和振膜结构22的刚度,柔性连接部R具有拉伸或收缩的性能。此处,当悬臂结构21振动,悬臂结构21拉扯振膜结构22的力的方向,可以认为是振膜结构22连接悬臂结构域21的方向。当然,振膜结构22和悬臂结构21的连接方向,也是振动单元2振动时,柔性连接部R被拉扯的方向。其中,刚度是指材料或结构在受力时抵抗弹性变形的能力。在本申请实施例中,沿振膜结构22连接悬臂结构21的方向,柔性连接部R的刚度小于悬臂结构21和振膜结构22的刚度,使得柔性连接部R能够产生较大的伸长或缩短,弱化振动单元2的振动约束,也能够弥补振膜结构22和悬臂结构21在振动时产生的尺寸不匹配,防止振膜结构22和悬臂结构21尺寸不匹配影响声音呈现,也能够防止振动单元2被拉扯损坏。
对于振膜结构22,振膜结构22通过连接结构23连接在悬臂结构21的自由端a1处,而并无其他位置的连接限位,使得振膜结构22在振动时能够实现更大的振动幅度。振膜结构22通过连接结构23连接于悬臂结构21的自由端a1的连接方式,使得悬臂结构21可以通过连接结构23带动整个振膜结构22的整体振动,振膜结构22在振动时各个位置的振幅差异比较小,振幅输出相对平稳,使得压电扬声100器能够在近场声压级方面有较好的表现。
基于图3b所示的振动模组10,悬臂结构21位于振膜结构22朝向基座1的一侧。这样的位置分布,使得悬臂结构21和振膜结构22呈上下排布的状态。振膜结构22的面积可以与悬臂结构21延伸距离相关,振膜结构22可以扩展到悬臂结构21远离固定部11的边缘,使得振膜结构22几乎可以占据悬臂结构21背离基座1一侧的整个上表面,可以做到更大的振动面积。
因此,本申请实施例所提供的振动模组10中的振膜结构22具有较大的振动幅度和振动面积,能够提高压电扬声器100的声压级,取得更好的声音呈现效果。
在一种实施例中,如图4所示,底座12具体为环形围框,环形围框示例性地为矩形。为方便描述,设定第一方向X、第二方向Y和第三方向Z。第一方向X、第二方向Y和第三方向Z两两相互垂直,构成三维参考坐标系。其中,底座12的长度方向平行于第一方向X,宽度方向平行于第二方向Y,高度平行于第三方向Z。固定部11呈长条形,固定部11的两端分别连接于底座12沿第二方向Y相对的两个内壁。振动单元2的形状与底座12的形状类似。沿垂直于第三方向Z,振动单元2与底座12的内壁之间存在间隙,以预留振动单元2振动的空间。
请继续参照图4所示,悬臂结构21和振膜结构22沿第三方向Z间隔设置并通过连接结构23连接,使得悬臂结构21和振膜结构22呈图4所示的上下分布。悬臂结构21设置有压电区211,压电区211以块状示出并设置于悬臂结构21朝向振膜结构22的一侧。悬臂结构21的固定端a2固定于固定部11,悬臂结构21具有两个关于固定端a2对称设置的自由端a1,振膜结构22分别通过两个连接结构23一一对应地与两个自由端a1连接,悬臂结构21的振动可以通过连接结构23带动振膜结构22振动。振膜结构22的振动方向平行于第三方向Z。在悬臂结构21和振膜结构22之间存在间隙,该间隙可供悬臂结构21和振膜结构22发生变形。
图5示出了基座1的具体结构,底座12为环形围框,固定部11可以将底座12的内部空间分为两个沿第一方向X相对的空间。当固定部11连接于底座12沿第二方向Y相对的两个内壁的中心位置,固定部11能够沿第一方向X将底座12分为两个相等的空间。
如图6a所示的振动模组10的俯视图,即从振膜结构22一侧沿第三方向Z向悬臂结构21一侧看振动单元2的视图。沿第一方向X,振动单元2的中心部分固定于固定部11,振动单元2的两侧相对悬空。振动单元2与底座12的内壁之间存在间隙,以预留振动单元2振动的空间。应当理解,在图6a所示的振动模组10中,振动单元2所示出的面实则为振膜结构22的表面。可能地,从该视角也能看到部分连接结构23。
图6b示出了图6a中M1-M1处的剖面结构示意图。振动单元2中的悬臂结构21固定在固定部11,振膜结构22位于悬臂结构21背离固定部11的一侧,振膜结构22沿第一方向X的边缘与悬臂结构21沿第一方向X的边缘连接。沿第一方向X,自固定部11指向悬臂结构21的边缘,悬臂结构21呈一端固定、一端悬空的“夹持-自由”(clamped-free)的状态。当悬臂结构21中的压电材料通电变形,悬臂结构21远离固定部11的边缘可以发生振动,进而通过连接结构23带动振膜结构22振动。可以认为,沿第一方向X,悬臂结构21固定于固定部11的部分为固定端a2,悬臂结构21远离固定部11的边缘部
分为自由端a1。在固定端a2到任意一个自由端a1之间,悬臂结构21相当于形成一个悬臂,该悬臂结构21形成两个悬臂。振膜结构22通过两个连接结构23连接于悬臂结构21两个自由端a1的连接方式,使得悬臂结构21可以通过两个对称的自由端a1带动整个振膜结构22振动。应当理解,本申请实施例中的悬臂结构21所形成的“悬臂”可以认为是固定部11向固定部11与底座12的内壁之间的空腔延伸。悬臂结构21的形状仅为示例,悬臂结构21可以所能形成的悬臂可以是一个,也可以是多个。悬臂结构21可以是直线型,也可以是弯折型。当悬臂结构21具有多个悬臂,多个悬臂结构21之间可以是等宽的,也可以是不等宽的。多个悬臂结构21之间可以是等长,也可以是不等长的。本申请并不限定。
请继续参照图6b所示,振动单元2的悬臂结构21连接于基座1的固定部11顶部,悬臂结构21与底座12之间形成声腔A。声腔A具体指悬臂结构21、底座12之间的空间。固定部11将声腔A分隔为两部分。示例性地,悬臂结构21沿第一方向X的中心固定于固定部11,使得振动单元2相对固定部11呈轴对称分布。
如图7a所示,振动单元2上设置有匹配耳P。具体地,匹配耳P沿第二方向Y设置有两个,两个匹配耳P具体位于悬臂结构21用于连接固定部11的两侧。由于视角所限,图7a仅示出其中一个匹配耳P。当振动单元2固定到基座1上,如图7b所示,匹配耳P能够固定于固定部11两端的底座12上。此处的固定部11被振动单元2遮挡以虚线示出。匹配耳P的设置,能够增强振动单元2的连接稳定性。
在一些实施例中,如图8a所示,可以在底座12上设置两个第一凹坑121,两个第一凹坑121分别位于固定部11的两端。图8b示出了图8a中M2-M2处的剖面结构示意图,第一凹坑121与固定部11的位置相对应。沿第一方向X,第一凹坑121的尺寸可以大于固定部11的尺寸。示例性得,沿第一方向X,第一凹坑121关于固定部11呈轴对称分布。该第一凹坑121可以用于容置振动单元2的匹配耳P。
在一些可能实现的方式中,如图9a所示,底座12还可以设置有第二凹坑122。第二凹坑122可以设置于第一凹坑121处。图9b示出图9a中M3-M3处的剖面结构示意图,第二凹坑122的开口位于第一凹坑121的底部,第二凹坑122用于安装固定部11。
当固定部11固定到底座12,如图9c所示,固定部11能够匹配固定在第二凹坑122处。图9d示出了图9c中M3-M3处的剖面结构示意图。当固定部11容置到第二凹坑122处,固定部11露出第二凹坑122的表面与第一凹坑121的表面保持平齐,不影响匹配耳P与第一凹坑121的配合固定。
其中,匹配耳P与第一凹坑121的配合固定可以通过胶粘固定,固定部11与第二凹坑122的配合固定也可以通过胶粘固定。当然,也可以有其他的固定方式,本申请并不对此进行限定。
如图10a所示,本申请实施例所提供的振动模组10,沿第一方向X,自固定部11指向的振动单元2的边缘位置,也即图10a中虚线箭头所指的方向,可以将振动单元2划分为第一区域U1和第二区域U2。基于振动单元2关于固定部11呈中心对称分布的结构,振动单元2具的第二区域U2包括两部分,分别分布于第一区域U1沿第一方向X的两侧,第二区域U2关于第一区域U1呈轴对称分布。应当理解,用于连接悬臂结构21和振膜结构22的连接结构23即位于第二区域U2。可以认为第一区域U1与第二区域U2之间的分界线将连接结构23界定区别于振膜结构22、连接结构23。以悬臂结构21的结构为参考,第二区域U2可以认为是悬臂结构21的自由端a1附近的区域,也可以认为第二区域U2即连接结构23所在位置。设置于连接结构23的柔性连接部R可以近似与悬臂结构21同层设置,也可以近似与振膜结构22同层设置,还可以沿第三方向Z位于悬臂结构21与振膜结构22之间。也就是说,连接结构23可以认为是一种从功能上划分出来的结构,其具体位于悬臂结构21的自由端a1附近。接下来的实施例中,将通过不同的振动单元2对悬臂结构21、振膜结构22、连接结构23进行具体示例性的说明。
如图10b所示的图10a中M5-M5处的剖面结构示意图。沿第三方向Z,连接结构23上的柔性连接部R可以认为位于悬臂结构21与振膜结构22之间。沿振膜结构22连接悬臂结构21的方向,柔性连接部R的刚度小于悬臂结构21和振膜结构22的刚度。
基于振动单元2中悬臂结构21和振膜结构22的分布,悬臂结构21的自由端a1通过连接结构23连接振膜结构22,悬臂结构21的自由端a1振动时会带动振膜结构22振动。悬臂结构21和振膜结构22之间的连接结构23位于振动单元2的第二区域U2。在悬臂结构21带动振膜结构22振动时,悬臂结构21的变形与振膜结构22的变形在连接处可能会产生不匹配的问题。在连接结构23设置柔性连接部R,柔性连接部R可以通过变形弥补悬臂结构21与振膜结构22振动时所产生的尺寸不匹配的部分,
也能提高振膜结构22的振动幅度,进而提高压电扬声器100的声压级。应当理解,悬臂结构21和振膜结构22在振动过程中的变形,也可认为是悬臂结构21与振膜结构22沿连接方向的伸长或收缩。
在一些可能实现的方式中,如图11a所示的一种振动单元2,悬臂结构21、振膜结构22和连接结构23为一体式结构,该振动单元2可以由图11b所示的一块板材弯折形成。如图11b所示,悬臂结构21位于中间位置。振膜结构22分为两部分,分别为第一振膜子结构22a和第二振膜子结构22b。连接结构23有两个,其中一个连接结构23位于第一振膜子结构22a与悬臂结构21之间,另一个连接结构23位于第二振膜子结构22b与悬臂结构21之间。具体地,每个连接结构23设置柔性连接部R。第一振膜子结构22a和第二振膜子结构22b关于悬臂结构21呈左右轴对称分布,两个连接结构23关于悬臂结构21呈左右轴对称分布。第一振膜子结构22a具有远离悬臂结构21的第一侧边v1,第二振膜子结构22b具有远离悬臂结构21的第二侧边v2。示例性地,柔性连接部R设置于悬臂结构21与振膜结构22之间。
一并参照图11a和图11b所示,将振膜结构22的第一振膜子结构22a和第二振膜子结构22b相对悬臂结构21对向弯折至图11a所示的状态,第一振膜子结构22a的第一侧边v1与第二振膜子结构22b的第二侧边v2连接在一起,第一振膜子结构22a和第二振膜子结构22b可以组成整个振膜结构22。
需要说的是,图11b所示的板材,也可以看做一种成型片,该成型片可以通过冲压成型、精密激光加工成型,也可以采用蚀刻法成型。其中,蚀刻法成型的精度相对较高。在将图11b所示的板材弯折形成图11a的结构的过程中,可以借助工装配合卷曲。
基于图11a所示的振动单元2,图11c示出了振动单元2的主视图,振膜结构22和悬臂结构21沿振膜结构22的振动方向相对,柔性连接部R位于振动单元2的弯折处。用于连接振膜结构22与悬臂结构21的连接结构23位于振动单元2的第二区域U2。当悬臂结构21振动,可以通过连接结构23带动振膜结构22振动,柔性连接部R可以通过变形解决悬臂结构21与振膜结构22之间的振动传递匹配问题。
在一些实施例中,振膜结构22的第一振膜子结构22a的第一侧边v1和第二振膜子结构22b的第二侧边v2之间可以通过胶合或焊接的方式连接在一起。或者,如图12所示,第一振膜子结构22a的第一侧边v1和第二振膜子结构22b的第二侧边v2之间可以通过连接件C连接在一起,连接件C可以分别通过胶合、焊接等方式同时与第一振膜子结构22a、第二振膜子结构22b连接。另外,连接件C可以为一个,也可以为多个,此处并不限定连接件C的数量。
图13a示出了具有图12所示的振动单元2的振动模组10的俯视图,即从振膜结构22一侧沿第三方向Z向悬臂结构21一侧看振动单元2的视图。图13b示出了图13a中M6-M6处的剖面结构示意图。振动单元2的悬臂结构21、振膜结构22、连接结构23为一体式结构,位于第二区域U2的连接结构23设置有柔性连接部R。
在图13b中,压电区211示例为块状结构,压电区211可以固定在悬臂结构21上,且压电区211关于固定部11呈对称分布。对于悬臂结构21的结构,压电区211设置有两个,两个压电区211分为两部分,分别沿第一方向X设置在固定部11的两侧。两个压电区211可以分别对应驱动悬臂结构21沿第一方向X分布位于固定部11两侧的部分。
在图13b中,压电区211设置于悬臂结构21朝向振膜结构22的一侧。或者,如图13c所示,压电区211设置于悬臂结构21背离振膜结构22的一侧。或者,如图13d所示,压电区211分别在悬臂结构21朝向振膜结构22一侧和背离振膜结构22的一侧设置。或者,如图13e所示,压电区211复合于悬臂结构21上,即压电区211为悬臂结构21的一部分。
沿第一方向X,如图13b至图13e所示,压电区211可以设置在靠近固定部11的位置。也就是说,压电区211可以设置在悬臂结构21的固定端附近。或者如图13f所示,压电区211设置在悬臂结构21远离固定部11的位置。也就是说,压电区211可以设置在悬臂结构21的自由端a1附近。或者,如图13g所述,对于悬臂结构21位于固定部11沿第一方向X其中一侧的部分,可以在固定端a2附近和自由端a1附近分别设置有压电区211。当然,压电区211的结构以及位置也仅做示例性说明。或者,整个悬臂结构21都可以为压电材质,则压电区211相当于与悬臂结构21为一个结构。在具体实施中,可以有多种结构变形,此处不再举例说明。
在遇到悬臂结构21的设计要求与振膜结构22的设计要求差别比较大时,可以将悬臂结构21和振膜结构22结构独立,使得振膜结构22和悬臂结构21能够根据需要采用不同的材料、尺寸、厚度进行
设计,以使振动模组10满足压电扬声器100的声压级要求,
在一些实施例中,如图14a所示的振动单元2,悬臂结构21和振膜结构22是独立的结构,连接结构23与振膜结构22为一体式结构,连接结构23上的柔性连接部R可以与振膜结构22同层设置。具体地,柔性连接部R可以位于连接结构23用于连接振膜结构22的边缘。悬臂结构21呈平面状,连接结构23为两个,两个连接结构23分别与悬臂结构21的自由端a1位置对应。具体地,连接结构23与悬臂结构21通过连接部24与悬臂结构21的自由端a1连接。此处的连接部24可以为粘接剂等。
图14b示出了具有图14a所示的振动单元2的振动模组10的俯视图,即从振膜结构22一侧沿第三方向Z向悬臂结构21一侧看振动单元2的视图。连接结构23位于振动单元2的第二区域U2。图14c为图14b中M7-M7处的剖面结构示意图,柔性连接部R与振膜结构22同层设置。
基于图14c所示的振动模组10的结构为例,如图15a和图15b所示,当柔性连接部R包括镂空结构K时,振动模组10还可以包括柔性薄膜25。该柔性薄膜25可以将连接结构23上柔性连接部R的镂空结构K覆盖封堵,避免柔性连接部R漏气对压电扬声器100声压级的影响。其中,如图15a所示,柔性薄膜25可以设置于振膜结构22背离悬臂结构21的一侧。如图15b所示,柔性薄膜25可以设置于振膜结构22朝向悬臂结构21的一侧。当然,在图15a和图15b所示例的结构中,柔性薄膜25可以为一整张膜,其尺寸可以与振膜结构22以及连接结构23的尺寸之和相当。如图15c所示,柔性薄膜25也可以为仅覆盖柔性连接部R处的镂空结构K。应当理解,在悬臂结构21通过连接部24、连接结构23带动振膜结构22振动时,柔性连接部R被拉扯,柔性薄膜25会随之被拉扯,同时柔性薄膜25会保持将镂空结构K覆盖的状态。
如图16a所示的一种振动单元2,连接结构23与振膜结构22为一体式结构。悬臂结构21呈平面状,连接结构23沿第一方向X的两端分别弯折后通过连接部24与悬臂结构21的自由端a1连接。此处的连接部24可以为粘接剂等。
图16b示出了具有图16a所示的振动单元2的振动模组10的俯视图,即从振膜结构22一侧沿第三方向Z向悬臂结构21一侧看振动单元2的视图。连接结构23位于振动单元2的第二区域U2。图16c为图16b中M8-M8处的剖面结构示意图,沿第三方向Z,柔性连接部R位于振膜结构22与悬臂结构21之间,柔性连接部R在悬臂结构21上的正投影落在振膜结构22之外。
在应用图14a和图16a所示的振动单元2时,将连接结构23和振膜结构22做成一体式结构,可以将振膜结构22和悬臂结构21采用不同的材料、尺寸、厚度进行优化设计,以期达到更好的发声效果。
在一些实施例中,如图17a所示的振动单元2,悬臂结构21和振膜结构22是独立的结构,连接结构23与悬臂结构21为一体式结构。具体地,悬臂结构21呈平面状,柔性连接部R可以位于连接结构23用于连接悬臂结构21的自由端a1的边缘。可以认为,柔性连接部R与悬臂结构21同层设置。振膜结构22沿第一方向X的两端分别通过连接部24与连接结构23连接。此处的连接部24可以为粘接剂等。
图17b示出了具有图17a所示的振动单元2的振动模组10的仰视图,即从基座1一侧沿第三方向Z向振膜结构22一侧看振动模组10的视图。连接结构23位于振动单元2的第二区域U2。图17c为图17b中M9-M9处的剖面结构示意图,连接结构23设置于悬臂结构21位于第二区域U2的部分,柔性连接部R在振膜结构22上的正投影落在悬臂结构21的两侧。
在图17a至图17c所示的振动单元2中,振膜结构22可以保持整体无缝,因此可以避免振膜结构22存在缝隙对压电扬声器100的声压级造成不良影响的问题。相较于图15a和图15b所示的需要增加柔性薄膜25的结构,至少减少了一步工艺。
在一些实施例中,如图18所示的振动单元2,振膜结构22和悬臂结构21相对独立,用于连接振膜结构22和悬臂结构21的连接结构23分为第一连接子结构23a和第二连接子结构23b。第一连接子结构23a与振膜结构22为一体式结构,第二连接子结构23b与悬臂结构21为一体式结构,第一连接子结构23a和第二连接子结构23b之间通过连接部24连接。在第一连接子结构23a上示例性地设置柔性连接部R,该柔性连接部R与振膜结构22具有一体式结构且同层设置。在第二连接子结构23b上也示例性地设置有柔性连接部R,该柔性连接部R与悬臂结构21具有一体式结构且同层设置。这种结构的振动单元2将会具有更大的振幅,但是需要注意,在振膜结构22与悬臂结构21之间相当于存在两个柔性连接部R,振动单元2在振动过程会产生一定的相移。
结合上述实施例,当振动单元2中的悬臂结构21、振膜结构22与连接结构23具有一体结构时,
振动单元2的制作工艺比较简单,可以通过简化制造达到降低生产成本的目的。当连接结构23与悬臂结构21为一体式结构或连接结构23与振膜结构22为一体式结构时,可以兼顾悬臂结构21和振膜结构22有单独的设计要求,即可以对悬臂结构21和振膜结构22采用不同的材料、厚度、尺寸进行优化设计,以满足振动需求。当然,这个结构在一定程度上也可以简化工艺,降低成本。
当振动单元2中的悬臂结构21、振膜结构22与连接结构23具有一体结构,或连接结构23与悬臂结构21为一体式结构,或连接结构23与振膜结构22为一体式结构,柔性连接部R可以包括镂空结构K。如图19a所示,柔性连接部R可以将连接结构23沿设定方向分为第一结构体231和第二结构体232,设定方向为振膜结构22与悬臂结构21的连接方向。也就是说,振动单元2中的悬臂结构21和振膜结构22沿设定方向连接在一起。
示例性地,镂空结构K使得柔性连接部R沿设定方向的刚度小于振膜结构22和悬臂结构21的刚度。一并参照图19a和图19b所示,柔性连接部R包括连接单元J,连接单元J由平行于设定方向的短臂b1和垂直于设定方向的长臂b2连接组成,从而在柔性连接部R处形成镂空结构K。短臂b1和长臂b2的数量以及组合方式不做限定,主要通过若干个短臂b1和若干个长臂b2连接、组合在柔性连接部R上形成镂空结构K,以减小柔性连接部R在设定方向上的刚度。
示例性地如图19a所示,在第一结构体231和第二结构体232之间设置有两个连接单元J,该两个连接单元J组成柔性连接部R。每个连接单元J的结构可以参照图19b所示,连接单元J由“短臂b1-长臂b2-短臂b1-长臂b2-短臂b1”依次连接形成。该连接单元J沿设定方向的刚度小于沿垂直于设定方向的刚度,从而使得柔性连接部R沿设定方向的刚度小于振膜结构22和悬臂结构21的刚度。
柔性连接部R的镂空结构K还可能有图20a、图20b、图20c以及图20d所示的变形。其中,图20a中,镂空结构K的形态分布与图19a中有所不同,该镂空结构K也由多个长臂和短臂组合形成,不过该镂空结构K包括一个封闭的镂空区域。图20b中的镂空结构K是多个图20a中的镂空结构K沿垂直于设定方向阵列形成。图20c中的镂空结构K是多个图20a中的镂空结构K左右交错设置多组。图20d中的镂空结构K是图20a中的镂空结构K的变形,使得镂空结构K的形状发生变化。可能地,如图20e中所示,镂空结构K可以是多个椭圆形的孔,椭圆形的长轴方向垂直于设定方向。
当然,镂空结构K的结构并不限于上述举例,还可以有其他更多的实现方式,只要使得柔性连接部R沿设定方向的刚度小于悬臂结构21和振膜结构22的刚度即可。
如图21a所示例的一种振动单元2,悬臂结构21、振膜结构22和连接结构23分别为独立的结构。沿第一方向,连接结构23连接于悬臂结构21的边缘与振膜结构22的边缘之间。可以将振膜结构22的边缘弯折并向悬臂结构21一侧延伸,使得振膜结构22与悬臂结构21之间保持一定的距离。或者,如图21b所示,悬臂结构21和振膜结构22可以选择平面结构,在悬臂结构21与振膜结构22之间引入支撑结构26。示例性地,支撑结构26设置于悬臂结构21与连接结构23之间。支撑结构26能够使振膜结构22相对悬臂结构21保持一定的距离。
其中,连接结构23可以选择复合材料以整体形成柔性连接部R。如图22a至图22e所示,连接结构23可以包括柔性基体r1以及填充于柔性基体r1内的刚性颗粒r2,此时的连接结构23为一复合材料,可以认为整个连接结构23为柔性连接部R。其中,刚性颗粒r2的刚度大于柔性基体r1的刚度。刚性颗粒r2可以为柱体,此处的刚性颗粒r2示例为圆柱体,多个圆柱体排列在柔性基体r1内。其中,圆柱体的刚性颗粒r2在柔性基体r1内沿厚度方向层状排布,且圆柱体的刚性颗粒r2的高度方向垂直于设定方向,使得连接结构23沿设定方向的刚度小于悬臂结构21和振膜结构22的刚度。图22a至图22c中,刚性颗粒r2示例性地排布一层,刚性颗粒r2的高度方向垂直于设定方向并垂直于柔性基体r1的厚度方向。图22d和图22e中,刚性颗粒r2示例性地排布两层,刚性颗粒r2的高度方向垂直于设定方向并平行于柔性基体r1的厚度方向。当然,刚性颗粒r2的排列也可以呈不规则分布,只要刚性颗粒r2排布在柔性基体r1内后使得连接结构23沿设定方向的刚度小于悬臂结构21和振膜结构22的刚度即可。
如图23a和图23b所示,刚性颗粒r2可以为球形。球形的刚性颗粒r2阵列在柔性基体r1内,球形的刚性颗粒r2的排列所在平面平行于设定方向,使得连接结构23沿设定方向的刚度小于悬臂结构21和振膜结构22的刚度。当然,如图23c和图23d所示,刚性颗粒r2还可以为椭球形。在这种连接结构23中,可以将椭球形的刚性颗粒r2设置为长轴方向垂直于设定方向,有利于连接结构23作为柔性连接部R实现沿设定方向的刚度小于悬臂结构21和振膜结构22的刚度。
应当理解,当连接结构23为复合材料,也可以在连接结构23设置镂空结构K,将复合材料和镂空
结构K共同组成柔性连接部R,可以减小柔性连接部R沿悬臂结构21和振膜结构22连接方向的刚度。
在一些特殊场合,振动模组10需要抑制一阶谐振频率,降低扬声器的品质因数(quality factor,Q)值。扬声器的品质因数表示频响曲线在谐振频率处的锐度,可以在某种程度上反映扬声器振动系统的阻尼状态。如图24a所示的一种振动模组10,可以在振动单元2上设置质量结构27。示例性地将质量结构27设置在振膜结构22上,并位于振膜结构22沿第一方向X的两端的位置。此处,悬臂结构21、振膜结构22、连接结构23三者相互独立,连接结构23连接于悬臂结构21的自由端a1与振膜结构22之间。图24b示出了该振膜模组10的俯视图,即自振膜结构22一侧向悬臂结构21一侧看的视图。图24c示出了图24b中M10-M10处的剖面结构示意图,为方便示意,此处未示出柔性连接部R。其中,质量结构27还可以如图24d所示设置振膜结构22的其他任意位置,此处示例性地将质量结构27设置在振膜结构22的中心位置。或者,如图24e所示,质量结构27还可以设置在悬臂结构21的自由端a1附近。质量结构27的引入能够在振动单元2振动中,降低压电扬声器100的品质因数,进而可以平坦化声压曲线,提高低频响应。应当理解,基于振动单元2的结构,质量结构27的设置应当以中间部11为中心呈中心对称分布,以使振动模组10的结构保持相对稳定。
在另一些实施例中,如图25所示,还可以在悬臂结构21上设置柔性膜212。此处,柔性膜212示例性地覆盖在悬臂结构21朝向振膜结构22的表面。柔性膜212的设置,能够对悬臂结构21的振动起到一定的约束作用,从而降低扬声器的品质因数,进而可以平坦化声压曲线,提高低频响应。
如图26所示,振动单元2可以同时设置质量结构27和柔性膜212。根据不同的振动模组10的结构以及振动要求,对质量结构27可以进行位置调整以及结构调整。当然,柔性膜212也可以对应进行调整,此处不再赘述。
如图27所示的另一种振动模组10,该振动模组10包括基座1和振动单元2。底座12示例性地为底板。示例性地,基体12为圆饼状,基体12的中心线为轴线Q。固定部11设置于底座12朝向振动单元2的一侧并位于底座12的中心,固定部11示例性地为支撑柱,呈圆柱状,固定部11的轴心线与轴线Q重合。在底座12上设置有通气孔123,沿振膜结构22指向悬臂结构21的方向,通气孔123贯穿底座12。通气孔123的数量可能有多个。示例性地,多个通气孔123可环绕固定部11的轴心线均匀分布。
振动单元2呈多边形,示例为八边形。振动单元2的中心线与底座12的中心线重合,振动单元2关于固定部11呈环形阵列。振动单元2包括悬臂结构21、振膜结构22和连接结构23。连接结构23示例性地与振膜结构22为一体式结构,此处未示出设置于连接结构23的柔性连接部R。悬臂结构21和振膜结构22均呈八边形,连接结构23位于振膜结构22的边缘位置,且连接结构23示例性地通过连接部24连接。对于悬臂结构21,悬臂结构21的中心为固定端a2。沿垂直于轴线Q的径向指向悬臂结构21的边缘的方向,悬臂结构21的边缘位置可以认为是自由端a1。基于悬臂结构21与固定部11的结构,可以认为,该悬臂结构21具有一个位于中心的固定端a2以及一个环形分布的多个自由端a1或环形的自由端a2。沿悬臂结构21的固定端a2指向自由端a1的方向,即悬臂结构21的径向。
基座1的结构具体请参照图28所示,固定部11的周向表面形成有台阶面T,振动单元2固定在该台阶面T处。固定部11的周向表面为平行于轴线Q的表面。可以认为,固定部11包括第一柱体111和第二柱体112,第一柱体111固定于底座12上,第二柱体112位于第一柱体111背离底座12的一侧。第一柱部111和第二柱体112可以为一体式结构。第一柱体111和第二柱体112均示例为同轴的圆柱形,且第一柱体111和第二柱体112的中心线与轴线Q共线。第一柱体111的径向尺寸大于第二柱体112的径向尺寸,从而在固定部11的周面形成台阶面T。
振动单元2的结构可以参照图29a所示,图29a中振膜结构22被阻挡未示出。图29b示出了振动单元2的爆炸图。悬臂结构21呈八边形平板状,中心具有八边形的孔洞D。当然,悬臂结构21上的孔洞D也可以呈圆形。当振动单元2固定到基座1的固定部11,悬臂结构21的孔洞D能够与固定部11相适配,以将悬臂结构21固定到固定部11。如图29b所示,振膜结构22的结构与悬臂结构21形状类似,连接结构23与振膜结构22为一体式结构并位于振膜结构22的边缘。连接部24则为八边形的环形结构,悬臂结构21的边缘和连接结构23可以通过环形的连接部24连接在一起。
图30a示出了该振动模组10的俯视图,即从振膜结构22一侧沿第三方向Z向悬臂结构21一侧看振动单元2的视图。沿振动单元2的中心指向边缘的方向,振动单元2可以被划分为第一区域U1和第二区域U2。基于振动单元2的形状,第一区域U1呈八边形,第二区域U2呈围绕第一区域U1的八边
环形。振动模组10中的连接结构23可以设置在该第二区域U2。应当理解,第二区域U2可以认为位于悬臂结构21的自由端a1附近。示例性地,连接结构23与振膜结构22具有一体式结构,可以认为连接结构23上的柔性连接部R也将与振膜结构22具有一体式结构。当然,连接结构23还可以与悬臂结构21为一体式结构,或者,连接结构23独立于悬臂结构21和振膜结构22设置于悬臂结构21和振膜结构22之间。这些可能的结构在上文实施例中有具体说明,此处不再重复介绍。
图30b示出了图30a中V1-V1处的剖面结构示意图,此处未示出压电区211。示例性地,悬臂结构21通过胶粘等方式固定在固定部11的台阶处。悬臂结构21用于连接固定部11的部分可以认为是悬臂结构21的固定端,悬臂结构21沿径向远离固定部11的边缘部分可以认为是悬臂结构21的自由端。连接结构23位于振膜结构22的边缘并与振膜结构22为一体式结构,连接结构23通过连接部24连接悬臂结构21的自由端。连接结构23上的柔性连接部R示例性地与振膜结构22同层设置,柔性连接部R在悬臂结构21上的正投影位于振膜结构22在悬臂结构21上的正投影的范围之外。此处的正投影指的是,沿轴线Q的延伸方向投影在悬臂结构21上。在该振动模组10中,悬臂结构21与底座12之间的空间可以认为是该振动模块10的声腔A。当该振动模组10安装在压电扬声器100的壳体内,通气孔123可以将声腔A与外部导通。
图31a示例了一种悬臂结构21上的压电区211可能的设置方式。压电区211示例为八边圆环形,并环绕悬臂结构21的孔洞D设置。图31b示出了具有图31a所示例的振动单元2的振动模组10的剖面结构示意图,压电区211可以作为悬臂结构21的一部分固定在固定部11的台阶面T上。图31c示出了另一种振动模组10的剖面结构示意图,该悬臂结构21具有两个压电区211,两个压电区211分别位于悬臂结构21朝向振膜结构22的一侧和朝向底座12的一侧。
示例性地,如图32a所示,连接结构23与振膜结构22为一体式结构,连接结构23环绕振膜结构22的边缘设置。可以认为,连接结构23上的柔性连接部R与振膜结构22具有一体式结构。柔性连接部R示例性地设置有连接单元J,连接单元J能够在柔性连接部R上形成镂空结构K。
这种结构的振动模组10中,振膜结构22的整个边缘通过连接结构23连接于悬臂结构21的边缘。在悬臂结构21振动带动振膜结构22振动时,振膜结构22的周向边缘同时受到驱动,使得整个振膜结构22可以沿第三方向Z振动,振幅输出相对平稳均匀,使得压电扬声器100能够在近场取得均匀的声压级。在振膜结构22被悬臂结构21驱动振动时,连接结构23上柔性连接部R沿振膜结构22的径向被拉伸,振膜结构22的边缘会沿振膜结构22的径向向外扩展,由于受到周向的牵扯而影响振动。由于连接结构23与振膜结构22为一体式结构,为了使振膜结构22能够满足悬臂结构21的振动变形,进一步参照图32b所示,可以在连接结构23做打断处理以形成缺口E。当悬臂结构21振动时,连接结构23沿振膜结构22的径向向外扩展,不会受到周向的牵扯,振动辐射更均匀,能够提高振膜结构22的柔性,使得振膜结构22能够满足振动要求。
应当理解,图32a和图32b所示的振膜结构22应用到振动单元2时,为了防止漏气,可以设置柔性薄膜25将镂空结构K覆盖,此处不再图示说明。
在一些实施例中,如图33所示的一种振动模组10,振动单元2呈圆柱形。结合图34a所示的振动单元2的结构以及图34b所示的振动单元2的爆炸图,悬臂结构21呈圆形的平板状,振膜结构22也呈圆形的平板状。连接结构23示例性地与振膜结构22为一体式结构并设置于振膜结构22的边缘,连接结构23通过圆环形的连接部24连接。悬臂结构21上的孔洞D呈圆形。
图35示出了振动模组10的俯视图,即从振膜结构22一侧沿第三方向Z向悬臂结构21一侧看振动单元2的视图。振动单元2具有第一区域U1和第二区域U2。第一区域U1呈八边形,第二区域U2呈环状的八边形。该振动单元2中连接结构23可以设置于第二区域U2内,连接结构23示例性地设置有与振膜结构22同层设置的柔性连接部R。
图36a示出了一种振膜结构22的示意图,连接结构23与振膜结构22为一体式结构并设置于振膜结构22的边缘,连接结构23上的柔性连接部R具有镂空结构K。沿振膜结构22的径向,柔性连接部R的刚度小于振膜结构22的刚度。为了使振膜结构22能够满足悬臂结构21的振动变形,进一步参照图36b所示,可以在连接结构23上做打断处理以形成缺口E。
在一些实施例中,如图37a和图37b所示,振动单元2还可以在悬臂结构21或振膜结构22上设置缝隙F,该缝隙F可以降低振膜单元面外振动时的约束。其中,缝隙F的长度方向可以悬臂结构21的固定端a2指向自由端a1的方向。当振动单元2为图37a或图37b所示的圆柱形,缝隙F的延伸方向可
以认为是振动单元2的径向方向。
本申请实施例提供的振动模组10还可以与传统的动圈振膜耦合。如图38所示,振动模组10还包括盆架31以及辅助振膜32。基座1和振动单元2的结构以图31c中的结构示例。盆架31的底部固定于基座1的底座12,盆架31的四周延伸形成盆状。辅助振膜32覆盖连接于盆架31的顶部开口处,使得辅助振膜32与盆架31之间能够容纳上述振动单元2和基座1。其中,辅助振膜32与振动单元2中的振膜结构22固定连接。具体地,辅助振膜32部分或全部贴附于振膜结构22背离悬臂结构21的一侧。振膜结构22在辅助振膜32上的正投影位于辅助振膜32的范围之内。当悬臂结构21振动带动振膜结构22振动,振膜结构22可以带动辅助振膜32振动,对于整个振动模组10,振动面积相当于扩大为辅助振膜32的面积,提高了振动模组10的振动面积,有利于进一步提高压电扬声器100的声压级。
综上,本申请实施例所提供的振动模组10可以应用到压电扬声器100中,通过悬臂结构21、振膜结构22沿振动方向间隔分布,可以增大振膜的振动面积。而振膜结构22的边缘连接于悬臂结构21的自由端附近,能够使得振膜结构22振动过程中压电扬声器100的声场输出比较均匀。振膜结构22和悬臂结构21通过连接结构23连接,在连接结构23上设置柔性连接部R,可以使得振膜结构22被悬臂结构21带动振动的过程中,能够达到更大的振动幅度。从而,振膜结构22可以具有较大的振动面积和较大的振动幅度,基于声压级原理,具有该振动模组10的压电扬声器100能够取得较高的声压级以及更为平稳的声音输出,以呈现更好的声音效果。进一步地,该振动模组10还可以与动圈振膜耦合,达成更好的声压级表现。具有该压电扬声器100的终端设备能够具更好的声音效果,提升消费者的使用体验。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。
Claims (23)
- 一种振动模组,其特征在于,包括:基座和振动单元;所述振动单元包括悬臂结构、振膜结构和连接结构,所述悬臂结构设置有压电区;所述悬臂结构具有固定端和自由端,所述固定端固定于所述基座,所述自由端关于所述固定端呈对称分布;所述振膜结构间隔设置于所述悬臂结构远离所述基座的一侧;所述连接结构连接于所述振膜结构的边缘与所述悬臂结构的自由端之间,所述连接结构包括柔性连接部;沿所述连接结构连接所述振膜结构和所述悬臂结构的方向,所述柔性连接部的刚度小于所述悬臂结构和所述振膜结构的刚度。
- 如权利要求1所述的振动模组,其特征在于,所述连接结构与所述悬臂结构为一体式结构;和/或,所述连接结构与所述振膜结构为一体式结构。
- 如权利要求2所述的振动模组,其特征在于,所述悬臂结构、所述连接结构和所述振膜结构为一体式结构。
- 如权利要求2或3所述的振动模组,其特征在于,所述柔性连接部包括镂空结构。
- 如权利要求4所述的振动模组,其特征在于,所述振动单元还包括柔性薄膜,所述柔性薄膜覆盖所述镂空结构。
- 如权利要求5所述的振动模组,其特征在于,所述柔性连接部包括柔性基体以及分散于所述柔性基体内的刚性颗粒,所述刚性颗粒的刚度大于所述柔性基体的刚度。
- 如权利要求6所述的振动模组,其特征在于,所述刚性颗粒为柱体,所述柱体的高度方向垂直于所述悬臂结构和所述振膜结构的连接方向;或,所述刚性颗粒为球体或椭球体。
- 如权利要求1-7中任一项所述的振动模组,其特征在于,所述基座包括环形围框和固定部;所述固定部呈条形,所述固定部的两端分别固定于所述环形围框两个相对的内壁;所述悬臂结构的自由端关于所述固定部呈轴对称分布。
- 如权利要求8所述的振动模组,其特征在于,所述环形围框设置有两个第一凹坑,两个所述第一凹坑分别位于所述固定部长度方向的两端;所述振动单元设置有两个匹配耳,两个所述匹配耳一一对应地容置于两个所述第一凹坑内。
- 如权利要求8或9所述的振动模组,其特征在于,所述环形围框设置有两个第二凹坑,所述固定部的两端分别固定于所述第二凹坑内。
- 如权利要求1-10中任一项所述的振动模组,其特征在于,所述基座包括底板和支撑柱;所述支撑柱固定于所述底板朝向所述悬臂结构的一侧;所述悬臂结构的自由端关于所述支撑柱的呈中心对称分布。
- 如权利要求11所述的振动模组,其特征在于,所述支撑柱的周向表面设置有台阶面,所述悬臂结构固定于所述台阶面。
- 如权利要求11或12所述的振动模组,其特征在于,所述底板设置有多个通气孔;沿所述振动单元指向所述底板的方向,所述通气孔贯穿所述底板。
- 如权利要求13所述的振动模组,其特征在于,多个所述通气孔环绕所述支撑柱均匀分布。
- 如权利要求1-14中任一项所述的振动模组,其特征在于,所述悬臂结构和/或所述振膜结构上还设置有缝隙。
- 如权利要求1-15中任一项所述的振动模组,其特征在于,所述振动单元还包括质量结构,所述质量结构固定于所述振膜结构或所述悬臂结构的自由端,所述质量结构关于所述悬臂结构的固定端呈对称分布。
- 如权利要求1-16中任一项所述的振动模组,其特征在于,所述振动单元还包括柔性膜,所述柔性膜设置于所述悬臂结构的表面。
- 如权利要求1-17中任一项所述的振动模组,其特征在于,所述振动模组还包括盆架以及辅助振膜;所述基座固定于所述盆架的底部,所述辅助振膜覆盖于所述盆架的顶部开口处,且所述辅助振膜贴附于所述振膜结构背离所述悬臂结构的表面。
- 如权利要求18所述的振动模组,其特征在于,所述振膜结构在所述辅助振膜上的正投影落在所 述辅助振膜朝向所述振膜结构的表面范围内。
- 一种压电扬声器,其特征在于,包括电路板、壳体以及如权利要求1-19中任一项所述的振动模组;所述电路板具有相对设置的第一表面和第二表面;所述壳体固定于电路板的所述第一表面,所述壳体与所述第一表面之间形成有容纳腔;所述壳体设置有与所述容纳腔连通的出声孔;所述振动模组固定于所述电路板的所述第一表面并位于所述容纳腔内。
- 如权利要求20所述的压电扬声器,其特征在于,所述压电扬声器还包括集成电路芯片,所述集成电路芯片设置于所述电路板的所述第一表面并位于所述容纳腔内;所述振动模组中压电区与所述集成电路芯片电连接。
- 如权利要求20或21所述的压电扬声器,其特征在于,所述电路板设置开孔,所述开孔贯穿所述电路板并与所述振动模组的声腔连通。
- 一种终端设备,其特征在于,包括外壳以及如权利要求20-22中任一项所述压电扬声器;所述压电扬声器设置于所述外壳内,且所述外壳上设置有扬声孔,所述扬声孔与所述压电扬声器位置对应。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310320339.9A CN118695179A (zh) | 2023-03-23 | 2023-03-23 | 一种振动模组、压电扬声器及终端设备 |
CN202310320339.9 | 2023-03-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024193435A1 true WO2024193435A1 (zh) | 2024-09-26 |
Family
ID=92777836
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2024/081686 WO2024193435A1 (zh) | 2023-03-23 | 2024-03-14 | 一种振动模组、压电扬声器及终端设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN118695179A (zh) |
WO (1) | WO2024193435A1 (zh) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3059197U (ja) * | 1998-11-19 | 1999-07-02 | 光森 魏 | 超薄型スピーカ |
US20060266577A1 (en) * | 2005-05-25 | 2006-11-30 | Onkyo Corporation | Speaker diaphragm and speaker structure |
US20130056296A1 (en) * | 2010-02-26 | 2013-03-07 | Pss Belgium N.V. | Mass loading for piston loudspeakers |
CN111148000A (zh) * | 2019-12-31 | 2020-05-12 | 瑞声科技(南京)有限公司 | 一种mems麦克风及阵列结构 |
CN214480714U (zh) * | 2021-03-29 | 2021-10-22 | 北京小米移动软件有限公司 | 后盖及具有其的终端设备 |
WO2022007050A1 (zh) * | 2020-07-10 | 2022-01-13 | 瑞声声学科技(深圳)有限公司 | 发声装置及具有其的电子设备 |
CN114501267A (zh) * | 2022-01-24 | 2022-05-13 | 地球山(苏州)微电子科技有限公司 | 像素发声单元及其制造方法、数字发声芯片和电子终端 |
CN114513729A (zh) * | 2022-01-07 | 2022-05-17 | 华为技术有限公司 | 电子设备及声学换能器 |
-
2023
- 2023-03-23 CN CN202310320339.9A patent/CN118695179A/zh active Pending
-
2024
- 2024-03-14 WO PCT/CN2024/081686 patent/WO2024193435A1/zh unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3059197U (ja) * | 1998-11-19 | 1999-07-02 | 光森 魏 | 超薄型スピーカ |
US20060266577A1 (en) * | 2005-05-25 | 2006-11-30 | Onkyo Corporation | Speaker diaphragm and speaker structure |
US20130056296A1 (en) * | 2010-02-26 | 2013-03-07 | Pss Belgium N.V. | Mass loading for piston loudspeakers |
CN111148000A (zh) * | 2019-12-31 | 2020-05-12 | 瑞声科技(南京)有限公司 | 一种mems麦克风及阵列结构 |
WO2022007050A1 (zh) * | 2020-07-10 | 2022-01-13 | 瑞声声学科技(深圳)有限公司 | 发声装置及具有其的电子设备 |
CN214480714U (zh) * | 2021-03-29 | 2021-10-22 | 北京小米移动软件有限公司 | 后盖及具有其的终端设备 |
CN114513729A (zh) * | 2022-01-07 | 2022-05-17 | 华为技术有限公司 | 电子设备及声学换能器 |
CN114501267A (zh) * | 2022-01-24 | 2022-05-13 | 地球山(苏州)微电子科技有限公司 | 像素发声单元及其制造方法、数字发声芯片和电子终端 |
Also Published As
Publication number | Publication date |
---|---|
CN118695179A (zh) | 2024-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW463516B (en) | Electro-acoustic micro-transducer having dual voice coil drivers | |
WO2018070399A1 (ja) | 平板スピーカおよび表示装置 | |
US10932050B2 (en) | Micro-speaker | |
JP2020048194A (ja) | ディスプレイ装置 | |
US9998833B2 (en) | Speaker | |
US9307314B2 (en) | Electronic device with side acoustic emission type speaker device | |
US9820052B2 (en) | Speaker | |
US11937060B2 (en) | Surface sound-emitting apparatus and electronic device | |
US10932045B2 (en) | Speaker | |
US10708694B2 (en) | Continuous surround | |
WO2022143027A1 (zh) | 扬声器和电子终端 | |
JP2023109705A (ja) | 多機能発音デバイス | |
JP7318095B1 (ja) | スピーカ装置及び電子機器 | |
US20100220866A1 (en) | Thin speaker with improved bass/deep bass sound effect | |
JP5237412B2 (ja) | スピーカ構造 | |
KR101404119B1 (ko) | 슬림형 스피커 | |
US11765512B2 (en) | Acoustic device | |
WO2024000693A1 (zh) | 同轴扬声器 | |
WO2024188062A1 (zh) | 一种电子设备 | |
WO2024193435A1 (zh) | 一种振动模组、压电扬声器及终端设备 | |
US10674274B2 (en) | Speaker | |
US10827243B1 (en) | Method and apparatus for fabricating an information handling system with a vibration actuator speaker system assembly | |
US10631092B2 (en) | Speaker | |
WO2023160191A9 (zh) | 扬声器模组和电子设备 | |
US20180367889A1 (en) | Sound Generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24774001 Country of ref document: EP Kind code of ref document: A1 |