WO2024190677A1 - Elastic wave resonator and communication device - Google Patents
Elastic wave resonator and communication device Download PDFInfo
- Publication number
- WO2024190677A1 WO2024190677A1 PCT/JP2024/009073 JP2024009073W WO2024190677A1 WO 2024190677 A1 WO2024190677 A1 WO 2024190677A1 JP 2024009073 W JP2024009073 W JP 2024009073W WO 2024190677 A1 WO2024190677 A1 WO 2024190677A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- piezoelectric layer
- thickness
- region
- elastic wave
- electrode fingers
- Prior art date
Links
- 239000000758 substrate Substances 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 claims description 2
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 claims description 2
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 2
- 229910000449 hafnium oxide Inorganic materials 0.000 claims 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 16
- 239000011295 pitch Substances 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 13
- 230000005540 biological transmission Effects 0.000 description 10
- 238000004088 simulation Methods 0.000 description 10
- 239000011800 void material Substances 0.000 description 6
- 235000019687 Lamb Nutrition 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 230000001902 propagating effect Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000005236 sound signal Effects 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(iv) oxide Chemical compound O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/125—Driving means, e.g. electrodes, coils
- H03H9/145—Driving means, e.g. electrodes, coils for networks using surface acoustic waves
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/25—Constructional features of resonators using surface acoustic waves
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/46—Filters
- H03H9/64—Filters using surface acoustic waves
Definitions
- This disclosure relates to an elastic wave resonator, which is an electronic component that utilizes elastic waves, and a communication device that includes the elastic wave resonator.
- Patent Document 1 discloses an elastic wave device that has a piezoelectric layer and an IDT (interdigital transducer) electrode located on the piezoelectric layer, and uses an A1 mode plate wave as the elastic wave.
- the IDT electrode has multiple electrode fingers arranged at a pitch p. The smaller the pitch p, the higher the resonant frequency.
- the elastic wave device of Patent Document 1 can achieve resonance in a higher frequency range than conventional devices, with a pitch p equivalent to that of conventional devices.
- An elastic wave resonator includes a piezoelectric layer having piezoelectric properties and an IDT electrode.
- the IDT electrode has a plurality of electrode fingers and is in direct or indirect contact with the piezoelectric layer.
- the piezoelectric layer has a first region overlapping with the electrode fingers and a second region not overlapping with the electrode fingers in a planar view. The sum of the thickness of the piezoelectric layer in the first region and the thickness of the electrode fingers is 1.28 times or less the thickness of the piezoelectric layer in the second region.
- the elastic wave resonator excites at least one of a plate wave and a bulk wave as a primary resonance.
- a communication device has an antenna, an acoustic wave filter connected to the antenna, and an integrated circuit (IC) connected to the acoustic wave filter.
- the acoustic wave filter includes the acoustic wave resonator described above.
- FIG. 1 is a schematic cross-sectional view of an elastic wave resonator according to an embodiment of the present disclosure.
- FIG. 2 is a schematic plan view of an elastic wave resonator according to an embodiment of the present disclosure.
- FIG. 1 is a schematic cross-sectional view of an elastic wave resonator according to an embodiment of the present disclosure.
- 11A and 11B are diagrams illustrating simulation results of resonance characteristics of an elastic wave resonator according to an embodiment of the present disclosure.
- 13A and 13B are diagrams illustrating simulation results of resonance characteristics of an elastic wave resonator according to a comparative example.
- 6A and 6B are diagrams showing changes in spurious intensity when the total value of the thickness of the first region and the electrode fingers is changed relative to the thickness of the second region.
- FIG. 13 is a diagram showing changes in frequency and phase of each resonance when the total value of the thickness of the first region and the electrode fingers is changed relative to the thickness of the second region.
- FIG. 11 is a schematic cross-sectional view of an elastic wave resonator according to another embodiment of the present disclosure.
- FIG. 11A and 11B are diagrams illustrating simulation results of resonance characteristics of an elastic wave resonator according to an embodiment of the present disclosure.
- 13A and 13B are diagrams illustrating simulation results of resonance characteristics of an elastic wave resonator according to a comparative example.
- 13 is a diagram showing changes in frequency and phase of each resonance when the total value of the thickness of the first region and the electrode fingers is changed relative to the thickness of the second region.
- FIG. 1 is a diagram illustrating a duplexer as an example of a use of an elastic wave resonator according to an embodiment of the present disclosure.
- 1 is a block diagram showing a configuration of a main part of a communication device as an example of a use of an acoustic wave resonator according to an embodiment of the present disclosure.
- the drawings may be accompanied by an orthogonal coordinate system consisting of an X-axis, a Y-axis, and a Z-axis.
- either direction may be considered to be upward or downward.
- the terms upper surface and lower surface may be used with the Z-axis direction being the up-down direction.
- the X-axis is defined to be parallel to the propagation direction of an elastic wave used as the main resonance among the elastic waves propagating through the piezoelectric layer 2 described below
- the Y-axis is defined to be parallel to the upper surface of the piezoelectric layer 2 and perpendicular to the X-axis
- the Z-axis is defined to be perpendicular to the upper surface of the piezoelectric layer 2.
- FIG. 1 is a schematic cross-sectional view of an elastic wave resonator 1 according to an embodiment of the present disclosure.
- the elastic wave resonator 1 according to an embodiment of the present disclosure has a piezoelectric layer 2, a support substrate 3, an acoustic reflection layer 5, and an IDT electrode 4.
- the piezoelectric layer 2 has an upper surface 2a and a lower surface 2b perpendicular to the Z axis, with the Z axis being the up-down direction.
- the upper surface 2a may be called the first surface
- the lower surface 2b may be called the second surface.
- An acoustic reflection layer 5 and a support substrate 3, which will be described later, are located on the lower surface 2b side of the piezoelectric layer 2.
- An IDT electrode 4, which will be described later, is located on the upper surface 2a side of the piezoelectric layer 2.
- Various materials having piezoelectricity can be used for the piezoelectric layer 2.
- materials having piezoelectricity include single crystals of lithium tantalate (LiTaO 3 ; hereinafter referred to as LT) and single crystals of lithium niobate (LiNbO 3 ; hereinafter referred to as LN).
- the piezoelectric layer 2 is made of a single crystal of LN.
- the piezoelectric layer 2 has piezoelectric properties, and when a high-frequency signal is applied to the IDT electrode 4, an elastic wave propagating through the piezoelectric layer 2 is excited.
- the elastic wave excited as the main resonance is at least one of a plate wave and a bulk wave. Which type of elastic wave, a plate wave or a bulk wave, is used as the main resonance may be set according to the desired frequency characteristics, etc. Examples of types of plate waves include Lamb waves and SH waves. Examples of types of bulk waves include those that propagate in the planar direction of the piezoelectric layer 2 and those that propagate in the thickness direction of the piezoelectric layer 2.
- the plate wave used as the main resonance is a Lamb wave.
- the propagation mode of the plate wave or bulk wave excited as the main resonance is not particularly limited and may be set according to the desired frequency characteristics.
- the Euler angles ( ⁇ , ⁇ , ⁇ ) of the piezoelectric single crystal used as the piezoelectric layer 2 may be appropriately designed according to the type and propagation mode of the plate wave or bulk wave used as the main resonance. For example, if the piezoelectric layer 2 is LT, the A1 mode of the Lamb wave can be effectively used as the main resonance by setting the Euler angles ( ⁇ , ⁇ , ⁇ ) to (0° ⁇ 10°, 0° to 55°, 0° ⁇ 10°) or a crystallographically equivalent angle.
- the Euler angles may be particularly (0° ⁇ 10°, 24° ⁇ 10°, 0° ⁇ 10°) or a crystallographically equivalent angle.
- the A1 mode of the Lamb wave can be effectively used as the main resonance by setting the Euler angles ( ⁇ , ⁇ , ⁇ ) to (0° ⁇ 10°, 0° to 55°, 0° ⁇ 10°) or a crystallographically equivalent angle.
- the Euler angles may be particularly (0° ⁇ 10°, 30° ⁇ 10°, 0° ⁇ 10°) or a crystallographically equivalent angle.
- the propagation mode of the Lamb wave used as the main resonance is the A1 mode, and the Euler angles ( ⁇ , ⁇ , ⁇ ) of LN are (0°, 30°, 0°).
- the primary resonance refers to, for example, the resonance with the smallest minimum impedance value (or, from another point of view, the impedance at the resonant frequency) among multiple resonances with different resonant frequencies that occur in the elastic wave resonator 1.
- a specific elastic wave e.g., a plate wave
- the main component is, for example, a component that occupies 50% or more or 80% or more of the energy of the elastic wave at the resonant frequency.
- both a plate wave and a bulk wave are used as the primary resonance, it is sufficient that the total energy of both has the above-mentioned value (each may be less than the above-mentioned lower limit).
- the thickness of the piezoelectric layer 2 expressed using a wavelength ⁇ described below, may be ⁇ or less, 0.50 ⁇ or less, 0.30 ⁇ or less, or 0.20 ⁇ or less. By setting the thickness of the piezoelectric layer 2 to ⁇ or less, for example, plate waves can be effectively used as the main resonance. There is no particular lower limit, and the piezoelectric layer 2 may be made as thin as possible. The thickness of the piezoelectric layer 2 may be, for example, 0.05 ⁇ or more, 0.10 ⁇ or more, or 0.15 ⁇ or more. The above lower limit and upper limit may be combined in any combination. Specifically, in one embodiment of the present disclosure, the thickness of the piezoelectric layer 2 is 0.153 ⁇ .
- the material of the support substrate 3 is not particularly limited.
- the material of the support substrate 3 may be a material having a smaller linear expansion coefficient than that of the piezoelectric layer 2.
- the support substrate 3 it is possible to reduce deformation of the piezoelectric layer 2 due to temperature changes and reduce changes in the resonance characteristics of the acoustic wave resonator 1 due to temperature changes.
- Examples of materials for such a support substrate 3 include sapphire (Al 2 O 3 ), silicon carbide (SiC), and silicon (Si).
- the support substrate 3 is Si.
- the acoustic reflection layer 5 is located on the lower surface 2b side of the piezoelectric layer 2, and is located between the piezoelectric layer 2 and the support substrate 3.
- the acoustic impedance of the acoustic reflection layer 5 is different from the acoustic impedance of the piezoelectric layer 2. In this case, a difference in acoustic impedance occurs between the piezoelectric layer 2 and the acoustic reflection layer 5, so that the excited elastic waves can be effectively trapped in the piezoelectric layer 2.
- the IDT electrode 4 is located on the upper surface 2a side of the piezoelectric layer 2.
- the IDT electrode 4 is made of a conductive material.
- the IDT electrode 4 may be made of various conductive materials such as aluminum (Al), copper (Cu), platinum (Pt), molybdenum (Mo), gold (Au), or alloys thereof.
- the IDT electrode 4 may be made by laminating multiple layers of the various conductive materials described above. When the IDT electrode 4 is made by laminating multiple layers, a diffusion prevention layer made of a metal such as titanium (Ti) or a dielectric may be interposed at the lamination interface.
- the layer located on the side of the piezoelectric layer 2 may be a base layer made of a metal such as titanium (Ti) or a dielectric.
- the IDT electrode 4 is Al.
- the IDT electrode 4 has a comb-shaped electrode 41.
- the comb-shaped electrode 41 includes a plurality of electrode fingers 412.
- the comb-shaped electrode 41 also includes a pair of bus bars 411 that are positioned in a direction intersecting the arrangement direction of the plurality of electrode fingers 412 and are connected to the plurality of electrode fingers 412.
- the plurality of electrode fingers 412 are arranged such that the plurality of electrode fingers 412a connected to one bus bar 411a and the plurality of electrode fingers 412b connected to the other bus bar 411b interdigitate with each other.
- the comb-shaped electrode 41 may also include a plurality of dummy electrode fingers 413.
- the plurality of dummy electrode fingers 413 include, between each of the plurality of electrode fingers 412, a plurality of dummy electrode fingers 413a connected to one bus bar 411a and facing the electrode fingers 412b extending from the other bus bar 411b, and a plurality of dummy electrode fingers 413b connected to one bus bar 411b and facing the electrode fingers 412a extending from the other bus bar 411a.
- opposing does not necessarily mean that the opposing surfaces are parallel to each other; for example, one surface may be tilted toward the other surface.
- the length of the electrode fingers 412 in the Y-axis direction may be set appropriately depending on the required electrical characteristics, etc. For example, the lengths of the electrode fingers 412 in the Y-axis direction are equal to each other.
- the IDT electrode 4 may be apodized, in which the length of the electrode fingers 412 in the Y-axis direction (or, from another perspective, the cross width) changes depending on the position in the X-axis direction.
- the repeat pitch (repetition interval) of the multiple electrode fingers 412 is P, and the width of the electrode fingers 412 is W.
- P and W are designed appropriately according to the desired frequency characteristics.
- P is constant, but is not limited to this example.
- P may be designed to gradually increase, or may be designed to have multiple types of pitch in stages. If there are multiple pitches, P may be defined as the average value of pitches measured at 5 to 10 locations, or the largest pitch may be defined as P.
- P is arbitrary.
- P may be 0.5 ⁇ m or more, or 1 ⁇ m or more, or 10 ⁇ m or less, 5 ⁇ m or less, or 2 ⁇ m or less.
- the above lower limit examples and upper limit examples may be combined in any combination.
- the repeat pitch of the electrode fingers 412 is 1.5 ⁇ m.
- W/P (Duty) is also arbitrary.
- Duty may be 0.2 or more, or 0.3 or more, or 0.6 or less, 0.5 or less, or 0.4 or less. Any combination of the above lower limit and upper limit examples may be used. In one specific embodiment of the present disclosure, Duty is 0.3.
- the thickness of the electrode fingers 412 of the IDT electrode 4 is defined as T.
- T is constant, but is not limited to this example.
- T may vary depending on the electrode finger 412 being measured.
- T may be defined as the average value of the thicknesses of the electrode fingers 412 located near both ends in the arrangement direction and the electrode fingers 412 located near the center, among the multiple electrode fingers 412, or T may be defined as the thickness of the thickest electrode finger 412.
- T may vary depending on the part of the electrode finger 412 being measured. In such a case, T may be defined as the average value of the thicknesses measured at any number of points on the electrode fingers 412, or T may be defined as the thickness of the thickest part of the electrode fingers 412.
- T is arbitrary.
- T may be 1 nm or more, or 2 nm or more, or 200 nm or less, or 100 nm or less. Any of the above lower limit examples and upper limit examples may be combined.
- the resonance frequency fr of the elastic wave resonator 1 is roughly equivalent to the frequency of the elastic wave used as the main resonance among the excited elastic waves.
- the anti-resonance frequency fa is determined by the resonance frequency fr and the capacitance ratio.
- the capacitance ratio is determined mainly by the piezoelectric layer 2, and is adjusted by the number of electrode fingers 412, the crossing width, the film thickness, etc.
- the dependence of the resonance frequency fr on the pitch P may be low, as in the case of bulk waves propagating in the thickness direction of the piezoelectric layer 2.
- ⁇ when defining the thickness of the piezoelectric layer 2 only needs to be twice the pitch P, and may deviate from the wavelength of the elastic wave excited as the main resonance.
- the elastic wave resonator 1 in one embodiment of the present disclosure may further include (or may not include) a pair of reflectors 42 located on the upper surface 2a side of the piezoelectric layer 2.
- the pair of reflectors 42 are located on both sides of the comb-shaped electrode 41 in the X-axis direction.
- the reflector 42 includes a pair of reflector bus bars 421 facing each other and a plurality of strip electrodes 422 extending between the pair of reflector bus bars 421.
- FIG. 3 is an enlarged view of a portion of a schematic cross-sectional view of an elastic wave resonator 1 according to an embodiment of the present disclosure.
- the piezoelectric layer 2 has a first region 21 and a second region 22.
- the first region 21 is a region that overlaps with the electrode fingers 412 when viewed from a plane in the Z-axis direction
- the second region 22 is a region that does not overlap with the electrode fingers 412 when viewed from a plane in the Z-axis direction.
- the thickness of the piezoelectric layer 2 in the first region 21 in the Z-axis direction is defined as L1
- the thickness of the piezoelectric layer 2 in the second region 22 in the Z-axis direction is defined as L2.
- L1 does not necessarily have to be strictly constant. If L1 is not constant, for example, L1 may represent the thickness of the thickest part of the first region 21, or L1 may be defined as the average thickness of the piezoelectric layer 2 measured at any number of points in the first region 21 that overlaps with the electrode finger 412 in a plan view.
- L2 does not necessarily have to be strictly constant. If L2 is not constant, for example, the thickness of the thickest part of the second region 22 may be used as L2, or L2 may be defined as the average thickness of the piezoelectric layer 2 measured at any number of points in the second region 22 sandwiched between the electrode fingers 412a and 412b in a plan view.
- the elastic wave resonator 1 uses at least one of plate waves and bulk waves as the main resonance.
- the resonance characteristics of plate waves and bulk waves are highly dependent on the thickness of the piezoelectric layer 2. Since the IDT electrode 4 protrudes from the top surface 2a of the piezoelectric layer 2, when the piezoelectric layer 2 and the IDT electrode 4 are regarded as an integral film, the thickness of the film differs between the portion where the IDT electrode 4 is located and the portion where the IDT electrode 4 is not located. In this case, new spurious may occur due to the vibration of the electrode fingers 412 of the protruding IDT electrode 4.
- the amount of protrusion of the electrode fingers 412 from the top surface 2a can be reduced.
- the amount of protrusion can be rephrased as the length of the electrode fingers 412 protruding from the first surface (top surface 2a) in the first direction (Z-axis direction) or the height of the electrode fingers 412 from the first surface.
- FIG. 4 is a diagram showing the simulation results of the frequency characteristics of the elastic wave resonator 1 in Example 1 of the present disclosure.
- FIG. 5 is a diagram showing the simulation results of the frequency characteristics of an elastic wave resonator as Comparative Example 1.
- Example 1 L1 and L2 are both 460 nm, and T is 2 nm.
- Comparative Example 1 L1 and L2 are both 460 nm, and T is 120 nm. Therefore, the amount of protrusion of the electrode fingers 412 from the top surface 2a in the Z-axis direction is smaller in Example 1 than in Comparative Example 1.
- spurious S1 occurs near 5525 MHz
- spurious S2 occurs near 7175 MHz
- spurious S3 occurs near 4370 MHz.
- the vibration modes of each of spurious S1, S2, and S3 were analyzed.
- the most dominant vibration mode of spurious S1 had the greatest vibration intensity in the part of electrode finger 412.
- the most dominant vibration mode of spurious S2 had the greatest vibration intensity in the part of electrode finger 412.
- the most dominant vibration mode of spurious S3 had the greatest vibration intensity in the part of piezoelectric layer 2 where electrode finger 412 was not located.
- the spurious noises S1 and S2 are most predominantly caused by a vibration mode in which the electrode fingers 412 vibrate, and the spurious noise S3 is most predominantly caused by a vibration mode unrelated to the vibration of the electrode fingers 412.
- the spurious noises S1 and S2 are caused by the vibration of the electrode fingers 412, and the spurious noise S3 is not caused by the vibration of the electrode fingers 412.
- Example 1 the spurious S1 and spurious S2 caused by vibration of the electrode fingers 412 can be reduced compared to Comparative Example 1. Therefore, according to one embodiment of the present disclosure, an elastic wave resonator with excellent frequency characteristics can be provided.
- the sum of the thickness of the first region 21 and the thickness of the electrode fingers 412 may be 1.28 times or less the thickness of the second region 22.
- L1, L2, and T may satisfy the following formula (1). (L1+T) ⁇ 1.28 ⁇ L2...(1) With this configuration, the amount of protrusion of the electrode fingers 412 is reduced, so that the occurrence of spurious signals caused by vibration of the electrode fingers 412 can be reduced.
- FIGS. 6A and 6B show the change in spurious intensity when the total thickness of the first region 21 and electrode fingers 412 is changed relative to the thickness of the second region 22 in one embodiment of the present disclosure.
- the horizontal axis shows the value of (L1+T)/L2, and the vertical axis shows the spurious phase (°).
- the spurious phase shown in FIG. 6A is the phase of spurious S1
- the spurious phase shown in FIG. 6B is the phase of spurious S2.
- the phase of the spurious caused by the vibration of the electrode fingers 412 is significantly reduced. Therefore, in the case of a configuration that satisfies formula (1), an elastic wave resonator with excellent frequency characteristics can be provided. Note that the sum of the thickness of the first region 21 and the thickness of the electrode fingers 412 may be more than 1 time the thickness of the second region 22.
- FIG. 7 shows the change in frequency and phase of each resonance when the total value of the thickness of the first region 21 and the electrode fingers 412 is changed relative to the thickness of the second region 22.
- the sum of the thickness of the first region 21 and the thickness of the electrode fingers 412 may be 1.20 times or less the thickness of the second region 22.
- L1, L2, and T may satisfy the following formula (2). (L1+T) ⁇ 1.20 ⁇ L2...(2) With this configuration, the amount of protrusion of the electrode fingers 412 is further reduced, so that the occurrence of spurious signals caused by vibration of the electrode fingers 412 can be further reduced.
- the sum of the thickness of the first region 21 and the thickness of the electrode fingers 412 may be 1.07 times or less the thickness of the second region 22.
- L1, L2, and T may satisfy the following formula (3). (L1+T) ⁇ 1.07 ⁇ L2...(3) With this configuration, the amount of protrusion of the electrode fingers 412 is further reduced, so that the occurrence of spurious signals caused by vibration of the electrode fingers 412 can be further reduced.
- FIG. 8 is an enlarged view of a part of a schematic cross-sectional view of an elastic wave resonator 1 according to an embodiment of the present disclosure.
- a groove is formed on the upper surface 2a of the piezoelectric layer 2, and at least a part of the electrode fingers 412 is located inside the groove.
- the thickness of the piezoelectric layer 2 in the second region 22 is greater than the thickness of the piezoelectric layer 2 in the first region 21.
- the amount of protrusion of the electrode fingers 412 from the upper surface 2a can be reduced without reducing the thickness of the electrode fingers 412. Therefore, an elastic wave resonator with excellent frequency characteristics can be provided while reducing the electrical resistance value compared to when the thickness of the electrode fingers 412 is reduced.
- the protrusion amount of the electrode fingers 412 from the top surface 2a in the Z-axis direction is smaller in Example 2 than in Comparative Example 2. Furthermore, in Example 2, the protrusion amount of the electrode fingers 412 from the top surface 2a in the Z-axis direction is 100 nm or less.
- spurious S1 occurs near 5525 MHz
- spurious S2 occurs near 7175 MHz
- spurious S3 occurs near 4370 MHz.
- the spurious S1 and spurious S2 are caused by the vibration of the electrode fingers 412, while the spurious S3 is not caused by the vibration of the electrode fingers 412.
- FIG. 11 shows the change in frequency and phase of each resonance when the total value of the thickness of the first region 21 and the electrode fingers 412 is changed relative to the thickness of the second region 22.
- the sum of the thickness of the first region 21 and the thickness of the electrode fingers 412 may be 1.20 times or less than the thickness of the second region 22.
- L1, L2, and T may satisfy formula (2).
- the amount of protrusion of the electrode fingers 412 is further reduced, so that the occurrence of spurious noise caused by the vibration of the electrode fingers 412 can be further reduced.
- the sum of the thickness of the first region 21 and the thickness of the electrode fingers 412 may be 1.07 times or less than the thickness of the second region 22.
- L1, L2, and T may satisfy formula (3). With such a configuration, the amount of protrusion of the electrode fingers 412 is further reduced, so that the occurrence of spurious noise caused by the vibration of the electrode fingers 412 can be further reduced.
- the sum of the thickness of the first region 21 and the thickness of the electrode fingers 412 may be greater than the thickness of the second region 22.
- the former may be greater than 1 time (ideally 1.000... times) the latter.
- the former may also be 1.00 times or more the latter.
- 1.00 may include 0.995 or 1.004 (a measurement value that is rounded to 1.00).
- the ratio of T to L2 is arbitrary.
- T/L2 is greater than 0 (ideally 0.000).
- T may be 0.01 times or more, 0.10 times or more, or 0.20 times or more relative to L2, and may be 0.50 times or less, 0.40 times or less, 0.30 times or less, 0.20 times or 0.10 times or less.
- the above lower and upper limits may be combined in any way so long as no contradiction occurs.
- the acoustic reflection layer 5 is a single type of layer, but is not limited to this example. Other embodiments of the present disclosure are shown in FIG. 12A and FIG. 12B.
- the acoustic reflection layer 5 may be configured by alternately stacking a plurality of low acoustic impedance layers 51 and a plurality of high acoustic impedance layers 52. The acoustic impedance of the low acoustic impedance layer 51 is smaller than the acoustic impedance of the piezoelectric layer 2.
- the acoustic impedance of the high acoustic impedance layer 52 is larger than the acoustic impedance of the low acoustic impedance layer 51.
- An example of the low acoustic impedance layer 51 is silicon oxide (SiO 2 ), and an example of the high acoustic impedance layer 52 is hafnium oxide (HfO 2 ), tantalum oxide (Ta 2 O 5 ), zirconium oxide (ZrO 2 ), and the like.
- the acoustic reflection layer 5 is a solid layer, but this is not limited to this example.
- a void 53 may be provided between the piezoelectric layer 2 and the support substrate 3, as shown in FIG. 12B.
- the acoustic reflection layer 5 may be a gas present in the void 53.
- the void 53 is located on the lower surface 2b side of the piezoelectric layer 2, at a position overlapping the first region 21 and the second region 22 when viewed in a plan view.
- Gas is present in the void 53.
- the gas may be air or an inert gas such as nitrogen or argon. With this configuration, the gas present in the void 53 acts as an acoustic reflection layer, effectively reducing the leakage of elastic waves from the lower surface 2b side of the piezoelectric layer 2.
- the size and depth of the void 53 may be set as appropriate.
- the acoustic wave resonator 1 may include an insulating additional film located above the IDT electrode 4 in the Z-axis direction.
- the acoustic wave resonator 1 may include an insulating base film located below the IDT electrode 4 in the Z-axis direction. Examples of such additional films and base films include SiO2 . Such additional films and base films do not need to be taken into consideration when measuring the thicknesses of the electrode fingers 412 and the piezoelectric layer 2.
- FIGS. 13A and 13B Another embodiment of the present disclosure is shown in FIGS. 13A and 13B.
- the pitch P11 of the multiple electrode fingers 412 of the elastic wave resonator 11 may be different from the pitch P12 of the multiple electrode fingers 412 of the elastic wave resonator 12.
- the thickness T of the multiple electrode fingers 412 may be different between the elastic wave resonator 11 and the elastic wave resonator 12.
- the relationship between T, L1, and L2 may satisfy any of the relationships in formulas (1) to (3) in at least one of the elastic wave resonators 11 and 12.
- the thickness of the piezoelectric layer 2 may be different between elastic wave resonators 11 and 12.
- either or both of L1 and L2 may be different between elastic wave resonators 11 and 12.
- the relationship between T, L1, and L2 may satisfy any of the relationships in formulas (1) to (3) in at least one of elastic wave resonators 11 and 12.
- (Example of use of elastic wave resonator 1: duplexer) 14 is a circuit diagram showing a schematic configuration of a duplexer 101 as an example of the use of the elastic wave resonator 1.
- the comb-shaped electrode 41 is shown diagrammatically in a bifurcated fork shape, and the reflector 42 is represented by a single line bent at both ends.
- the splitter 101 has, for example, a transmit filter 105 that filters the transmit signal from the transmit terminal 103 and outputs it to the antenna terminal 102, and a receive filter 106 that filters the receive signal from the antenna terminal 102 and outputs it to the receive terminal 104.
- the transmit filter 105 and the receive filter 106 are configured, for example, as ladder-type filters in which multiple resonators are connected in a ladder configuration. That is, the transmit filter 105 has one or more series resonators connected in series between the transmit terminal 103 and the antenna terminal 102, and one or more parallel resonators that connect the series arm to a reference potential.
- the elastic wave resonator 1 in one embodiment of the present disclosure may be used as at least one of the series resonators or parallel resonators in the transmit filter 105 and the receive filter 106.
- FIG. 14 is merely one example of the configuration of the splitter 101, and the splitter 101 is not limited to the configuration in FIG. 14.
- the transmit filter 105 may be configured as a multimode filter.
- both the transmit filter 105 and the receive filter 106 are elastic wave filters, but this configuration is not limiting.
- either the transmit filter 105 or the receive filter 106 may be an elastic wave filter that uses an elastic wave resonator 1, and the other may be an LC filter that includes one or more inductors and one or more capacitors.
- splitter 101 includes transmit filter 105 and receive filter 106
- splitter 101 is not limited to this configuration.
- splitter 101 may be a diplexer or a multiplexer including three or more filters.
- (Example of use of elastic wave resonator 1: communication device) 15 is a block diagram showing a main part of a communication device 111 as an example of a use of the acoustic wave resonator 1 and the duplexer 101.
- the communication device 111 includes the duplexer 101, and performs wireless communication using radio waves.
- a transmission information signal TIS containing information to be transmitted is modulated and frequency-raised (converted to a high-frequency signal of the carrier frequency) by an RF-IC (Radio Frequency Integrated Circuit) 113 to produce a transmission signal TS.
- Unnecessary components outside the transmission passband are removed from the transmission signal TS by a bandpass filter 115a, amplified by an amplifier 114a, and input to the transmission terminal 103.
- the transmission filter 105 then removes unnecessary components outside the transmission passband from the input transmission signal TS, and outputs the removed transmission signal TS from the antenna terminal 102 to the antenna 112.
- the antenna 112 converts the input transmission signal TS into a wireless signal and transmits it.
- a radio signal received by the antenna 112 is converted by the antenna 112 into a received signal RS and input to the antenna terminal 102.
- the receiving filter 106 removes unnecessary components outside the receiving passband from the input received signal RS and outputs it from the receiving terminal 104 to the amplifier 114b.
- the output received signal RS is amplified by the amplifier 114b, and unnecessary components outside the receiving passband are removed by the bandpass filter 115b.
- the received signal RS is then frequency-downshifted and demodulated by the RF-IC 113 to become a received information signal RIS.
- the transmitted information signal TIS and the received information signal RIS may be low-frequency signals containing appropriate information, for example, analog audio signals or digitized audio signals.
- the passband of the wireless signal may be set as appropriate, and in one embodiment of the present disclosure, a relatively high-frequency passband is also possible.
- the modulation method may be phase modulation, amplitude modulation, frequency modulation, or a combination of two or more of these.
- the circuit method shown in FIG. 15 is a direct conversion method, it is not limited to this example and may be, for example, a double superheterodyne method. Also, FIG. 15 shows only the essential parts in a schematic manner, and a low-pass filter or an isolator may be added at an appropriate position, and the position of an amplifier may be changed.
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Abstract
This elastic wave resonator comprises a piezoelectric layer having piezoelectric properties, and an IDT electrode. The IDT electrode has a plurality of electrode fingers and is in direct or indirect contact with the piezoelectric layer. In plan view, the piezoelectric layer has a first region that overlaps the electrode fingers, and a second region that does not overlap the electrode fingers. The total of the thickness of the piezoelectric layer in the first region and the thickness of the electrode fingers is no more than 1.28 times the thickness of the piezoelectric layer in the second region. The elastic wave resonator excites at least one of plate waves or bulk waves as main resonance.
Description
本開示は、弾性波を利用する電子部品である弾性波共振子および当該弾性波共振子を含む通信装置に関する。
This disclosure relates to an elastic wave resonator, which is an electronic component that utilizes elastic waves, and a communication device that includes the elastic wave resonator.
下記特許文献1では、圧電層と、圧電層上に位置しているIDT(interdigital transducer)電極とを有し、弾性波としてA1モードの板波を用いる弾性波装置が開示されている。IDT電極は、ピッチpで配列されている複数の電極指を有している。ピッチpが小さいほど、共振周波数が高くなる。特許文献1の弾性波装置は、従来と同等のピッチpで、従来よりも高周波領域での共振を実現することができる。
Patent Document 1 below discloses an elastic wave device that has a piezoelectric layer and an IDT (interdigital transducer) electrode located on the piezoelectric layer, and uses an A1 mode plate wave as the elastic wave. The IDT electrode has multiple electrode fingers arranged at a pitch p. The smaller the pitch p, the higher the resonant frequency. The elastic wave device of Patent Document 1 can achieve resonance in a higher frequency range than conventional devices, with a pitch p equivalent to that of conventional devices.
本開示の一実施形態に係る弾性波共振子は、圧電性を有する圧電体層と、IDT電極とを備える。IDT電極は、複数の電極指を有し、圧電体層に直接的または間接的に接する。圧電体層は、平面視において、電極指と重なる第1領域と電極指と重ならない第2領域と、を有する。第1領域の圧電体層の厚みと、電極指の厚みの合計は、第2領域の圧電体層の厚みに対して1.28倍以下である。弾性波共振子は、主共振として、板波およびバルク波の少なくとも一方を励振する。
An elastic wave resonator according to one embodiment of the present disclosure includes a piezoelectric layer having piezoelectric properties and an IDT electrode. The IDT electrode has a plurality of electrode fingers and is in direct or indirect contact with the piezoelectric layer. The piezoelectric layer has a first region overlapping with the electrode fingers and a second region not overlapping with the electrode fingers in a planar view. The sum of the thickness of the piezoelectric layer in the first region and the thickness of the electrode fingers is 1.28 times or less the thickness of the piezoelectric layer in the second region. The elastic wave resonator excites at least one of a plate wave and a bulk wave as a primary resonance.
本開示の一実施形態に係る通信装置は、アンテナと、アンテナに接続されている弾性波フィルタと、弾性波フィルタに接続されているIC(integrated circuit)と、を有する。弾性波フィルタは、上記の弾性波共振子を含む。
A communication device according to one embodiment of the present disclosure has an antenna, an acoustic wave filter connected to the antenna, and an integrated circuit (IC) connected to the acoustic wave filter. The acoustic wave filter includes the acoustic wave resonator described above.
以下、本開示の一実施形態に係る弾性波共振子および通信装置について、図面を参照して説明する。なお、以下の説明で用いられる図は模式的な図であり、図面上の寸法比率等は現実の弾性波共振子および通信装置とは必ずしも一致していない。
Below, an elastic wave resonator and a communication device according to an embodiment of the present disclosure will be described with reference to the drawings. Note that the figures used in the following description are schematic diagrams, and the dimensional ratios and the like in the drawings do not necessarily match those of the actual elastic wave resonator and communication device.
図面には、便宜上、X軸、Y軸およびZ軸からなる直交座標系を付すことがある。本開示の一実施形態に係る弾性波共振子1は、いずれの方向が上方または下方とされてもよい。ただし、便宜上、Z軸方向を上下方向として上面または下面の語を用いることがある。なお、X軸は、後述する圧電体層2を伝搬する弾性波のうち主共振として利用する弾性波の伝搬方向と平行になるように定義され、Y軸は、圧電体層2の上面に平行かつX軸に直交するように定義され、Z軸は、圧電体層2の上面に直交するように定義されている。
For convenience, the drawings may be accompanied by an orthogonal coordinate system consisting of an X-axis, a Y-axis, and a Z-axis. In the elastic wave resonator 1 according to an embodiment of the present disclosure, either direction may be considered to be upward or downward. However, for convenience, the terms upper surface and lower surface may be used with the Z-axis direction being the up-down direction. Note that the X-axis is defined to be parallel to the propagation direction of an elastic wave used as the main resonance among the elastic waves propagating through the piezoelectric layer 2 described below, the Y-axis is defined to be parallel to the upper surface of the piezoelectric layer 2 and perpendicular to the X-axis, and the Z-axis is defined to be perpendicular to the upper surface of the piezoelectric layer 2.
なお、本明細書に記載する各実施形態は例示的なものであり、異なる実施形態間において部分的に置換してもよい。また、異なる実施形態を部分的に組み合わせてもよい。
Note that each embodiment described in this specification is merely illustrative, and different embodiments may be partially substituted with each other. Also, different embodiments may be partially combined.
図1は本開示の一実施形態に係る弾性波共振子1の模式的な断面図である。本開示の一実施形態に係る弾性波共振子1は、図1に示すように、圧電体層2、支持基板3、音響反射層5およびIDT電極4を有している。
FIG. 1 is a schematic cross-sectional view of an elastic wave resonator 1 according to an embodiment of the present disclosure. As shown in FIG. 1, the elastic wave resonator 1 according to an embodiment of the present disclosure has a piezoelectric layer 2, a support substrate 3, an acoustic reflection layer 5, and an IDT electrode 4.
圧電体層2は、Z軸を上下方向として、Z軸に垂直な上面2aと下面2bを備える。例えば上面2aを第1面、下面2bを第2面と呼んでもよい。圧電体層2の下面2b側には、後述する音響反射層5および支持基板3が位置している。圧電体層2の上面2a側には、後述するIDT電極4が位置している。
The piezoelectric layer 2 has an upper surface 2a and a lower surface 2b perpendicular to the Z axis, with the Z axis being the up-down direction. For example, the upper surface 2a may be called the first surface, and the lower surface 2b may be called the second surface. An acoustic reflection layer 5 and a support substrate 3, which will be described later, are located on the lower surface 2b side of the piezoelectric layer 2. An IDT electrode 4, which will be described later, is located on the upper surface 2a side of the piezoelectric layer 2.
圧電体層2には、圧電性を有する種々の材料を使用することができる。圧電性を有する材料として、例えばタンタル酸リチウム(LiTaO3;以下LTという)の単結晶および、ニオブ酸リチウム(LiNbO3;以下LNという)の単結晶等が挙げられる。本開示の一実施形態においては、具体的には、圧電体層2はLNの単結晶によって構成されている。
Various materials having piezoelectricity can be used for the piezoelectric layer 2. Examples of materials having piezoelectricity include single crystals of lithium tantalate (LiTaO 3 ; hereinafter referred to as LT) and single crystals of lithium niobate (LiNbO 3 ; hereinafter referred to as LN). In one embodiment of the present disclosure, specifically, the piezoelectric layer 2 is made of a single crystal of LN.
圧電体層2は圧電性を有しており、IDT電極4に高周波信号が印加されると、圧電体層2を伝搬する弾性波が励振される。本開示の一実施形態において、主共振として励振される弾性波は、板波およびバルク波の少なくとも一方である。板波もしくはバルク波のうち、どの種類の弾性波を主共振として利用するかは、求められる周波数特性等に応じて設定されてもよい。板波の種類として、例えばLamb波およびSH波等が例示できる。バルク波の種類として、例えば、圧電体層2の平面方向に伝搬するもの、および圧電体層2の厚み方向に伝搬するものを例示できる。具体的に、本開示の一実施形態の弾性波共振子1において、主共振として利用される板波は、Lamb波である。
The piezoelectric layer 2 has piezoelectric properties, and when a high-frequency signal is applied to the IDT electrode 4, an elastic wave propagating through the piezoelectric layer 2 is excited. In one embodiment of the present disclosure, the elastic wave excited as the main resonance is at least one of a plate wave and a bulk wave. Which type of elastic wave, a plate wave or a bulk wave, is used as the main resonance may be set according to the desired frequency characteristics, etc. Examples of types of plate waves include Lamb waves and SH waves. Examples of types of bulk waves include those that propagate in the planar direction of the piezoelectric layer 2 and those that propagate in the thickness direction of the piezoelectric layer 2. Specifically, in the elastic wave resonator 1 of one embodiment of the present disclosure, the plate wave used as the main resonance is a Lamb wave.
本開示の一実施形態において、主共振として励振される板波もしくはバルク波の伝搬モードは特に限定されず、求められる周波数特性に応じて設定されてもよい。圧電体層2として使用される圧電性単結晶のオイラー角(φ,θ,ψ)は主共振として利用する板波もしくはバルク波の種類および伝搬モード等に応じて適宜設計されてもよい。例えば、圧電体層2がLTであれば、オイラー角(φ,θ,ψ)を(0°±10°,0°以上55°以下,0°±10°)またはこれと結晶学的に等価な角度に設定することで、主共振としてLamb波のA1モードを効果的に利用することができる。また、圧電体層2がLTの場合、オイラー角は特に(0°±10°,24°±10°,0°±10°)またはこれと結晶学的に等価な角度であってもよい。圧電体層2がLNであれば、オイラー角(φ,θ,ψ)を(0°±10°,0°以上55°以下,0°±10°)またはこれと結晶学的に等価な角度に設定することで、主共振としてLamb波のA1モードを効果的に利用することができる。また、圧電体層2がLNの場合、オイラー角は特に(0°±10°,30°±10°,0°±10°)またはこれと結晶学的に等価な角度であってもよい。具体的に、本開示の一実施形態において、主共振として利用されるLamb波の伝搬モードはA1モードであり、LNのオイラー角(φ,θ,ψ)は(0°,30°,0°)である。
In one embodiment of the present disclosure, the propagation mode of the plate wave or bulk wave excited as the main resonance is not particularly limited and may be set according to the desired frequency characteristics. The Euler angles (φ, θ, ψ) of the piezoelectric single crystal used as the piezoelectric layer 2 may be appropriately designed according to the type and propagation mode of the plate wave or bulk wave used as the main resonance. For example, if the piezoelectric layer 2 is LT, the A1 mode of the Lamb wave can be effectively used as the main resonance by setting the Euler angles (φ, θ, ψ) to (0°±10°, 0° to 55°, 0°±10°) or a crystallographically equivalent angle. In addition, if the piezoelectric layer 2 is LT, the Euler angles may be particularly (0°±10°, 24°±10°, 0°±10°) or a crystallographically equivalent angle. If the piezoelectric layer 2 is LN, the A1 mode of the Lamb wave can be effectively used as the main resonance by setting the Euler angles (φ, θ, ψ) to (0°±10°, 0° to 55°, 0°±10°) or a crystallographically equivalent angle. In addition, when the piezoelectric layer 2 is LN, the Euler angles may be particularly (0°±10°, 30°±10°, 0°±10°) or a crystallographically equivalent angle. Specifically, in one embodiment of the present disclosure, the propagation mode of the Lamb wave used as the main resonance is the A1 mode, and the Euler angles (φ, θ, ψ) of LN are (0°, 30°, 0°).
主共振は、例えば、弾性波共振子1において生じる、互いに共振周波数が異なる複数の共振のうち、インピーダンスの極小値(別の観点では共振周波数におけるインピーダンス)が最も小さいものを指す。また、主共振として特定の弾性波(例えば板波)を利用するというとき、例えば、上記特定の弾性波が、主共振を生じている弾性波の主たる成分であることをいう。主たる成分は、例えば、共振周波数における弾性波のエネルギーの50%以上または80%以上を占める成分である。主共振として板波およびバルク波の双方を利用するというときは、双方のエネルギー全体が上記のような値であればよい(それぞれは上記の下限未満であってもよい。)。
The primary resonance refers to, for example, the resonance with the smallest minimum impedance value (or, from another point of view, the impedance at the resonant frequency) among multiple resonances with different resonant frequencies that occur in the elastic wave resonator 1. In addition, when a specific elastic wave (e.g., a plate wave) is used as the primary resonance, it means, for example, that the specific elastic wave is the main component of the elastic wave that is causing the primary resonance. The main component is, for example, a component that occupies 50% or more or 80% or more of the energy of the elastic wave at the resonant frequency. When both a plate wave and a bulk wave are used as the primary resonance, it is sufficient that the total energy of both has the above-mentioned value (each may be less than the above-mentioned lower limit).
圧電体層2の厚みは、後述する波長λを用いて表すと、λ以下、0.50λ以下、0.30λ以下または0.20λ以下であってもよい。圧電体層2の厚みをλ以下に設定することで、例えば、板波を主共振として効果的に利用することができる。下限は特に限定されず、圧電体層2は極力薄くされても構わない。圧電体層2の厚みは、例えば、0.05λ以上、0.10λ以上または0.15λ以上とされてもよい。上記の下限と上限とは、任意のもの同士が組み合わされてもよい。具体的に、本開示の一実施形態においては、圧電体層2の厚みは、0.153λである。
The thickness of the piezoelectric layer 2, expressed using a wavelength λ described below, may be λ or less, 0.50λ or less, 0.30λ or less, or 0.20λ or less. By setting the thickness of the piezoelectric layer 2 to λ or less, for example, plate waves can be effectively used as the main resonance. There is no particular lower limit, and the piezoelectric layer 2 may be made as thin as possible. The thickness of the piezoelectric layer 2 may be, for example, 0.05λ or more, 0.10λ or more, or 0.15λ or more. The above lower limit and upper limit may be combined in any combination. Specifically, in one embodiment of the present disclosure, the thickness of the piezoelectric layer 2 is 0.153λ.
支持基板3は、圧電体層2の下面2b側に位置する。支持基板3の厚みは特に限定されず、例えば支持基板3の厚みは、圧電体層2の厚みよりも厚くてもよい。
The support substrate 3 is located on the lower surface 2b side of the piezoelectric layer 2. The thickness of the support substrate 3 is not particularly limited, and for example, the thickness of the support substrate 3 may be thicker than the thickness of the piezoelectric layer 2.
支持基板3の材料は特に限定されない。例えば、支持基板3の材料を、圧電体層2に比べて線膨張係数の小さい材料としてもよい。支持基板3をこのような材料とすることで、温度変化による圧電体層2の変形を低減し、温度変化による弾性波共振子1の共振特性の変化を低減することができる。このような支持基板3の材料として、例えば、サファイア(Al2O3)、炭化ケイ素(SiC)およびシリコン(Si)等を例示できる。具体的に、本開示の一実施形態において、支持基板3はSiである。
The material of the support substrate 3 is not particularly limited. For example, the material of the support substrate 3 may be a material having a smaller linear expansion coefficient than that of the piezoelectric layer 2. By using such a material for the support substrate 3, it is possible to reduce deformation of the piezoelectric layer 2 due to temperature changes and reduce changes in the resonance characteristics of the acoustic wave resonator 1 due to temperature changes. Examples of materials for such a support substrate 3 include sapphire (Al 2 O 3 ), silicon carbide (SiC), and silicon (Si). Specifically, in one embodiment of the present disclosure, the support substrate 3 is Si.
音響反射層5は、圧電体層2の下面2b側に位置し、圧電体層2と支持基板3との間に位置する。音響反射層5の音響インピーダンスは圧電体層2の音響インピーダンスと異なっている。この場合、圧電体層2と音響反射層5の間で音響インピーダンスに差が生じるため、励振される弾性波を効果的に圧電体層2に閉じ込めることができる。
The acoustic reflection layer 5 is located on the lower surface 2b side of the piezoelectric layer 2, and is located between the piezoelectric layer 2 and the support substrate 3. The acoustic impedance of the acoustic reflection layer 5 is different from the acoustic impedance of the piezoelectric layer 2. In this case, a difference in acoustic impedance occurs between the piezoelectric layer 2 and the acoustic reflection layer 5, so that the excited elastic waves can be effectively trapped in the piezoelectric layer 2.
IDT電極4は、圧電体層2の上面2a側に位置する。IDT電極4は、導電性を有する材料で構成されている。IDT電極4の材料には、例えばアルミニウム(Al)、銅(Cu)、白金(Pt)、モリブデン(Mo)、金(Au)もしくはこれらの合金等種々の導電性材料を採用することができる。またIDT電極4は、上記のような種々の導電性材料による複数の層を積層させて構成してもよい。また、IDT電極4が、複数の層を積層させて構成される場合には、チタン(Ti)等の金属や誘電体等からなる拡散防止層が積層界面に介在してもよい。IDT電極4の複数の層のうち、圧電体層2の側に位置する層が、チタン(Ti)等の金属や誘電体等からなる下地層であってもよい。本開示の一実施形態において、具体的に、IDT電極4はAlである。
The IDT electrode 4 is located on the upper surface 2a side of the piezoelectric layer 2. The IDT electrode 4 is made of a conductive material. The IDT electrode 4 may be made of various conductive materials such as aluminum (Al), copper (Cu), platinum (Pt), molybdenum (Mo), gold (Au), or alloys thereof. The IDT electrode 4 may be made by laminating multiple layers of the various conductive materials described above. When the IDT electrode 4 is made by laminating multiple layers, a diffusion prevention layer made of a metal such as titanium (Ti) or a dielectric may be interposed at the lamination interface. Of the multiple layers of the IDT electrode 4, the layer located on the side of the piezoelectric layer 2 may be a base layer made of a metal such as titanium (Ti) or a dielectric. In one embodiment of the present disclosure, specifically, the IDT electrode 4 is Al.
図2は、本開示の一実施形態に係る弾性波共振子1のZ軸方向から平面図である。図2に示すように、IDT電極4は、櫛歯状電極41を有する。櫛歯状電極41は、複数の電極指412を含む。また櫛歯状電極41は、複数の電極指412の配列方向と交差する方向に位置し、複数の電極指412と接続される一対のバスバー411を含む。複数の電極指412は、一方のバスバー411aに接続される複数の電極指412aと、他方のバスバー411bに接続される電極指412bとが互いにかみ合うように配置されている。
2 is a plan view of an elastic wave resonator 1 according to an embodiment of the present disclosure, viewed from the Z-axis direction. As shown in FIG. 2, the IDT electrode 4 has a comb-shaped electrode 41. The comb-shaped electrode 41 includes a plurality of electrode fingers 412. The comb-shaped electrode 41 also includes a pair of bus bars 411 that are positioned in a direction intersecting the arrangement direction of the plurality of electrode fingers 412 and are connected to the plurality of electrode fingers 412. The plurality of electrode fingers 412 are arranged such that the plurality of electrode fingers 412a connected to one bus bar 411a and the plurality of electrode fingers 412b connected to the other bus bar 411b interdigitate with each other.
また、櫛歯状電極41は、複数のダミー電極指413を含んでいてもよい。複数のダミー電極指413は、複数の電極指412のそれぞれの間において、一方のバスバー411aに接続され、他方のバスバー411bから延びる電極指412bと対向する複数のダミー電極指413aと、一方のバスバー411bに接続され、他方のバスバー411aから延びる電極指412aと対向する複数のダミー電極指413bを備える。
The comb-shaped electrode 41 may also include a plurality of dummy electrode fingers 413. The plurality of dummy electrode fingers 413 include, between each of the plurality of electrode fingers 412, a plurality of dummy electrode fingers 413a connected to one bus bar 411a and facing the electrode fingers 412b extending from the other bus bar 411b, and a plurality of dummy electrode fingers 413b connected to one bus bar 411b and facing the electrode fingers 412a extending from the other bus bar 411a.
なお、本開示において「対向する」とは、必ずしも向かい合う面どうしが平行であることを要さず、例えば一方の面に対し、他方の面が傾いて向かい合っていてもよい。
In addition, in this disclosure, "opposing" does not necessarily mean that the opposing surfaces are parallel to each other; for example, one surface may be tilted toward the other surface.
複数の電極指412のY軸方向の長さは、要求される電気特性等に応じて適宜に設定されてよい。例えば、複数の電極指412のY軸方向の長さは、互いに同等である。なお、IDT電極4は、X軸方向の位置に応じて複数の電極指412のY軸方向の長さ(別の観点では交差幅)が変化する、いわゆるアポダイズが施されていてもよい。
The length of the electrode fingers 412 in the Y-axis direction may be set appropriately depending on the required electrical characteristics, etc. For example, the lengths of the electrode fingers 412 in the Y-axis direction are equal to each other. The IDT electrode 4 may be apodized, in which the length of the electrode fingers 412 in the Y-axis direction (or, from another perspective, the cross width) changes depending on the position in the X-axis direction.
複数の電極指412の繰り返しピッチ(繰り返し間隔)をPとし、電極指412の幅をWとする。PおよびWは、所望する周波数特性に応じて、適宜設計される。図2において、Pは一定であるが、この例に限定されない。例えば、Pは、次第に大きくなるように設計されてもよいし、段階的に複数種類のピッチを有するように設計されてもよい。ピッチが複数ある場合、5~10か所測定したピッチの平均値をPと定義してもよいし、最も大きいピッチを代表してPと定義してもよい。
The repeat pitch (repetition interval) of the multiple electrode fingers 412 is P, and the width of the electrode fingers 412 is W. P and W are designed appropriately according to the desired frequency characteristics. In FIG. 2, P is constant, but is not limited to this example. For example, P may be designed to gradually increase, or may be designed to have multiple types of pitch in stages. If there are multiple pitches, P may be defined as the average value of pitches measured at 5 to 10 locations, or the largest pitch may be defined as P.
Pの具体的な値は任意である。例えば、Pは、0.5μm以上または1μm以上とされてもよく、また、10μm以下、5μm以下または2μm以下とされてもよい。上記の下限の例と上限の例とは任意のもの同士が組み合わされてもよい。なお、具体的に本開示の一実施形態において、電極指412の繰り返しピッチは1.5μmである。
The specific value of P is arbitrary. For example, P may be 0.5 μm or more, or 1 μm or more, or 10 μm or less, 5 μm or less, or 2 μm or less. The above lower limit examples and upper limit examples may be combined in any combination. In one specific embodiment of the present disclosure, the repeat pitch of the electrode fingers 412 is 1.5 μm.
W/P(Duty)も任意である。例えば、Dutyは、0.2以上または0.3以上とされてもよく、0.6以下、0.5以下または0.4以下とされてもよい。上記の下限の例と上限の例とは任意のもの同士が組み合わされてもよい。なお、具体的に本開示の一実施形態において、Dutyは0.3である。
W/P (Duty) is also arbitrary. For example, Duty may be 0.2 or more, or 0.3 or more, or 0.6 or less, 0.5 or less, or 0.4 or less. Any combination of the above lower limit and upper limit examples may be used. In one specific embodiment of the present disclosure, Duty is 0.3.
IDT電極4の電極指412の厚みをTと定義する。本開示の一実施形態において、Tは一定であるが、この例に限定されない。例えばTは、測定する電極指412によって異なっていてもよい。このような場合、複数の電極指412のうち、配列方向の両端付近に位置する電極指412と中央付近に位置する電極指412の厚みの平均値をTと定義してもよいし、最も厚みの大きい電極指412の厚みを代表してTと定義してもよい。またTは、測定する電極指412の部分によって異なっていてもよい。このような場合、電極指412のうち任意の数か所で測定した厚みの平均値をTと定義してもよいし、電極指412のうち最も厚みの大きい部分の厚みを代表してTと定義してもよい。
The thickness of the electrode fingers 412 of the IDT electrode 4 is defined as T. In one embodiment of the present disclosure, T is constant, but is not limited to this example. For example, T may vary depending on the electrode finger 412 being measured. In such a case, T may be defined as the average value of the thicknesses of the electrode fingers 412 located near both ends in the arrangement direction and the electrode fingers 412 located near the center, among the multiple electrode fingers 412, or T may be defined as the thickness of the thickest electrode finger 412. Furthermore, T may vary depending on the part of the electrode finger 412 being measured. In such a case, T may be defined as the average value of the thicknesses measured at any number of points on the electrode fingers 412, or T may be defined as the thickness of the thickest part of the electrode fingers 412.
Tの具体的な厚みは任意である。例えば、Tは、1nm以上または2nm以上とされてもよく、200nm以下または100nm以下とされてもよい。上記の下限の例と上限の例とは任意のもの同士が組み合わされてもよい。
The specific thickness of T is arbitrary. For example, T may be 1 nm or more, or 2 nm or more, or 200 nm or less, or 100 nm or less. Any of the above lower limit examples and upper limit examples may be combined.
IDT電極4に高周波信号が印加されると、複数の電極指412の繰り返し間隔であるピッチPの2倍で規定される波長λとする弾性波が励振され、圧電体層2を伝搬する。弾性波共振子1の共振周波数frは、励振される弾性波のうち、主共振として利用される弾性波の周波数と概ね同等となる。反共振周波数faは、共振周波数frと容量比とによって決定される。容量比は、主として圧電体層2によって規定され、電極指412の本数、交差幅および膜厚等によって調整される。
When a high-frequency signal is applied to the IDT electrode 4, an elastic wave with a wavelength λ defined as twice the pitch P, which is the repetition interval of the multiple electrode fingers 412, is excited and propagates through the piezoelectric layer 2. The resonance frequency fr of the elastic wave resonator 1 is roughly equivalent to the frequency of the elastic wave used as the main resonance among the excited elastic waves. The anti-resonance frequency fa is determined by the resonance frequency fr and the capacitance ratio. The capacitance ratio is determined mainly by the piezoelectric layer 2, and is adjusted by the number of electrode fingers 412, the crossing width, the film thickness, etc.
なお、上記とは異なり、圧電体層2の厚み方向に伝搬するバルク波のように、共振周波数frのピッチPに対する依存性は低くても構わない。また、圧電体層2の厚みを規定するときのλは、ピッチPの2倍であればよく、主共振として励振される弾性波の波長と乖離していても構わない。
Note that, unlike the above, the dependence of the resonance frequency fr on the pitch P may be low, as in the case of bulk waves propagating in the thickness direction of the piezoelectric layer 2. Furthermore, λ when defining the thickness of the piezoelectric layer 2 only needs to be twice the pitch P, and may deviate from the wavelength of the elastic wave excited as the main resonance.
本開示の一実施形態における弾性波共振子1は、さらに、圧電体層2の上面2a側に位置する一対の反射器42を有していてもよい(有していなくてもよい。)。例えば一対の反射器42は、X軸方向において、櫛歯状電極41の両側に位置している。反射器42は、互いに対向する一対の反射器バスバー421と、一対の反射器バスバー421間において延びる複数のストリップ電極422と、を含んでいる。
The elastic wave resonator 1 in one embodiment of the present disclosure may further include (or may not include) a pair of reflectors 42 located on the upper surface 2a side of the piezoelectric layer 2. For example, the pair of reflectors 42 are located on both sides of the comb-shaped electrode 41 in the X-axis direction. The reflector 42 includes a pair of reflector bus bars 421 facing each other and a plurality of strip electrodes 422 extending between the pair of reflector bus bars 421.
図3は、本開示の一実施形態の弾性波共振子1の模式的な断面図の一部を拡大した図である。圧電体層2は、第1領域21と第2領域22とを有している。第1領域21はZ軸方向からの平面視において電極指412と重なる領域であり、第2領域22はZ軸方向からの平面視において電極指412と重ならない領域である。Z軸方向における第1領域21の圧電体層2の厚みをL1と定義し、Z軸方向における第2領域22の圧電体層2の厚みをL2と定義する。
FIG. 3 is an enlarged view of a portion of a schematic cross-sectional view of an elastic wave resonator 1 according to an embodiment of the present disclosure. The piezoelectric layer 2 has a first region 21 and a second region 22. The first region 21 is a region that overlaps with the electrode fingers 412 when viewed from a plane in the Z-axis direction, and the second region 22 is a region that does not overlap with the electrode fingers 412 when viewed from a plane in the Z-axis direction. The thickness of the piezoelectric layer 2 in the first region 21 in the Z-axis direction is defined as L1, and the thickness of the piezoelectric layer 2 in the second region 22 in the Z-axis direction is defined as L2.
L1は必ずしも厳密に一定である必要はない。L1が一定ではない場合、例えば第1領域21のうち最も厚みの大きい部分の厚みを代表してL1としてもよいし、平面視で電極指412と重なる第1領域21において任意の数か所で測定した圧電体層2の厚みを平均してL1と定義してもよい。
L1 does not necessarily have to be strictly constant. If L1 is not constant, for example, L1 may represent the thickness of the thickest part of the first region 21, or L1 may be defined as the average thickness of the piezoelectric layer 2 measured at any number of points in the first region 21 that overlaps with the electrode finger 412 in a plan view.
L2は必ずしも厳密に一定である必要はない。L2が一定ではない場合、例えば第2領域22のうち最も厚みの大きい部分の厚みを代表してL2としてもよいし、平面視で電極指412aと電極指412bに挟まれた第2領域22において任意の数か所で測定した圧電体層2の厚みを平均してL2と定義してもよい。
L2 does not necessarily have to be strictly constant. If L2 is not constant, for example, the thickness of the thickest part of the second region 22 may be used as L2, or L2 may be defined as the average thickness of the piezoelectric layer 2 measured at any number of points in the second region 22 sandwiched between the electrode fingers 412a and 412b in a plan view.
本開示の一実施形態の弾性波共振子1は主共振として板波およびバルク波の少なくとも一方を利用する。板波およびバルク波の共振特性は圧電体層2の厚みに大きく依存する。圧電体層2の上面2a側にIDT電極4が突出しているため、圧電体層2とIDT電極4を一体の膜とみなした場合に、IDT電極4が位置する部分とIDT電極4が位置しない部分で膜の厚みが異なることになる。この場合、突出したIDT電極4の電極指412が振動することに起因して、新たにスプリアスが発生することがある。したがって上面2aからの電極指412の突出量を小さくすることで、電極指412の振動に起因するスプリアスの発生を低減することができる。なお、突出量は、第1方向(Z軸方向)において第1面(上面2a)から突出する電極指412の長さと言い換えたり、電極指412の第1面からの高さと言い換えたりできる。
The elastic wave resonator 1 according to an embodiment of the present disclosure uses at least one of plate waves and bulk waves as the main resonance. The resonance characteristics of plate waves and bulk waves are highly dependent on the thickness of the piezoelectric layer 2. Since the IDT electrode 4 protrudes from the top surface 2a of the piezoelectric layer 2, when the piezoelectric layer 2 and the IDT electrode 4 are regarded as an integral film, the thickness of the film differs between the portion where the IDT electrode 4 is located and the portion where the IDT electrode 4 is not located. In this case, new spurious may occur due to the vibration of the electrode fingers 412 of the protruding IDT electrode 4. Therefore, by reducing the amount of protrusion of the electrode fingers 412 from the top surface 2a, the occurrence of spurious caused by the vibration of the electrode fingers 412 can be reduced. The amount of protrusion can be rephrased as the length of the electrode fingers 412 protruding from the first surface (top surface 2a) in the first direction (Z-axis direction) or the height of the electrode fingers 412 from the first surface.
図4は本開示の実施例1における弾性波共振子1の周波数特性のシミュレーション結果を示した図である。図5は、比較例1としての弾性波共振子の周波数特性のシミュレーション結果を示した図である。実施例1では、L1とL2はともに460nmであり、Tは2nmである。比較例1では、L1とL2はともに460nmであり、Tは120nmである。したがってZ軸方向における上面2aからの電極指412の突出量は、比較例1よりも実施例1の方が小さくなっている。
FIG. 4 is a diagram showing the simulation results of the frequency characteristics of the elastic wave resonator 1 in Example 1 of the present disclosure. FIG. 5 is a diagram showing the simulation results of the frequency characteristics of an elastic wave resonator as Comparative Example 1. In Example 1, L1 and L2 are both 460 nm, and T is 2 nm. In Comparative Example 1, L1 and L2 are both 460 nm, and T is 120 nm. Therefore, the amount of protrusion of the electrode fingers 412 from the top surface 2a in the Z-axis direction is smaller in Example 1 than in Comparative Example 1.
図5から分かるように、比較例1では、5525MHz付近にスプリアスS1が発生し、7175MHz付近にスプリアスS2が発生し、4370MHz付近にスプリアスS3が発生する。スプリアスS1、スプリアスS2およびスプリアスS3のそれぞれについて振動モードを解析した。スプリアスS1の振動モードの中で最も支配的な振動モードは、電極指412の部分において最も振動強度が大きかった。スプリアスS2の振動モードの中で最も支配的な振動モードは、電極指412の部分において最も振動強度が大きかった。スプリアスS3の振動モードの中で最も支配的な振動モードは、電極指412が位置していない圧電体層2の部分において最も振動強度が大きかった。
As can be seen from Figure 5, in Comparative Example 1, spurious S1 occurs near 5525 MHz, spurious S2 occurs near 7175 MHz, and spurious S3 occurs near 4370 MHz. The vibration modes of each of spurious S1, S2, and S3 were analyzed. The most dominant vibration mode of spurious S1 had the greatest vibration intensity in the part of electrode finger 412. The most dominant vibration mode of spurious S2 had the greatest vibration intensity in the part of electrode finger 412. The most dominant vibration mode of spurious S3 had the greatest vibration intensity in the part of piezoelectric layer 2 where electrode finger 412 was not located.
したがってスプリアスS1およびスプリアスS2は、電極指412が振動する振動モードが最も支配的であり、スプリアスS3は、電極指412の振動とは関係のない振動モードが最も支配的であることが分かった。換言すると、スプリアスS1およびスプリアスS2は電極指412の振動に起因し、スプリアスS3は電極指412の振動には起因しない。
Therefore, it was found that the spurious noises S1 and S2 are most predominantly caused by a vibration mode in which the electrode fingers 412 vibrate, and the spurious noise S3 is most predominantly caused by a vibration mode unrelated to the vibration of the electrode fingers 412. In other words, the spurious noises S1 and S2 are caused by the vibration of the electrode fingers 412, and the spurious noise S3 is not caused by the vibration of the electrode fingers 412.
図4から分かるように、実施例1では、比較例1に比べて電極指412の振動に起因するスプリアスS1およびスプリアスS2を低減することができる。したがって本開示の一実施形態によれば、優れた周波数特性をもつ弾性波共振子を提供することができる。
As can be seen from FIG. 4, in Example 1, the spurious S1 and spurious S2 caused by vibration of the electrode fingers 412 can be reduced compared to Comparative Example 1. Therefore, according to one embodiment of the present disclosure, an elastic wave resonator with excellent frequency characteristics can be provided.
また、本開示の一実施形態において、第1領域21の厚みと電極指412の厚みの合計は、第2領域22の厚みに対して1.28倍以下であってもよい。換言するとL1、L2およびTは下記の式(1)を満たしてもよい。
(L1+T)≦1.28×L2・・・(1)
このような構成とすることで、電極指412の突出量が小さくなるため、電極指412の振動に起因するスプリアスの発生を低減することができる。 In addition, in an embodiment of the present disclosure, the sum of the thickness of thefirst region 21 and the thickness of the electrode fingers 412 may be 1.28 times or less the thickness of the second region 22. In other words, L1, L2, and T may satisfy the following formula (1).
(L1+T)≦1.28×L2...(1)
With this configuration, the amount of protrusion of theelectrode fingers 412 is reduced, so that the occurrence of spurious signals caused by vibration of the electrode fingers 412 can be reduced.
(L1+T)≦1.28×L2・・・(1)
このような構成とすることで、電極指412の突出量が小さくなるため、電極指412の振動に起因するスプリアスの発生を低減することができる。 In addition, in an embodiment of the present disclosure, the sum of the thickness of the
(L1+T)≦1.28×L2...(1)
With this configuration, the amount of protrusion of the
図6Aおよび図6Bに本開示の一実施形態において、第2領域22の厚みに対して第1領域21と電極指412の厚みの合計の値を変化させたときのスプリアス強度の変化を示す。横軸は(L1+T)/L2の値を示し、縦軸はスプリアスの位相(°)を示している。図6Aで示すスプリアス位相とはスプリアスS1の位相であり、図6Bで示すスプリアス位相とはスプリアスS2の位相である。
FIGS. 6A and 6B show the change in spurious intensity when the total thickness of the first region 21 and electrode fingers 412 is changed relative to the thickness of the second region 22 in one embodiment of the present disclosure. The horizontal axis shows the value of (L1+T)/L2, and the vertical axis shows the spurious phase (°). The spurious phase shown in FIG. 6A is the phase of spurious S1, and the spurious phase shown in FIG. 6B is the phase of spurious S2.
図6Aおよび図6Bに示すように、本開示の一実施形態において、第1領域21の厚みと電極指412の厚みの合計が、第2領域22の厚みに対して1.28倍以下である場合、電極指412の振動に起因するスプリアスの位相が大幅に低減する。したがって式(1)を満たす構成の場合、優れた周波数特性を有する弾性波共振子を提供することができる。なお、第1領域21の厚みと電極指412の厚みの合計は、第2領域22の厚みに対して1倍より大きくてもよい。
As shown in Figures 6A and 6B, in one embodiment of the present disclosure, when the sum of the thickness of the first region 21 and the thickness of the electrode fingers 412 is 1.28 times or less the thickness of the second region 22, the phase of the spurious caused by the vibration of the electrode fingers 412 is significantly reduced. Therefore, in the case of a configuration that satisfies formula (1), an elastic wave resonator with excellent frequency characteristics can be provided. Note that the sum of the thickness of the first region 21 and the thickness of the electrode fingers 412 may be more than 1 time the thickness of the second region 22.
図3に記載の一実施形態において、第2領域22の厚みに対して第1領域21と電極指412の厚みの合計の値を変化させたときの各共振の周波数と位相の変化を図7に示す。横軸は(L1+T)/L2の値を示し、縦軸は周波数(MHz)を示し、色の濃淡によって各共振の位相(°)を示している。なお、図7ではL1=L2=460nmとしてシミュレーションを行っている。
In one embodiment shown in FIG. 3, FIG. 7 shows the change in frequency and phase of each resonance when the total value of the thickness of the first region 21 and the electrode fingers 412 is changed relative to the thickness of the second region 22. The horizontal axis shows the value of (L1+T)/L2, the vertical axis shows the frequency (MHz), and the shade of color shows the phase (°) of each resonance. Note that in FIG. 7, the simulation was performed with L1=L2=460 nm.
図7から分かるように、5525MHz付近のスプリアスS1および7175MHz付近にスプリアスS2は(L1+T)/L2の値が小さいほど位相が小さくなる。例えば本開示の一実施形態において、第1領域21の厚みと電極指412の厚みの合計は、第2領域22の厚みに対して1.20倍以下であってもよい。換言するとL1、L2およびTは下記の式(2)を満たしてもよい。
(L1+T)≦1.20×L2・・・(2)
このような構成とすることで、電極指412の突出量がさらに小さくなるため、電極指412の振動に起因するスプリアスの発生をさらに低減することができる。 7, the smaller the value of (L1+T)/L2 is, the smaller the phase of the spurious S1 near 5525 MHz and the spurious S2 near 7175 MHz is. For example, in one embodiment of the present disclosure, the sum of the thickness of thefirst region 21 and the thickness of the electrode fingers 412 may be 1.20 times or less the thickness of the second region 22. In other words, L1, L2, and T may satisfy the following formula (2).
(L1+T)≦1.20×L2...(2)
With this configuration, the amount of protrusion of theelectrode fingers 412 is further reduced, so that the occurrence of spurious signals caused by vibration of the electrode fingers 412 can be further reduced.
(L1+T)≦1.20×L2・・・(2)
このような構成とすることで、電極指412の突出量がさらに小さくなるため、電極指412の振動に起因するスプリアスの発生をさらに低減することができる。 7, the smaller the value of (L1+T)/L2 is, the smaller the phase of the spurious S1 near 5525 MHz and the spurious S2 near 7175 MHz is. For example, in one embodiment of the present disclosure, the sum of the thickness of the
(L1+T)≦1.20×L2...(2)
With this configuration, the amount of protrusion of the
例えば本開示の一実施形態において、第1領域21の厚みと電極指412の厚みの合計は、第2領域22の厚みに対して1.07倍以下であってもよい。換言するとL1、L2およびTは下記の式(3)を満たしてもよい。
(L1+T)≦1.07×L2・・・(3)
このような構成とすることで、電極指412の突出量がさらに小さくなるため、電極指412の振動に起因するスプリアスの発生をさらに低減することができる。 For example, in an embodiment of the present disclosure, the sum of the thickness of thefirst region 21 and the thickness of the electrode fingers 412 may be 1.07 times or less the thickness of the second region 22. In other words, L1, L2, and T may satisfy the following formula (3).
(L1+T)≦1.07×L2...(3)
With this configuration, the amount of protrusion of theelectrode fingers 412 is further reduced, so that the occurrence of spurious signals caused by vibration of the electrode fingers 412 can be further reduced.
(L1+T)≦1.07×L2・・・(3)
このような構成とすることで、電極指412の突出量がさらに小さくなるため、電極指412の振動に起因するスプリアスの発生をさらに低減することができる。 For example, in an embodiment of the present disclosure, the sum of the thickness of the
(L1+T)≦1.07×L2...(3)
With this configuration, the amount of protrusion of the
図8は本開示の一実施形態の弾性波共振子1の模式的な断面図の一部を拡大した図である。図8に記載の一実施形態では、圧電体層2の上面2aに溝部が形成されており、電極指412の少なくとも一部は溝部の内側に位置している。換言すると、第2領域22の圧電体層2厚みは第1領域21の圧電体層2の厚みよりも大きい。このような構成の場合、電極指412の厚みを薄くせずとも、上面2aからの電極指412の突出量を小さくすることができる。したがって、電極指412の厚みを薄くする場合に比べて電気抵抗の値を小さくしつつ、周波数特性の優れた弾性波共振子を提供することができる。
FIG. 8 is an enlarged view of a part of a schematic cross-sectional view of an elastic wave resonator 1 according to an embodiment of the present disclosure. In the embodiment shown in FIG. 8, a groove is formed on the upper surface 2a of the piezoelectric layer 2, and at least a part of the electrode fingers 412 is located inside the groove. In other words, the thickness of the piezoelectric layer 2 in the second region 22 is greater than the thickness of the piezoelectric layer 2 in the first region 21. In this configuration, the amount of protrusion of the electrode fingers 412 from the upper surface 2a can be reduced without reducing the thickness of the electrode fingers 412. Therefore, an elastic wave resonator with excellent frequency characteristics can be provided while reducing the electrical resistance value compared to when the thickness of the electrode fingers 412 is reduced.
図9は本開示の実施例2における弾性波共振子1の周波数特性のシミュレーション結果を示した図である。図10は、比較例2としての弾性波共振子の周波数特性のシミュレーション結果を示した図である。実施例2では、L1は336nmであり、L2は460nmであり、Tは126nmであり、電極指412の突出量(L1+T-L2)は2nmである。比較例2では、L1は454nmであり、L2は460nmであり、Tは126nmであり、電極指412の突出量(L1+T-L2)は120nmである。したがってZ軸方向における上面2aからの電極指412の突出量は、比較例2よりも実施例2の方が小さくなっている。また、実施例2においては、Z軸方向における上面2aからの電極指412の突出量は、100nm以下となる。
FIG. 9 is a diagram showing the results of a simulation of the frequency characteristics of the elastic wave resonator 1 in Example 2 of the present disclosure. FIG. 10 is a diagram showing the results of a simulation of the frequency characteristics of an elastic wave resonator as Comparative Example 2. In Example 2, L1 is 336 nm, L2 is 460 nm, T is 126 nm, and the protrusion amount (L1+T-L2) of the electrode fingers 412 is 2 nm. In Comparative Example 2, L1 is 454 nm, L2 is 460 nm, T is 126 nm, and the protrusion amount (L1+T-L2) of the electrode fingers 412 is 120 nm. Therefore, the protrusion amount of the electrode fingers 412 from the top surface 2a in the Z-axis direction is smaller in Example 2 than in Comparative Example 2. Furthermore, in Example 2, the protrusion amount of the electrode fingers 412 from the top surface 2a in the Z-axis direction is 100 nm or less.
図10から分かるように、比較例2では比較例1と同じく、5525MHz付近にスプリアスS1が発生し、7175MHz付近にスプリアスS2が発生し、4370MHz付近にスプリアスS3が発生する。スプリアスS1およびスプリアスS2は電極指412の振動に起因し、スプリアスS3は電極指412の振動には起因しない。
As can be seen from FIG. 10, in Comparative Example 2, like Comparative Example 1, spurious S1 occurs near 5525 MHz, spurious S2 occurs near 7175 MHz, and spurious S3 occurs near 4370 MHz. The spurious S1 and spurious S2 are caused by the vibration of the electrode fingers 412, while the spurious S3 is not caused by the vibration of the electrode fingers 412.
図9から分かるように、実施例2では、比較例2に比べて電極指412の振動に起因するスプリアスS1およびスプリアスS2を低減することができる。したがって本開示の一実施形態によれば、優れた周波数特性をもつ弾性波共振子を提供することができる。
As can be seen from FIG. 9, in Example 2, the spurious S1 and spurious S2 caused by the vibration of the electrode fingers 412 can be reduced compared to Comparative Example 2. Therefore, according to one embodiment of the present disclosure, an elastic wave resonator with excellent frequency characteristics can be provided.
図8に記載の一実施形態において、第2領域22の厚みに対して第1領域21と電極指412の厚みの合計の値を変化させたときの各共振の周波数と位相の変化を図11に示す。横軸は(L1+T)/L2の値を示し、縦軸は周波数(MHz)を示し、色の濃淡によって各共振の位相(°)を示している。なお、図11ではL2=460nm、T=160nmとしてシミュレーションを行っている。
In one embodiment shown in FIG. 8, FIG. 11 shows the change in frequency and phase of each resonance when the total value of the thickness of the first region 21 and the electrode fingers 412 is changed relative to the thickness of the second region 22. The horizontal axis shows the value of (L1+T)/L2, the vertical axis shows the frequency (MHz), and the phase (°) of each resonance is shown by the shade of color. Note that in FIG. 11, the simulation was performed with L2=460 nm and T=160 nm.
図11から分かるように、5525MHz付近のスプリアスS1および7175MHz付近にスプリアスS2は(L1+T)/L2の値が小さいほど位相が小さくなる。例えば本開示の一実施形態において、第1領域21の厚みと電極指412の厚みの合計は、第2領域22の厚みに対して1.28倍以下であってもよい。換言するとL1、L2およびTは式(1)を満たしてもよい。このような構成とすることで、電極指412の突出量が小さくなるため、電極指412の振動に起因するスプリアスの発生を低減することができる。
As can be seen from FIG. 11, the phase of the spurious S1 near 5525 MHz and the spurious S2 near 7175 MHz decreases as the value of (L1+T)/L2 decreases. For example, in one embodiment of the present disclosure, the sum of the thickness of the first region 21 and the thickness of the electrode fingers 412 may be 1.28 times or less the thickness of the second region 22. In other words, L1, L2, and T may satisfy formula (1). With this configuration, the amount of protrusion of the electrode fingers 412 decreases, thereby reducing the occurrence of spurious noise caused by vibration of the electrode fingers 412.
図8に記載の一実施形態において、例えば、第1領域21の厚みと電極指412の厚みの合計は、第2領域22の厚みに対して1.20倍以下であってもよい。換言するとL1、L2およびTは式(2)を満たしてもよい。このような構成とすることで、電極指412の突出量がさらに小さくなるため、電極指412の振動に起因するスプリアスの発生をさらに低減することができる。また、例えば第1領域21の厚みと電極指412の厚みの合計は、第2領域22の厚みに対して1.07倍以下であってもよい。換言するとL1、L2およびTは式(3)を満たしてもよい。このような構成とすることで、電極指412の突出量がさらに小さくなるため、電極指412の振動に起因するスプリアスの発生をさらに低減することができる。
In one embodiment shown in FIG. 8, for example, the sum of the thickness of the first region 21 and the thickness of the electrode fingers 412 may be 1.20 times or less than the thickness of the second region 22. In other words, L1, L2, and T may satisfy formula (2). With such a configuration, the amount of protrusion of the electrode fingers 412 is further reduced, so that the occurrence of spurious noise caused by the vibration of the electrode fingers 412 can be further reduced. Also, for example, the sum of the thickness of the first region 21 and the thickness of the electrode fingers 412 may be 1.07 times or less than the thickness of the second region 22. In other words, L1, L2, and T may satisfy formula (3). With such a configuration, the amount of protrusion of the electrode fingers 412 is further reduced, so that the occurrence of spurious noise caused by the vibration of the electrode fingers 412 can be further reduced.
図8に記載の一実施形態において、例えば、第1領域21の厚みと電極指412の厚みの合計は、第2領域22の厚みより大きくてよい。換言すれば、前者は、後者に対して、1倍(理想的に1.000…倍であるものとする。)よりも大きくてよい。また、前者は、後者に対して、1.00倍以上であってもよい。このようにいうときの1.00は、0.995または1.004(四捨五入によって1.00になる計測値)を含んでよい。なお、上述した実施例2では、(L1+T)/L2=462/460=1.004347…である。
In one embodiment shown in FIG. 8, for example, the sum of the thickness of the first region 21 and the thickness of the electrode fingers 412 may be greater than the thickness of the second region 22. In other words, the former may be greater than 1 time (ideally 1.000... times) the latter. The former may also be 1.00 times or more the latter. In this case, 1.00 may include 0.995 or 1.004 (a measurement value that is rounded to 1.00). In the above-mentioned Example 2, (L1+T)/L2=462/460=1.004347....
図8に記載の一実施形態において、L2に対するTの比(T/L2)は任意である。例えば、T/L2は、0(理想的に0.000…であるものとする。)よりも大きい。また、例えば、Tは、L2に対して、0.01倍以上、0.10倍以上または0.20倍以上とされてよく、0.50倍以下、0.40倍以下、0.30倍以下、0.20倍または0.10倍以下とされてよい。上記の下限と上限とは、矛盾が生じないように、任意のもの同士が組み合わされてもよい。
In one embodiment shown in FIG. 8, the ratio of T to L2 (T/L2) is arbitrary. For example, T/L2 is greater than 0 (ideally 0.000...). Also, for example, T may be 0.01 times or more, 0.10 times or more, or 0.20 times or more relative to L2, and may be 0.50 times or less, 0.40 times or less, 0.30 times or less, 0.20 times or 0.10 times or less. The above lower and upper limits may be combined in any way so long as no contradiction occurs.
図1に記載の本開示の一実施形態に係る弾性波共振子1において、音響反射層5は一種類の層である例を示したが、この例に限定されない。本開示の他の実施形態を図12Aおよび図12Bに示す。例えば本開示の他の実施形態として、図12Aに示すように、音響反射層5は、複数の低音響インピーダンス層51と、複数の高音響インピーダンス層52とが交互に積層されて構成されていてもよい。低音響インピーダンス層51の音響インピーダンスは圧電体層2の音響インピーダンスより小さい。高音響インピーダンス層52の音響インピーダンスは低音響インピーダンス層51の音響インピーダンスよりも大きい。このような構成とすることで、圧電体層2の下面2b側から漏洩した弾性波が、低音響インピーダンス層51と高音響インピーダンス層52との界面で圧電体層2側へ反射されるため、弾性波の漏洩をより効果的に低減することができる。
In the elastic wave resonator 1 according to an embodiment of the present disclosure shown in FIG. 1, the acoustic reflection layer 5 is a single type of layer, but is not limited to this example. Other embodiments of the present disclosure are shown in FIG. 12A and FIG. 12B. For example, as another embodiment of the present disclosure, as shown in FIG. 12A, the acoustic reflection layer 5 may be configured by alternately stacking a plurality of low acoustic impedance layers 51 and a plurality of high acoustic impedance layers 52. The acoustic impedance of the low acoustic impedance layer 51 is smaller than the acoustic impedance of the piezoelectric layer 2. The acoustic impedance of the high acoustic impedance layer 52 is larger than the acoustic impedance of the low acoustic impedance layer 51. With this configuration, the elastic wave leaking from the lower surface 2b side of the piezoelectric layer 2 is reflected toward the piezoelectric layer 2 at the interface between the low acoustic impedance layer 51 and the high acoustic impedance layer 52, so that the leakage of the elastic wave can be more effectively reduced.
このような低音響インピーダンス層51として、酸化シリコン(SiO2)等が例示できる。また高音響インピーダンス層52として、酸化ハフニウム(HfO2)、酸化タンタル(Ta2O5)および酸化ジルコニウム(ZrO2)等が例示できる。
An example of the low acoustic impedance layer 51 is silicon oxide (SiO 2 ), and an example of the high acoustic impedance layer 52 is hafnium oxide (HfO 2 ), tantalum oxide (Ta 2 O 5 ), zirconium oxide (ZrO 2 ), and the like.
また、図1に記載の本開示の一実施形態に係る弾性波共振子1において、音響反射層5は固体の層である例を示したが、この例に限られない。例えば本開示の他の実施形態として、図12Bに示すように、圧電体層2と支持基板3との間に位置する空隙53が設けられていてもよい。換言すると音響反射層5は、空隙53に存在する気体であってもよい。
In addition, in the elastic wave resonator 1 according to one embodiment of the present disclosure shown in FIG. 1, an example has been shown in which the acoustic reflection layer 5 is a solid layer, but this is not limited to this example. For example, as another embodiment of the present disclosure, a void 53 may be provided between the piezoelectric layer 2 and the support substrate 3, as shown in FIG. 12B. In other words, the acoustic reflection layer 5 may be a gas present in the void 53.
空隙53は、圧電体層2の下面2b側であって、平面視した時に第1領域21および第2領域22と重なる位置に存在している。また空隙53には、気体が存在する。なお気体とは、空気であってもよいし、例えば窒素またはアルゴンなどの不活性ガスであってもよい。このような構成とすることで、空隙53に存在する気体が音響反射層として働き、圧電体層2の下面2b側からの弾性波の漏洩を効果的に低減することができる。なお、空隙53の大きさおよび深さ等は、適宜に設定されてもよい。
The void 53 is located on the lower surface 2b side of the piezoelectric layer 2, at a position overlapping the first region 21 and the second region 22 when viewed in a plan view. Gas is present in the void 53. The gas may be air or an inert gas such as nitrogen or argon. With this configuration, the gas present in the void 53 acts as an acoustic reflection layer, effectively reducing the leakage of elastic waves from the lower surface 2b side of the piezoelectric layer 2. The size and depth of the void 53 may be set as appropriate.
また本開示の他の実施形態として、弾性波共振子1は、IDT電極4のZ軸方向の上方に位置する絶縁性の付加膜を備えていてもよい。また本開示の他の実施形態として、弾性波共振子1はIDT電極4のZ軸方向の下方に位置する絶縁性の下地膜を備えていてもよい。このような付加膜および下地膜としてSiO2等が例示できる。このような付加膜および下地膜は、電極指412および圧電体層2の厚みを測定する際に考慮しなくてもよい。
As another embodiment of the present disclosure, the acoustic wave resonator 1 may include an insulating additional film located above the IDT electrode 4 in the Z-axis direction. As another embodiment of the present disclosure, the acoustic wave resonator 1 may include an insulating base film located below the IDT electrode 4 in the Z-axis direction. Examples of such additional films and base films include SiO2 . Such additional films and base films do not need to be taken into consideration when measuring the thicknesses of the electrode fingers 412 and the piezoelectric layer 2.
図1および図3では弾性波共振子が一つである例について説明したが、同一の圧電体層2を共有する複数の弾性波共振子を備えていてもよい。本開示の他の実施形態を図13Aおよび図13Bに示す。本開示の他の実施形態では、同一の圧電体層2を共有する弾性波共振子11と弾性波共振子12を備えていてもよく、例えば弾性波共振子11の複数の電極指412のピッチP11と弾性波共振子12の複数の電極指412のピッチP12は異なっていてもよい。また、図13Aに示すように、複数の電極指412の厚さTは弾性波共振子11と弾性波共振子12とで異なっていてもよい。この場合、弾性波共振子11と弾性波共振子12の少なくともいずれかにおいて、T、L1およびL2の関係が式(1)~(3)のいずれかの関係を満たしていてもよい。
1 and 3 have been described as an example in which there is only one elastic wave resonator, but there may be multiple elastic wave resonators sharing the same piezoelectric layer 2. Another embodiment of the present disclosure is shown in FIGS. 13A and 13B. In another embodiment of the present disclosure, there may be an elastic wave resonator 11 and an elastic wave resonator 12 sharing the same piezoelectric layer 2, and for example, the pitch P11 of the multiple electrode fingers 412 of the elastic wave resonator 11 may be different from the pitch P12 of the multiple electrode fingers 412 of the elastic wave resonator 12. Also, as shown in FIG. 13A, the thickness T of the multiple electrode fingers 412 may be different between the elastic wave resonator 11 and the elastic wave resonator 12. In this case, the relationship between T, L1, and L2 may satisfy any of the relationships in formulas (1) to (3) in at least one of the elastic wave resonators 11 and 12.
また、図13Bに示すように、圧電体層2の厚さは弾性波共振子11と弾性波共振子12とで異なっていてもよい。換言するとL1およびL2のいずれか一方もしくは両方が、弾性波共振子11と弾性波共振子12において異なっていてもよい。この場合、弾性波共振子11と弾性波共振子12の少なくともいずれかにおいて、T、L1およびL2の関係が式(1)~(3)のいずれかの関係を満たしていてもよい。
Also, as shown in FIG. 13B, the thickness of the piezoelectric layer 2 may be different between elastic wave resonators 11 and 12. In other words, either or both of L1 and L2 may be different between elastic wave resonators 11 and 12. In this case, the relationship between T, L1, and L2 may satisfy any of the relationships in formulas (1) to (3) in at least one of elastic wave resonators 11 and 12.
(弾性波共振子1の利用例:分波器)
図14は、弾性波共振子1の利用例としての分波器101の構成を模式的に示す回路図である。この図の紙面左上に示された符号から理解されるように、この図では、櫛歯状電極41が二叉のフォーク形状によって模式的に示され、反射器42は両端が屈曲した1本の線で表わされている。 (Example of use of elastic wave resonator 1: duplexer)
14 is a circuit diagram showing a schematic configuration of aduplexer 101 as an example of the use of the elastic wave resonator 1. As can be seen from the reference numerals shown in the upper left corner of the figure, in this figure, the comb-shaped electrode 41 is shown diagrammatically in a bifurcated fork shape, and the reflector 42 is represented by a single line bent at both ends.
図14は、弾性波共振子1の利用例としての分波器101の構成を模式的に示す回路図である。この図の紙面左上に示された符号から理解されるように、この図では、櫛歯状電極41が二叉のフォーク形状によって模式的に示され、反射器42は両端が屈曲した1本の線で表わされている。 (Example of use of elastic wave resonator 1: duplexer)
14 is a circuit diagram showing a schematic configuration of a
分波器101は、例えば、送信端子103からの送信信号をフィルタリングしてアンテナ端子102へ出力する送信フィルタ105と、アンテナ端子102からの受信信号をフィルタリングして受信端子104に出力する受信フィルタ106とを有している。
The splitter 101 has, for example, a transmit filter 105 that filters the transmit signal from the transmit terminal 103 and outputs it to the antenna terminal 102, and a receive filter 106 that filters the receive signal from the antenna terminal 102 and outputs it to the receive terminal 104.
また、送信フィルタ105と受信フィルタ106は、例えば、複数の共振子がラダー型に接続されて構成された、ラダー型フィルタによって構成されている。すなわち、送信フィルタ105は、送信端子103とアンテナ端子102との間に直列に接続された一以上の直列共振子と、その直列腕と基準電位とを接続する一以上の並列共振子とをそれぞれ有している。
Furthermore, the transmit filter 105 and the receive filter 106 are configured, for example, as ladder-type filters in which multiple resonators are connected in a ladder configuration. That is, the transmit filter 105 has one or more series resonators connected in series between the transmit terminal 103 and the antenna terminal 102, and one or more parallel resonators that connect the series arm to a reference potential.
例えば、本開示の一実施形態における弾性波共振子1を、送信フィルタ105と受信フィルタ106が有する直列共振子もしくは並列共振子の少なくともいずれか一つとして用いてもよい。
For example, the elastic wave resonator 1 in one embodiment of the present disclosure may be used as at least one of the series resonators or parallel resonators in the transmit filter 105 and the receive filter 106.
図14は、あくまで分波器101の構成の一例であり、分波器101は、図14の構成に限定されない。例えば、送信フィルタ105が多重モード型フィルタによって構成されるなどしてもよい。また、図14では、送信フィルタ105と受信フィルタ106はいずれも弾性波フィルタとされているが、この構成に限定されない。例えば、送信フィルタ105および受信フィルタ106のいずれか一方は弾性波共振子1を用いる弾性波フィルタであって、他方は、1以上のインダクタおよび1以上のキャパシタを含むLCフィルタであってもよい。
FIG. 14 is merely one example of the configuration of the splitter 101, and the splitter 101 is not limited to the configuration in FIG. 14. For example, the transmit filter 105 may be configured as a multimode filter. Also, in FIG. 14, both the transmit filter 105 and the receive filter 106 are elastic wave filters, but this configuration is not limiting. For example, either the transmit filter 105 or the receive filter 106 may be an elastic wave filter that uses an elastic wave resonator 1, and the other may be an LC filter that includes one or more inductors and one or more capacitors.
なお、分波器101が、送信フィルタ105と受信フィルタ106とを備える場合について説明したが、分波器101は、この構成に限定されない。例えば、分波器101は、ダイプレクサでもよいし、三つ以上のフィルタを含んだマルチプレクサであってもよい。
Note that although the above description has been given of a case in which splitter 101 includes transmit filter 105 and receive filter 106, splitter 101 is not limited to this configuration. For example, splitter 101 may be a diplexer or a multiplexer including three or more filters.
(弾性波共振子1の利用例:通信装置)
図15は、弾性波共振子1および分波器101の利用例としての通信装置111の要部を示すブロック図である。通信装置111は、分波器101を含んでおり、電波を利用した無線通信を行う。 (Example of use of elastic wave resonator 1: communication device)
15 is a block diagram showing a main part of acommunication device 111 as an example of a use of the acoustic wave resonator 1 and the duplexer 101. The communication device 111 includes the duplexer 101, and performs wireless communication using radio waves.
図15は、弾性波共振子1および分波器101の利用例としての通信装置111の要部を示すブロック図である。通信装置111は、分波器101を含んでおり、電波を利用した無線通信を行う。 (Example of use of elastic wave resonator 1: communication device)
15 is a block diagram showing a main part of a
通信装置111において、送信すべき情報を含む送信情報信号TISは、RF-IC(Radio Frequency Integrated Circuit)113によって変調および周波数の引き上げ(搬送波周波数の高周波信号への変換)がなされて送信信号TSとされる。送信信号TSは、バンドパスフィルタ115aによって送信用の通過帯以外の不要成分が除去され、増幅器114aによって増幅されて送信端子103に入力される。そして、送信フィルタ105は、入力された送信信号TSから送信用の通過帯以外の不要成分を除去し、その除去後の送信信号TSをアンテナ端子102からアンテナ112に出力する。アンテナ112は、入力された送信信号TSを無線信号に変換して送信する。
In the communication device 111, a transmission information signal TIS containing information to be transmitted is modulated and frequency-raised (converted to a high-frequency signal of the carrier frequency) by an RF-IC (Radio Frequency Integrated Circuit) 113 to produce a transmission signal TS. Unnecessary components outside the transmission passband are removed from the transmission signal TS by a bandpass filter 115a, amplified by an amplifier 114a, and input to the transmission terminal 103. The transmission filter 105 then removes unnecessary components outside the transmission passband from the input transmission signal TS, and outputs the removed transmission signal TS from the antenna terminal 102 to the antenna 112. The antenna 112 converts the input transmission signal TS into a wireless signal and transmits it.
また、通信装置111において、アンテナ112によって受信された無線信号は、アンテナ112によって受信信号RSに変換されてアンテナ端子102に入力される。受信フィルタ106は、入力された受信信号RSから受信用の通過帯以外の不要成分を除去して受信端子104から増幅器114bへ出力する。出力された受信信号RSは、増幅器114bによって増幅され、バンドパスフィルタ115bによって受信用の通過帯以外の不要成分が除去される。そして、受信信号RSは、RF-IC113によって周波数の引き下げおよび復調がなされて受信情報信号RISとされる。
In addition, in the communication device 111, a radio signal received by the antenna 112 is converted by the antenna 112 into a received signal RS and input to the antenna terminal 102. The receiving filter 106 removes unnecessary components outside the receiving passband from the input received signal RS and outputs it from the receiving terminal 104 to the amplifier 114b. The output received signal RS is amplified by the amplifier 114b, and unnecessary components outside the receiving passband are removed by the bandpass filter 115b. The received signal RS is then frequency-downshifted and demodulated by the RF-IC 113 to become a received information signal RIS.
なお、送信情報信号TISおよび受信情報信号RISは、適宜な情報を含む低周波信号でよく、例えば、アナログの音声信号もしくはデジタル化された音声信号である。無線信号の通過帯は、適宜に設定されてよく、本開示の一実施形態では、比較的高周波の通過帯も可能である。変調方式は、位相変調、振幅変調、周波数変調もしくはこれらのいずれか2つ以上の組み合わせのいずれであってもよい。回路方式は、図15では、ダイレクトコンバージョン方式を例示したが、この例に限定されず、例えば、ダブルスーパーヘテロダイン方式であってもよい。また、図15は、要部のみを模式的に示しており、適宜な位置にローパスフィルタまたはアイソレータ等が追加されてもよいし、また、増幅器等の位置が変更されてもよい。
The transmitted information signal TIS and the received information signal RIS may be low-frequency signals containing appropriate information, for example, analog audio signals or digitized audio signals. The passband of the wireless signal may be set as appropriate, and in one embodiment of the present disclosure, a relatively high-frequency passband is also possible. The modulation method may be phase modulation, amplitude modulation, frequency modulation, or a combination of two or more of these. Although the circuit method shown in FIG. 15 is a direct conversion method, it is not limited to this example and may be, for example, a double superheterodyne method. Also, FIG. 15 shows only the essential parts in a schematic manner, and a low-pass filter or an isolator may be added at an appropriate position, and the position of an amplifier may be changed.
1:弾性波共振子
2:圧電体層
2a:上面
2b:下面
21:第1領域
22:第2領域
3:支持基板
4:IDT電極
41:櫛歯状電極
411:バスバー
412:電極指
42:反射器
5:音響反射層
51:低音響インピーダンス層
52:高音響インピーダンス層
53:空隙
101:分波器
102:アンテナ端子
103:送信端子
104:受信端子
111:通信装置
112:アンテナ
113:RF-IC
114:増幅器
115:バンドパスフィルタ 1: Acoustic wave resonator 2:Piezoelectric layer 2a: Upper surface 2b: Lower surface 21: First region 22: Second region 3: Support substrate 4: IDT electrode 41: Comb-shaped electrode 411: Bus bar 412: Electrode finger 42: Reflector 5: Acoustic reflection layer 51: Low acoustic impedance layer 52: High acoustic impedance layer 53: Gap 101: Splitter 102: Antenna terminal 103: Transmitting terminal 104: Receiving terminal 111: Communication device 112: Antenna 113: RF-IC
114: Amplifier 115: Bandpass filter
2:圧電体層
2a:上面
2b:下面
21:第1領域
22:第2領域
3:支持基板
4:IDT電極
41:櫛歯状電極
411:バスバー
412:電極指
42:反射器
5:音響反射層
51:低音響インピーダンス層
52:高音響インピーダンス層
53:空隙
101:分波器
102:アンテナ端子
103:送信端子
104:受信端子
111:通信装置
112:アンテナ
113:RF-IC
114:増幅器
115:バンドパスフィルタ 1: Acoustic wave resonator 2:
114: Amplifier 115: Bandpass filter
Claims (12)
- 圧電性を有する圧電体層と、
複数の電極指を有し、前記圧電体層に直接的または間接的に接するIDT電極と、
を備え、
前記圧電体層は、平面視において、前記電極指と重なる第1領域と前記電極指と重ならない第2領域と、を有し、
前記第1領域の前記圧電体層の厚みと、前記電極指の厚みの合計は、前記第2領域の前記圧電体層の厚みに対して1.28倍以下であり、
主共振として、板波およびバルク波の少なくとも一方を励振する、
弾性波共振子。 A piezoelectric layer having piezoelectricity;
an IDT electrode having a plurality of electrode fingers and in direct or indirect contact with the piezoelectric layer;
Equipped with
the piezoelectric layer has, in a plan view, a first region overlapping with the electrode fingers and a second region not overlapping with the electrode fingers;
a sum of a thickness of the piezoelectric layer in the first region and a thickness of the electrode fingers is 1.28 times or less a thickness of the piezoelectric layer in the second region,
Exciting at least one of a plate wave and a bulk wave as a main resonance;
Elastic wave resonator. - 前記第1領域の前記圧電体層の厚みと、前記電極指の厚みの合計は、前記第2領域の前記圧電体層の厚みより大きい、
請求項1に記載の弾性波共振子。 a sum of a thickness of the piezoelectric layer in the first region and a thickness of the electrode fingers is greater than a thickness of the piezoelectric layer in the second region;
2. The elastic wave resonator according to claim 1. - 前記第1領域の前記圧電体層の厚みと、前記電極指の厚みの合計は、前記第2領域の前記圧電体層の厚みに対して、1.20倍以下である、
請求項1または2に記載の弾性波共振子。 a sum of a thickness of the piezoelectric layer in the first region and a thickness of the electrode fingers is 1.20 times or less as large as a thickness of the piezoelectric layer in the second region;
3. The elastic wave resonator according to claim 1 or 2. - 前記第1領域の前記圧電体層の厚みと、前記電極指の厚みの合計は、前記第2領域の前記圧電体層の厚みに対して、1.07倍以下である、
請求項1乃至3のいずれか1項に記載の弾性波共振子。 a sum of a thickness of the piezoelectric layer in the first region and a thickness of the electrode fingers is 1.07 times or less as large as a thickness of the piezoelectric layer in the second region;
The elastic wave resonator according to claim 1 . - 前記複数の電極指の繰返し間隔の2倍をλと定義すると、前記第1領域の前記圧電体層の厚みおよび前記第2領域の前記圧電体層の厚みは、λ以下である、
請求項1乃至4のいずれか1項に記載の弾性波共振子。 When twice the repetition interval of the plurality of electrode fingers is defined as λ, a thickness of the piezoelectric layer in the first region and a thickness of the piezoelectric layer in the second region are equal to or less than λ.
The elastic wave resonator according to claim 1 . - 前記圧電体層は、前記IDT電極側に位置する第1面を有し、
前記電極指の前記第1面からの高さは100nm以下である、
請求項1乃至5のいずれか1項に記載の弾性波共振子。 the piezoelectric layer has a first surface located on the IDT electrode side,
the height of the electrode fingers from the first surface is 100 nm or less;
The elastic wave resonator according to claim 1 . - 前記圧電体層は、前記IDT電極側に位置する第1面と、前記第1面に形成される溝部と、を有し、
前記電極指の少なくとも一部は前記溝部の内側に位置する、
請求項1乃至6のいずれか1項に記載の弾性波共振子。 the piezoelectric layer has a first surface located on the IDT electrode side and a groove portion formed in the first surface,
At least a part of the electrode finger is located inside the groove.
The elastic wave resonator according to claim 1 . - 前記圧電体層に直接的又は間接的に接する音響反射層を備える、
請求項1乃至7のいずれか1項に記載の弾性波共振子。 An acoustic reflection layer is provided in direct or indirect contact with the piezoelectric layer.
The elastic wave resonator according to claim 1 . - 前記音響反射層は、
前記圧電体層よりも音響インピーダンスが低い複数の低音響インピーダンス層と、
前記複数の低音響インピーダンス層よりも音響インピーダンスが高い複数の高音響インピーダンス層と、をさらに含む、
請求項8に記載の弾性波共振子。 The acoustic reflection layer is
A plurality of low acoustic impedance layers having an acoustic impedance lower than that of the piezoelectric layer;
and a plurality of high acoustic impedance layers having an acoustic impedance higher than that of the plurality of low acoustic impedance layers.
The elastic wave resonator according to claim 8 . - 前記圧電体層に直接的または間接的に接する支持基板をさらに備え、
前記圧電体層と前記支持基板の間に位置する空隙を有し、
前記空隙は、前記圧電体層の平面視において前記第1領域および前記第2領域と重なる、
請求項1乃至9のいずれか1項に記載の弾性波共振子。 Further comprising a support substrate in direct or indirect contact with the piezoelectric layer,
a gap is provided between the piezoelectric layer and the support substrate;
the gap overlaps with the first region and the second region in a plan view of the piezoelectric layer;
The elastic wave resonator according to claim 1 . - 前記圧電体層は、
タンタル酸リチウムを含み、かつオイラー角が(0°±10°,24°±10°,0°±10°)またはこれと等価な角度であるか、
もしくはニオブ酸リチウムを含み、かつオイラー角が(0°±10°,30°±10°,0°±10°)またはこれと等価な角度であって、
前記低音響インピーダンス層は酸化シリコンを含み、
前記高音響インピーダンス層は酸化ハフニウムを含む、
請求項8に記載の弾性波共振子。 The piezoelectric layer is
The material contains lithium tantalate and has Euler angles of (0°±10°, 24°±10°, 0°±10°) or equivalent angles;
or lithium niobate, and the Euler angles are (0°±10°, 30°±10°, 0°±10°) or equivalent angles;
the low acoustic impedance layer comprises silicon oxide;
The high acoustic impedance layer comprises hafnium oxide.
The elastic wave resonator according to claim 8 . - アンテナと、
前記アンテナに接続されている弾性波フィルタと、
前記弾性波フィルタに接続されているICと、を有し、
前記弾性波フィルタは、請求項1に記載の弾性波共振子を含む、
通信装置。 The antenna,
an acoustic wave filter connected to the antenna;
an IC connected to the acoustic wave filter;
The acoustic wave filter includes the acoustic wave resonator according to claim 1.
Communications equipment.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023041030 | 2023-03-15 | ||
JP2023-041030 | 2023-03-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024190677A1 true WO2024190677A1 (en) | 2024-09-19 |
Family
ID=92755796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/009073 WO2024190677A1 (en) | 2023-03-15 | 2024-03-08 | Elastic wave resonator and communication device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024190677A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007046236A1 (en) * | 2005-10-19 | 2007-04-26 | Murata Manufacturing Co., Ltd. | Lamb wave device |
WO2012099083A1 (en) * | 2011-01-19 | 2012-07-26 | 株式会社村田製作所 | Surface acoustic wave device |
JP2019062441A (en) * | 2017-09-27 | 2019-04-18 | 株式会社村田製作所 | Elastic wave device |
WO2020100949A1 (en) * | 2018-11-14 | 2020-05-22 | 京セラ株式会社 | Elastic wave device, duplexer, and communication device |
WO2021246447A1 (en) * | 2020-06-04 | 2021-12-09 | 株式会社村田製作所 | Elastic wave device |
WO2023286705A1 (en) * | 2021-07-14 | 2023-01-19 | 京セラ株式会社 | Acoustic wave device, filter, branching apparatus, and communication device |
-
2024
- 2024-03-08 WO PCT/JP2024/009073 patent/WO2024190677A1/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007046236A1 (en) * | 2005-10-19 | 2007-04-26 | Murata Manufacturing Co., Ltd. | Lamb wave device |
WO2012099083A1 (en) * | 2011-01-19 | 2012-07-26 | 株式会社村田製作所 | Surface acoustic wave device |
JP2019062441A (en) * | 2017-09-27 | 2019-04-18 | 株式会社村田製作所 | Elastic wave device |
WO2020100949A1 (en) * | 2018-11-14 | 2020-05-22 | 京セラ株式会社 | Elastic wave device, duplexer, and communication device |
WO2021246447A1 (en) * | 2020-06-04 | 2021-12-09 | 株式会社村田製作所 | Elastic wave device |
WO2023286705A1 (en) * | 2021-07-14 | 2023-01-19 | 京セラ株式会社 | Acoustic wave device, filter, branching apparatus, and communication device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6856825B2 (en) | Elastic wave device, demultiplexer and communication device | |
WO2018168836A1 (en) | Acoustic wave element, acoustic wave filter device, and multiplexer | |
JP4552931B2 (en) | Elastic wave device, mobile communication device and sensor using the same | |
JP6637990B2 (en) | Elastic wave resonator, elastic wave filter, duplexer, communication device, and method of designing elastic wave resonator | |
JP6870684B2 (en) | Multiplexer | |
JP6530494B2 (en) | Surface acoustic wave device | |
US20110215883A1 (en) | Acoustic wave resonator and acoustic wave filter using the same | |
WO2019198594A1 (en) | Acoustic wave element, acoustic wave filter, splitter, and communication device | |
JP6760480B2 (en) | Extractor | |
JP7278305B2 (en) | Acoustic wave device, branching filter and communication device | |
CN115001438B (en) | Structure of longitudinal leakage surface acoustic wave resonator and filter | |
JP2004343168A (en) | Filter apparatus and branching filter employing the same | |
JP2002314366A (en) | Surface acoustic wave filter, surface acoustic wave device and communication equipment | |
CN110710106A (en) | Elastic wave device, branching filter, and communication device | |
JP6940012B2 (en) | Filter device | |
WO2024024778A1 (en) | Elastic wave resonator, elastic wave filter, and communication device | |
JP7536094B2 (en) | Elastic wave resonator, elastic wave filter, duplexer, and communication device | |
WO2024128020A1 (en) | Elastic wave resonator, filter device, and communication apparatus | |
JP2020182130A (en) | Filter and multiplexer | |
WO2024190677A1 (en) | Elastic wave resonator and communication device | |
WO2024225181A1 (en) | Elastic wave resonator and communication device | |
WO2023171715A1 (en) | Elastic wave device, branching filter, communication device, and method for manufacturing elastic wave device | |
WO2024101338A1 (en) | Elastic wave resonator and communication device | |
WO2023132354A1 (en) | Filter device, splitter, and communication device | |
WO2023033032A1 (en) | Elastic wave element, demultiplexer, and communication device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24770783 Country of ref document: EP Kind code of ref document: A1 |