Nothing Special   »   [go: up one dir, main page]

WO2024158014A1 - Cylindrical magnetic body, outer rotor, and motor - Google Patents

Cylindrical magnetic body, outer rotor, and motor Download PDF

Info

Publication number
WO2024158014A1
WO2024158014A1 PCT/JP2024/002084 JP2024002084W WO2024158014A1 WO 2024158014 A1 WO2024158014 A1 WO 2024158014A1 JP 2024002084 W JP2024002084 W JP 2024002084W WO 2024158014 A1 WO2024158014 A1 WO 2024158014A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
rare earth
magnetic body
earth magnet
transition metal
Prior art date
Application number
PCT/JP2024/002084
Other languages
French (fr)
Japanese (ja)
Inventor
良元 藤原
信之 眞保
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Publication of WO2024158014A1 publication Critical patent/WO2024158014A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • H02K1/2787Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2788Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of a single magnet or two or more axially juxtaposed single magnets

Definitions

  • This disclosure relates to a cylindrical magnetic body, an outer rotor having a cylindrical magnetic body, and a motor having the outer rotor.
  • Patent Document 1 discloses an outer rotor in which a cylindrical bonded magnet is arranged on the inner circumferential surface of the rotor core.
  • the objective of the exemplary embodiment of the present disclosure is to provide an outer rotor capable of improving motor torque, a cylindrical magnetic body that can be used for the outer rotor, and a motor having the outer rotor.
  • the cylindrical magnetic body according to the present disclosure has a multilayer structure including, from the outer peripheral surface side to the inner peripheral surface side, a transition metal layer, an intermediate layer, and a rare earth magnet layer, in the stated order, and both the intermediate layer and the rare earth magnet layer contain a transition metal element and a rare earth element.
  • the cylindrical magnetic body can be used, for example, as part of the outer rotor of a motor, improving motor torque and enabling the motor to be made smaller.
  • the average thickness of the rare earth magnet layer is 10 ⁇ m or more and 300 ⁇ m or less.
  • the transition metal layer and the intermediate layer in the multilayer structure there is no intervening layer between the transition metal layer and the intermediate layer in the multilayer structure, and between the intermediate layer and the rare earth magnet layer.
  • the rare earth element contained in the intermediate layer is a rare earth element that has diffused from the rare earth magnet layer, and the transition metal contained in the intermediate layer is the same as the transition metal contained in the transition metal layer.
  • the intermediate layer covers the entire inner circumferential surface of the transition metal layer in the circumferential direction
  • the rare earth magnet layer covers the entire inner circumferential surface of the intermediate layer in the circumferential direction.
  • the magnetization easy axis of the rare earth magnet layer is oriented in the radial direction,
  • the degree of orientation of the axis of easy magnetization is 90% or more with respect to the radial direction.
  • the transition metal layer is a Co layer
  • the intermediate layer is a Sm2Co 17 layer
  • the rare earth magnet layer is a SmCo 5 layer.
  • the cylindrical magnetic body of the present disclosure can be used in the outer rotor of motors for various applications such as medical use and wristwatches, to control the magnetic fluid placed inside the cylinder, and to protect piping from plasma.
  • the magnet layer may have a multi-pole magnetization pattern in the circumferential or axial direction, and may be arranged on only a part of the cylinder.
  • a motor having an outer rotor of the present disclosure may also have a stator inserted inside the outer rotor.
  • a motor having an outer rotor of the present disclosure may further have a stator equipped with a magnetic sensor.
  • FIG. 1 is a cross-sectional view showing an outer rotor having a cylindrical magnetic body according to an embodiment of the present disclosure, showing a cross section perpendicular to the rotation axis of the outer rotor.
  • 2(a) and (b) are examples of cross sections taken along line II-II in FIG.
  • FIG. 3 is a schematic diagram showing an example of an arrangement of magnetization (magnetic poles) in the outer rotor shown in FIG.
  • FIG. 4 is a cross-sectional view showing a motor having the outer rotor shown in FIG. 1, showing a cross section perpendicular to the rotation axis of the motor.
  • FIG. 5 is a simplified diagram showing a cross section taken along line VV shown in FIG.
  • FIG. 6 is a cross-sectional view showing a modified example of an outer rotor having a cylindrical magnetic body.
  • FIG. 7 is a cross-sectional view showing yet another modified example of an outer rotor having a cylindrical magnetic body.
  • the outer rotor 2 includes a cylindrical magnetic body 10 having a multi-layer structure.
  • the outer rotor 2 may also include a rotor housing that supports the magnetic body 10, an engagement part for connecting the outer rotor 2 to the shaft, and other accessories such as a fan and gears.
  • the magnetic body 10 has an outer peripheral surface 10a and an inner peripheral surface 10b, and preferably has an integral structure along the circumferential direction with no seams such as adhesive layers or gaps.
  • the magnetic body 10 shown in FIG. 1 has a cylindrical shape.
  • the magnetic body 10 only needs to have at least a cylindrical portion, and the shape of the magnetic body 10 is not necessarily limited.
  • the central axis AX shown in FIG. 1 is an imaginary line that passes through the center of the area surrounded by the inner peripheral surface 10a along the inner peripheral surface 10a, and the central axis AX of the magnetic body 10 coincides with the rotation axis of the outer rotor 2.
  • the Z axis in each drawing is parallel to the central axis AX, and the X axis, Y axis, and Z axis are perpendicular to each other.
  • the dimensions of the magnetic body 10 are not necessarily limited.
  • the outer diameter d1 of the magnetic body 10 is preferably 1 mm or more and 6 mm or less
  • the inner diameter d2 of the magnetic body 10 is preferably 0.5 mm or more and 5 mm or less.
  • the thickness of the magnetic body 10 is expressed as (d1-d2)/2, and is preferably, for example, 0.1 mm or more and 2 mm or less.
  • the length L of the magnetic body 10 in the Z-axis direction may be, for example, 1 mm or more and 20 mm or less.
  • Magnetic body 10 has a multilayer structure that includes, from the outer peripheral surface side to the inner peripheral surface side, a transition metal layer 11, an intermediate layer 12, and a rare earth magnet layer 13, in the order listed.
  • transition metal layer 11 is the base, and intermediate layer 12 and rare earth magnet layer 13 are laminated on the inner peripheral surface side of transition metal layer 11, in the order listed.
  • Each layer (11-13) of magnetic body 10 is a continuous layer with no seams or breaks along the circumferential direction, as shown in Figure 1.
  • the inner peripheral surface of the transition metal layer 11 and the outer peripheral surface of the intermediate layer 12 are in direct contact with each other, and it is preferable that the inner peripheral surface of the intermediate layer 12 and the outer peripheral surface of the rare earth magnet layer 13 are in direct contact with each other.
  • the transition metal layer 11 and the intermediate layer 12 there may be a layer thinner than the resolution of 0.5 to 4 nm observable by a scanning electron microscope (SEM), but it is preferable that there is no intermediate layer made of a non-magnetic material such as an oxide layer, a resin layer, or an adhesive layer thicker than the resolution of 0.5 to 4 nm observable by an SEM.
  • "there is no intermediate layer" between the layers of the multilayer structure means that, as described above, the intermediate layer cannot be identified with the resolution observable by an SEM.
  • the intermediate layer 12 preferably covers the entire circumferential direction of the inner circumferential surface of the transition metal layer 11, and the rare earth magnet layer 13 preferably covers the entire circumferential direction of the inner circumferential surface of the intermediate layer 12.
  • the multilayer structure of the magnetic body 10 is not necessarily limited to the form shown in FIG. 2(a), and a part of the inner circumferential surface of the transition metal layer 11 may have a non-laminated region in which the intermediate layer 12 and the rare earth magnet layer 13 are not laminated.
  • FIG. 2(a) and (b) are examples of cross sections of the magnetic body 10 along the central axis AX.
  • the intermediate layer 12 preferably covers the entire circumferential direction of the inner circumferential surface of the transition metal layer 11
  • the rare earth magnet layer 13 preferably covers the entire circumferential direction of the inner circumferential surface of the intermediate layer 12.
  • the multilayer structure of the magnetic body 10 is not necessarily limited to the form shown in FIG. 2(a), and a part of the inner circumferential surface of the transition metal
  • the inner circumferential surface of the transition metal layer 11 has non-laminated regions 11b at both ends in the Z-axis direction that are not covered by the intermediate layer 12 and the rare earth magnet layer 13, and a multilayer structure is formed between the non-laminated regions 11b.
  • the outer peripheral surface 11a of the transition metal layer 11 may form the outer peripheral surface 10a of the magnetic body 10, as shown in Figures 1 and 2. Alternatively, a part or all of the outer peripheral surface 11a of the transition metal layer 11 may be covered with another layer. Examples of other layers located on the outer peripheral surface side of the transition metal layer 11 include layers of high-melting point nonmagnetic materials including W, Ta, Nb, or Mo.
  • the average thickness of this layer of high-melting point nonmagnetic material is not particularly limited, and is preferably, for example, 0.5 ⁇ m or more and 25 ⁇ m or less, and more preferably 5 ⁇ m or more and 25 ⁇ m or less.
  • a part or the whole of the inner peripheral surface 13b of the rare earth magnet layer 13 may be covered with a layer containing Sm2O3 and/or a protective layer containing Ni, Cu, Sn, etc. However, as shown in Figures 1 and 2, it is preferable that the inner peripheral surface 13b of the rare earth magnet layer 13 is exposed to the inner peripheral surface 10b of the magnetic body 10 and forms the inner peripheral surface 10b.
  • each layer (11 to 13) constituting the multilayer structure of the magnetic body 10 The characteristics of each layer (11 to 13) constituting the multilayer structure of the magnetic body 10 will be described in detail below.
  • the composition of each layer may be analyzed by component analysis using, for example, inductively coupled plasma atomic emission spectroscopy (ICP-AES), X-ray fluorescence analysis (XRF), energy dispersive X-ray analysis (EDS), or wavelength dispersive X-ray analysis (WDS), and the crystal structure of each layer may be analyzed by X-ray diffraction (XRD), electron beam diffraction, or electron backscatter diffraction (EBSD).
  • ICP-AES inductively coupled plasma atomic emission spectroscopy
  • XRF X-ray fluorescence analysis
  • EDS energy dispersive X-ray analysis
  • WDS wavelength dispersive X-ray analysis
  • XRD X-ray diffraction
  • EBSD electron backscatter diffraction
  • each layer it is preferable to divide the magnetic body 10 into equal parts and analyze at least three cross sections approximately perpendicular to the central axis AX, and it is preferable to measure the thickness at at least four points at equal intervals along the circumferential direction on each cross section. In other words, it is preferable to measure the thickness of each layer at at least 12 points distributed evenly in three-dimensional space, and calculate the average thickness and the standard deviation of the thickness.
  • the transition metal layer 11 is a soft magnetic layer that mainly contains Co, and is the base material of the magnetic body 10. "Mainly contains Co” means that the content of Co is the highest in the layer, and the transition metal layer 11 may also contain other metal elements such as Cr, Mn, Fe, Ni, Cu, Pb, and Mo.
  • the content of Co in the transition metal layer 11 is preferably, for example, 95 wt% or more, and more preferably 99 wt% or more.
  • the average thickness t1 of the transition metal layer 11 is not particularly limited and can be selected appropriately depending on the application of the motor, but it is preferable that it is, for example, 0.1 mm or more and 1.8 mm or less.
  • the intermediate layer 12 is a layer containing Sm2Co17 as a main phase.
  • the main phase Sm2Co17 is an alloy of Sm and Co having a Th2Zn17 type crystal structure, and is a soft magnetic material having a higher saturation magnetization than SmCo5 described later. If the main phase Sm2Co17 has a Th2Zn17 type crystal structure, the ratio of Sm atoms to Co atoms in Sm2Co17 may be slightly deviated from the stoichiometric ratio.
  • the intermediate layer 12 may be added to the intermediate layer 12 in order to improve the magnetic properties, and when other elements are added, the ratio of Sm atoms to Co atoms may be slightly deviated from the stoichiometric ratio.
  • the intermediate layer 12 may contain a phase (heterogeneous phase) whose composition and/or crystal structure is different from that of Sm2Co17 , a grain boundary phase, etc.
  • the content of Sm2Co17 in the intermediate layer 12 may be, for example, 70 wt% or more, preferably 80 wt% or more, more preferably 90 wt% or more, and even more preferably 95 wt% or more.
  • the average thickness t2 of the intermediate layer 12 is not particularly limited, but is preferably, for example, 1 ⁇ m or more and 100 ⁇ m or less.
  • the percentage of the coefficient of variation of the thickness of the intermediate layer 12 is preferably, for example, 50% or less.
  • the "coefficient of variation" is a coefficient that represents the variation in thickness, and is expressed as the ratio of the standard deviation of the thickness to the average thickness (standard deviation/average thickness).
  • the rare earth magnet layer 13 is a hard magnetic layer containing SmCo5 as a main phase.
  • the main phase SmCo5 is an alloy of Sm and Co having a CaCu5 type crystal structure. If the main phase SmCo5 has a CaCu5 type crystal structure, the ratio of Sm atoms to Co atoms in SmCo5 may be slightly deviated from the stoichiometric ratio.
  • other elements such as Ti, Zr, Nb, Ta, Cu, Ce, and Fe may be added to the rare earth magnet layer 13 in order to improve the magnetic properties, and when other elements are added, the ratio of Sm atoms to Co atoms may be slightly deviated from the stoichiometric ratio.
  • the rare earth magnet layer 13 may contain a phase (heterogeneous phase) whose composition and/or crystal structure is different from SmCo5 , and a grain boundary phase.
  • the content of SmCo5 in the rare earth magnet layer 13 may be, for example, 70 wt% or more, preferably 80 wt% or more, more preferably 90 wt% or more, and even more preferably 95 wt% or more.
  • an example of the heterogeneous phase in the rare earth magnet layer 13 is an Sm-rich phase in which the ratio of Sm is higher than that of SmCo5 .
  • the average thickness t3 of the rare earth magnet layer 13 is preferably 10 ⁇ m or more and 300 ⁇ m or less.
  • the percentage of the thickness variation coefficient (standard deviation/average thickness) of the rare earth magnet layer 13 is preferably, for example, 50% or less.
  • the ratio (t3/t2) of the average thickness t3 of the rare earth magnet layer 13 to the average thickness t2 of the intermediate layer 12 is preferably 1 or more and 100 or less, and more preferably 5 or more and 100 or less. If the sum of the average thicknesses t1, t2, and t3 is T0, the ratio of t3 to T0 (t3/T0) may be 0.01 or more and less than 1.
  • the Rz (maximum height difference) of the roughness curve based on the inner circumferential surface 13b of the rare earth magnet layer 13 is preferably 20 ⁇ m or less.
  • the multi-layered magnetic body 10 is the rotor and also an element that constitutes the magnetic circuit in the motor.
  • the rare earth magnet layer 13, which is a hard magnetic layer, is the magnet, and the transition metal layer 11 and intermediate layer 12, which are soft magnetic layers, act as a back yoke that collects magnetic flux.
  • the magnetization easy axis of the rare earth magnet layer 13 is preferably oriented in the radial direction.
  • the "radial direction” refers to a direction perpendicular to the central axis AX of the magnetic body 10, and "oriented in the radial direction” means that, as viewed from the direction of the central axis AX, the magnetization easy axis is arranged radially around the central axis AX.
  • the magnetization easy axis of the rare earth magnet layer 13 is the crystal orientation [00L] of SmCo5 , and it is preferable that the crystal orientation [00L] of SmCo5 is oriented in the radial direction.
  • L in the crystal orientation is any natural number, and [00L] indicates the same direction regardless of the natural number of L. L is, for example, 2.
  • the easy axis of magnetization of the rare earth magnet layer 13, which is a magnet is oriented in the radial direction, which allows for a high surface magnetic flux density to be obtained. Furthermore, because the magnetic body 10 of the outer rotor 2 has a multi-layer structure that includes a transition metal layer 11, an intermediate layer 12, and a rare earth magnet layer 13, the degree of orientation of the rare earth magnet layer 13 can be improved compared to conventional sintered magnets or bonded magnets.
  • the degree of orientation of the easy magnetization axis in the radial direction is at most 80%, and it is difficult to ensure an orientation degree of 90% or more.
  • the transition metal layer 11, the intermediate layer 12, and the rare earth magnet layer 13 are stacked in the order described above from the outer peripheral surface side to the inner peripheral surface side, so that the degree of orientation of the easy magnetization axis in the rare earth magnet layer 13 in the radial direction can be made 90% or more.
  • the intermediate layer 12 is inserted between the transition metal layer 11 and the rare earth magnet layer 13, thereby obtaining a radial anisotropy with an orientation degree of 90% or more.
  • the degree of orientation of the easy magnetization axis in the radial direction is preferably 90% or more, more preferably more than 90%, and even more preferably 95% or more.
  • the surface magnetic flux density can be improved compared to conventional methods, and a sufficiently large motor torque can be obtained even if the outer rotor diameter is reduced (for example, the outer diameter d1 is 6 mm or less).
  • the direction in which the easy magnetization axis is oriented and the degree of orientation of the easy magnetization axis in the radial direction can be calculated by crystal orientation analysis using EBSD.
  • the degree of orientation at each position of the rare earth magnet layer 13 is calculated using EBSD, and the degree of orientation can be calculated by averaging these values across the entire rare earth magnet layer 13.
  • the rare earth magnet layer 13 which is a magnet, is magnetized in the radial direction along the axis of easy magnetization, and has two or more magnetic poles on the inner peripheral surface 13b.
  • the arrangement of magnetic poles in the rare earth magnet layer 13 is shown by arrows, and the inner peripheral surface 13b of the rare earth magnet layer 13 has eight poles. There is no particular limit to the number of magnetic poles on the inner peripheral surface 13b of the rare earth magnet layer 13.
  • the magnetic body 10 is preferably manufactured by a method that applies the molten salt immersion method. First, a cylindrical Co substrate and a reaction liquid containing an Sm source and a molten salt are prepared.
  • a specific inorganic salt is first dehydrated by drying.
  • inorganic salts include KCl (potassium chloride), LiCl (lithium chloride), and NaCl (sodium chloride).
  • KCl potassium chloride
  • LiCl lithium chloride
  • NaCl sodium chloride
  • One type of inorganic salt may be used, or two or more types of inorganic salts may be used in combination.
  • the dehydrated inorganic salt is heated to a specific temperature to melt the inorganic salt (molten salt).
  • the temperature at which the inorganic salt is melted may be appropriately determined depending on the type of inorganic salt used, but is preferably 400°C or higher, more preferably 500°C or higher, and even more preferably 600°C or higher.
  • the Sm source is added to the above molten salt (molten inorganic salt) to obtain a reaction liquid.
  • the Sm source include metallic Sm and Sm alloys.
  • One type of Sm source may be used, or two or more types of Sm sources may be used. If the total of the number of moles of the Sm source and the number of moles of the inorganic salt in the reaction liquid is 100 mol%, the ratio of the Sm source in the reaction liquid is preferably, for example, 0.2 mol% to 6 mol%.
  • a raw material containing the desired additive element may be added to the molten salt together with the Sm source.
  • the above reaction liquid is brought into contact with the surface of the Co substrate, and a magnetic coating containing Sm is formed on the inner peripheral surface of the Co substrate by reactive diffusion of the Sm source in the molten salt to the surface of the Co substrate.
  • This process is referred to as the reactive diffusion process.
  • a magnetic coating containing Sm is formed not only on the inner peripheral surface of the Co substrate, but also on the outer peripheral surface and end faces (surfaces perpendicular to the Z axis). Therefore, some measure is required to cause the Sm source to reactively diffuse only on the inner peripheral surface of the Co substrate, and to suppress reactive diffusion on the outer peripheral surface and end faces.
  • a mask of a high melting point material on the outer peripheral surface and end surface of the Co base.
  • high melting point materials include W, Ta, Nb, Mo, or an alloy containing at least one of these elements.
  • the mask of the high melting point material may be formed, for example, by a deposition method. After forming a mask of the high melting point material on the outer peripheral surface and end surface, the Co base is immersed in a reaction liquid, whereby the Sm source reacts and diffuses only on the inner peripheral surface of the Co base, forming a magnetic coating containing Sm on the inner peripheral surface. Alternatively, the Sm source may react and diffuse on the inner peripheral surface and outer peripheral surface of the Co base without forming a mask, forming a magnetic coating containing Sm on the inner peripheral surface and outer peripheral surface.
  • a method of flowing a reaction liquid into a region surrounded by the inner surface of the Co substrate may be adopted.
  • an inlet pipe is connected to both ends of the Co substrate, and a pump or mass flow controller is used to flow the reaction liquid into the inner region of the Co substrate at a constant flow rate. It is preferable to circulate the reaction liquid so that the reaction liquid that flows out from one end of the Co substrate flows back into the inner region.
  • the method of flowing the reaction liquid into the inner region can improve the uniformity of the thickness of the magnetic coating compared to the case where the Co substrate is immersed in the reaction liquid.
  • the temperature of the reaction liquid is maintained at a temperature at which the inorganic salt can be kept in a molten state.
  • the temperature of the reaction liquid is preferably 500°C or more and 900°C or less, and more preferably 650°C or more and 800°C or less.
  • the reaction time may be appropriately set according to the reaction temperature and the proportion of Sm source in the reaction liquid so that a magnetic coating of the desired thickness can be formed.
  • the reaction time may be 1 hour or more and 48 hours or less.
  • the magnetic film formed on the inner peripheral surface of the Co base in the reaction diffusion process is a precursor of the intermediate layer 12 and the rare earth magnet layer 13.
  • the magnetic film after the reaction diffusion process preferably contains SmCo2 as the main phase.
  • SmCo2 is an alloy of Sm and Co having a MgCu2 type crystal structure.
  • the ratio of Sm atoms to Co atoms in SmCo2 may be slightly deviated from the stoichiometric ratio.
  • the ratio of Sm atoms to Co atoms may be slightly deviated from the stoichiometric ratio.
  • the magnetic coating may contain a heterophase, such as a Sm-rich phase having a higher ratio of Sm than SmCo2 , and a grain boundary phase.
  • the content of SmCo2 in the magnetic coating may be 50 wt% or more, preferably 70 wt% or more, and more preferably 90 wt% or more.
  • the Co substrate on which the magnetic coating is formed may be washed with an organic solvent such as ethanol or pure water.
  • the Co base on which the magnetic film containing SmCo2 is formed is heated at a predetermined temperature for a predetermined time (heating step).
  • heating step the reaction between SmCo2 and the Co of the base progresses further, and an intermediate layer 12 containing Sm2Co17 and a rare earth magnet layer 13 containing SmCo5 are generated from the inner peripheral surface of the Co base and the magnetic film.
  • the heating rate in the heating step is not particularly limited, and is preferably, for example, 1°C/min or more and 20°C/min or less.
  • the holding temperature (attainment temperature) is preferably 800°C or more and 1200°C or less, more preferably 850°C or more and 1150°C or less, and even more preferably 900°C or more and 1100°C or less.
  • the holding time at the above holding temperature is preferably, for example, 2 hours or more and 48 hours or less.
  • the temperature drop rate during cooling after heating is preferably 5°C/min or more, more preferably 10°C/min or more, and even more preferably 20°C/min or more.
  • the atmosphere for the heating step is not particularly limited, but is preferably an inert gas atmosphere from the viewpoint of suppressing oxidation of the rare earth magnet layer 13.
  • the inert gas for example, Ar gas, N2 gas, or the like may be used.
  • the intermediate layer 12 and the rare earth magnet layer 13 are formed on the inner peripheral surface of the Co base in the order described above, and a magnetic body 10 having a multilayer structure is obtained.
  • the above-mentioned manufacturing method obtains a multilayer structure in which a non-magnetic layer such as an adhesive layer is not interposed between the transition metal layer 11 (Co base) and the intermediate layer 12, and between the intermediate layer 12 and the rare earth magnet layer 13.
  • a mask of high melting point material is formed on the outer peripheral surface and end surface of the Co base, the mask of high melting point material may be removed after the heating step, or the mask of high melting point material may be left remaining.
  • a mask of high melting point material is not formed on the outer peripheral surface and end surface of the Co base, a structure is obtained in which an intermediate layer and a rare earth magnet layer are formed on the outer peripheral surface of the Co base as well.
  • FIG. 4 is a schematic diagram showing a cross section perpendicular to the rotation axis of a motor 100 according to one embodiment
  • FIG. 5 is a schematic diagram showing a simplified cross section along the rotation axis of the motor 100.
  • the motor 100 has an outer rotor 2, a stator 50 inserted inside the outer rotor 2, and a shaft 60.
  • the stator 50 is composed of a stator core 51 and a coil 52.
  • the stator core 51 has a cylindrical portion 51a and teeth 51b protruding outward from the cylindrical portion 51a, and a coil 52 is formed on each of the teeth 51b.
  • the stator core 51 has six teeth 51b, but the number of teeth 51b is not particularly limited.
  • the coil 52 may be formed, for example, by winding a conductor having an insulating coating on its surface around the teeth 51b.
  • the material of the stator core 51 is not particularly limited, and may be, for example, an electromagnetic steel sheet, SPCC (cold rolled steel sheet), an amorphous alloy, or magnetic powder. The powdered amorphous alloy or magnetic powder can be compression molded to form a stator core.
  • the stator 50 is inserted into the area surrounded by the inner circumferential surface 10b of the magnetic body 10, and the multilayer structure of the magnetic body 10 surrounds the outer circumferential surface 50a of the stator 50.
  • the inner circumferential surface 13b of the rare earth magnet layer 13 located at the innermost side of the multilayer structure faces the outer circumferential surface 50a of the stator 50.
  • the shaft 60 is arranged to pass through the inside of the cylindrical portion 51a of the stator core 51.
  • the shaft 60 and the outer rotor 2 may be connected so that they rotate in unison.
  • a rotor housing including the outer rotor 2 made of magnetic material 10 may be connected to the shaft 60 via a bearing such as a bush or bearing.
  • the motor 100 may also have a container that serves as the exterior, and the container may be connected to the stator 50.
  • the motor 100 can be used for a variety of purposes, including medical equipment and wristwatches.
  • the structure of the motor to which the outer rotor 2 is applied is not limited to the motor 100 shown in Figures 4 and 5.
  • the outer rotor 2 may be applied to a coreless motor or a frameless motor.
  • the stator may be formed without using a stator core, using a coil made of coreless wiring having a cylindrical shape, or a coil made of a flexible printed circuit board on which coil wiring is printed.
  • the cylindrical magnetic body of this embodiment has a multi-layer structure including, from the outer circumferential surface side toward the inner circumferential surface side, a transition metal layer 11, an intermediate layer 12, and a rare earth magnet layer 13 in the stated order.
  • the easy magnetization axis of the rare earth magnet layer 13 can be oriented in the radial direction, and the degree of orientation of the easy magnetization axis in the radial direction can be improved compared to conventional sintered magnets and bonded magnets. Therefore, the outer rotor 2 having the cylindrical magnetic body 10 of this embodiment can obtain a high surface magnetic flux density. As a result, even if the outer diameter of the outer rotor 2 is reduced to 6 mm or less, a motor torque large enough for practical use can be obtained. Note that the degree of orientation of the easy magnetization axis in the rare earth magnet layer 13 in the radial direction is preferably 90% or more.
  • the average thickness t3 of the rare earth magnet layer 13 is preferably 10 ⁇ m or more and 300 ⁇ m or less. By controlling t3 within the above range, the magnetic properties of the cylindrical magnetic body can be further improved.
  • the layers in the multilayer structure i.e., between the transition metal layer 11 and the intermediate layer 12, and between the intermediate layer 12 and the rare earth magnet layer 13.
  • adhesive layers By not interposing a protective layer, adhesive layer, or the like between the layers, the proportion of non-magnetic layers in the cylindrical magnetic body can be reduced and the proportion of magnets can be increased, thereby further improving the motor torque.
  • the shape of the cylindrical magnetic body 10 is not limited to the cylindrical shape shown in Figures 1 and 2, and the planar shape defined by the outer circumferential surface 11a may be a shape other than a circle.
  • the outer circumferential surface 10a of the magnetic body 10 i.e., the outer circumferential surface 11a of the transition metal layer 11
  • the shape of the tip of the gear, the number of teeth, and the pitch interval between the gears are not particularly limited.
  • the stator 50 may be equipped with a magnetic sensor 70 as shown in FIG. 7.
  • the magnetic sensor detects the magnetic field generated by the opposing rare earth magnet layer 13. Since the rare earth magnet layer 13 is multi-pole magnetized as shown in FIG. 3, when the outer rotor 2 rotates, the direction of the magnetic field detected by the magnetic sensor 70 changes periodically. Therefore, by equipping the stator 50 with the magnetic sensor 70, it becomes possible to detect the rotation angle and rotation speed (speed) of the outer rotor 2.
  • the magnetic sensor 70 is preferably provided in a position where the influence of the magnetic field generated by the coil 52 is relatively small.
  • a convex portion may be provided on the transition metal layer 11 so that the distance between the magnetic sensor 70 and the rare earth magnet layer 13 facing it is small. If a convex portion is provided on the transition metal layer 11, the distance between the magnetic sensor 70 and the rare earth magnet layer 13 is small, and the magnetic field from the rare earth magnet layer 13 detected by the magnetic sensor 70 is likely to be larger than the magnetic field generated by the coil 52, thereby improving the detection accuracy of the rotation angle and rotation speed.
  • compositions of the transition metal layer 11, intermediate layer 12, and rare earth magnet layer 13 constituting the magnetic body 10 are not limited to the above combination.
  • the intermediate layer 12 and rare earth magnet layer 13 both contain Co as a transition metal element and Sm as a rare earth element, but the intermediate layer 12 and rare earth magnet layer 13 may contain at least one or more transition metals such as Fe and Ni other than Co, and may also contain at least one or more rare earth elements such as Nd, Pr, Dy, and Tb other than Sm.
  • the intermediate layer 12 may be a Sm 2 Fe 17 layer, a Nd 2 Fe 17 layer, or a Pr 2 Fe 17 layer, and is preferably a Sm 2 Co 17 layer.
  • the rare earth magnet layer 13 may be a Sm2Fe17N3 layer , a SmFe12 layer, a NdFe12 layer, or a PrFe12 layer, and is preferably a SmCo5 layer.
  • the transition metal layer 11 preferably contains at least one transition metal element overlapping with the intermediate layer 12, and more preferably contains the same element as the transition metal element contained in the intermediate layer 12.
  • the rare earth element contained in the intermediate layer 12 is a rare earth element diffused from the rare earth magnet layer 13, and the transition metal contained in the intermediate layer 12 is preferably the same as the metal contained in the transition metal layer 11.
  • the cylindrical magnetic body of the present disclosure can be suitably used not only for outer rotors and motors, but also for controlling magnetic fluids placed inside the cylinder and protecting piping from plasma.
  • the magnet layer may have a multi-pole magnetization pattern in the circumferential or axial direction, or may be arranged only in a part of the cylinder.
  • Example 1 A cylindrical Co substrate (outer diameter: 6.0 mm, thickness: 0.3 mm) was prepared. A mask made of Mo was formed on the outer peripheral surface of the Co substrate by a known method. Next, the inner peripheral surface of the Co substrate was polished with #120 abrasive paper for 5 minutes and washed with acetone.
  • LiCl was prepared and dehydrated by drying.
  • the dehydrated LiCl was heated to 600°C in a metal Mo container by an external heater and melted.
  • Sm metal powder was added to the molten LiCl as an Sm source.
  • a polished cylindrical Co base material was immersed in the molten LiCl.
  • the reaction diffusion temperature was 700°C, and the reaction diffusion time was 30 hours.
  • a laminate in which a SmCo2 film was formed on the Co base material by the reaction diffusion process was obtained.
  • the obtained laminate was heated to 1050°C. Next, the laminate was heated at a holding temperature of 1050°C for 24 hours without applying a magnetic field to the laminate. After that, the laminate was cooled without applying a magnetic field to the laminate to obtain a cylindrical magnetic body. The heating rate was 0.15°C/sec, and the cooling rate was 50°C/sec. The atmosphere for the heating process was Ar. Finally, the Mo mask was removed.
  • the structure of the obtained cylindrical magnetic body was a Sm2Co17 film and a SmCo5 film formed in that order on the inner peripheral surface of a Co substrate.
  • crystal orientation analysis using EBSD revealed that the cylindrical magnetic body was oriented in the radial direction, and the degree of orientation of the rare earth magnet layer was 90%.
  • the cylindrical magnetic body has a transition metal layer made of a Co base material with a diameter of 6.0 mm and a thickness of 0.3 mm.
  • the inner peripheral surface of the Co base material is in contact with 17 layers of Sm2Co with a thickness of 0.05 mm as an intermediate layer.
  • the inner peripheral surface of the intermediate layer is in contact with 5 layers of SmCo with a thickness of 0.2 mm as a rare earth magnet layer.
  • the rare earth magnet layer is magnetized in four poles in the radial direction, and the degree of orientation is 90%.
  • Example 2 A cylindrical magnetic body was produced in the same manner as in Example 1, except that the grit size of the abrasive paper was changed to a finer #4000. Using an X-ray diffraction measuring device and an energy dispersive X-ray analyzer, it was confirmed that the structure of the obtained cylindrical magnetic body was a Sm2Co17 film and a SmCo5 film formed in this order on the inner peripheral surface of a Co base material. In addition, crystal orientation analysis using EBSD revealed that the cylindrical magnetic body was oriented in the radial direction, and the orientation degree of the rare earth magnet layer was 98%.
  • the motor torque was calculated by simulation under the same conditions as in Example 1 except that the above-mentioned cylindrical magnetic body was used, that is, the orientation degree of the rare earth magnet layer was 98%.
  • Example 3 Compared to Example 2, the thickness of the intermediate layer was set to 0.025 mm, and an intervening layer made of an adhesive (epoxy resin) having a thickness of 0.025 mm was further disposed between the rare earth magnet layer and the intermediate layer.
  • the motor torque was obtained by simulation under the same conditions as in Example 2.
  • Comparative Example 1 In comparison with Example 1, the intermediate layer was an adhesive layer made of epoxy resin with a thickness of 0.05 mm, and the rare earth magnet layers were magnetized in parallel directions, and the motor torque was calculated by simulation. The orientation degree of the rare earth magnet layers was 100%.
  • Comparative Example 2 Compared to Example 1, the intermediate layer was an adhesive layer made of epoxy resin with a thickness of 0.05 mm, and the orientation degree of the rare earth magnet layer was 80%, but the motor torque was obtained by simulation in the same manner as in Example 1.
  • Example 10 A cylindrical magnetic body was produced in the same manner as in Example 2, except that no Mo mask was formed. Using an X-ray diffraction measuring device and an energy dispersive X-ray analyzing device, it was confirmed that the structure of the obtained cylindrical magnetic body was such that a Sm2Co17 film and a SmCo5 film were formed in this order on the inner peripheral surface of the Co base material, and a Sm2Co17 film and a SmCo5 film were formed in this order on the outer peripheral surface of the Co base material. In addition, crystal orientation analysis using EBSD revealed that the cylindrical magnetic body was oriented in the radial direction, and the degree of orientation of the rare earth magnet layer was 98%.
  • REFERENCE SIGNS LIST 2 outer rotor 10 magnetic body 11 transition metal layer 12 intermediate layer 13 rare earth magnet layer 10a outer peripheral surface 10b inner peripheral surface 100 motor 50 stator 51 stator core 51a cylindrical portion 51b teeth portion 52 coil 60 shaft 70 magnetic sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

[Problem] To provide a cylindrical magnetic body which enables providing of an outer rotor with which motor torque can be enhanced, and a motor having said outer rotor. [Solution] This cylindrical magnetic body is characterized by having a multilayer structure comprising a transition metal layer, an intermediate layer, and a rare earth magnet layer in the stated order from the outer circumferential surface side to the inner circumferential surface side, and is characterized in that the intermediate layer and the rare earth magnet layer each contain a transition metal element and a rare earth element.

Description

筒状磁性体、アウターロータ、および、モータCylindrical magnetic body, outer rotor, and motor
 本開示は、筒状磁性体、筒状磁性体を有するアウターロータ、および、当該アウターロータを有するモータに関する。 This disclosure relates to a cylindrical magnetic body, an outer rotor having a cylindrical magnetic body, and a motor having the outer rotor.
アウターロータ型モータでは、ロータの内周壁にボンド磁石または焼結磁石が組付けられていることが一般的である。たとえば、特許文献1は、ロータコアの内周面に円筒状のボンド磁石が配置してあるアウターロータを開示している。 In outer rotor motors, it is common for bonded or sintered magnets to be attached to the inner circumferential wall of the rotor. For example, Patent Document 1 discloses an outer rotor in which a cylindrical bonded magnet is arranged on the inner circumferential surface of the rotor core.
従来のアウターロータ型モータでは、ボンド磁石または焼結磁石を擁するアウターロータを小径化すると、実用上十分なモータトルクを得ることが困難である。 In conventional outer rotor motors, if the diameter of the outer rotor containing a bonded magnet or sintered magnet is reduced, it is difficult to obtain sufficient motor torque for practical use.
特開2016-111738号公報JP 2016-111738 A
 本開示における例示的な実施形態の目的は、モータトルクの向上を図ることができるアウターロータ、そのアウターロータなどに用いることができる筒状磁性体、および、アウターロータを有するモータを提供することである。 The objective of the exemplary embodiment of the present disclosure is to provide an outer rotor capable of improving motor torque, a cylindrical magnetic body that can be used for the outer rotor, and a motor having the outer rotor.
上記の目的を達成するために、本開示に係る筒状磁性体は、
外周面側から内周面側に向かって、遷移金属層、中間層、および希土類磁石層を記載の順に備える多層構造を有し、前記中間層と前記希土類磁石層が、ともに遷移金属元素と希土類元素を含有する。
In order to achieve the above object, the cylindrical magnetic body according to the present disclosure is
It has a multilayer structure including, from the outer peripheral surface side to the inner peripheral surface side, a transition metal layer, an intermediate layer, and a rare earth magnet layer, in the stated order, and both the intermediate layer and the rare earth magnet layer contain a transition metal element and a rare earth element.
筒状磁性体が、上記の多層構造を有することで、たとえばモータのアウターロータの一部として用いることが可能となり、モータトルクの向上を図ることができ、しかもモータを小型化することができる。 By having the above-mentioned multi-layer structure, the cylindrical magnetic body can be used, for example, as part of the outer rotor of a motor, improving motor torque and enabling the motor to be made smaller.
好ましくは、前記希土類磁石層の平均厚みが10μm以上300μm以下である。 Preferably, the average thickness of the rare earth magnet layer is 10 μm or more and 300 μm or less.
好ましくは、前記多層構造における前記遷移金属層と前記中間層との間、および、前記中間層と前記希土類磁石層との間には、介在層が存在しない。 Preferably, there is no intervening layer between the transition metal layer and the intermediate layer in the multilayer structure, and between the intermediate layer and the rare earth magnet layer.
好ましくは、前記中間層に含まれる希土類元素は、前記希土類磁石層から拡散してきた希土類元素であり、前記中間層に含まれる遷移金属は、前記遷移金属層に含まれる遷移金属と同じである。 Preferably, the rare earth element contained in the intermediate layer is a rare earth element that has diffused from the rare earth magnet layer, and the transition metal contained in the intermediate layer is the same as the transition metal contained in the transition metal layer.
好ましくは、前記中間層が、前記遷移金属層の内周面の周方向全体を覆っており、
前記希土類磁石層が、前記中間層の内周面の周方向全体を覆っている。
Preferably, the intermediate layer covers the entire inner circumferential surface of the transition metal layer in the circumferential direction,
The rare earth magnet layer covers the entire inner circumferential surface of the intermediate layer in the circumferential direction.
好ましくは、前記希土類磁石層の磁化容易軸がラジアル方向に配向しており、
前記磁化容易軸の配向度が、ラジアル方向に対し90%以上である。
Preferably, the magnetization easy axis of the rare earth magnet layer is oriented in the radial direction,
The degree of orientation of the axis of easy magnetization is 90% or more with respect to the radial direction.
好ましくは、前記遷移金属層はCo層であり、前記中間層はSm2Co17層であり、前記希土類磁石層はSmCo5層である。 Preferably, the transition metal layer is a Co layer, the intermediate layer is a Sm2Co 17 layer, and the rare earth magnet layer is a SmCo 5 layer.
本開示の筒状磁性体は、医療用や腕時計用などの様々な用途のモータ中のアウターロータや筒内部に入れた磁性流体の制御、プラズマからの配管保護などに適用することができる。たとえば、磁石層が周方向や軸方向に多極の磁化パターンを有していても良く、円筒の一部分にだけ配置されていても良い。また、本開示のアウターロータを有するモータは、前記アウターロータの内側に挿入してあるステータを有してもよい。また、本開示のアウターロータを有するモータは、さらに前記ステータが磁気センサを備えてもよい。 The cylindrical magnetic body of the present disclosure can be used in the outer rotor of motors for various applications such as medical use and wristwatches, to control the magnetic fluid placed inside the cylinder, and to protect piping from plasma. For example, the magnet layer may have a multi-pole magnetization pattern in the circumferential or axial direction, and may be arranged on only a part of the cylinder. A motor having an outer rotor of the present disclosure may also have a stator inserted inside the outer rotor. A motor having an outer rotor of the present disclosure may further have a stator equipped with a magnetic sensor.
図1は、本開示の一実施形態に係る筒状磁性体を有するアウターロータを示す断面図であり、アウターロータの回転軸と垂直な断面を示している。FIG. 1 is a cross-sectional view showing an outer rotor having a cylindrical magnetic body according to an embodiment of the present disclosure, showing a cross section perpendicular to the rotation axis of the outer rotor. 図2の(a)および(b)は、それぞれ、図1のII-II線に沿う断面の一例である。2(a) and (b) are examples of cross sections taken along line II-II in FIG. 図3は、図1に示すアウターロータにおける磁化(磁極)の配列の一例を示す模式図である。FIG. 3 is a schematic diagram showing an example of an arrangement of magnetization (magnetic poles) in the outer rotor shown in FIG. 図4は、図1に示すアウターロータを有するモータを示す断面図であり、モータの回転軸と垂直な断面を示している。FIG. 4 is a cross-sectional view showing a motor having the outer rotor shown in FIG. 1, showing a cross section perpendicular to the rotation axis of the motor. 図5は、図4に示すV-V線に沿う断面を示す簡略図である。FIG. 5 is a simplified diagram showing a cross section taken along line VV shown in FIG. 図6は、筒状磁性体を有するアウターロータの変形例を示す断面図である。FIG. 6 is a cross-sectional view showing a modified example of an outer rotor having a cylindrical magnetic body. 図7は、筒状磁性体を有するアウターロータのさらに別の変形例を示す断面図である。FIG. 7 is a cross-sectional view showing yet another modified example of an outer rotor having a cylindrical magnetic body.
 以下、本開示の一実施形態を、図面を参照しつつ説明する。なお、本開示の図面に表された形状等は、実際の形状等とは必ずしも一致しない。各図面では、説明のために形状等を改変している場合があるためである。 Below, one embodiment of the present disclosure will be described with reference to the drawings. Note that the shapes and the like depicted in the drawings of the present disclosure do not necessarily match the actual shapes and the like. This is because the shapes and the like may have been modified in each drawing for the purpose of explanation.
 本実施形態に係るアウターロータ2は、図1に示すように、多層構造を有する筒状磁性体10を含む。アウターロータ2には、磁性体10の他に、磁性体10を支持するロータ用ハウジング、アウターロータ2とシャフトとを連結するための係合部品、および、ファンやギアなどのその他の付属部品などが付随してあってもよい。 As shown in FIG. 1, the outer rotor 2 according to this embodiment includes a cylindrical magnetic body 10 having a multi-layer structure. In addition to the magnetic body 10, the outer rotor 2 may also include a rotor housing that supports the magnetic body 10, an engagement part for connecting the outer rotor 2 to the shaft, and other accessories such as a fan and gears.
図1に示すように磁性体10は、外周面10aおよび内周面10bを有し、周方向に沿って、接着剤層または隙間などの継ぎ目がない一体構造を有していることが好ましい。つまり、図1に示す磁性体10は、円筒形状を有する。ただし、磁性体10は、少なくとも筒状の部位を有していればよく、磁性体10の形状は、必ずしも限定されない。 As shown in FIG. 1, the magnetic body 10 has an outer peripheral surface 10a and an inner peripheral surface 10b, and preferably has an integral structure along the circumferential direction with no seams such as adhesive layers or gaps. In other words, the magnetic body 10 shown in FIG. 1 has a cylindrical shape. However, the magnetic body 10 only needs to have at least a cylindrical portion, and the shape of the magnetic body 10 is not necessarily limited.
図1に示す中心軸AXは、内周面10aに沿って、内周面10aで囲まれた領域の中心を通る仮想線であり、磁性体10の当該中心軸AXが、アウターロータ2の回転軸に一致する。なお、各図面におけるZ軸は、中心軸AXと平行であり、X軸、Y軸、およびZ軸は、相互に垂直である。 The central axis AX shown in FIG. 1 is an imaginary line that passes through the center of the area surrounded by the inner peripheral surface 10a along the inner peripheral surface 10a, and the central axis AX of the magnetic body 10 coincides with the rotation axis of the outer rotor 2. Note that the Z axis in each drawing is parallel to the central axis AX, and the X axis, Y axis, and Z axis are perpendicular to each other.
磁性体10の寸法は、必ずしも限定されない。たとえば、磁性体10の外径d1は、1mm以上6mm以下であることが好ましく、磁性体10の内径d2は、0.5mm以上5mm以下であることが好ましい。磁性体10の厚みは、(d1-d2)/2で表され、たとえば、0.1mm以上2mm以下であることが好ましい。また、磁性体10のZ軸方向の長さLは、たとえば、1mm以上20mm以下としてもよい。 The dimensions of the magnetic body 10 are not necessarily limited. For example, the outer diameter d1 of the magnetic body 10 is preferably 1 mm or more and 6 mm or less, and the inner diameter d2 of the magnetic body 10 is preferably 0.5 mm or more and 5 mm or less. The thickness of the magnetic body 10 is expressed as (d1-d2)/2, and is preferably, for example, 0.1 mm or more and 2 mm or less. Furthermore, the length L of the magnetic body 10 in the Z-axis direction may be, for example, 1 mm or more and 20 mm or less.
磁性体10は、外周面側から内周面側に向かって、遷移金属層11、中間層12、および、希土類磁石層13を記載の順に備える多層構造を有している。多層構造を有する磁性体10では、遷移金属層11が基体であり、遷移金属層11の内周面側に、中間層12および希土類磁石層13が記載の順に積層してある。磁性体10の各層(11~13)は、図1に示すように、周方向に沿って継ぎ目や切れ目がない連続的な層である。 Magnetic body 10 has a multilayer structure that includes, from the outer peripheral surface side to the inner peripheral surface side, a transition metal layer 11, an intermediate layer 12, and a rare earth magnet layer 13, in the order listed. In magnetic body 10 having a multilayer structure, transition metal layer 11 is the base, and intermediate layer 12 and rare earth magnet layer 13 are laminated on the inner peripheral surface side of transition metal layer 11, in the order listed. Each layer (11-13) of magnetic body 10 is a continuous layer with no seams or breaks along the circumferential direction, as shown in Figure 1.
磁性体10の多層構造において、遷移金属層11の内周面と中間層12の外周面とが直に接していることが好ましく、中間層12の内周面と希土類磁石層13の外周面とが直に接していることが好ましい。すなわち、遷移金属層11と中間層12との間、および、中間層12と希土類磁石層13との間には(多層構造における層間には)、走査型電子顕微鏡(SEM)で観察可能な分解能0.5~4nmより薄い層が存在してもよいが、SEMで観察可能な分解能0.5~4nmより厚い酸化物層、樹脂層、接着剤層などの非磁性材料による介在層が存在しないことが好ましい。本実施形態では、多層構造の層間に「介在層が存在しない」とは、上記のとおり、SEMで観察可能な分解能で介在層を識別できないことを意味する。 In the multilayer structure of the magnetic body 10, it is preferable that the inner peripheral surface of the transition metal layer 11 and the outer peripheral surface of the intermediate layer 12 are in direct contact with each other, and it is preferable that the inner peripheral surface of the intermediate layer 12 and the outer peripheral surface of the rare earth magnet layer 13 are in direct contact with each other. In other words, between the transition metal layer 11 and the intermediate layer 12, and between the intermediate layer 12 and the rare earth magnet layer 13 (between the layers in the multilayer structure), there may be a layer thinner than the resolution of 0.5 to 4 nm observable by a scanning electron microscope (SEM), but it is preferable that there is no intermediate layer made of a non-magnetic material such as an oxide layer, a resin layer, or an adhesive layer thicker than the resolution of 0.5 to 4 nm observable by an SEM. In this embodiment, "there is no intermediate layer" between the layers of the multilayer structure means that, as described above, the intermediate layer cannot be identified with the resolution observable by an SEM.
図2の(a)および(b)は、それぞれ、中心軸AXに沿う磁性体10の断面の一例である。図2の(a)に示すように、中間層12は、遷移金属層11の内周面の周方向全体を覆っていることが好ましく、希土類磁石層13は、中間層12の内周面の周方向全体を覆っていることが好ましい。ただし、磁性体10の多層構造は、図2の(a)に示す様態に必ずしも限定されず、遷移金属層11の内周面の一部が、中間層12および希土類磁石層13を積層していない非積層領域を有していてもよい。たとえば、図2の(b)では、遷移金属層11の内周面が、Z軸方向の両端部において、中間層12および希土類磁石層13で覆われていない非積層領域11bを有しており、非積層領域11bの間に多層構造が形成してある。 2(a) and (b) are examples of cross sections of the magnetic body 10 along the central axis AX. As shown in FIG. 2(a), the intermediate layer 12 preferably covers the entire circumferential direction of the inner circumferential surface of the transition metal layer 11, and the rare earth magnet layer 13 preferably covers the entire circumferential direction of the inner circumferential surface of the intermediate layer 12. However, the multilayer structure of the magnetic body 10 is not necessarily limited to the form shown in FIG. 2(a), and a part of the inner circumferential surface of the transition metal layer 11 may have a non-laminated region in which the intermediate layer 12 and the rare earth magnet layer 13 are not laminated. For example, in FIG. 2(b), the inner circumferential surface of the transition metal layer 11 has non-laminated regions 11b at both ends in the Z-axis direction that are not covered by the intermediate layer 12 and the rare earth magnet layer 13, and a multilayer structure is formed between the non-laminated regions 11b.
遷移金属層11の外周面11aは、図1および図2に示すように、磁性体10の外周面10aを成していてもよい。もしくは、遷移金属層11の外周面11aの一部または全部は、その他の層で覆われていてもよい。遷移金属層11の外周面側に位置するその他の層としては、たとえば、W、Ta、Nb、または、Moなどを含む高融点非磁性材料の層が挙げられる。なお、高融点非磁性材料の層が遷移金属層11の外周面側に存在する場合、この高融点非磁性材料の層の平均厚みは、特に限定されず、たとえば、0.5μm以上25μm以下であることが好ましく、5μm以上25μm以下であることがさらに好ましい。 The outer peripheral surface 11a of the transition metal layer 11 may form the outer peripheral surface 10a of the magnetic body 10, as shown in Figures 1 and 2. Alternatively, a part or all of the outer peripheral surface 11a of the transition metal layer 11 may be covered with another layer. Examples of other layers located on the outer peripheral surface side of the transition metal layer 11 include layers of high-melting point nonmagnetic materials including W, Ta, Nb, or Mo. When a layer of high-melting point nonmagnetic material is present on the outer peripheral surface side of the transition metal layer 11, the average thickness of this layer of high-melting point nonmagnetic material is not particularly limited, and is preferably, for example, 0.5 μm or more and 25 μm or less, and more preferably 5 μm or more and 25 μm or less.
希土類磁石層13の内周面13bの一部または全部は、Sm23を含む層、または/および、Ni、Cu、またはSnなどを含む保護層で覆われていてもよい。ただし、図1および図2に示すように、希土類磁石層13の内周面13bが、磁性体10の内周面10bに露出し、内周面10bを成していることが好ましい。 A part or the whole of the inner peripheral surface 13b of the rare earth magnet layer 13 may be covered with a layer containing Sm2O3 and/or a protective layer containing Ni, Cu, Sn, etc. However, as shown in Figures 1 and 2, it is preferable that the inner peripheral surface 13b of the rare earth magnet layer 13 is exposed to the inner peripheral surface 10b of the magnetic body 10 and forms the inner peripheral surface 10b.
以下、磁性体10の多層構造を構成する各層(11~13)の特徴について詳述する。なお、各層の組成は、たとえば、誘導結合プラズマ発光分光分析(ICP-AES)、蛍光X線分析(XRF)、エネルギー分散型X線分析(EDS)、または、波長分散型X線分析(WDS)などを用いた成分分析により解析すればよく、各層の結晶構造は、X線回折(XRD)、電子線回折、または、電子後方散乱回折(EBSD)などを用いて解析すればよい。また、各層の厚みを測定する際には、磁性体10を等分割し、中心軸AXと略垂直な少なくとも3つの断面を解析することが好ましく、各断面では、周方向に沿って均等間隔で少なくとも4点の厚みを計測することが好ましい。つまり、各層の厚みは、いずれも、3次元空間で偏りなく分布した少なくとも12の点で測定し、平均厚み、および、厚みの標準偏差を算出することが好ましい。 The characteristics of each layer (11 to 13) constituting the multilayer structure of the magnetic body 10 will be described in detail below. The composition of each layer may be analyzed by component analysis using, for example, inductively coupled plasma atomic emission spectroscopy (ICP-AES), X-ray fluorescence analysis (XRF), energy dispersive X-ray analysis (EDS), or wavelength dispersive X-ray analysis (WDS), and the crystal structure of each layer may be analyzed by X-ray diffraction (XRD), electron beam diffraction, or electron backscatter diffraction (EBSD). In addition, when measuring the thickness of each layer, it is preferable to divide the magnetic body 10 into equal parts and analyze at least three cross sections approximately perpendicular to the central axis AX, and it is preferable to measure the thickness at at least four points at equal intervals along the circumferential direction on each cross section. In other words, it is preferable to measure the thickness of each layer at at least 12 points distributed evenly in three-dimensional space, and calculate the average thickness and the standard deviation of the thickness.
本実施形態において、遷移金属層11は、主としてCoを含む軟磁性体層であり、磁性体10における基材である。「主としてCoを含む」とは、当該層においてCoの含有率が最も多いことを意味し、遷移金属層11は、Cr、Mn、Fe、Ni、Cu、Pb、およびMoなどのその他の金属元素を含んでいてもよい。遷移金属層11におけるCoの含有率は、たとえば、95wt%以上であることが好ましく、99wt%以上であることがより好ましい。 In this embodiment, the transition metal layer 11 is a soft magnetic layer that mainly contains Co, and is the base material of the magnetic body 10. "Mainly contains Co" means that the content of Co is the highest in the layer, and the transition metal layer 11 may also contain other metal elements such as Cr, Mn, Fe, Ni, Cu, Pb, and Mo. The content of Co in the transition metal layer 11 is preferably, for example, 95 wt% or more, and more preferably 99 wt% or more.
遷移金属層11の平均厚みt1は、特に限定されず、モータの用途に応じて適宜選択することができるが、たとえば、0.1mm以上1.8mm以下であることが好ましい。 The average thickness t1 of the transition metal layer 11 is not particularly limited and can be selected appropriately depending on the application of the motor, but it is preferable that it is, for example, 0.1 mm or more and 1.8 mm or less.
本実施形態において、中間層12は、主相としてSm2Co17を含む層である。主相のSm2Co17は、Th2Zn17型の結晶構造を有するSmおよびCoの合金であり、後述するSmCo5よりも飽和磁化が高い軟磁性材料である。主相のSm2Co17が、Th2Zn17型の結晶構造を有していれば、Sm2Co17におけるSm原子とCo原子との比が、化学量論比から若干偏倚していてもよい。たとえば、中間層12には、磁気特性を向上させるために、Ti、Zr、Nb、Ta、Cu、Ce、および、Feなどの他の元素が添加してあってもよく、他の元素が添加してある場合には、Sm原子とCo原子との比が、化学量論比から若干偏倚することがある。 In this embodiment, the intermediate layer 12 is a layer containing Sm2Co17 as a main phase. The main phase Sm2Co17 is an alloy of Sm and Co having a Th2Zn17 type crystal structure, and is a soft magnetic material having a higher saturation magnetization than SmCo5 described later. If the main phase Sm2Co17 has a Th2Zn17 type crystal structure, the ratio of Sm atoms to Co atoms in Sm2Co17 may be slightly deviated from the stoichiometric ratio. For example, other elements such as Ti , Zr , Nb, Ta, Cu, Ce, and Fe may be added to the intermediate layer 12 in order to improve the magnetic properties, and when other elements are added, the ratio of Sm atoms to Co atoms may be slightly deviated from the stoichiometric ratio.
なお、本実施形態において「主相」とは、所定の層において含有率が最も多い相を意味する。中間層12には、組成または/および結晶構造がSm2Co17とは異なる相(異相)、および、粒界相などが含まれていてもよい。中間層12におけるSm2Co17の含有率は、たとえば、70wt%以上であってもよく、80wt%以上であることが好ましく、90wt%以上であることがより好ましく、95wt%以上であることがさらに好ましい。 In this embodiment, the term "main phase" refers to the phase having the highest content in a given layer. The intermediate layer 12 may contain a phase (heterogeneous phase) whose composition and/or crystal structure is different from that of Sm2Co17 , a grain boundary phase, etc. The content of Sm2Co17 in the intermediate layer 12 may be, for example, 70 wt% or more, preferably 80 wt% or more, more preferably 90 wt% or more, and even more preferably 95 wt% or more.
中間層12の平均厚みt2は、特に限定されないが、たとえば、1μm以上100μm以下であることが好ましい。中間層12における厚みの変動係数の百分率は、たとえば、50%以下であることが好ましい。なお、「変動係数」は、厚みのバラツキを表す係数であって、平均厚みに対する厚みの標準偏差の比(標準偏差/平均厚み)として表される。 The average thickness t2 of the intermediate layer 12 is not particularly limited, but is preferably, for example, 1 μm or more and 100 μm or less. The percentage of the coefficient of variation of the thickness of the intermediate layer 12 is preferably, for example, 50% or less. The "coefficient of variation" is a coefficient that represents the variation in thickness, and is expressed as the ratio of the standard deviation of the thickness to the average thickness (standard deviation/average thickness).
本実施形態において、希土類磁石層13は、主相としてSmCo5を含む硬磁性体層である。主相のSmCo5は、CaCu5型の結晶構造を有するSmおよびCoの合金である。主相のSmCo5がCaCu5型の結晶構造を有していれば、SmCo5におけるSm原子とCo原子との比が、化学量論比から若干偏倚していてもよい。たとえば、希土類磁石層13には、磁気特性を向上させるために、Ti、Zr、Nb、Ta、Cu、Ce、および、Feなどの他の元素が添加してあってもよく、他の元素が添加してある場合には、Sm原子とCo原子との比が、化学量論比から若干偏倚することがある。 In this embodiment, the rare earth magnet layer 13 is a hard magnetic layer containing SmCo5 as a main phase. The main phase SmCo5 is an alloy of Sm and Co having a CaCu5 type crystal structure. If the main phase SmCo5 has a CaCu5 type crystal structure, the ratio of Sm atoms to Co atoms in SmCo5 may be slightly deviated from the stoichiometric ratio. For example, other elements such as Ti, Zr, Nb, Ta, Cu, Ce, and Fe may be added to the rare earth magnet layer 13 in order to improve the magnetic properties, and when other elements are added, the ratio of Sm atoms to Co atoms may be slightly deviated from the stoichiometric ratio.
希土類磁石層13には、組成または/および結晶構造がSmCo5とは異なる相(異相)、および、粒界相が含まれていてもよい。希土類磁石層13におけるSmCo5の含有率は、たとえば、70wt%以上であってもよく、80wt%以上であることが好ましく、90wt%以上であることがより好ましく、95wt%以上であることがさらに好ましい。なお、希土類磁石層13における異相としては、たとえば、SmCo5と比較してSmの比率が高いSmリッチ相などが挙げられる。 The rare earth magnet layer 13 may contain a phase (heterogeneous phase) whose composition and/or crystal structure is different from SmCo5 , and a grain boundary phase. The content of SmCo5 in the rare earth magnet layer 13 may be, for example, 70 wt% or more, preferably 80 wt% or more, more preferably 90 wt% or more, and even more preferably 95 wt% or more. Note that an example of the heterogeneous phase in the rare earth magnet layer 13 is an Sm-rich phase in which the ratio of Sm is higher than that of SmCo5 .
希土類磁石層13の平均厚みt3は、10μm以上300μm以下であることが好ましい。希土類磁石層13における厚みの変動係数(標準偏差/平均厚み)の百分率は、たとえば、50%以下であることが好ましい。変動係数を小さくすることで、アウターロータ2をモータに組み込んだ際に、アウターロータ2とステータとの距離を、一定間隔でなるべく小さくすることができ、モータトルクの向上に寄与する。 The average thickness t3 of the rare earth magnet layer 13 is preferably 10 μm or more and 300 μm or less. The percentage of the thickness variation coefficient (standard deviation/average thickness) of the rare earth magnet layer 13 is preferably, for example, 50% or less. By reducing the variation coefficient, when the outer rotor 2 is assembled into a motor, the distance between the outer rotor 2 and the stator can be made as small as possible at a constant interval, which contributes to improving the motor torque.
また、中間層12の平均厚みt2に対する希土類磁石層13の平均厚みt3の比(t3/t2)は、1以上100以下であることが好ましく、5以上100以下であることがより好ましい。平均厚みt1、t2、およびt3の合計をT0とすると、T0に対するt3の比(t3/T0)は、0.01以上1未満としてもよい。t3/t2、または/および、t3/T0を上記の範囲に制御することで、筒状磁性体の磁気特性をより向上させることができる。 Furthermore, the ratio (t3/t2) of the average thickness t3 of the rare earth magnet layer 13 to the average thickness t2 of the intermediate layer 12 is preferably 1 or more and 100 or less, and more preferably 5 or more and 100 or less. If the sum of the average thicknesses t1, t2, and t3 is T0, the ratio of t3 to T0 (t3/T0) may be 0.01 or more and less than 1. By controlling t3/t2 and/or t3/T0 within the above range, the magnetic properties of the cylindrical magnetic body can be further improved.
希土類磁石層13の内周面13bに基づく粗さ曲線のRz(最大高低差)は、20μm以下であることが好ましい。上記のRzの算出する際には、中心軸AXと直交する断面、および、中心軸AXに沿う断面の両方で、内周面13bの輪郭線による粗さ曲線を取得することが好ましい。内周面13bのRzを20μm以下とすることで、筒状磁性体を有するアウターロータ2をモータに組み込んだ際に、アウターロータ2とステータとの距離を、一定間隔でなるべく小さくすることができ、モータトルクの向上に寄与する。 The Rz (maximum height difference) of the roughness curve based on the inner circumferential surface 13b of the rare earth magnet layer 13 is preferably 20 μm or less. When calculating the above Rz, it is preferable to obtain a roughness curve based on the contour line of the inner circumferential surface 13b in both a cross section perpendicular to the central axis AX and a cross section along the central axis AX. By making the Rz of the inner circumferential surface 13b 20 μm or less, when the outer rotor 2 having a cylindrical magnetic body is incorporated into a motor, the distance between the outer rotor 2 and the stator can be made as small as possible at a constant interval, which contributes to improving the motor torque.
多層構造の磁性体10は、ロータ(回転子)であると共に、モータにおける磁気回路を構成する要素である。硬磁性体層である希土類磁石層13が磁石であり、軟磁性体層である遷移金属層11および中間層12は、磁束を集めるバックヨークとして作用する。 The multi-layered magnetic body 10 is the rotor and also an element that constitutes the magnetic circuit in the motor. The rare earth magnet layer 13, which is a hard magnetic layer, is the magnet, and the transition metal layer 11 and intermediate layer 12, which are soft magnetic layers, act as a back yoke that collects magnetic flux.
希土類磁石層13の磁化容易軸が、ラジアル方向に配向されていることが好ましい。ここで、「ラジアル方向」とは、磁性体10の中心軸AXと垂直な方向であり、「ラジアル方向に配向」とは、中心軸AXの方向から見て、磁化容易軸が中心軸AXを中心として放射状に配置されていることを意味する。また、希土類磁石層13の磁化容易軸は、SmCo5の結晶方位[00L]であり、SmCo5の結晶方位[00L]がラジアル方向に配向していることが好ましい。結晶方位におけるLは、任意の自然数であり、Lがいずれの自然数の場合でも[00L]は同じ方向を指す。Lは、たとえば2である。 The magnetization easy axis of the rare earth magnet layer 13 is preferably oriented in the radial direction. Here, the "radial direction" refers to a direction perpendicular to the central axis AX of the magnetic body 10, and "oriented in the radial direction" means that, as viewed from the direction of the central axis AX, the magnetization easy axis is arranged radially around the central axis AX. In addition, the magnetization easy axis of the rare earth magnet layer 13 is the crystal orientation [00L] of SmCo5 , and it is preferable that the crystal orientation [00L] of SmCo5 is oriented in the radial direction. L in the crystal orientation is any natural number, and [00L] indicates the same direction regardless of the natural number of L. L is, for example, 2.
アウターロータ2において、磁石である希土類磁石層13の磁化容易軸がラジアル方向に配向していることで、高い表面磁束密度を得ることができる。そのうえ、アウターロータ2の磁性体10が、遷移金属層11、中間層12、および希土類磁石層13を擁する多層構造を有することで、希土類磁石層13の配向度を、従来の焼結磁石またはボンド磁石よりも向上させることができる。 In the outer rotor 2, the easy axis of magnetization of the rare earth magnet layer 13, which is a magnet, is oriented in the radial direction, which allows for a high surface magnetic flux density to be obtained. Furthermore, because the magnetic body 10 of the outer rotor 2 has a multi-layer structure that includes a transition metal layer 11, an intermediate layer 12, and a rare earth magnet layer 13, the degree of orientation of the rare earth magnet layer 13 can be improved compared to conventional sintered magnets or bonded magnets.
従来の焼結磁石またはボンド磁石を擁するアウターロータでは、ラジアル方向への磁化容易軸の配向度は、高くてもせいぜい80%台であり、90%以上の配向度を確保することが困難であった。一方、本実施形態の筒状磁性体を有するアウターロータ2では、遷移金属層11、中間層12、および希土類磁石層13が、外周面側から内周面側に向かって、記載の順に積層してあることで、希土類磁石層13における磁化容易軸のラジアル方向への配向度を、90%以上とすることができる。理由は明確ではないが、遷移金属層11と希土類磁石層13の間に中間層12が入ることで、配向度90%以上のラジアル異方性が得られていると推測される。すなわち、希土類磁石層13では、磁化容易軸のラジアル方向への配向度が、90%以上であることが好ましく、90%超過であることがより好ましく、95%以上であることがさらに好ましい。 In the conventional outer rotors having sintered magnets or bonded magnets, the degree of orientation of the easy magnetization axis in the radial direction is at most 80%, and it is difficult to ensure an orientation degree of 90% or more. On the other hand, in the outer rotor 2 having the cylindrical magnetic body of this embodiment, the transition metal layer 11, the intermediate layer 12, and the rare earth magnet layer 13 are stacked in the order described above from the outer peripheral surface side to the inner peripheral surface side, so that the degree of orientation of the easy magnetization axis in the rare earth magnet layer 13 in the radial direction can be made 90% or more. Although the reason is not clear, it is presumed that the intermediate layer 12 is inserted between the transition metal layer 11 and the rare earth magnet layer 13, thereby obtaining a radial anisotropy with an orientation degree of 90% or more. In other words, in the rare earth magnet layer 13, the degree of orientation of the easy magnetization axis in the radial direction is preferably 90% or more, more preferably more than 90%, and even more preferably 95% or more.
ラジアル方向への配向度を90%以上とすることで、表面磁束密度を従来よりも向上させることができ、アウターロータを小径化(たとえば、外径d1が6mm以下)しても十分に大きいモータトルクを得ることができる。 By achieving a radial orientation of 90% or more, the surface magnetic flux density can be improved compared to conventional methods, and a sufficiently large motor torque can be obtained even if the outer rotor diameter is reduced (for example, the outer diameter d1 is 6 mm or less).
磁化容易軸が配向している方向、および、磁化容易軸のラジアル方向への配向度は、EBSDを用いた結晶方位解析で算出することができる。EBSDで、希土類磁石層13の各位置における配向度を算出し、これらを希土類磁石層13全体で平均値を求めることで配向度を算出すればよい。 The direction in which the easy magnetization axis is oriented and the degree of orientation of the easy magnetization axis in the radial direction can be calculated by crystal orientation analysis using EBSD. The degree of orientation at each position of the rare earth magnet layer 13 is calculated using EBSD, and the degree of orientation can be calculated by averaging these values across the entire rare earth magnet layer 13.
磁石である希土類磁石層13は、磁化容易軸に沿ってラジアル方向に着磁されており、内周面13bにおいて2以上の磁極を有する。たとえば、図3では、希土類磁石層13における磁極の配列を矢印で示しており、希土類磁石層13の内周面13bが8極を有している。希土類磁石層13の内周面13bにおける磁極の数は特に限定されない。 The rare earth magnet layer 13, which is a magnet, is magnetized in the radial direction along the axis of easy magnetization, and has two or more magnetic poles on the inner peripheral surface 13b. For example, in FIG. 3, the arrangement of magnetic poles in the rare earth magnet layer 13 is shown by arrows, and the inner peripheral surface 13b of the rare earth magnet layer 13 has eight poles. There is no particular limit to the number of magnetic poles on the inner peripheral surface 13b of the rare earth magnet layer 13.
以下、筒状磁性体を有するアウターロータ2の製造方法の一例について説明する。 Below, an example of a method for manufacturing an outer rotor 2 having a cylindrical magnetic body is described.
磁性体10は、溶融塩浸漬法を応用した方法で製造することが好ましい。まず、円筒状のCo基体と、Sm源および溶融塩を含む反応液と、を準備する。 The magnetic body 10 is preferably manufactured by a method that applies the molten salt immersion method. First, a cylindrical Co substrate and a reaction liquid containing an Sm source and a molten salt are prepared.
反応液を調製する際には、まず、所定の無機塩を乾燥させることで脱水させる。無機塩としては、KCl(塩化カリウム)、LiCl(塩化リチウム)、および、NaCl(塩化ナトリウム)などが挙げられ、1種の無機塩を用いてもよいし、2種以上の無機塩を組み合わせて使用してもよい。脱水した無機塩を所定の温度に加熱し、無機塩を溶融させる(溶融塩)。無機塩を溶融させる温度は、使用する無機塩の種類に応じて適宜決定すればよいが、たとえば、400℃以上であることが好ましく、500℃以上であることがより好ましく、600℃以上であることがさらに好ましい。 When preparing the reaction solution, a specific inorganic salt is first dehydrated by drying. Examples of inorganic salts include KCl (potassium chloride), LiCl (lithium chloride), and NaCl (sodium chloride). One type of inorganic salt may be used, or two or more types of inorganic salts may be used in combination. The dehydrated inorganic salt is heated to a specific temperature to melt the inorganic salt (molten salt). The temperature at which the inorganic salt is melted may be appropriately determined depending on the type of inorganic salt used, but is preferably 400°C or higher, more preferably 500°C or higher, and even more preferably 600°C or higher.
上記の溶融塩(溶融した無機塩)に対してSm源を添加し、反応液を得る。Sm源としては、たとえば、金属SmおよびSm合金が挙げられ、1種類のSm源を用いてもよいし、2種以上のSm源を用いてもよい。反応液におけるSm源のモル数と無機塩のモル数との合計を100モル%とすると、反応液におけるSm源の割合は、たとえば、0.2モル%以上6モル%以下であることが好ましい。なお、中間層12、または/および、希土類磁石層13に、添加元素を加える場合には、所望の添加元素を含む原料を、Sm源と共に、溶融塩に添加すればよい。 The Sm source is added to the above molten salt (molten inorganic salt) to obtain a reaction liquid. Examples of the Sm source include metallic Sm and Sm alloys. One type of Sm source may be used, or two or more types of Sm sources may be used. If the total of the number of moles of the Sm source and the number of moles of the inorganic salt in the reaction liquid is 100 mol%, the ratio of the Sm source in the reaction liquid is preferably, for example, 0.2 mol% to 6 mol%. When an additive element is added to the intermediate layer 12 and/or the rare earth magnet layer 13, a raw material containing the desired additive element may be added to the molten salt together with the Sm source.
次に、上記の反応液を、Co基体の表面に接触させ、Co基体の表面に対する溶融塩中のSm源の反応拡散により、Co基体の内周面にSmを含む磁性被膜を形成する。当該工程を反応拡散工程と称することとする。この反応拡散工程において、Co基体を反応液にそのまま浸漬させると、Co基体の内周面のみならず、外周面および端面(Z軸と垂直な面)にもSmを含む磁性被膜が形成されてしまう。そのため、Sm源をCo基体の内周面でのみ反応拡散させ、外周面および端面での反応拡散を抑制するための工夫が必要となる。 Then, the above reaction liquid is brought into contact with the surface of the Co substrate, and a magnetic coating containing Sm is formed on the inner peripheral surface of the Co substrate by reactive diffusion of the Sm source in the molten salt to the surface of the Co substrate. This process is referred to as the reactive diffusion process. In this reactive diffusion process, if the Co substrate is directly immersed in the reactive liquid, a magnetic coating containing Sm is formed not only on the inner peripheral surface of the Co substrate, but also on the outer peripheral surface and end faces (surfaces perpendicular to the Z axis). Therefore, some measure is required to cause the Sm source to reactively diffuse only on the inner peripheral surface of the Co substrate, and to suppress reactive diffusion on the outer peripheral surface and end faces.
たとえば、高融点材料のマスクを、Co基体の外周面および端面に形成することが好ましい。高融点材料としては、たとえば、W、Ta、Nb、Mo、または、これらの元素のうち少なくとも1種を含む合金が挙げられる。高融点材料のマスクは、たとえば、蒸着法などにより形成すればよい。外周面および端面に高融点材料のマスクを形成した後に、Co基体を反応液に浸漬させることで、Sm源がCo基体の内周面でのみ反応拡散し、内周面にSmを含む磁性被膜を形成することができる。また、マスクを形成せずに、Sm源がCo基体の内周面および外周面で反応拡散し、内周面および外周面にSmを含む磁性被膜を形成してもよい。 For example, it is preferable to form a mask of a high melting point material on the outer peripheral surface and end surface of the Co base. Examples of high melting point materials include W, Ta, Nb, Mo, or an alloy containing at least one of these elements. The mask of the high melting point material may be formed, for example, by a deposition method. After forming a mask of the high melting point material on the outer peripheral surface and end surface, the Co base is immersed in a reaction liquid, whereby the Sm source reacts and diffuses only on the inner peripheral surface of the Co base, forming a magnetic coating containing Sm on the inner peripheral surface. Alternatively, the Sm source may react and diffuse on the inner peripheral surface and outer peripheral surface of the Co base without forming a mask, forming a magnetic coating containing Sm on the inner peripheral surface and outer peripheral surface.
高融点材料のマスクを形成する方法に代えて、Co基体の内周面で囲まれた領域(内周領域)に反応液を流入させる方法を採用してもよい。たとえば、Co基体の両端に導入管を接続し、ポンプやマスフローコントローラを用いて、反応液を一定の流速でCo基体の内周領域に流入させる。Co基体の一端から流出した反応液が再度内周領域に流入されるように、反応液を循環させることが好ましい。内周領域に反応液を流入させる方法では、Co基体を反応液に浸漬させる場合よりも、磁性被膜の厚みの均一性を高めることができる。 Instead of forming a mask of a high melting point material, a method of flowing a reaction liquid into a region surrounded by the inner surface of the Co substrate (inner region) may be adopted. For example, an inlet pipe is connected to both ends of the Co substrate, and a pump or mass flow controller is used to flow the reaction liquid into the inner region of the Co substrate at a constant flow rate. It is preferable to circulate the reaction liquid so that the reaction liquid that flows out from one end of the Co substrate flows back into the inner region. The method of flowing the reaction liquid into the inner region can improve the uniformity of the thickness of the magnetic coating compared to the case where the Co substrate is immersed in the reaction liquid.
反応拡散工程では、反応液の温度を、無機塩が溶融状態を保てる温度に保持する。磁性被膜を効率的に形成する観点では、反応液の温度は、500℃以上900℃以下であることが好ましく、650℃以上800℃以下であることがより好ましい。また、反応時間は、所望の厚みの磁性被膜が形成できるように、反応温度や反応液中のSm源の割合に応じて適宜設定すればよい。たとえば、反応時間は、1時間以上48時間以下としてもよい。 In the reaction diffusion process, the temperature of the reaction liquid is maintained at a temperature at which the inorganic salt can be kept in a molten state. From the viewpoint of efficiently forming a magnetic coating, the temperature of the reaction liquid is preferably 500°C or more and 900°C or less, and more preferably 650°C or more and 800°C or less. The reaction time may be appropriately set according to the reaction temperature and the proportion of Sm source in the reaction liquid so that a magnetic coating of the desired thickness can be formed. For example, the reaction time may be 1 hour or more and 48 hours or less.
反応拡散工程でCo基体の内周面に形成される磁性被膜は、中間層12および希土類磁石層13の前駆体である。具体的に、反応拡散工程後の磁性被膜は、SmCo2を主相として含むことが好ましい。SmCo2は、MgCu2型の結晶構造を有するSmおよびCoの合金である。主相のSmCo2がMgCu2型の結晶構造を有していれば、SmCo2におけるSm原子とCo原子との比が、化学量論比から若干偏倚していてもよい。たとえば、磁気特性の向上させるために添加元素を加えた場合は、Sm原子とCo原子との比が、化学量論比から若干偏倚することがある。 The magnetic film formed on the inner peripheral surface of the Co base in the reaction diffusion process is a precursor of the intermediate layer 12 and the rare earth magnet layer 13. Specifically, the magnetic film after the reaction diffusion process preferably contains SmCo2 as the main phase. SmCo2 is an alloy of Sm and Co having a MgCu2 type crystal structure. As long as the main phase SmCo2 has a MgCu2 type crystal structure, the ratio of Sm atoms to Co atoms in SmCo2 may be slightly deviated from the stoichiometric ratio. For example, when an additive element is added to improve the magnetic properties, the ratio of Sm atoms to Co atoms may be slightly deviated from the stoichiometric ratio.
磁性被膜は、主相の他に、SmCo2よりもSmの比率が高いSmリッチ相などの異相、および、粒界相を含んでいてもよい。磁性被膜におけるSmCo2の含有率は、50wt%以上としてもよく、70wt%以上であることが好ましく、90wt%以上であることがより好ましい。 In addition to the main phase, the magnetic coating may contain a heterophase, such as a Sm-rich phase having a higher ratio of Sm than SmCo2 , and a grain boundary phase. The content of SmCo2 in the magnetic coating may be 50 wt% or more, preferably 70 wt% or more, and more preferably 90 wt% or more.
なお、反応拡散工程の後には、磁性被膜が形成されたCo基体を、エタノールなどの有機溶媒もしくは純水を用いて、洗浄してもよい。 Furthermore, after the reaction diffusion process, the Co substrate on which the magnetic coating is formed may be washed with an organic solvent such as ethanol or pure water.
次に、SmCo2を含む磁性被膜を形成したCo基体を、所定の温度で所定の時間、加熱する(加熱工程)。この加熱工程で、SmCo2と基体のCoとの反応がさらに進み、Co基体の内周面および磁性被膜から、Sm2Co17を有する中間層12およびSmCo5を有する希土類磁石層13が生成する。 Next, the Co base on which the magnetic film containing SmCo2 is formed is heated at a predetermined temperature for a predetermined time (heating step). In this heating step, the reaction between SmCo2 and the Co of the base progresses further, and an intermediate layer 12 containing Sm2Co17 and a rare earth magnet layer 13 containing SmCo5 are generated from the inner peripheral surface of the Co base and the magnetic film.
加熱工程における昇温速度は、特に限定されず、たとえば、1℃/min以上20℃/min以下であることが好ましい。保持温度(到達温度)は、800℃以上1200℃以下であることが好ましく、850℃以上1150℃以下であることがより好ましく、900℃以上1100℃以下であることがさらに好ましい。上記保持温度での保持時間は、たとえば、2時間以上48時間以下であることが好ましい。また、加熱後の冷却時における降温速度は、5℃/min以上であることが好ましく、10℃/min以上であることがより好ましく、20℃/min以上であることがさらに好ましい。 The heating rate in the heating step is not particularly limited, and is preferably, for example, 1°C/min or more and 20°C/min or less. The holding temperature (attainment temperature) is preferably 800°C or more and 1200°C or less, more preferably 850°C or more and 1150°C or less, and even more preferably 900°C or more and 1100°C or less. The holding time at the above holding temperature is preferably, for example, 2 hours or more and 48 hours or less. In addition, the temperature drop rate during cooling after heating is preferably 5°C/min or more, more preferably 10°C/min or more, and even more preferably 20°C/min or more.
加熱工程の雰囲気は、特に制限されないが、希土類磁石層13の酸化を抑制する観点から、不活性ガス雰囲気であることが好ましい。不活性ガスとしては、たとえば、Arガス、および、N2ガスなどを用いればよい。 The atmosphere for the heating step is not particularly limited, but is preferably an inert gas atmosphere from the viewpoint of suppressing oxidation of the rare earth magnet layer 13. As the inert gas, for example, Ar gas, N2 gas, or the like may be used.
上記の工程により、中間層12および希土類磁石層13が、Co基体の内周面に、記載の順に形成され、多層構造を有する磁性体10が得られる。特に、上述した製法では、遷移金属層11(Co基体)と中間層12との間、および、中間層12と希土類磁石層13との間に、接着剤層などの非磁性層が介在しない多層構造が得られる。なお、Co基体の外周面および端面に高融点材料のマスクを形成した場合には、加熱工程の後に、高融点材料のマスクを除去してもよいし、高融点材料のマスクを残存させたままとしてもよい。また、Co基体の外周面および端面に高融点材料のマスクを形成しなかった場合には、Co基体の外周面にも中間層および希土類磁石層が形成された構造が得られる。 By the above steps, the intermediate layer 12 and the rare earth magnet layer 13 are formed on the inner peripheral surface of the Co base in the order described above, and a magnetic body 10 having a multilayer structure is obtained. In particular, the above-mentioned manufacturing method obtains a multilayer structure in which a non-magnetic layer such as an adhesive layer is not interposed between the transition metal layer 11 (Co base) and the intermediate layer 12, and between the intermediate layer 12 and the rare earth magnet layer 13. If a mask of high melting point material is formed on the outer peripheral surface and end surface of the Co base, the mask of high melting point material may be removed after the heating step, or the mask of high melting point material may be left remaining. Also, if a mask of high melting point material is not formed on the outer peripheral surface and end surface of the Co base, a structure is obtained in which an intermediate layer and a rare earth magnet layer are formed on the outer peripheral surface of the Co base as well.
続いて、本実施形態に係る筒状磁性体を有するアウターロータ2を用いたモータの一例について説明する。図4は、一実施形態に係るモータ100の回転軸に垂直な断面を示す模式図であり、図5は、モータ100の回転軸に沿う断面を簡略して示す模式図である。図4および図5に示すように、モータ100は、アウターロータ2と、アウターロータ2の内側に挿入してあるステータ50と、シャフト60と、を有する。 Next, an example of a motor using an outer rotor 2 having a cylindrical magnetic body according to this embodiment will be described. FIG. 4 is a schematic diagram showing a cross section perpendicular to the rotation axis of a motor 100 according to one embodiment, and FIG. 5 is a schematic diagram showing a simplified cross section along the rotation axis of the motor 100. As shown in FIGS. 4 and 5, the motor 100 has an outer rotor 2, a stator 50 inserted inside the outer rotor 2, and a shaft 60.
ステータ50は、図4に示すように、ステータコア51とコイル52とで構成してある。ステータコア51は、円筒部51aと、当該円筒部51aから外側に向かって突出するティース部51bと、を有しており、各ティース部51bにコイル52が形成してある。図4では、ステータコア51が6つのティース部51bを有しているが、ティース部51bの数は特に限定されない。コイル52は、たとえば、表面に絶縁被覆が形成してある導線を、ティース部51bに巻回することで形成すればよい。なお、ステータコア51の材質は特に限定されず、たとえば、電磁鋼板、SPCC(冷間圧延鋼板)、アモルファス合金または磁性粉などを用いることができる。粉状のアモルファス合金、磁性粉は、圧縮成形することで、ステータコアとすることができる。 As shown in FIG. 4, the stator 50 is composed of a stator core 51 and a coil 52. The stator core 51 has a cylindrical portion 51a and teeth 51b protruding outward from the cylindrical portion 51a, and a coil 52 is formed on each of the teeth 51b. In FIG. 4, the stator core 51 has six teeth 51b, but the number of teeth 51b is not particularly limited. The coil 52 may be formed, for example, by winding a conductor having an insulating coating on its surface around the teeth 51b. The material of the stator core 51 is not particularly limited, and may be, for example, an electromagnetic steel sheet, SPCC (cold rolled steel sheet), an amorphous alloy, or magnetic powder. The powdered amorphous alloy or magnetic powder can be compression molded to form a stator core.
図5に示すように、ステータ50は、磁性体10の内周面10bで囲まれた領域に挿入してあり、磁性体10の多層構造がステータ50の外周面50aを取り囲んでいる。つまり、多層構造の最も内側に位置する希土類磁石層13の内周面13bが、ステータ50の外周面50aと対向している。 As shown in FIG. 5, the stator 50 is inserted into the area surrounded by the inner circumferential surface 10b of the magnetic body 10, and the multilayer structure of the magnetic body 10 surrounds the outer circumferential surface 50a of the stator 50. In other words, the inner circumferential surface 13b of the rare earth magnet layer 13 located at the innermost side of the multilayer structure faces the outer circumferential surface 50a of the stator 50.
モータ100では、シャフト60が、ステータコア51の円筒部51aの内側を通るように配置してある。図5では省略しているが、シャフト60とアウターロータ2とが同調して回転するように、シャフト60とアウターロータ2とが連結してあってもよい。たとえば、磁性体10からなるアウターロータ2を含むロータ用ハウジングを、ブッシュやベアリングなどの軸受けを介して、シャフト60に連結してもよい。また、モータ100は、外装となる容器を有していてもよく、当該容器とステータ50とを連結してもよい。 In the motor 100, the shaft 60 is arranged to pass through the inside of the cylindrical portion 51a of the stator core 51. Although omitted in FIG. 5, the shaft 60 and the outer rotor 2 may be connected so that they rotate in unison. For example, a rotor housing including the outer rotor 2 made of magnetic material 10 may be connected to the shaft 60 via a bearing such as a bush or bearing. The motor 100 may also have a container that serves as the exterior, and the container may be connected to the stator 50.
モータ100は、医療機器用途や腕時計用途などの様々な用途に適用することができる。 The motor 100 can be used for a variety of purposes, including medical equipment and wristwatches.
アウターロータ2を適用するモータの構造は、図4および図5に示すモータ100に限定されない。たとえば、アウターロータ2は、コアレスモータやフレームレスモータに適用してもよい。コアレスモータの場合、ステータコアを用いずに、筒状形状を有するコアレス配線からなるコイル、もしくは、コイル配線が印刷されたフレキシブルプリント基板からなるコイルでステータを構成してもよい。 The structure of the motor to which the outer rotor 2 is applied is not limited to the motor 100 shown in Figures 4 and 5. For example, the outer rotor 2 may be applied to a coreless motor or a frameless motor. In the case of a coreless motor, the stator may be formed without using a stator core, using a coil made of coreless wiring having a cylindrical shape, or a coil made of a flexible printed circuit board on which coil wiring is printed.
(実施形態のまとめ)
 本実施形態の筒状磁性体は、外周面側から内周面側に向かって、遷移金属層11、中間層12、および、希土類磁石層13を記載の順に備える多層構造を有する。
(Summary of the embodiment)
The cylindrical magnetic body of this embodiment has a multi-layer structure including, from the outer circumferential surface side toward the inner circumferential surface side, a transition metal layer 11, an intermediate layer 12, and a rare earth magnet layer 13 in the stated order.
 筒状磁性体10が上記のような多層構造を有することで、希土類磁石層13の磁化容易軸をラジアル方向に配向させることができ、磁化容易軸のラジアル方向への配向度を、従来の焼結磁石やボンド磁石よりも向上させることができる。そのため、本実施形態の筒状磁性体10を有するアウターロータ2では、高い表面磁束密度を得ることができる。その結果、アウターロータ2の外径を6mm以下と小径化した場合であっても、実用上十分に大きいモータトルクを得ることができる。なお、希土類磁石層13における磁化容易軸の配向度は、ラジアル方向に対し、90%以上であることが好ましい。 By having the cylindrical magnetic body 10 have the multi-layer structure as described above, the easy magnetization axis of the rare earth magnet layer 13 can be oriented in the radial direction, and the degree of orientation of the easy magnetization axis in the radial direction can be improved compared to conventional sintered magnets and bonded magnets. Therefore, the outer rotor 2 having the cylindrical magnetic body 10 of this embodiment can obtain a high surface magnetic flux density. As a result, even if the outer diameter of the outer rotor 2 is reduced to 6 mm or less, a motor torque large enough for practical use can be obtained. Note that the degree of orientation of the easy magnetization axis in the rare earth magnet layer 13 in the radial direction is preferably 90% or more.
 希土類磁石層13の平均厚みt3は、10μm以上300μm以下であることが好ましい。t3を上記の範囲に制御することで、筒状磁性体の磁気特性をより向上させることができる。 The average thickness t3 of the rare earth magnet layer 13 is preferably 10 μm or more and 300 μm or less. By controlling t3 within the above range, the magnetic properties of the cylindrical magnetic body can be further improved.
多層構造における層間(すなわち、遷移金属層11と中間層12との間、および、中間層12と希土類磁石層13との間)には、接着剤層などの介在層が存在しないことが好ましい。保護層や接着剤層などを層間に介在させないことで、筒状磁性体における非磁性層の割合が低減し、磁石の割合を高めることができるため、モータトルクをさらに向上させることができる。 It is preferable that there be no intervening layers, such as adhesive layers, between the layers in the multilayer structure (i.e., between the transition metal layer 11 and the intermediate layer 12, and between the intermediate layer 12 and the rare earth magnet layer 13). By not interposing a protective layer, adhesive layer, or the like between the layers, the proportion of non-magnetic layers in the cylindrical magnetic body can be reduced and the proportion of magnets can be increased, thereby further improving the motor torque.
 以上、本開示の実施形態について説明してきたが、本開示は上述した実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲内で種々に改変することができる。 The above describes embodiments of the present disclosure, but the present disclosure is not limited to the above-described embodiments and can be modified in various ways without departing from the spirit and scope of the present disclosure.
 たとえば、筒状磁性体10の形状は、図1および図2に示す円筒形状に限定されず、外周面11aにより規定される平面視形状が円以外の形状を成していてもよい。たとえば、図6に示すように磁性体10の外周面10a(すなわち遷移金属層11の外周面11a)がギア構造を有していてもよい。この場合、歯車の先端形状、歯数、および、歯車間のピッチ間隔などは、特に限定されない。 For example, the shape of the cylindrical magnetic body 10 is not limited to the cylindrical shape shown in Figures 1 and 2, and the planar shape defined by the outer circumferential surface 11a may be a shape other than a circle. For example, as shown in Figure 6, the outer circumferential surface 10a of the magnetic body 10 (i.e., the outer circumferential surface 11a of the transition metal layer 11) may have a gear structure. In this case, the shape of the tip of the gear, the number of teeth, and the pitch interval between the gears are not particularly limited.
 また、図5または図6に示すモータ100の変形例として、図7に示すようにステータ50が磁気センサ70を備えていてもよい。この場合、磁気センサは対向する希土類磁石層13から生じる磁場を検出する。希土類磁石層13は図3のように多極着磁されているため、アウターロータ2が回転すると、磁気センサ70が検出する磁場の向きが周期的に変化する。よって、ステータ50が磁気センサ70を備えることで、アウターロータ2の回転角と回転数(速度)を検出することが可能になる。 Also, as a modification of the motor 100 shown in FIG. 5 or FIG. 6, the stator 50 may be equipped with a magnetic sensor 70 as shown in FIG. 7. In this case, the magnetic sensor detects the magnetic field generated by the opposing rare earth magnet layer 13. Since the rare earth magnet layer 13 is multi-pole magnetized as shown in FIG. 3, when the outer rotor 2 rotates, the direction of the magnetic field detected by the magnetic sensor 70 changes periodically. Therefore, by equipping the stator 50 with the magnetic sensor 70, it becomes possible to detect the rotation angle and rotation speed (speed) of the outer rotor 2.
 磁気センサ70は、コイル52から生じる磁場の影響が比較的小さい位置に設けられることが好ましい。磁気センサ70と対向する希土類磁石層13の距離が小さくなるように、遷移金属層11に凸部が設けられていてもよい。遷移金属層11に凸部が設けられていると、磁気センサ70と希土類磁石層13の間隔が小さくなり、磁気センサ70が検出する希土類磁石層13からの磁場がコイル52から生じる磁場より大きくなりやすいことから、回転角や回転数の検出精度が高くなる。 The magnetic sensor 70 is preferably provided in a position where the influence of the magnetic field generated by the coil 52 is relatively small. A convex portion may be provided on the transition metal layer 11 so that the distance between the magnetic sensor 70 and the rare earth magnet layer 13 facing it is small. If a convex portion is provided on the transition metal layer 11, the distance between the magnetic sensor 70 and the rare earth magnet layer 13 is small, and the magnetic field from the rare earth magnet layer 13 detected by the magnetic sensor 70 is likely to be larger than the magnetic field generated by the coil 52, thereby improving the detection accuracy of the rotation angle and rotation speed.
また、磁性体10を構成する遷移金属層11、中間層12、希土類磁石層13の組成は、上述の組み合わせに限定されない。たとえば、中間層12と希土類磁石層13は、上述した実施形態では、ともに遷移金属元素としてのCoと希土類元素としてのSmを含有するが、中間層12と希土類磁石層13とは、Co以外でFe、Niなどの遷移金属のうち少なくとも1つ以上を含んでもよく、またSm以外で、Nd、Pr、Dy、Tbなどの希土類元素の少なくとも1つ以上を含んでいてもよい。具体的には、中間層12はSm2Fe17層、Nd2Fe17層、Pr2Fe17層であってもよく、特にSm2Co17層であることが好ましい。また、希土類磁石層13はSm2Fe173層、SmFe12層、NdFe12層、PrFe12層であってもよく、特にSmCo5層であることが好ましい。遷移金属層11は、中間層12と少なくとも1つ以上が重複する遷移金属元素を含んでいることが好ましく、さらに好ましくは、中間層12に含まれる遷移金属元素と同一の元素を含んでいることが好ましい。中間層12に含まれる希土類元素は、希土類磁石層13から拡散してきた希土類元素であり、中間層12に含まれる遷移金属は、遷移金属層11に含まれる金属と同じであることが好ましい。 The compositions of the transition metal layer 11, intermediate layer 12, and rare earth magnet layer 13 constituting the magnetic body 10 are not limited to the above combination. For example, in the above embodiment, the intermediate layer 12 and rare earth magnet layer 13 both contain Co as a transition metal element and Sm as a rare earth element, but the intermediate layer 12 and rare earth magnet layer 13 may contain at least one or more transition metals such as Fe and Ni other than Co, and may also contain at least one or more rare earth elements such as Nd, Pr, Dy, and Tb other than Sm. Specifically, the intermediate layer 12 may be a Sm 2 Fe 17 layer, a Nd 2 Fe 17 layer, or a Pr 2 Fe 17 layer, and is preferably a Sm 2 Co 17 layer. The rare earth magnet layer 13 may be a Sm2Fe17N3 layer , a SmFe12 layer, a NdFe12 layer, or a PrFe12 layer, and is preferably a SmCo5 layer. The transition metal layer 11 preferably contains at least one transition metal element overlapping with the intermediate layer 12, and more preferably contains the same element as the transition metal element contained in the intermediate layer 12. The rare earth element contained in the intermediate layer 12 is a rare earth element diffused from the rare earth magnet layer 13, and the transition metal contained in the intermediate layer 12 is preferably the same as the metal contained in the transition metal layer 11.
本開示の筒状磁性体は、アウターロータやモータのみならず、筒内部に入れた磁性流体の制御、プラズマからの配管保護などにも好適に利用することができる。この場合、磁石層が周方向や軸方向に多極の磁化パターンを有していても良く、円筒の一部分にだけ配置されていても良い。 The cylindrical magnetic body of the present disclosure can be suitably used not only for outer rotors and motors, but also for controlling magnetic fluids placed inside the cylinder and protecting piping from plasma. In this case, the magnet layer may have a multi-pole magnetization pattern in the circumferential or axial direction, or may be arranged only in a part of the cylinder.
(実施例)
以下、実施例により本発明をさらに詳細に説明するが、本発明は、以下の実施例に限定されるものではない。
(Example)
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to the following examples.
実施例1
円筒状のCo基材(外径:6.0mm、厚み:0.3mm)を用意した。Co基材の外周面に公知の方法でMoによるマスクを形成した。次いで、Co基材の内周面を、#120の研磨紙によって5分間研磨し、アセトンにより洗浄した。
Example 1
A cylindrical Co substrate (outer diameter: 6.0 mm, thickness: 0.3 mm) was prepared. A mask made of Mo was formed on the outer peripheral surface of the Co substrate by a known method. Next, the inner peripheral surface of the Co substrate was polished with #120 abrasive paper for 5 minutes and washed with acetone.
LiClを準備し、乾燥することで脱水した。脱水後のLiClを金属Mo製容器内で外部ヒーターにより600℃まで昇温し、溶融させた。溶融したLiClに、Sm源としてSm金属粉を添加した。Sm源の添加は、LiClと、Smとがモル比でLiCl:Sm=100:3となるように行った。次いで、研磨した円筒状のCo基材を溶融したLiClに浸漬した。反応拡散温度は700度、反応拡散時間は30時間とした。反応拡散工程によりCo基材上にSmCo2膜が形成された積層体を得た。 LiCl was prepared and dehydrated by drying. The dehydrated LiCl was heated to 600°C in a metal Mo container by an external heater and melted. Sm metal powder was added to the molten LiCl as an Sm source. The Sm source was added so that the molar ratio of LiCl and Sm was LiCl:Sm=100:3. Next, a polished cylindrical Co base material was immersed in the molten LiCl. The reaction diffusion temperature was 700°C, and the reaction diffusion time was 30 hours. A laminate in which a SmCo2 film was formed on the Co base material by the reaction diffusion process was obtained.
得られた積層体を1050℃となるまで昇温した。次いで、積層体に対して磁場を印可することなく、保持温度1050℃で24時間積層体を加熱した。その後、積層体に対して磁場を印可することなく、積層体を冷却することで、円筒状の筒状磁性体を得た。昇温速度は、0.15℃/秒とし、降温速度は、50℃/秒とした。加熱工程の雰囲気は、Arとした。最後に、Moによるマスクを除去した。 The obtained laminate was heated to 1050°C. Next, the laminate was heated at a holding temperature of 1050°C for 24 hours without applying a magnetic field to the laminate. After that, the laminate was cooled without applying a magnetic field to the laminate to obtain a cylindrical magnetic body. The heating rate was 0.15°C/sec, and the cooling rate was 50°C/sec. The atmosphere for the heating process was Ar. Finally, the Mo mask was removed.
X線回折測定装置、エネルギー分散型X線分析装置により、得られた筒状磁性体の構造は、Co基材の内周面にSm2Co17膜及びSmCo5膜がこの順に形成されたものであることを確認した。また、EBSDを用いた結晶方位解析によって、筒状磁性体はラジアル方向に配向しており、希土類磁石層の配向度は90%であることがわかった。 Using an X-ray diffraction measurement device and an energy dispersive X-ray analysis device, it was confirmed that the structure of the obtained cylindrical magnetic body was a Sm2Co17 film and a SmCo5 film formed in that order on the inner peripheral surface of a Co substrate. In addition, crystal orientation analysis using EBSD revealed that the cylindrical magnetic body was oriented in the radial direction, and the degree of orientation of the rare earth magnet layer was 90%.
得られた筒状磁性体をアウターロータとして用いたモータについて、モータートルクをシミュレーション(JMAG)により求めた。具体的には、円筒状の筒状磁性体は、φ6.0mm、厚み0.3mmのCo基材からなる遷移金属層を有する。Co基材の内周面は、中間層として厚み0.05mmのSm2Co17層が接している。中間層の内周面には、希土類磁石層として厚み0.2mmのSmCo5層が接している。希土類磁石層はラジアル方向に4極着磁してあって、配向度は90%とした。 The motor torque of the motor using the obtained cylindrical magnetic body as the outer rotor was obtained by simulation (JMAG). Specifically, the cylindrical magnetic body has a transition metal layer made of a Co base material with a diameter of 6.0 mm and a thickness of 0.3 mm. The inner peripheral surface of the Co base material is in contact with 17 layers of Sm2Co with a thickness of 0.05 mm as an intermediate layer. The inner peripheral surface of the intermediate layer is in contact with 5 layers of SmCo with a thickness of 0.2 mm as a rare earth magnet layer. The rare earth magnet layer is magnetized in four poles in the radial direction, and the degree of orientation is 90%.
実施例2
研磨紙の番手をより細かい#4000へと変更したこと以外は実施例1と同様に、円筒状の筒状磁性体を作製した。X線回折測定装置、エネルギー分散型X線分析装置により、得られた筒状磁性体の構造は、Co基材の内周面にSm2Co17膜及びSmCo5膜がこの順に形成されたものであることを確認した。また、EBSDを用いた結晶方位解析によって、筒状磁性体はラジアル方向に配向しており、希土類磁石層の配向度は98%であることがわかった。
Example 2
A cylindrical magnetic body was produced in the same manner as in Example 1, except that the grit size of the abrasive paper was changed to a finer #4000. Using an X-ray diffraction measuring device and an energy dispersive X-ray analyzer, it was confirmed that the structure of the obtained cylindrical magnetic body was a Sm2Co17 film and a SmCo5 film formed in this order on the inner peripheral surface of a Co base material. In addition, crystal orientation analysis using EBSD revealed that the cylindrical magnetic body was oriented in the radial direction, and the orientation degree of the rare earth magnet layer was 98%.
上述の筒状磁性体を用いたこと以外は実施例1と同様に、すなわち、希土類磁石層の配向度が98%であること以外は実施例1と同様の条件で、モータートルクをシミュレーションにより求めた。 The motor torque was calculated by simulation under the same conditions as in Example 1 except that the above-mentioned cylindrical magnetic body was used, that is, the orientation degree of the rare earth magnet layer was 98%.
実施例3
実施例2と比較して、中間層の厚みを0.025mmとし、さらに厚み0.025mmの接着剤(エポキシ樹脂)からなる介在層を希土類磁石層との間に配置したこと以外は実施例2と同様の条件で、モータートルクをシミュレーションにより求めた。
Example 3
Compared to Example 2, the thickness of the intermediate layer was set to 0.025 mm, and an intervening layer made of an adhesive (epoxy resin) having a thickness of 0.025 mm was further disposed between the rare earth magnet layer and the intermediate layer. The motor torque was obtained by simulation under the same conditions as in Example 2.
比較例1
実施例1と比較して、中間層をエポキシ樹脂からなる厚さ0.05mmの接着剤層とし、希土類磁石層が平行方向に着磁されているとして、モータートルクをシミュレーションにより求めた。なお、希土類磁石層の配向度は100%であった。
Comparative Example 1
In comparison with Example 1, the intermediate layer was an adhesive layer made of epoxy resin with a thickness of 0.05 mm, and the rare earth magnet layers were magnetized in parallel directions, and the motor torque was calculated by simulation. The orientation degree of the rare earth magnet layers was 100%.
比較例2
実施例1と比較して、中間層をエポキシ樹脂からなる厚さ0.05mmの接着剤層とし、希土類磁石層の配向度を80%としたこと以外は実施例1と同様に、モータートルクをシミュレーションにより求めた。
Comparative Example 2
Compared to Example 1, the intermediate layer was an adhesive layer made of epoxy resin with a thickness of 0.05 mm, and the orientation degree of the rare earth magnet layer was 80%, but the motor torque was obtained by simulation in the same manner as in Example 1.
実施例1~3および比較例1,2のシミュレーションの結果を表1に示す。 The simulation results for Examples 1 to 3 and Comparative Examples 1 and 2 are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
表1に示す結果より、本開示に係る筒状磁性体を用いることにより、従来技術相当の比較例と比較して、モータートルクの向上が図れることがわかった。 The results shown in Table 1 show that by using the cylindrical magnetic body according to the present disclosure, motor torque can be improved compared to the comparative example equivalent to the conventional technology.
実施例10
Moによるマスクを形成しなかったこと以外は実施例2と同様に、円筒状の筒状磁性体を作製した。X線回折測定装置、エネルギー分散型X線分析装置により、得られた筒状磁性体の構造は、Co基材の内周面にSm2Co17膜及びSmCo5膜がこの順に形成されているのに加えて、Co基材の外周面にSm2Co17膜及びSmCo5膜がこの順に形成されたものであることを確認した。また、EBSDを用いた結晶方位解析によって、筒状磁性体はラジアル方向に配向しており、希土類磁石層の配向度は98%であることがわかった。
Example 10
A cylindrical magnetic body was produced in the same manner as in Example 2, except that no Mo mask was formed. Using an X-ray diffraction measuring device and an energy dispersive X-ray analyzing device, it was confirmed that the structure of the obtained cylindrical magnetic body was such that a Sm2Co17 film and a SmCo5 film were formed in this order on the inner peripheral surface of the Co base material, and a Sm2Co17 film and a SmCo5 film were formed in this order on the outer peripheral surface of the Co base material. In addition, crystal orientation analysis using EBSD revealed that the cylindrical magnetic body was oriented in the radial direction, and the degree of orientation of the rare earth magnet layer was 98%.
2 … アウターロータ
 10 … 磁性体
  11 … 遷移金属層
  12 … 中間層
  13 … 希土類磁石層
 10a … 外周面
 10b … 内周面
100 … モータ
 50 … ステータ
  51 … ステータコア
   51a … 円筒部
   51b … ティース部
  52 … コイル
 60 … シャフト
 70 … 磁気センサ
REFERENCE SIGNS LIST 2 outer rotor 10 magnetic body 11 transition metal layer 12 intermediate layer 13 rare earth magnet layer 10a outer peripheral surface 10b inner peripheral surface 100 motor 50 stator 51 stator core 51a cylindrical portion 51b teeth portion 52 coil 60 shaft 70 magnetic sensor

Claims (10)

  1. 外周面側から内周面側に向かって、遷移金属層、中間層、および希土類磁石層を記載の順に備える多層構造を有し、
    前記中間層と前記希土類磁石層が、ともに遷移金属元素と希土類元素を含有する筒状磁性体。
    A multilayer structure including, from the outer peripheral surface side toward the inner peripheral surface side, a transition metal layer, an intermediate layer, and a rare earth magnet layer in the stated order;
    The intermediate layer and the rare earth magnet layer both contain a transition metal element and a rare earth element.
  2. 前記希土類磁石層の平均厚みが10μm以上300μm以下である請求項1に記載の筒状磁性体。 The cylindrical magnetic body according to claim 1, wherein the average thickness of the rare earth magnet layer is 10 μm or more and 300 μm or less.
  3. 前記多層構造における前記遷移金属層と前記中間層との間、および、前記中間層と前記希土類磁石層との間には、介在層が存在しない請求項1に記載の筒状磁性体。 The cylindrical magnetic body of claim 1, wherein there is no intervening layer between the transition metal layer and the intermediate layer in the multilayer structure, and between the intermediate layer and the rare earth magnet layer.
  4. 前記中間層に含まれる希土類元素は、前記希土類磁石層から拡散してきた希土類元素であり、前記中間層に含まれる遷移金属は、前記遷移金属層に含まれる金属と同じである請求項1に記載の筒状磁性体。 The cylindrical magnetic body according to claim 1, wherein the rare earth element contained in the intermediate layer is a rare earth element that has diffused from the rare earth magnet layer, and the transition metal contained in the intermediate layer is the same as the metal contained in the transition metal layer.
  5.  前記中間層が、前記遷移金属層の内周面の周方向全体を覆っており、
     前記希土類磁石層が、前記中間層の内周面の周方向全体を覆っている請求項1に記載の筒状磁性体。
    the intermediate layer covers the entire inner circumferential surface of the transition metal layer in the circumferential direction,
    2. The cylindrical magnetic body according to claim 1, wherein the rare earth magnet layer covers the entire inner circumferential surface of the intermediate layer in the circumferential direction.
  6. 前記希土類磁石層の磁化容易軸がラジアル方向に配向しており、
    前記磁化容易軸の配向度が、ラジアル方向に対し90%以上である請求項1に記載の筒状磁性体。
    The magnetization easy axis of the rare earth magnet layer is oriented in the radial direction,
    2. The cylindrical magnetic body according to claim 1, wherein the degree of orientation of the axis of easy magnetization is 90% or more with respect to the radial direction.
  7. 前記遷移金属層はCo層であり、
    前記中間層はSm2Co17層であり、
    前記希土類磁石層はSmCo5層である請求項1に記載の筒状磁性体。
    the transition metal layer is a Co layer;
    The intermediate layer is a Sm2Co17 layer,
    2. The cylindrical magnetic body according to claim 1, wherein the rare earth magnet layer is five layers of SmCo.
  8. 請求項1~7のいずれかに記載の筒状磁性体を備える、アウターロータ。 An outer rotor comprising a cylindrical magnetic body according to any one of claims 1 to 7.
  9. 請求項8に記載の前記アウターロータと、前記アウターロータの内側に挿入してあるステータと、を有するモータ。 A motor having the outer rotor described in claim 8 and a stator inserted inside the outer rotor.
  10. 前記ステータが磁気センサを備えることを特徴とする、請求項9に記載のモータ。 The motor of claim 9, characterized in that the stator is equipped with a magnetic sensor.
PCT/JP2024/002084 2023-01-24 2024-01-24 Cylindrical magnetic body, outer rotor, and motor WO2024158014A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023008549 2023-01-24
JP2023-008549 2023-01-24

Publications (1)

Publication Number Publication Date
WO2024158014A1 true WO2024158014A1 (en) 2024-08-02

Family

ID=91970668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/002084 WO2024158014A1 (en) 2023-01-24 2024-01-24 Cylindrical magnetic body, outer rotor, and motor

Country Status (1)

Country Link
WO (1) WO2024158014A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007312449A (en) * 2006-05-16 2007-11-29 Yaskawa Electric Corp Periodic magnetic field generator and motor employing the same
JP2009290926A (en) * 2008-05-27 2009-12-10 Seiko Epson Corp Permanent magnet structure and device using the same
JP2022178014A (en) * 2021-05-19 2022-12-02 セイコーエプソン株式会社 Rotary motor, robot, and manufacturing method of rotary motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007312449A (en) * 2006-05-16 2007-11-29 Yaskawa Electric Corp Periodic magnetic field generator and motor employing the same
JP2009290926A (en) * 2008-05-27 2009-12-10 Seiko Epson Corp Permanent magnet structure and device using the same
JP2022178014A (en) * 2021-05-19 2022-12-02 セイコーエプソン株式会社 Rotary motor, robot, and manufacturing method of rotary motor

Similar Documents

Publication Publication Date Title
JP7499380B2 (en) motor
JP5408340B2 (en) Rare earth sintered magnet and method for manufacturing the same, motor and automobile
US7876012B2 (en) Dynamo electric machine with an alloy member
US7880357B2 (en) Sintered magnet and rotating machine equipped with the same
JP2016540111A5 (en)
JP5739093B2 (en) Rare earth magnet, manufacturing method thereof, and magnet composite member
WO2007119271A1 (en) Thin-film rare earth magnet and method for manufacturing the same
JP2021122061A (en) MAGNETIC POWDER CONTAINING Sm-Fe-N-BASED CRYSTAL PARTICLE, SINTERED MAGNET PRODUCED FROM THE SAME, METHOD FOR PRODUCING THE MAGNETIC POWDER, AND METHOD FOR PRODUCING THE SINTERED MAGNET
US20070065677A1 (en) Magnet, magnet magnetic material, coating film forming treatment liquid, and rotating machine
CN101369745A (en) Spindle motor
JP4915349B2 (en) Rare earth magnet and manufacturing method thereof
WO2024158014A1 (en) Cylindrical magnetic body, outer rotor, and motor
JP4586937B2 (en) Corrosion-resistant magnet and manufacturing method thereof
JP6759649B2 (en) Rare earth magnets and motors
US12074475B2 (en) Rare earth permanent magnet and rotating electric machine including the same
JP5348110B2 (en) Rare earth magnet, rare earth magnet manufacturing method and rotating machine
JP5885907B2 (en) Rare earth sintered magnet and method for manufacturing the same, motor and automobile
KR101341344B1 (en) R-Fe-B Sintered magnet with enhanced coercivity and fabrication method thereof
WO2024158016A1 (en) Voice coil actuator
JP5660485B2 (en) Laminated magnet film mover
JP2009099968A (en) Rare earth magnet and its manufacturing method
JP2007129093A (en) Soft magnetic material and dust core manufactured by using same
JP4760811B2 (en) Rare earth magnet and manufacturing method thereof
JP3424782B2 (en) High-efficiency rotor parts and rotors
WO2022181811A1 (en) Neodymium magnet and method for producing neodymium magnet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24747338

Country of ref document: EP

Kind code of ref document: A1