WO2024018713A1 - 画像処理装置、表示装置、内視鏡装置、画像処理方法、画像処理プログラム、学習済みモデル、学習済みモデル生成方法、及び、学習済みモデル生成プログラム - Google Patents
画像処理装置、表示装置、内視鏡装置、画像処理方法、画像処理プログラム、学習済みモデル、学習済みモデル生成方法、及び、学習済みモデル生成プログラム Download PDFInfo
- Publication number
- WO2024018713A1 WO2024018713A1 PCT/JP2023/016141 JP2023016141W WO2024018713A1 WO 2024018713 A1 WO2024018713 A1 WO 2024018713A1 JP 2023016141 W JP2023016141 W JP 2023016141W WO 2024018713 A1 WO2024018713 A1 WO 2024018713A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- lumen
- region
- divided
- image processing
- Prior art date
Links
- 238000012545 processing Methods 0.000 title claims abstract description 107
- 238000000034 method Methods 0.000 title claims description 50
- 238000003672 processing method Methods 0.000 title claims description 7
- 238000010801 machine learning Methods 0.000 claims abstract description 59
- 210000000056 organ Anatomy 0.000 claims abstract description 26
- 238000003384 imaging method Methods 0.000 claims abstract description 15
- 230000002093 peripheral effect Effects 0.000 claims description 21
- 238000005516 engineering process Methods 0.000 description 63
- 238000004364 calculation method Methods 0.000 description 45
- 238000013527 convolutional neural network Methods 0.000 description 21
- 230000010365 information processing Effects 0.000 description 21
- 238000003780 insertion Methods 0.000 description 19
- 230000037431 insertion Effects 0.000 description 19
- 238000010586 diagram Methods 0.000 description 17
- 238000012986 modification Methods 0.000 description 12
- 230000004048 modification Effects 0.000 description 12
- 238000001514 detection method Methods 0.000 description 10
- 238000012937 correction Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 238000005286 illumination Methods 0.000 description 5
- 210000002429 large intestine Anatomy 0.000 description 5
- 238000005457 optimization Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 102100029860 Suppressor of tumorigenicity 20 protein Human genes 0.000 description 3
- 210000000436 anus Anatomy 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 210000001198 duodenum Anatomy 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 238000001839 endoscopy Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 210000000813 small intestine Anatomy 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/04—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
- A61B1/045—Control thereof
Definitions
- the technology of the present disclosure relates to an image processing device, a display device, an endoscope device, an image processing method, an image processing program, a learned model, a learned model generation method, and a learned model generation program.
- Patent No. 4077716 discloses an endoscope insertion direction detection device.
- the endoscope insertion direction detection device includes an image input means for inputting an endoscopic image from an endoscope inserted into a body cavity, and a pixel of a predetermined density value from the endoscopic image input by the image input means.
- a pixel extraction means for extracting a pixel for which the gradient of the rate of change in density value with respect to neighboring pixels has a predetermined value among the pixels forming an endoscopic image, and a pixel extracted by the pixel extraction means.
- a region shape estimating means for determining the shape of the specific region in which the endoscope is inserted; and an insertion direction determining means for determining the direction in which the endoscope is inserted into the body cavity from the shape of the specific region determined by the region shape estimating means.
- Japanese Patent No. 5687583 discloses a method for detecting the insertion direction of an endoscope.
- the endoscope insertion direction detection method includes a first step of inputting an endoscopic image, and based on the endoscopic image, a brightness gradient in the endoscopic image, a shape of halation in the endoscopic image, a first detection step that performs processing to detect the direction of insertion of the endoscope based on any one of the following: movement of the field of view of the endoscope image; and detection of the direction of insertion of the endoscope by the first detection step.
- a determination step of determining whether or not the direction of insertion of the endoscope has been detected a determination step of determining whether or not the direction of insertion of the endoscope has been detected; , a first detection step for detecting the insertion direction of the endoscope based on any one of the shape of halation in the endoscopic image and the movement of the visual field of the endoscopic image, which is different from the first detection step. and a second detection step that performs processing different from the detection step.
- One embodiment of the technology of the present disclosure includes an image processing device, a display device, an endoscope device, an image processing method, an image processing program, a learned model, and a learned model that realize the output of accurate luminal direction information.
- a generation method and a trained model generation program are provided.
- a first aspect of the technology of the present disclosure includes a processor, and the processor is configured to divide an image into a plurality of divided regions into which a tubular organ is imaged by a camera provided on an endoscope.
- the lumen direction which is the direction for inserting the endoscope, is acquired from the image according to a trained model obtained by machine learning based on the positional relationship with the lumen corresponding area included in the image, and the lumen direction is determined.
- This is an image processing device that outputs lumen direction information, which is information indicating the direction of the lumen.
- a second aspect of the technology of the present disclosure is the image processing device according to the first aspect, in which the lumen-corresponding area is a predetermined area including the lumen area within the image.
- a third aspect according to the technology of the present disclosure is according to the first aspect, wherein the lumen corresponding region is an end of the observation range by the camera in the direction in which the position of the lumen region is estimated from the fold region in the image. It is an image processing device.
- a fourth aspect according to the technology of the present disclosure is any one of the first to third aspects, in which, among the plurality of divided regions, the direction of the divided region that overlaps with the lumen corresponding region is the lumen direction.
- 1 is an image processing device according to one embodiment.
- the learned model is a data structure configured to cause a processor to estimate the position of the lumen region based on the shape and/or orientation of the fold region in the image.
- a sixth aspect of the technology of the present disclosure is that the lumen direction is the direction in which the divided region having the largest area that overlaps with the lumen corresponding region in the image exists among the plurality of divided regions.
- a seventh aspect of the technology of the present disclosure is that, in the luminal direction, there is a first divided region that is a divided region having the largest area that overlaps with the lumen corresponding region in the image among the plurality of divided regions. and the direction in which the second divided region, which is a divided region with a large area that overlaps with the lumen corresponding region after the first divided region, exists.
- 1 is an image processing device according to an embodiment.
- An eighth aspect according to the technology of the present disclosure is the first to seventh aspects, wherein the divided area has a central area of the image and a plurality of radial areas that exist radially from the central area toward the outer edge of the image.
- An image processing device according to any one of the embodiments.
- a ninth aspect according to the technology of the present disclosure is the image processing device according to the eighth aspect, in which eight radial regions exist radially.
- a tenth aspect according to the technology of the present disclosure is any one of the first to seventh aspects, in which the divided area has a central area of the image and a plurality of peripheral areas that are closer to the outer edge of the image than the central area.
- 1 is an image processing device according to one aspect.
- An eleventh aspect according to the technology of the present disclosure is the first to seventh aspects, in which the divided area is obtained by dividing the image into areas in three or more directions starting from the center of the image and moving toward the outer edge of the image.
- An image processing device according to any one of the embodiments.
- the divided region has a central region of the image and a plurality of peripheral regions that are closer to the outer edge of the image than the central region, and the peripheral region is located closer to the outer edge of the image than the central region.
- information according to the luminal direction information output by the processor of the image processing device according to any one of the first to twelfth aspects is displayed. It is a display device.
- a fourteenth aspect according to the technology of the present disclosure is an endoscope apparatus including the image processing apparatus according to any one of the first to twelfth aspects and an endoscope.
- a fifteenth aspect of the technology of the present disclosure provides a plurality of divided regions into which an image obtained by imaging a tubular organ with a camera provided in an endoscope scope corresponds to a lumen included in the image.
- Obtaining the lumen direction which is the direction for inserting the endoscope, from the image according to a trained model obtained by machine learning based on the positional relationship with the region, and information indicating the lumen direction.
- This is an image processing method including outputting lumen direction information.
- a 16th aspect of the technology of the present disclosure is to perform image processing in the first computer by dividing a plurality of images obtained by imaging a tubular organ with a camera installed in an endoscope.
- the lumen direction which is the direction for inserting the endoscope, from the image according to a trained model obtained by machine learning based on the positional relationship between the divided regions and the lumen corresponding region included in the image.
- This is an image processing program for executing image processing including outputting lumen direction information, which is information indicating the lumen direction.
- a seventeenth aspect of the technology of the present disclosure provides a plurality of divided regions into which an image obtained by imaging a tubular organ with a camera installed in an endoscope scope corresponds to a lumen included in the image. This is a trained model obtained by machine learning based on the positional relationship with the area.
- An eighteenth aspect of the technology of the present disclosure is to obtain an image obtained by imaging a tubular organ with a camera provided in an endoscope, and to divide the image into a model.
- This is a learned model generation method that includes performing machine learning based on the positional relationship between a plurality of divided regions and a lumen corresponding region included in the image.
- a nineteenth aspect of the technology of the present disclosure is a learned model generation process in which the second computer acquires an image obtained by imaging a tubular organ with a camera installed in an endoscope. and performing machine learning on the model based on the positional relationship between the multiple divided regions into which the image is divided and the lumen corresponding region included in the image. It is a complete model generation program.
- FIG. 1 is a conceptual diagram showing an example of a mode in which an endoscope system is used.
- FIG. 1 is a conceptual diagram showing an example of the overall configuration of an endoscope system.
- FIG. 2 is a block diagram showing an example of the hardware configuration of an endoscope device.
- FIG. 1 is a block diagram showing an example of the configuration of an endoscope device.
- FIG. 2 is a block diagram showing an example of the hardware configuration of an information processing device.
- FIG. 2 is a conceptual diagram illustrating an example of processing contents of a calculation unit of the information processing device.
- FIG. 2 is a conceptual diagram illustrating an example of processing contents of a calculation unit of the information processing device.
- FIG. 1 is a conceptual diagram showing an example of the overall configuration of an endoscope system.
- FIG. 2 is a block diagram showing an example of the hardware configuration of an endoscope device.
- FIG. 1 is a block diagram showing an example of the configuration of an endoscope device.
- FIG. 2 is a
- FIG. 2 is a conceptual diagram illustrating an example of processing contents of a teacher data generation unit and a learning execution unit of the information processing device. It is a conceptual diagram which shows an example of the processing content of the lumen direction estimation part of a control device. It is a conceptual diagram which shows an example of the processing content of a lumen direction estimation part, an information generation part, and a display control part of a control device. It is a conceptual diagram which shows an example of the processing content of a lumen direction estimation part, an information generation part, and a display control part of a control device. It is a flowchart which shows an example of the flow of machine learning processing. It is a flowchart which shows an example of the flow of endoscopic image processing.
- CPU is an abbreviation for "Central Processing Unit”.
- GPU is an abbreviation for “Graphics Processing Unit.”
- RAM is an abbreviation for “Random Access Memory.”
- NVM is an abbreviation for “Non-volatile memory.”
- EEPROM is an abbreviation for “Electrically Erasable Programmable Read-Only Memory.”
- ASIC is an abbreviation for “Application Specific Integrated Circuit.”
- PLD is an abbreviation for “Programmable Logic Device”.
- FPGA is an abbreviation for "Field-Programmable Gate Array.”
- SoC is an abbreviation for “System-on-a-chip.”
- SSD is an abbreviation for “Solid State Drive.”
- USB is an abbreviation for “Universal Serial Bus.”
- HDD is an abbreviation for “Hard Disk Drive.”
- EL is an abbreviation for "Electro-Luminescence”.
- CMOS is an abbreviation for “Complementary Metal Oxide Semiconductor.”
- CCD is an abbreviation for “Charge Coupled Device”.
- BLI is an abbreviation for “Blue Light Imaging.”
- LCI is an abbreviation for "Linked Color Imaging.”
- CNN is an abbreviation for "Convolutional neural network.”
- AI is an abbreviation for “Artificial Intelligence.”
- an endoscope system 10 includes an endoscope device 12. As shown in FIG. 1 as an example, an endoscope system 10 includes an endoscope device 12. As shown in FIG. The endoscopic device 12 is used by a doctor 14 in endoscopy. Furthermore, at least one auxiliary staff member 16 (for example, a nurse, etc.) assists the doctor 14 in performing the endoscopic examination. In the following, if there is no need to distinguish between the doctor 14 and the auxiliary staff 16, they will also be referred to as "users" without any reference numerals.
- the endoscopic device 12 is equipped with an endoscopic scope 18 and is a device for performing medical treatment on the inside of the body of a subject 20 (for example, a patient) via the endoscopic scope 18.
- the endoscope device 12 is an example of an “endoscope device” according to the technology of the present disclosure.
- the endoscope 18 captures an image showing the inside of the body of the subject 20 using a camera 38 (see FIG. 2), which will be described later. Then, the endoscope 38 outputs an image showing the inside of the body.
- FIG. 1 shows a mode in which the endoscope 18 is inserted into the body cavity of the subject 20 through the anus. In the example shown in FIG. 1, the endoscope 18 is inserted into the body cavity from the anus of the subject 20, but this is just an example, and the endoscope 18 is inserted into the body cavity from the mouth of the subject 20.
- the endoscope 18 may be inserted into the body cavity through a nostril, a perforation, or the like, and the location where the endoscope 18 is inserted is determined by the type of the endoscope 18 and the surgical procedure in which the endoscope 18 is used.
- the display device 22 displays various information including images.
- An example of the display device 22 is a liquid crystal display, an EL display, or the like.
- a plurality of screens are displayed side by side on the display device 22.
- screens 24 and 26 are shown as examples of a plurality of screens.
- the display device 22 is an example of a “display device” according to the technology of the present disclosure.
- An endoscopic image 28 is displayed on the screen 24.
- the endoscopic image 28 is an image obtained by capturing an image of an observation target region within the body cavity of the subject 20 by a camera 38 (see FIG. 2) provided on the endoscope 18.
- the area to be observed includes the inner wall of the large intestine.
- the inner wall of the large intestine is just one example, and may be the inner wall or outer wall of other parts such as the small intestine, duodenum, or stomach.
- the endoscopic image 28 displayed on the screen 24 is one frame included in a moving image that includes multiple frames. That is, a plurality of frames of the endoscopic image 28 are displayed on the screen 24 at a predetermined frame rate (for example, 30 frames/second or 60 frames/second).
- a predetermined frame rate for example, 30 frames/second or 60 frames/second.
- subject identification information 29 is displayed on the screen 26.
- the subject identification information 29 is information regarding the subject 20.
- the subject identification information 29 includes, for example, the name of the subject 20, the age of the subject 20, and an identification number by which the subject 20 can be identified.
- the endoscope 18 includes an operating section 32 and an insertion section 34.
- the operation unit 32 includes a rotation operation knob 32A, an air/water supply button 32B, and a suction button 32C.
- the insertion portion 34 is formed into a tubular shape. The outer contour of the insertion portion 34 in a cross-sectional view is circular. The insertion portion 34 partially curves or rotates around the axis of the insertion portion 34 when the rotation operation knob 32A of the operation portion 32 is operated. As a result, the insertion section 34 curves depending on the shape inside the body (for example, the shape of a tubular organ) or rotates around the axis of the insertion section 34 depending on the location inside the body. sent. Further, when the air/water supply button 32B is operated, water or air is sent into the body from the distal end 36, and when the suction button 32C is operated, water or air inside the body is sucked.
- the distal end portion 36 is provided with a camera 38, an illumination device 40, and a treatment instrument opening 42.
- the camera 38 images the inside of the tubular organ using an optical method.
- An example of the camera 38 is a CMOS camera. However, this is just an example, and other types of cameras such as a CCD camera may be used.
- the camera 38 is an example of a "camera" according to the technology of the present disclosure.
- the lighting device 40 has a lighting window 40A and a lighting window 40B.
- the illumination device 40 emits light through the illumination window 40A and the illumination window 40B.
- Examples of the types of light emitted from the lighting device 40 include visible light (eg, white light, etc.), non-visible light (eg, near-infrared light, etc.), and/or special light.
- Examples of the special light include BLI light and/or LCI light.
- the treatment tool opening 42 is an opening for allowing the treatment tool to protrude from the distal end portion 36. Furthermore, the treatment instrument opening 42 also functions as a suction port for sucking blood, body waste, and the like.
- the treatment instrument is inserted into the insertion section 34 from the treatment instrument insertion port 45. The treatment instrument passes through the insertion section 34 and projects to the outside from the treatment instrument opening 42. Examples of treatment instruments include puncture needles, wires, scalpels, grasping forceps, guide sheaths, and ultrasound probes.
- the endoscope device 12 includes a control device 46 and a light source device 48.
- the endoscope 18 is connected to a control device 46 and a light source device 48 via a cable 50.
- the control device 46 is a device that controls the entire endoscope device 12.
- the light source device 48 is a device that emits light under the control of the control device 46 and supplies light to the lighting device 40.
- the control device 46 is provided with a plurality of hard keys 52.
- the plurality of hard keys 52 accept instructions from the user.
- a touch panel 54 is provided on the screen of the display device 22 .
- the touch panel 54 is electrically connected to the control device 46 and receives instructions from the user.
- the display device 22 is also electrically connected to the control device 46 .
- the control device 46 includes a computer 56.
- the computer 56 is an example of an "image processing device” and a "first computer” according to the technology of the present disclosure.
- Computer 56 includes a processor 58, RAM 60, and NVM 62, and processor 58, RAM 60, and NVM 62 are electrically connected.
- the processor 58 is an example of a "processor" according to the technology of the present disclosure.
- the control device 46 includes a hard key 52 and an external I/F 64.
- Hard keys 52, processor 58, RAM 60, NVM 62, and external I/F 64 are connected to bus 65.
- the processor 58 includes a CPU and a GPU, and controls the entire control device 46.
- the GPU operates under the control of the CPU and is responsible for executing various graphics-related processes.
- the processor 58 may be one or more CPUs with integrated GPU functionality, or may be one or more CPUs without integrated GPU functionality.
- the RAM 60 is a memory in which information is temporarily stored, and is used by the processor 58 as a work memory.
- the NVM 62 is a nonvolatile storage device that stores various programs, various parameters, and the like.
- An example of NVM 62 includes flash memory (eg, EEPROM and/or SSD). Note that the flash memory is just an example, and may be other non-volatile storage devices such as an HDD, or a combination of two or more types of non-volatile storage devices.
- the hard keys 52 accept instructions from the user and output signals indicating the accepted instructions to the processor 58. As a result, the instruction accepted by the hard key 52 is recognized by the processor 58.
- the external I/F 64 is in charge of exchanging various information between a device existing outside the control device 46 (hereinafter also referred to as an "external device") and the processor 58.
- An example of the external I/F 64 is a USB interface.
- the endoscope scope 18 is connected to the external I/F 64 as one of the external devices, and the external I/F 64 controls exchange of various information between the endoscope scope 18 and the processor 58.
- the processor 58 controls the endoscope 18 via the external I/F 64. Further, the processor 58 acquires an endoscopic image 28 (see FIG. 1) obtained by imaging the inside of the tubular organ by the camera 38 via the external I/F 64.
- a light source device 48 is connected to the external I/F 64 as one of the external devices, and the external I/F 64 controls the exchange of various information between the light source device 48 and the processor 58.
- Light source device 48 supplies light to lighting device 40 under the control of processor 58 .
- the illumination device 40 emits light supplied from the light source device 48.
- a display device 22 is connected to the external I/F 64 as one of the external devices, and the processor 58 displays various information to the display device 22 by controlling the display device 22 via the external I/F 76. Display.
- a touch panel 54 is connected to the external I/F 64 as one of the external devices, and the processor 58 acquires instructions accepted by the touch panel 54 via the external I/F 64.
- An information processing device 66 is connected to the external I/F 64 as one of the external devices.
- An example of the information processing device 66 is a server. Note that the server is merely an example, and the information processing device 66 may be a personal computer.
- the external I/F 64 is in charge of exchanging various information between the information processing device 66 and the processor 58.
- the processor 58 requests the information processing device 66 to provide a service via the external I/F 64, or acquires the learned model 116 (see FIG. 4) from the information processing device 66 via the external I/F 64. or
- the endoscope 18 when the inside of a tubular organ (for example, the large intestine) in the body is observed using the camera 38 provided on the endoscope 18, the endoscope 18 is inserted along the lumen. In this case, it may be difficult for the user to understand the lumen direction, which is the direction in which the endoscope 18 is inserted. Furthermore, if the endoscope 18 is inserted in a direction different from the lumen direction, the endoscope 18 will hit the inner wall of the tubular organ, imposing an unnecessary burden on the subject 20 (for example, the patient). It also happens.
- a tubular organ for example, the large intestine
- the processor 58 of the control device 46 performs endoscopic image processing.
- the NVM 62 stores an endoscopic image processing program 62A.
- the processor 58 reads the endoscopic image processing program 62A from the NVM 62 and executes the read endoscopic image processing program 62A on the RAM 60.
- Endoscopic image processing is realized by the processor 58 operating as a lumen direction estimation section 58A, an information generation section 58B, and a display control section 58C according to an endoscope image processing program 62A executed on the RAM 60.
- machine learning processing is performed by the processor 78 (see FIG. 5) of the information processing device 66.
- the information processing device 66 is a device used for machine learning.
- the information processing device 66 is used by an annotator 76 (see FIG. 6).
- the annotator 76 refers to a worker who adds annotations for machine learning to given data (that is, a worker who performs labeling).
- the information processing device 66 includes a computer 70, a reception device 72, a display 74, and an external I/F 76.
- the computer 70 is an example of a "second computer" according to the technology of the present disclosure.
- the computer 70 includes a processor 78, an NVM 80, and a RAM 82.
- Processor 78, NVM 80, and RAM 82 are connected to bus 84.
- the reception device 72 , the display 74 , and the external I/F 76 are also connected to the bus 84 .
- the processor 78 controls the entire information processing device 66.
- the processor 78, NVM 80, and RAM 82 are hardware resources similar to the processor 58, NVM 62, and RAM 60 described above.
- the reception device 72 receives instructions from the annotator 76.
- Processor 78 operates according to instructions received by receiving device 72 .
- the external I/F 76 is a hardware resource similar to the external I/F 64 described above.
- the external I/F 76 is connected to the external I/F 64 of the endoscope apparatus 12 and controls the exchange of various information between the endoscope apparatus 12 and the processor 78.
- a machine learning processing program 80A is stored in the NVM 80.
- the processor 78 reads the machine learning processing program 80A from the NVM 80 and executes the read machine learning processing program 80A on the RAM 82.
- the processor 78 performs machine learning processing according to a machine learning processing program 80A executed on the RAM 82.
- the machine learning process is realized by the processor 78 operating as the calculation unit 86, the teacher data generation unit 88, and the learning execution unit 90 according to the machine learning processing program 80A.
- the machine learning processing program 80A is an example of a "learned model generation program" according to the technology of the present disclosure.
- the calculation unit 86 displays the endoscopic image 28 on the display 74.
- the endoscopic image 28 is, for example, an image acquired in a past medical examination and/or treatment, and is an image stored in advance in the NVM 80, but this is just an example.
- the endoscopic image 28 may be an image stored in an image server (not shown) as an external device, and may be an image acquired via the external I/F 76 (see FIG. 5).
- the annotator 76 asks the computer 70 via the reception device 72 (for example, the keyboard 72A and/or the mouse 72B) to determine the lumen in the endoscopic image 28.
- the corresponding area 94 is designated.
- the annotator 76 specifies the lumen region 28A in the endoscopic image 28 displayed on the display 74 using a pointer (not shown).
- the lumen region 28A refers to an image region showing a lumen in the endoscopic image 28.
- the calculation unit 86 recognizes the lumen corresponding region 94 specified by the annotator 76 via the receiving device 72.
- the lumen corresponding region 94 is a predetermined range (for example, a range of 64 pixels radius from the center of the lumen region 28A) including the lumen region 28A in the endoscopic image 28.
- the lumen corresponding area 94 is an example of a "lumen corresponding area” according to the technology of the present disclosure.
- a plurality of divided regions 96 are obtained by virtually dividing the endoscopic image 28 by the calculation unit 86.
- the divided area 96 is an example of a "divided area" according to the technology of the present disclosure.
- the lumen corresponding region 94 is a region that includes the lumen region 28A in the endoscopic image 28 and is large enough to be inscribed in a divided region 96, which will be described later.
- the endoscopic image 28 is divided into a central region 96A and eight radial regions 96B.
- the central region 96A is, for example, a circular region centered on the center C in the endoscopic image 28.
- the radial region 96B is a region that exists radially from the central region 96A toward the outer edge of the endoscopic image 28.
- eight radial regions 96B are shown here, this is just an example.
- the number of radial regions 96B may be 7 or less, or may be 9 or more.
- the central region 96A is an example of a "central region" according to the technology of the present disclosure
- the radial region 96B is an example of a "radial region" according to the technology of the present disclosure.
- the direction of the divided region 96 that overlaps with the lumen corresponding region 94 among the plurality of divided regions 96 is determined as the lumen direction. Specifically, the calculation unit 86 derives the divided region 96 that has the largest area overlapping with the lumen corresponding region 94 among the plurality of divided regions 96 . For example, the calculation unit 86 identifies a region where each of the plurality of divided regions 96 and the lumen corresponding region 94 overlap. The calculation unit 86 calculates the area of the region where the divided region 96 and the lumen corresponding region 94 overlap. Then, the calculation unit 86 identifies the divided region 96 having the largest area where the divided region 96 and the lumen corresponding region 94 overlap.
- the calculation unit 86 sets the direction of the divided region 96 that overlaps with the lumen corresponding region 94 and has the largest area as the lumen direction, and generates it as correct data 92.
- a second region 96B1 of the radial region 96B is shown as an example of the correct answer data 92.
- the second region 96B1 is a region indicating the lumen direction (that is, the direction for inserting the camera 38).
- the endoscopic image 28 may not include the lumen region 28A.
- the annotator 76 estimates the lumen region 28A by referring to the position and/or shape of the fold region 28B in the endoscopic image 28 displayed on the display 74.
- the fold region 28B refers to an image region showing folds in the tubular organ in the endoscopic image 28.
- the end of the observation range in the endoscopic image 28 is designated as the lumen corresponding region 94 using a pointer (not shown).
- the calculation unit 86 derives the divided region 96 that has the largest area overlapping with the lumen corresponding region 94. Then, the calculation unit 86 generates the divided region 96 having the largest area overlapping the lumen corresponding region 94 as the correct data 92 .
- a seventh region 96B3 of the radial region 96B is shown as an example of the correct answer data 92.
- the seventh region 96B3 is a region indicating the lumen direction.
- the teacher data generation unit 88 acquires an endoscopic image 28 as an inference image from the calculation unit 86, and associates correct answer data 92 with the acquired endoscopic image 28. In this way, teacher data 95 is generated.
- the learning execution section 90 acquires the teacher data 95 generated by the teacher data generation section 88. The learning execution unit 90 then executes machine learning using the teacher data 95.
- the learning execution unit 90 includes a CNN 110.
- the learning execution unit 90 inputs the endoscopic image 28 included in the teacher data 95 to the CNN 110.
- a plurality of frames (for example, 2 to 3 frames) of endoscopic images 28 may be input to the CNN 110 at one time.
- the CNN 110 performs inference and calculates the inference result (for example, an image area predicted as an image area indicating the direction in which the lumen exists out of all the image areas constituting the endoscopic image 28).
- a CNN signal 110A indicating the image area is output.
- the learning execution unit 90 calculates the error 112 between the CNN signal 110A and the correct data 92 included in the teacher data 95.
- the learning execution unit 90 optimizes the CNN 110 by adjusting a plurality of optimization variables within the CNN 110 so that the error 112 is minimized.
- the plurality of optimization variables refer to, for example, a plurality of connection loads and a plurality of offset values included in the CNN 110.
- the learning execution unit 90 repeatedly performs the learning process of inputting the endoscopic image 28 to the CNN 110, calculating the error 112, and adjusting the plurality of optimization variables in the CNN 110 using the plurality of teacher data 95. That is, the learning execution unit 90 adjusts the plurality of optimization variables in the CNN 110 so that the error 112 is minimized for each of the plurality of endoscopic images 28 included in the plurality of teacher data 95.
- the trained model 116 is generated by optimizing the CNN 110 in this way.
- the learned model 116 is stored in the storage device by the learning execution unit 90.
- An example of the storage device is the NVM 62 of the endoscope device 12, but this is just one example.
- the storage device may be the NVM 80 of the information processing device 66.
- the trained model 116 stored in a predetermined storage device is used, for example, in the lumen direction estimation process in the endoscope device 12.
- the trained model 116 is an example of a "trained model" according to the technology of the present disclosure.
- a lumen direction estimation process is performed using the learned model 116 generated in the information processing device 66.
- an endoscopic image 28 is obtained by capturing images of the interior of the tubular organ in chronological order by the camera 38.
- the endoscopic image 28 is temporarily stored in the RAM 60.
- the lumen direction estimation unit 58A performs lumen direction estimation processing based on the endoscopic image 28.
- the lumen direction estimation unit 58A acquires the learned model 116 from the NVM 62.
- the lumen direction estimation unit 58A then inputs the endoscopic image 28 to the learned model 116.
- the trained model 116 outputs an estimation result 118 of the luminal direction within the endoscopic image 28.
- the estimation result 118 is, for example, the probability that a lumen direction exists for each divided region 96.
- the learned model 116 outputs a probability distribution p indicating nine probabilities corresponding to the nine divided regions 96 as an estimation result 118.
- the lumen direction estimation section 58A outputs the estimation result 118 to the information generation section 58B.
- the information generation unit 58B generates lumen direction information 120 based on the estimation result 118.
- the lumen direction information 120 is information indicating the lumen direction.
- the lumen direction information 120 is an example of "lumen direction information" according to the technology of the present disclosure.
- the information generation unit 58B generates the luminal direction information 120 by setting the direction of the divided region 96 having the highest probability value in the probability distribution p indicated by the estimation result 118 as the luminal direction.
- the information generation section 58B outputs lumen direction information 120 to the display control section 58C.
- the display control unit 58C acquires the endoscopic image 28 temporarily stored in the RAM 60. Further, the display control unit 58C generates an image 122 in which the lumen direction indicated by the lumen direction information 120 is displayed superimposed on the endoscopic image 28. The display control unit 58C causes the display device 22 to display the image 122. In the example shown in FIG. 10, in the image 122, a circular arc 122A is shown on the outer periphery of the observation range of the endoscopic image 28 as a display indicating the lumen direction.
- the image 122 displayed on the display device 22 is updated every time an endoscopic image 28 is acquired.
- the lumen direction estimation unit 58A performs lumen direction estimation processing (see FIG. 10) every time the endoscopic image 28 is acquired from the camera 38.
- the lumen direction estimating section 58A then outputs the estimation result 118 obtained by the lumen direction estimation process to the information generating section 58B.
- the information generation unit 58B generates lumen direction information 120 based on the estimation result 118.
- the display control unit 58C causes the display device 22 to update the image 122 based on the lumen direction information 120 and the endoscopic image 28 acquired from the camera 38.
- the display indicating the lumen direction in the image 122 changes depending on the lumen direction in the endoscopic image 28.
- the lumen direction moves in the order of left, center, and right in the endoscopic image 28 when viewed from the front side of the page.
- an example is shown in which the image 122 is updated in the order of a circular arc 122A, an X-shaped display 122B, and a circular arc 122C as displays indicating the lumen direction.
- the circular arcs 122A and 122C and the X-shaped display 122B are used as displays indicating the lumen direction
- the technology of the present disclosure is not limited thereto.
- a symbol such as an arrow or a character such as "upper right” may be used to indicate the lumen direction.
- an audio notification of the lumen direction may be made.
- FIG. 12 shows an example of the flow of machine learning processing performed by the processor 78.
- the flow of machine learning processing shown in FIG. 12 is an example of a "trained model generation method" according to the technology of the present disclosure.
- step ST110 the calculation unit 86 causes the display 74 to display the endoscopic image 28. After the process of step ST110 is executed, the machine learning process moves to step ST112.
- step ST112 the calculation unit 86 receives the designation of the lumen corresponding region 94 input by the annotator 76 via the reception device 72 with respect to the endoscopic image 28 displayed on the display 74 in step ST110. After the process of step ST112 is executed, the machine learning process moves to step ST114.
- step ST114 the calculation unit 86 generates correct data 92 based on the positional relationship between the lumen corresponding region 94 accepted in step ST112 and the divided region 96. After the process of step ST114 is executed, the machine learning process moves to step ST116.
- step ST116 the teacher data generation unit 88 generates teacher data 95 by associating the correct answer data 92 generated in step ST114 with the endoscopic image 28. After the process of step ST116 is executed, the machine learning process moves to step ST118.
- step ST118 the learning execution unit 90 acquires the endoscopic image 28 included in the teacher data 95 generated in step ST116. After the process of step ST118 is executed, the machine learning process moves to step ST120.
- step ST120 the learning execution unit 90 inputs the endoscopic image 28 acquired in step ST118 to the CNN 110. After the process of step ST120 is executed, the machine learning process moves to step ST122.
- step ST122 the learning execution unit 90 compares the CNN signal 110A obtained by inputting the endoscopic image 28 to the CNN 110 in step ST120 and the correct answer data 92 linked to the endoscopic image 28. Thus, the error 112 is calculated.
- step ST122 the machine learning process moves to step ST124.
- step ST124 the learning execution unit 90 adjusts the optimization variables of the CNN 110 so that the error 112 calculated in step ST122 is minimized. After step ST124 is executed, the machine learning process moves to step ST126.
- step ST126 the learning execution unit 90 determines whether conditions for terminating machine learning (hereinafter referred to as "termination conditions") are satisfied.
- An example of the termination condition is that the error 112 calculated in step ST124 has become less than or equal to a threshold value.
- step ST126 if the termination condition is not satisfied, the determination is negative and the machine learning process moves to step ST118.
- step ST126 if the termination condition is satisfied, the determination is affirmative and the machine learning process moves to step ST128.
- step ST1208 the learning execution unit 90 outputs the learned model 116, which is the CNN 110, for which machine learning has been completed, to the outside (for example, the NVM 62 of the endoscope apparatus 12). After step ST128 is executed, the machine learning process ends.
- FIG. 13 shows an example of the flow of endoscopic image processing performed by the processor 58.
- the flow of endoscopic image processing shown in FIG. 13 is an example of an "image processing method" according to the technology of the present disclosure.
- step ST10 the luminal direction estimation unit 58A determines whether the luminal direction estimation start trigger is ON.
- the luminal direction estimation start trigger includes whether or not a user's instruction to start luminal direction estimation (for example, operation of a button (not shown) provided on the endoscope 18) is accepted.
- step ST10 if the luminal direction estimation start trigger is not turned on, the determination is negative and the endoscopic image processing moves to step ST10 again.
- step ST10 if the luminal direction estimation start trigger is turned on, the determination is affirmative and the endoscopic image processing moves to step ST12.
- step ST10 determines whether or not the lumen direction estimation start trigger is ON
- the technology of the present disclosure is not limited to this.
- the technique of the present disclosure also holds true even in a mode in which the determination in step ST10 is omitted and the lumen direction estimation process is always performed.
- step ST12 the lumen direction estimation unit 58A acquires the endoscopic image 28 from the RAM 60. After the processing in step ST12 is executed, the endoscopic image processing moves to step ST14.
- step ST14 the luminal direction estimation unit 58A starts estimating the luminal direction within the endoscopic image 28 using the learned model 116. After the process of step ST14 is executed, the endoscopic image processing moves to step ST16.
- step ST16 the lumen direction estimation unit 58A determines whether the estimation of the lumen direction has been completed. In step ST16, if the estimation of the lumen direction is not completed, the determination is negative and the endoscopic image processing moves to step ST16 again. In step ST16, when the estimation of the lumen direction is completed, the determination is affirmative, and the endoscopic image processing moves to step ST18.
- step ST18 the information generation unit 58B generates lumen direction information 120 based on the estimation result 118 obtained in step ST16. After the process of step ST18 is executed, the endoscopic image processing moves to step ST20.
- step ST20 the display control unit 58C outputs the luminal direction information 120 generated in step ST18 to the display 74. After the process of step ST20 is executed, the endoscopic image processing moves to step ST22.
- step ST22 the display control unit 58C determines whether conditions for ending endoscopic image processing (hereinafter referred to as "termination conditions") are satisfied.
- termination conditions An example of the termination condition is that an instruction to terminate endoscopic image processing has been accepted by the touch panel 54.
- the termination condition is not satisfied, the determination is negative and the endoscopic image processing moves to step ST12.
- the termination condition is satisfied, the determination is affirmative and the endoscopic image processing is terminated.
- the lumen direction estimation start trigger is determined based on whether or not a user's instruction to start lumen direction estimation (for example, operation of a button (not shown) provided on the endoscope 18) is accepted.
- a user's instruction to start lumen direction estimation for example, operation of a button (not shown) provided on the endoscope 18
- the luminal direction estimation start trigger may be whether or not it is detected that the endoscope 18 is inserted into a tubular organ.
- the lumen direction estimation start trigger is turned ON.
- the processor 58 detects whether the endoscope 18 has been inserted into the tubular organ by, for example, performing image recognition processing using AI on the endoscopic image 28.
- another luminal direction estimation start trigger may be whether or not a specific site within the tubular organ is recognized.
- the luminal direction estimation start trigger is turned ON.
- the processor 58 detects whether a specific region has been detected, for example, by performing image recognition processing using AI on the endoscopic image 28.
- the termination condition may be that the processor 58 has detected that the endoscope 18 has been removed from the body.
- the processor 58 detects that the endoscopic scope 18 has been removed from the body, for example, by performing image recognition processing using AI on the endoscopic image 28.
- Another termination condition may be that the processor 58 detects that the endoscope 18 has reached a specific site within the tubular organ (for example, the ileocecal region in the large intestine). .
- the processor 58 detects that the endoscope 18 has reached a specific part of the tubular organ, for example, by performing image recognition processing using AI on the endoscopic image 28.
- the endoscopic image 28 captured by the camera 38 is input to the trained model 116, thereby acquiring the lumen direction.
- the trained model 116 is a machine based on the positional relationship between a plurality of divided regions 96 obtained by dividing an image showing a tubular organ (for example, a large intestine) and a lumen corresponding region 94 included in an endoscopic image 28. Obtained through learning processing.
- the processor 58 outputs luminal direction information 120, which is information indicating the luminal direction. Therefore, according to this configuration, accurate output of luminal direction information 120 is realized.
- the lumen direction information 120 is used, for example, to display the lumen direction to the user.
- a predetermined range including the lumen region 28A in the endoscopic image 28 is defined as the lumen corresponding region 94.
- the lumen direction is estimated according to the trained model 116 obtained by machine learning based on the positional relationship with the lumen corresponding region 94.
- the lumen direction is estimated in machine learning.
- the existence of the cavity region 28A is more easily recognized, and the accuracy of machine learning is improved. Therefore, the accuracy of estimating the luminal direction using the trained model 116 is also improved.
- the processor 58 Luminal direction information 120 is output. Therefore, according to this configuration, accurate output of luminal direction information 120 is realized.
- the lumen corresponding region 94 becomes small like a point in the image, and the lumen corresponding region 94 is not accurately recognized in machine learning. accuracy is reduced.
- the processor 58 outputs highly accurate luminal direction information 120. Therefore, according to this configuration, accurate output of luminal direction information 120 is realized.
- the end of the observation range by the camera 38 in the direction in which the position of the lumen is estimated from the fold region 28B in the endoscopic image 28 is the lumen corresponding region 94. It is said that Then, the lumen direction is estimated according to the learned model 116 obtained by machine learning based on the positional relationship between the divided region 96 and the lumen corresponding region 94. Since the end of the observation range by the camera 38 in the direction in which the position of the lumen is estimated from the fold region 28B is defined as the lumen corresponding region 94, machine learning can be performed even if the lumen region 28A is not included in the image. can be done.
- the direction of the divided region 96 overlapping with the lumen corresponding region 94 is It is in the direction of the cavity.
- the direction of the divided region 96 is determined in advance by dividing the endoscopic image 28. Therefore, according to this configuration, the load in estimating the lumen direction is reduced compared to the case where the lumen direction is calculated each time according to the position of the lumen corresponding region 94.
- the trained model 116 is configured to cause the processor 58 to estimate the position of the lumen based on the shape and/or orientation of the fold region 28B. It is a data structure. This allows the position of the lumen to be accurately estimated. Therefore, according to this configuration, accurate output of luminal direction information 120 is realized.
- the lumen direction is the direction in which the divided region 96 with the largest area overlapping with the lumen corresponding region 94 exists.
- a large overlapping area of the lumen corresponding region 94 and the divided region 96 means that a lumen exists in the direction in which the divided region 96 exists.
- the lumen direction can be uniquely determined in machine learning. Therefore, according to this configuration, accurate output of luminal direction information 120 is realized.
- the divided regions 96 include a central region 96A of the endoscopic image 28 and a plurality of radial regions radially extending from the central region 96A toward the outer edge of the endoscopic image 28. It has a region 96B.
- the lumen region 28A appears relatively frequently in the central region 96A. Therefore, even when a lumen exists in the central region 96A, it is required to indicate the lumen direction. Further, by dividing the endoscopic image 28 radially, it becomes easier to indicate in which direction the lumen exists. By dividing the endoscopic image 28 into the central region 96A and the radial regions 96B in this manner, it becomes easier to understand which direction is the lumen direction. Therefore, according to this configuration, it is possible to show the lumen direction in an easy-to-understand manner to the user.
- eight radial regions 96B exist radially.
- the presence of eight radial regions 96B makes it easier to indicate in which direction the lumen exists.
- the lumen direction is shown to the user in not too small sections. Therefore, according to this configuration, it is possible to show the lumen direction in an easy-to-understand manner to the user.
- the endoscope apparatus 12 Furthermore, in the endoscope apparatus 12 according to the present embodiment, information corresponding to the lumen direction information 120 outputted by the processor 58 is displayed on the display device 22. Therefore, according to this configuration, it becomes easy for the user to recognize the lumen direction.
- the trained model 116 also has a positional relationship between the plurality of divided regions 96 obtained by dividing the endoscopic image 28 and the lumen corresponding region 94 included in the endoscopic image 28. Obtained by machine learning processing based on The trained model 116 is used by the processor 58 to output luminal direction information 120. Therefore, according to this configuration, accurate output of luminal direction information 120 is realized.
- the lumen direction information 120 is used, for example, to display the lumen direction to a doctor.
- this configuration compared to prediction of the luminal direction by endoscopic image processing that applies empirical prediction of the luminal direction during examination by a doctor (for example, predicting the luminal direction from the arc shape of halation), this configuration According to a rule of thumb, it is possible to predict the luminal direction even when using an image in which the accuracy of prediction decreases (for example, an image in which no halation occurs). Therefore, according to this configuration, accurate output of luminal direction information 120 is realized.
- the calculation unit 86 causes the display 74 to display the endoscopic image 28.
- the annotator 76 asks the computer 70 via the reception device 72 (for example, the keyboard 72A and/or the mouse 72B) to determine the lumen in the endoscopic image 28.
- the corresponding area 94 is designated.
- the calculation unit 86 receives a designation of the lumen corresponding region 94 in the endoscopic image 28 from the annotator 76 via the reception device 72.
- a plurality of divided regions 96 are obtained by virtually dividing the endoscopic image 28 by the calculation unit 86 .
- the endoscopic image 28 is divided into a central region 96A and eight radial regions 96B.
- the calculation unit 86 calculates, among the plurality of divided regions 96, the divided region 96 with the largest area overlapping with the lumen corresponding region 94 and the divided region 96 with the second largest area overlapping with the lumen corresponding region 94. is derived. For example, the calculation unit 86 identifies a region where each of the plurality of divided regions 96 and the lumen corresponding region 94 overlap. Furthermore, the calculation unit 86 calculates the area of the region where the divided region 96 and the lumen corresponding region 94 overlap. Then, the calculation unit 86 specifies the divided region 96 having the largest area and the divided region 96 having the second largest area in which the divided region 96 and the lumen corresponding region 94 overlap.
- the divided region 96 with the largest area in which the divided region 96 and the lumen corresponding region 94 overlap is an example of the "first divided region” according to the technology of the present disclosure
- the area 96 is an example of a "second divided area” according to the technology of the present disclosure.
- the correct data 92 is an example in which the direction in which the second region 96B1 and the first region 96B2 of the radial region 96B exist is the lumen direction (that is, the direction for inserting the camera 38). It is shown.
- the lumen region 28A is reflected in the endoscopic image 28, but the technology of the present disclosure is not limited to this.
- the lumen region 28A may not be reflected in the endoscopic image 28, as in FIG. 7.
- the teacher data generation unit 88 acquires the endoscopic image 28 from the calculation unit 86 (see FIG. 8), and associates the correct answer data 92 with the acquired endoscopic image 28.
- Data 95 (see FIG. 8) is generated.
- the learning execution section 90 acquires the teacher data 95 generated by the teacher data generation section 88. Then, the learning execution unit 90 (see FIG. 8) executes machine learning using the teacher data 95.
- the learned model 116A generated as a result of machine learning is stored in the NVM 62 of the endoscope apparatus 12 as a storage device by the learning execution unit 90.
- a lumen direction estimation process is performed using the learned model 116A generated in the information processing device 66.
- the lumen direction estimation unit 58A performs lumen direction estimation processing based on the endoscopic image 28.
- the lumen direction estimation unit 58A acquires the learned model 116A from the NVM 62.
- the lumen direction estimation unit 58A then inputs the endoscopic image 28 to the trained model 116A.
- the trained model 116A outputs an estimation result 118A of the luminal direction within the endoscopic image 28.
- the estimation result 118A is, for example, a probability distribution p of whether or not a lumen direction exists for each divided region 96.
- the lumen direction estimation section 58A outputs the estimation result 118 to the information generation section 58B.
- the information generation unit 58B generates lumen direction information 120 based on the estimation result 118A. For example, in the probability distribution p indicated by the estimation result 118A, the information generation unit 58B determines the direction of the divided region 96 showing the highest probability distribution value and the direction of the divided region 96 showing the second highest probability distribution value in the lumen. Luminal direction information 120 is generated as the direction.
- the information generation section 58B outputs lumen direction information 120 to the display control section 58C.
- the display control unit 58C generates an image 122 in which the lumen direction indicated by the lumen direction information 120 is displayed superimposed on the endoscopic image 28.
- the display control unit 58C causes the display device 22 to display the image 122.
- a circular arc 122D and a circular arc 122E are shown on the outer periphery of the observation range of the endoscopic image 28 as indications indicating the lumen direction.
- the lumen direction is the direction in which the divided region 96 with the largest area overlapping with the lumen corresponding region 94 exists, and This is the direction in which the divided region 96 with the second largest area overlapping with the region 94 exists.
- a large area where the lumen corresponding region 94 and the divided region 96 overlap means that there is a high possibility that a lumen exists in the direction in which the divided region 96 exists.
- the lumen direction estimation unit 58A performs lumen direction estimation processing based on the endoscopic image 28.
- the lumen direction estimation unit 58A inputs the endoscopic image 28 to the learned model 116A.
- the trained model 116A outputs an estimation result 118A of the luminal direction within the endoscopic image 28.
- the lumen direction estimation unit 58A performs an estimation result correction process on the estimation result 118A.
- the lumen direction estimation unit 58A extracts only the probability that the lumen direction exists from the probability distribution p of each divided region 96 of the estimation result 118A.
- the lumen direction estimating unit 58A performs weighting starting from the largest probability in the probability distribution p.
- the lumen direction estimation unit 58A obtains the weighting coefficient 126 from the NVM 62, and multiplies the extracted probability by the weighting coefficient 126.
- the weighting coefficient 126 is set such that the coefficient corresponding to the highest probability is 1, and the coefficient corresponding to the probability adjacent to the highest probability is set to 0.8.
- the weighting coefficient 126 is appropriately set, for example, based on the past estimation result 118A.
- the weighting coefficient 126 may be set according to the probability distribution p. For example, if the probability of the central region 96A of the divided regions 96 is the highest, the coefficient corresponding to the highest probability among the weighting coefficients 126 is set to 1, and the coefficients other than the coefficient corresponding to the highest probability are set to 0. Good too.
- the lumen direction estimating unit 58A obtains the threshold value 128 from the NVM 62, and sets the probability of the threshold value 128 or more as the modified result 124.
- the threshold value 128 is, for example, 0.5, but this is just an example.
- the threshold value 128 may be, for example, 0.4 or 0.6.
- the threshold value 128 is appropriately set, for example, based on the past estimation result 118A.
- the lumen direction estimation unit 58A outputs the correction result 124 to the information generation unit 58B.
- the information generation unit 58B generates lumen direction information 120 based on the correction result 124.
- the information generation section 58B outputs lumen direction information 120 to the display control section 58C.
- the estimation result 118A is corrected by the estimation result correction process.
- the estimation result modification process the estimation result 118A is modified using a weighting coefficient 126 and a threshold value 128. This makes the lumen direction indicated by the estimation result 118A more accurate. Therefore, according to this configuration, accurate output of luminal direction information 120 is realized.
- the technology of the present disclosure is not limited to this.
- An operation corresponding to the estimation result correction process may be incorporated into the learned model 116A.
- the divided region 96 includes a central region 96A and a plurality of peripheral regions 96C that exist closer to the outer edge of the endoscopic image 28 than the central region 96A.
- the calculation unit 86 receives a designation of a lumen corresponding region 94 in the endoscopic image 28 from the annotator 76 via the reception device 72.
- a plurality of divided regions 96 are obtained by virtually dividing the endoscopic image 28 by the calculation unit 86 .
- the divided region 96 has a central region 96A and a peripheral region 96C.
- the central region 96A is, for example, a circular region centered on the center C in the endoscopic image 28.
- a plurality of peripheral regions 96C exist on the outer edge side of the endoscopic image 28 than the central region 96A. In the example shown in FIG. 18, three peripheral regions 96C exist on the outer edge side of the endoscopic image 28. Although three peripheral areas 96C are shown here, this is just an example. The number of peripheral regions 96C may be two or four or more.
- the peripheral area 96C is an example of a "peripheral area" according to the technology of the present disclosure.
- the calculation unit 86 derives the divided region 96 that has the largest area overlapping with the lumen corresponding region 94. For example, the calculation unit 86 identifies a region where each of the plurality of divided regions 96 and the lumen corresponding region 94 overlap. The calculation unit 86 calculates the area of the region where the divided region 96 and the lumen corresponding region 94 overlap. Then, the calculation unit 86 identifies the divided region 96 having the largest area where the divided region 96 and the lumen corresponding region 94 overlap.
- the calculation unit 86 generates the direction of the divided region 96 that has the largest area overlapping with the lumen corresponding region 94 as correct data 92 .
- the correct data 92 shows an example in which the direction in which the third region 96C1 of the peripheral region 96C exists is the lumen direction.
- the divided regions 96 include a central region 96A of the endoscopic image 28 and a plurality of peripheral regions 96C that exist on the outer edge side of the endoscopic image 28 from the central region 96A. has.
- the lumen region 28A appears relatively frequently in the central region 96A. Therefore, even when a lumen exists in the central region 96A, it is required to indicate the lumen direction.
- the peripheral region 96C into a plurality of parts, it becomes easier to indicate in which direction the lumen exists.
- By dividing the endoscopic image 28 into the central region 96A and the plurality of peripheral regions 96C in this manner it becomes easier to understand which direction is the lumen direction. Therefore, according to this configuration, it is possible to show the lumen direction in an easy-to-understand manner to the user.
- the divided region 96 has a peripheral region 96C that is closer to the outer edge of the endoscopic image 28 than the central region 96A in three or more directions from the central region 96A toward the outer edge of the endoscopic image 28. It is obtained by dividing into.
- the lumen region 28A appears relatively frequently in the central region 96A. Therefore, even when a lumen exists in the central region 96A, it is required to indicate the lumen direction.
- By dividing the endoscopic image 28 into three or more directions toward the outer edge it becomes easier to indicate in which direction the lumen exists.
- By dividing the central region 96A and the peripheral region 96C in three or more directions in this way it becomes easier to understand which direction is the lumen direction. Therefore, according to this configuration, it is possible to show the lumen direction in an easy-to-understand manner to the user.
- the divided region 96 has been described using an example in which the divided region 96 has the central region 96A and the radial regions 96B, but the technology of the present disclosure is not limited thereto.
- the divided region 96 is obtained by dividing the endoscopic image 28 from the center C as a starting point toward the outer edge of the endoscopic image 28 into regions in three or more directions.
- the calculation unit 86 receives a designation of a lumen corresponding region 94 in the endoscopic image 28 from the annotator 76 via the reception device 72.
- a plurality of divided regions 96 are obtained by virtually dividing the endoscopic image 28 by the calculation unit 86 .
- the divided area 96 is an area obtained by dividing the endoscopic image 28 into three directions toward the outer edge of the endoscopic image 28, centering on the center C. In the example shown in FIG. 19, three divided regions 96 exist on the outer edge side of the endoscopic image 28. Although three divided regions 96 are shown here, this is just an example. The number of divided regions 96 may be two or four or more.
- the calculation unit 86 derives the divided region 96 that has the largest area overlapping with the lumen corresponding region 94. For example, the calculation unit 86 identifies a region where each of the plurality of divided regions 96 and the lumen corresponding region 94 overlap. The calculation unit 86 calculates the area of the region where the divided region 96 and the lumen corresponding region 94 overlap. Then, the calculation unit 86 identifies the divided region 96 having the largest area where the divided region 96 and the lumen corresponding region 94 overlap.
- the calculation unit 86 generates the direction of the divided region 96 that has the largest area overlapping with the lumen corresponding region 94 as correct data 92 .
- the correct data 92 shows an example in which the direction in which the third region 96C1 of the peripheral region 96C exists is the lumen direction.
- the divided region 96 is obtained by dividing the endoscopic image 28 into three or more directions starting from the center C of the endoscopic image 28 and moving toward the outer edge.
- a device that performs endoscopic image processing may be provided outside the endoscope apparatus 12.
- An example of a device provided outside the endoscope apparatus 12 is a server.
- the server is realized by cloud computing.
- cloud computing is illustrated here, this is just one example.
- the server may be realized by a mainframe, or may be implemented using fog computing, edge computing, grid computing, etc. It may be realized by network computing.
- a server is mentioned as an example of a device provided outside the endoscope apparatus 12, but this is just an example, and instead of the server, at least one personal computer etc. Good too.
- endoscopic image processing may be performed in a distributed manner by a plurality of devices including the endoscope apparatus 12 and a device provided outside the endoscope apparatus 12.
- the endoscopic image processing program 62A may be stored in a portable storage medium such as an SSD or a USB memory.
- a storage medium is a non-transitory computer-readable storage medium.
- the endoscopic image processing program 62A stored in the storage medium is installed in the computer 56 of the control device 46.
- the processor 58 executes endoscopic image processing according to the endoscopic image processing program 62A.
- machine learning processing is performed by the processor 78 of the information processing device 66
- the technology of the present disclosure is not limited to this.
- the machine learning process may be performed in the endoscope device 12.
- the machine learning process may be performed in a distributed manner by a plurality of devices including the endoscope device 12 and the information processing device 66.
- the lumen direction is displayed based on the estimation result 118 obtained by inputting the endoscopic image 28 to the learned model 116.
- the present disclosure The technology is not limited to this.
- the estimation result 118 for one endoscopic image 28 (for example, an estimate result 118 for one endoscopic image 28) may be used.
- the estimation result 118 for the endoscopic image 28) may also be used to display the lumen direction.
- the computer 56 is illustrated in each of the above embodiments, the technology of the present disclosure is not limited thereto, and instead of the computer 56, a device including an ASIC, an FPGA, and/or a PLD may be applied. Further, instead of the computer 56, a combination of hardware configuration and software configuration may be used.
- processors can be used as hardware resources for executing the various processes described in each of the above embodiments.
- the processor include a CPU, which is a general-purpose processor that functions as a hardware resource for performing endoscopic image processing by executing software, that is, a program.
- the processor include a dedicated electronic circuit such as an FPGA, a PLD, or an ASIC, which is a processor having a circuit configuration specifically designed to execute a specific process.
- Each processor has a built-in memory or is connected to it, and each processor uses the memory to perform endoscopic image processing.
- the hardware resources that execute endoscopic image processing may be configured with one of these various types of processors, or may be configured with a combination of two or more processors of the same type or different types (for example, a combination of multiple FPGAs). , or a combination of a processor and an FPGA). Furthermore, the hardware resource that executes endoscopic image processing may be one processor.
- one processor is configured by a combination of one or more processors and software, and this processor functions as a hardware resource for executing endoscopic image processing.
- this processor functions as a hardware resource for executing endoscopic image processing.
- Second there is a form of using a processor, typified by an SoC, which implements the functions of an entire system including a plurality of hardware resources for performing endoscopic image processing with a single IC chip. In this way, endoscopic image processing is realized using one or more of the various processors described above as hardware resources.
- a and/or B has the same meaning as “at least one of A and B.” That is, “A and/or B” means that it may be only A, only B, or a combination of A and B. Furthermore, in this specification, even when three or more items are expressed by connecting them with “and/or”, the same concept as “A and/or B" is applied.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biomedical Technology (AREA)
- Optics & Photonics (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Biophysics (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Endoscopes (AREA)
Abstract
プロセッサを備え、プロセッサは、内視鏡スコープに設けられたカメラにより管状臓器が撮像されることで得られた画像が分割された複数の分割領域と画像に含まれる管腔対応領域との位置関係に基づく機械学習により得られた学習済みモデルに従って画像から、内視鏡スコープを挿入するための方向である管腔方向を取得し、管腔方向を示す情報である管腔方向情報を出力する画像処理装置。
Description
本開示の技術は、画像処理装置、表示装置、内視鏡装置、画像処理方法、画像処理プログラム、学習済みモデル、学習済みモデル生成方法、及び、学習済みモデル生成プログラムに関する。
特許第4077716号には、内視鏡挿入方向検出装置が開示されている。内視鏡挿入方向検出装置は、体腔内に挿入された内視鏡より内視鏡画像を入力する画像入力手段と、画像入力手段により入力された内視鏡画像より、所定の濃度値の画素を抽出するまたは内視鏡画像を形成する画素のうち近隣の画素との濃度値の変化率の勾配が所定値である画素を抽出する画素抽出手段と、画素抽出手段により抽出された画素により構成される特定の領域の形状を求める領域形状推定手段と、領域形状推定手段により求められた特定の領域の形状から内視鏡の体腔内への挿入方向を決定する挿入方向決定手段と、を備える。
特許第5687583号には、内視鏡挿入方向検出方法が開示されている。内視鏡挿入方向検出方法は、内視鏡画像を入力する第1のステップと、内視鏡画像に基づき、内視鏡画像における明るさの勾配と、内視鏡画像におけるハレーションの形状と、内視鏡画像の視野移動と、のうちいずれか1つに基づき内視鏡の挿入方向を検出するための処理を行う第1の検出ステップと、第1の検出ステップにより内視鏡の挿入方向を検出できたか否かを判定する判定ステップと、判定ステップにより、内視鏡の挿入方向を検出できないと判定された場合において、内視鏡画像に基づき、内視鏡画像における明るさの勾配と、内視鏡画像におけるハレーションの形状と、内視鏡画像の視野移動と、のうち第1の検出ステップとは異なるいずれか1つに基づき内視鏡の挿入方向を検出するための、第1の検出ステップとは異なる処理を行う第2の検出ステップと、を備える。
本開示の技術に係る一つの実施形態は、正確な管腔方向情報の出力を実現する画像処理装置、表示装置、内視鏡装置、画像処理方法、画像処理プログラム、学習済みモデル、学習済みモデル生成方法、及び、学習済みモデル生成プログラムを提供する。
本開示の技術に係る第1の態様は、プロセッサを備え、プロセッサは、内視鏡スコープに設けられたカメラにより管状臓器が撮像されることで得られた画像が分割された複数の分割領域と画像に含まれる管腔対応領域との位置関係に基づく機械学習により得られた学習済みモデルに従って画像から、内視鏡スコープを挿入するための方向である管腔方向を取得し、管腔方向を示す情報である管腔方向情報を出力する画像処理装置である。
本開示の技術に係る第2の態様は、管腔対応領域は、画像内の管腔領域を含む予め定められた範囲の領域である第1の態様に係る画像処理装置である。
本開示の技術に係る第3の態様は、管腔対応領域は、画像内の襞領域から管腔領域の位置が推定される方向におけるカメラによる観察範囲の端部である第1の態様に係る画像処理装置である。
本開示の技術に係る第4の態様は、複数の分割領域のうち、管腔対応領域と重畳している分割領域の方向が管腔方向である第1の態様から第3の態様の何れか一つの態様に係る画像処理装置である。
本開示の技術に係る第5の態様は、学習済みモデルは、画像内の襞領域の形状及び/又は向きに基づいて、管腔領域の位置をプロセッサに対して推定させるよう構成されたデータ構造である第1の態様から第4の態様の何れか一つの態様に係る画像処理装置である。
本開示の技術に係る第6の態様は、管腔方向は、複数の分割領域のうち、画像において管腔対応領域と重畳している面積の最も大きい分割領域の存在する方向である第1の態様から第5の態様の何れか一つの態様に係る画像処理装置である。
本開示の技術に係る第7の態様は、管腔方向は、複数の分割領域のうち、画像において管腔対応領域と重畳している面積の最も大きい分割領域である第1分割領域の存在する方向、及び第1分割領域の次に管腔対応領域と重畳している面積の大きい分割領域である第2分割領域の存在する方向である第1の態様から第5の態様の何れか一つの態様に係る画像処理装置である。
本開示の技術に係る第8の態様は、分割領域は、画像の中央領域と、中央領域から画像の外縁に向かって放射状に複数存在する放射状領域とを有する第1の態様から第7の態様の何れか一つの態様に係る画像処理装置である。
本開示の技術に係る第9の態様は、放射状領域は、放射状に8つ存在する第8の態様に係る画像処理装置である。
本開示の技術に係る第10の態様は、分割領域は、画像の中央領域と、中央領域よりも画像の外縁側に複数存在する周縁領域とを有する第1の態様から第7の態様の何れか一つの態様に係る画像処理装置である。
本開示の技術に係る第11の態様は、分割領域は、画像の中央を起点として画像の外縁に向かって3方向以上の領域に分割されることで得られる第1の態様から第7の態様の何れか一つの態様に係る画像処理装置である。
本開示の技術に係る第12の態様は、分割領域は、画像の中央領域と、中央領域よりも画像の外縁側に複数存在する周縁領域とを有し、周縁領域は、中央領域よりも画像の外縁側が中央領域から画像の外縁に向かって3方向以上に分割されることにより得られる第1の態様から第7の態様の何れか一つの態様に係る画像処理装置である。
本開示の技術に係る第13の態様は、第1の態様から第12の態様の何れか一つの態様に係る画像処理装置のプロセッサにより出力された管腔方向情報に応じた情報が表示される表示装置である。
本開示の技術に係る第14の態様は、第1の態様から第12の態様の何れか一つの態様に係る画像処理装置と、内視鏡スコープと、を備える内視鏡装置である。
本開示の技術に係る第15の態様は、内視鏡スコープに設けられたカメラにより管状臓器が撮像されることで得られた画像が分割された複数の分割領域と画像に含まれる管腔対応領域との位置関係に基づく機械学習により得られた学習済みモデルに従って画像から、内視鏡スコープを挿入するための方向である管腔方向を取得すること、及び、管腔方向を示す情報である管腔方向情報を出力することを含む画像処理方法である。
本開示の技術に係る第16の態様は、第1コンピュータに、画像処理であって、内視鏡スコープに設けられたカメラにより管状臓器が撮像されることで得られた画像が分割された複数の分割領域と画像に含まれる管腔対応領域との位置関係に基づく機械学習により得られた学習済みモデルに従って画像から、内視鏡スコープを挿入するための方向である管腔方向を取得すること、及び、管腔方向を示す情報である管腔方向情報を出力することを含む画像処理を実行させるための画像処理プログラムである。
本開示の技術に係る第17の態様は、内視鏡スコープに設けられたカメラにより管状臓器が撮像されることで得られた画像が分割された複数の分割領域と画像に含まれる管腔対応領域との位置関係に基づく機械学習により得られる学習済みモデルである。
本開示の技術に係る第18の態様は、内視鏡スコープに設けられたカメラにより管状臓器が撮像されることで得られた画像を取得すること、及び、モデルに対して、画像が分割された複数の分割領域と画像に含まれる管腔対応領域との位置関係に基づく機械学習を実行すること、を含む学習済みモデル生成方法である。
本開示の技術に係る第19の態様は、第2コンピュータに、学習済みモデル生成処理であって、内視鏡スコープに設けられたカメラにより管状臓器が撮像されることで得られた画像を取得すること、及び、モデルに対して、画像が分割された複数の分割領域と画像に含まれる管腔対応領域との位置関係に基づく機械学習を実行すること、を含む処理を実行させるための学習済みモデル生成プログラムである。
以下、添付図面に従って本開示の技術に係る画像処理装置、表示装置、内視鏡装置、画像処理方法、画像処理プログラム、学習済みモデル、学習済みモデル生成方法、及び、学習済みモデル生成プログラムの実施形態の一例について説明する。
先ず、以下の説明で使用される文言について説明する。
CPUとは、“Central Processing Unit”の略称を指す。GPUとは、“Graphics Processing Unit”の略称を指す。RAMとは、“Random Access Memory”の略称を指す。NVMとは、“Non-volatile memory”の略称を指す。EEPROMとは、“Electrically Erasable Programmable Read-Only Memory”の略称を指す。ASICとは、“Application Specific Integrated Circuit”の略称を指す。PLDとは、“Programmable Logic Device”の略称を指す。FPGAとは、“Field-Programmable Gate Array”の略称を指す。SoCとは、“System-on-a-chip”の略称を指す。SSDとは、“Solid State Drive”の略称を指す。USBとは、“Universal Serial Bus”の略称を指す。HDDとは、“Hard Disk Drive”の略称を指す。ELとは、“Electro-Luminescence”の略称を指す。CMOSとは、“Complementary Metal Oxide Semiconductor”の略称を指す。CCDとは、“Charge Coupled Device”の略称を指す。BLIとは、“Blue Light Imaging”の略称を指す。LCIとは、“Linked Color Imaging”の略称を指す。CNNとは、“Convolutional neural network”の略称を指す。AIとは、“Artificial Intelligence”の略称を指す。
<第1実施形態>
一例として図1に示すように、内視鏡システム10は、内視鏡装置12を備えている。内視鏡装置12は、内視鏡検査において医師14によって用いられる。また、少なくとも1人の補助スタッフ16(例えば、看護師等)が医師14による内視鏡検査を補助する。以下では、医師14及び補助スタッフ16を区別して説明する必要がない場合、符号を付さずに「ユーザ」とも称する。
一例として図1に示すように、内視鏡システム10は、内視鏡装置12を備えている。内視鏡装置12は、内視鏡検査において医師14によって用いられる。また、少なくとも1人の補助スタッフ16(例えば、看護師等)が医師14による内視鏡検査を補助する。以下では、医師14及び補助スタッフ16を区別して説明する必要がない場合、符号を付さずに「ユーザ」とも称する。
内視鏡装置12は、内視鏡スコープ18を備えており、内視鏡スコープ18を介して被検体20(例えば、患者)の体内に対する診療を行うための装置である。内視鏡装置12は、本開示の技術に係る「内視鏡装置」の一例である。
内視鏡スコープ18は、後述するカメラ38(図2参照)を用いて被検体20の体内を撮像することで体内の態様を示す画像を取得する。そして、内視鏡スコープ38は、体内の態様を示す画像を出力する。図1に示す例では、内視鏡スコープ18が被検体20の肛門から体腔内に挿入される態様が示されている。なお、図1に示す例では、内視鏡スコープ18が被検体20の肛門から体腔内に挿入されるが、これは、あくまでも一例に過ぎず、内視鏡スコープ18が被検体20の口、鼻孔、又は穿孔等から体腔内に挿入されてもよく、内視鏡スコープ18が挿入される箇所は、内視鏡スコープ18の種類及び内視鏡スコープ18が用いられる術式等によって決められる。
表示装置22は、画像を含めた各種情報を表示する。表示装置22の一例としては、液晶ディスプレイ又はELディスプレイ等が挙げられる。表示装置22には、複数の画面が並べて表示される。図1に示す例では、複数の画面の一例として、画面24及び26が示されている。表示装置22は、本開示の技術に係る「表示装置」の一例である。
画面24には、内視鏡画像28が表示される。内視鏡画像28は、被検体20の体腔内で内視鏡スコープ18に設けられたカメラ38(図2参照)によって観察対象領域が撮像されることによって取得された画像である。観察対象領域としては、大腸の内壁が挙げられる。大腸の内壁は、あくまでも一例に過ぎず、小腸、十二指腸、又は胃等の他の部位の内壁又は外壁等であってもよい。
画面24に表示される内視鏡画像28は、複数のフレームを含んで構成される動画像に含まれる1つのフレームである。つまり、画面24には、複数のフレームの内視鏡画像28が既定のフレームレート(例えば、30フレーム/秒又は60フレーム/秒等)で表示される。
画面26には、例えば、被検体特定情報29が表示される。被検体特定情報29は、被検体20に関する情報である。被検体特定情報29には、例えば、被検体20の氏名、被検体20の年齢、及び被検体20を識別可能な識別番号等が含まれている。
一例として図2に示すように、内視鏡スコープ18は、操作部32及び挿入部34を備えている。操作部32は、回転操作ノブ32A、送気・送水ボタン32B、及び吸引ボタン32Cを備えている。挿入部34は、管状に形成されている。挿入部34の横断面視の外輪郭は円形状である。挿入部34は、操作部32の回転操作ノブ32Aが操作されることにより部分的に湾曲したり、挿入部34の軸心周りに回転したりする。この結果、挿入部34は、体内の形状(例えば、管状臓器の形状)に応じて湾曲したり、体内の部位に応じて挿入部34の軸心周りに回転したりしながら体内の奥側に送り込まれる。また、送気・送水ボタン32Bが操作されることにより、先端部36から水、又は空気が体内に送り込まれ、吸引ボタン32Cが操作されることにより、体内の水、又は空気が吸引される。
先端部36には、カメラ38、照明装置40、及び処置具用開口42が設けられている。カメラ38は、管状臓器内を光学的手法で撮像する。カメラ38の一例としては、CMOSカメラが挙げられる。但し、これは、あくまでも一例に過ぎず、CCDカメラ等の他種のカメラであってもよい。カメラ38は、本開示の技術に係る「カメラ」の一例である。
照明装置40は、照明窓40A及び照明窓40Bを有する。照明装置40は、照明窓40A及び照明窓40Bを介して光を照射する。照明装置40から照射される光の種類としては、例えば、可視光(例えば、白色光等)、非可視光(例えば、近赤外光等)、及び/又は特殊光が挙げられる。特殊光としては、例えば、BLI用の光及び/又はLCI用の光が挙げられる。
処置具用開口42は、処置具を先端部36から突出させるための開口である。また、処置具用開口42は、血液及び体内汚物等を吸引する吸引口としても機能する。処置具は、処置具挿入口45から挿入部34内に挿入される。処置具は、挿入部34内を通過して処置具用開口42から外部に突出する。処置具の例としては、穿刺針、ワイヤ、メス、把持鉗子、ガイドシース、及び超音波プローブ等が挙げられる。
内視鏡装置12は、制御装置46及び光源装置48を備えている。内視鏡スコープ18は、ケーブル50を介して制御装置46及び光源装置48と接続されている。制御装置46は、内視鏡装置12の全体を制御する装置である。光源装置48は、制御装置46の制御下で発光し、光を照明装置40に供給する装置である。
制御装置46には、複数のハードキー52が設けられている。複数のハードキー52は、ユーザからの指示を受け付ける。表示装置22の画面には、タッチパネル54が設けられている。タッチパネル54は、制御装置46と電気的に接続されており、ユーザからの指示を受け付ける。表示装置22も、制御装置46と電気的に接続されている。
一例として図3に示すように、制御装置46は、コンピュータ56を備えている。コンピュータ56は、本開示の技術に係る「画像処理装置」及び「第1コンピュータ」の一例である。コンピュータ56は、プロセッサ58、RAM60、及びNVM62を備えており、プロセッサ58、RAM60、及びNVM62は電気的に接続されている。プロセッサ58は、本開示の技術に係る「プロセッサ」の一例である。
制御装置46は、ハードキー52、及び外部I/F64を備えている。ハードキー52、プロセッサ58、RAM60、NVM62、及び外部I/F64は、バス65に接続されている。
例えば、プロセッサ58は、CPU及びGPUを有しており、制御装置46の全体を制御する。GPUは、CPUの制御下で動作し、グラフィック系の各種処理の実行を担う。なお、プロセッサ58は、GPU機能を統合した1つ以上のCPUであってもよいし、GPU機能を統合していない1つ以上のCPUであってもよい。
RAM60は、一時的に情報が格納されるメモリであり、プロセッサ58によってワークメモリとして用いられる。NVM62は、各種プログラム及び各種パラメータ等を記憶する不揮発性の記憶装置である。NVM62の一例としては、フラッシュメモリ(例えば、EEPROM及び/又はSSD)が挙げられる。なお、フラッシュメモリは、あくまでも一例に過ぎず、HDD等の他の不揮発性の記憶装置であってもよいし、2種類以上の不揮発性の記憶装置の組み合わせであってもよい。
ハードキー52は、ユーザからの指示を受け付け、受け付けた指示を示す信号をプロセッサ58に出力する。これにより、ハードキー52によって受け付けられた指示がプロセッサ58によって認識される。
外部I/F64は、制御装置46の外部に存在する装置(以下、「外部装置」とも称する)とプロセッサ58との間の各種情報の授受を司る。外部I/F64の一例としては、USBインタフェースが挙げられる。
外部I/F64には、外部装置の1つとして内視鏡スコープ18が接続されており、外部I/F64は、内視鏡スコープ18とプロセッサ58との間の各種情報の授受を司る。プロセッサ58は、外部I/F64を介して内視鏡スコープ18を制御する。また、プロセッサ58は、カメラ38によって管状臓器内が撮像されることで得られた内視鏡画像28(図1参照)を外部I/F64を介して取得する。
外部I/F64には、外部装置の1つとして光源装置48が接続されており、外部I/F64は、光源装置48とプロセッサ58との間の各種情報の授受を司る。光源装置48は、プロセッサ58の制御下で、照明装置40に光を供給する。照明装置40は、光源装置48から供給された光を照射する。
外部I/F64には、外部装置の1つとして表示装置22が接続されており、プロセッサ58は、外部I/F76を介して表示装置22を制御することで、表示装置22に対して各種情報を表示させる。
外部I/F64には、外部装置の1つとしてタッチパネル54が接続されており、プロセッサ58は、タッチパネル54によって受け付けられた指示を、外部I/F64を介して取得する。
外部I/F64には、外部装置の1つとして情報処理装置66が接続されている。情報処理装置66の一例としては、サーバが挙げられる。なお、サーバは、あくまでも一例に過ぎず、情報処理装置66は、パーソナル・コンピュータであってもよい。
外部I/F64は、情報処理装置66とプロセッサ58との間の各種情報の授受を司る。プロセッサ58は、外部I/F64を介して情報処理装置66に対してサービスの提供を要求したり、情報処理装置66から外部I/F64を介して学習済みモデル116(図4参照)を取得したりする。
ところで、内視鏡スコープ18に設けられたカメラ38を用いて体内の管状臓器(例えば、大腸)内が観察される場合、管腔に沿って内視鏡スコープ18が挿入される。この場合において、内視鏡スコープ18が挿入される方向である管腔方向がユーザにとって分かりにくい場合がある。また、管腔方向と異なる方向に内視鏡スコープ18が挿入されると、管状臓器の内壁に内視鏡スコープ18が当たるため、被検体20(例えば、患者)に対して不要な負担を強いることにもなる。
そこで、このような事情に鑑み、本実施形態では、制御装置46のプロセッサ58によって内視鏡画像処理が行われる。一例として図4に示すように、NVM62には、内視鏡画像処理プログラム62Aが記憶されている。プロセッサ58は、NVM62から内視鏡画像処理プログラム62Aを読み出し、読み出した内視鏡画像処理プログラム62AをRAM60上で実行する。内視鏡画像処理は、プロセッサ58がRAM60上で実行する内視鏡画像処理プログラム62Aに従って管腔方向推定部58A、情報生成部58B、及び表示制御部58Cとして動作することによって実現される。
一例として図5に示すように、情報処理装置66のプロセッサ78(図5参照)によって機械学習処理が行われる。情報処理装置66は、機械学習に用いられる装置である。情報処理装置66は、アノテータ76(図6参照)によって使用される。アノテータ76とは、与えられたデータに対して機械学習用のアノテーションを付与する作業者(すなわち、ラベリングを行う作業者)を指す。
情報処理装置66は、コンピュータ70、受付装置72、ディスプレイ74、及び外部I/F76備えている。コンピュータ70は、本開示の技術に係る「第2コンピュータ」の一例である。
コンピュータ70は、プロセッサ78、NVM80、及びRAM82を備えている。プロセッサ78、NVM80、及びRAM82は、バス84に接続されている。また、受付装置72、ディスプレイ74、及び外部I/F76も、バス84に接続されている。
プロセッサ78は、情報処理装置66の全体を制御する。プロセッサ78、NVM80、及びRAM82は、上述したプロセッサ58、NVM62、及びRAM60と同様のハードウェア資源である。
受付装置72は、アノテータ76からの指示を受け付ける。プロセッサ78は、受付装置72によって受け付けられた指示に従って動作する。
外部I/F76は、上述した外部I/F64と同様のハードウェア資源である。外部I/F76は、内視鏡装置12の外部I/F64に接続されており、内視鏡装置12とプロセッサ78との間の各種情報の授受を司る。
NVM80には、機械学習処理プログラム80Aが記憶されている。プロセッサ78は、NVM80から機械学習処理プログラム80Aを読み出し、読み出した機械学習処理プログラム80AをRAM82上で実行する。プロセッサ78は、RAM82上で実行する機械学習処理プログラム80Aに従って機械学習処理を行う。機械学習処理は、プロセッサ78が機械学習処理プログラム80Aに従って演算部86、教師データ生成部88、及び学習実行部90として動作することで実現される。機械学習処理プログラム80Aは、本開示の技術に係る「学習済みモデル生成プログラム」の一例である。
一例として図6に示すように、先ず、演算部86は、ディスプレイ74に対して、内視鏡画像28を表示させる。ここで、内視鏡画像28は、例えば、過去の診察及び/又は治療において取得された画像であって、NVM80に予め記憶された画像であるが、これはあくまでも一例に過ぎない。内視鏡画像28は、外部装置としての画像サーバ(図示省略)に記憶された画像であって、外部I/F76(図5参照)を介して取得された画像であってもよい。内視鏡画像28がディスプレイ74に表示された状態で、アノテータ76は、受付装置72(例えば、キーボード72A及び/又はマウス72B)を介してコンピュータ70に対して、内視鏡画像28における管腔対応領域94を指定する。例えば、アノテータ76は、ディスプレイ74に表示された内視鏡画像28内における管腔領域28Aをポインタ(図示省略)によって指定する。ここで、管腔領域28Aとは、内視鏡画像28において管腔を示す画像領域を指す。
演算部86は、受付装置72を介してアノテータ76によって指定された管腔対応領域94を認識する。ここで、管腔対応領域94とは、内視鏡画像28内における管腔領域28Aを含む予め定められた範囲(例えば、管腔領域28Aの中心から半径64ピクセルの範囲)の領域である。管腔対応領域94は、本開示の技術に係る「管腔対応領域」の一例である。また、演算部86によって、内視鏡画像28が仮想的に分割されることにより複数の分割領域96が得られる。分割領域96は、本開示の技術に係る「分割領域」の一例である。例えば、管腔対応領域94は、内視鏡画像28内における管腔領域28Aを含み、かつ後述する分割領域96に内接可能な大きさの領域である。
図6に示す例では、内視鏡画像28が、中央領域96Aと、8つの放射状領域96Bに分割されている。中央領域96Aは、例えば、内視鏡画像28における中央Cを中心とした円形の領域である。また、放射状領域96Bは、中央領域96Aから内視鏡画像28の外縁に向かって放射状に存在する領域である。ここでは、8つの放射状領域96Bが示されているが、これはあくまでも一例に過ぎない。例えば、放射状領域96Bの数は、7個以下であってもよいし、9個以上であってもよい。中央領域96Aは、本開示の技術に係る「中央領域」の一例であり、放射状領域96Bは、本開示の技術に係る「放射状領域」の一例である。
演算部86において、複数の分割領域96の内、管腔対応領域94と重畳している分割領域96の方向が管腔方向とされる。具体的には、演算部86によって、複数の分割領域96の内、管腔対応領域94と重畳している面積が最も大きい分割領域96が導出される。例えば、演算部86は、複数の分割領域96の各々と管腔対応領域94とが重畳している領域を特定する。演算部86は、分割領域96と管腔対応領域94とが重畳している領域の面積を算出する。そして、演算部86は、分割領域96と管腔対応領域94とが重畳している領域の面積が最も大きい分割領域96を特定する。
演算部86は、管腔対応領域94と重畳している面積が最も大きい分割領域96の方向を管腔方向とし、正解データ92として生成する。図6に示す例では、正解データ92の一例として、放射状領域96Bのうちの第2領域96B1が示されている。第2領域96B1は、管腔方向(すなわち、カメラ38を挿入するための方向)を示す領域である。
ここでは、内視鏡画像28において、管腔領域28Aが写り込んでいる形態例を挙げて説明したが、本開示の技術はこれに限定されない。例えば、内視鏡画像28内において、管腔領域28Aが写り込んでいない場合であってもよい。この場合、一例として図7に示すように、アノテータ76は、ディスプレイ74に表示された内視鏡画像28内における襞領域28Bの位置及び/又は形状を参照して、管腔領域28Aを推測する。ここで、襞領域28Bとは、内視鏡画像28において管状臓器内の襞を示す画像領域を指す。そして、内視鏡画像28における観察範囲の端部を、管腔対応領域94としてポインタ(図示省略)によって指定する。
演算部86によって、複数の分割領域96の内、管腔対応領域94と重畳している面積が最も大きい分割領域96が導出される。そして、演算部86は、管腔対応領域94と重畳している面積が最も大きい分割領域96を正解データ92として生成する。図7に示す例では、正解データ92の一例として、放射状領域96Bのうちの第7領域96B3が示されている。第7領域96B3は、管腔方向を示す領域である。
一例として図8に示すように、教師データ生成部88は、演算部86から推論用画像として内視鏡画像28を取得し、取得した内視鏡画像28に対して、正解データ92を紐付けることで教師データ95を生成する。学習実行部90は、教師データ生成部88によって生成された教師データ95を取得する。そして、学習実行部90は、教師データ95を用いて機械学習を実行する。
図8に示す例において、学習実行部90は、CNN110を有する。学習実行部90は、教師データ95に含まれる内視鏡画像28をCNN110に入力する。なお、ここでは、内視鏡画像28が一枚ずつCNN110に入力される形態例を挙げて説明したが、本開示の技術は、これに限定されない。複数フレーム(例えば、2~3フレーム)の内視鏡画像28が、一度にCNN110に入力されるようにしてもよい。CNN110は、内視鏡画像28が入力されると、推論を行い、推論結果(例えば、内視鏡画像28を構成する全画像領域のうちの管腔が存在する方向を示す画像領域として予測された画像領域)を示すCNN信号110Aを出力する。学習実行部90は、CNN信号110Aと、教師データ95に含まれる正解データ92との誤差112を算出する。
学習実行部90は、誤差112が最小となるようにCNN110内の複数の最適化変数を調整することでCNN110を最適化する。ここで、複数の最適化変数とは、例えば、CNN110に含まれる複数の結合荷重及び複数のオフセット値等を指す。
学習実行部90は、内視鏡画像28のCNN110への入力、誤差112の算出、及びCNN110内の複数の最適化変数の調整、という学習処理を複数の教師データ95を用いて繰り返し行う。すなわち、学習実行部90は、複数の教師データ95に含まれる複数の内視鏡画像28の各々について、誤差112が最小になるようにCNN110内の複数の最適化変数を調整することで、CNN110を最適化する。このようにCNN110が最適されることによって学習済みモデル116が生成される。学習済みモデル116は、学習実行部90によって記憶装置に記憶される。記憶装置としては、例えば、内視鏡装置12のNVM62が挙げられるが、これはあくまでも一例に過ぎない。記憶装置としては、情報処理装置66のNVM80であってもよい。既定の記憶装置に記憶された学習済みモデル116は、例えば、内視鏡装置12における管腔方向推定処理に用いられる。学習済みモデル116は、本開示の技術に係る「学習済みモデル」の一例である。
一例として図9に示すように、内視鏡装置12では、情報処理装置66において生成された学習済みモデル116を用いて、管腔方向推定処理が行われる。先ず、カメラ38によって時系列に管状臓器内が撮像されることで、内視鏡画像28が得られる。内視鏡画像28は、一時的にRAM60に保存される。管腔方向推定部58Aは、内視鏡画像28に基づいて管腔方向推定処理を行う。この場合、管腔方向推定部58Aは、NVM62から学習済みモデル116を取得する。そして、管腔方向推定部58Aは、学習済みモデル116に内視鏡画像28を入力する。学習済みモデル116は、内視鏡画像28が入力されると、内視鏡画像28内における管腔方向の推定結果118を出力する。推定結果118は、例えば、分割領域96毎の管腔方向が存在する確率である。学習済みモデル116からは、推定結果118として、9つの分割領域96に対応する9つの確率を示す確率分布pが出力される。
一例として図10に示すように、管腔方向推定部58Aは、情報生成部58Bに対して推定結果118を出力する。情報生成部58Bは、推定結果118に基づいて管腔方向情報120を生成する。管腔方向情報120は、管腔方向を示す情報である。また、管腔方向情報120は、本開示の技術に係る「管腔方向情報」の一例である。情報生成部58Bは、例えば、推定結果118により示される確率分布pにおいて、最も高い確率の値を示す分割領域96の方向を管腔方向として管腔方向情報120を生成する。情報生成部58Bは、管腔方向情報120を表示制御部58Cに出力する。
表示制御部58Cは、RAM60に一時的に保存された内視鏡画像28を取得する。さらに、表示制御部58Cは、管腔方向情報120により示される管腔方向を内視鏡画像28に重畳表示した画像122を生成する。表示制御部58Cは、表示装置22に対して画像122を表示させる。図10に示す例では、画像122内において、管腔方向を示す表示として円弧122Aが内視鏡画像28の観察範囲の外周に示されている。
一例として図11に示すように、表示装置22に表示される画像122は、内視鏡画像28が取得される度に更新される。具体的には、管腔方向推定部58Aは、カメラ38から内視鏡画像28を取得する度に管腔方向推定処理(図10参照)を行う。そして、管腔方向推定部58Aは、管腔方向推定処理により得られた推定結果118を情報生成部58Bに出力する。情報生成部58Bは、推定結果118に基づいて管腔方向情報120を生成する。表示制御部58Cは、管腔方向情報120及びカメラ38から取得した内視鏡画像28に基づいて、表示装置22に対して画像122を更新させる。この結果、画像122において、管腔方向を示す表示が、内視鏡画像28内における管腔方向に応じて変化する。図11に示す例では、管腔方向が内視鏡画像28内において、紙面表側から見て左側、中央、及び右側の順に移動している。そして、図11に示す例では、画像122内において、管腔方向を示す表示として円弧122A、X字状の表示122B、及び円弧122Cの順に画像122が更新される例が示されている。なお、ここでは、管腔方向を示す表示として円弧122A及び122C、並びにX字状の表示122Bが用いられる形態例を挙げて説明したが、本開示の技術はこれに限定されない。例えば、管腔方向を示す表示としては、矢印等の記号又は「右上」等の文字が用いられてもよい。表示装置22による管腔方向の表示に代えて、又は表示と共に音声による管腔方向の報知がなされてもよい。
次に、情報処理装置66の作用について、図12を参照しながら説明する。図12には、プロセッサ78によって行われる機械学習処理の流れの一例が示されている。図12に示す機械学習処理の流れは、本開示の技術に係る「学習済みモデル生成方法」の一例である。
図12に示す機械学習処理では、先ず、ステップST110で、演算部86は、ディスプレイ74に内視鏡画像28を表示させる。ステップST110の処理が実行された後、機械学習処理は、ステップST112へ移行する。
ステップST112で、演算部86は、ステップST110においてディスプレイ74に表示された内視鏡画像28に対して、アノテータ76により受付装置72を介して入力された管腔対応領域94の指定を受け付ける。ステップST112の処理が実行された後、機械学習処理は、ステップST114へ移行する。
ステップST114で、演算部86は、ステップST112で受け付けられた管腔対応領域94と、分割領域96との位置関係に基づいて正解データ92を生成する。ステップST114の処理が実行された後、機械学習処理は、ステップST116へ移行する。
ステップST116で、教師データ生成部88は、ステップST114で生成された正解データ92と、内視鏡画像28とを紐づけることにより、教師データ95を生成する。ステップST116の処理が実行された後、機械学習処理は、ステップST118へ移行する。
ステップST118で、学習実行部90は、ステップST116で生成された教師データ95に含まれる内視鏡画像28を取得する。ステップST118の処理が実行された後、機械学習処理は、ステップST120へ移行する。
ステップST120で、学習実行部90は、ステップST118で取得された内視鏡画像28をCNN110へ入力する。ステップST120の処理が実行された後、機械学習処理は、ステップST122へ移行する。
ステップST122で、学習実行部90は、ステップST120で内視鏡画像28がCNN110へ入力されることにより得られるCNN信号110Aと、内視鏡画像28に紐づけられた正解データ92とを比較することで、誤差112を算出する。ステップST122が実行された後、機械学習処理は、ステップST124へ移行する。
ステップST124で、学習実行部90は、ステップST122で算出された誤差112が最も小さくなるようにCNN110の最適化変数を調整する。ステップST124が実行された後、機械学習処理は、ステップST126へ移行する。
ステップST126で、学習実行部90は、機械学習が終了する条件(以下、「終了条件」と称する)を満足したか否かを判定する。終了条件の一例としては、ステップST124で算出された誤差112が閾値以下となった、との条件が挙げられる。ステップST126において、終了条件を満足していない場合は、判定が否定されて、機械学習処理はステップST118へ移行する。ステップST126において、終了条件を満足した場合は、判定が肯定されて、機械学習処理は、ステップST128へ移行する。
ステップST128で、学習実行部90は、機械学習が終了したCNN110である学習済みモデル116を外部(例えば、内視鏡装置12のNVM62)へ出力する。ステップST128が実行された後、機械学習処理は、終了する。
次に、内視鏡装置12の作用について図13を参照しながら説明する。図13には、プロセッサ58によって行われる内視鏡画像処理の流れの一例が示されている。図13に示す内視鏡画像処理の流れは、本開示の技術に係る「画像処理方法」の一例である。
図13に示す内視鏡画像処理では、先ず、ステップST10で、管腔方向推定部58Aは、管腔方向推定開始トリガがONとなっているか否かを判定する。管腔方向推定開始トリガとしては、ユーザによる管腔方向推定開始指示(例えば、内視鏡スコープ18に設けられたボタン(図示省略)の操作)が受け付けられたか否かが挙げられる。ステップST10において、管腔方向推定開始トリガがONとなっていない場合は、判定が否定されて、内視鏡画像処理は、再度ステップST10に移行する。ステップST10において、管腔方向推定開始トリガがONとなった場合は、判定が肯定されて、内視鏡画像処理は、ステップST12へ移行する。なお、ステップST10において、管腔方向推定開始トリガがONとなっているか否かが判定される形態例を挙げて説明したが、本開示の技術はこれに限定されない。ステップST10の判定が省略されて、常に管腔方向推定処理が行われる態様であっても本開示の技術は成立する。
ステップST12で、管腔方向推定部58Aは、RAM60から内視鏡画像28を取得する。ステップST12の処理が実行された後、内視鏡画像処理は、ステップST14へ移行する。
ステップST14で、管腔方向推定部58Aは、学習済みモデル116を用いて内視鏡画像28内における管腔方向の推定を開始する。ステップST14の処理が実行された後、内視鏡画像処理は、ステップST16へ移行する。
ステップST16で、管腔方向推定部58Aは、管腔方向の推定が終了したか否かを判定する。ステップST16において、管腔方向の推定が終了していない場合、判定が否定され、内視鏡画像処理は、再度ステップST16へ移行する。ステップST16において、管腔方向の推定が終了した場合、判定が肯定され、内視鏡画像処理は、ステップST18へ移行する。
ステップST18で、情報生成部58Bは、ステップST16において得られた推定結果118に基づいて管腔方向情報120を生成する。ステップST18の処理が実行された後、内視鏡画像処理は、ステップST20へ移行する。
ステップST20で、表示制御部58Cは、ステップST18において生成された管腔方向情報120をディスプレイ74に出力する。ステップST20の処理が実行された後、内視鏡画像処理は、ステップST22へ移行する。
ステップST22で、表示制御部58Cは、内視鏡画像処理が終了する条件(以下、「終了条件」と称する)を満足したか否かを判定する。終了条件の一例としては、内視鏡画像処理を終了させる指示がタッチパネル54によって受け付けられた、との条件が挙げられる。ステップST22において、終了条件を満足していない場合は、判定が否定されて、内視鏡画像処理はステップST12へ移行する。ステップST22において、終了条件を満足した場合は、判定が肯定されて、内視鏡画像処理が終了する。
なお、ステップST10において、管腔方向推定開始トリガとしては、ユーザによる管腔方向推定開始指示(例えば、内視鏡スコープ18に設けられたボタン(図示省略)の操作)が受け付けられたか否かという形態例を挙げて説明したが、本開示の技術はこれに限定されない。管腔方向推定開始トリガとしては、内視鏡スコープ18が管状臓器内に挿入されたことが検出されたか否かであってもよい。内視鏡スコープ18が挿入されたことが検出された場合、管腔方向推定開始トリガがONとなる。この場合において、プロセッサ58は、例えば、内視鏡画像28に対してAIを用いた画像認識処理を行うことで、内視鏡スコープ18が管状臓器内に挿入されたか否かを検出する。さらに、その他の管腔方向推定開始トリガとしては、管状臓器内の特定部位が認識されたか否かであってもよい。特定部位が検出された場合に管腔方向推定開始トリガがONとなる。この場合においても、プロセッサ58は、例えば、内視鏡画像28に対してAIを用いた画像認識処理を行うことで、特定部位が検出されたか否かを検出する。
また、ステップST22で、終了条件が、内視鏡画像処理を終了させる指示がタッチパネル54によって受け付けられたとの条件である形態例を挙げて説明したが、本開示の技術はこれに限定されない。例えば、終了条件は、プロセッサ58によって、内視鏡スコープ18が体内から抜き去られたことが検出された、との条件であってもよい。この場合において、プロセッサ58は、例えば、内視鏡画像28に対してAIを用いた画像認識処理を行うことで、内視鏡スコープ18が体内から抜き去られたことを検出する。また、その他の終了条件として、プロセッサ58によって、内視鏡スコープ18が管状臓器内の特定部位(例えば、大腸における回盲部)に到達したことが検出された、との条件であってもよい。この場合において、プロセッサ58は、例えば、内視鏡画像28に対してAIを用いた画像認識処理を行うことで、内視鏡スコープ18が、管状臓器の特定部位に到達したことを検出する。
以上説明したように、本実施形態に係る内視鏡装置12では、カメラ38により撮像された内視鏡画像28が学習済みモデル116に入力されることで管腔方向が取得される。学習済みモデル116は、管状臓器(例えば、大腸)を示す画像を分割することで得られた複数の分割領域96と内視鏡画像28に含まれる管腔対応領域94との位置関係に基づく機械学習処理により得られる。さらに、プロセッサ58により、管腔方向を示す情報である管腔方向情報120が出力される。従って、本構成によれば、正確な管腔方向情報120の出力が実現される。管腔方向情報120は、例えば、ユーザに対する管腔方向の表示に利用される。
例えば、医師による診察時の管腔方向の経験的な予測(例えば、ハレーションの円弧形状から管腔方向を予測)を応用した画像処理による管腔方向の予測と比較して、本構成によれば、経験則からは予測の精度が低下する状態の画像(例えば、画像内にハレーションが生じていない画像)を用いる場合でも、管腔方向の予測が可能である。従って、本構成によれば、正確な管腔方向情報120の出力が実現される。
また、本実施形態に係る内視鏡装置12では、内視鏡画像28内の管腔領域28A(を含む予め定められた範囲が管腔対応領域94とされる。そして、分割領域96と管腔対応領域94との位置関係に基づく機械学習により得られた学習済みモデル116に従って管腔方向が推定される。予め定められた範囲が管腔対応領域94とされることで、機械学習において管腔領域28Aの存在が認識されやすくなり、機械学習の精度が向上する。このため、学習済みモデル116を用いた管腔方向の推定の精度も向上する。この結果、プロセッサ58により、精度の高い管腔方向情報120が出力される。従って、本構成によれば、正確な管腔方向情報120の出力が実現される。
例えば、管腔領域28Aのみを管腔対応領域94とする場合、管腔対応領域94が画像内で点のように小さくなり、機械学習において管腔対応領域94が正確に認識されず、機械学習の精度が低下する。一方、本構成では、管腔対応領域94が予め定められた範囲とされているので、機械学習の精度が向上する。この結果、プロセッサ58により、精度の高い管腔方向情報120が出力される。従って、本構成によれば、正確な管腔方向情報120の出力が実現される。
また、本実施形態に係る内視鏡装置12では、内視鏡画像28内の襞領域28Bから管腔の位置が推定される方向におけるカメラ38による観察範囲の端部が、管腔対応領域94とされる。そして、分割領域96と管腔対応領域94との位置関係に基づく機械学習により得られた学習済みモデル116に従って管腔方向が推定される。襞領域28Bから管腔の位置が推定される方向におけるカメラ38による観察範囲の端部が、管腔対応領域94とされるので、管腔領域28Aが画像内に含まれない場合でも、機械学習が行える。これにより、学習対象となる内視鏡画像28の枚数が増えるので、機械学習の精度が向上する。このため、学習済みモデル116を用いた管腔方向の推定の精度も向上する。この結果、プロセッサ58により、精度の高い管腔方向情報120が出力される。従って、本構成によれば、正確な管腔方向情報120の出力が実現される。
また、本実施形態に係る内視鏡装置12では、機械学習における管腔対応領域94と分割領域96との位置関係において、管腔対応領域94と重畳している分割領域96の方向が、管腔方向である。分割領域96の方向は、内視鏡画像28の分割によって予め定まっている。従って、本構成によれば、管腔対応領域94の位置に応じて管腔方向が都度算出される場合と比較して、管腔方向の推定における負荷が低減される。
また、本実施形態に係る内視鏡装置12では、学習済みモデル116は、襞領域28Bの形状、及び/又は向きに基づいて、管腔の位置をプロセッサ58に対して推定させるよう構成されたデータ構造である。これにより、管腔の位置が正確に推定される。従って、本構成によれば、正確な管腔方向情報120の出力が実現される。
例えば、医師による診察時の管腔方向の経験的な予測(例えば、ハレーションの円弧形状から管腔方向を予測)を応用した画像処理による管腔方向の予測と比較して、本構成によれば、経験則からは予測の精度が低下する状態の画像(例えば、画像内にハレーションが生じていない画像)を用いる場合でも、管腔方向の予測が可能である。従って、本構成によれば、正確な管腔方向情報120の出力が実現される。
また、本実施形態に係る内視鏡装置12では、管腔方向は、管腔対応領域94と重畳している面積の最も大きい分割領域96の存在する方向とされる。管腔対応領域94と分割領域96とが重畳している面積が大きいことは、分割領域96の存在する方向に管腔が存在することを意味する。これにより、機械学習において、管腔方向を一意に定めることができる。従って、本構成によれば、正確な管腔方向情報120の出力が実現される。
また、本実施形態に係る内視鏡装置12では、分割領域96は、内視鏡画像28の中央領域96Aと、中央領域96Aから内視鏡画像28の外縁に向かって放射状に複数存在する放射状領域96Bとを有する。中央領域96Aには、内視鏡画像28内において管腔領域28Aが比較的頻度高く写り込む。このため、中央領域96Aに管腔が存在する場合にも管腔方向を示すことが求められる。また、内視鏡画像28を放射状に分割することで、管腔の方向がどの方向に存在するかを示しやすくなる。このように内視鏡画像28を中央領域96Aと放射状領域96Bとに分割することで、どの方向が管腔方向であるかが把握されやすくなる。従って、本構成によれば、ユーザに対して分かりやすく管腔方向を示すことが実現される。
また、本実施形態に係る内視鏡装置12では、放射状領域96Bは、放射状に8つ存在する。放射状領域96Bが8つ存在することで、管腔の方向がどの方向に存在するかを示しやすくなる。また、ユーザに対しても細かすぎない区分で管腔方向が示される。従って、本構成によれば、ユーザに対して分かりやすく管腔方向を示すことが実現される。
また、本実施形態に係る内視鏡装置12では、表示装置22において、プロセッサ58により出力された管腔方向情報120に応じた情報が表示される。従って、本構成によれば、ユーザが管腔方向を認識することが容易になる。
また、本実施形態に係る学習済みモデル116は、内視鏡画像28を分割することで得られた複数の分割領域96と内視鏡画像28に含まれる管腔対応領域94との位置関係に基づく機械学習処理により得られる。学習済みモデル116は、プロセッサ58による管腔方向情報120の出力に利用される。従って、本構成によれば、正確な管腔方向情報120の出力が実現される。管腔方向情報120は、例えば、医師に対する管腔方向の表示に利用される。
例えば、医師による診察時の管腔方向の経験的な予測(例えば、ハレーションの円弧形状から管腔方向を予測)を応用した内視鏡画像処理による管腔方向の予測と比較して、本構成によれば、経験則からは予測の精度が低下する状態の画像(例えば、画像内にハレーションが生じていない画像)を用いる場合でも、管腔方向の予測が可能である。従って、本構成によれば、正確な管腔方向情報120の出力が実現される。
<第2実施形態>
上記第1実施形態では、演算部86において、管腔対応領域94と重畳している面積が最も大きい分割領域96の方向が正解データ92として生成される形態例を挙げて説明したが、本開示の技術はこれに限定されない。本第2実施形態では、演算部86において、管腔対応領域94と重畳している面積が最も大きい分割領域96の方向、及び管腔対応領域と重畳している面積が二番目に大きい分割領域96の方向が、正解データ92として生成される。
上記第1実施形態では、演算部86において、管腔対応領域94と重畳している面積が最も大きい分割領域96の方向が正解データ92として生成される形態例を挙げて説明したが、本開示の技術はこれに限定されない。本第2実施形態では、演算部86において、管腔対応領域94と重畳している面積が最も大きい分割領域96の方向、及び管腔対応領域と重畳している面積が二番目に大きい分割領域96の方向が、正解データ92として生成される。
一例として図14に示すように、先ず、演算部86は、ディスプレイ74に対して、内視鏡画像28を表示させる。内視鏡画像28がディスプレイ74に表示された状態で、アノテータ76は、受付装置72(例えば、キーボード72A及び/又はマウス72B)を介してコンピュータ70に対して、内視鏡画像28における管腔対応領域94を指定する。
演算部86は、アノテータ76から受付装置72を介して内視鏡画像28内における管腔対応領域94の指定を受け付ける。演算部86によって、内視鏡画像28が仮想的に分割されることにより複数の分割領域96が得られる。図14に示す例では、内視鏡画像28が、中央領域96Aと、8つの放射状領域96Bに分割されている。
演算部86によって、複数の分割領域96の内、管腔対応領域94と重畳している面積が最も大きい分割領域96及び管腔対応領域94と重畳している面積が二番目に大きい分割領域96が導出される。例えば、演算部86は、複数の分割領域96の各々と管腔対応領域94とが重畳している領域を特定する。また、演算部86は、分割領域96と管腔対応領域94とが重畳している領域の面積を算出する。そして、演算部86は、分割領域96と管腔対応領域94とが重畳している領域の面積が最も大きい分割領域96及び二番目に面積が大きい分割領域96を特定する。分割領域96と管腔対応領域94とが重畳している領域の面積が最も大きい分割領域96は、本開示の技術に係る「第1分割領域」の一例であり、二番目に面積が大きい分割領域96は、本開示の技術に係る「第2分割領域」の一例である。
図14に示す例では、正解データ92として、放射状領域96Bのうちの第2領域96B1及び第1領域96B2の存在する方向が管腔方向(すなわち、カメラ38を挿入するための方向)である例が示されている。
ここでは、内視鏡画像28において、管腔領域28Aが写り込んでいる形態例を挙げて説明したが、本開示の技術はこれに限定されない。例えば、図7と同様に内視鏡画像28内において、管腔領域28Aが写り込んでいない場合であってもよい。
教師データ生成部88(図8参照)は、演算部86(図8参照)から内視鏡画像28を取得し、取得した内視鏡画像28に対して、正解データ92を紐付けることで教師データ95(図8参照)を生成する。学習実行部90は、教師データ生成部88によって生成された教師データ95を取得する。そして、学習実行部90(図8参照)は、教師データ95を用いて機械学習を実行する。機械学習の結果生成された学習済みモデル116Aは、学習実行部90によって記憶装置としての内視鏡装置12のNVM62に記憶される。
一例として図15に示すように、内視鏡装置12では、情報処理装置66において生成された学習済みモデル116Aを用いて、管腔方向推定処理が行われる。管腔方向推定部58Aは、内視鏡画像28に基づいて管腔方向推定処理を行う。管腔方向推定部58Aは、NVM62から学習済みモデル116Aを取得する。そして、管腔方向推定部58Aは、学習済みモデル116Aに内視鏡画像28を入力する。学習済みモデル116Aは、内視鏡画像28が入力されると、内視鏡画像28内における管腔方向の推定結果118Aを出力する。推定結果118Aは、例えば、分割領域96毎の管腔方向が存在するか否かの確率分布pである。
一例として図16に示すように、管腔方向推定部58Aは、情報生成部58Bに対して推定結果118を出力する。情報生成部58Bは、推定結果118Aに基づいて管腔方向情報120を生成する。情報生成部58Bは、例えば、推定結果118Aにより示される確率分布pにおいて、最も高い確率分布の値を示す分割領域96の方向及び二番目に高い確率分布の値示す分割領域96の方向を管腔方向として管腔方向情報120を生成する。情報生成部58Bは、管腔方向情報120を表示制御部58Cに出力する。
表示制御部58Cは、管腔方向情報120により示される管腔方向を内視鏡画像28に重畳表示した画像122を生成する。表示制御部58Cは、表示装置22に対して画像122を表示させる。図16に示す例では、画像122内において、管腔方向を示す表示として円弧122D及び円弧122Eが内視鏡画像28の観察範囲の外周に示されている。
以上説明したように、本実施形態に係る内視鏡装置12では、管腔方向は、管腔対応領域94と重畳している面積の最も大きい分割領域96の存在する方向、及び、管腔対応領域94と重畳している面積の二番目に大きい分割領域96の存在する方向とされる。管腔対応領域94と分割領域96とが重畳している面積が大きいことは、分割領域96の存在する方向に管腔が存在する可能性が高いことを意味する。これにより、機械学習において、管腔方向の存在する可能性の高い方向を定めることができる。従って、本構成によれば、管腔方向の存在する可能性の高い管腔方向情報120の出力が実現される。
(第1変形例)
なお、上記第2実施形態において、学習済みモデル116Aから出力される推定結果118Aがそのまま管腔方向情報120の生成に用いられる形態例を挙げて説明したが、本開示の技術はこれに限定されない。推定結果118Aが修正された結果である修正結果124が管腔方向情報120の生成に用いられてもよい。
なお、上記第2実施形態において、学習済みモデル116Aから出力される推定結果118Aがそのまま管腔方向情報120の生成に用いられる形態例を挙げて説明したが、本開示の技術はこれに限定されない。推定結果118Aが修正された結果である修正結果124が管腔方向情報120の生成に用いられてもよい。
一例として図17に示すように、管腔方向推定部58Aは、内視鏡画像28に基づいて管腔方向推定処理を行う。管腔方向推定部58Aは、学習済みモデル116Aに内視鏡画像28を入力する。学習済みモデル116Aは、内視鏡画像28が入力されると、内視鏡画像28内における管腔方向の推定結果118Aを出力する。
管腔方向推定部58Aは、推定結果118Aに対して、推定結果修正処理を行う。管腔方向推定部58Aは、推定結果118Aの各分割領域96の確率分布pから管腔方向の存在する確率のみを抽出する。さらに、管腔方向推定部58Aは、確率分布pのうちの最も大きい確率を起点に重みづけを行う。具体的には、管腔方向推定部58Aは、NVM62から重みづけ係数126を取得し、抽出した確率と重みづけ係数126とを乗算する。例えば、重みづけ係数126は、最も大きい確率に対応した係数を1とし、最も大きい確率に隣接した確率に対応した係数を0.8として設定されている。重みづけ係数126は、例えば、過去の推定結果118Aに基づいて適宜設定される。
重みづけ係数126は、確率分布pに応じて設定されてもよい。例えば、分割領域96の内の中央領域96Aの確率が最も大きい場合は、重みづけ係数126のうちの最も大きい確率に対応した係数を1とし、最も大きい確率に対応した係数以外の係数を0としてもよい。
そして、管腔方向推定部58Aは、閾値128をNVM62から取得し、閾値128以上の確率を修正結果124とする。閾値128は、例えば、0.5であるが、これはあくまでも一例に過ぎない。例えば、閾値128は、例えば、0.4であってもよいし、0.6であってもよい。閾値128は、例えば、過去の推定結果118Aに基づいて適宜設定される。
管腔方向推定部58Aは、修正結果124を情報生成部58Bに出力する。情報生成部58Bは、修正結果124に基づいて管腔方向情報120を生成する。情報生成部58Bは、管腔方向情報120を表示制御部58Cに出力する。
以上説明したように、本第1変形例に係る内視鏡装置12では、推定結果118Aが推定結果修正処理によって修正される。推定結果修正処理では、推定結果118Aに対して重みづけ係数126及び閾値128を用いた修正が行われる。これにより、推定結果118Aにより示される管腔方向がより正確になる。従って、本構成によれば、正確な管腔方向情報120の出力が実現される。
なお、本第1変形例では、推定結果118Aに対して推定結果修正処理が行われる形態例を挙げて説明したが、本開示の技術はこれに限定されない。推定結果修正処理に相当する演算が学習済みモデル116Aに組み込まれていてもよい。
(第2変形例)
上記第1及び第2実施形態では、分割領域96が、中央領域96A及び放射状領域96Bを有する形態例を挙げて説明したが、本開示の技術はこれに限定されない。本第2変形例では、分割領域96は、中央領域96Aと、中央領域96Aよりも内視鏡画像28の外縁側に複数存在する周縁領域96Cとを有する。
上記第1及び第2実施形態では、分割領域96が、中央領域96A及び放射状領域96Bを有する形態例を挙げて説明したが、本開示の技術はこれに限定されない。本第2変形例では、分割領域96は、中央領域96Aと、中央領域96Aよりも内視鏡画像28の外縁側に複数存在する周縁領域96Cとを有する。
一例として図18に示すように、演算部86は、アノテータ76から受付装置72を介して内視鏡画像28内における管腔対応領域94の指定を受け付ける。演算部86によって、内視鏡画像28が仮想的に分割されることにより複数の分割領域96が得られる。
分割領域96は、中央領域96Aと周縁領域96Cとを有している。中央領域96Aは、例えば、内視鏡画像28における中央Cを中心とした円形の領域である。周縁領域96Cは、中央領域96Aよりも内視鏡画像28の外縁側に複数存在する領域である。図18に示す例では、周縁領域96Cが、内視鏡画像28の外縁側に3つ存在している。ここでは、3つの周縁領域96Cが示されているが、これはあくまでも一例に過ぎない。周縁領域96Cの数は、2個であってもよいし、4個以上であってもよい。周縁領域96Cは、本開示の技術に係る「周縁領域」の一例である。
演算部86によって、複数の分割領域96の内、管腔対応領域94と重畳している面積が最も大きい分割領域96が導出される。例えば、演算部86は、複数の分割領域96の各々と管腔対応領域94とが重畳している領域を特定する。演算部86は、分割領域96と管腔対応領域94とが重畳している領域の面積を算出する。そして、演算部86は、分割領域96と管腔対応領域94とが重畳している領域の面積が最も大きい分割領域96を特定する。
演算部86は、管腔対応領域94と重畳している面積が最も大きい分割領域96の方向を正解データ92として生成する。図18に示す例では、正解データ92として、周縁領域96Cのうちの第3領域96C1の存在する方向が管腔方向である例が示されている。
以上説明したように、本第2変形例では、分割領域96は、内視鏡画像28の中央領域96Aと、中央領域96Aよりも内視鏡画像28の外縁側に複数存在する周縁領域96Cとを有する。中央領域96Aには、内視鏡画像28内において管腔領域28Aが比較的頻度高く写り込む。このため、中央領域96Aに管腔が存在する場合にも管腔方向を示すことが求められる。また、周縁領域96Cを複数に分割することで、管腔の方向がどの方向に存在するかを示しやすくなる。このように内視鏡画像28を中央領域96Aと複数の周縁領域96Cに分割することで、どの方向が管腔方向であるかが把握されやすくなる。従って、本構成によれば、ユーザに対して分かりやすく管腔方向を示すことが実現される。
また、本第2変形例では、分割領域96は、周縁領域96Cは、中央領域96Aよりも内視鏡画像28の外縁側が中央領域96Aから内視鏡画像28の外縁に向かって3方向以上に分割されることにより得られる。中央領域96Aには、内視鏡画像28内において管腔領域28Aが比較的頻度高く写り込む。このため、中央領域96Aに管腔が存在する場合にも管腔方向を示すことが求められる。内視鏡画像28の外縁に向かって3方向以上に分割することで、管腔の方向がどの方向に存在するかを示しやすくなる。このように中央領域96Aと3方向以上の周縁領域96Cに分割することで、どの方向が管腔方向であるかが把握されやすくなる。従って、本構成によれば、ユーザに対して分かりやすく管腔方向を示すことが実現される。
(第3変形例)
上記第1及び第2実施形態では、分割領域96は、中央領域96Aと放射状領域96Bとを有している形態例を挙げて説明したが、本開示の技術はこれに限定されない。本第3変形例では、分割領域96は、内視鏡画像28の中央Cを起点として内視鏡画像28の外縁に向かって3方向以上の領域に分割されることで得られる。
上記第1及び第2実施形態では、分割領域96は、中央領域96Aと放射状領域96Bとを有している形態例を挙げて説明したが、本開示の技術はこれに限定されない。本第3変形例では、分割領域96は、内視鏡画像28の中央Cを起点として内視鏡画像28の外縁に向かって3方向以上の領域に分割されることで得られる。
一例として図19に示すように、演算部86は、アノテータ76から受付装置72を介して内視鏡画像28内における管腔対応領域94の指定を受け付ける。演算部86によって、内視鏡画像28が仮想的に分割されることにより複数の分割領域96が得られる。
分割領域96は、内視鏡画像28における中央Cを中心として、内視鏡画像28の外縁に向かって3方向に分割されることにより得られる領域である。図19に示す例では、分割領域96が、内視鏡画像28の外縁側に3つ存在している。ここでは、3つの分割領域96が示されているが、これはあくまでも一例に過ぎない。分割領域96の数は、2個であってもよいし、4個以上であってもよい。
演算部86によって、複数の分割領域96の内、管腔対応領域94と重畳している面積が最も大きい分割領域96が導出される。例えば、演算部86は、複数の分割領域96の各々と管腔対応領域94とが重畳している領域を特定する。演算部86は、分割領域96と管腔対応領域94とが重畳している領域の面積を算出する。そして、演算部86は、分割領域96と管腔対応領域94とが重畳している領域の面積が最も大きい分割領域96を特定する。
演算部86は、管腔対応領域94と重畳している面積が最も大きい分割領域96の方向を正解データ92として生成する。図19に示す例では、正解データ92として、周縁領域96Cのうちの第3領域96C1の存在する方向が管腔方向である例が示されている。
以上説明したように、本第3変形例では、分割領域96は、内視鏡画像28の中央Cを起点として外縁に向かって内視鏡画像28を3方向以上に分割することにより得られる。
内視鏡画像28の中央Cを起点として外縁に向かって3方向以上に分割することで、管腔方向がどの方向に存在するかを示しやすくなる。このように3方向以上の領域に分割することで、どの方向が管腔方向であるかが把握されやすくなる。従って、本構成によれば、ユーザに対して分かりやすく管腔方向を示すことが実現される。
内視鏡画像28の中央Cを起点として外縁に向かって3方向以上に分割することで、管腔方向がどの方向に存在するかを示しやすくなる。このように3方向以上の領域に分割することで、どの方向が管腔方向であるかが把握されやすくなる。従って、本構成によれば、ユーザに対して分かりやすく管腔方向を示すことが実現される。
上記各実施形態では、内視鏡装置12のプロセッサ58によって内視鏡画像処理が行われる形態例を挙げて説明したが、本開示の技術はこれに限定されない。例えば、内視鏡画像処理を行うデバイスは、内視鏡装置12の外部に設けられていてもよい。内視鏡装置12の外部に設けられるデバイスの一例としては、サーバが挙げられる。例えば、サーバは、クラウドコンピューティングによって実現される。ここでは、クラウドコンピューティングを例示しているが、これは、あくまでも一例に過ぎず、例えば、サーバは、メインフレームによって実現されてもよいし、フォグコンピューティング、エッジコンピューティング、又はグリッドコンピューティング等のネットワークコンピューティングによって実現されてもよい。ここでは、内視鏡装置12の外部に設けられるデバイスの一例として、サーバを挙げているが、これは、あくまでも一例に過ぎず、サーバに代えて、少なくとも1台のパーソナル・コンピュータ等であってもよい。また、内視鏡画像処理は、内視鏡装置12と内視鏡装置12の外部に設けられるデバイスとを含む複数のデバイスによって分散して行われるようにしてもよい。
また、上記各実施形態では、NVM62に内視鏡画像処理プログラム62Aが記憶されている形態例を挙げて説明したが、本開示の技術はこれに限定されない。例えば、内視鏡画像処理プログラム62AがSSD又はUSBメモリなどの可搬型の記憶媒体に記憶されていてもよい。記憶媒体は、非一時的なコンピュータ読取可能な記憶媒体である。記憶媒体に記憶されている内視鏡画像処理プログラム62Aは、制御装置46のコンピュータ56にインストールされる。プロセッサ58は、内視鏡画像処理プログラム62Aに従って内視鏡画像処理を実行する。
また、上記各実施形態では、情報処理装置66のプロセッサ78によって機械学習処理が行われる形態例を挙げて説明したが、本開示の技術はこれに限定されない。例えば、機械学習処理は、内視鏡装置12において行われてもよい。また、機械学習処理は、内視鏡装置12と情報処理装置66とを含む複数のデバイスによって分散して行われるようにしてもよい。
また、上記各実施形態では、内視鏡画像28が学習済みモデル116に入力されることで得られる推定結果118に基づいて管腔方向が表示される形態例を挙げて説明したが、本開示の技術はこれに限定されない。例えば、一の内視鏡画像28に対する推定結果118に加えて、他の内視鏡画像28(例えば、一の内視鏡画像28が得られる数フレーム(例えば、1~2フレーム)前の内視鏡画像28)に対する推定結果118が合わせて用いられることにより、管腔方向が表示されてもよい。
上記各実施形態では、コンピュータ56が例示されているが、本開示の技術はこれに限定されず、コンピュータ56に代えて、ASIC、FPGA、及び/又はPLDを含むデバイスを適用してもよい。また、コンピュータ56に代えて、ハードウェア構成及びソフトウェア構成の組み合わせを用いてもよい。
上記各実施形態で説明した各種処理を実行するハードウェア資源としては、次に示す各種のプロセッサを用いることができる。プロセッサとしては、例えば、ソフトウェア、すなわち、プログラムを実行することで、内視鏡画像処理を実行するハードウェア資源として機能する汎用的なプロセッサであるCPUが挙げられる。また、プロセッサとしては、例えば、FPGA、PLD、又はASICなどの特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電子回路が挙げられる。何れのプロセッサにもメモリが内蔵又は接続されており、何れのプロセッサもメモリを使用することで内視鏡画像処理を実行する。
内視鏡画像処理を実行するハードウェア資源は、これらの各種のプロセッサのうちの1つで構成されてもよいし、同種または異種の2つ以上のプロセッサの組み合わせ(例えば、複数のFPGAの組み合わせ、又はプロセッサとFPGAとの組み合わせ)で構成されてもよい。また、内視鏡画像処理を実行するハードウェア資源は1つのプロセッサであってもよい。
1つのプロセッサで構成する例としては、第1に、1つ以上のプロセッサとソフトウェアの組み合わせで1つのプロセッサを構成し、このプロセッサが、内視鏡画像処理を実行するハードウェア資源として機能する形態がある。第2に、SoCなどに代表されるように、内視鏡画像処理を実行する複数のハードウェア資源を含むシステム全体の機能を1つのICチップで実現するプロセッサを使用する形態がある。このように、内視鏡画像処理は、ハードウェア資源として、上記各種のプロセッサの1つ以上を用いて実現される。
更に、これらの各種のプロセッサのハードウェア的な構造としては、より具体的には、半導体素子などの回路素子を組み合わせた電子回路を用いることができる。また、上記の内視鏡画像処理はあくまでも一例である。従って、主旨を逸脱しない範囲内において不要なステップを削除したり、新たなステップを追加したり、処理順序を入れ替えたりしてもよいことは言うまでもない。
以上に示した記載内容及び図示内容は、本開示の技術に係る部分についての詳細な説明であり、本開示の技術の一例に過ぎない。例えば、上記の構成、機能、作用、及び効果に関する説明は、本開示の技術に係る部分の構成、機能、作用、及び効果の一例に関する説明である。よって、本開示の技術の主旨を逸脱しない範囲内において、以上に示した記載内容及び図示内容に対して、不要な部分を削除したり、新たな要素を追加したり、置き換えたりしてもよいことは言うまでもない。また、錯綜を回避し、本開示の技術に係る部分の理解を容易にするために、以上に示した記載内容及び図示内容では、本開示の技術の実施を可能にする上で特に説明を要しない技術常識等に関する説明は省略されている。
本明細書において、「A及び/又はB」は、「A及びBのうちの少なくとも1つ」と同義である。つまり、「A及び/又はB」は、Aだけであってもよいし、Bだけであってもよいし、A及びBの組み合わせであってもよい、という意味である。また、本明細書において、3つ以上の事柄を「及び/又は」で結び付けて表現する場合も、「A及び/又はB」と同様の考え方が適用される。
本明細書に記載された全ての文献、特許出願及び技術規格は、個々の文献、特許出願及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
2023年7月19日に出願された日本国特許出願2022-115110号の開示は、その全体が参照により本明細書に取り込まれる。
Claims (19)
- プロセッサを備え、
前記プロセッサは、
内視鏡スコープに設けられたカメラにより管状臓器が撮像されることで得られた画像が分割された複数の分割領域と前記画像に含まれる管腔対応領域との位置関係に基づく機械学習により得られた学習済みモデルに従って前記画像から、前記内視鏡スコープを挿入するための方向である管腔方向を取得し、
前記管腔方向を示す情報である管腔方向情報を出力する
画像処理装置。 - 前記管腔対応領域は、前記画像内の管腔領域を含む予め定められた範囲の領域である
請求項1に記載の画像処理装置。 - 前記管腔対応領域は、前記画像内の襞領域から管腔領域の位置が推定される方向における前記カメラによる観察範囲の端部である
請求項1に記載の画像処理装置。 - 前記複数の分割領域のうち、前記管腔対応領域と重畳している分割領域の方向が前記管腔方向である
請求項1に記載の画像処理装置。 - 前記学習済みモデルは、前記画像内の襞領域の形状及び/又は向きに基づいて、管腔領域の位置を前記プロセッサに対して推定させるよう構成されたデータ構造である
請求項1に記載の画像処理装置。 - 前記管腔方向は、前記複数の分割領域のうち、前記画像において前記管腔対応領域と重畳している面積の最も大きい分割領域の存在する方向である
請求項1に記載の画像処理装置。 - 前記管腔方向は、前記複数の分割領域のうち、前記画像において前記管腔対応領域と重畳している面積の最も大きい分割領域である第1分割領域の存在する方向、及び前記第1分割領域の次に前記管腔対応領域と重畳している面積の大きい分割領域である第2分割領域の存在する方向である
請求項1に記載の画像処理装置。 - 前記分割領域は、前記画像の中央領域と、前記中央領域から前記画像の外縁に向かって放射状に複数存在する放射状領域とを有する
請求項1に記載の画像処理装置。 - 前記放射状領域は、放射状に8つ存在する
請求項8に記載の画像処理装置。 - 前記分割領域は、前記画像の中央領域と、前記中央領域よりも前記画像の外縁側に複数存在する周縁領域とを有する
請求項1に記載の画像処理装置。 - 前記分割領域は、前記画像の中央を起点として前記画像の外縁に向かって3方向以上の領域に分割されることで得られる
請求項1に記載の画像処理装置。 - 前記分割領域は、前記画像の中央領域と、前記中央領域よりも前記画像の外縁側に複数存在する周縁領域とを有し、
前記周縁領域は、前記中央領域よりも前記画像の外縁側が前記中央領域から前記画像の外縁に向かって3方向以上に分割されることにより得られる
請求項1に記載の画像処理装置。 - 請求項1から請求項12の何れか一項に記載の画像処理装置の前記プロセッサにより出力された前記管腔方向情報に応じた情報が表示される
表示装置。 - 請求項1から請求項12の何れか一項に記載の画像処理装置と、
前記内視鏡スコープと、を備える
内視鏡装置。 - 内視鏡スコープに設けられたカメラにより管状臓器が撮像されることで得られた画像が分割された複数の分割領域と前記画像に含まれる管腔対応領域との位置関係に基づく機械学習により得られた学習済みモデルに従って前記画像から、前記内視鏡スコープを挿入するための方向である管腔方向を取得すること、及び、
前記管腔方向を示す情報である管腔方向情報を出力すること
を含む画像処理方法。 - 第1コンピュータに、
画像処理であって、
内視鏡スコープに設けられたカメラにより管状臓器が撮像されることで得られた画像が分割された複数の分割領域と前記画像に含まれる管腔対応領域との位置関係に基づく機械学習により得られた学習済みモデルに従って前記画像から、前記内視鏡スコープを挿入するための方向である管腔方向を取得すること、及び、
前記管腔方向を示す情報である管腔方向情報を出力すること
を含む画像処理を実行させるための画像処理プログラム。 - 内視鏡スコープに設けられたカメラにより管状臓器が撮像されることで得られた画像が分割された複数の分割領域と前記画像に含まれる管腔対応領域との位置関係に基づく機械学習により得られる
学習済みモデル。 - 内視鏡スコープに設けられたカメラにより管状臓器が撮像されることで得られた画像を取得すること、及び、
モデルに対して、前記画像が分割された複数の分割領域と前記画像に含まれる管腔対応領域との位置関係に基づく機械学習を実行すること、
を含む学習済みモデル生成方法。 - 第2コンピュータに、
学習済みモデル生成処理であって、
内視鏡スコープに設けられたカメラにより管状臓器が撮像されることで得られた画像を取得すること、及び、
モデルに対して、前記画像が分割された複数の分割領域と前記画像に含まれる管腔対応領域との位置関係に基づく機械学習を実行すること、
を含む処理を実行させるための学習済みモデル生成プログラム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-115110 | 2022-07-19 | ||
JP2022115110 | 2022-07-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024018713A1 true WO2024018713A1 (ja) | 2024-01-25 |
Family
ID=89617612
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/016141 WO2024018713A1 (ja) | 2022-07-19 | 2023-04-24 | 画像処理装置、表示装置、内視鏡装置、画像処理方法、画像処理プログラム、学習済みモデル、学習済みモデル生成方法、及び、学習済みモデル生成プログラム |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024018713A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019207740A1 (ja) * | 2018-04-26 | 2019-10-31 | オリンパス株式会社 | 移動支援システム及び移動支援方法 |
WO2020194472A1 (ja) * | 2019-03-25 | 2020-10-01 | オリンパス株式会社 | 移動支援システム、移動支援方法、および移動支援プログラム |
JP2021049314A (ja) * | 2019-12-04 | 2021-04-01 | 株式会社Micotoテクノロジー | 内視鏡画像処理システム |
-
2023
- 2023-04-24 WO PCT/JP2023/016141 patent/WO2024018713A1/ja unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019207740A1 (ja) * | 2018-04-26 | 2019-10-31 | オリンパス株式会社 | 移動支援システム及び移動支援方法 |
WO2020194472A1 (ja) * | 2019-03-25 | 2020-10-01 | オリンパス株式会社 | 移動支援システム、移動支援方法、および移動支援プログラム |
JP2021049314A (ja) * | 2019-12-04 | 2021-04-01 | 株式会社Micotoテクノロジー | 内視鏡画像処理システム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4418400B2 (ja) | 画像表示装置 | |
JP7270658B2 (ja) | 画像記録装置、画像記録装置の作動方法および画像記録プログラム | |
CN114022548A (zh) | 一种内窥镜碰撞检测方法、装置、设备及存储介质 | |
CN115944388B (zh) | 手术内窥镜位置引导方法、装置、计算机设备及存储介质 | |
WO2021171465A1 (ja) | 内視鏡システム及び内視鏡システムによる管腔走査方法 | |
JP6840263B2 (ja) | 内視鏡システム及びプログラム | |
WO2024018713A1 (ja) | 画像処理装置、表示装置、内視鏡装置、画像処理方法、画像処理プログラム、学習済みモデル、学習済みモデル生成方法、及び、学習済みモデル生成プログラム | |
US12133635B2 (en) | Endoscope processor, training device, information processing method, training method and program | |
US20230306592A1 (en) | Image processing device, medical diagnosis device, endoscope device, and image processing method | |
WO2024190272A1 (ja) | 医療支援装置、内視鏡システム、医療支援方法、及びプログラム | |
CN113317874A (zh) | 一种医学图像处理装置及介质 | |
US20240188798A1 (en) | Endoscope system, medical information processing apparatus, medical information processing method, medical information processing program, and recording medium | |
WO2024171780A1 (ja) | 医療支援装置、内視鏡、医療支援方法、及びプログラム | |
US20230380910A1 (en) | Information processing apparatus, ultrasound endoscope, information processing method, and program | |
US20240366324A1 (en) | Medical assistance device, endoscope apparatus, medical assistance method, and program | |
US20240079100A1 (en) | Medical support device, medical support method, and program | |
WO2024095674A1 (ja) | 医療支援装置、内視鏡、医療支援方法、及びプログラム | |
US20240065527A1 (en) | Medical support device, endoscope, medical support method, and program | |
WO2024202789A1 (ja) | 医療支援装置、内視鏡システム、医療支援方法、及びプログラム | |
WO2024185357A1 (ja) | 医療支援装置、内視鏡システム、医療支援方法、及びプログラム | |
WO2024185468A1 (ja) | 医療支援装置、内視鏡システム、医療支援方法、及びプログラム | |
US20240335093A1 (en) | Medical support device, endoscope system, medical support method, and program | |
WO2024166731A1 (ja) | 画像処理装置、内視鏡、画像処理方法、及びプログラム | |
WO2024176780A1 (ja) | 医療支援装置、内視鏡、医療支援方法、及びプログラム | |
WO2024095676A1 (ja) | 医療支援装置、内視鏡、及び医療支援方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23842647 Country of ref document: EP Kind code of ref document: A1 |