Nothing Special   »   [go: up one dir, main page]

WO2024071033A1 - Organic solvent sol of amine-containing hollow silica particles, and method for producing same - Google Patents

Organic solvent sol of amine-containing hollow silica particles, and method for producing same Download PDF

Info

Publication number
WO2024071033A1
WO2024071033A1 PCT/JP2023/034712 JP2023034712W WO2024071033A1 WO 2024071033 A1 WO2024071033 A1 WO 2024071033A1 JP 2023034712 W JP2023034712 W JP 2023034712W WO 2024071033 A1 WO2024071033 A1 WO 2024071033A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
hollow silica
sol
silica particles
amine
Prior art date
Application number
PCT/JP2023/034712
Other languages
French (fr)
Japanese (ja)
Inventor
透 西村
修平 山田
将大 飛田
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Publication of WO2024071033A1 publication Critical patent/WO2024071033A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F292/00Macromolecular compounds obtained by polymerising monomers on to inorganic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only

Definitions

  • the present invention relates to a sol containing an amine and having hollow silica particles dispersed in an organic solvent, a method for producing the sol, and a film-forming composition containing the sol.
  • Hollow silica particles have a silica outer shell and a space inside the shell, and due to their characteristics, they have properties such as a low refractive index, low thermal conductivity (thermal insulation), and electrical insulation.
  • Hollow silica particles consist of a core which corresponds to the hollow portion and a shell which forms the outside of the core.
  • An aqueous dispersion of hollow silica particles can be obtained by forming a silica layer on the outside of the core in an aqueous medium and then removing the core.
  • a composition for forming a transparent coating film containing hollow silica particles having a surface charge amount of 5 to 20 ⁇ eq/g-SiO 2 and a binder component has been disclosed (see Patent Document 1).
  • hollow silica particles whose surfaces are coated with a silane compound and whose thermal weight loss at 200° C. to 500° C. is 1% by mass or more have been disclosed (see Patent Document 2).
  • the present invention provides an organic solvent sol of hollow silica particles that contain an amine in the sol and have a space inside the outer shell, a method for producing the sol, and a coating-forming composition that contains the sol.
  • the present invention provides an organic solvent sol of hollow silica particles containing an amine in the sol and having a space inside an outer shell;
  • the sol according to the first aspect in which the amine is at least one amine selected from the group consisting of primary amines, secondary amines, and tertiary amines having 1 to 10 carbon atoms;
  • the sol according to the first or second aspect wherein the amine is a water-soluble amine having a water solubility of 80 g/L or more.
  • the sol according to any one of the first to third aspects in which the content of the amine is 0.001 to 10 mass% relative to the SiO2 of the hollow silica particles;
  • the sol according to any one of the first to fourth aspects in which the hollow silica particles have an average particle size of 20 to 150 nm as measured by a dynamic light scattering method.
  • the sol according to any one of the first to fifth aspects in which the hollow silica particles have a surface charge amount calculated per gram of SiO2 of 5 to 250 ⁇ eq/g;
  • the sol according to any one of the first to sixth aspects in which the organic solvent is an alcohol, a ketone, an ether, or an ester having 1 to 10 carbon atoms;
  • the hollow silica particles may further be represented by formula (1), formula (2), or formula (3): (In formula (1), R 1 represents an alkyl group, a halogenated alkyl group, an alkenyl group, an aryl group, or an organic group having an epoxy group, a (meth)acryloyl group, a mercapto group, an amino group, a ureido group, or a cyano group, and is bonded to a silicon atom via a Si-C bond; R 2 represents an alkoxy group, an acyloxy group, or a
  • the sol according to any one of the first to seventh aspects which is coated with at least one silane compound selected from the group consisting of silane compounds represented by the following formula:
  • a coating-forming composition comprising the sol according to any one of the first to eighth aspects and an organic resin;
  • a film obtained from the film-forming composition according to the ninth aspect the film having a visible light transmittance of 80% or more.
  • the present invention relates to the following steps (A) to (C): Step (A): preparing a hollow silica aqueous sol; Step (B): adding at least one amine selected from the group consisting of primary amines, secondary amines, and tertiary amines having a water solubility of 80 g/L or more and having 1 to 10 carbon atoms to the hollow silica aqueous sol of step (A) in an amount of 0.001 to 10% by mass based on the SiO2 of the hollow silica particles; A process (C) for replacing the aqueous medium of the aqueous sol of hollow silica particles obtained in the process (B) with an alcohol, a ketone, an ether, or an ester having 1 to 10 carbon atoms; As a twelfth aspect, a method for producing a sol according to the eleventh aspect, the method including, after completion of the step (C), a step (D) of further adding at least one si
  • the present invention relates to an organic solvent sol of hollow silica particles containing amines in the sol and having a space inside the outer shell. It is known that hollow silica particles dispersed in an organic solvent have a charge on the surface.
  • the organic solvent sol of hollow silica particles itself, or the amount of surface charge of the hollow silica particles when the organic solvent sol of hollow silica particles is mixed with an organic resin binder, can greatly affect the stability and dispersibility. For example, when hollow silica particles are dispersed in a highly polar solvent or resin binder, stable dispersibility can be obtained if the amount of surface charge of the hollow silica particles is within a specific range.
  • the reason for the need to obtain stable dispersibility is that when a coating is formed, it is advantageous for the hollow silica particles to be uniformly present in the cured coating and not localized in order to exert their function. This is because the hollow silica particles are delocalized in the cured coating, so that the entire film has the same effect. When the effect is an optical anti-reflection function, it is preferable in that the entire film maintains uniform performance.
  • the surface charge amount of hollow silica particles in a dispersion medium is due to the silanol groups on the surface of the silica particles, but it has been found that the surface charge amount can be adjusted to any specific range by adding an amine.
  • the present invention relates to an organic solvent sol of hollow silica particles containing an amine in the sol and having spaces inside the outer shell, a method for producing the organic solvent sol, and a coating-forming composition using the organic solvent sol.
  • the present invention is an organic solvent sol of hollow silica particles that contain an amine in the sol and have a space inside the outer shell (hereinafter, also referred to as hollow silica organic solvent sol).
  • Hollow silica particles have a silica shell and a space inside the shell. Hollow silica particles are obtained by forming a shell mainly composed of silica on the surface of the part corresponding to the core, which is called the template in a dispersion medium, and removing the part corresponding to the core.
  • the aqueous hollow silica sol (hollow silica aqueous sol) obtained in this way can be solvent-substituted with an alcohol solvent, which is an organic solvent, after adding an amine.
  • the above-mentioned alcohol solvent is preferably an alcohol having 1 to 5 carbon atoms that may have an ether bond, such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, propylene glycol monomethyl ether, and propylene glycol monoethyl ether.
  • the hollow silica particles can be coated with a silane compound, and the solvent can then be further solvent-substituted with another organic solvent.
  • organic solvents examples include alcohols, ketones, ethers, and esters having 1 to 10 carbon atoms.
  • the alcohol having 1 to 10 carbon atoms is an aliphatic alcohol, and examples of such alcohol include primary alcohols, secondary alcohols, and tertiary alcohols. Furthermore, it is also possible to use polyhydric alcohols, such as dihydric alcohols and trihydric alcohols.
  • Examples of the monohydric primary alcohol include methanol, ethanol, 1-propanol, 1-butanol, and 1-hexanol.
  • Examples of the monohydric secondary alcohol include 2-propanol, 2-butanol, cyclohexanol, propylene glycol monomethyl ether, and propylene glycol monoethyl ether.
  • An example of the monohydric tertiary alcohol is tert-butyl alcohol.
  • Examples of the dihydric alcohol include methanediol, ethylene glycol, and propylene glycol.
  • An example of the trihydric alcohol is glycerin.
  • an aliphatic ketone can be preferably used as the ketone having 1 to 10 carbon atoms.
  • examples include acetone, methyl ethyl ketone, diethyl ketone, methyl propyl ketone, methyl isobutyl ketone, methyl amyl ketone, cyclohexanone, methyl cyclopentanone, etc.
  • an aliphatic ether can be preferably used as the ether having 1 to 10 carbon atoms.
  • examples include dimethyl ether, ethyl methyl ether, diethyl ether, tetrahydrofuran, 1,4-dioxane, etc.
  • an aliphatic ester can be preferably used as the ester having 1 to 10 carbon atoms.
  • Examples include methyl formate, ethyl formate, propyl formate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl acrylate, ethyl acrylate, propyl acrylate, dimethyl maleate, diethyl maleate, dipropyl maleate, dimethyl adipate, diethyl adipate, dipropyl adipate, etc.
  • the hollow silica particles can have an average particle size measured by dynamic light scattering (DLS) in the range of 20 to 150 nm, or 30 to 150 nm, or 40 to 150 nm, or 50 to 150 nm, or 60 to 150 nm, or 60 to 120 nm.
  • the concentration of SiO2 particles can be 1 to 50 mass% or 5 to 40 mass%, typically 10 to 30 mass%.
  • the sol has an alkaline pH, for example, 7.5 to 12 or 7.5 to 11, but can typically be used in the range of 7.5 to 10.
  • the above pH is the pH when the organic solvent sol and the same mass of pure water are mixed at a ratio of 1:1. It is possible to measure the pH when an organic solvent that can be mixed with water is used as the organic solvent, but when the solvent is subsequently replaced with a hydrophobic organic solvent, it is preferable to measure the pH in advance at the stage of the methanol solvent sol.
  • the pH can be measured using a solution in which pure water and the sol are mixed in a mass ratio of 1: 1.
  • the pH can be measured using a solution in which pure water, methanol, and methyl ethyl ketone sol are mixed in a mass ratio of 1: 1: 1.
  • Hollow silica organic solvent sol can be obtained by replacing the aqueous medium of the aqueous sol with an alcohol solvent having 1 to 5 carbon atoms, and if desired, further replacing the solvent with an organic solvent, and moisture may remain in the solvent during this process.
  • the sol may contain, for example, 0.1 to 3.0% by mass of residual moisture.
  • the sol may contain 0.01 to 0.5% by mass of residual moisture.
  • the viscosity of hollow silica organic solvent sol can be set in the range of 1.0 to 10.0 mPa ⁇ s.
  • An amine can be added to the hollow silica organic solvent sol of the present invention.
  • the amine used in the present invention may be a water-soluble amine having a water solubility of 80 g/L or more, or 100 g/L or more.
  • the raw material hollow silica aqueous sol and the hollow silica organic solvent sol obtained by solvent replacement may contain amine, or amine and ammonia.
  • the amine may be added and contained in the range of 0.001 to 10 mass%, or 0.01 to 10 mass%, or 0.1 to 10 mass% relative to the SiO 2 of the hollow silica particles.
  • the base component which is the amine or the amine and ammonia, may be expressed as the total nitrogen amount in the hollow silica particle organic solvent sol, and may be contained in the range of, for example, 10 to 100,000 ppm, or 100 to 10,000 ppm, or 100 to 3,000 ppm, or 100 to 2,000 ppm, typically 200 to 2,000 ppm.
  • the above amines include aliphatic amines and aromatic amines, with aliphatic amines being preferred. At least one amine selected from the group consisting of primary amines, secondary amines, and tertiary amines having 1 to 10 carbon atoms can be used as the amine.
  • the amines are water-soluble and at least one amine selected from the group consisting of primary amines, secondary amines, and tertiary amines having 1 to 10 carbon atoms.
  • primary amines include monomethylamine, monoethylamine, monopropylamine, monoisopropylamine, monobutylamine, monoisobutylamine, monosec-butylamine, mono-tert-butylamine, monomethanolamine, monoethanolamine, monopropanolamine, monoisopropanolamine, monobutanolamine, monoisobutanolamine, monosec-butanolamine, mono-tert-butanolamine, etc.
  • Secondary amines include dimethylamine, diethylamine, dipropylamine, diisopropylamine, N-methylethylamine, N-ethylisobutylamine, dimethanolamine, diethanolamine, dipropanolamine, diisopropanolamine, N-methanolethylamine, N-methylethanolamine, N-ethanolisobutylamine, and N-ethylisobutanolamine.
  • Tertiary amines include trimethylamine, triethylamine, tripropylamine, triisopropylamine, tributylamine, triisobutylamine, trisec-butylamine, tritert-butylamine, trimethanolamine, triethanolamine, tripropanolamine, triisopropanolamine, tributanolamine, triisobutanolamine, trisec-butanolamine, tritert-butanolamine, etc.
  • amines having a water solubility of 80 g/L or more, or 100 g/L or more can be preferably used.
  • primary amines and secondary amines are preferred, and secondary amines are preferably used due to their low volatility and high solubility, such as diisopropylamine and diethanolamine.
  • the surface charge amount of the hollow silica particles converted to 1 g of SiO 2 can be set to 5 ⁇ eq/g or more, or 25 ⁇ eq/g or more. Typically, it can be set in the range of 5 to 250 ⁇ eq/g, or 25 to 250 ⁇ eq/g, or 25 to 100 ⁇ eq/g, or 25 to 80 ⁇ eq/g, or 25 to 50 ⁇ eq/g.
  • the surface charge amount of the hollow silica particles can be adjusted to any desired value by adjusting the type and amount of the amine added.
  • the surfaces of the hollow silica particles can be coated with a silane compound.
  • a silane compound a hydrolysate of at least one silane compound selected from the group consisting of silane compounds represented by formulas (1) to (3) can be used.
  • R 1 represents an alkyl group, a halogenated alkyl group, an alkenyl group, an aryl group, or an organic group having a polyether group, an epoxy group, a (meth)acryloyl group, a mercapto group, an amino group, a ureido group, or a cyano group, and is bonded to a silicon atom via a Si-C bond
  • R 2 represents an alkoxy group, an acyloxy group, or a halogen group
  • a represents an integer of 1 to 3
  • R3 and R5 each represent an alkyl group having 1 to 3 carbon atoms or an aryl group having 6 to 30 carbon atoms and are bonded to a silicon atom via a Si-C bond
  • R4 and R6 each represent an alkoxy group, an acyloxy group, or a halogen group
  • Y represents an alkylene group, an NH group, or an oxygen atom
  • the alkyl group may be an alkyl group having 1 to 18 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, an i-propyl group, a cyclopropyl group, an n-butyl group, an i-butyl group, an s-butyl group, a t-butyl group, a cyclobutyl group, a 1-methyl-cyclopropyl group, a 2-methyl-cyclopropyl group, an n-pentyl group, a 1-methyl-n-butyl group, a 2-methyl-n-butyl group, a 3-methyl-n-butyl group, a 1,1-dimethyl-n-propyl group, a 1,2-dimethyl-n-propyl group, a 2,2-dimethyl-n-propyl group, a 1-ethyl-n-propyl group, a cyclopentyl group,
  • Alkylene groups include those derived from the alkyl groups mentioned above.
  • the above aryl group includes aryl groups having 6 to 30 carbon atoms, such as, but not limited to, a phenyl group, a naphthyl group, an anthracene group, and a pyrene group.
  • the alkenyl group may be an alkenyl group having 2 to 10 carbon atoms, such as an ethenyl group, a 1-propenyl group, a 2-propenyl group, a 1-methyl-1-ethenyl group, a 1-butenyl group, a 2-butenyl group, a 3-butenyl group, a 2-methyl-1-propenyl group, a 2-methyl-2-propenyl group, a 1-ethylethenyl group, a 1-methyl-1-propenyl group, a 1-methyl-2-propenyl group, a 1-pentenyl group, a 2-pentenyl group, a 3-pentenyl group, a 4-pentenyl group, a 1-n-propylethenyl group, a 1-methyl-1-butenyl group, a 1-methyl-2-butenyl group, a 1-methyl-3-butenyl group, a 2-ethyl-2-propenyl group, a
  • alkoxy groups include alkoxy groups having 1 to 10 carbon atoms, such as, but not limited to, methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, s-butoxy, t-butoxy, n-pentyloxy, 1-methyl-n-butoxy, 2-methyl-n-butoxy, 3-methyl-n-butoxy, 1,1-dimethyl-n-propoxy, 1,2-dimethyl-n-propoxy, 2,2-dimethyl-n-propoxy, 1-ethyl-n-propoxy, and n-hexyloxy.
  • the above acyloxy group includes acyloxy groups having 2 to 10 carbon atoms, such as, but not limited to, methylcarbonyloxy group, ethylcarbonyloxy group, n-propylcarbonyloxy group, i-propylcarbonyloxy group, n-butylcarbonyloxy group, i-butylcarbonyloxy group, s-butylcarbonyloxy group, t-butylcarbonyloxy group, n-pentylcarbonyloxy group, 1-methyl-n-butylcarbonyloxy group, 2-methyl-n-butylcarbonyloxy group, 3-methyl-n-butylcarbonyloxy group, 1,1-dimethyl-n-propylcarbonyloxy group, 1,2-dimethyl-n-propylcarbonyloxy group, 2,2-dimethyl-n-propylcarbonyloxy group, 1-ethyl-n-propylcarbonyloxy group, n-hexylcarbony
  • halogen groups include fluorine, chlorine, bromine, iodine, etc.
  • An example of an organic group having a polyether group is a polyetherpropyl group having an alkoxy group, such as (CH 3 O) 3 SiC 3 H 6 (OC 2 H 4 ) n OCH 3.
  • n can be in the range of 1 to 100 or 1 to 10.
  • organic groups having an epoxy group examples include the 2-(3,4-epoxycyclohexyl)ethyl group and the 3-glycidoxypropyl group.
  • the above (meth)acryloyl group refers to both acryloyl and methacryloyl groups.
  • organic groups having a (meth)acryloyl group include a 3-methacryloxypropyl group and a 3-acryloxypropyl group.
  • An example of an organic group having a mercapto group is the 3-mercaptopropyl group.
  • organic groups having an amino group examples include a 2-aminoethyl group, a 3-aminopropyl group, an N-2-(aminoethyl)-3-aminopropyl group, an N-(1,3-dimethyl-butylidene)aminopropyl group, an N-phenyl-3-aminopropyl group, and an N-(vinylbenzyl)-2-aminoethyl-3-aminopropyl group.
  • An example of an organic group having a ureido group is the 3-ureidopropyl group.
  • An example of an organic group having a cyano group is the 3-cyanopropyl group.
  • the silane compounds represented by the above formulas (2) and (3) are preferably compounds capable of forming trimethylsilyl groups on the surface of silica particles. Examples of such compounds include the following.
  • R 12 represents an alkoxy group, for example, a methoxy group or an ethoxy group.
  • a silane compound manufactured by Shin-Etsu Chemical Co., Ltd. can be used.
  • the hydroxyl groups on the surface of the silica particles for example the silanol groups in the case of silica particles, react with the above-mentioned silane compound, and the surface of the silica particles can be coated with the above-mentioned silane compound through siloxane bonds.
  • the reaction can be carried out at temperatures ranging from 20°C to the boiling point of the dispersion medium, for example, at temperatures ranging from 20°C to 100°C.
  • the reaction can be carried out for about 0.1 to 6 hours.
  • the surfaces of the hollow silica particles can be coated by adding a silane compound to the silica sol in an amount corresponding to a coating amount of 0.1 silicon atoms/nm 2 to 6.0 silicon atoms/nm 2 on the silica particle surfaces.
  • Water is necessary for the hydrolysis of the silane compound, and if the sol is an aqueous solvent, the aqueous solvent is used.
  • the aqueous medium is replaced with an organic solvent, the water remaining in the solvent can also be used.
  • water present in the organic solvent at 0.01 to 1% by mass can be used.
  • the hydrolysis can be performed with or without a catalyst.
  • the reaction is carried out without a catalyst, the surface of the silica particles is on the acidic side.
  • examples of the hydrolysis catalyst include metal chelate compounds, organic acids, inorganic acids, organic bases, and inorganic bases.
  • Examples of the metal chelate compounds as the hydrolysis catalyst include triethoxy mono(acetylacetonato)titanium and triethoxy mono(acetylacetonato)zirconium.
  • Examples of the organic acids as the hydrolysis catalyst include acetic acid and oxalic acid.
  • Examples of the inorganic acids as the hydrolysis catalyst include hydrochloric acid, nitric acid, sulfuric acid, hydrofluoric acid, and phosphoric acid.
  • Examples of the organic bases as the hydrolysis catalyst include pyridine, pyrrole, piperazine, and quaternary ammonium salts.
  • Examples of the inorganic bases as the hydrolysis catalyst include ammonia, sodium hydroxide, and potassium hydroxide.
  • the organic acid may be at least one organic acid selected from the group consisting of divalent aliphatic carboxylic acids, aliphatic oxycarboxylic acids, amino acids, and chelating agents.
  • Divalent aliphatic carboxylic acids include oxalic acid, malonic acid, and succinic acid.
  • Aliphatic oxycarboxylic acids include glycolic acid, lactic acid, malic acid, tartaric acid, and citric acid.
  • Amino acids include glycine, alanine, valine, leucine, serine, and threonine.
  • Chelating agents include ethylenediaminetetraacetic acid, L-aspartic acid-N,N-diacetic acid, and diethylenetriaminepentaacetic acid.
  • Organic acid salts include alkali metal salts, ammonium salts, and amine salts of the above organic acids.
  • Alkali metals include sodium and potassium.
  • a film-forming composition that contains the hollow silica organic solvent sol and an organic resin.
  • a film-forming composition is obtained by selecting and mixing a thermosetting or photocurable resin as the organic resin.
  • a cured product can be obtained by adding a curing agent such as an amine-based curing agent, an acid anhydride-based curing agent, a radical generator-based curing agent (thermal radical generator, photoradical generator), or an acid generator-based curing agent (thermal acid generator, photoacid generator).
  • a curing agent such as an amine-based curing agent, an acid anhydride-based curing agent, a radical generator-based curing agent (thermal radical generator, photoradical generator), or an acid generator-based curing agent (thermal acid generator, photoacid generator).
  • the film-forming composition of the present invention contains an organic resin and a curing agent, and the film-forming composition can be applied to or filled into a substrate and then heated, irradiated with light, or a combination thereof to form a cured product.
  • organic resins include resins having functional groups such as epoxy groups or (meth)acryloyl groups, and isocyanate-based resins.
  • photocurable polyfunctional acrylates can be preferably used.
  • polyfunctional acrylate examples include polyfunctional acrylates having difunctional, trifunctional, tetrafunctional or higher functional groups in the molecule, such as neopentyl glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, and dipentaerythritol hexa(meth)acrylate. These polyfunctional acrylates may also be described below.
  • the film-forming composition of the present invention may contain a surfactant (leveling agent).
  • the surfactant (leveling agent) may be an anionic surfactant, a cationic surfactant, an amphoteric surfactant, a nonionic surfactant, or a silicone surfactant.
  • the surfactant (leveling agent) may be added in an amount of 0.01 to 5 phr or 0.01 to 1 phr relative to the organic resin.
  • Anionic surfactants that can be used in the present invention include sodium and potassium salts of fatty acids, alkylbenzene sulfonates, higher alcohol sulfates, polyoxyethylene alkyl ether sulfates, ⁇ -sulfofatty acid esters, ⁇ -olefin sulfonates, monoalkyl phosphates, and alkanesulfonates.
  • alkylbenzenesulfonates include sodium salts, potassium salts and lithium salts, such as sodium C10-C16 alkylbenzenesulfonate, C10-C16 alkylbenzenesulfonic acid, and sodium alkylnaphthalenesulfonate.
  • higher alcohol sulfate ester salts include sodium dodecyl sulfate (sodium lauryl sulfate) with 12 carbon atoms, triethanolamine lauryl sulfate, and triethanolammonium lauryl sulfate.
  • polyoxyethylene alkyl ether sulfates examples include sodium polyoxyethylene styrenated phenyl ether sulfate, ammonium polyoxyethylene styrenated phenyl ether sulfate, sodium polyoxyethylene decyl ether sulfate, ammonium polyoxyethylene decyl ether sulfate, sodium polyoxyethylene lauryl ether sulfate, ammonium polyoxyethylene lauryl ether sulfate, sodium polyoxyethylene tridecyl ether sulfate, and sodium polyoxyethylene oleyl cetyl ether sulfate.
  • ⁇ -olefin sulfonates examples include sodium ⁇ -olefin sulfonate.
  • alkane sulfonates examples include sodium 2-ethylhexyl sulfate.
  • Cationic surfactants that can be used in the present invention include, for example, alkyltrimethylammonium salts, dialkyldimethylammonium salts, alkyldimethylbenzylammonium salts, and amine salt agents.
  • Alkyltrimethylammonium salts are quaternary ammonium salts that have chloride or bromide ions as counterions. Examples include dodecyltrimethylammonium chloride, cetyltrimethylammonium chloride, coconut alkyltrimethylammonium chloride, and alkyl (C16-18) trimethylammonium chloride.
  • Dialkyldimethylammonium salts have two lipophilic main chains and two methyl groups. Examples include bis(hydrogenated tallow)dimethylammonium chloride, such as didecyldimethylammonium chloride, dicoconucleic acid alkyldimethylammonium chloride, dihydrogenated tallow alkyldimethylammonium chloride, and dialkyl(C14-18)dimethylammonium chloride.
  • bis(hydrogenated tallow)dimethylammonium chloride such as didecyldimethylammonium chloride, dicoconucleic acid alkyldimethylammonium chloride, dihydrogenated tallow alkyldimethylammonium chloride, and dialkyl(C14-18)dimethylammonium chloride.
  • Alkyl dimethyl benzyl ammonium salts are quaternary ammonium salts that have one lipophilic main chain, two methyl groups, and one benzyl group, and examples of these include benzauconium chloride, such as alkyl (C8-18) dimethyl benzyl ammonium chloride.
  • Amine salt agents include those in which the hydrogen atom of ammonia is replaced with one or more hydrocarbon groups, such as N-methylbishydroxyethylamine fatty acid ester hydrochloride.
  • amphoteric surfactants used in the present invention include N-alkyl- ⁇ -alanine type alkylamino fatty acid salts, alkylcarboxybetaine type alkylbetaines, and N,N-dimethyldodecylamine oxide type alkylamine oxides. Examples of these include lauryl betaine, stearyl betaine, 2-alkyl-N-carboxymethyl-N-hydroxyethylimidazolinium betaine, and lauryl dimethylamine oxide.
  • the nonionic surfactant used in the present invention is selected from polyoxyethylene alkyl ethers, polyoxyethylene alkylphenol ethers, alkyl glucosides, polyoxyethylene fatty acid esters, sucrose fatty acid esters, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, and fatty acid alkanolamides.
  • examples of polyoxyethylene alkyl ethers include polyoxyethylene dodecyl ether (polyoxyethylene lauryl ether), polyoxyalkylene lauryl ether, polyoxyethylene tridecyl ether, polyoxyalkylene tridecyl ether, polyoxyethylene myristyl ether, polyoxyethylene cetyl ether, polyoxyethylene oleyl ether, polyoxyethylene stearyl ether, polyoxyethylene behenyl ether, polyoxyethylene-2-ethylhexyl ether, and polyoxyethylene isodecyl ether.
  • polyoxyethylene dodecyl ether polyoxyethylene lauryl ether
  • polyoxyalkylene lauryl ether polyoxyethylene tridecyl ether
  • polyoxyalkylene tridecyl ether polyoxyethylene myristyl ether
  • polyoxyethylene cetyl ether polyoxyethylene oleyl ether
  • polyoxyethylene stearyl ether polyoxyethylene behenyl ether
  • polyoxyethylene alkylphenol ethers examples include polyoxyethylene styrenated phenyl ether, polyoxyethylene nonyl phenyl ether, polyoxyethylene distyrenated phenyl ether, and polyoxyethylene tribenzyl phenyl ether.
  • alkyl glucosides examples include decyl glucoside and lauryl glucoside.
  • polyoxyethylene fatty acid esters examples include polyoxyethylene monolaurate, polyoxyethylene monostearate, polyoxyethylene monooleate, polyethylene glycol distearate, polyethylene glycol dioleate, and polypropylene glycol dioleate.
  • Sorbitan fatty acid esters include sorbitan monocaprylate, sorbitan monolaurate, sorbitan monomyristate, sorbitan monopalmitate, sorbitan monostearate, sorbitan distearate, sorbitan tristearate, sorbitan monooleate, sorbitan trioleate, sorbitan monosesquioleate, and ethylene oxide adducts thereof.
  • polyoxyethylene sorbitan fatty acid esters examples include polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan tristearate, polyoxyethylene sorbitan monooleate, polyoxyethylene sorbitan trioleate, and polyoxyethylene sorbitan triisostearate.
  • Fatty acid alkanolamides include coconut oil fatty acid diethanolamide, beef tallow fatty acid diethanolamide, lauric acid diethanolamide, and oleic acid diethanolamide.
  • polyoxyalkyl ethers or polyoxyalkyl glycols such as polyoxyethylene polyoxypropylene glycol, polyoxyethylene fatty acid esters, polyoxyethylene hydrogenated castor oil ether, sorbitan fatty acid ester alkyl ethers, alkyl polyglucosides, sorbitan monooleate, and sucrose fatty acid esters.
  • the silicone surfactant used in the present invention is a compound having a repeating unit containing a siloxane bond in the main chain.
  • Silicone surfactants having a weight average molecular weight in the range of 500 to 50,000 can be used. These may be modified silicone surfactants, and examples of such surfactants include those having an organic group introduced into the side chain and/or end of a polysiloxane. Examples of organic groups include amino groups, epoxy groups, alicyclic epoxy groups, carbinol groups, mercapto groups, carboxyl groups, aliphatic ester groups, aliphatic amide groups, and polyether groups.
  • silicone surfactants include the following product names: Toray Silicone DC3PA, Toray Silicone SH7PA, Toray Silicone DC11PA, Toray Silicone SH21PA, Toray Silicone SH28PA, Toray Silicone SH29PA, Toray Silicone SH30PA, Toray Silicone SH8400 (all manufactured by Dow Corning Toray Co., Ltd.), Silwet l-77, L-7280, L-7001, L-7002, L-7200.
  • the product name L-7001 (manufactured by Dowsil Corporation) can be suitably used as a polyether modified silicone.
  • a film-forming composition containing the above organic solvent sol and an organic resin is obtained.
  • the film-forming composition can be obtained by removing the organic solvent from the organic solvent sol to form a film-forming composition containing hollow silica particles and an organic resin.
  • the heat curing agent can be contained in the range of 0.01 to 50 phr, or 0.01 to 10 phr, relative to the resin containing a functional group such as an epoxy group or a (meth)acryloyl group.
  • the heat curing agent can be contained in a ratio of 0.5 to 1.5 equivalents, preferably 0.8 to 1.2 equivalents, relative to the functional group such as an epoxy group or a (meth)acryloyl group.
  • the equivalent of the heat curing agent relative to the curable resin is indicated by the equivalent ratio of the heat curing agent to the functional group of the cured resin.
  • heat curing agent examples include phenol resins, amine-based curing agents, polyamide resins, imidazoles, polymercaptans, acid anhydrides, heat radical generators, heat acid generators, etc.
  • radical generator-based curing agents, acid anhydride-based curing agents, and amine-based curing agents are preferred.
  • thermosetting agents Even if these thermosetting agents are solid, they can be used by dissolving them in a solvent. However, evaporation of the solvent causes a decrease in density of the cured product, and the formation of pores, resulting in a decrease in strength and a decrease in water resistance. Therefore, it is preferable that the curing agent itself is liquid at room temperature and normal pressure.
  • phenolic resins examples include phenol novolac resin and cresol novolac resin.
  • amine-based hardeners examples include piperidine, N,N-dimethylpiperazine, triethylenediamine, 2,4,6-tris(dimethylaminomethyl)phenol, benzyldimethylamine, 2-(dimethylaminomethyl)phenol, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, diethylaminopropylamine, N-aminoethylpiperazine, di(1-methyl-2-aminocyclohexyl)methane, menthenediamine, isophoronediamine, diaminodicyclohexylmethane, 1,3-diaminomethylcyclohexane, xylylenediamine, metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, 3,3'-diethyl-4,4'-diaminodiphenylmethane, diethyltoluened
  • liquids such as diethylenetriamine, triethylenetetramine, tetraethylenepentamine, diethylaminopropylamine, N-aminoethylpiperazine, di(1-methyl-2-aminocyclohexyl)methane, menthenediamine, isophoronediamine, diaminodicyclohexylmethane, 3,3'-diethyl-4,4'-diaminodiphenylmethane, and diethyltoluenediamine can be preferably used.
  • Polyamide resins include those produced by condensation of dimer acid and polyamine, such as polyamidoamines that have primary and secondary amines in the molecule.
  • Imidazoles include 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, and epoxy imidazole adduct.
  • the polymercaptan is preferably liquid, for example, one in which a mercaptan group is present at the end of a polypropylene glycol chain or one in which a mercaptan group is present at the end of a polyethylene glycol chain.
  • an anhydride of a compound having multiple carboxyl groups in one molecule is preferred.
  • these acid anhydride hardeners include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, ethylene glycol bistrimellitate, glycerol tristrimellitate, maleic anhydride, tetrahydrophthalic anhydride, methyl tetrahydrophthalic anhydride, endomethylene tetrahydrophthalic anhydride, methyl endomethylene tetrahydrophthalic anhydride, methyl butenyl tetrahydrophthalic anhydride, dodecenyl succinic anhydride, hexahydrophthalic anhydride, methyl hexahydrophthalic anhydride, succinic anhydride, methylcyclohexene dicarboxylic anhydride, and chlorendic anhydride,
  • thermal acid generator examples include sulfonium salts and phosphonium salts, with sulfonium salts being preferred.
  • sulfonium salts examples include sulfonium salts and phosphonium salts, with sulfonium salts being preferred.
  • R represents an alkyl group having 1 to 12 carbon atoms or an aryl group having 6 to 20 carbon atoms, and an alkyl group having 1 to 12 carbon atoms is particularly preferred.
  • liquid at room temperature and pressure methyltetrahydrophthalic anhydride, methyl-5-norbornene-2,3-dicarboxylic anhydride (methylnadic anhydride, methylhimic anhydride), hydrogenated methylnadic anhydride, methylbutenyltetrahydrophthalic anhydride, dodecenylsuccinic anhydride, methylhexahydrophthalic anhydride, and a mixture of methylhexahydrophthalic anhydride and hexahydrophthalic anhydride.
  • These liquid acid anhydrides have a viscosity of about 10 mPas to 1,000 mPas when measured at 25°C.
  • thermal radical generators examples include 2,2'-azobis(isobutyronitrile), 2,2'-azobis(2-methylbutyronitrile), 2,2'-azobis(2,4-dimethylvaleronitrile), 4,4'-azobis(4-cyanovaleric acid), 2,2'-azobis(2-methylpropionate)dimethyl, 2,2'-azobis(2-methylpropionamidine) dihydrochloride, 2,2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride, tert-butyl hydroperoxide, cumene hydroperoxide, di-tert-butyl peroxide, dicumyl peroxide, and benzoyl peroxide. These can be obtained from Tokyo Chemical Industry Co., Ltd.
  • a curing aid When obtaining the cured product, a curing aid may be used in combination as appropriate.
  • the curing aid include organic phosphorus compounds such as triphenylphosphine and tributylphosphine, quaternary phosphonium salts such as ethyltriphenylphosphonium bromide and methyltriphenylphosphonium diethyl phosphate, and quaternary ammonium salts such as 1,8-diazabicyclo(5,4,0)undecane-7-ene, salts of 1,8-diazabicyclo(5,4,0)undecane-7-ene and octylic acid, zinc octylate, and tetrabutylammonium bromide.
  • These curing aids can be included in a ratio of 0.001 to 0.1 parts by mass per part by mass of the curing agent.
  • the composition is obtained as a thermosetting varnish by mixing a resin, a curing agent, and optionally a curing aid.
  • the mixing can be carried out in a reaction vessel using a stirring blade or kneader.
  • Mixing is done by a hot mixing method at a temperature of 60°C to 100°C for 0.5 to 1 hour.
  • the obtained curable film-forming composition is a thermosetting coating composition, and has an appropriate viscosity for use, for example, as a liquid sealant.
  • the liquid thermosetting film-forming composition can be prepared to any viscosity and can be used as a transparent sealant for LEDs and the like by casting, potting, dispenser, printing, or other methods, allowing partial sealing at any desired location.
  • the liquid thermosetting composition is directly mounted on an LED or the like while still in liquid form using the method described above, and then dried and cured to obtain a cured product.
  • thermosetting film-forming composition (thermosetting coating composition) is applied to a substrate and heated at a temperature of 80 to 200°C to obtain a cured product.
  • the film-forming composition when the film-forming composition is a photocurable resin composition, it can contain 0.01 to 50 phr or 0.01 to 10 phr of photocuring agent (photoradical generator, photoacid generator) relative to the resin containing functional groups such as epoxy groups or (meth)acryloyl groups.
  • photocuring agent photoradical generator, photoacid generator
  • it can contain 0.5 to 1.5 equivalents, preferably 0.8 to 1.2 equivalents of photocuring agent (photoradical generator, photoacid generator) relative to functional groups such as epoxy groups or (meth)acryloyl groups.
  • the equivalent of photocuring agent relative to the curable resin is indicated by the equivalent ratio of photocuring agent to functional groups of the resin.
  • the photoradical generator is not particularly limited as long as it generates radicals directly or indirectly when irradiated with light.
  • photoradical polymerization initiators examples include imidazole compounds, diazo compounds, bisimidazole compounds, N-arylglycine compounds, organic azide compounds, titanocene compounds, aluminate compounds, organic peroxides, N-alkoxypyridinium salt compounds, and thioxanthone compounds.
  • azide compounds examples include p-azidobenzaldehyde, p-azidoacetophenone, p-azidobenzoic acid, p-azidobenzalacetophenone, 4,4'-diazidochalcone, 4,4'-diazidodiphenyl sulfide, and 2,6-bis(4'-azidobenzal)-4-methylcyclohexanone.
  • Examples of the diazo compound include 1-diazo-2,5-diethoxy-4-p-tolylmercaptobenzene borofluoride, 1-diazo-4-N,N-dimethylaminobenzene chloride, and 1-diazo-4-N,N-diethylaminobenzene borofluoride.
  • Examples of the bisimidazole compound include 2,2'-bis(o-chlorophenyl)-4,5,4',5'-tetrakis(3,4,5-trimethoxyphenyl)-1,2'-bisimidazole, and 2,2'-bis(o-chlorophenyl)-4,5,4',5'-tetraphenyl-1,2'-bisimidazole.
  • titanocene compounds include dicyclopentadienyl-titanium-dichloride, dicyclopentadienyl-titanium-bisphenyl, dicyclopentadienyl-titanium-bis(2,3,4,5,6-pentafluorophenyl), dicyclopentadienyl-titanium-bis(2,3,5,6-tetrafluorophenyl), dicyclopentadienyl-titanium-bis(2,4,6-trifluorophenyl), dicyclopentadienyl-titanium-bis(2,6-difluorophenyl), and dicyclopentadienyl.
  • photoradical generators include 1,3-di(tert-butyldioxycarbonyl)benzophenone, 3,3',4,4'-tetrakis(tert-butyldioxycarbonyl)benzophenone, 3-phenyl-5-isoxazolone, 2-mercaptobenzimidazole, 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxy-cyclohexyl-phenyl-ketone, and 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone.
  • photoradical polymerization agents are available, for example, under the trade name Irgacure TPO (component is 2,4,6-trimethylbenzoyldiphenylphosphine oxide) (c1-1-1) manufactured by BASF, under the trade name Omnirad 819 (component is bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide) (c1-1-2) manufactured by IGM RESINS, and under the trade name Irgacure 184 (component is 1-hydroxycyclohexyl phenyl ketone) (c1-1-3) manufactured by IGM RESINS.
  • Irgacure TPO component is 2,4,6-trimethylbenzoyldiphenylphosphine oxide
  • Omnirad 819 component is bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide) (c1-1-2) manufactured by IGM RESINS
  • Irgacure 184 component is 1-hydroxycyclohexyl phenyl
  • the photoacid generator is not particularly limited as long as it generates acid directly or indirectly when irradiated with light.
  • photoacid generators include triazine compounds, acetophenone derivative compounds, disulfone compounds, diazomethane compounds, sulfonic acid derivative compounds, onium salts such as iodonium salts, sulfonium salts, phosphonium salts, and selenium salts, metallocene complexes, and iron arene complexes.
  • the onium salts used as the photoacid generators include iodonium salts such as diphenyliodonium chloride, diphenyliodonium trifluoromethanesulfonate, diphenyliodonium mesylate, diphenyliodonium tosylate, diphenyliodonium bromide, diphenyliodonium tetrafluoroborate, diphenyliodonium hexafluoroantimonate, diphenyliodonium hexafluoroarsenate, bis(p-tert-butylphenyl)iodonium hexafluorophosphate, bis(p-tert-butylphenyl)iodonium mesylate, bis(p-tert-butylphenyl)iodonium tosylate, bis(p-tert-butylphenyl)iodonium trifluoromethanesulfonate, bis(p
  • sulfonium salts include triphenylsulfonium chloride, triphenylsulfonium bromide, tri(p-methoxyphenyl)sulfonium tetrafluoroborate, tri(p-methoxyphenyl)sulfonium hexafluorophosphonate, tri(p-ethoxyphenyl)sulfonium tetrafluoroborate, triphenylsulfonium triflate, triphenylsulfonium hexafluoroantimonate, and triphenylsulfonium hexafluorophosphate; as well as sulfonium salts such as (4-phenylthiophenyl)diphenylsulfonium hexafluoroantimonate, (4-phenylthiophenyl)diphenylsulfonium hexafluorophosphate, bis[4-(diphenylsulfonio
  • Phosphonium salts include triphenylphosphonium chloride, triphenylphosphonium bromide, tri(p-methoxyphenyl)phosphonium tetrafluoroborate, tri(p-methoxyphenyl)phosphonium hexafluorophosphonate, tri(p-ethoxyphenyl)phosphonium tetrafluoroborate, 4-chlorobenzenediazonium hexafluorophosphate, and benzyltriphenylphosphonium hexafluoroantimonate.
  • Selenium salts such as triphenylselenium hexafluorophosphate, and metallocene complexes such as ( ⁇ 5 or ⁇ 6-isopropylbenzene)( ⁇ 5-cyclopentadienyl)iron(II) hexafluorophosphate are examples.
  • the following compounds can also be used as the photoacid generator.
  • sulfonium salt compounds and iodonium salt compounds are preferred.
  • the anion species thereof include CF3SO3- , C4F9SO3- , C8F17SO3- , camphorsulfonate anion, tosylate anion, BF4- , PF6- , AsF6- , and SbF6- .
  • anion species such as hexafluorophosphate ion and hexafluoroantimonate ion, which show strong acidity , are preferred.
  • the film-forming composition of the present invention may contain conventional additives as necessary.
  • additives include pigments, colorants, thickeners, sensitizers, defoamers, coatability improvers, lubricants, stabilizers (antioxidants, heat stabilizers, light resistance stabilizers, etc.), plasticizers, dissolution promoters, fillers, antistatic agents, etc. These additives may be used alone or in combination of two or more kinds.
  • Examples of methods for applying the film-forming composition of the present invention include flow coating, spin coating, spray coating, screen printing, casting, bar coating, curtain coating, roll coating, gravure coating, dipping, and slitting.
  • the photo-coating composition (film-forming composition) can be applied onto a substrate and cured by exposure to light. It can also be heated before or after exposure to light.
  • the thickness of the coating can be selected from the range of about 0.01 ⁇ m to 10 mm depending on the application of the cured product.
  • it when used as a photoresist, it can be about 0.05 to 10 ⁇ m (particularly 0.1 to 5 ⁇ m), when used as a printed wiring board, it can be about 5 ⁇ m to 5 mm (particularly 100 ⁇ m to 1 mm), and when used as an optical thin film, it can be about 0.1 to 100 ⁇ m (particularly 0.3 to 50 ⁇ m).
  • the coating's visible light transmittance can be made 80% or more, or 90% or more, typically 90 to 96%.
  • the light to which the film-forming composition is irradiated or exposed may be, for example, gamma rays, X-rays, ultraviolet rays, visible light, etc., and is usually visible light or ultraviolet rays, particularly ultraviolet rays.
  • the wavelength of the light is, for example, about 150 to 800 nm, preferably about 150 to 600 nm, more preferably about 200 to 400 nm, particularly about 300 to 400 nm.
  • the amount of light to be irradiated varies depending on the thickness of the coating film, but can be, for example, about 2 to 20,000 mJ/cm 2 , preferably about 5 to 5,000 mJ/cm 2.
  • the light source can be selected according to the type of light to be exposed.
  • a low-pressure mercury lamp a high-pressure mercury lamp, an extra-high-pressure mercury lamp, a deuterium lamp, a halogen lamp, a laser beam (helium-cadmium laser, excimer laser, etc.), etc. can be used.
  • Such light irradiation causes the curing reaction of the composition to proceed.
  • Heating of the coating of the film-forming composition containing a thermal acid generator, or heating of the coating of the film-forming composition containing a photoacid generator, which is performed as necessary before or after light irradiation, is performed, for example, at about 60 to 250°C, preferably 100 to 200°C.
  • the heating time can be selected from the range of 3 seconds or more (for example, about 3 seconds to 5 hours), for example, 5 seconds to 2 hours, preferably about 20 seconds to 30 minutes, and can usually be selected from the range of about 1 minute to 3 hours (for example, about 5 minutes to 2.5 hours).
  • the coating film formed on the substrate may be subjected to pattern exposure.
  • This pattern exposure may be performed by scanning with laser light, or by irradiating light through a photomask.
  • the non-irradiated areas (unexposed areas) generated by such pattern exposure may be developed (or dissolved) with a developer to form a pattern or image.
  • the developer may be an aqueous alkaline solution or an organic solvent.
  • alkaline aqueous solution include aqueous solutions of alkali metal hydroxides such as potassium hydroxide, sodium hydroxide, potassium carbonate, and sodium carbonate; aqueous solutions of quaternary ammonium hydroxides such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, and choline; and aqueous solutions of amines such as ethanolamine, propylamine, and ethylenediamine.
  • alkali metal hydroxides such as potassium hydroxide, sodium hydroxide, potassium carbonate, and sodium carbonate
  • quaternary ammonium hydroxides such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, and choline
  • amines such as ethanolamine, propylamine, and ethylenediamine.
  • the alkaline developer is generally an aqueous solution having a concentration of 10% by mass or less, and preferably has a concentration of 0.1 to 3.0% by mass, etc.
  • the developer may further contain alcohols or surfactants, and the amount of each of these added is preferably 0.05 to 10 parts by mass relative to 100 parts by mass of the developer.
  • an aqueous solution of 0.1 to 2.38% by weight of tetramethylammonium hydroxide can be used.
  • a general organic solvent can be used, such as acetone, acetonitrile, toluene, dimethylformamide, methanol, ethanol, isopropanol, propylene glycol methyl ether, propylene glycol ethyl ether, propylene glycol propyl ether, propylene glycol butyl ether, propylene glycol methyl ether acetate, propylene glycol ethyl ether acetate, propylene glycol propyl ether acetate, propylene glycol butyl ether acetate, ethyl lactate, cyclohexanone, etc., and one or a mixture of two or more of these can be used.
  • propylene glycol methyl ether, propylene glycol methyl ether acetate, ethyl lactate, etc. can be preferably used.
  • an adhesion promoter can be added for the purpose of improving the adhesion between the cured film and the substrate after development.
  • adhesion promoters include chlorosilanes such as trimethylchlorosilane, dimethylvinylchlorosilane, methyldiphenylchlorosilane, and chloromethyldimethylchlorosilane, alkoxysilanes such as trimethylmethoxysilane, dimethyldiethoxysilane, methyldimethoxysilane, dimethylvinylethoxysilane, diphenyldimethoxysilane, and phenyltriethoxysilane, silazanes such as hexamethyldisilazane, N,N'-bis(trimethylsilyl)urea, dimethyltrimethylsilylamine, and trimethylsilylimidazole, vinyltrichlorosilane, 3-chloropropyltrimethoxysilane, and the like.
  • adhesion promoter examples include silanes such as silane, 3-aminopropyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and 3-(N-piperidinyl)propyltrimethoxysilane; heterocyclic compounds such as benzotriazole, benzimidazole, indazole, imidazole, 2-mercaptobenzimidazole, 2-mercaptobenzothiazole, 2-mercaptobenzoxazole, urazole, thiouracil, mercaptoimidazole, and mercaptopyrimidine; and ureas such as 1,1-dimethylurea and 1,3-dimethylurea, or thiourea compounds.
  • silanes such as silane, 3-aminopropyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-glycidoxypropyl
  • the adhesion promoters may be used alone or in combination of two or more.
  • the amount of these adhesion promoters added is usually 18% by mass or less, preferably 0.0008 to 9% by mass, and more preferably 0.04 to 9% by mass, based on the solid content.
  • the solid content refers to the components remaining after removing the solvent from the composition.
  • the composition of the present invention may contain a sensitizer.
  • sensitizers that can be used include anthracene, phenothiazene, perylene, thioxanthone, and benzophenone thioxanthone.
  • sensitizing dyes include thiopyrylium salt dyes, merocyanine dyes, quinoline dyes, styrylquinoline dyes, ketocoumarin dyes, thioxanthene dyes, xanthene dyes, oxonol dyes, cyanine dyes, rhodamine dyes, and pyrylium salt dyes.
  • Anthracene sensitizers are particularly preferred, and when used in combination with a cationic curing catalyst (radiation-sensitive cationic polymerization initiator), they dramatically improve sensitivity and also have a radical polymerization initiation function.
  • a cationic curing catalyst radiation-sensitive cationic polymerization initiator
  • the catalyst species can be simplified.
  • Specific examples of anthracene compounds that are effective include dibutoxyanthracene and dipropoxyanthraquinone.
  • the amount of sensitizer added is 0.01 to 20% by mass, preferably 0.01 to 10% by mass, based on the solid content.
  • the composition of the present invention can be photocured or thermally cured using a photoradical generator, a thermal radical generator, a photoacid generator, or a thermal acid generator.
  • a photoacid generator or a thermal acid generator for example, commonly used epoxy curing agents (e.g., amines or acid anhydrides) are not used, or even if they are used, the content of these agents is extremely small, which improves the storage stability of the composition.
  • the composition has been found to have photocationic polymerization properties.
  • the composition of the present invention has a higher curing speed than conventional liquid epoxy compounds (e.g., alicyclic epoxy compounds having an epoxycyclohexyl ring). Because of the fast curing speed, it is possible to reduce the amount of acid generator added and to use weak acid generators. Since metals can corrode due to acid active species remaining after UV irradiation, reducing the amount of acid generator used is important in preventing metal corrosion. Because the composition of the present invention has a fast curing speed, thick film curing is possible.
  • thermosetting and photocuring materials using the film-forming composition of the present invention have characteristics such as fast curing, transparency, and small shrinkage on curing, and can be used for coating and bonding electronic parts, optical parts (anti-reflection coating), and precision mechanical parts.
  • they can be used for bonding mobile phone and camera lenses, optical elements such as light-emitting diodes (LEDs) and semiconductor lasers (LDs), liquid crystal panels, biochips, camera lenses and prisms, magnetic parts of hard disks of personal computers, pickups of CD and DVD players (parts that capture optical information reflected from the disk), speaker cones and coils, motor magnets, circuit boards, electronic parts, and parts inside the engine of automobiles.
  • optical elements such as light-emitting diodes (LEDs) and semiconductor lasers (LDs), liquid crystal panels, biochips, camera lenses and prisms, magnetic parts of hard disks of personal computers, pickups of CD and DVD players (parts that capture optical information reflected from the disk), speaker cones and coils, motor magnets, circuit boards, electronic parts, and parts inside the engine of automobiles.
  • LEDs light-emitting diodes
  • LDs semiconductor lasers
  • liquid crystal panels liquid crystal panels
  • biochips biochips
  • camera lenses and prisms magnetic parts of hard disk
  • composition of the present invention can be used as a hard coat material for surface protection of automobile bodies, lamps, electrical appliances, building materials, plastics, etc., and can be applied to, for example, automobile and motorcycle bodies, headlight lenses and mirrors, plastic lenses for glasses, mobile phones, game consoles, optical films, ID cards, etc.
  • composition of the present invention can be used as an ink material for printing on metals such as aluminum, plastics, etc., and can be used as printing ink for cards such as credit cards and membership cards, switches for electrical appliances and office equipment, keyboards, and ink for inkjet printers for CDs, DVDs, etc.
  • composition of the present invention can be used in combination with 3D CAD to harden resins to create complex three-dimensional objects, in photolithography applications such as in the production of industrial product models, and in optical fiber coatings, adhesives, optical waveguides, thick-film resists, etc.
  • the film-forming composition of the present invention can also be suitably used as an insulating resin for electronic materials such as anti-reflective films, semiconductor sealing materials, adhesives for electronic materials, printed wiring board materials, interlayer insulating film materials, and sealing materials for power modules, as well as an insulating resin for high-voltage equipment such as generator coils, transformer coils, and gas-insulated switchgear.
  • electronic materials such as anti-reflective films, semiconductor sealing materials, adhesives for electronic materials, printed wiring board materials, interlayer insulating film materials, and sealing materials for power modules
  • an insulating resin for high-voltage equipment such as generator coils, transformer coils, and gas-insulated switchgear.
  • the organic solvent sol of hollow silica particles of the present invention can be produced by a method including the following steps (A) to (C).
  • the hollow silica particles used in step (A) have a silica shell and a space inside the shell.
  • Hollow silica is obtained by forming a shell mainly made of silica on the surface of the part that corresponds to the core, known as the template, in an aqueous dispersion medium, and then removing the part that corresponds to the core.
  • the template can be made from organic matter (e.g., hydrophilic organic resin particles such as polyethylene glycol, polystyrene, polyester, etc.) or inorganic matter (e.g., hydrophilic inorganic compound particles such as calcium carbonate, sodium aluminate, etc.).
  • step (B) an amine is added to the hollow silica aqueous sol of step (A).
  • the amine has a water solubility of 80 g/L or more, or 100 g/L or more, and at least one amine selected from primary to tertiary amines having a total carbon atom number of 1 to 10 can be added in a ratio of 0.001 to 10 mass % based on the SiO 2 of the hollow silica.
  • the amines mentioned above can be used as these amines.
  • the step (C) is a step of subjecting the aqueous medium of the aqueous sol of hollow silica obtained in the step (B) to solvent replacement with an alcohol, ketone, ether or ester having 1 to 10 carbon atoms.
  • the aqueous medium of the aqueous sol of hollow silica can be replaced with an organic solvent, and the aqueous medium of the aqueous sol can be replaced with a hydrophilic organic solvent and then with a hydrophobic organic solvent.
  • step (C) is a step of solvent-substitution of the aqueous medium of the aqueous sol with an alcohol having 1 to 10 carbon atoms, and then further solvent-substitution of the alcohol solvent with a ketone, ether, or ester having 1 to 10 carbon atoms.
  • a step (D) can be added in which at least one silane compound selected from the group consisting of silane compounds represented by the above formulas (1), (2), and (3) is added and heated.
  • step (C) after the aqueous medium of the aqueous sol in step (C) is solvent-substituted with an alcohol having 1 to 10 carbon atoms, at least one silane compound selected from the group consisting of silane compounds represented by formulas (1), (2), and (3) is added and heated in step (D), and then the alcohol solvent in step (C) can be solvent-substituted with a ketone, ether, or ester having 1 to 10 carbon atoms.
  • the heating temperature after adding the silane compound is 40°C or higher, and preferably below the reflux temperature of the solvent used.
  • the heating time can be in the range of 0.1 to 10 hours.
  • the surface charge of hollow silica particles can be adjusted as desired using the above-mentioned method for producing hollow silica organic solvent sol.
  • a titration value was measured until the flow potential of the measurement sample reached zero using an N/1000 DADMAC solution (manufactured by Voith Turbo) as a standard cation titrant.
  • the titration value obtained was divided by the mass of silica contained in the measurement sample to obtain the surface charge ( ⁇ eq/g) converted per 1 g of SiO 2 of the hollow silica particles.
  • Example 1 (Preparation of hollow silica methanol sol (1)) 100.22 g of a commercially available hollow silica aqueous sol (Ningbo Dilato Co., Ltd., HKT-D20-225-1, SiO2 concentration is 20.7 mass%, pH 9.0, dynamic light scattering particle size 88 nm, specific surface area by BET method 107 m2 /g, average primary particle size by TEM 82 nm, specific surface area ratio 3.2) was charged into a 500 mL eggplant flask, and 0.04 g of diisopropylamine was added while stirring with a magnetic stirrer, and mixed for 2 hours. Then, 38.09 g of methanol was added while stirring, and mixed for 2 hours.
  • a commercially available hollow silica aqueous sol Naingbo Dilato Co., Ltd., HKT-D20-225-1, SiO2 concentration is 20.7 mass%, pH 9.0, dynamic light scattering particle size 88 nm,
  • the obtained hollow silica methanol sol had a SiO2 concentration of 15.5 mass%, a moisture content of 1.7%, a viscosity of 1.8 mPa sec, a pH of 8.2, a particle size measured by a dynamic light scattering method of 99 nm, a total nitrogen content of 438 ppm, and a surface charge amount calculated per 1 g of SiO2 of the hollow silica particles of 26 ⁇ eq/g.
  • the total light transmittance of the obtained mixture film was measured using a spectroscopic haze meter (Nippon Denshoku Kogyo Co., Ltd., SH7000), and the result was 91.6%.
  • the total light transmittance of the glass substrate was 91.0%, which was a high value compared to the total light transmittance of a film prepared under the same conditions using only UV curable resin, which was 90.7%, and was a highly transparent mixture film.
  • Example 2 (Preparation of hollow silica methanol sol (2)) 100.01 g of a commercially available hollow silica aqueous sol (Ningbo Dilat Co., Ltd., HKT-D20-225-1, SiO2 concentration 20.7%, pH 9.0, dynamic light scattering particle size 88 nm, BET specific surface area 107 m2 /g, TEM average primary particle size 82 nm, specific surface area ratio 3.2) was charged into a 500 mL recovery flask, and hollow silica methanol sol (2) was obtained by the same procedure as in Example 1, except that the amount of diisopropylamine added was changed to 0.10 g and the amount of methanol was changed to 37.98 g.
  • a commercially available hollow silica aqueous sol Naingbo Dilat Co., Ltd., HKT-D20-225-1, SiO2 concentration 20.7%, pH 9.0, dynamic light scattering particle size 88 nm, BET specific surface area
  • the obtained hollow silica methanol sol (2) had a SiO2 concentration of 15.1 mass%, a moisture content of 0.9%, a viscosity of 1.6 mPa sec, a pH of 8.7, a particle size measured by a dynamic light scattering method of 108 nm, a total nitrogen content of 409 ppm, and a surface charge amount calculated per 1 g of SiO2 of the hollow silica particles of 25 ⁇ eq/g.
  • the obtained hollow silica propylene glycol monomethyl ether sol (1) had a SiO2 concentration of 13.4 mass%, a moisture content of 0.2%, a viscosity of 3.5 mPa ⁇ sec, a pH of 8.1, a particle size measured by dynamic light scattering of 103 nm, and a total nitrogen content of 330 ppm.
  • a film formed from hollow silica propylene glycol monomethyl ether sol (1) / UV curable resin mixed varnish and varnish containing hollow silica propylene glycol monomethyl ether sol (1) was prepared by the same operation as in Example 1, except that 1.86 g of hollow silica propylene glycol monomethyl ether sol (1) (SiO2 concentration 13.4 mass%) obtained in Example 2 was used. The total light transmittance of the obtained blended film was 92.2%, and it was a blended film with high transparency.
  • Example 3 (Preparation of hollow silica methanol sol (3)) 100.15 g of a commercially available hollow silica aqueous sol (Ningbo Dilat Co., Ltd., HKT-D20-225-1, SiO2 concentration 20.7%, pH 9.0, dynamic light scattering particle size 88 nm, BET specific surface area 107 m2 /g, TEM average primary particle size 82 nm, specific surface area ratio 3.2) was charged into a 500 mL recovery flask, and the same procedure as in Example 1 was repeated except that the amount of diisopropylamine added was changed to 0.21 g and the amount of methanol was changed to 38.02 g, to obtain hollow silica methanol sol (3).
  • a commercially available hollow silica aqueous sol Naingbo Dilat Co., Ltd., HKT-D20-225-1, SiO2 concentration 20.7%, pH 9.0, dynamic light scattering particle size 88 nm, BET specific
  • the obtained hollow silica methanol sol (3) had a SiO2 concentration of 15.5 mass%, a moisture content of 1.6%, a viscosity of 1.8 mPa sec, a pH of 8.6, a particle size measured by a dynamic light scattering method of 101 nm, a total nitrogen content of 410 ppm, and a surface charge amount calculated per 1 g of SiO2 of the hollow silica particles of 25 ⁇ eq/g.
  • the bath temperature was 75°C and the pressure was gradually reduced from 500 Torr to 400 Torr, and 150 mL of methyl ethyl ketone was fed to distill off the methanol, thereby obtaining a hollow silica methyl ethyl ketone sol (1).
  • the obtained hollow silica methyl ethyl ketone sol (1) had a SiO2 concentration of 15.5 mass%, a moisture content of 0.1%, a viscosity of 3.1 mPa ⁇ sec, a pH of 7.8, a particle size measured by a dynamic light scattering method of 106 nm, and a total nitrogen content of 360 ppm.
  • the solid content concentration was 10 mass%, and the amount of hollow silica ( SiO2 ) was 100 phr.
  • About 2 mL of the obtained hollow silica methyl ethyl ketone sol (1) / UV curable resin mixed varnish was dropped onto a glass substrate, and a spin coater (Mikasa Co., Ltd., Opticoat MS-B100) was used to uniformly spread the mixture on the glass substrate under the conditions of 200 rpm x 5 sec, 3 sec increase to 1000 rpm, and 1000 rpm x 30 sec. Thereafter, the mixture was baked on a hot plate at 100 ° C.
  • the total light transmittance of the obtained mixture film was measured using a spectroscopic haze meter (Nippon Denshoku Kogyo Co., Ltd., SH7000), and was 92.8%.
  • the total light transmittance of the glass substrate was 91.0%, which was higher than the total light transmittance of 90.7% of a film prepared under the same conditions using only a UV-curable resin, making this a highly transparent blend film.
  • Example 4 (Preparation of hollow silica methanol sol (4)) 100.05 g of a commercially available hollow silica aqueous sol (Ningbo Dilat Co., Ltd., HKT-D20-225-1, SiO2 concentration 20.7%, pH 9.0, dynamic light scattering particle size 88 nm, BET specific surface area 107 m2 /g, TEM average primary particle size 82 nm, specific surface area ratio 3.2) was charged into a 500 mL recovery flask, and hollow silica methanol sol (4) was obtained by the same procedure as in Example 1, except that the amount of diisopropylamine added was changed to 0.50 g and the amount of methanol was changed to 38.06 g.
  • a commercially available hollow silica aqueous sol Naingbo Dilat Co., Ltd., HKT-D20-225-1, SiO2 concentration 20.7%, pH 9.0, dynamic light scattering particle size 88 nm, BET specific surface
  • the obtained hollow silica methanol sol (4) had a SiO2 concentration of 15.5 mass%, a moisture content of 1.2%, a viscosity of 1.7 mPa sec, a pH of 8.9, a particle size measured by a dynamic light scattering method of 99 nm, a total nitrogen content of 458 ppm, and a surface charge amount calculated per 1 g of SiO2 of the hollow silica particles of 30 ⁇ eq/g.
  • the obtained hollow silica methyl ethyl ketone sol (2) had a SiO2 concentration of 15.6 mass%, a moisture content of 0.2%, a viscosity of 3.3 mPa ⁇ sec, a pH of 8.3, a particle size measured by dynamic light scattering of 102 nm, and a total nitrogen content of 387 ppm.
  • Example 5 (Preparation of hollow silica methanol sol (5)) 100.15 g of a commercially available hollow silica aqueous sol (Ningbo Dilato Co., Ltd., HKT-D20-225-1, SiO2 concentration 20.7% by mass, pH 9.0, dynamic light scattering particle size 88 nm, BET specific surface area 107 m2 /g, TEM average primary particle size 82 nm, specific surface area ratio 3.2) was charged into a 500 mL recovery flask, and the same procedure as in Example 1 was repeated except that the amount of diisopropylamine added was changed to 1.00 g and the amount of methanol was changed to 38.07 g, to obtain hollow silica methanol sol (5).
  • a commercially available hollow silica aqueous sol Naingbo Dilato Co., Ltd., HKT-D20-225-1, SiO2 concentration 20.7% by mass, pH 9.0, dynamic light scattering particle size 88
  • the obtained hollow silica methanol sol (5) had a SiO2 concentration of 15.5 mass%, a moisture content of 0.8%, a viscosity of 1.6 mPa sec, a pH of 8.5, a particle size measured by a dynamic light scattering method of 98 nm, a total nitrogen content of 414 ppm, and a surface charge amount calculated per 1 g of SiO2 of the hollow silica particles of 27 ⁇ eq/g.
  • the obtained hollow silica methyl ethyl ketone sol (3) had a SiO2 concentration of 15.5 mass%, a moisture content of 0.0%, a viscosity of 2.7 mPa ⁇ sec, a pH of 7.9, a particle size measured by a dynamic light scattering method of 103 nm, and a total nitrogen content of 359 ppm.
  • Example 6 (Preparation of hollow silica methanol sol (6))
  • Commercially available hollow silica aqueous sol (Ningbo Dilat Co., Ltd., HKT-D20-225-1, SiO2 concentration 20.7%, pH 9.0, dynamic light scattering particle size 88 nm, specific surface area 107 m2 /g by BET method, average primary particle size 82 nm by TEM, specific surface area ratio 3.2) 100.06 g was charged into a 500 mL eggplant flask, and 1.41 g of 28% ammonia water was added while stirring the sol with a magnetic stirrer sol, and mixed for 2 hours.
  • the obtained hollow silica methanol sol (6) had a SiO2 concentration of 15.7 mass%, a moisture content of 1.1%, a viscosity of 1.7 mPa sec, a pH of 9.0, a particle size measured by a dynamic light scattering method of 99 nm, a total nitrogen content of 553 ppm, and a surface charge amount calculated per 1 g of SiO2 of the hollow silica particles of 30 ⁇ eq/g.
  • the obtained hollow silica methyl ethyl ketone sol (4) had a SiO2 concentration of 15.6 mass%, a moisture content of 0.3%, a viscosity of 4.2 mPa ⁇ sec, a pH of 8.5, a particle size measured by a dynamic light scattering method of 103 nm, and a total nitrogen content of 436 ppm.
  • Example 7 (Preparation of hollow silica methanol sol (7)) 105.47 g of a commercially available hollow silica aqueous sol (Ningbo Dilat Co., Ltd., HKT-D20-225-1, SiO2 concentration 20.7% by mass, pH 9.0, dynamic light scattering particle size 88 nm, BET specific surface area 107 m2 /g, TEM average primary particle size 82 nm, specific surface area ratio 3.2) was charged into a 500 mL eggplant flask, and hollow silica methanol sol (7) was obtained by the same procedure as in Example 1, except that the amount of 28% ammonia water added was changed to 3.77 g, the amount of diisopropylamine to 0.05 g, and the amount of methanol to 40.07 g.
  • a commercially available hollow silica aqueous sol Naingbo Dilat Co., Ltd., HKT-D20-225-1, SiO2 concentration 20.7% by mass,
  • the obtained hollow silica methanol sol (7) had a SiO2 concentration of 15.5 mass%, a moisture content of 1.1%, a viscosity of 1.4 mPa sec, a pH of 9.3, a particle size measured by a dynamic light scattering method of 101 nm, a total nitrogen content of 1346 ppm, and a surface charge amount calculated per 1 g of SiO2 of the hollow silica particles of 36 ⁇ eq/g.
  • the obtained hollow silica methyl ethyl ketone sol (5) had a SiO2 concentration of 15.5 mass%, a moisture content of 0.1%, a viscosity of 2.8 mPa ⁇ sec, a pH of 8.4, a particle size measured by dynamic light scattering of 102 nm, and a total nitrogen content of 1043 ppm.
  • Example 8 (Preparation of hollow silica methanol sol (8))
  • Commercially available hollow silica aqueous sol (Ningbo Dilato, HKT-A20-40D, SiO2 concentration 20.0%, pH 9.3, dynamic light scattering particle size 55 nm, specific surface area 116 m2 /g by BET method, average primary particle size 43 nm by TEM, specific surface area ratio 1.8) 551.10 g was charged into a 2000 mL eggplant flask, and 0.55 g of diethanolamine was added while stirring with a magnetic stirrer, and mixed for 2 h. Then, 139.76 g of methanol was added while stirring, and mixed for 2 h.
  • the obtained hollow silica methanol sol (8) had a SiO2 concentration of 23.5%, a moisture content of 0.6%, a viscosity of 2.8 mPa sec, a pH of 9.0, a particle size measured by a dynamic light scattering method of 63 nm, a total nitrogen content of 641 ppm, and a surface charge amount calculated per 1 g of SiO2 of the hollow silica particles of 34 ⁇ eq/g.
  • the obtained hollow silica methyl ethyl ketone sol (6) had a SiO2 concentration of 22.4%, a moisture content of 0.4%, a pH of 9.3, and a particle size measured by a dynamic light scattering method of 66 nm.
  • (hollow silica methanol sol) indicates a sol in which hollow silica particles are dispersed in methanol.
  • MeOH in the (dispersion medium) column indicates methanol.
  • (pH) indicates the pH when hollow silica methanol sol and the same mass of pure water are mixed at 1:1.
  • (Amine amount) indicates the addition ratio (mass%) of hollow silica particles to SiO 2 , and was contained in the hollow silica methanol sol according to the addition ratio.
  • (DLS) indicates the average particle size (nm) of hollow silica particles by dynamic light scattering method.
  • Total nitrogen amount indicates the total nitrogen amount (ppm) in the hollow silica particle sol of the base component consisting of amine or amine and ammonia.
  • (Surface charge amount) indicates the surface charge amount ( ⁇ eq/g) converted per 1 g of SiO 2 of the hollow silica particles. Note that gelation indicates that the hollow silica sol has gelled and the physical property value cannot be measured.
  • (hollow silica organic solvent sol) indicates a sol in which hollow silica particles are dispersed in an organic solvent.
  • PGME indicates propylene glycol monomethyl ether
  • MEK indicates methyl ethyl ketone.
  • pH indicates the pH value measured in a solution in which pure water and the sol were mixed at a mass ratio of 1:1 for the propylene glycol monomethyl ether sol, and the pH value measured in a solution in which pure water, methanol, and methyl ethyl ketone sol were mixed at a mass ratio of 1:1:1 for the methyl ethyl ketone sol.
  • N indicates that the surface of the silica particles was not treated with a silane coupling agent
  • MPS indicates that the surface of the silica particles was treated with 3-methacryloxypropyltrimethoxysilane.
  • DLS indicates the average particle size (nm) of the hollow silica particles measured by dynamic light scattering.
  • Total nitrogen content indicates the total nitrogen content (ppm) of the base component consisting of amine or amine and ammonia in the hollow silica particle sol.
  • (film containing hollow silica methanol sol) indicates a film formed by coating a substrate with a resin composition in which a sol of hollow silica particles dispersed in methanol is blended with a UV-curable resin and then photocuring the film.
  • the (UV-curable resin) column indicates the polyfunctional acrylate used, with DPHA indicating KAYARAD DPHA (polyfunctional acrylate: component dipentaerythritol hexaacrylate), manufactured by Nippon Kayaku Co., Ltd.
  • (blended amount) indicates the blended amount (phr) of hollow silica particles relative to the UV-curable resin.
  • Total light transmittance indicates the total light transmittance (%) of the resulting coating.
  • (film containing hollow silica organic solvent sol) shows a film formed by coating a substrate with a resin composition in which a sol of hollow silica particles dispersed in an organic solvent is blended with a UV-curable resin, and then photocuring the film.
  • the (UV-curable resin) column shows the polyfunctional acrylate used, with DPHA being Nippon Kayaku Co., Ltd.'s product name KAYARAD DPHA (polyfunctional acrylate: component dipentaerythritol hexaacrylate).
  • (Amount blended) shows the amount (phr) of hollow silica particles blended with the UV-curable resin.
  • Total light transmittance shows the total light transmittance (%) of the resulting coating.
  • the blended film prepared by blending the obtained hollow silica methanol sol with resin had excellent dispersion uniformity of the hollow silica particles in the resin, and therefore had high transparency (total light transmittance). Furthermore, it was confirmed that the solvent replacement with other organic solvents such as propylene glycol monomethyl ether and methyl ethyl ketone is possible by using the obtained hollow silica methanol sol as a raw material.
  • the present invention provides hollow silica particles that have a specific surface charge and are highly dispersible in resins, and provides an organic solvent sol of hollow silica particles that contain an amine in the sol and have a space inside the outer shell, a method for producing the same, and a coating-forming composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Silicon Compounds (AREA)

Abstract

[Problem] To provide: an organic solvent sol of hollow silica particles, in which the sol contains an amine, the hollow silica particles have a specific surface charge, exhibit high dispersibility in a resin, and have a space inside an outer shell; a method for producing same; and a film-forming composition. [Solution] Provided is an organic solvent sol of hollow silica particles, in which the sol contains an amine and the hollow silica particles have a space inside an outer shell. The amine is at least one type of amine selected from among a primary amine, secondary amine and tertiary amine having a total of 1-10 carbon atoms. The water solubility of the amine is 80 g/L or more. The content of the amine is 0.001-10 mass% relative to SiO2 in the hollow silica particles. The average particle diameter of the hollow silica particles, as measured using a dynamic light-scattering method, is 20-150 nm. The surface charge amount is 5-250 μeq/g, as calculated per 1 g of SiO2 in the hollow silica particles. The organic solvent is an alcohol, ketone, ether or ester having 1-10 carbon atoms. Also provided is a film-forming composition that contains the organic solvent sol of hollow silica particles and an organic resin.

Description

アミン含有中空シリカ粒子の有機溶媒ゾル及びその製造方法Organic solvent sol of amine-containing hollow silica particles and method for producing same
 本発明はアミンをゾル中に含有し、中空シリカ粒子が有機溶媒に分散したゾルと、そのゾル製造方法、並びにそのゾルを含む被膜形成組成物に関する。 The present invention relates to a sol containing an amine and having hollow silica particles dispersed in an organic solvent, a method for producing the sol, and a film-forming composition containing the sol.
 シリカの外殻を有し、外殻の内側に空間を有する中空シリカ粒子は、その特徴から低屈折率、低熱伝導性(断熱性)、電気絶縁性等の特性を有する。
 中空シリカ粒子は空洞部分に相当するコアと、コアの外側を形成する外殻からなっていて、水性媒体中においてコアの外側にシリカ層を形成し、その後にコアを除去する方法に
よって中空シリカ粒子の水性分散液が得られる。
 例えば、表面電荷量が5~20μeq/g-SiOである中空シリカ粒子とバインダー成分を含む透明被膜形成用組成物が開示されている(特許文献1参照)。
 また、表面がシラン化合物で被覆され、200℃~500℃の熱重量減少が1質量%以上である中空シリカ粒子が開示されている(特許文献2参照)。
Hollow silica particles have a silica outer shell and a space inside the shell, and due to their characteristics, they have properties such as a low refractive index, low thermal conductivity (thermal insulation), and electrical insulation.
Hollow silica particles consist of a core which corresponds to the hollow portion and a shell which forms the outside of the core. An aqueous dispersion of hollow silica particles can be obtained by forming a silica layer on the outside of the core in an aqueous medium and then removing the core.
For example, a composition for forming a transparent coating film containing hollow silica particles having a surface charge amount of 5 to 20 μeq/g-SiO 2 and a binder component has been disclosed (see Patent Document 1).
In addition, hollow silica particles whose surfaces are coated with a silane compound and whose thermal weight loss at 200° C. to 500° C. is 1% by mass or more have been disclosed (see Patent Document 2).
国際公開第2007-060884号International Publication No. 2007-060884 特開2013-014506号公報JP 2013-014506 A
 本発明はアミンをゾル中に含み、外殻の内部に空間を有する中空シリカ粒子の有機溶媒ゾル、そのゾルの製造方法、及びそのゾルを含む被膜形成組成物を提供する。 The present invention provides an organic solvent sol of hollow silica particles that contain an amine in the sol and have a space inside the outer shell, a method for producing the sol, and a coating-forming composition that contains the sol.
 本発明は第1観点として、アミンをゾル中に含み、外殻の内部に空間を有する中空シリカ粒子の有機溶媒ゾル、
 第2観点として、アミンが炭素原子数1~10の第1級アミン、第2級アミン、及び第3級アミンからなる群から選ばれる少なくとも1種のアミンである第1観点に記載のゾル、
 第3観点として、上記アミンは水溶解度が、80g/L以上の水溶性アミンである第1観点又は第2観点に記載のゾル、
 第4観点として、上記アミンの含有量が中空シリカ粒子のSiOに対して0.001~10質量%である第1観点乃至第3観点の何れか一つに記載のゾル、
 第5観点として、動的光散乱法による上記中空シリカ粒子の平均粒子径が20~150nmである第1観点乃至第4観点の何れか一つに記載のゾル、
 第6観点として、上記中空シリカ粒子のSiOの1g当たりに換算した表面電荷量が5~250μeq/gである第1観点乃至第5観点の何れか一つに記載のゾル、
 第7観点として、有機溶媒が炭素原子数1~10のアルコール、ケトン、エーテル、又はエステルである第1観点乃至第6観点の何れか一つに記載のゾル、
 第8観点として、上記中空シリカ粒子が更に式(1)、式(2)、及び式(3):
(式(1)中、Rはそれぞれアルキル基、ハロゲン化アルキル基、アルケニル基、アリール基、又はエポキシ基、(メタ)アクリロイル基、メルカプト基、アミノ基、ウレイド基、もしくはシアノ基を有する有機基であり且つSi-C結合によりケイ素原子と結合している基を示し、Rはそれぞれアルコキシ基、アシルオキシ基、又はハロゲン基を示し、aは1~3の整数であり、
式(2)及び式(3)中、R及びRはそれぞれ炭素原子数1~3のアルキル基、又は炭素原子数6~30のアリール基であり且つSi-C結合によりケイ素原子と結合している基を示し、R及びRはそれぞれアルコキシ基、アシルオキシ基、又はハロゲン基を示し、Yはアルキレン基、NH基、又は酸素原子を示し、bは1~3の整数であり、cは0又は1の整数であり、dは1~3の整数である。)
で表されるシラン化合物からなる群より選ばれる少なくとも1種のシラン化合物で被覆されている第1観点乃至第7観点のいずれか一つに記載のゾル、
 第9観点として、第1観点乃至第8観点の何れか一つに記載のゾルと、有機樹脂とを含む被膜形成組成物、
 第10観点として、第9観点に記載の可視光線透過率が80%以上である被膜形成組成物から得られる膜、
第11観点として、下記(A)工程~(C)工程:
(A)工程:中空シリカ水性ゾルを準備する工程、
(B)工程:(A)工程の中空シリカ水性ゾルに、水溶解度が、80g/L以上であり且つ炭素原子数1~10の第1級アミン、第2級アミン、及び第3級アミンからなる群から選ばれる少なくとも1種のアミンを、中空シリカ粒子のSiOに対して0.001~10質量%の割合で添加する工程、
(C)工程:(B)工程で得られた中空シリカ粒子の水性ゾルの水性媒体を、炭素原子数1~10のアルコール、ケトン、エーテル、又はエステルに溶媒置換する工程、を含む第1観点乃至第8観点の何れか一つに記載のゾルの製造方法、
 第12観点として、上記(C)工程の終了後に、更に上記式(1)、式(2)、及び式(3)で表されるシラン化合物からなる群より選ばれる少なくとも1種のシラン化合物を添加し、加熱する(D)工程を含む第11観点に記載のゾルの製造方法、
 第13観点として、上記(C)工程が、上記水性媒体を炭素原子数1~10のアルコールに溶媒置換した後に、更に炭素原子数1~10のケトン、エーテル、又はエステルに溶媒置換する工程である第11観点又は第12観点に記載のゾルの製造方法、
 第14観点として、(C)工程が、上記水性媒体を炭素原子数1~10のアルコールに溶媒置換する工程であり、(D)工程が上記式(1)、式(2)、及び式(3)で表されるシラン化合物からなる群より選ばれる少なくとも1種のシラン化合物を添加し、加熱した後で、更に上記アルコール溶媒を炭素原子数1~10のケトン、エーテル、又はエステルに溶媒置換する工程である第12観点に記載のゾルの製造方法、及び
 第15観点として、第11観点乃至第14観点の何れか一つに記載の製造方法を用いる中空シリカ粒子の表面電荷の調整方法である。
As a first aspect, the present invention provides an organic solvent sol of hollow silica particles containing an amine in the sol and having a space inside an outer shell;
As a second aspect, the sol according to the first aspect, in which the amine is at least one amine selected from the group consisting of primary amines, secondary amines, and tertiary amines having 1 to 10 carbon atoms;
As a third aspect, the sol according to the first or second aspect, wherein the amine is a water-soluble amine having a water solubility of 80 g/L or more.
As a fourth aspect, the sol according to any one of the first to third aspects, in which the content of the amine is 0.001 to 10 mass% relative to the SiO2 of the hollow silica particles;
As a fifth aspect, the sol according to any one of the first to fourth aspects, in which the hollow silica particles have an average particle size of 20 to 150 nm as measured by a dynamic light scattering method.
As a sixth aspect, the sol according to any one of the first to fifth aspects, in which the hollow silica particles have a surface charge amount calculated per gram of SiO2 of 5 to 250 μeq/g;
As a seventh aspect, the sol according to any one of the first to sixth aspects, in which the organic solvent is an alcohol, a ketone, an ether, or an ester having 1 to 10 carbon atoms;
As an eighth aspect, the hollow silica particles may further be represented by formula (1), formula (2), or formula (3):
(In formula (1), R 1 represents an alkyl group, a halogenated alkyl group, an alkenyl group, an aryl group, or an organic group having an epoxy group, a (meth)acryloyl group, a mercapto group, an amino group, a ureido group, or a cyano group, and is bonded to a silicon atom via a Si-C bond; R 2 represents an alkoxy group, an acyloxy group, or a halogen group; a represents an integer of 1 to 3;
In formula (2) and formula (3), R3 and R5 each represent an alkyl group having 1 to 3 carbon atoms or an aryl group having 6 to 30 carbon atoms and bonded to a silicon atom via a Si-C bond, R4 and R6 each represent an alkoxy group, an acyloxy group, or a halogen group, Y represents an alkylene group, an NH group, or an oxygen atom, b is an integer of 1 to 3, c is an integer of 0 or 1, and d is an integer of 1 to 3.
The sol according to any one of the first to seventh aspects, which is coated with at least one silane compound selected from the group consisting of silane compounds represented by the following formula:
As a ninth aspect, a coating-forming composition comprising the sol according to any one of the first to eighth aspects and an organic resin;
According to a tenth aspect, there is provided a film obtained from the film-forming composition according to the ninth aspect, the film having a visible light transmittance of 80% or more.
As an eleventh aspect, the present invention relates to the following steps (A) to (C):
Step (A): preparing a hollow silica aqueous sol;
Step (B): adding at least one amine selected from the group consisting of primary amines, secondary amines, and tertiary amines having a water solubility of 80 g/L or more and having 1 to 10 carbon atoms to the hollow silica aqueous sol of step (A) in an amount of 0.001 to 10% by mass based on the SiO2 of the hollow silica particles;
A process (C) for replacing the aqueous medium of the aqueous sol of hollow silica particles obtained in the process (B) with an alcohol, a ketone, an ether, or an ester having 1 to 10 carbon atoms;
As a twelfth aspect, a method for producing a sol according to the eleventh aspect, the method including, after completion of the step (C), a step (D) of further adding at least one silane compound selected from the group consisting of silane compounds represented by the formula (1), the formula (2), and the formula (3), and heating;
As a thirteenth aspect, the method for producing a sol according to the eleventh or twelfth aspect, in which the step (C) is a step of performing solvent replacement of the aqueous medium with an alcohol having 1 to 10 carbon atoms, and then performing solvent replacement with a ketone, ether, or ester having 1 to 10 carbon atoms;
As a fourteenth aspect, there is provided the method for producing a sol according to the twelfth aspect, in which the step (C) is a step of performing solvent substitution of the aqueous medium with an alcohol having 1 to 10 carbon atoms, and the step (D) is a step of adding at least one silane compound selected from the group consisting of silane compounds represented by the above formulas (1), (2), and (3), heating, and then performing solvent substitution of the alcohol solvent with a ketone, ether, or ester having 1 to 10 carbon atoms; and as a fifteenth aspect, there is provided a method for adjusting a surface charge of hollow silica particles, using the production method according to any one of the eleventh to fourteenth aspects.
 本発明はゾル中にアミンを含む、外殻の内部に空間を有する中空シリカ粒子の有機溶媒ゾルに関する。有機溶媒に分散した中空シリカ粒子は表面に電荷を有する事が知られている。中空シリカ粒子の有機溶媒ゾル自体や、それら中空シリカ粒子の有機溶媒ゾルを有機樹脂バインダーと混合する時に中空シリカ粒子の表面電荷量が安定性や分散性に大きく影響を及ぼす事がある。例えば、極性の高い溶媒や樹脂バインダーに中空シリカ粒子を分散する際に、中空シリカ粒子の表面電荷量が特定範囲にある場合に安定な分散性を得る事ができる。安定な分散性を得る必要性があるのは、被膜を形成する場合に中空シリカ粒子が硬化被膜中に均一に存在し、局在化していないことが機能を発揮する上で好都合であるためである。硬化被膜中で中空シリカ粒子が非局在化する事で膜全体が同一の効果を奏するためである。その効果が光学的な反射防止機能である場合に膜全体が均一な性能を保持するという点で好ましい。 The present invention relates to an organic solvent sol of hollow silica particles containing amines in the sol and having a space inside the outer shell. It is known that hollow silica particles dispersed in an organic solvent have a charge on the surface. The organic solvent sol of hollow silica particles itself, or the amount of surface charge of the hollow silica particles when the organic solvent sol of hollow silica particles is mixed with an organic resin binder, can greatly affect the stability and dispersibility. For example, when hollow silica particles are dispersed in a highly polar solvent or resin binder, stable dispersibility can be obtained if the amount of surface charge of the hollow silica particles is within a specific range. The reason for the need to obtain stable dispersibility is that when a coating is formed, it is advantageous for the hollow silica particles to be uniformly present in the cured coating and not localized in order to exert their function. This is because the hollow silica particles are delocalized in the cured coating, so that the entire film has the same effect. When the effect is an optical anti-reflection function, it is preferable in that the entire film maintains uniform performance.
 分散媒中での中空シリカ粒子の表面電荷量は、シリカ粒子の表面のシラノール基に起因するものであるが、アミンを添加する事で表面電荷量を特定範囲に任意に調整する事が可能である事が分かった。
 本発明はアミンをゾル中に含む、外殻の内部に空間を有する中空シリカ粒子の有機溶媒ゾルと、それら有機溶媒ゾルの製造方法と、それら有機溶媒ゾルを用いた被膜形成組成物である。
The surface charge amount of hollow silica particles in a dispersion medium is due to the silanol groups on the surface of the silica particles, but it has been found that the surface charge amount can be adjusted to any specific range by adding an amine.
The present invention relates to an organic solvent sol of hollow silica particles containing an amine in the sol and having spaces inside the outer shell, a method for producing the organic solvent sol, and a coating-forming composition using the organic solvent sol.
 本発明はアミンをゾル中に含む、外殻の内部に空間を有する中空シリカ粒子の有機溶媒ゾル(以下、中空シリカ有機溶媒ゾルともいう)である。 The present invention is an organic solvent sol of hollow silica particles that contain an amine in the sol and have a space inside the outer shell (hereinafter, also referred to as hollow silica organic solvent sol).
 中空シリカ粒子はシリカの外殻を有し、外殻の内側に空間を有するものである。中空シリカ粒子は分散媒中でいわゆるテンプレートと呼ばれるコアに相当する部分の表面に、シリカを主成分とする外殻を形成し、コアに相当する部分を除去する方法で得られる。この様に得られる水性中空シリカゾル(中空シリカ水性ゾル)は、アミンを添加した後に有機溶媒であるアルコール溶媒に溶媒置換する事ができる。上記アルコール溶媒はエーテル結合を有していても良い炭素原子数1~5のアルコールが好ましく、例えばメタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等が挙げられる。その後、所望により中空シリカ粒子をシラン化合物で被覆した後に、更に溶媒を別の有機溶媒に溶媒置換する事ができる。 Hollow silica particles have a silica shell and a space inside the shell. Hollow silica particles are obtained by forming a shell mainly composed of silica on the surface of the part corresponding to the core, which is called the template in a dispersion medium, and removing the part corresponding to the core. The aqueous hollow silica sol (hollow silica aqueous sol) obtained in this way can be solvent-substituted with an alcohol solvent, which is an organic solvent, after adding an amine. The above-mentioned alcohol solvent is preferably an alcohol having 1 to 5 carbon atoms that may have an ether bond, such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, propylene glycol monomethyl ether, and propylene glycol monoethyl ether. Thereafter, if desired, the hollow silica particles can be coated with a silane compound, and the solvent can then be further solvent-substituted with another organic solvent.
 本発明では有機溶媒として炭素原子数1~10のアルコール、ケトン、エーテル、及びエステルが挙げられる。 In the present invention, examples of organic solvents include alcohols, ketones, ethers, and esters having 1 to 10 carbon atoms.
 炭素原子数1~10のアルコールは脂肪族アルコールであり、第1級アルコール、第2級アルコール、第3級アルコールが挙げられる。そしてこれらアルコールは多価アルコールを用いる事も可能であり、例えば2価アルコール、3価アルコールが挙げられる。
 1価1級アルコールとして、メタノール、エタノール、1-プロパノール、1-ブタノール、1-ヘキサノール等が挙げられる。
 1価2級アルコールとして、2-プロパノール、2-ブタノール、シクロヘキサノール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等が挙げられる。
 1価3級アルコールとして、Tert-ブチルアルコール等が挙げられる。
2価アルコールとして、メタンジオール、エチレングリコール、プロピレングリコール等が挙げられる。
 3価アルコールとして、グリセリン等が挙げられる。
The alcohol having 1 to 10 carbon atoms is an aliphatic alcohol, and examples of such alcohol include primary alcohols, secondary alcohols, and tertiary alcohols. Furthermore, it is also possible to use polyhydric alcohols, such as dihydric alcohols and trihydric alcohols.
Examples of the monohydric primary alcohol include methanol, ethanol, 1-propanol, 1-butanol, and 1-hexanol.
Examples of the monohydric secondary alcohol include 2-propanol, 2-butanol, cyclohexanol, propylene glycol monomethyl ether, and propylene glycol monoethyl ether.
An example of the monohydric tertiary alcohol is tert-butyl alcohol.
Examples of the dihydric alcohol include methanediol, ethylene glycol, and propylene glycol.
An example of the trihydric alcohol is glycerin.
 炭素原子数1~10のケトンとして、脂肪族ケトンを好ましく用いる事ができる。例えばアセトン、メチルエチルケトン、ジエチルケトン、メチルプロピルケトン、メチルイソブチルケトン、メチルアミルケトン、シクロヘキサノン、メチルシクロペンタノン等が挙げられる。 As the ketone having 1 to 10 carbon atoms, an aliphatic ketone can be preferably used. Examples include acetone, methyl ethyl ketone, diethyl ketone, methyl propyl ketone, methyl isobutyl ketone, methyl amyl ketone, cyclohexanone, methyl cyclopentanone, etc.
 炭素原子数1~10のエーテルとして、脂肪族エーテルを好ましく用いる事ができる。例えばジメチルエーテル、エチルメチルエーテル、ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン等が挙げられる。 As the ether having 1 to 10 carbon atoms, an aliphatic ether can be preferably used. Examples include dimethyl ether, ethyl methyl ether, diethyl ether, tetrahydrofuran, 1,4-dioxane, etc.
 炭素原子数1~10のエステルとして、脂肪族エステルを好ましく用いる事ができる。例えばギ酸メチル、ギ酸エチル、ギ酸プロピル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジプロピル、アジピン酸ジメチル、アジピン酸ジエチル、アジピン酸ジプロピル等が挙げられる。 As the ester having 1 to 10 carbon atoms, an aliphatic ester can be preferably used. Examples include methyl formate, ethyl formate, propyl formate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl acrylate, ethyl acrylate, propyl acrylate, dimethyl maleate, diethyl maleate, dipropyl maleate, dimethyl adipate, diethyl adipate, dipropyl adipate, etc.
 上記原料である中空シリカ水性ゾル、中空シリカ有機溶媒ゾルにおいて、中空シリカ粒子は動的光散乱法(DLS法)による平均粒子径が20~150nm、又は30~150nm、又は40~150nm、又は50~150nm、又は60~150nm、又は60~120nmの範囲とする事ができる。また、SiO粒子の濃度は1~50質量%、又は5~40質量%であり、典型的には10~30質量%とする事ができる。 In the hollow silica aqueous sol and hollow silica organic solvent sol, which are the raw materials, the hollow silica particles can have an average particle size measured by dynamic light scattering (DLS) in the range of 20 to 150 nm, or 30 to 150 nm, or 40 to 150 nm, or 50 to 150 nm, or 60 to 150 nm, or 60 to 120 nm. The concentration of SiO2 particles can be 1 to 50 mass% or 5 to 40 mass%, typically 10 to 30 mass%.
 上記ゾルにおいてpHはアルカリ性を示し、例えば7.5~12、又は7.5~11であるが、典型的には7.5~10の範囲で用いる事ができる。上記pHは有機溶媒ゾルと同質量の純水を1:1で混合した時のpHである。有機溶媒として水と混合できる有機溶媒を用いた時にpHを測定する事が可能であるが、後に疎水性有機溶媒に溶媒置換する時は予めメタノール溶媒ゾルの段階でpHを測定する事が好ましい。
 例えば、メタノールゾルおよびプロピレングリコールモノメチルエーテルゾル等の分散媒が親水性有機溶媒のゾルについては純水とゾルを質量比1:1で混合した溶液でpHを測定する事ができる。メチルエチルケトンゾル等の分散媒が疎水性有機溶媒のゾルについては、純水とメタノールとメチルエチルケトンゾルを質量比1:1:1で混合した溶液でpHを測定する事ができる。
The sol has an alkaline pH, for example, 7.5 to 12 or 7.5 to 11, but can typically be used in the range of 7.5 to 10. The above pH is the pH when the organic solvent sol and the same mass of pure water are mixed at a ratio of 1:1. It is possible to measure the pH when an organic solvent that can be mixed with water is used as the organic solvent, but when the solvent is subsequently replaced with a hydrophobic organic solvent, it is preferable to measure the pH in advance at the stage of the methanol solvent sol.
For example, for a sol whose dispersion medium is a hydrophilic organic solvent, such as methanol sol or propylene glycol monomethyl ether sol, the pH can be measured using a solution in which pure water and the sol are mixed in a mass ratio of 1: 1. For a sol whose dispersion medium is a hydrophobic organic solvent, such as methyl ethyl ketone sol, the pH can be measured using a solution in which pure water, methanol, and methyl ethyl ketone sol are mixed in a mass ratio of 1: 1: 1.
 中空シリカ有機溶媒ゾルは水性ゾルの水性媒体を炭素原子数1~5のアルコール溶媒への溶媒置換し、所望によりさらに有機溶媒への溶媒置換を行い得ることができ、その過程で溶媒中に水分が残留していてもよい。中空シリカ粒子のアルコールゾルの段階では、例えば当該ゾル中に0.1~3.0質量%の残留水分を含有することができる。そして、中空シリカ粒子の有機溶媒ゾルの段階で0.01~0.5質量%の残留水分を含有する事ができる。 Hollow silica organic solvent sol can be obtained by replacing the aqueous medium of the aqueous sol with an alcohol solvent having 1 to 5 carbon atoms, and if desired, further replacing the solvent with an organic solvent, and moisture may remain in the solvent during this process. At the stage of the alcohol sol of hollow silica particles, the sol may contain, for example, 0.1 to 3.0% by mass of residual moisture. And at the stage of the organic solvent sol of hollow silica particles, the sol may contain 0.01 to 0.5% by mass of residual moisture.
 また中空シリカ有機溶媒ゾルにおいて、粘度を1.0~10.0mPa・sの範囲に設定する事ができる。 In addition, the viscosity of hollow silica organic solvent sol can be set in the range of 1.0 to 10.0 mPa·s.
 本発明の中空シリカ有機溶媒ゾルにはアミンを添加する事ができる。
 本発明に用いられるアミンとしては水溶解度が80g/L以上、又は100g/L以上の水溶性アミンを用いる事ができる。
An amine can be added to the hollow silica organic solvent sol of the present invention.
The amine used in the present invention may be a water-soluble amine having a water solubility of 80 g/L or more, or 100 g/L or more.
 原料である中空シリカ水性ゾル、溶媒置換して得られる中空シリカ有機溶媒ゾルにおいて、アミン、又はアミンとアンモニアを含有する事ができる。アミンは中空シリカ粒子のSiOに対して0.001~10質量%、又は0.01~10質量%、又は0.1~10質量%の範囲で添加し含有する事ができる。そして、アミン、又はアミンとアンモニアである塩基成分は中空シリカ粒子有機溶媒ゾル中において全窒素量として示す事ができ、例えば10~100000ppm、又は100~10000ppm、又は100~3000ppm、又は100~2000ppm、典型的には200~2000ppmの範囲で含有する事ができる。 The raw material hollow silica aqueous sol and the hollow silica organic solvent sol obtained by solvent replacement may contain amine, or amine and ammonia. The amine may be added and contained in the range of 0.001 to 10 mass%, or 0.01 to 10 mass%, or 0.1 to 10 mass% relative to the SiO 2 of the hollow silica particles. The base component, which is the amine or the amine and ammonia, may be expressed as the total nitrogen amount in the hollow silica particle organic solvent sol, and may be contained in the range of, for example, 10 to 100,000 ppm, or 100 to 10,000 ppm, or 100 to 3,000 ppm, or 100 to 2,000 ppm, typically 200 to 2,000 ppm.
 上記のアミンとしては脂肪族アミン、芳香族アミンが挙げられるが、脂肪族アミンを好ましく用いる事ができる。アミンとして炭素原子数1~10の第1級、第2級アミン、及び第3級アミンからなる群から選ばれる少なくとも1種のアミンを用いる事ができる。それらアミンは水溶性であって、炭素原子数1~10の第1級アミン、第2級アミン、及び第3級アミンからなる群から選ばれる少なくとも1種のアミンである。 The above amines include aliphatic amines and aromatic amines, with aliphatic amines being preferred. At least one amine selected from the group consisting of primary amines, secondary amines, and tertiary amines having 1 to 10 carbon atoms can be used as the amine. The amines are water-soluble and at least one amine selected from the group consisting of primary amines, secondary amines, and tertiary amines having 1 to 10 carbon atoms.
 例えば第1級アミンとしては、モノメチルアミン、モノエチルアミン、モノプロピルアミン、モノイソプロピルアミン、モノブチルアミン、モノイソブチルアミン、モノsecブチルアミン、モノtertブチルアミン、モノメタノールアミン、モノエタノールアミン、モノプロパノールアミン、モノイソプロパノールアミン、モノブタノールアミン、モノイソブタノールアミン、モノsecブタノールアミン、モノtertブタノールアミン等が挙げられる。 For example, primary amines include monomethylamine, monoethylamine, monopropylamine, monoisopropylamine, monobutylamine, monoisobutylamine, monosec-butylamine, mono-tert-butylamine, monomethanolamine, monoethanolamine, monopropanolamine, monoisopropanolamine, monobutanolamine, monoisobutanolamine, monosec-butanolamine, mono-tert-butanolamine, etc.
 第2級アミンとしては、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジイソプロピルアミン、N-メチルエチルアミン、N-エチルイソブチルアミン、ジメタノールアミン、ジエタノールアミン、ジプロパノールアミン、ジイソプロパノールアミン、N-メタノールエチルアミン、N-メチルエタノールアミン、N-エタノールイソブチルアミン、N-エチルイソブタノールアミン等が挙げられる。 Secondary amines include dimethylamine, diethylamine, dipropylamine, diisopropylamine, N-methylethylamine, N-ethylisobutylamine, dimethanolamine, diethanolamine, dipropanolamine, diisopropanolamine, N-methanolethylamine, N-methylethanolamine, N-ethanolisobutylamine, and N-ethylisobutanolamine.
 第3級アミンとしては、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリイソプロピルアミン、トリブチルアミン、トリイソブチルアミン、トリsecブチルアミン、トリtertブチルアミン、トリメタノールアミン、トリエタノールアミン、トリプロパノールアミン、トリイソプロパノールアミン、トリブタノールアミン、トリイソブタノールアミン、トリsecブタノールアミン、トリtertブタノールアミン等が挙げられる。 Tertiary amines include trimethylamine, triethylamine, tripropylamine, triisopropylamine, tributylamine, triisobutylamine, trisec-butylamine, tritert-butylamine, trimethanolamine, triethanolamine, tripropanolamine, triisopropanolamine, tributanolamine, triisobutanolamine, trisec-butanolamine, tritert-butanolamine, etc.
 上記アミンとしては80g/L以上、又は100g/L以上の水溶解度を有するアミンを好ましく用いる事ができる。これらのアミンとしては、第1級アミン及び第2級アミンが好ましく、揮発性の低さと、溶解性の高さから第2級アミンが好ましく用いられ、例えばジイソプロピルアミン、ジエタノールアミン等が例示される。 As the above amine, amines having a water solubility of 80 g/L or more, or 100 g/L or more can be preferably used. As these amines, primary amines and secondary amines are preferred, and secondary amines are preferably used due to their low volatility and high solubility, such as diisopropylamine and diethanolamine.
 本発明ではゾルに上記アミンを含有する事により中空シリカ粒子のSiOの1g当たりに換算した表面電荷量を5μeq/g以上、又は25μeq/g以上に設定する事ができる。典型的には5~250μeq/g、又は25~250μeq/g、又は25~100μeq/g、又は25~80μeq/g、又は25~50μeq/gの範囲に設定する事ができる。
 本発明では上述のアミンの種類や添加量を調整することで、中空シリカ粒子の表面電荷量を、任意の表面電荷量に調整する事が可能である。
In the present invention, by including the above-mentioned amine in the sol, the surface charge amount of the hollow silica particles converted to 1 g of SiO 2 can be set to 5 μeq/g or more, or 25 μeq/g or more. Typically, it can be set in the range of 5 to 250 μeq/g, or 25 to 250 μeq/g, or 25 to 100 μeq/g, or 25 to 80 μeq/g, or 25 to 50 μeq/g.
In the present invention, the surface charge amount of the hollow silica particles can be adjusted to any desired value by adjusting the type and amount of the amine added.
 本発明では中空シリカ粒子の表面をシラン化合物で被覆する事ができる。
 上記シラン化合物としては式(1)乃至式(3)で表されるシラン化合物からなる群より選ばれる少なくとも1種のシラン化合物の加水分解物を使用する事ができる。
 上記式(1)中、Rはそれぞれアルキル基、ハロゲン化アルキル基、アルケニル基、アリール基、又はポリエーテル基、エポキシ基、(メタ)アクリロイル基、メルカプト基、アミノ基、ウレイド基、もしくはシアノ基を有する有機基であり且つSi-C結合によりケイ素原子と結合している基を示し、Rはそれぞれアルコキシ基、アシルオキシ基、又はハロゲン基を示し、aは1~3の整数であり、
 上記式(2)及び式(3)中、R及びRはそれぞれ炭素原子数1~3のアルキル基、又は炭素原子数6~30のアリール基であり且つSi-C結合によりケイ素原子と結合している基を示し、R及びRはそれぞれアルコキシ基、アシルオキシ基、又はハロゲン基を示し、Yはアルキレン基、NH基、又は酸素原子を示し、bは1~3の整数であり、cは0又は1の整数であり、dは1~3の整数である。
In the present invention, the surfaces of the hollow silica particles can be coated with a silane compound.
As the silane compound, a hydrolysate of at least one silane compound selected from the group consisting of silane compounds represented by formulas (1) to (3) can be used.
In the above formula (1), R 1 represents an alkyl group, a halogenated alkyl group, an alkenyl group, an aryl group, or an organic group having a polyether group, an epoxy group, a (meth)acryloyl group, a mercapto group, an amino group, a ureido group, or a cyano group, and is bonded to a silicon atom via a Si-C bond; R 2 represents an alkoxy group, an acyloxy group, or a halogen group; a represents an integer of 1 to 3;
In the above formulas (2) and (3), R3 and R5 each represent an alkyl group having 1 to 3 carbon atoms or an aryl group having 6 to 30 carbon atoms and are bonded to a silicon atom via a Si-C bond; R4 and R6 each represent an alkoxy group, an acyloxy group, or a halogen group; Y represents an alkylene group, an NH group, or an oxygen atom; b is an integer of 1 to 3; c is an integer of 0 or 1; and d is an integer of 1 to 3.
 上記アルキル基としては炭素原子数1~18のアルキル基が挙げられ、例えばメチル基、エチル基、n-プロピル基、i-プロピル基、シクロプロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t-ブチル基、シクロブチル基、1-メチル-シクロプロピル基、2-メチル-シクロプロピル基、n-ペンチル基、1-メチル-n-ブチル基、2-メチル-n-ブチル基、3-メチル-n-ブチル基、1,1-ジメチル-n-プロピル基、1,2-ジメチル-n-プロピル基、2,2-ジメチル-n-プロピル基、1-エチル-n-プロピル基、シクロペンチル基、1-メチル-シクロブチル基、2-メチル-シクロブチル基、3-メチル-シクロブチル基、1,2-ジメチル-シクロプロピル基、2,3-ジメチル-シクロプロピル基、1-エチル-シクロプロピル基、2-エチル-シクロプロピル基、n-ヘキシル基、1-メチル-n-ペンチル基、2-メチル-n-ペンチル基、3-メチル-n-ペンチル基、4-メチル-n-ペンチル基、1,1-ジメチル-n-ブチル基、1,2-ジメチル-n-ブチル基、1,3-ジメチル-n-ブチル基、2,2-ジメチル-n-ブチル基、2,3-ジメチル-n-ブチル基、3,3-ジメチル-n-ブチル基、1-エチル-n-ブチル基、2-エチル-n-ブチル基、1,1,2-トリメチル-n-プロピル基、1,2,2-トリメチル-n-プロピル基、1-エチル-1-メチル-n-プロピル基、1-エチル-2-メチル-n-プロピル基、シクロヘキシル基、1-メチル-シクロペンチル基、2-メチル-シクロペンチル基、3-メチル-シクロペンチル基、1-エチル-シクロブチル基、2-エチル-シクロブチル基、3-エチル-シクロブチル基、1,2-ジメチル-シクロブチル基、1,3-ジメチル-シクロブチル基、2,2-ジメチル-シクロブチル基、2,3-ジメチル-シクロブチル基、2,4-ジメチル-シクロブチル基、3,3-ジメチル-シクロブチル基、1-n-プロピル-シクロプロピル基、2-n-プロピル-シクロプロピル基、1-i-プロピル-シクロプロピル基、2-i-プロピル-シクロプロピル基、1,2,2-トリメチル-シクロプロピル基、1,2,3-トリメチル-シクロプロピル基、2,2,3-トリメチル-シクロプロピル基、1-エチル-2-メチル-シクロプロピル基、2-エチル-1-メチル-シクロプロピル基、2-エチル-2-メチル-シクロプロピル基及び2-エチル-3-メチル-シクロプロピル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基等が挙げられるが、これらに限定されない。 The alkyl group may be an alkyl group having 1 to 18 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, an i-propyl group, a cyclopropyl group, an n-butyl group, an i-butyl group, an s-butyl group, a t-butyl group, a cyclobutyl group, a 1-methyl-cyclopropyl group, a 2-methyl-cyclopropyl group, an n-pentyl group, a 1-methyl-n-butyl group, a 2-methyl-n-butyl group, a 3-methyl-n-butyl group, a 1,1-dimethyl-n-propyl group, a 1,2-dimethyl-n-propyl group, a 2,2-dimethyl-n-propyl group, a 1-ethyl-n-propyl group, a cyclopentyl group, a 1-methyl-cyclobutyl group, a 2-methyl-cyclobutyl group, a 3- Methyl-cyclobutyl group, 1,2-dimethyl-cyclopropyl group, 2,3-dimethyl-cyclopropyl group, 1-ethyl-cyclopropyl group, 2-ethyl-cyclopropyl group, n-hexyl group, 1-methyl-n-pentyl group, 2-methyl-n-pentyl group, 3-methyl-n-pentyl group, 4-methyl-n-pentyl group, 1,1-dimethyl-n-butyl group, 1,2-dimethyl-n-butyl group, 1,3-dimethyl-n-butyl group, 2,2-dimethyl-n-butyl group, 2,3-dimethyl-n-butyl group, 3,3-dimethyl-n-butyl group, 1-ethyl-n-butyl group, 2-ethyl-n-butyl group, 1,1,2-trimethyl-n-propyl group, 1,2,2- trimethyl-n-propyl group, 1-ethyl-1-methyl-n-propyl group, 1-ethyl-2-methyl-n-propyl group, cyclohexyl group, 1-methyl-cyclopentyl group, 2-methyl-cyclopentyl group, 3-methyl-cyclopentyl group, 1-ethyl-cyclobutyl group, 2-ethyl-cyclobutyl group, 3-ethyl-cyclobutyl group, 1,2-dimethyl-cyclobutyl group, 1,3-dimethyl-cyclobutyl group, 2,2-dimethyl-cyclobutyl group, 2,3-dimethyl-cyclobutyl group, 2,4-dimethyl-cyclobutyl group, 3,3-dimethyl-cyclobutyl group, 1-n-propyl-cyclopropyl group, 2-n-propyl-cyclopropyl group, 1- Examples of the cyclopropyl group include, but are not limited to, i-propyl-cyclopropyl group, 2-i-propyl-cyclopropyl group, 1,2,2-trimethyl-cyclopropyl group, 1,2,3-trimethyl-cyclopropyl group, 2,2,3-trimethyl-cyclopropyl group, 1-ethyl-2-methyl-cyclopropyl group, 2-ethyl-1-methyl-cyclopropyl group, 2-ethyl-2-methyl-cyclopropyl group, and 2-ethyl-3-methyl-cyclopropyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, and octadecyl group.
 また、アルキレン基としては上述のアルキル基から誘導されるアルキレン基を挙げる事ができる。 Alkylene groups include those derived from the alkyl groups mentioned above.
 上記アリール基としては炭素原子数6~30のアリール基が挙げられ、例えば、フェニル基、ナフチル基、アントラセン基、ピレン基等が挙げられるが、これらに限定されない。 The above aryl group includes aryl groups having 6 to 30 carbon atoms, such as, but not limited to, a phenyl group, a naphthyl group, an anthracene group, and a pyrene group.
 アルケニル基としては炭素数2~10のアルケニル基が挙げられ、例えばエテニル基、1-プロペニル基、2-プロペニル基、1-メチル-1-エテニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、2-メチル-1-プロペニル基、2-メチル-2-プロペニル基、1-エチルエテニル基、1-メチル-1-プロペニル基、1-メチル-2-プロペニル基、1-ペンテニル基、2-ペンテニル基、3-ペンテニル基、4-ペンテニル基、1-n-プロピルエテニル基、1-メチル-1-ブテニル基、1-メチル-2-ブテニル基、1-メチル-3-ブテニル基、2-エチル-2-プロペニル基、2-メチル-1-ブテニル基、2-メチル-2-ブテニル基、2-メチル-3-ブテニル基、3-メチル-1-ブテニル基、3-メチル-2-ブテニル基、3-メチル-3-ブテニル基、1,1-ジメチル-2-プロペニル基、1-i-プロピルエテニル基、1,2-ジメチル-1-プロペニル基、1,2-ジメチル-2-プロペニル基、1-シクロペンテニル基、2-シクロペンテニル基、3-シクロペンテニル基、1-ヘキセニル基、2-ヘキセニル基、3-ヘキセニル基、4-ヘキセニル基、5-ヘキセニル基、1-メチル-1-ペンテニル基、1-メチル-2-ペンテニル基、1-メチル-3-ペンテニル基、1-メチル-4-ペンテニル基、1-n-ブチルエテニル基、2-メチル-1-ペンテニル基、2-メチル-2-ペンテニル基等が挙げられるが、これらに限定されない。 The alkenyl group may be an alkenyl group having 2 to 10 carbon atoms, such as an ethenyl group, a 1-propenyl group, a 2-propenyl group, a 1-methyl-1-ethenyl group, a 1-butenyl group, a 2-butenyl group, a 3-butenyl group, a 2-methyl-1-propenyl group, a 2-methyl-2-propenyl group, a 1-ethylethenyl group, a 1-methyl-1-propenyl group, a 1-methyl-2-propenyl group, a 1-pentenyl group, a 2-pentenyl group, a 3-pentenyl group, a 4-pentenyl group, a 1-n-propylethenyl group, a 1-methyl-1-butenyl group, a 1-methyl-2-butenyl group, a 1-methyl-3-butenyl group, a 2-ethyl-2-propenyl group, a 2-methyl-1-butenyl group, a 2-methyl-2-butenyl group, a 2-methyl-3-butenyl group, Examples of the aryl group include, but are not limited to, 3-methyl-1-butenyl group, 3-methyl-2-butenyl group, 3-methyl-3-butenyl group, 1,1-dimethyl-2-propenyl group, 1-i-propylethenyl group, 1,2-dimethyl-1-propenyl group, 1,2-dimethyl-2-propenyl group, 1-cyclopentenyl group, 2-cyclopentenyl group, 3-cyclopentenyl group, 1-hexenyl group, 2-hexenyl group, 3-hexenyl group, 4-hexenyl group, 5-hexenyl group, 1-methyl-1-pentenyl group, 1-methyl-2-pentenyl group, 1-methyl-3-pentenyl group, 1-methyl-4-pentenyl group, 1-n-butylethenyl group, 2-methyl-1-pentenyl group, and 2-methyl-2-pentenyl group.
 上記アルコキシ基としては炭素原子数1~10のアルコキシ基が挙げられ、例えばメトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、i-ブトキシ基、s-ブトキシ基、t-ブトキシ基、n-ペンチロキシ基、1-メチル-n-ブトキシ基、2-メチル-n-ブトキシ基、3-メチル-n-ブトキシ基、1,1-ジメチル-n-プロポキシ基、1,2-ジメチル-n-プロポキシ基、2,2-ジメチル-n-プロポキシ基、1-エチル-n-プロポキシ基、n-ヘキシロキシ基等が挙げられるが、これらに限定されない。 The above alkoxy groups include alkoxy groups having 1 to 10 carbon atoms, such as, but not limited to, methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, s-butoxy, t-butoxy, n-pentyloxy, 1-methyl-n-butoxy, 2-methyl-n-butoxy, 3-methyl-n-butoxy, 1,1-dimethyl-n-propoxy, 1,2-dimethyl-n-propoxy, 2,2-dimethyl-n-propoxy, 1-ethyl-n-propoxy, and n-hexyloxy.
 上記アシルオキシ基としては炭素原子数2~10のアシルオキシ基が挙げられ、例えばメチルカルボニルオキシ基、エチルカルボニルオキシ基、n-プロピルカルボニルオキシ基、i-プロピルカルボニルオキシ基、n-ブチルカルボニルオキシ基、i-ブチルカルボニルオキシ基、s-ブチルカルボニルオキシ基、t-ブチルカルボニルオキシ基、n-ペンチルカルボニルオキシ基、1-メチル-n-ブチルカルボニルオキシ基、2-メチル-n-ブチルカルボニルオキシ基、3-メチル-n-ブチルカルボニルオキシ基、1,1-ジメチル-n-プロピルカルボニルオキシ基、1,2-ジメチル-n-プロピルカルボニルオキシ基、2,2-ジメチル-n-プロピルカルボニルオキシ基、1-エチル-n-プロピルカルボニルオキシ基、n-ヘキシルカルボニルオキシ基、1-メチル-n-ペンチルカルボニルオキシ基、2-メチル-n-ペンチルカルボニルオキシ基等が挙げられるが、これらに限定されない。 The above acyloxy group includes acyloxy groups having 2 to 10 carbon atoms, such as, but not limited to, methylcarbonyloxy group, ethylcarbonyloxy group, n-propylcarbonyloxy group, i-propylcarbonyloxy group, n-butylcarbonyloxy group, i-butylcarbonyloxy group, s-butylcarbonyloxy group, t-butylcarbonyloxy group, n-pentylcarbonyloxy group, 1-methyl-n-butylcarbonyloxy group, 2-methyl-n-butylcarbonyloxy group, 3-methyl-n-butylcarbonyloxy group, 1,1-dimethyl-n-propylcarbonyloxy group, 1,2-dimethyl-n-propylcarbonyloxy group, 2,2-dimethyl-n-propylcarbonyloxy group, 1-ethyl-n-propylcarbonyloxy group, n-hexylcarbonyloxy group, 1-methyl-n-pentylcarbonyloxy group, 2-methyl-n-pentylcarbonyloxy group, etc.
 上記ハロゲン基としてはフッ素、塩素、臭素、ヨウ素等が挙げられる。 The above halogen groups include fluorine, chlorine, bromine, iodine, etc.
 ポリエーテル基を有する有機基としては、アルコキシ基を有するポリエーテルプロピル基が挙げられる。例えば(CHO)SiC(OC)nOCHが挙げられる。nは1~100、又は1~10の範囲で用いる事ができる。 An example of an organic group having a polyether group is a polyetherpropyl group having an alkoxy group, such as (CH 3 O) 3 SiC 3 H 6 (OC 2 H 4 ) n OCH 3. n can be in the range of 1 to 100 or 1 to 10.
 エポキシ基を有する有機基としては、例えば、2-(3,4-エポキシシクロヘキシル)エチル基、3-グリシドキシプロピル基等が挙げられる。 Examples of organic groups having an epoxy group include the 2-(3,4-epoxycyclohexyl)ethyl group and the 3-glycidoxypropyl group.
 上記(メタ)アクリロイル基としては、アクリロイル基とメタクリロイル基の双方を表す。(メタ)アクリロイル基を有する有機基は例えば、3-メタクリロキシプロピル基、3-アクリロキシプロピル基等が挙げられる。 The above (meth)acryloyl group refers to both acryloyl and methacryloyl groups. Examples of organic groups having a (meth)acryloyl group include a 3-methacryloxypropyl group and a 3-acryloxypropyl group.
 メルカプト基を有する有機基としては例えば、3-メルカプトプロピル基が挙げられる。 An example of an organic group having a mercapto group is the 3-mercaptopropyl group.
 アミノ基を有する有機基としては、例えば、2-アミノエチル基、3-アミノプロピル基、N-2-(アミノエチル)-3-アミノプロピル基、N-(1,3-ジメチル-ブチリデン)アミノプロピル基、N-フェニル-3-アミノプロピル基、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピル基等が挙げられる。 Examples of organic groups having an amino group include a 2-aminoethyl group, a 3-aminopropyl group, an N-2-(aminoethyl)-3-aminopropyl group, an N-(1,3-dimethyl-butylidene)aminopropyl group, an N-phenyl-3-aminopropyl group, and an N-(vinylbenzyl)-2-aminoethyl-3-aminopropyl group.
 ウレイド基を有する有機基としては、例えば、3-ウレイドプロピル基が挙げられる。 An example of an organic group having a ureido group is the 3-ureidopropyl group.
 シアノ基を有する有機基としては、例えば、3-シアノプロピル基が挙げられる。 An example of an organic group having a cyano group is the 3-cyanopropyl group.
 上記式(2)及び式(3)で表されるシラン化合物はトリメチルシリル基をシリカ粒子の表面に形成できる化合物が好ましい。
 それら化合物としては以下に例示することができる。
 上記式中、R12はアルコキシ基を示し、例えばメトキシ基、エトキシ基が挙げられる。上記シラン化合物は信越化学工業(株)製のシラン化合物を使用する事ができる。
The silane compounds represented by the above formulas (2) and (3) are preferably compounds capable of forming trimethylsilyl groups on the surface of silica particles.
Examples of such compounds include the following.
In the above formula, R 12 represents an alkoxy group, for example, a methoxy group or an ethoxy group. As the silane compound, a silane compound manufactured by Shin-Etsu Chemical Co., Ltd. can be used.
 シリカ粒子の表面のヒドロキシル基、例えばシリカ粒子であればシラノール基と上記シラン化合物が反応してシロキサン結合によりシリカ粒子の表面に上記シラン化合物を被覆する事ができる。反応は20℃からその分散媒の沸点の範囲までの温度で行うことができる、例えば20℃~100℃の範囲の温度で行うことができる。反応は0.1~6時間程度で行うことができる。 The hydroxyl groups on the surface of the silica particles, for example the silanol groups in the case of silica particles, react with the above-mentioned silane compound, and the surface of the silica particles can be coated with the above-mentioned silane compound through siloxane bonds. The reaction can be carried out at temperatures ranging from 20°C to the boiling point of the dispersion medium, for example, at temperatures ranging from 20°C to 100°C. The reaction can be carried out for about 0.1 to 6 hours.
 シリカ粒子表面に対してシラン化合物中のケイ素原子の個数が0.1個/nm~6.0個/nmの被覆量に相当するシラン化合物をシリカゾルに添加して中空シリカ粒子表面の被覆を行う事ができる。 The surfaces of the hollow silica particles can be coated by adding a silane compound to the silica sol in an amount corresponding to a coating amount of 0.1 silicon atoms/nm 2 to 6.0 silicon atoms/nm 2 on the silica particle surfaces.
 上記シラン化合物の加水分解には水が必要であるが、水性溶媒のゾルであればそれら水性溶媒が用いられる。水性媒体を有機溶媒に溶媒置換した時に溶媒中に残存する水分を用いる事もできる。例えば有機溶媒中に0.01~1質量%で存在する水分を用いる事ができる。また、加水分解は触媒を用いて行うことも、触媒なしで行う事もできる。
 触媒なしで行う場合はシリカ粒子表面が酸性サイドで存在する場合である。触媒を用いる場合、加水分解触媒として金属キレート化合物、有機酸、無機酸、有機塩基、無機塩基を挙げることができる。加水分解触媒としての金属キレート化合物としては、例えばトリエトキシ・モノ(アセチルアセトナート)チタン、トリエトキシ・モノ(アセチルアセトナート)ジルコニウム等が挙げられる。加水分解触媒としての有機酸としては、例えば酢酸、シュウ酸等が挙げられる。加水分解触媒としての無機酸としては、例えば塩酸、硝酸、硫酸、フッ酸、リン酸等を挙げられる。加水分解触媒としての有機塩基としては、例えばピリジン、ピロール、ピペラジン、第4級アンモニウム塩が挙げられる。加水分解触媒としての無機塩基としては、例えばアンモニア、水酸化ナトリウム、水酸化カリウムが挙げられる。
Water is necessary for the hydrolysis of the silane compound, and if the sol is an aqueous solvent, the aqueous solvent is used. When the aqueous medium is replaced with an organic solvent, the water remaining in the solvent can also be used. For example, water present in the organic solvent at 0.01 to 1% by mass can be used. The hydrolysis can be performed with or without a catalyst.
When the reaction is carried out without a catalyst, the surface of the silica particles is on the acidic side. When a catalyst is used, examples of the hydrolysis catalyst include metal chelate compounds, organic acids, inorganic acids, organic bases, and inorganic bases. Examples of the metal chelate compounds as the hydrolysis catalyst include triethoxy mono(acetylacetonato)titanium and triethoxy mono(acetylacetonato)zirconium. Examples of the organic acids as the hydrolysis catalyst include acetic acid and oxalic acid. Examples of the inorganic acids as the hydrolysis catalyst include hydrochloric acid, nitric acid, sulfuric acid, hydrofluoric acid, and phosphoric acid. Examples of the organic bases as the hydrolysis catalyst include pyridine, pyrrole, piperazine, and quaternary ammonium salts. Examples of the inorganic bases as the hydrolysis catalyst include ammonia, sodium hydroxide, and potassium hydroxide.
 有機酸としては2価脂肪族カルボン酸、脂肪族オキシカルボン酸、アミノ酸、及びキレート剤からなる群から選ばれる少なくとも1種の有機酸が挙げられ、2価脂肪族カルボン酸としてはシュウ酸、マロン酸、及びコハク酸が挙げられ、脂肪族オキシカルボン酸としてはグリコール酸、乳酸、リンゴ酸、酒石酸、及びクエン酸が挙げられ、アミノ酸としてはグリシン、アラニン、バリン、ロイシン、セリン、及びトリオニンが挙げられ、キレート剤としてはエチレンジアミン四酢酸、L-アスパラギン酸-N,N-二酢酸、及びジエチレントリアミン五酢酸等が挙げられる。有機酸塩としては上記有機酸のアルカリ金属塩、アンモニウム塩、及びアミン塩が挙げられる。アルカリ金属としてはナトリウム、カリウムが挙げられる。 The organic acid may be at least one organic acid selected from the group consisting of divalent aliphatic carboxylic acids, aliphatic oxycarboxylic acids, amino acids, and chelating agents. Divalent aliphatic carboxylic acids include oxalic acid, malonic acid, and succinic acid. Aliphatic oxycarboxylic acids include glycolic acid, lactic acid, malic acid, tartaric acid, and citric acid. Amino acids include glycine, alanine, valine, leucine, serine, and threonine. Chelating agents include ethylenediaminetetraacetic acid, L-aspartic acid-N,N-diacetic acid, and diethylenetriaminepentaacetic acid. Organic acid salts include alkali metal salts, ammonium salts, and amine salts of the above organic acids. Alkali metals include sodium and potassium.
 本発明では上記中空シリカ有機溶媒ゾルと有機樹脂とを含む被膜形成組成物が得られる。 In the present invention, a film-forming composition is obtained that contains the hollow silica organic solvent sol and an organic resin.
 有機樹脂として熱硬化性又は光硬化性の樹脂を選択し混合する事により被膜形成組成物が得られる。そしてアミン系硬化剤、酸無水物系硬化剤、ラジカル発生剤系硬化剤(熱ラジカル発生剤、光ラジカル発生剤)、又は酸発生剤系硬化剤(熱酸発生剤、又は光酸発生剤)等の硬化剤を含み硬化物とする事ができる。 A film-forming composition is obtained by selecting and mixing a thermosetting or photocurable resin as the organic resin. A cured product can be obtained by adding a curing agent such as an amine-based curing agent, an acid anhydride-based curing agent, a radical generator-based curing agent (thermal radical generator, photoradical generator), or an acid generator-based curing agent (thermal acid generator, photoacid generator).
 本発明の被膜形成組成物は有機樹脂と硬化剤とを含み、被膜形成組成物を基材に塗布又は充填して加熱、光照射、又はその組み合わせにより硬化物を形成する事ができる。有機樹脂(硬化性樹脂)としてはエポキシ基又は(メタ)アクリロイル基等の官能基を有する樹脂や、イソシアネート系樹脂が挙げられる。例えば光硬化性多官能アクリレートを好ましく用いる事ができる。 The film-forming composition of the present invention contains an organic resin and a curing agent, and the film-forming composition can be applied to or filled into a substrate and then heated, irradiated with light, or a combination thereof to form a cured product. Examples of organic resins (curable resins) include resins having functional groups such as epoxy groups or (meth)acryloyl groups, and isocyanate-based resins. For example, photocurable polyfunctional acrylates can be preferably used.
 多官能アクリレートとしては分子中に2官能、3官能、4官能、それ以上の官能基を有する多官能アクリレートが挙げられ、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。
 これら多官能アクリレートは以下に記載する事もできる。
Examples of the polyfunctional acrylate include polyfunctional acrylates having difunctional, trifunctional, tetrafunctional or higher functional groups in the molecule, such as neopentyl glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, and dipentaerythritol hexa(meth)acrylate.
These polyfunctional acrylates may also be described below.
 本発明の被膜形成組成物は界面活性剤(レベリング剤)を含む事ができる。
 界面活性剤(レベリング剤)としてはアニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤、非イオン性界面活性剤、及びシリコーン系界面活性剤を用いる事ができる。界面活性剤(レベリング剤)は、有機樹脂に対して0.01~5phr、又は0.01~1phrの範囲で添加する事が可能である。
The film-forming composition of the present invention may contain a surfactant (leveling agent).
The surfactant (leveling agent) may be an anionic surfactant, a cationic surfactant, an amphoteric surfactant, a nonionic surfactant, or a silicone surfactant. The surfactant (leveling agent) may be added in an amount of 0.01 to 5 phr or 0.01 to 1 phr relative to the organic resin.
 本発明に用いられるアニオン界面活性剤としては、脂肪酸のナトリウム塩及びカリウム塩、アルキルベンゼンスルホン酸塩、高級アルコール硫酸エステル塩、ポリオキシエチレンアルキルエーテル硫酸塩、α-スルホ脂肪酸エステル、α-オレフィンスルホン酸塩、モノアルキルリン酸エステル塩、及びアルカンスルホン酸塩が挙げられる。 Anionic surfactants that can be used in the present invention include sodium and potassium salts of fatty acids, alkylbenzene sulfonates, higher alcohol sulfates, polyoxyethylene alkyl ether sulfates, α-sulfofatty acid esters, α-olefin sulfonates, monoalkyl phosphates, and alkanesulfonates.
 例えばアルキルベンゼンスルホン酸塩としては、ナトリウム塩、カリウム塩及びリチウム塩が挙げられ、C10~C16アルキルベンゼンスルホン酸ナトリウム、C10~C16アルキルベンゼンスルホン酸、アルキルナフタレンスルホン酸ナトリウムなどが挙げられる。 For example, alkylbenzenesulfonates include sodium salts, potassium salts and lithium salts, such as sodium C10-C16 alkylbenzenesulfonate, C10-C16 alkylbenzenesulfonic acid, and sodium alkylnaphthalenesulfonate.
 高級アルコール硫酸エステル塩としては、炭素原子数12のドデシル硫酸ナトリウム(ラウリル硫酸ナトリウム)、ラウリル硫酸トリエタノールアミン、ラウリル硫酸トリエタノールアンモニウムなどが挙げられる。 Examples of higher alcohol sulfate ester salts include sodium dodecyl sulfate (sodium lauryl sulfate) with 12 carbon atoms, triethanolamine lauryl sulfate, and triethanolammonium lauryl sulfate.
 ポリオキシエチレンアルキルエーテル硫酸塩としては、ポリオキシエチレンスチレン化フェニルエーテル硫酸ナトリウム、ポリオキシエチレンスチレン化フェニルエーテル硫酸アンモニウム、ポリオキシエチレンデシルエーテル硫酸ナトリウム、ポリオキシエチレンデシルエーテル硫酸アンモニウム、ポリオキシエチレンラウリルエーテル硫酸ナトリウム、ポリオキシエチレンラウリルエーテル硫酸アンモニウム、ポリオキシエチレントリデシルエーテル硫酸ナトリウム、ポリオキシエチレンオレイルセチルエーテル硫酸ナトリウムなどが挙げられる。 Examples of polyoxyethylene alkyl ether sulfates include sodium polyoxyethylene styrenated phenyl ether sulfate, ammonium polyoxyethylene styrenated phenyl ether sulfate, sodium polyoxyethylene decyl ether sulfate, ammonium polyoxyethylene decyl ether sulfate, sodium polyoxyethylene lauryl ether sulfate, ammonium polyoxyethylene lauryl ether sulfate, sodium polyoxyethylene tridecyl ether sulfate, and sodium polyoxyethylene oleyl cetyl ether sulfate.
 α-オレフィンスルホン酸塩としては、α-オレフィンスルホン酸ナトリウムなどが挙げられる。 Examples of α-olefin sulfonates include sodium α-olefin sulfonate.
 アルカンスルホン酸塩としては、2-エチルヘキシル硫酸ナトリウムなどが挙げられる。 Examples of alkane sulfonates include sodium 2-ethylhexyl sulfate.
 本発明に用いられるカチオン界面活性剤としては、例えばアルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩、アルキルジメチルベンジルアンモニウム塩、アミン塩系剤が挙げられる。 Cationic surfactants that can be used in the present invention include, for example, alkyltrimethylammonium salts, dialkyldimethylammonium salts, alkyldimethylbenzylammonium salts, and amine salt agents.
 アルキルトリメチルアンモニウム塩は第4級アンモニウム塩であり、塩素イオンや臭素イオンを対イオンとして有する。例えば、塩化ドデシルトリメチルアンモニウム、塩化セチルトリメチルアンモニウム、塩化ヤシアルキルトリメチルアンモニウム、塩化アルキル(C16-18)トリメチルアンモニウム等が挙げられる。 Alkyltrimethylammonium salts are quaternary ammonium salts that have chloride or bromide ions as counterions. Examples include dodecyltrimethylammonium chloride, cetyltrimethylammonium chloride, coconut alkyltrimethylammonium chloride, and alkyl (C16-18) trimethylammonium chloride.
 ジアルキルジメチルアンモニウム塩は、親油性となる主鎖を2つ、メチル基を2つ有するものである。ビス(水素化牛脂)ジメチルアンモニウムクロリドが挙げられ、例えば、塩化ジデシルジメチルアンモニウム、塩化ジヤシアルキルジメチルアンモニウム、塩化ジ硬化牛脂アルキルジメチルアンモニウム、塩化ジアルキル(C14-18)ジメチルアンモニウム等が挙げられる。 Dialkyldimethylammonium salts have two lipophilic main chains and two methyl groups. Examples include bis(hydrogenated tallow)dimethylammonium chloride, such as didecyldimethylammonium chloride, dicoconucleic acid alkyldimethylammonium chloride, dihydrogenated tallow alkyldimethylammonium chloride, and dialkyl(C14-18)dimethylammonium chloride.
 アルキルジメチルベンジルアンモニウム塩は、親油性となる主鎖を1つ、メチル基を2つ、ベンジル基を1つ有する第4級アンモニウム塩であり塩化ベンザウコニウムが挙げられ、例えば、塩化アルキル(C8-18)ジメチルベンジルアンモニウムが挙げられる。 Alkyl dimethyl benzyl ammonium salts are quaternary ammonium salts that have one lipophilic main chain, two methyl groups, and one benzyl group, and examples of these include benzauconium chloride, such as alkyl (C8-18) dimethyl benzyl ammonium chloride.
 アミン塩系剤としては、アンモニアの水素原子を1つ以上の炭化水素基で置換したものが挙げられ、例えばNメチルビスヒドロキシエチルアミン脂肪酸エステル塩酸塩が挙げられる。 Amine salt agents include those in which the hydrogen atom of ammonia is replaced with one or more hydrocarbon groups, such as N-methylbishydroxyethylamine fatty acid ester hydrochloride.
 本発明に用いられる両性界面活性剤としては、N-アルキル-βー-アラニン型のアルキルアミノ脂肪酸塩、アルキルカルボキシベタイン型のアルキルベタイン、N,N-ジメチルドデシルアミンオキシド型のアルキルアミンオキシドが挙げられる。これらの例示として、ラウリルベタイン、ステアリルベタイン、2-アルキル-N-カルボキシメチル-N-ヒドロキシエチルイミダゾリニウムベタイン、ラウリルジメチルアミンオキサイドが挙げられる。 The amphoteric surfactants used in the present invention include N-alkyl-β-alanine type alkylamino fatty acid salts, alkylcarboxybetaine type alkylbetaines, and N,N-dimethyldodecylamine oxide type alkylamine oxides. Examples of these include lauryl betaine, stearyl betaine, 2-alkyl-N-carboxymethyl-N-hydroxyethylimidazolinium betaine, and lauryl dimethylamine oxide.
 本発明に用いられる非イオン界面活性剤としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェノールエーテル、アルキルグルコシド、ポリオキシエチレン脂肪酸エステル、ショ糖脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、脂肪酸アルカノールアミドから選ばれる。 The nonionic surfactant used in the present invention is selected from polyoxyethylene alkyl ethers, polyoxyethylene alkylphenol ethers, alkyl glucosides, polyoxyethylene fatty acid esters, sucrose fatty acid esters, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, and fatty acid alkanolamides.
 例えば、ポリオキシエチレンアルキルエーテルとしては、ポリオキシエチレンドデシルエーテル(ポリオキシエチレンラウリルエーテル)、ポリオキシアルキレンラウリルエーテル、ポリオキシエチレントリデシルエーテル、ポリオキシアルキレントリデシルエーテル、ポリオキシエチレンミリスチルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンベヘニルエーテル、ポリオキシエチレン-2-エチルヘキシルエーテル、ポリオキシエチレンイソデシルエーテル等が挙げられる。 For example, examples of polyoxyethylene alkyl ethers include polyoxyethylene dodecyl ether (polyoxyethylene lauryl ether), polyoxyalkylene lauryl ether, polyoxyethylene tridecyl ether, polyoxyalkylene tridecyl ether, polyoxyethylene myristyl ether, polyoxyethylene cetyl ether, polyoxyethylene oleyl ether, polyoxyethylene stearyl ether, polyoxyethylene behenyl ether, polyoxyethylene-2-ethylhexyl ether, and polyoxyethylene isodecyl ether.
 ポリオキシエチレンアルキルフェノールエーテルとしては、ポリオキシエチレンスチレン化フェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンジスチレン化フェニルエーテル、ポリオキシエチレントリベンジルフェニルエーテルなどが挙げられる。 Examples of polyoxyethylene alkylphenol ethers include polyoxyethylene styrenated phenyl ether, polyoxyethylene nonyl phenyl ether, polyoxyethylene distyrenated phenyl ether, and polyoxyethylene tribenzyl phenyl ether.
 アルキルグルコシドとしては、デシルグルコシド、ラウリルグルコシドなどが挙げられる。 Examples of alkyl glucosides include decyl glucoside and lauryl glucoside.
 ポリオキシエチレン脂肪酸エステルとしては、ポリオキシエチレンモノラウレート、ポリオキシエチレンモノステアレート、ポリオキシエチレンモノオレート、ポリエチレングリコールジステアレート、ポリエチレングリコールジオレート、ポリプロピレングリコールジオレートなどが挙げられる。 Examples of polyoxyethylene fatty acid esters include polyoxyethylene monolaurate, polyoxyethylene monostearate, polyoxyethylene monooleate, polyethylene glycol distearate, polyethylene glycol dioleate, and polypropylene glycol dioleate.
 ソルビタン脂肪酸エステルとしては、ソルビタンモノカプリレート、ソルビタンモノラウレート、ソルビタンモノミリステート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンジステアレート、ソルビタントリステアレート、ソルビタンモノオレート、ソルビタントリオレート、ソルビタンモノセスキオレート、及びこれらのエチレンオキシド付加物などが挙げられる。 Sorbitan fatty acid esters include sorbitan monocaprylate, sorbitan monolaurate, sorbitan monomyristate, sorbitan monopalmitate, sorbitan monostearate, sorbitan distearate, sorbitan tristearate, sorbitan monooleate, sorbitan trioleate, sorbitan monosesquioleate, and ethylene oxide adducts thereof.
 ポリオキシエチレンソルビタン脂肪酸エステルとしては、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリステアレート、ポリオキシエチレンソルビタンモノオレート、ポリオキシエチレンソルビタントリオレート、ポリオキシエチレンソルビタントリイソステアレートなどが挙げられる。 Examples of polyoxyethylene sorbitan fatty acid esters include polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan tristearate, polyoxyethylene sorbitan monooleate, polyoxyethylene sorbitan trioleate, and polyoxyethylene sorbitan triisostearate.
 また脂肪酸アルカノールアミドとしては、ヤシ油脂肪酸ジエタノールアミド、牛脂脂肪酸ジエタノールアミド、ラウリン酸ジエタノールアミド、オレイン酸ジエタノールアミドなどが挙げられる。 Fatty acid alkanolamides include coconut oil fatty acid diethanolamide, beef tallow fatty acid diethanolamide, lauric acid diethanolamide, and oleic acid diethanolamide.
 さらに、ポリオキシエチレンポリオキシプロピレングリコール、ポリオキシエチレン脂肪酸エステルなどのポリオキシアルキルエーテル又はポリオキシアルキルグリコール、ポリオキシエチレン硬化ヒマシ油エーテル、ソルビタン脂肪酸エステルアルキルエーテル、アルキルポリグルコシド、ソルビタンモノオレート、ショ糖脂肪酸エステルなどが挙げられる。 Further examples include polyoxyalkyl ethers or polyoxyalkyl glycols such as polyoxyethylene polyoxypropylene glycol, polyoxyethylene fatty acid esters, polyoxyethylene hydrogenated castor oil ether, sorbitan fatty acid ester alkyl ethers, alkyl polyglucosides, sorbitan monooleate, and sucrose fatty acid esters.
 本発明に用いられるシリコーン系界面活性剤は主鎖にシロキサン結合を含む繰り返し単位を有する化合物である。シリコーン系界面活性剤としては重量平均分子量500~50000の範囲のものを用いる事ができる。これらは変性シリコーン系界面活性剤であってもよく、ポリシロキサンの側鎖及び/又は末端に有機基を導入した構造のものが挙げられる。有機基としてはアミノ基、エポキシ基、脂環式エポキシ基、カルビノール基、メルカプト基、カルボキシル基、脂肪族エステル基、脂肪族アミド基、ポリエーテル基が挙げられる。シリコーン系界面活性剤としては商品名、トーレシリコーンDC3PA、トーレシリコーンSH7PA、トーレシリコーンDC11PA、トーレシリコーンSH21PA、トーレシリコーンSH28PA、トーレシリコーンSH29PA、トーレシリコーンSH30PA、トーレシリコーンSH8400 (以上、東レ・ダウコーニング(株)製)、Silwet l-77、L-7280、L-7001、L-7002、L-7200、L-7210、L-7220、L-7230、L7500、L-7600、L-7602、L-7604、L-7605、L-7622、L-765 7、L-8500、L-8610 (以上、モメンティブ・パフォーマンス・マテリアルズ社製)、KP-341、KF-6001、KF-6002 (以上、信越シリコーン株式会社製)、BYK307、BYK323、BYK330 (以上、ビックケミー社製)等が挙げられる。例えばポリエーテル変性シリコーンとして商品名L-7001(DOWSIL社製)を好適に用いる事ができる。 The silicone surfactant used in the present invention is a compound having a repeating unit containing a siloxane bond in the main chain. Silicone surfactants having a weight average molecular weight in the range of 500 to 50,000 can be used. These may be modified silicone surfactants, and examples of such surfactants include those having an organic group introduced into the side chain and/or end of a polysiloxane. Examples of organic groups include amino groups, epoxy groups, alicyclic epoxy groups, carbinol groups, mercapto groups, carboxyl groups, aliphatic ester groups, aliphatic amide groups, and polyether groups. Examples of silicone surfactants include the following product names: Toray Silicone DC3PA, Toray Silicone SH7PA, Toray Silicone DC11PA, Toray Silicone SH21PA, Toray Silicone SH28PA, Toray Silicone SH29PA, Toray Silicone SH30PA, Toray Silicone SH8400 (all manufactured by Dow Corning Toray Co., Ltd.), Silwet l-77, L-7280, L-7001, L-7002, L-7200. , L-7210, L-7220, L-7230, L7500, L-7600, L-7602, L-7604, L-7605, L-7622, L-765 7, L-8500, L-8610 (all manufactured by Momentive Performance Materials), KP-341, KF-6001, KF-6002 (all manufactured by Shin-Etsu Silicones Co., Ltd.), BYK307, BYK323, BYK330 (all manufactured by BYK-Chemie), etc. For example, the product name L-7001 (manufactured by Dowsil Corporation) can be suitably used as a polyether modified silicone.
 本発明では上記有機溶媒ゾルと有機樹脂とを含む被膜形成組成物が得られる。被膜形成組成物は有機溶媒ゾル中の有機溶媒を除去して、中空シリカ粒子と有機樹脂を含む被膜形成組成物とする事ができる。 In the present invention, a film-forming composition containing the above organic solvent sol and an organic resin is obtained. The film-forming composition can be obtained by removing the organic solvent from the organic solvent sol to form a film-forming composition containing hollow silica particles and an organic resin.
 上記被膜形成組成物が熱硬化性被膜形成組成物である場合、エポキシ基又は(メタ)アクリロイル基等の官能基含有樹脂に対して熱硬化剤を0.01~50phr、又は0.01~10phrの範囲で含有する事が可能であり、例えばエポキシ基又は(メタ)アクリロイル基等の官能基に対して熱硬化剤を0.5~1.5当量、好ましくは0.8~1.2当量の割合で含有することができる。硬化性樹脂に対する熱硬化剤の当量は、硬化樹脂の官能基に対する熱硬化剤の当量比で示される。 When the film-forming composition is a thermosetting film-forming composition, the heat curing agent can be contained in the range of 0.01 to 50 phr, or 0.01 to 10 phr, relative to the resin containing a functional group such as an epoxy group or a (meth)acryloyl group. For example, the heat curing agent can be contained in a ratio of 0.5 to 1.5 equivalents, preferably 0.8 to 1.2 equivalents, relative to the functional group such as an epoxy group or a (meth)acryloyl group. The equivalent of the heat curing agent relative to the curable resin is indicated by the equivalent ratio of the heat curing agent to the functional group of the cured resin.
 熱硬化剤としてはフェノール樹脂、アミン系硬化剤、ポリアミド樹脂、イミダゾール類、ポリメルカプタン、酸無水物、熱ラジカル発生剤、熱酸発生剤等が挙げられる。特にラジカル発生剤系硬化剤、酸無水物系硬化剤、アミン系硬化剤が好ましい。
 これら熱硬化剤は固体であっても溶剤に溶解することによって使用することができるが、溶剤の蒸発により硬化物の密度低下や細孔の生成による強度低下、耐水性の低下を生ずるために、硬化剤自体が常温、常圧下で液状のものが好ましい。
Examples of the heat curing agent include phenol resins, amine-based curing agents, polyamide resins, imidazoles, polymercaptans, acid anhydrides, heat radical generators, heat acid generators, etc. In particular, radical generator-based curing agents, acid anhydride-based curing agents, and amine-based curing agents are preferred.
Even if these thermosetting agents are solid, they can be used by dissolving them in a solvent. However, evaporation of the solvent causes a decrease in density of the cured product, and the formation of pores, resulting in a decrease in strength and a decrease in water resistance. Therefore, it is preferable that the curing agent itself is liquid at room temperature and normal pressure.
 フェノール樹脂としては、例えばフェノールノボラック樹脂、クレゾールノボラック樹脂等が挙げられる。 Examples of phenolic resins include phenol novolac resin and cresol novolac resin.
 アミン系硬化剤としては、例えばピペリジン、N,N-ジメチルピペラジン、トリエチレンジアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール、ベンジルジメチルアミン、2-(ジメチルアミノメチル)フェノール、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ジエチルアミノプロピルアミン、N-アミノエチルピペラジン、ジ(1-メチル-2-アミノシクロヘキシル)メタン、メンセンジアミン、イソフオロンジアミン、ジアミノジシクロヘキシルメタン、1,3-ジアミノメチルシクロヘキサン、キシレンジアミン、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン、ジエチルトルエンジアミン等が挙げられる。これらの中で液状であるジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ジエチルアミノプロピルアミン、N-アミノエチルピペラジン、ジ(1-メチル-2-アミノシクロヘキシル)メタン、メンセンジアミン、イソフオロンジアミン、ジアミノジシクロヘキシルメタン、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン、ジエチルトルエンジアミン等を好ましく用いることができる。 Examples of amine-based hardeners include piperidine, N,N-dimethylpiperazine, triethylenediamine, 2,4,6-tris(dimethylaminomethyl)phenol, benzyldimethylamine, 2-(dimethylaminomethyl)phenol, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, diethylaminopropylamine, N-aminoethylpiperazine, di(1-methyl-2-aminocyclohexyl)methane, menthenediamine, isophoronediamine, diaminodicyclohexylmethane, 1,3-diaminomethylcyclohexane, xylylenediamine, metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, 3,3'-diethyl-4,4'-diaminodiphenylmethane, diethyltoluenediamine, etc. Among these, liquids such as diethylenetriamine, triethylenetetramine, tetraethylenepentamine, diethylaminopropylamine, N-aminoethylpiperazine, di(1-methyl-2-aminocyclohexyl)methane, menthenediamine, isophoronediamine, diaminodicyclohexylmethane, 3,3'-diethyl-4,4'-diaminodiphenylmethane, and diethyltoluenediamine can be preferably used.
 ポリアミド樹脂としては、ダイマー酸とポリアミンの縮合により生成するものが挙げられ、例えば分子中に一級アミンと二級アミンを有するポリアミドアミンが挙げられる。 Polyamide resins include those produced by condensation of dimer acid and polyamine, such as polyamidoamines that have primary and secondary amines in the molecule.
 イミダゾール類としては、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテート、エポキシイミダゾールアダクト等が挙げられる。 Imidazoles include 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, and epoxy imidazole adduct.
 ポリメルカプタンは、例えばポリプロピレングリコール鎖の末端にメルカプタン基が存在するものや、ポリエチレングリコール鎖の末端にメルカプタン基が存在するものであり、液状のものが好ましい。 The polymercaptan is preferably liquid, for example, one in which a mercaptan group is present at the end of a polypropylene glycol chain or one in which a mercaptan group is present at the end of a polyethylene glycol chain.
 酸無水物系硬化剤としては一分子中に複数のカルボキシル基を有する化合物の無水物が好ましい。これらの酸無水物系硬化剤としては、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水ベンゾフェノンテトラカルボン酸、エチレングリコールビストリメリテート、グリセロールトリストリメリテート、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸、メチルエンドメチレンテトラヒドロ無水フタル酸、メチルブテニルテトラヒドロ無水フタル酸、ドデセニル無水コハク酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水コハク酸、メチルシクロヘキセンジカルボン酸無水物、クロレンド酸無水物等が挙げられる。 As an acid anhydride hardener, an anhydride of a compound having multiple carboxyl groups in one molecule is preferred. Examples of these acid anhydride hardeners include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, ethylene glycol bistrimellitate, glycerol tristrimellitate, maleic anhydride, tetrahydrophthalic anhydride, methyl tetrahydrophthalic anhydride, endomethylene tetrahydrophthalic anhydride, methyl endomethylene tetrahydrophthalic anhydride, methyl butenyl tetrahydrophthalic anhydride, dodecenyl succinic anhydride, hexahydrophthalic anhydride, methyl hexahydrophthalic anhydride, succinic anhydride, methylcyclohexene dicarboxylic anhydride, and chlorendic anhydride.
 熱酸発生剤としてはスルホニウム塩、ホスホニウム塩が挙げられるが、スルホニウム塩が好ましく用いられる。例えば以下の化合物を例示することができる。
 式(C-1)中、Rは炭素数1~12のアルキル基、炭素数6~20アリール基を示し、特に炭素数1~12のアルキル基が好ましい。
Examples of the thermal acid generator include sulfonium salts and phosphonium salts, with sulfonium salts being preferred. For example, the following compounds can be mentioned.
In formula (C-1), R represents an alkyl group having 1 to 12 carbon atoms or an aryl group having 6 to 20 carbon atoms, and an alkyl group having 1 to 12 carbon atoms is particularly preferred.
 これらの中でも常温、常圧で液状であるメチルテトラヒドロ無水フタル酸、メチル-5-ノルボルネン-2,3-ジカルボン酸無水物(メチルナジック酸無水物、無水メチルハイミック酸)、水素化メチルナジック酸無水物、メチルブテニルテトラヒドロ無水フタル酸、ドデセニル無水コハク酸、メチルヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸とヘキサヒドロ無水フタル酸の混合物が好ましい。これら液状の酸無水物は粘度が25℃での測定で10mPas~1000mPas程度である。 Among these, the following are preferred, which are liquid at room temperature and pressure: methyltetrahydrophthalic anhydride, methyl-5-norbornene-2,3-dicarboxylic anhydride (methylnadic anhydride, methylhimic anhydride), hydrogenated methylnadic anhydride, methylbutenyltetrahydrophthalic anhydride, dodecenylsuccinic anhydride, methylhexahydrophthalic anhydride, and a mixture of methylhexahydrophthalic anhydride and hexahydrophthalic anhydride. These liquid acid anhydrides have a viscosity of about 10 mPas to 1,000 mPas when measured at 25°C.
 熱ラジカル発生剤としては、例えば、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、4,4’-アゾビス(4-シアノ吉草酸)、2,2’-アゾビス(2-メチルプロピオン酸)ジメチル、2,2’-アゾビス(2-メチルプロピオンアミジン)二塩酸塩、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩、tert-ブチルヒドロペルオキシド、クメンヒドロペルオキシド、ジ-tert-ブチルペルオキシド、ジクミルペルオキシド、過酸化ベンゾイル等が挙げられる。これらは東京化成工業(株)から入手する事ができる。 Examples of thermal radical generators include 2,2'-azobis(isobutyronitrile), 2,2'-azobis(2-methylbutyronitrile), 2,2'-azobis(2,4-dimethylvaleronitrile), 4,4'-azobis(4-cyanovaleric acid), 2,2'-azobis(2-methylpropionate)dimethyl, 2,2'-azobis(2-methylpropionamidine) dihydrochloride, 2,2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride, tert-butyl hydroperoxide, cumene hydroperoxide, di-tert-butyl peroxide, dicumyl peroxide, and benzoyl peroxide. These can be obtained from Tokyo Chemical Industry Co., Ltd.
 また、上記硬化物を得る際、適宜、硬化助剤が併用されても良い。硬化助剤としてはトリフェニルホスフィンやトリブチルホスフィンなどの有機リン化合物、エチルトリフェニルホスフォニウムブロマイド、メチルトリフェニルホスホニウムリン酸ジエチル等の第4級ホスフォニウム塩、1,8-ジアザビシクロ(5,4,0)ウンデカン-7-エン、1,8-ジアザビシクロ(5,4,0)ウンデカン-7-エンとオクチル酸の塩、オクチル酸亜鉛、テトラブチルアンモニウムブロミド等の第4級アンモニウム塩が挙げられる。これらの硬化助剤は、硬化剤1質量部に対して、0.001~0.1質量部の割合で含有することができる。 When obtaining the cured product, a curing aid may be used in combination as appropriate. Examples of the curing aid include organic phosphorus compounds such as triphenylphosphine and tributylphosphine, quaternary phosphonium salts such as ethyltriphenylphosphonium bromide and methyltriphenylphosphonium diethyl phosphate, and quaternary ammonium salts such as 1,8-diazabicyclo(5,4,0)undecane-7-ene, salts of 1,8-diazabicyclo(5,4,0)undecane-7-ene and octylic acid, zinc octylate, and tetrabutylammonium bromide. These curing aids can be included in a ratio of 0.001 to 0.1 parts by mass per part by mass of the curing agent.
 組成物は、樹脂と硬化剤と所望により硬化助剤を混合した熱硬化性ワニスとして得られる。これら混合は反応容器中で撹拌羽根やニーダーを用いて行うことができる。 The composition is obtained as a thermosetting varnish by mixing a resin, a curing agent, and optionally a curing aid. The mixing can be carried out in a reaction vessel using a stirring blade or kneader.
 混合は加熱混合方法により行われ、60℃~100℃の温度で0.5~1時間行われる。 Mixing is done by a hot mixing method at a temperature of 60°C to 100°C for 0.5 to 1 hour.
 得られた硬化性被膜形成組成物は熱硬化性コーティング組成物であり、例えば液状封止材として用いるための適切な粘度を有する。液状の熱硬化性被膜形成組成物は、任意の粘度に調製が可能であり、キャスティング法、ポッティング法、ディスペンサー法、印刷法等によりLED等の透明封止材として用いることができ、その任意箇所に部分的封止ができる。液状の熱硬化性組成物を上述の方法で液状のまま直接にLED等に実装した後、乾燥し、硬化することにより硬化体が得られる。 The obtained curable film-forming composition is a thermosetting coating composition, and has an appropriate viscosity for use, for example, as a liquid sealant. The liquid thermosetting film-forming composition can be prepared to any viscosity and can be used as a transparent sealant for LEDs and the like by casting, potting, dispenser, printing, or other methods, allowing partial sealing at any desired location. The liquid thermosetting composition is directly mounted on an LED or the like while still in liquid form using the method described above, and then dried and cured to obtain a cured product.
 熱硬化性被膜形成組成物(熱硬化性コーティング組成物)を基材に塗布し、80~200℃の温度で加熱することにより硬化物が得られる。 Thermosetting film-forming composition (thermosetting coating composition) is applied to a substrate and heated at a temperature of 80 to 200°C to obtain a cured product.
 上記被膜形成組成物が光硬化性樹脂組成物の場合、エポキシ基又は(メタ)アクリロイル基等の官能基含有樹脂に対して光硬化剤(光ラジカル発生剤、光酸発生剤)を0.01~50phr、又は0.01~10phrの範囲で含有する事が可能であり、例えばエポキシ基又は(メタ)アクリロイル基等の官能基に対して光硬化剤(光ラジカル発生剤、光酸発生剤)を0.5~1.5当量、好ましくは0.8~1.2当量の割合で含有することができる。硬化性樹脂に対する光硬化剤の当量は、樹脂の官能基に対する光硬化剤の当量比で示される。 When the film-forming composition is a photocurable resin composition, it can contain 0.01 to 50 phr or 0.01 to 10 phr of photocuring agent (photoradical generator, photoacid generator) relative to the resin containing functional groups such as epoxy groups or (meth)acryloyl groups. For example, it can contain 0.5 to 1.5 equivalents, preferably 0.8 to 1.2 equivalents of photocuring agent (photoradical generator, photoacid generator) relative to functional groups such as epoxy groups or (meth)acryloyl groups. The equivalent of photocuring agent relative to the curable resin is indicated by the equivalent ratio of photocuring agent to functional groups of the resin.
 光ラジカル発生剤は、光照射により直接又は間接的にラジカルを発生するものであれば特に限定されない。 The photoradical generator is not particularly limited as long as it generates radicals directly or indirectly when irradiated with light.
 光ラジカル発生剤としての光ラジカル重合開始剤としては、例えば、イミダゾール化合物、ジアゾ化合物、ビスイミダゾール化合物、N-アリールグリシン化合物、有機アジド化合物、チタノセン化合物、アルミナート化合物、有機過酸化物、N-アルコキシピリジニウム塩化合物、及びチオキサントン化合物等が挙げられる。アジド化合物としては、p-アジドベンズアルデヒド、p-アジドアセトフェノン、p-アジド安息香酸、p-アジドベンザルアセトフェノン、4,4’-ジアジドカルコン、4,4’-ジアジドジフェニルスルフィド、及び2,6-ビス(4’-アジドベンザル)-4-メチルシクロヘキサノン等を挙げることができる。ジアゾ化合物としては、1-ジアゾ-2,5-ジエトキシ-4-p-トリルメルカプトベンゼンボロフルオリド、1-ジアゾ-4-N,N-ジメチルアミノベンゼンクロリド、及び1-ジアゾ-4-N,N-ジエチルアミノベンゼンボロフルオリド等を挙げることができる。ビスイミダゾール化合物としては、2,2’-ビス(o-クロロフェニル)-4,5,4’,5’-テトラキス(3,4,5-トリメトキシフェニル)1,2’-ビスイミダゾール、及び2,2’-ビス(o-クロロフェニル)4,5,4’,5’-テトラフェニル-1,2’-ビスイミダゾール等を挙げることができる。チタノセン化合物としては、ジシクロペンタジエニル-チタン-ジクロリド、ジシクロペンタジエニル-チタン-ビスフェニル、ジシクロペンタジエニル-チタン-ビス(2,3,4,5,6-ペンタフルオロフェニル)、ジシクロペンタジエニル-チタン-ビス(2,3,5,6-テトラフルオロフェニル)、ジシクロペンタジエニル-チタン-ビス(2,4,6-トリフルオロフェニル)、ジシクロペンタジエニル-チタン-ビス(2,6-ジフルオロフェニル)、ジシクロペンタジエニル-チタン-ビス(2,4-ジフルオロフェニル)、ビス(メチルシクロペンタジエニル)-チタン-ビス(2,3,4,5,6-ペンタフルオロフェニル)、ビス(メチルシクロペンタジエニル)-チタン-ビス(2,3,5,6-テトラフルオロフェニル)、ビス(メチルシクロペンタジエニル)-チタン-ビス(2,6-ジフルオロフェニル)、及びジシクロペンタジエニル-チタン-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)等を挙げることができる。 Examples of photoradical polymerization initiators as photoradical generators include imidazole compounds, diazo compounds, bisimidazole compounds, N-arylglycine compounds, organic azide compounds, titanocene compounds, aluminate compounds, organic peroxides, N-alkoxypyridinium salt compounds, and thioxanthone compounds. Examples of azide compounds include p-azidobenzaldehyde, p-azidoacetophenone, p-azidobenzoic acid, p-azidobenzalacetophenone, 4,4'-diazidochalcone, 4,4'-diazidodiphenyl sulfide, and 2,6-bis(4'-azidobenzal)-4-methylcyclohexanone. Examples of the diazo compound include 1-diazo-2,5-diethoxy-4-p-tolylmercaptobenzene borofluoride, 1-diazo-4-N,N-dimethylaminobenzene chloride, and 1-diazo-4-N,N-diethylaminobenzene borofluoride. Examples of the bisimidazole compound include 2,2'-bis(o-chlorophenyl)-4,5,4',5'-tetrakis(3,4,5-trimethoxyphenyl)-1,2'-bisimidazole, and 2,2'-bis(o-chlorophenyl)-4,5,4',5'-tetraphenyl-1,2'-bisimidazole. Examples of titanocene compounds include dicyclopentadienyl-titanium-dichloride, dicyclopentadienyl-titanium-bisphenyl, dicyclopentadienyl-titanium-bis(2,3,4,5,6-pentafluorophenyl), dicyclopentadienyl-titanium-bis(2,3,5,6-tetrafluorophenyl), dicyclopentadienyl-titanium-bis(2,4,6-trifluorophenyl), dicyclopentadienyl-titanium-bis(2,6-difluorophenyl), and dicyclopentadienyl. -titanium-bis(2,4-difluorophenyl), bis(methylcyclopentadienyl)-titanium-bis(2,3,4,5,6-pentafluorophenyl), bis(methylcyclopentadienyl)-titanium-bis(2,3,5,6-tetrafluorophenyl), bis(methylcyclopentadienyl)-titanium-bis(2,6-difluorophenyl), and dicyclopentadienyl-titanium-bis(2,6-difluoro-3-(1H-pyrrol-1-yl)-phenyl).
 光ラジカル発生剤としては、また、1,3-ジ(tert-ブチルジオキシカルボニル)ベンゾフェノン、3,3’,4,4’-テトラキス(tert-ブチルジオキシカルボニル)ベンゾフェノン、3-フェニル-5-イソオキサゾロン、2-メルカプトベンズイミダゾール、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、及び2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン等を挙げることができる。 Further examples of photoradical generators include 1,3-di(tert-butyldioxycarbonyl)benzophenone, 3,3',4,4'-tetrakis(tert-butyldioxycarbonyl)benzophenone, 3-phenyl-5-isoxazolone, 2-mercaptobenzimidazole, 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxy-cyclohexyl-phenyl-ketone, and 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone.
 これらの光ラジカル重合剤としては、例えばBASF社製、商品名Irgacure TPO(成分は2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド)(c1-1-1)、IGM RESINS社製、商品名Omnirad819(成分はビス(2,4,6-トリメチルベンゾイル)フェニルホスピンオキサイド)(c1-1-2)、IGM RESINS社製、商品名Irgacure 184(成分は1-ヒドロキシシクロヘキシルフェニルケトン)(c1-1-3)として入手する事ができる。
These photoradical polymerization agents are available, for example, under the trade name Irgacure TPO (component is 2,4,6-trimethylbenzoyldiphenylphosphine oxide) (c1-1-1) manufactured by BASF, under the trade name Omnirad 819 (component is bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide) (c1-1-2) manufactured by IGM RESINS, and under the trade name Irgacure 184 (component is 1-hydroxycyclohexyl phenyl ketone) (c1-1-3) manufactured by IGM RESINS.
 光酸発生剤は、光照射により直接又は間接的に酸を発生するものであれば特に限定されない。 The photoacid generator is not particularly limited as long as it generates acid directly or indirectly when irradiated with light.
 光酸発生剤の具体例としては、トリアジン系化合物、アセトフェノン誘導体化合物、ジスルホン系化合物、ジアゾメタン系化合物、スルホン酸誘導体化合物、ヨードニウム塩、スルホニウム塩、ホスホニウム塩、セレニウム塩等のオニウム塩、メタロセン錯体、鉄アレーン錯体などが挙げられる。 Specific examples of photoacid generators include triazine compounds, acetophenone derivative compounds, disulfone compounds, diazomethane compounds, sulfonic acid derivative compounds, onium salts such as iodonium salts, sulfonium salts, phosphonium salts, and selenium salts, metallocene complexes, and iron arene complexes.
 上記光酸発生剤として用いるオニウム塩は、ヨードニウム塩として例えばジフェニルヨードニウムクロライド、ジフェニルヨードニウムトリフルオロメタンスルホネート、ジフェニルヨードニウムメシレート、ジフェニルヨードニウムトシレート、ジフェニルヨードニウムブロミド、ジフェニルヨードニウムテトラフルオロボレート、ジフェニルヨードニウムヘキサフルオロアンチモネート、ジフェニルヨードニウムヘキサフルオロアルセネート、ビス(p-tert-ブチルフェニル)ヨードニウムヘキサフルオロホスフェート、ビス(p-tert-ブチルフェニル)ヨードニウムメシレート、ビス(p-tert-ブチルフェニル)ヨードニウムトシレート、ビス(p-tert-ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート、ビス(p-tert-ブチルフェニル)ヨードニウムテトラフルオロボレート、ビス(p-tert-ブチルフェニル)ヨードニウムクロリド、ビス(p-クロロフェニル)ヨードニウムクロライド、ビス(p-クロロフェニル)ヨードニウムテトラフルオロボレート、更にビス(4-t-ブチルフェニル)ヨードニウムヘキサフルオロホスフェートなどのビス(アルキルフェニル)ヨードニウム塩、アルコキシカルボニルアルコキシ-トリアルキルアリールヨードニウム塩(例えば、4-[(1-エトキシカルボニル-エトキシ)フェニル]-(2,4,6-トリメチルフェニル)-ヨードニウムヘキサフルオロホスフェートなど)、ビス(アルコキシアリール)ヨードニウム塩(例えば、(4-メトキシフェニル)フェニルヨードニウムヘキサフルオロアンチモネートなどのビス(アルコキシフェニル)ヨードニウム塩)が挙げられる。 The onium salts used as the photoacid generators include iodonium salts such as diphenyliodonium chloride, diphenyliodonium trifluoromethanesulfonate, diphenyliodonium mesylate, diphenyliodonium tosylate, diphenyliodonium bromide, diphenyliodonium tetrafluoroborate, diphenyliodonium hexafluoroantimonate, diphenyliodonium hexafluoroarsenate, bis(p-tert-butylphenyl)iodonium hexafluorophosphate, bis(p-tert-butylphenyl)iodonium mesylate, bis(p-tert-butylphenyl)iodonium tosylate, bis(p-tert-butylphenyl)iodonium trifluoromethanesulfonate, bis(p-tert-butylphenyl)iodonium Examples of iodonium salts include bis(alkylphenyl)iodonium salts such as iodonium tetrafluoroborate, bis(p-tert-butylphenyl)iodonium chloride, bis(p-chlorophenyl)iodonium chloride, bis(p-chlorophenyl)iodonium tetrafluoroborate, and bis(4-t-butylphenyl)iodonium hexafluorophosphate, alkoxycarbonylalkoxy-trialkylaryliodonium salts (e.g., 4-[(1-ethoxycarbonyl-ethoxy)phenyl]-(2,4,6-trimethylphenyl)-iodonium hexafluorophosphate, etc.), and bis(alkoxyaryl)iodonium salts (e.g., bis(alkoxyphenyl)iodonium salts such as (4-methoxyphenyl)phenyliodonium hexafluoroantimonate).
スルホニウム塩としては、トリフェニルスルホニウムクロリド、トリフェニルスルホニウムブロミド、トリ(p-メトキシフェニル)スルホニウムテトラフルオロボレート、トリ(p-メトキシフェニル)スルホニウムヘキサフルオロホスホネート、トリ(p-エトキシフェニル)スルホニウムテトラフルオロボレート、トリフェニルスルホニウムトリフレート、トリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムヘキサフルオロホスフェート等のトリフェニルスルホニウム塩や、(4-フェニルチオフェニル) ジフェニルスルホニウムヘキサフルオロアンチモネート、( 4- フェニルチオフェニル) ジフェニルスルホニウムヘキサフルオロホスフェート、ビス[4-(ジフェニルスルホニオ)フェニル]スルフィド-ビス-ヘキサフルオロアンチモネート、ビス[4-(ジフェニルスルホニオ)フェニル]スルフィド-ビス-ヘキサフルオロホスフェート、(4-メトキシフェニル)ジフェニルスルホニウムヘキサフルオロアンチモネート)等のスルホニウム塩が挙げられる。 Examples of sulfonium salts include triphenylsulfonium chloride, triphenylsulfonium bromide, tri(p-methoxyphenyl)sulfonium tetrafluoroborate, tri(p-methoxyphenyl)sulfonium hexafluorophosphonate, tri(p-ethoxyphenyl)sulfonium tetrafluoroborate, triphenylsulfonium triflate, triphenylsulfonium hexafluoroantimonate, and triphenylsulfonium hexafluorophosphate; as well as sulfonium salts such as (4-phenylthiophenyl)diphenylsulfonium hexafluoroantimonate, (4-phenylthiophenyl)diphenylsulfonium hexafluorophosphate, bis[4-(diphenylsulfonio)phenyl]sulfide-bis-hexafluoroantimonate, bis[4-(diphenylsulfonio)phenyl]sulfide-bis-hexafluorophosphate, and (4-methoxyphenyl)diphenylsulfonium hexafluoroantimonate.
 ホスホニウム塩としてトリフェニルホスホニウムクロリド、トリフェニルホスホニウムブロミド、トリ(p-メトキシフェニル)ホスホニウムテトラフルオロボレート、トリ(p-メトキシフェニル)ホスホニウムヘキサフルオロホスホネート、トリ(p-エトキシフェニル)ホスホニウムテトラフルオロボレート、4-クロロベンゼンジアゾニウムヘキサフルオロホスフェート、ベンジルトリフェニルホスホニウムヘキサフルオロアンチモネート等のホスホニウム塩が挙げられる。 Phosphonium salts include triphenylphosphonium chloride, triphenylphosphonium bromide, tri(p-methoxyphenyl)phosphonium tetrafluoroborate, tri(p-methoxyphenyl)phosphonium hexafluorophosphonate, tri(p-ethoxyphenyl)phosphonium tetrafluoroborate, 4-chlorobenzenediazonium hexafluorophosphate, and benzyltriphenylphosphonium hexafluoroantimonate.
 トリフェニルセレニウムヘキサフルオロホスフェートなどのセレニウム塩、(η5又はη6-イソプロピルベンゼン)(η5-シクロペンタジエニル)鉄(II)ヘキサフルオロホスフェートなどのメタロセン錯体が挙げられる。 Selenium salts such as triphenylselenium hexafluorophosphate, and metallocene complexes such as (η5 or η6-isopropylbenzene)(η5-cyclopentadienyl)iron(II) hexafluorophosphate are examples.
 また、光酸発生剤としては以下の化合物も用いることができる。
In addition, the following compounds can also be used as the photoacid generator.
 光酸発生剤としてはスルホニウム塩化合物、ヨードニウム塩化合物が好ましい。それらのアニオン種としてはCF3SO3 、CSO3 、C17SO3 、カンファースルホン酸アニオン、トシル酸アニオン、BF4 、PF6 、AsF6 及びSbF6 などが挙げられる。特に強酸性を示す六フッ化リン酸イオン及び六フッ化アンチモン酸イオン等のアニオン種が好ましい。 As the photoacid generator, sulfonium salt compounds and iodonium salt compounds are preferred. Examples of the anion species thereof include CF3SO3- , C4F9SO3- , C8F17SO3- , camphorsulfonate anion, tosylate anion, BF4- , PF6- , AsF6- , and SbF6- . In particular , anion species such as hexafluorophosphate ion and hexafluoroantimonate ion, which show strong acidity , are preferred.
 本発明の被膜形成組成物は必要に応じて慣用の添加剤を含んでいてもよい。このような添加剤としては、例えば、顔料、着色剤、増粘剤、増感剤、消泡剤、塗布性改良剤、潤滑剤、安定剤( 酸化防止剤、熱安定剤、耐光安定剤など) 、可塑剤、溶解促進剤、充填剤、帯電防止剤などが挙げられる。これらの添加剤は単独で又は2種以上組み合わせてもよい。 The film-forming composition of the present invention may contain conventional additives as necessary. Examples of such additives include pigments, colorants, thickeners, sensitizers, defoamers, coatability improvers, lubricants, stabilizers (antioxidants, heat stabilizers, light resistance stabilizers, etc.), plasticizers, dissolution promoters, fillers, antistatic agents, etc. These additives may be used alone or in combination of two or more kinds.
 本発明の被膜形成組成物の塗布方法としては、例えば、フローコーティング法、スピンコーティング法、スプレーコーティング法、スクリーン印刷法、キャスト法、バーコーティング法、カーテンコーティング法、ロールコーティング法、グラビアコーティング法、ディッピング法、スリット法などを挙げることができる。 Examples of methods for applying the film-forming composition of the present invention include flow coating, spin coating, spray coating, screen printing, casting, bar coating, curtain coating, roll coating, gravure coating, dipping, and slitting.
 本発明では光コーティング組成物(被膜形成組成物)を基板上に塗布し光照射により硬化することができる。また光照射の前後に加熱することもできる。 In the present invention, the photo-coating composition (film-forming composition) can be applied onto a substrate and cured by exposure to light. It can also be heated before or after exposure to light.
 塗膜の厚みは、硬化物の用途に応じて、0.01μm~10mm程度の範囲から選択でき、例えばフォトレジストに用いる場合は0.05~10μm(特に0.1~5μm)程度とすることができ、プリント配線基板に用いる場合は5μm~5mm(特に100μm~1mm)程度とすることができ、光学薄膜に用いる場合は0.1~100μm(特に0.3~50μm)程度とすることができる。 The thickness of the coating can be selected from the range of about 0.01 μm to 10 mm depending on the application of the cured product. For example, when used as a photoresist, it can be about 0.05 to 10 μm (particularly 0.1 to 5 μm), when used as a printed wiring board, it can be about 5 μm to 5 mm (particularly 100 μm to 1 mm), and when used as an optical thin film, it can be about 0.1 to 100 μm (particularly 0.3 to 50 μm).
 透明性被膜を得る場合、被膜の可視光線透過率を80%以上、又は90%以上、典型的には90~96%とする事ができる。 When obtaining a transparent coating, the coating's visible light transmittance can be made 80% or more, or 90% or more, typically 90 to 96%.
 光酸発生剤を用いる場合、被膜形成組成物に照射又は露光する光は、例えばガンマー線、X線、紫外線、可視光線などであってもよく、通常、可視光又は紫外線、特に紫外線である場合が多い。光の波長は、例えば150~800nm、好ましくは150~600nm、さらに好ましくは200~400nm、特に300~400nm程度である。照射光量は、塗膜の厚みにより異なるが、例えば2~20000mJ/cm2、好ましくは5 ~5000mJ/cm2程度とすることができる。光源としては、露光する光線の種類に応じて選択でき、例えば紫外線の場合は低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、重水素ランプ、ハロゲンランプ、レーザー光(ヘリウム-カドミウムレーザー、エキシマレーザーなど)などを用いることができる。このような光照射により、前記組成物の硬化反応が進行する。 When a photoacid generator is used, the light to which the film-forming composition is irradiated or exposed may be, for example, gamma rays, X-rays, ultraviolet rays, visible light, etc., and is usually visible light or ultraviolet rays, particularly ultraviolet rays. The wavelength of the light is, for example, about 150 to 800 nm, preferably about 150 to 600 nm, more preferably about 200 to 400 nm, particularly about 300 to 400 nm. The amount of light to be irradiated varies depending on the thickness of the coating film, but can be, for example, about 2 to 20,000 mJ/cm 2 , preferably about 5 to 5,000 mJ/cm 2. The light source can be selected according to the type of light to be exposed. For example, in the case of ultraviolet rays, a low-pressure mercury lamp, a high-pressure mercury lamp, an extra-high-pressure mercury lamp, a deuterium lamp, a halogen lamp, a laser beam (helium-cadmium laser, excimer laser, etc.), etc. can be used. Such light irradiation causes the curing reaction of the composition to proceed.
 熱酸発生剤を含む被膜形成組成物の塗膜の加熱、又は光酸発生剤を含む被膜形成組成物の塗膜の光照射前後に必要により行われる塗膜の加熱は、例えば60~250℃、好ましくは100~200℃ 程度で行われる。加熱時間は、3秒以上(例えば、3秒~5時間程度)の範囲から選択でき、例えば、5秒~2時間、好ましくは20秒~30分程度で行うことができ、通常は1分~3時間(例えば、5分~2.5時間)程度の範囲から選択できる。 Heating of the coating of the film-forming composition containing a thermal acid generator, or heating of the coating of the film-forming composition containing a photoacid generator, which is performed as necessary before or after light irradiation, is performed, for example, at about 60 to 250°C, preferably 100 to 200°C. The heating time can be selected from the range of 3 seconds or more (for example, about 3 seconds to 5 hours), for example, 5 seconds to 2 hours, preferably about 20 seconds to 30 minutes, and can usually be selected from the range of about 1 minute to 3 hours (for example, about 5 minutes to 2.5 hours).
 さらに、パターンや画像を形成する場合( 例えば、プリント配線基板などを製造する場合)、基材上に形成した塗膜をパターン露光してもよい。このパターン露光は、レーザー光の走査により行ってもよく、フォトマスクを介して光照射することにより行ってもよい。このようなパターン露光により生成した非照射領域(未露光部)を現像剤で現像(又は溶解)することによりパターン又は画像を形成できる。 Furthermore, when forming a pattern or image (e.g., when manufacturing a printed wiring board, etc.), the coating film formed on the substrate may be subjected to pattern exposure. This pattern exposure may be performed by scanning with laser light, or by irradiating light through a photomask. The non-irradiated areas (unexposed areas) generated by such pattern exposure may be developed (or dissolved) with a developer to form a pattern or image.
 現像液としてはアルカリ水溶液や有機溶剤を用いることができる。
 アルカリ水溶液としては水酸化カリウム、水酸化ナトリウム、炭酸カリウム、炭酸ナトリウムなどのアルカリ金属水酸化物の水溶液、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、コリンなどの水酸化四級アンモニウムの水溶液、エタノールアミン、プロピルアミン、エチレンジアミンなどのアミン水溶液を挙げることができる。
The developer may be an aqueous alkaline solution or an organic solvent.
Examples of the alkaline aqueous solution include aqueous solutions of alkali metal hydroxides such as potassium hydroxide, sodium hydroxide, potassium carbonate, and sodium carbonate; aqueous solutions of quaternary ammonium hydroxides such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, and choline; and aqueous solutions of amines such as ethanolamine, propylamine, and ethylenediamine.
 前記アルカリ現像液は10質量%以下の濃度の水溶液であることが一般的で、好ましくは0.1~3.0質量%濃度の水溶液などが用いられる。さらに上記現像液は、アルコール類や界面活性剤を添加して使用することもでき、これらの添加量はそれぞれ、現像液100質量部に対して、好ましくは0.05~10質量部である。
 この中で、水酸化テトラメチルアンモニウム0.1~2.38質量%水溶液を用いることができる。
The alkaline developer is generally an aqueous solution having a concentration of 10% by mass or less, and preferably has a concentration of 0.1 to 3.0% by mass, etc. The developer may further contain alcohols or surfactants, and the amount of each of these added is preferably 0.05 to 10 parts by mass relative to 100 parts by mass of the developer.
Of these, an aqueous solution of 0.1 to 2.38% by weight of tetramethylammonium hydroxide can be used.
 また、現像液としての有機溶剤としては一般的な有機溶剤を用いることが可能であり、例えばアセトン、アセトニトリル、トルエン、ジメチルホルムアミド、メタノール、エタノール、イソプロパノール、プロピレングリコールメチルエーテル、プロピレングリコールエチルエーテル、プロピレングリコールプロピルエーテル、プロピレングリコールブチルエーテル、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテートプロピレングリコールブチルエーテルアセテート、乳酸エチル、シクロヘキサノン等が挙げられ、これらの1種又は2種以上の混合物を用いることができる。特にプロピレングリコールメチルエーテル、プロピレングリコールメチルエーテルアセテート、乳酸エチル等は好ましく使用することができる。 In addition, as the organic solvent for the developer, a general organic solvent can be used, such as acetone, acetonitrile, toluene, dimethylformamide, methanol, ethanol, isopropanol, propylene glycol methyl ether, propylene glycol ethyl ether, propylene glycol propyl ether, propylene glycol butyl ether, propylene glycol methyl ether acetate, propylene glycol ethyl ether acetate, propylene glycol propyl ether acetate, propylene glycol butyl ether acetate, ethyl lactate, cyclohexanone, etc., and one or a mixture of two or more of these can be used. In particular, propylene glycol methyl ether, propylene glycol methyl ether acetate, ethyl lactate, etc. can be preferably used.
 本発明では現像後の硬化膜と基板との密着性を向上させる目的で、密着促進剤を添加することができる。これらの密着促進剤としてはトリメチルクロロシラン、ジメチルビニルクロロシラン、メチルジフエニルクロロシラン、クロロメチルジメチルクロロシラン等のクロロシラン類、トリメチルメトキシシラン、ジメチルジエトキシシラン、メチルジメトキシシラン、ジメチルビニルエトキシシラン、ジフエニルジメトキシシラン、フエニルトリエトキシシラン等のアルコキシシラン類、ヘキサメチルジシラザン、N,N’-ビス(トリメチルシリル)ウレア、ジメチルトリメチルシリルアミン、トリメチルシリルイミダゾール等のシラザン類、ビニルトリクロロシラン、3-クロロプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-(N-ピペリジニル)プロピルトリメトキシシラン等のシラン類、ベンゾトリアゾール、ベンズイミダゾール、インダゾール、イミダゾール、2-メルカプトベンズイミダゾール、2-メルカプトベンゾチアゾール、2-メルカプトベンゾオキサゾール、ウラゾール、チオウラシル、メルカプトイミダゾール、メルカプトピリミジン等の複素環状化合物や、1,1-ジメチルウレア、1,3-ジメチルウレア等の尿素、またはチオ尿素化合物が挙げられる。前記密着促進剤のうち1種又は2種類以上を組み合わせて用いることができる。これらの密着促進剤の添加量は固形分中で、通常18質量%以下、好ましくは0.0008~9質量%、より好ましくは0.04~9質量%である。
 本明細書において、固形分とは組成物から溶媒成分を除いた成分をいう。
In the present invention, an adhesion promoter can be added for the purpose of improving the adhesion between the cured film and the substrate after development. Examples of such adhesion promoters include chlorosilanes such as trimethylchlorosilane, dimethylvinylchlorosilane, methyldiphenylchlorosilane, and chloromethyldimethylchlorosilane, alkoxysilanes such as trimethylmethoxysilane, dimethyldiethoxysilane, methyldimethoxysilane, dimethylvinylethoxysilane, diphenyldimethoxysilane, and phenyltriethoxysilane, silazanes such as hexamethyldisilazane, N,N'-bis(trimethylsilyl)urea, dimethyltrimethylsilylamine, and trimethylsilylimidazole, vinyltrichlorosilane, 3-chloropropyltrimethoxysilane, and the like. Examples of the adhesion promoter include silanes such as silane, 3-aminopropyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and 3-(N-piperidinyl)propyltrimethoxysilane; heterocyclic compounds such as benzotriazole, benzimidazole, indazole, imidazole, 2-mercaptobenzimidazole, 2-mercaptobenzothiazole, 2-mercaptobenzoxazole, urazole, thiouracil, mercaptoimidazole, and mercaptopyrimidine; and ureas such as 1,1-dimethylurea and 1,3-dimethylurea, or thiourea compounds. The adhesion promoters may be used alone or in combination of two or more. The amount of these adhesion promoters added is usually 18% by mass or less, preferably 0.0008 to 9% by mass, and more preferably 0.04 to 9% by mass, based on the solid content.
In this specification, the solid content refers to the components remaining after removing the solvent from the composition.
 本発明の組成物は増感剤を含んでいても良い。使用できる増感剤としては、アントラセン、フェノチアゼン、ぺリレン、チオキサントン、ベンゾフェノンチオキサントン等が挙げられる。更に、増感色素としては、チオピリリウム塩系色素、メロシアニン系色素、キノリン系色素、スチリルキノリン系色素、ケトクマリン系色素、チオキサンテン系色素、キサンテン系色素、オキソノール系色素、シアニン系色素、ローダミン系色素、ピリリウム塩系色素等が例示される。特に好ましいのは、アントラセン系の増感剤であり、カチオン硬化触媒(感放射性カチオン重合開始剤)と併用する事により、感度が飛躍的に向上すると共に、ラジカル重合開始機能も有しており、本発明のカチオン硬化システムとラジカル硬化システムを併用するハイブリッドタイプでは、触媒種をシンプルにできる。具体的なアントラセンの化合物としては、ジブトキシアントラセン、ジプロポキシアントラキノン等が有効である。増感剤の添加量は固形分中で、0.01~20質量%、好ましくは0.01~10質量%の割合で使用される。 The composition of the present invention may contain a sensitizer. Examples of sensitizers that can be used include anthracene, phenothiazene, perylene, thioxanthone, and benzophenone thioxanthone. Examples of sensitizing dyes include thiopyrylium salt dyes, merocyanine dyes, quinoline dyes, styrylquinoline dyes, ketocoumarin dyes, thioxanthene dyes, xanthene dyes, oxonol dyes, cyanine dyes, rhodamine dyes, and pyrylium salt dyes. Anthracene sensitizers are particularly preferred, and when used in combination with a cationic curing catalyst (radiation-sensitive cationic polymerization initiator), they dramatically improve sensitivity and also have a radical polymerization initiation function. In the hybrid type in which the cationic curing system of the present invention and the radical curing system are used in combination, the catalyst species can be simplified. Specific examples of anthracene compounds that are effective include dibutoxyanthracene and dipropoxyanthraquinone. The amount of sensitizer added is 0.01 to 20% by mass, preferably 0.01 to 10% by mass, based on the solid content.
 本発明の組成物は光ラジカル発生剤、熱ラジカル発生剤、光酸発生剤又は熱酸発生剤を用いて光硬化又は熱硬化させる事が可能である。光酸発生剤又は熱酸発生剤を用いる場合は、例えば通常用いられるエポキシの硬化剤(例えばアミンや酸無水物)を用いないか又はそれらを用いたとしても極端にそれらの含有量が少ないため、本組成物の保存安定性が良くなる。 The composition of the present invention can be photocured or thermally cured using a photoradical generator, a thermal radical generator, a photoacid generator, or a thermal acid generator. When a photoacid generator or a thermal acid generator is used, for example, commonly used epoxy curing agents (e.g., amines or acid anhydrides) are not used, or even if they are used, the content of these agents is extremely small, which improves the storage stability of the composition.
 上記組成物は光カチオン重合性を有することを見出した。本発明の組成物は、従来品の液状エポキシ化合物(例えばエポキシシクロヘキシル環を有する脂環式エポキシ化合物)よりも高い硬化速度を有する。硬化速度が速いため酸発生剤添加量の低減や、弱酸系酸発生剤の使用も可能である。UV照射後に残存した酸活性種により金属が腐食し得るので、酸発生剤の使用量の低減金属腐食防止の上で重要である。本発明の組成物は硬化速度が速いため厚膜硬化が可能である。 The composition has been found to have photocationic polymerization properties. The composition of the present invention has a higher curing speed than conventional liquid epoxy compounds (e.g., alicyclic epoxy compounds having an epoxycyclohexyl ring). Because of the fast curing speed, it is possible to reduce the amount of acid generator added and to use weak acid generators. Since metals can corrode due to acid active species remaining after UV irradiation, reducing the amount of acid generator used is important in preventing metal corrosion. Because the composition of the present invention has a fast curing speed, thick film curing is possible.
 UV照射による硬化は熱に弱い材料(機材)に適用できる。
 本件発明の被膜形成組成物を用いた熱硬化材料、光硬化材料は速硬性、透明性、硬化収縮が小さい等の特徴を持ち、電子部品、光学部品(反射防止膜)、精密機構部品の被覆や接着に用いることができる。例えば携帯電話機やカメラのレンズ、発光ダイオード(LED)、半導体レーザー(LD)などの光学素子、液晶パネル、バイオチップ、カメラのレンズやプリズムなどの部品、パソコンなどのハードディスクの磁気部品、CD、DVDプレヤーのピックアップ(ディスクから反射してくる光情報を取り込む部分)、スピーカーのコーンとコイル、モーターの磁石、回路基板、電子部品、自動車などのエンジン内部の部品等の接着に用いることができる。
Curing by UV irradiation can be applied to materials (equipment) that are sensitive to heat.
The thermosetting and photocuring materials using the film-forming composition of the present invention have characteristics such as fast curing, transparency, and small shrinkage on curing, and can be used for coating and bonding electronic parts, optical parts (anti-reflection coating), and precision mechanical parts. For example, they can be used for bonding mobile phone and camera lenses, optical elements such as light-emitting diodes (LEDs) and semiconductor lasers (LDs), liquid crystal panels, biochips, camera lenses and prisms, magnetic parts of hard disks of personal computers, pickups of CD and DVD players (parts that capture optical information reflected from the disk), speaker cones and coils, motor magnets, circuit boards, electronic parts, and parts inside the engine of automobiles.
 本発明の組成物は、自動車ボディー、ランプや電化製品、建材、プラスチックなどの表面保護のためのハードコート材向けに使用でき、例えば自動車、バイクのボディー、ヘッドライトのレンズやミラー、メガネのプラスチックレンズ、携帯電話機、ゲーム機、光学フィルム、IDカード等に適用ができる。 The composition of the present invention can be used as a hard coat material for surface protection of automobile bodies, lamps, electrical appliances, building materials, plastics, etc., and can be applied to, for example, automobile and motorcycle bodies, headlight lenses and mirrors, plastic lenses for glasses, mobile phones, game consoles, optical films, ID cards, etc.
 本発明の組成物は、アルミニウム等の金属、プラスチックなどに印刷するインキ材料向けとして使用でき、クレジットカード、会員証などのカード類、電化製品やOA機器のスイッチ、キーボードへの印刷用インキ、CD、DVD等へのインクジェットプリンター用インキへの適用が挙げられる。 The composition of the present invention can be used as an ink material for printing on metals such as aluminum, plastics, etc., and can be used as printing ink for cards such as credit cards and membership cards, switches for electrical appliances and office equipment, keyboards, and ink for inkjet printers for CDs, DVDs, etc.
 本発明の組成物は、3次元CADと組み合わせて樹脂を硬化し複雑な立体物をつくる技術や、工業製品のモデル製作等の光造形への適用、光ファイバーのコーティング、接着、光導波路、厚膜レジストなどに適用できる。 The composition of the present invention can be used in combination with 3D CAD to harden resins to create complex three-dimensional objects, in photolithography applications such as in the production of industrial product models, and in optical fiber coatings, adhesives, optical waveguides, thick-film resists, etc.
 また、本発明の被膜形成組成物は、反射防止膜、半導体封止材料、電子材料用接着剤、プリント配線基板材料、層間絶縁膜材料、パワーモジュール用封止材等の電子材料用絶縁樹脂や発電機コイル、変圧器コイル、ガス絶縁開閉装置等の高電圧機器に使用される絶縁樹脂として好適に使用できる。 The film-forming composition of the present invention can also be suitably used as an insulating resin for electronic materials such as anti-reflective films, semiconductor sealing materials, adhesives for electronic materials, printed wiring board materials, interlayer insulating film materials, and sealing materials for power modules, as well as an insulating resin for high-voltage equipment such as generator coils, transformer coils, and gas-insulated switchgear.
 本発明の中空シリカ粒子の有機溶媒ゾルは下記(A)工程~(C)工程を含む方法で製造することができる。
(A)工程:中空シリカ水性ゾルを準備する工程、
(B)工程:(A)工程の中空シリカ水性ゾルに、水溶解度が、80g/L以上であり且つ炭素原子数1~10の第1級アミン、第2級アミン、及び第3級アミンからなる群から選ばれる少なくとも1種のアミンを、中空シリカのSiOに対して0.001~10質量%の割合で添加する工程、
(C)工程:(B)工程で得られた中空シリカ粒子の水性ゾルの水性媒体を、炭素原子数1~10のアルコール、ケトン、エーテル、又はエステルに溶媒置換する工程。
The organic solvent sol of hollow silica particles of the present invention can be produced by a method including the following steps (A) to (C).
Step (A): preparing a hollow silica aqueous sol;
Step (B): adding at least one amine selected from the group consisting of primary amines, secondary amines, and tertiary amines having a water solubility of 80 g/L or more and having 1 to 10 carbon atoms to the hollow silica aqueous sol of step (A) in an amount of 0.001 to 10% by mass based on the SiO 2 of the hollow silica;
Step (C): A step of replacing the aqueous medium of the aqueous sol of hollow silica particles obtained in step (B) with an alcohol, ketone, ether, or ester having 1 to 10 carbon atoms.
 (A)工程で用いられる中空シリカ粒子はシリカの外殻を有し、外殻の内側に空間を有するものである。中空シリカは水分散媒中でいわゆるテンプレートと呼ばれるコアに相当する部分の表面に、シリカを主成分とする外殻を形成し、コアに相当する部分を除去する方法で得られる。上記テンプレートは有機物(例えば、ポリエチレングリコール、ポリスチレン、ポリエステル等の親水性有機樹脂粒子)を用いる方法と、無機物(例えば、炭酸カルシウム、アルミン酸ナトリウム等の親水性無機化合物粒子)を用いる方法がある。 The hollow silica particles used in step (A) have a silica shell and a space inside the shell. Hollow silica is obtained by forming a shell mainly made of silica on the surface of the part that corresponds to the core, known as the template, in an aqueous dispersion medium, and then removing the part that corresponds to the core. The template can be made from organic matter (e.g., hydrophilic organic resin particles such as polyethylene glycol, polystyrene, polyester, etc.) or inorganic matter (e.g., hydrophilic inorganic compound particles such as calcium carbonate, sodium aluminate, etc.).
 (B)工程では上記(A)工程の中空シリカ水性ゾルにアミンを添加する。アミンは水溶解度が、80g/L以上、又は100g/L以上であり且つ総炭素原子数1~10の第1級乃至第3級アミンから選ばれる少なくとも1種のアミンを、中空シリカのSiOに対して0.001~10質量%の割合で添加することができる。これらアミンは上述のアミンを用いる事ができる。 In step (B), an amine is added to the hollow silica aqueous sol of step (A). The amine has a water solubility of 80 g/L or more, or 100 g/L or more, and at least one amine selected from primary to tertiary amines having a total carbon atom number of 1 to 10 can be added in a ratio of 0.001 to 10 mass % based on the SiO 2 of the hollow silica. The amines mentioned above can be used as these amines.
 (C)工程は(B)工程で得られた中空シリカの水性ゾルの水性媒体を、炭素原子数1~10のアルコール、ケトン、エーテル、又はエステルに溶媒置換する工程である。
 中空シリカの水性ゾルの水性媒体は有機溶媒に置換する事ができる、また、水性ゾルの水性媒体を親水性の有機溶媒に置換して、更に疎水性有機溶媒に置換する事ができる。
 即ち、上記(C)工程は、水性ゾルの水性媒体を炭素原子数1~10のアルコールに溶媒置換した後に、更にアルコール溶媒を炭素原子数1~10のケトン、エーテル、又はエステルに溶媒置換する工程である。
The step (C) is a step of subjecting the aqueous medium of the aqueous sol of hollow silica obtained in the step (B) to solvent replacement with an alcohol, ketone, ether or ester having 1 to 10 carbon atoms.
The aqueous medium of the aqueous sol of hollow silica can be replaced with an organic solvent, and the aqueous medium of the aqueous sol can be replaced with a hydrophilic organic solvent and then with a hydrophobic organic solvent.
That is, the above-mentioned step (C) is a step of solvent-substitution of the aqueous medium of the aqueous sol with an alcohol having 1 to 10 carbon atoms, and then further solvent-substitution of the alcohol solvent with a ketone, ether, or ester having 1 to 10 carbon atoms.
 上記(C)工程の途中、又は終了後に、更に上記式(1)、式(2)、及び式(3)で表されるシラン化合物からなる群より選ばれる少なくとも1種のシラン化合物を添加し、加熱する(D)工程を追加する事ができる。  During or after the completion of the above step (C), a step (D) can be added in which at least one silane compound selected from the group consisting of silane compounds represented by the above formulas (1), (2), and (3) is added and heated.
 つまり、(C)工程の水性ゾルの水性媒体を炭素原子数1~10のアルコールに溶媒置換した後に、上記式(1)、式(2)、及び式(3)で表されるシラン化合物からなる群より選ばれる少なくとも1種のシラン化合物を添加し、加熱する(D)工程をした後で、更に(C)工程のアルコール溶媒を炭素原子数1~10のケトン、エーテル、又はエステルに溶媒置換する工程とすることもできる。 In other words, after the aqueous medium of the aqueous sol in step (C) is solvent-substituted with an alcohol having 1 to 10 carbon atoms, at least one silane compound selected from the group consisting of silane compounds represented by formulas (1), (2), and (3) is added and heated in step (D), and then the alcohol solvent in step (C) can be solvent-substituted with a ketone, ether, or ester having 1 to 10 carbon atoms.
 シラン化合物添加後の加熱温度は40℃以上であり、好ましくは用いる溶媒の還流温度以下である。そして加熱時間は0.1~10時間の範囲で行う事ができる。 The heating temperature after adding the silane compound is 40°C or higher, and preferably below the reflux temperature of the solvent used. The heating time can be in the range of 0.1 to 10 hours.
 本発明では上記中空シリカ有機溶媒ゾルの製造方法を用いて中空シリカ粒子の表面電荷を任意に調整する事ができる。 In the present invention, the surface charge of hollow silica particles can be adjusted as desired using the above-mentioned method for producing hollow silica organic solvent sol.
(分析方法)
〔SiO 濃度の測定〕
 中空シリカゾルを坩堝に取り、ホットプレート上で分散媒の沸点よりも約10℃高い温度で加熱乾燥して分散媒を除去した後、得られたシリカゲルを1000℃で焼成し、焼成残分を計量して算出した。
〔水分の測定〕
 カールフィッシャー滴定法にて求めた。
〔粘度の測定〕
BL型粘度計を用いて25℃で測定した。
〔pH測定〕
 pHメーター(東亞ディーケーケー(株)製)を用いて25℃で測定した。
メタノールゾルおよびプロピレングリコールモノメチルエーテルゾルについては、純水とゾルを質量比1:1で混合した溶液で測定し、メチルエチルケトンゾルについては、純水とメタノールとメチルエチルケトンゾルを質量比1:1:1で混合した溶液で測定した。
〔全窒素量の測定〕
 微量全窒素分析(TN)装置((株)三菱ケミカルアナリテック製 TN-2100V)を用いて、以下の条件で測定した。
・熱分解炉
 入口温度:800℃、出口温度:900℃
 Ar(アルゴン)流量:100mL/min、O(酸素)流量:500mL/min
・検出器(化学発光検出器)
 低濃度モード
 O(オゾン)流量:600mL/min
測定用サンプルは、全窒素量が1~10ppmになるようにメスフラスコを用いて中空シリカゾルをメチルエチルケトンにより所定容量まで希釈することで調製した。測定用サンプルを装置に20μL注入して面積値を測定し、予め準備した全窒素量が0ppm、1ppm、10ppmの標準試料の面積値より作成した検量線から、測定用サンプルの全窒素量を算出した。
〔動的光散乱法粒子径の測定〕
 動的光散乱法粒子径測定装置(スペクトリス社製 ゼーターサイザー ナノ)により測定した。
〔表面電荷量の測定〕
 シリカ濃度が約0.5質量%となるようにメタノール10mLに添加・希釈し、測定用サンプルとした。粒子電荷量計(フォイトターボ(株)製、商品名PCD-06)により、カチオン標準滴定液としてN/1000 DADMAC溶液(フォイトターボ(株)製)を用いて、測定用サンプルの流動電位がゼロになるまでの滴定値を測定した。得られた滴定値を測定用サンプルに含まれるシリカ質量で割ることで中空シリカ粒子のSiOの1g当たりに換算した表面電荷量(μeq/g)とした。
〔BET(窒素ガス吸着法)による比表面積の測定〕
 中空シリカゾル中のカチオン成分をH型陽イオン交換樹脂で除去し、加熱処理で溶媒を除去した乾燥物を乳鉢で粉砕し、さらに250℃2時間処理した。この乾燥粉砕物の比表面積をガス吸着法比表面積測定装置(Quantachrome INSTRUMENTS(株)製 Monosorb TM MS-22)で、N(窒素)30%とHe(ヘリウム)70%の混合ガスをキャリアーガスとし、B.E.T.1点法で測定した。
〔TEM(透過型電子顕微鏡)による平均一次粒子径の測定〕
 中空シリカゾル中の粒子を透過型電子顕微鏡(日本電子(株)製 JEM-F200)にて写真撮影し、自動画像処理解析装置((株)ニレコ製 LUZEX‘ AP)にて、任意に選択した粒子約300個を二値化し、投影面積を円形換算した直径を平均一次粒子径(HEYWOOD径)として測定した。
〔比表面積比の計算〕
 BET比表面積値をTEMによる平均一次粒子径から真密度2.2g/cmの真球粒子と仮定して算出した比表面積値で除した値を比表面積比と定義した。
(Analysis Method)
[Measurement of SiO2 concentration]
The hollow silica sol was placed in a crucible and dried by heating on a hot plate at a temperature about 10° C. higher than the boiling point of the dispersion medium to remove the dispersion medium. The resulting silica gel was then calcined at 1,000° C., and the calcination residue was weighed and calculated.
[Moisture measurement]
The value was determined by Karl Fischer titration.
[Measurement of Viscosity]
The viscosity was measured at 25° C. using a BL type viscometer.
[pH Measurement]
The pH was measured at 25° C. using a pH meter (manufactured by DKK Toa Corporation).
For the methanol sol and propylene glycol monomethyl ether sol, the measurement was performed using a solution in which pure water and the sol were mixed in a mass ratio of 1:1, and for the methyl ethyl ketone sol, the measurement was performed using a solution in which pure water, methanol, and methyl ethyl ketone sol were mixed in a mass ratio of 1:1:1.
[Measurement of total nitrogen content]
Measurements were performed under the following conditions using a total nitrogen trace analyzer (TN-2100V, manufactured by Mitsubishi Chemical Analytech Co., Ltd.).
・Pyrolysis furnace Inlet temperature: 800℃, Outlet temperature: 900℃
Ar (argon) flow rate: 100 mL/min, O 2 (oxygen) flow rate: 500 mL/min
・Detector (chemiluminescence detector)
Low concentration mode O3 (ozone) flow rate: 600 mL/min
The measurement sample was prepared by diluting the hollow silica sol to a predetermined volume with methyl ethyl ketone using a measuring flask so that the total nitrogen content was 1 to 10 ppm. 20 μL of the measurement sample was injected into the device to measure the area value, and the total nitrogen content of the measurement sample was calculated from a calibration curve created from the area values of standard samples with total nitrogen contents of 0 ppm, 1 ppm, and 10 ppm that were prepared in advance.
[Measurement of particle size by dynamic light scattering method]
Measurements were made using a dynamic light scattering particle size measuring device (Zetersizer Nano, manufactured by Spectris).
[Measurement of surface charge amount]
The silica was diluted with 10 mL of methanol so that the silica concentration was about 0.5% by mass to prepare a measurement sample. Using a particle charge meter (manufactured by Voith Turbo, product name PCD-06), a titration value was measured until the flow potential of the measurement sample reached zero using an N/1000 DADMAC solution (manufactured by Voith Turbo) as a standard cation titrant. The titration value obtained was divided by the mass of silica contained in the measurement sample to obtain the surface charge (μeq/g) converted per 1 g of SiO 2 of the hollow silica particles.
[Measurement of specific surface area by BET (nitrogen gas adsorption method)]
The cationic components in the hollow silica sol were removed with an H-type cation exchange resin, and the dried product from which the solvent was removed by heat treatment was pulverized in a mortar and further treated for 2 hours at 250° C. The specific surface area of this dried and pulverized product was measured by a gas adsorption specific surface area measuring device (Monosorb™ MS-22 manufactured by Quantachrome Instruments, Inc.) using a mixed gas of 30% N 2 (nitrogen) and 70% He (helium) as the carrier gas by the B.E.T. one-point method.
[Measurement of average primary particle size by TEM (transmission electron microscope)]
The particles in the hollow silica sol were photographed using a transmission electron microscope (JEM-F200, manufactured by JEOL Ltd.), and approximately 300 arbitrarily selected particles were binarized using an automatic image processing analyzer (LUZEX' AP, manufactured by Nireco Corporation), and the diameter of the projected area converted into a circle was measured as the average primary particle diameter (HEYWOOD diameter).
[Calculation of specific surface area ratio]
The specific surface area ratio was defined as the value obtained by dividing the BET specific surface area by the specific surface area calculated from the average primary particle diameter measured by TEM, assuming that the particles were truly spherical with a true density of 2.2 g/ cm 3 .
(実施例1)
(中空シリカメタノールゾル(1)の調製)
 市販の中空シリカ水性ゾル(Ningbo Dilato社製、HKT-D20-225-1、SiO濃度は20.7質量%、pH9.0、動的光散乱法粒子径88nm、BET法による比表面積107m/g、TEMによる平均一次粒子径82nm、比表面積比が3.2)100.22gを500mLのナスフラスコに仕込み、マグネチックスターラーで撹拌しながら、ジイソプロピルアミン0.04gを添加し、2時間混合した。その後さらに撹拌しながらメタノール38.09gを添加し、2時間混合した。ロータリーエバポレーターを用いて、減圧下(圧力150Torr、浴温80℃)でメタノール約3000mLをフィードしながら、水を留去させることで中空シリカメタノールゾル(1)を得た。
 得られた中空シリカメタノールゾルは、SiO濃度15.5質量%、水分1.7%、粘度1.8mPa・sec、pH8.2、動的光散乱法粒子径99nm、全窒素量438ppm、中空シリカ粒子のSiOの1g当たりに換算した表面電荷量が26μeq/gであった。
Example 1
(Preparation of hollow silica methanol sol (1))
100.22 g of a commercially available hollow silica aqueous sol (Ningbo Dilato Co., Ltd., HKT-D20-225-1, SiO2 concentration is 20.7 mass%, pH 9.0, dynamic light scattering particle size 88 nm, specific surface area by BET method 107 m2 /g, average primary particle size by TEM 82 nm, specific surface area ratio 3.2) was charged into a 500 mL eggplant flask, and 0.04 g of diisopropylamine was added while stirring with a magnetic stirrer, and mixed for 2 hours. Then, 38.09 g of methanol was added while stirring, and mixed for 2 hours. Using a rotary evaporator, water was distilled off while feeding about 3000 mL of methanol under reduced pressure (pressure 150 Torr, bath temperature 80 ° C.) to obtain a hollow silica methanol sol (1).
The obtained hollow silica methanol sol had a SiO2 concentration of 15.5 mass%, a moisture content of 1.7%, a viscosity of 1.8 mPa sec, a pH of 8.2, a particle size measured by a dynamic light scattering method of 99 nm, a total nitrogen content of 438 ppm, and a surface charge amount calculated per 1 g of SiO2 of the hollow silica particles of 26 μeq/g.
(中空シリカメタノールゾル(1)を配合した膜の調製)
 UV硬化樹脂としてのジペンタエリスリトールヘキサアクリレート(日本化薬株式会社製、商品名KAYARAD DPHA)18.33gを褐色瓶に秤量し、ここにUV硬化剤(Omnirad 819)が5phr、レベリング剤(DOWSIL社製、商品名L-7001)が0.1phrとなるように添加し、プロピレングリコールモノメチルエーテル34.99gで溶解することで、UV硬化樹脂液(濃度:35質量%)を調製した。
 実施例1で得られた中空シリカメタノールゾル(1)(SiO濃度15.5質量%)1.61gを褐色瓶に秤量し、全量で5.00g、最終的な溶媒組成が重量比でプロピレングリコールモノメチルエーテル/メタノール=6/4となるようにプロピレングリコールモノメチルエーテルおよびメタノールを添加し、上記で調製したUV硬化樹脂液0.71gを添加後、室温で1h混合することで中空シリカメタノールゾル(1)/UV硬化樹脂混合ワニスを調製した。なお固形分濃度は10質量%、中空シリカ(SiO)の配合量は100phrであった。
 得られた中空シリカメタノールゾル(1)/UV硬化樹脂混合ワニスをガラス基板上に約2mL滴下し、スピンコーター(ミカサ株式会社製、Opticoat MS-B100)を用いて、200rpm×5sec、1000rpmまで3secで上昇、1000rpm×30secの条件でガラス基板上に均一に展開した。その後、ホットプレート上で100℃×3minベークし、積算光量2000mJ/cmの条件でUV光を照射することで中空シリカメタノールゾル(1)を配合したワニスから形成される膜を調製した。分光へーズメーター(日本電色工業株式会社、SH7000)により得られた配合膜の全光透過率を測定した結果は91.6%であった。ガラス基板の全光透過率91.0%、UV硬化樹脂のみで同条件で調製した膜の全光透過率90.7%と比較しても高い値を示し、透明性の高い配合膜であった。
(Preparation of membrane containing hollow silica methanol sol (1))
18.33 g of dipentaerythritol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd., product name KAYARAD DPHA) as a UV curing resin was weighed into a brown bottle, and 5 phr of a UV curing agent (Omnirad 819) and 0.1 phr of a leveling agent (manufactured by Dowsil Corporation, product name L-7001) were added thereto, and the mixture was dissolved in 34.99 g of propylene glycol monomethyl ether to prepare a UV curing resin liquid (concentration: 35% by mass).
1.61g of hollow silica methanol sol (1) ( SiO2 concentration 15.5 mass%) obtained in Example 1 was weighed into a brown bottle, and propylene glycol monomethyl ether and methanol were added so that the total amount was 5.00g, and the final solvent composition was propylene glycol monomethyl ether/methanol = 6/4 by weight ratio, and 0.71g of the UV curable resin liquid prepared above was added, and then mixed at room temperature for 1h to prepare a hollow silica methanol sol (1)/UV curable resin mixed varnish. The solid content concentration was 10 mass%, and the amount of hollow silica ( SiO2 ) was 100 phr.
About 2 mL of the obtained hollow silica methanol sol (1) / UV curable resin mixed varnish was dropped onto a glass substrate, and a spin coater (Mikasa Co., Ltd., Opticoat MS-B100) was used to uniformly spread the mixture on the glass substrate under the conditions of 200 rpm x 5 sec, 3 sec increase to 1000 rpm, and 1000 rpm x 30 sec. Then, the mixture was baked on a hot plate at 100 ° C. x 3 min, and irradiated with UV light under the condition of an integrated light amount of 2000 mJ / cm 2 to prepare a film formed from a varnish containing hollow silica methanol sol (1). The total light transmittance of the obtained mixture film was measured using a spectroscopic haze meter (Nippon Denshoku Kogyo Co., Ltd., SH7000), and the result was 91.6%. The total light transmittance of the glass substrate was 91.0%, which was a high value compared to the total light transmittance of a film prepared under the same conditions using only UV curable resin, which was 90.7%, and was a highly transparent mixture film.
(実施例2)
(中空シリカメタノールゾル(2)の調製)
 市販の中空シリカ水性ゾル(Ningbo Dilato社製、HKT-D20-225-1、SiO濃度20.7%、pH9.0、動的光散乱法粒子径88nm、BET法による比表面積107m/g、TEMによる平均一次粒子径82nm、比表面積比が3.2)100.01gを500mLのナスフラスコに仕込み、添加するジイソプロピルアミンの量を0.10gに、メタノールの量を37.98gに変更する以外は実施例1と同様に操作することで中空シリカメタノールゾル(2)を得た。
 得られた中空シリカメタノールゾル(2)は、SiO濃度15.1質量%、水分0.9%、粘度1.6mPa・sec、pH8.7、動的光散乱法粒子径108nm、全窒素量409ppm、中空シリカ粒子のSiOの1g当たりに換算した表面電荷量が25μeq/gであった。
Example 2
(Preparation of hollow silica methanol sol (2))
100.01 g of a commercially available hollow silica aqueous sol (Ningbo Dilat Co., Ltd., HKT-D20-225-1, SiO2 concentration 20.7%, pH 9.0, dynamic light scattering particle size 88 nm, BET specific surface area 107 m2 /g, TEM average primary particle size 82 nm, specific surface area ratio 3.2) was charged into a 500 mL recovery flask, and hollow silica methanol sol (2) was obtained by the same procedure as in Example 1, except that the amount of diisopropylamine added was changed to 0.10 g and the amount of methanol was changed to 37.98 g.
The obtained hollow silica methanol sol (2) had a SiO2 concentration of 15.1 mass%, a moisture content of 0.9%, a viscosity of 1.6 mPa sec, a pH of 8.7, a particle size measured by a dynamic light scattering method of 108 nm, a total nitrogen content of 409 ppm, and a surface charge amount calculated per 1 g of SiO2 of the hollow silica particles of 25 μeq/g.
(中空シリカプロピレングリコールモノメチルエーテルゾル(1)の調製)
 実施例2で得られた濃度調整前の中空シリカメタノールゾル(2)(SiO濃度18.2質量%)42.66gを200mLのナスフラスコに仕込み、プロピレングリコールモノメチルエーテル7.36gを添加した。その後ロータリーエバポレーターを用いて、浴温60℃で圧力150Torrから80Torrまで徐々に低下させ、プロピレングリコールモノメチルエーテル60gをフィードしながら、メタノールを留去させることで中空シリカプロピレングリコールモノメチルエーテルゾルを得た。
 得られた中空シリカプロピレングリコールモノメチルエーテルゾル(1)は、SiO濃度13.4質量%、水分0.2%、粘度3.5mPa・sec、pH8.1、動的光散乱法粒子径103nm、全窒素量330ppmであった。
(Preparation of Hollow Silica Propylene Glycol Monomethyl Ether Sol (1))
42.66g of hollow silica methanol sol (2) ( SiO2 concentration 18.2 mass%) before concentration adjustment obtained in Example 2 was charged into a 200mL eggplant flask, and 7.36g of propylene glycol monomethyl ether was added. Then, using a rotary evaporator, the bath temperature was 60°C, the pressure was gradually reduced from 150 Torr to 80 Torr, and while feeding 60g of propylene glycol monomethyl ether, methanol was distilled off to obtain hollow silica propylene glycol monomethyl ether sol.
The obtained hollow silica propylene glycol monomethyl ether sol (1) had a SiO2 concentration of 13.4 mass%, a moisture content of 0.2%, a viscosity of 3.5 mPa·sec, a pH of 8.1, a particle size measured by dynamic light scattering of 103 nm, and a total nitrogen content of 330 ppm.
(中空シリカメタノールゾル(2)を配合した膜の調製)
 実施例2で得られた中空シリカメタノールゾル(2)(SiO濃度15.1質量%)1.66gを用いる以外は実施例1と同様に操作することで、中空シリカメタノールゾル(2)/UV硬化樹脂混合ワニスおよび中空シリカメタノールゾル(2)を配合したワニスから形成される膜を調製した。得られた配合膜の全光透過率は92.8%であり、透明性の高い配合膜であった。
(Preparation of membrane containing hollow silica methanol sol (2))
A film formed from hollow silica methanol sol (2)/UV curable resin mixed varnish and varnish containing hollow silica methanol sol (2) was prepared by the same operation as in Example 1, except that 1.66 g of hollow silica methanol sol (2) (SiO2 concentration 15.1 mass%) obtained in Example 2 was used. The total light transmittance of the obtained blended film was 92.8%, and it was a blended film with high transparency.
(中空シリカプロピレングリコールモノメチルエーテルゾル(1)を配合したワニスから形成される膜の調製)
 実施例2で得られた中空シリカプロピレングリコールモノメチルエーテルゾル(1)(SiO濃度13.4質量%)1.86gを用いる以外は実施例1と同様に操作することで、中空シリカプロピレングリコールモノメチルエーテルゾル(1)/UV硬化樹脂混合ワニスおよび中空シリカプロピレングリコールモノメチルエーテルゾル(1)を配合したワニスから形成される膜を調製した。得られた配合膜の全光透過率は92.2%であり、透明性の高い配合膜であった。
(Preparation of a film formed from a varnish containing hollow silica propylene glycol monomethyl ether sol (1))
A film formed from hollow silica propylene glycol monomethyl ether sol (1) / UV curable resin mixed varnish and varnish containing hollow silica propylene glycol monomethyl ether sol (1) was prepared by the same operation as in Example 1, except that 1.86 g of hollow silica propylene glycol monomethyl ether sol (1) (SiO2 concentration 13.4 mass%) obtained in Example 2 was used. The total light transmittance of the obtained blended film was 92.2%, and it was a blended film with high transparency.
(実施例3)
(中空シリカメタノールゾル(3)の調製)
 市販の中空シリカ水性ゾル(Ningbo Dilato社製、HKT-D20-225-1、SiO濃度20.7%、pH9.0、動的光散乱法粒子径88nm、BET法による比表面積107m/g、TEMによる平均一次粒子径82nm、比表面積比が3.2)100.15gを500mLのナスフラスコに仕込み、添加するジイソプロピルアミンの量を0.21gに、メタノールの量を38.02gに変更する以外は実施例1と同様に操作することで中空シリカメタノールゾル(3)を得た。
 得られた中空シリカメタノールゾル(3)は、SiO濃度15.5質量%、水分1.6%、粘度1.8mPa・sec、pH8.6、動的光散乱法粒子径101nm、全窒素量410ppm、中空シリカ粒子のSiOの1g当たりに換算した表面電荷量が25μeq/gであった。
Example 3
(Preparation of hollow silica methanol sol (3))
100.15 g of a commercially available hollow silica aqueous sol (Ningbo Dilat Co., Ltd., HKT-D20-225-1, SiO2 concentration 20.7%, pH 9.0, dynamic light scattering particle size 88 nm, BET specific surface area 107 m2 /g, TEM average primary particle size 82 nm, specific surface area ratio 3.2) was charged into a 500 mL recovery flask, and the same procedure as in Example 1 was repeated except that the amount of diisopropylamine added was changed to 0.21 g and the amount of methanol was changed to 38.02 g, to obtain hollow silica methanol sol (3).
The obtained hollow silica methanol sol (3) had a SiO2 concentration of 15.5 mass%, a moisture content of 1.6%, a viscosity of 1.8 mPa sec, a pH of 8.6, a particle size measured by a dynamic light scattering method of 101 nm, a total nitrogen content of 410 ppm, and a surface charge amount calculated per 1 g of SiO2 of the hollow silica particles of 25 μeq/g.
(中空シリカメチルエチルケトンゾル(1)の調製)
 実施例3で得られた中空シリカメタノールゾル(3)(SiO濃度15.5質量%)50.02gを200mLのナスフラスコに仕込み、表面処理剤として3-メタクリロキシプロピルトリメトキシシラン0.35gを添加した。撹拌下で還流させながら5時間加熱処理することで表面処理を行った。その後ロータリーエバポレーターを用いて、浴温75℃で圧力500Torrから400Torrまで徐々に低下させ、メチルエチルケトン150mLをフィードしながら、メタノールを留去させることで中空シリカメチルエチルケトンゾル(1)を得た。
 得られた中空シリカメチルエチルケトンゾル(1)は、SiO濃度15.5質量%、水分0.1%、粘度3.1mPa・sec、pH7.8、動的光散乱法粒子径106nm、全窒素量360ppmであった。
(Preparation of hollow silica methyl ethyl ketone sol (1))
50.02 g of the hollow silica methanol sol (3) ( SiO2 concentration 15.5 mass%) obtained in Example 3 was charged into a 200 mL eggplant flask, and 0.35 g of 3-methacryloxypropyltrimethoxysilane was added as a surface treatment agent. The surface was treated by heating for 5 hours while refluxing under stirring. After that, using a rotary evaporator, the bath temperature was 75°C and the pressure was gradually reduced from 500 Torr to 400 Torr, and 150 mL of methyl ethyl ketone was fed to distill off the methanol, thereby obtaining a hollow silica methyl ethyl ketone sol (1).
The obtained hollow silica methyl ethyl ketone sol (1) had a SiO2 concentration of 15.5 mass%, a moisture content of 0.1%, a viscosity of 3.1 mPa·sec, a pH of 7.8, a particle size measured by a dynamic light scattering method of 106 nm, and a total nitrogen content of 360 ppm.
(中空シリカメタノールゾル(3)を配合した膜の調製)
 実施例3で得られた中空シリカメタノールゾル(3)(SiO濃度15.5質量%)1.61gを用いる以外は実施例1と同様に操作することで、中空シリカメタノールゾル(3)/UV硬化樹脂混合ワニスおよび中空シリカメタノールゾル(3)を配合したワニスから形成される膜を調製した。得られた配合膜の全光透過率は92.1%であり、透明性の高い配合膜であった。
(中空シリカメチルエチルケトンゾル(1)を配合した膜の調製)
 実施例3で得られた中空シリカメチルエチルケトンゾル(1)(SiO濃度15.5質量%)1.61gを褐色瓶に秤量し、全量で5.00g、最終的な溶媒組成が重量比でプロピレングリコールモノメチルエーテル/メチルエチルケトン=6/4となるようにプロピレングリコールモノメチルエーテルおよびメチルエチルケトンを添加し、実施例1で調製したUV硬化樹脂液0.71gを添加後、室温で1時間混合することで中空シリカメチルエチルケトンゾル(1)/UV硬化樹脂混合ワニスを調製した。なお固形分濃度は10質量%、中空シリカ(SiO)の配合量は100phrであった。
 得られた中空シリカメチルエチルケトンゾル(1)/UV硬化樹脂混合ワニスを用いてガラス基板上に約2mL滴下し、スピンコーター(ミカサ株式会社製、Opticoat MS-B100)を用いて、200rpm×5sec、1000rpmまで3secで上昇、1000rpm×30secの条件でガラス基板上に均一に展開した。その後、ホットプレート上で100℃×3minベークし、積算光量2000mJ/cmの条件でUV光を照射することで中空シリカメチルエチルケトンゾル(1)を配合したワニスから形成される膜を調製した。分光へーズメーター(日本電色工業株式会社、SH7000)により得られた配合膜の全光透過率を測定した結果92.8%であった。ガラス基板の全光透過率91.0%、UV硬化樹脂のみで同条件で調製した膜の全光透過率90.7%と比較しても高い値を示し、透明性の高い配合膜であった。
(Preparation of membrane containing hollow silica methanol sol (3))
A film formed from hollow silica methanol sol (3)/UV curable resin mixed varnish and varnish containing hollow silica methanol sol (3) was prepared by the same operation as in Example 1, except that 1.61 g of hollow silica methanol sol (3) (SiO2 concentration 15.5 mass%) obtained in Example 3 was used. The total light transmittance of the obtained blended film was 92.1%, and it was a blended film with high transparency.
(Preparation of membrane containing hollow silica methyl ethyl ketone sol (1))
1.61 g of hollow silica methyl ethyl ketone sol (1) ( SiO2 concentration 15.5 mass%) obtained in Example 3 was weighed into a brown bottle, and propylene glycol monomethyl ether and methyl ethyl ketone were added so that the total amount was 5.00 g and the final solvent composition was propylene glycol monomethyl ether/methyl ethyl ketone = 6/4 by weight ratio, and 0.71 g of the UV curable resin liquid prepared in Example 1 was added, and the mixture was mixed at room temperature for 1 hour to prepare a hollow silica methyl ethyl ketone sol (1)/UV curable resin mixed varnish. The solid content concentration was 10 mass%, and the amount of hollow silica ( SiO2 ) was 100 phr.
About 2 mL of the obtained hollow silica methyl ethyl ketone sol (1) / UV curable resin mixed varnish was dropped onto a glass substrate, and a spin coater (Mikasa Co., Ltd., Opticoat MS-B100) was used to uniformly spread the mixture on the glass substrate under the conditions of 200 rpm x 5 sec, 3 sec increase to 1000 rpm, and 1000 rpm x 30 sec. Thereafter, the mixture was baked on a hot plate at 100 ° C. x 3 min, and irradiated with UV light under the condition of an accumulated light amount of 2000 mJ / cm 2 to prepare a film formed from a varnish containing hollow silica methyl ethyl ketone sol (1). The total light transmittance of the obtained mixture film was measured using a spectroscopic haze meter (Nippon Denshoku Kogyo Co., Ltd., SH7000), and was 92.8%. The total light transmittance of the glass substrate was 91.0%, which was higher than the total light transmittance of 90.7% of a film prepared under the same conditions using only a UV-curable resin, making this a highly transparent blend film.
(実施例4)
(中空シリカメタノールゾル(4)の調製)
 市販の中空シリカ水性ゾル(Ningbo Dilato社製、HKT-D20-225-1、SiO濃度20.7%、pH9.0、動的光散乱法粒子径88nm、BET法による比表面積107m/g、TEMによる平均一次粒子径82nm、比表面積比が3.2)100.05gを500mLのナスフラスコに仕込み、添加するジイソプロピルアミンの量を0.50gに、メタノールの量を38.06gに変更する以外は実施例1と同様に操作することで中空シリカメタノールゾル(4)を得た。
 得られた中空シリカメタノールゾル(4)は、SiO濃度15.5質量%、水分1.2%、粘度1.7mPa・sec、pH8.9、動的光散乱法粒子径99nm、全窒素量458ppm、中空シリカ粒子のSiOの1g当たりに換算した表面電荷量が30μeq/gであった。
Example 4
(Preparation of hollow silica methanol sol (4))
100.05 g of a commercially available hollow silica aqueous sol (Ningbo Dilat Co., Ltd., HKT-D20-225-1, SiO2 concentration 20.7%, pH 9.0, dynamic light scattering particle size 88 nm, BET specific surface area 107 m2 /g, TEM average primary particle size 82 nm, specific surface area ratio 3.2) was charged into a 500 mL recovery flask, and hollow silica methanol sol (4) was obtained by the same procedure as in Example 1, except that the amount of diisopropylamine added was changed to 0.50 g and the amount of methanol was changed to 38.06 g.
The obtained hollow silica methanol sol (4) had a SiO2 concentration of 15.5 mass%, a moisture content of 1.2%, a viscosity of 1.7 mPa sec, a pH of 8.9, a particle size measured by a dynamic light scattering method of 99 nm, a total nitrogen content of 458 ppm, and a surface charge amount calculated per 1 g of SiO2 of the hollow silica particles of 30 μeq/g.
(中空シリカメチルエチルケトンゾル(2)の調製)
実施例4で得られた中空シリカメタノールゾル(4)(SiO濃度15.5%)50.03gを200mLのナスフラスコに仕込み、表面処理剤としての3-メタクリロキシプロピルトリメトキシシランの添加量を0.35gとした以外は、実施例3と同様に操作することで中空シリカメチルエチルケトンゾル(2)を得た。
 得られた中空シリカメチルエチルケトンゾル(2)は、SiO濃度15.6質量%、水分0.2%、粘度3.3mPa・sec、pH8.3、動的光散乱法粒子径102nm、全窒素量387ppmであった。
(Preparation of hollow silica methyl ethyl ketone sol (2))
50.03 g of the hollow silica methanol sol (4) ( SiO2 concentration 15.5%) obtained in Example 4 was charged into a 200 mL eggplant flask, and the amount of 3-methacryloxypropyltrimethoxysilane added as a surface treatment agent was changed to 0.35 g. Except for this, the same operation as in Example 3 was performed to obtain a hollow silica methyl ethyl ketone sol (2).
The obtained hollow silica methyl ethyl ketone sol (2) had a SiO2 concentration of 15.6 mass%, a moisture content of 0.2%, a viscosity of 3.3 mPa·sec, a pH of 8.3, a particle size measured by dynamic light scattering of 102 nm, and a total nitrogen content of 387 ppm.
(中空シリカメタノールゾル(4)を配合した膜の調製)
 実施例4で得られた中空シリカメタノールゾル(4)(SiO濃度15.5質量%)1.61gを用いる以外は実施例1と同様に操作することで、中空シリカメタノールゾル(4)/UV硬化樹脂混合ワニスおよび中空シリカメタノールゾル(4)を配合したワニスから形成される膜を調製した。得られた配合膜の全光透過率は92.4%であり、透明性の高い配合膜であった。
(中空シリカメチルエチルケトンゾル(2)を配合した膜の調製)
 実施例4で得られた中空シリカメチルエチルケトンゾル(2)(SiO濃度15.6質量%)1.61gを用いる以外は実施例3と同様に操作することで、中空シリカメチルエチルケトンゾル(2)/UV硬化樹脂混合ワニスおよび中空シリカメチルエチルケトンゾル(2)を配合したワニスから形成される膜を調製した。得られた配合膜の全光透過率は92.3%であり、透明性の高い配合膜であった。
(Preparation of membrane containing hollow silica methanol sol (4))
A film formed from hollow silica methanol sol (4)/UV curable resin mixed varnish and varnish containing hollow silica methanol sol (4) was prepared by the same operation as in Example 1, except that 1.61 g of hollow silica methanol sol (4) (SiO2 concentration 15.5 mass%) obtained in Example 4 was used. The total light transmittance of the obtained blended film was 92.4%, and it was a blended film with high transparency.
(Preparation of membrane containing hollow silica methyl ethyl ketone sol (2))
A film formed from a hollow silica methyl ethyl ketone sol (2)/UV curable resin mixed varnish and a varnish containing hollow silica methyl ethyl ketone sol (2) was prepared by the same operation as in Example 3, except that 1.61 g of hollow silica methyl ethyl ketone sol (2) (SiO2 concentration 15.6 mass%) obtained in Example 4 was used. The total light transmittance of the obtained blended film was 92.3%, and it was a blended film with high transparency.
(実施例5)
(中空シリカメタノールゾル(5)の調製)
 市販の中空シリカ水性ゾル(Ningbo Dilato社製、HKT-D20-225-1、SiO濃度20.7質量%、pH9.0、動的光散乱法粒子径88nm、BET法による比表面積107m/g、TEMによる平均一次粒子径82nm、比表面積比が3.2)100.15gを500mLのナスフラスコに仕込み、添加するジイソプロピルアミンの量を1.00gに、メタノールの量を38.07gに変更する以外は実施例1と同様に操作することで中空シリカメタノールゾル(5)を得た。
 得られた中空シリカメタノールゾル(5)は、SiO濃度15.5質量%、水分0.8%、粘度1.6mPa・sec、pH8.5、動的光散乱法粒子径98nm、全窒素量414ppm、中空シリカ粒子のSiOの1g当たりに換算した表面電荷量が27μeq/gであった。
Example 5
(Preparation of hollow silica methanol sol (5))
100.15 g of a commercially available hollow silica aqueous sol (Ningbo Dilato Co., Ltd., HKT-D20-225-1, SiO2 concentration 20.7% by mass, pH 9.0, dynamic light scattering particle size 88 nm, BET specific surface area 107 m2 /g, TEM average primary particle size 82 nm, specific surface area ratio 3.2) was charged into a 500 mL recovery flask, and the same procedure as in Example 1 was repeated except that the amount of diisopropylamine added was changed to 1.00 g and the amount of methanol was changed to 38.07 g, to obtain hollow silica methanol sol (5).
The obtained hollow silica methanol sol (5) had a SiO2 concentration of 15.5 mass%, a moisture content of 0.8%, a viscosity of 1.6 mPa sec, a pH of 8.5, a particle size measured by a dynamic light scattering method of 98 nm, a total nitrogen content of 414 ppm, and a surface charge amount calculated per 1 g of SiO2 of the hollow silica particles of 27 μeq/g.
(中空シリカメチルエチルケトンゾル(3)の調製)
実施例5で得られた中空シリカメタノールゾル(5)(SiO濃度15.5質量%)50.05gを200mLのナスフラスコに仕込み、表面処理剤としての3-メタクリロキシプロピルトリメトキシシランの添加量を0.35gとした以外は、実施例3と同様に操作することで中空シリカメチルエチルケトンゾル(3)を得た。
 得られた中空シリカメチルエチルケトンゾル(3)は、SiO濃度15.5質量%、水分0.0%、粘度2.7mPa・sec、pH7.9、動的光散乱法粒子径103nm、全窒素量359ppmであった。
(Preparation of hollow silica methyl ethyl ketone sol (3))
50.05 g of the hollow silica methanol sol (5) ( SiO2 concentration 15.5 mass%) obtained in Example 5 was charged into a 200 mL eggplant flask, and the amount of 3-methacryloxypropyltrimethoxysilane added as a surface treatment agent was changed to 0.35 g. Except for this, the same operation as in Example 3 was performed to obtain a hollow silica methyl ethyl ketone sol (3).
The obtained hollow silica methyl ethyl ketone sol (3) had a SiO2 concentration of 15.5 mass%, a moisture content of 0.0%, a viscosity of 2.7 mPa·sec, a pH of 7.9, a particle size measured by a dynamic light scattering method of 103 nm, and a total nitrogen content of 359 ppm.
(中空シリカメタノールゾル(5)を配合した膜の調製)
 実施例5で得られた中空シリカメタノールゾル(5)(SiO濃度15.5質量%)1.61gを用いる以外は実施例1と同様に操作することで、中空シリカメタノールゾル(5)/UV硬化樹脂混合ワニスおよび中空シリカメタノールゾル(5)を配合したワニスから形成される膜を調製した。得られた配合膜の全光透過率は92.7%であり、透明性の高い配合膜であった。
(Preparation of membrane containing hollow silica methanol sol (5))
A film formed from hollow silica methanol sol (5)/UV curable resin mixed varnish and varnish containing hollow silica methanol sol (5) was prepared by the same operation as in Example 1, except that 1.61 g of hollow silica methanol sol (5) (SiO2 concentration 15.5 mass%) obtained in Example 5 was used. The total light transmittance of the obtained blended film was 92.7%, and it was a blended film with high transparency.
(中空シリカメチルエチルケトンゾル(3)を配合した膜の調製)
 実施例5で得られた中空シリカメチルエチルケトンゾル(3)(SiO濃度15.5質量%)1.61gを用いる以外は実施例3と同様に操作することで、中空シリカメチルエチルケトンゾル(3)/UV硬化樹脂混合ワニスおよび中空シリカメチルエチルケトンゾル(3)を配合したワニスから形成される膜を調製した。得られた配合膜の全光透過率は92.8%であり、透明性の高い配合膜であった。
(Preparation of membrane containing hollow silica methyl ethyl ketone sol (3))
A film formed from a hollow silica methyl ethyl ketone sol (3)/UV curable resin mixed varnish and a varnish containing hollow silica methyl ethyl ketone sol (3) was prepared by the same operation as in Example 3, except that 1.61 g of hollow silica methyl ethyl ketone sol (3) (SiO2 concentration 15.5 mass%) obtained in Example 5 was used. The total light transmittance of the obtained blended film was 92.8%, and it was a blended film with high transparency.
(実施例6)
(中空シリカメタノールゾル(6)の調製)
 市販の中空シリカ水性ゾル(Ningbo Dilato社製、HKT-D20-225-1、SiO濃度20.7%、pH9.0、動的光散乱法粒子径88nm、BET法による比表面積107m/g、TEMによる平均一次粒子径82nm、比表面積比が3.2)100.06gを500mLのナスフラスコに仕込み、マグネチックスターラーゾルでゾルを撹拌しながら、28%アンモニア水1.41gを添加し、2時間混合した。その後撹拌しながらジイソプロピルアミン0.04gを添加し、2時間混合し、さらに撹拌しながらメタノール38.01gを添加し、2時間混合した。ロータリーエバポレーターを用いて、減圧下(圧力150Torr、浴温80℃)でメタノール約3000mLをフィードしながら、水を留去させることで中空シリカメタノールゾル(6)を得た。
 得られた中空シリカメタノールゾル(6)は、SiO濃度15.7質量%、水分1.1%、粘度1.7mPa・sec、pH9.0、動的光散乱法粒子径99nm、全窒素量553ppm、中空シリカ粒子のSiOの1g当たりに換算した表面電荷量が30μeq/gであった。
Example 6
(Preparation of hollow silica methanol sol (6))
Commercially available hollow silica aqueous sol (Ningbo Dilat Co., Ltd., HKT-D20-225-1, SiO2 concentration 20.7%, pH 9.0, dynamic light scattering particle size 88 nm, specific surface area 107 m2 /g by BET method, average primary particle size 82 nm by TEM, specific surface area ratio 3.2) 100.06 g was charged into a 500 mL eggplant flask, and 1.41 g of 28% ammonia water was added while stirring the sol with a magnetic stirrer sol, and mixed for 2 hours. Then, 0.04 g of diisopropylamine was added while stirring, and mixed for 2 hours, and 38.01 g of methanol was added while stirring, and mixed for 2 hours. Using a rotary evaporator, water was distilled off while feeding about 3000 mL of methanol under reduced pressure (pressure 150 Torr, bath temperature 80 ° C.) to obtain a hollow silica methanol sol (6).
The obtained hollow silica methanol sol (6) had a SiO2 concentration of 15.7 mass%, a moisture content of 1.1%, a viscosity of 1.7 mPa sec, a pH of 9.0, a particle size measured by a dynamic light scattering method of 99 nm, a total nitrogen content of 553 ppm, and a surface charge amount calculated per 1 g of SiO2 of the hollow silica particles of 30 μeq/g.
(中空シリカメチルエチルケトンゾル(4)の調製)
 実施例6で得られた中空シリカメタノールゾル(6)(SiO濃度15.7質量%)50.00gを200mLのナスフラスコに仕込み、表面処理剤としての3-メタクリロキシプロピルトリメトキシシランの添加量を0.35gとした以外は、実施例3と同様に操作することで中空シリカメチルエチルケトンゾル(4)を得た。
 得られた中空シリカメチルエチルケトンゾル(4)は、SiO濃度15.6質量%、水分0.3%、粘度4.2mPa・sec、pH8.5、動的光散乱法粒子径103nm、全窒素量436ppmであった。
(Preparation of hollow silica methyl ethyl ketone sol (4))
50.00 g of the hollow silica methanol sol (6) ( SiO2 concentration 15.7 mass%) obtained in Example 6 was charged into a 200 mL eggplant flask, and the amount of 3-methacryloxypropyltrimethoxysilane added as a surface treatment agent was changed to 0.35 g. Except for this, the same operation as in Example 3 was performed to obtain a hollow silica methyl ethyl ketone sol (4).
The obtained hollow silica methyl ethyl ketone sol (4) had a SiO2 concentration of 15.6 mass%, a moisture content of 0.3%, a viscosity of 4.2 mPa·sec, a pH of 8.5, a particle size measured by a dynamic light scattering method of 103 nm, and a total nitrogen content of 436 ppm.
(中空シリカメタノールゾル(6)を配合した膜の調製)
 実施例6で得られた中空シリカメタノールゾル(6)(SiO濃度15.7質量%)1.59gを用いる以外は実施例1と同様に操作することで、中空シリカメタノールゾル(6)/UV硬化樹脂混合ワニスおよび中空シリカメタノールゾル(6)を配合したワニスから形成される膜を調製した。得られた配合膜の全光透過率は92.7%であり、透明性の高い配合膜であった。
(中空シリカメチルエチルケトンゾル(4)を配合した膜の調製)
 実施例6で得られた中空シリカメチルエチルケトンゾル(4)(SiO濃度15.6質量%)1.61gを用いる以外は実施例3と同様に操作することで、中空シリカメチルエチルケトンゾル(4)/UV硬化樹脂混合ワニスおよび中空シリカメチルエチルケトンゾル(4)を配合したワニスから形成される膜を調製した。得られた配合膜の全光透過率は92.1%であり、透明性の高い配合膜であった。
(Preparation of membrane containing hollow silica methanol sol (6))
A film formed from hollow silica methanol sol (6)/UV curable resin mixed varnish and varnish containing hollow silica methanol sol (6) was prepared by the same operation as in Example 1, except that 1.59 g of hollow silica methanol sol (6) (SiO2 concentration 15.7 mass%) obtained in Example 6 was used. The total light transmittance of the obtained blended film was 92.7%, and it was a blended film with high transparency.
(Preparation of membrane containing hollow silica methyl ethyl ketone sol (4))
A film formed from a hollow silica methyl ethyl ketone sol (4)/UV curable resin mixed varnish and a varnish containing hollow silica methyl ethyl ketone sol (4) was prepared by the same operation as in Example 3, except that 1.61 g of hollow silica methyl ethyl ketone sol (4) (SiO2 concentration 15.6 mass%) obtained in Example 6 was used. The total light transmittance of the obtained blended film was 92.1%, and it was a blended film with high transparency.
(実施例7)
(中空シリカメタノールゾル(7)の調製)
 市販の中空シリカ水性ゾル(Ningbo Dilato社製、HKT-D20-225-1、SiO濃度20.7質量%、pH9.0、動的光散乱法粒子径88nm、BET法による比表面積107m/g、TEMによる平均一次粒子径82nm、比表面積比が3.2)105.47gを500mLのナスフラスコに仕込み、添加する28%アンモニア水の量を3.77gに、ジイソプロピルアミンの量を0.05gに、メタノールの量を40.07gに変更する以外は実施例1と同様に操作することで中空シリカメタノールゾル(7)を得た。
 得られた中空シリカメタノールゾル(7)は、SiO濃度15.5質量%、水分1.1%、粘度1.4mPa・sec、pH9.3、動的光散乱法粒子径101nm、全窒素量1346ppm、中空シリカ粒子のSiOの1g当たりに換算した表面電荷量が36μeq/gであった。
(Example 7)
(Preparation of hollow silica methanol sol (7))
105.47 g of a commercially available hollow silica aqueous sol (Ningbo Dilat Co., Ltd., HKT-D20-225-1, SiO2 concentration 20.7% by mass, pH 9.0, dynamic light scattering particle size 88 nm, BET specific surface area 107 m2 /g, TEM average primary particle size 82 nm, specific surface area ratio 3.2) was charged into a 500 mL eggplant flask, and hollow silica methanol sol (7) was obtained by the same procedure as in Example 1, except that the amount of 28% ammonia water added was changed to 3.77 g, the amount of diisopropylamine to 0.05 g, and the amount of methanol to 40.07 g.
The obtained hollow silica methanol sol (7) had a SiO2 concentration of 15.5 mass%, a moisture content of 1.1%, a viscosity of 1.4 mPa sec, a pH of 9.3, a particle size measured by a dynamic light scattering method of 101 nm, a total nitrogen content of 1346 ppm, and a surface charge amount calculated per 1 g of SiO2 of the hollow silica particles of 36 μeq/g.
(中空シリカメチルエチルケトンゾル(5)の調製)
実施例7で得られた中空シリカメタノールゾル(7)(SiO濃度15.5質量%)50.02gを200mLのナスフラスコに仕込み、表面処理剤としての3-メタクリロキシプロピルトリメトキシシランの添加量を0.35gとした以外は、実施例3と同様に操作することで中空シリカメチルエチルケトンゾル(5)を得た。
 得られた中空シリカメチルエチルケトンゾル(5)は、SiO濃度15.5質量%、水分0.1%、粘度2.8mPa・sec、pH8.4、動的光散乱法粒子径102nm、全窒素量1043ppmであった。
(Preparation of hollow silica methyl ethyl ketone sol (5))
50.02 g of the hollow silica methanol sol (7) ( SiO2 concentration 15.5 mass%) obtained in Example 7 was charged into a 200 mL eggplant flask, and the amount of 3-methacryloxypropyltrimethoxysilane added as a surface treatment agent was changed to 0.35 g. Except for this, the same operation as in Example 3 was performed to obtain a hollow silica methyl ethyl ketone sol (5).
The obtained hollow silica methyl ethyl ketone sol (5) had a SiO2 concentration of 15.5 mass%, a moisture content of 0.1%, a viscosity of 2.8 mPa·sec, a pH of 8.4, a particle size measured by dynamic light scattering of 102 nm, and a total nitrogen content of 1043 ppm.
(中空シリカメタノールゾル(7)を配合した膜の調製)
 実施例7で得られた中空シリカメタノールゾル(7)(SiO濃度15.5質量%)1.61gを用いる以外は実施例1と同様に操作することで、中空シリカメタノールゾル(7)/UV硬化樹脂混合ワニスおよび中空シリカメタノールゾル(7)を配合したワニスから形成される膜を調製した。得られた配合膜の全光透過率は92.7%であり、透明性の高い配合膜であった。
(Preparation of membrane containing hollow silica methanol sol (7))
A film formed from hollow silica methanol sol (7)/UV curable resin mixed varnish and varnish containing hollow silica methanol sol (7) was prepared by the same operation as in Example 1, except that 1.61 g of hollow silica methanol sol (7) (SiO2 concentration 15.5 mass%) obtained in Example 7 was used. The total light transmittance of the obtained blended film was 92.7%, and it was a blended film with high transparency.
(中空シリカメチルエチルケトンゾル(5)を配合した膜の調製)
 実施例7で得られた中空シリカメチルエチルケトンゾル(5)(SiO濃度15.5質量%)1.61gを用いる以外は実施例3と同様に操作することで、中空シリカメチルエチルケトンゾル(5)/UV硬化樹脂混合ワニスおよび中空シリカメチルエチルケトンゾル(5)を配合したワニスから形成される膜を調製した。得られた配合膜の全光透過率は92.4%であり、透明性の高い配合膜であった。
(Preparation of membrane containing hollow silica methyl ethyl ketone sol (5))
A film formed from a hollow silica methyl ethyl ketone sol (5)/UV curable resin mixed varnish and a varnish containing hollow silica methyl ethyl ketone sol (5) was prepared by the same operation as in Example 3, except that 1.61 g of hollow silica methyl ethyl ketone sol (5) (SiO2 concentration 15.5 mass%) obtained in Example 7 was used. The total light transmittance of the obtained blended film was 92.4%, and it was a blended film with high transparency.
(実施例8)
(中空シリカメタノールゾル(8)の調製)
 市販の中空シリカ水性ゾル(Ningbo Dilato社製、HKT-A20-40D、SiO濃度20.0%、pH9.3、動的光散乱法粒子径55nm、BET法による比表面積116m/g、TEMによる平均一次粒子径43nm、比表面積比が1.8)551.10gを2000mLのナスフラスコに仕込み、マグネチックスターラーで撹拌しながら、ジエタノールアミン0.55gを添加し、2h混合した。その後さらに撹拌しながらメタノール139.76gを添加し、2h混合した。ロータリーエバポレーターを用いて、減圧下(圧力580Torr、浴温120℃)でメタノール約12000mLをフィードしながら、水を留去させることで中空シリカメタノールゾル(8)を得た。
 得られた中空シリカメタノールゾル(8)は、SiO濃度23.5%、水分0.6%、粘度2.8mPa・sec、pH9.0、動的光散乱法粒子径63nm、全窒素量641ppm、中空シリカ粒子のSiOの1g当たりに換算した表面電荷量が34μeq/gであった。
(Example 8)
(Preparation of hollow silica methanol sol (8))
Commercially available hollow silica aqueous sol (Ningbo Dilato, HKT-A20-40D, SiO2 concentration 20.0%, pH 9.3, dynamic light scattering particle size 55 nm, specific surface area 116 m2 /g by BET method, average primary particle size 43 nm by TEM, specific surface area ratio 1.8) 551.10 g was charged into a 2000 mL eggplant flask, and 0.55 g of diethanolamine was added while stirring with a magnetic stirrer, and mixed for 2 h. Then, 139.76 g of methanol was added while stirring, and mixed for 2 h. Using a rotary evaporator, water was distilled off while feeding about 12,000 mL of methanol under reduced pressure (pressure 580 Torr, bath temperature 120 ° C.) to obtain a hollow silica methanol sol (8).
The obtained hollow silica methanol sol (8) had a SiO2 concentration of 23.5%, a moisture content of 0.6%, a viscosity of 2.8 mPa sec, a pH of 9.0, a particle size measured by a dynamic light scattering method of 63 nm, a total nitrogen content of 641 ppm, and a surface charge amount calculated per 1 g of SiO2 of the hollow silica particles of 34 μeq/g.
(中空シリカメチルエチルケトンゾル(6)の調製)
 実施例8で得られた中空シリカメタノールゾル(8)のSiO濃度を20.5質量%に調整した原料メタノールゾル25.00gを300mLのナスフラスコに仕込み、メタノール8.20gと純水0.26gを添加し、マグネチックスターラーで攪拌した。表面処理剤としてγ-メタクリロキシプロピルトリメトキシシラン0.25gを添加し、還流させながら5h加熱処理することで表面処理を行った。その後ロータリーエバポレーターを用いて、浴温75℃で圧力500Torrから400Torrまで徐々に低下させ、メチルエチルケトン約80mLをフィードしながら、メタノールを留去させることで中空シリカメチルエチルケトンゾル(6)を得た。
 得られた中空シリカメチルエチルケトンゾル(6)は、SiO濃度22.4%、水分0.4%、pH9.3、動的光散乱法粒子径66nmであった。
(Preparation of hollow silica methyl ethyl ketone sol (6))
25.00 g of the raw material methanol sol obtained in Example 8, in which the SiO 2 concentration of the hollow silica methanol sol (8) was adjusted to 20.5% by mass, was charged into a 300 mL eggplant flask, 8.20 g of methanol and 0.26 g of pure water were added, and the mixture was stirred with a magnetic stirrer. 0.25 g of γ-methacryloxypropyltrimethoxysilane was added as a surface treatment agent, and the mixture was heated under reflux for 5 hours to perform surface treatment. After that, using a rotary evaporator, the pressure was gradually reduced from 500 Torr to 400 Torr at a bath temperature of 75° C., and about 80 mL of methyl ethyl ketone was fed while distilling off the methanol to obtain a hollow silica methyl ethyl ketone sol (6).
The obtained hollow silica methyl ethyl ketone sol (6) had a SiO2 concentration of 22.4%, a moisture content of 0.4%, a pH of 9.3, and a particle size measured by a dynamic light scattering method of 66 nm.
(比較例1)アミン非含有の中空シリカメタノールゾルの調製
 市販の中空シリカ水性ゾル(Ningbo Dilato社製、HKT-D20-225-1、SiO濃度20.7%、pH9.0、動的光散乱法粒子径88nm)100.04gを500mLのナスフラスコに仕込み、さらにメタノール38.02gを添加した。ロータリーエバポレーターを用いて、減圧下(圧力150Torr、浴温80℃)でメタノール約3000mLをフィードしながら、水を留去させることで中空シリカメタノールゾルの調製を試みたが、メタノールへの置換途中で増粘、ゲル化が起こり、所望の中空シリカメタノールゾルは得られなかった。
(Comparative Example 1) Preparation of amine-free hollow silica methanol sol Commercially available hollow silica aqueous sol (Ningbo Dilat Co., Ltd., HKT-D20-225-1, SiO2 concentration 20.7%, pH 9.0, dynamic light scattering particle size 88 nm) 100.04 g was charged into a 500 mL eggplant flask, and 38.02 g of methanol was further added. Using a rotary evaporator, an attempt was made to prepare a hollow silica methanol sol by distilling off water while feeding about 3000 mL of methanol under reduced pressure (pressure 150 Torr, bath temperature 80 ° C.), but thickening and gelation occurred during the replacement with methanol, and the desired hollow silica methanol sol was not obtained.
 上記表1及び表2中、(中空シリカメタノールゾル)は中空シリカ粒子がメタノールに分散したゾル)を示す。(分散媒)の欄のMeOHはメタノールを示す。(pH)は中空シリカメタノールゾルと同質量の純水を1:1で混合した時のpHを示す。(アミン量)は中空シリカ粒子のSiOに対する添加割合(質量%)を示し、その添加割合に応じて中空シリカメタノールゾルに含有されていた。(DLS)は中空シリカ粒子の動的光散乱法による平均粒子径(nm)を示す。(全窒素量)はアミン、又はアミンとアンモニアからなる塩基成分の中空シリカ粒子ゾル中での全窒素量(ppm)を示す。(表面電荷量)は中空シリカ粒子のSiOの1g当たりに換算した表面電荷量(μeq/g)を示す。なお、ゲル化は当該中空シリカゾルがゲル化して物性値が測定不能である事を示す。 In Tables 1 and 2, (hollow silica methanol sol) indicates a sol in which hollow silica particles are dispersed in methanol. MeOH in the (dispersion medium) column indicates methanol. (pH) indicates the pH when hollow silica methanol sol and the same mass of pure water are mixed at 1:1. (Amine amount) indicates the addition ratio (mass%) of hollow silica particles to SiO 2 , and was contained in the hollow silica methanol sol according to the addition ratio. (DLS) indicates the average particle size (nm) of hollow silica particles by dynamic light scattering method. (Total nitrogen amount) indicates the total nitrogen amount (ppm) in the hollow silica particle sol of the base component consisting of amine or amine and ammonia. (Surface charge amount) indicates the surface charge amount (μeq/g) converted per 1 g of SiO 2 of the hollow silica particles. Note that gelation indicates that the hollow silica sol has gelled and the physical property value cannot be measured.
 上記表3中、(中空シリカ有機溶媒ゾル)は中空シリカ粒子が有機溶媒に分散したゾルを示す。(分散媒)の欄のPGMEはプロピレングリコールモノメチルエーテルを示し、MEKはメチルエチルケトンを示す。(pH)はプロピレングリコールモノメチルエーテルゾルについては、純水とゾルを質量比1:1で混合した溶液で測定したpH値を示し、メチルエチルケトンゾルについては、純水とメタノールとメチルエチルケトンゾルを質量比1:1:1で混合した溶液で測定したpH値を示す。(表面処理)の欄の「なし」はシランカップリング剤のシリカ粒子の表面処理が行われていない事を示し、MPSはシリカ粒子の表面処理が3-メタクリロキシプロピルトリメトキシシランで行われた事を示す。(DLS)は中空シリカ粒子の動的光散乱法による平均粒子径(nm)を示す。(全窒素量)はアミン、又はアミンとアンモニアからなる塩基成分が中空シリカ粒子ゾル中での全窒素量(ppm)を示す。 In Table 3 above, (hollow silica organic solvent sol) indicates a sol in which hollow silica particles are dispersed in an organic solvent. In the (dispersion medium) column, PGME indicates propylene glycol monomethyl ether, and MEK indicates methyl ethyl ketone. (pH) indicates the pH value measured in a solution in which pure water and the sol were mixed at a mass ratio of 1:1 for the propylene glycol monomethyl ether sol, and the pH value measured in a solution in which pure water, methanol, and methyl ethyl ketone sol were mixed at a mass ratio of 1:1:1 for the methyl ethyl ketone sol. In the (surface treatment) column, "none" indicates that the surface of the silica particles was not treated with a silane coupling agent, and MPS indicates that the surface of the silica particles was treated with 3-methacryloxypropyltrimethoxysilane. (DLS) indicates the average particle size (nm) of the hollow silica particles measured by dynamic light scattering. (Total nitrogen content) indicates the total nitrogen content (ppm) of the base component consisting of amine or amine and ammonia in the hollow silica particle sol.
 表4及び5中、(中空シリカメタノールゾル配合膜)は中空シリカ粒子がメタノールに分散したゾルをUV硬化樹脂に配合した樹脂組成物を基板上に被覆して光硬化した膜を示す。(UV硬化樹脂)の欄は使用した多官能アクリレートを示し、DPHAは日本化薬株式会社製、商品名KAYARAD DPHA(多官能アクリレート:成分はジペンタエリスリトールヘキサアクリレート)を示す。(配合量)はUV硬化樹脂に対する中空シリカ粒子の配合量(phr)を示す。(全光透過率)は得られた被膜の全光透過率(%)を示す。 In Tables 4 and 5, (film containing hollow silica methanol sol) indicates a film formed by coating a substrate with a resin composition in which a sol of hollow silica particles dispersed in methanol is blended with a UV-curable resin and then photocuring the film. The (UV-curable resin) column indicates the polyfunctional acrylate used, with DPHA indicating KAYARAD DPHA (polyfunctional acrylate: component dipentaerythritol hexaacrylate), manufactured by Nippon Kayaku Co., Ltd. (blended amount) indicates the blended amount (phr) of hollow silica particles relative to the UV-curable resin. (Total light transmittance) indicates the total light transmittance (%) of the resulting coating.
 表6及び7中、(中空シリカ有機溶媒ゾル配合膜)、中空シリカ粒子が有機溶媒に分散したゾルをUV硬化樹脂に配合した樹脂組成物を基板上に被覆して光硬化した膜を示す。(UV硬化樹脂)の欄は使用した多官能アクリレートを示し、DPHAは日本化薬株式会社製、商品名KAYARAD DPHA(多官能アクリレート:成分はジペンタエリスリトールヘキサアクリレート)を示す。(配合量)はUV硬化樹脂に対する中空シリカ粒子の配合量(phr)を示す。(全光透過率)は得られた被膜の全光透過率(%)を示す。 In Tables 6 and 7, (film containing hollow silica organic solvent sol) shows a film formed by coating a substrate with a resin composition in which a sol of hollow silica particles dispersed in an organic solvent is blended with a UV-curable resin, and then photocuring the film. The (UV-curable resin) column shows the polyfunctional acrylate used, with DPHA being Nippon Kayaku Co., Ltd.'s product name KAYARAD DPHA (polyfunctional acrylate: component dipentaerythritol hexaacrylate). (Amount blended) shows the amount (phr) of hollow silica particles blended with the UV-curable resin. (Total light transmittance) shows the total light transmittance (%) of the resulting coating.
 上述の評価結果から中空シリカ水性ゾルに水溶性のアミンを添加せずに水性媒体をメタノールに溶媒置換を行った際には、溶媒置換の途中で増粘、ゲル化が起こってしまい、所望の中空シリカメタノールゾルが得られなかった。それに対して、中空シリカ水性ゾルに水溶性アミンとしてジイソプロピルアミンを所定量添加して溶媒置換した際には、増粘、ゲル化を回避して所望の中空シリカメタノールゾルが得られると共に、一定値以上の表面電荷量を有する中空シリカ粒子のゾルに制御することが可能であることを確認した。また、得られた中空シリカメタノールゾルを樹脂に配合して調製した配合膜は、樹脂中での中空シリカ粒子の分散均一性に優れるため、透明性(全光透過率)が高いことも確認した。さらに、得られた中空シリカメタノールゾルを原料に用いることで、プロピレングルコールモノメチルエーテルやメチルエチルケトンなど、他の有機溶媒への溶媒置換が可能であることを確認した。 The above evaluation results show that when the aqueous medium was replaced with methanol without adding a water-soluble amine to the hollow silica aqueous sol, thickening and gelation occurred during the solvent replacement process, and the desired hollow silica methanol sol could not be obtained. In contrast, when a predetermined amount of diisopropylamine was added as a water-soluble amine to the hollow silica aqueous sol to replace the solvent, thickening and gelation were avoided, and it was confirmed that it was possible to obtain the desired hollow silica methanol sol and control the sol to a sol of hollow silica particles with a surface charge amount of a certain value or more. In addition, it was confirmed that the blended film prepared by blending the obtained hollow silica methanol sol with resin had excellent dispersion uniformity of the hollow silica particles in the resin, and therefore had high transparency (total light transmittance). Furthermore, it was confirmed that the solvent replacement with other organic solvents such as propylene glycol monomethyl ether and methyl ethyl ketone is possible by using the obtained hollow silica methanol sol as a raw material.
 本発明は特定の表面電荷を有し樹脂への分散性が高い中空シリカ粒子であり、アミンをゾル中に含む、外殻の内部に空間を有する中空シリカ粒子の有機溶媒ゾル、その製造方法、及び被膜形成組成物を提供する。 The present invention provides hollow silica particles that have a specific surface charge and are highly dispersible in resins, and provides an organic solvent sol of hollow silica particles that contain an amine in the sol and have a space inside the outer shell, a method for producing the same, and a coating-forming composition.

Claims (15)

  1. アミンをゾル中に含む、外殻の内部に空間を有する中空シリカ粒子の有機溶媒ゾル。 An organic solvent sol of hollow silica particles with spaces inside the shell, containing amine in the sol.
  2. 上記アミンが炭素原子数1~10の第1級アミン、第2級アミン、及び第3級アミンからなる群から選ばれる少なくとも1種のアミンである請求項1に記載のゾル。 The sol according to claim 1, wherein the amine is at least one amine selected from the group consisting of primary amines, secondary amines, and tertiary amines having 1 to 10 carbon atoms.
  3. 上記アミンは水溶解度が、80g/L以上の水溶性アミンである請求項1又は請求項2に記載のゾル。 The sol according to claim 1 or 2, wherein the amine is a water-soluble amine having a water solubility of 80 g/L or more.
  4. 上記アミンの含有量が中空シリカ粒子のSiOに対して0.001~10質量%である請求項1乃至請求項3の何れか1項に記載のゾル。 The sol according to any one of claims 1 to 3, wherein the content of the amine is 0.001 to 10 mass% relative to the SiO2 of the hollow silica particles.
  5. 動的光散乱法による上記中空シリカ粒子の平均粒子径が20~150nmである請求項1乃至請求項4の何れか1項に記載のゾル。 The sol according to any one of claims 1 to 4, wherein the average particle size of the hollow silica particles measured by dynamic light scattering is 20 to 150 nm.
  6. 上記中空シリカ粒子のSiOの1g当たりに換算した表面電荷量が5~250μeq/gである請求項1乃至請求項5の何れか1項に記載のゾル。 The sol according to any one of claims 1 to 5, wherein the surface charge amount of the hollow silica particles calculated per 1 g of SiO2 is 5 to 250 μeq/g.
  7. 有機溶媒が炭素原子数1~10のアルコール、ケトン、エーテル、又はエステルである請求項1乃至請求項6の何れか1項に記載のゾル。 The sol according to any one of claims 1 to 6, wherein the organic solvent is an alcohol, ketone, ether, or ester having 1 to 10 carbon atoms.
  8. 上記中空シリカ粒子が更に式(1)、式(2)、及び式(3):
    (式(1)中、Rはそれぞれアルキル基、ハロゲン化アルキル基、アルケニル基、アリール基、又はエポキシ基、(メタ)アクリロイル基、メルカプト基、アミノ基、ウレイド基、もしくはシアノ基を有する有機基であり且つSi-C結合によりケイ素原子と結合している基を示し、Rはそれぞれアルコキシ基、アシルオキシ基、又はハロゲン基を示し、aは1~3の整数であり、
    式(2)及び式(3)中、R及びRはそれぞれ炭素原子数1~3のアルキル基、又は炭素原子数6~30のアリール基であり且つSi-C結合によりケイ素原子と結合している基を示し、R及びRはそれぞれアルコキシ基、アシルオキシ基、又はハロゲン基を示し、Yはアルキレン基、NH基、又は酸素原子を示し、bは1~3の整数であり、cは0又は1の整数であり、dは1~3の整数である。)
    で表されるシラン化合物からなる群より選ばれる少なくとも1種のシラン化合物で被覆されている請求項1乃至請求項7のいずれか1項に記載のゾル。
    The hollow silica particles may further comprise a compound represented by formula (1), formula (2), or formula (3):
    (In formula (1), R 1 represents an alkyl group, a halogenated alkyl group, an alkenyl group, an aryl group, or an organic group having an epoxy group, a (meth)acryloyl group, a mercapto group, an amino group, a ureido group, or a cyano group, and is bonded to a silicon atom via a Si-C bond; R 2 represents an alkoxy group, an acyloxy group, or a halogen group; a represents an integer of 1 to 3;
    In formula (2) and formula (3), R3 and R5 each represent an alkyl group having 1 to 3 carbon atoms or an aryl group having 6 to 30 carbon atoms and bonded to a silicon atom via a Si-C bond, R4 and R6 each represent an alkoxy group, an acyloxy group, or a halogen group, Y represents an alkylene group, an NH group, or an oxygen atom, b is an integer of 1 to 3, c is an integer of 0 or 1, and d is an integer of 1 to 3.
    The sol according to any one of claims 1 to 7, which is coated with at least one silane compound selected from the group consisting of silane compounds represented by the following formula:
  9. 請求項1乃至請求項8の何れか1項に記載のゾルと、有機樹脂とを含む被膜形成組成物。 A film-forming composition comprising the sol according to any one of claims 1 to 8 and an organic resin.
  10. 可視光線透過率が80%以上である請求項9に記載の被膜形成組成物から得られる膜。 A film obtained from the film-forming composition according to claim 9, which has a visible light transmittance of 80% or more.
  11. 下記(A)工程~(C)工程:
    (A)工程:中空シリカ水性ゾルを準備する工程、
    (B)工程:(A)工程の中空シリカ水性ゾルに、水溶解度が、80g/L以上であり且つ炭素原子数1~10の第1級アミン、第2級アミン、及び第3級アミンからなる群から選ばれる少なくとも1種のアミンを、中空シリカ粒子のSiOに対して0.001~10質量%の割合で添加する工程、
    (C)工程:(B)工程で得られた中空シリカ粒子の水性ゾルの水性媒体を、炭素原子数1~10のアルコール、ケトン、エーテル、又はエステルに溶媒置換する工程、を含む請求項1乃至請求項8の何れか1項に記載のゾルの製造方法。
    The following steps (A) to (C):
    Step (A): preparing a hollow silica aqueous sol;
    Step (B): adding at least one amine selected from the group consisting of primary amines, secondary amines, and tertiary amines having a water solubility of 80 g/L or more and having 1 to 10 carbon atoms to the hollow silica aqueous sol of step (A) in an amount of 0.001 to 10% by mass based on the SiO2 of the hollow silica particles;
    9. The method for producing a sol according to any one of claims 1 to 8, further comprising: step (C): a step of subjecting the aqueous medium of the aqueous sol of hollow silica particles obtained in step (B) to solvent replacement with an alcohol, a ketone, an ether, or an ester having 1 to 10 carbon atoms.
  12. 上記(C)工程の終了後に、更に上記式(1)、式(2)、及び式(3)からなる群より選ばれる少なくとも1種のシラン化合物を添加し、加熱する(D)工程を含む請求項11に記載のゾルの製造方法。 The method for producing a sol according to claim 11 further comprises a step (D) of adding at least one silane compound selected from the group consisting of formulas (1), (2), and (3) and heating after completion of the step (C).
  13. 上記(C)工程が、上記水性媒体を炭素原子数1~10のアルコールに溶媒置換した後に、更に炭素原子数1~10のケトン、エーテル、又はエステルに溶媒置換する工程である請求項11又は請求項12に記載のゾルの製造方法。 The method for producing a sol according to claim 11 or 12, wherein the step (C) is a step of replacing the solvent in the aqueous medium with an alcohol having 1 to 10 carbon atoms, and then replacing the solvent with a ketone, ether, or ester having 1 to 10 carbon atoms.
  14. (C)工程が上記水性媒体を炭素原子数1~10のアルコールに溶媒置換する工程であり、(D)工程が上記式(1)、式(2)、及び式(3)で表されるシラン化合物からなる群より選ばれる少なくとも1種のシラン化合物を添加し、加熱した後で、更にアルコール溶媒を炭素原子数1~10のケトン、エーテル、又はエステルに溶媒置換する工程である請求項12に記載のゾルの製造方法。 The method for producing a sol according to claim 12, wherein the step (C) is a step of replacing the aqueous medium with an alcohol having 1 to 10 carbon atoms, and the step (D) is a step of adding at least one silane compound selected from the group consisting of silane compounds represented by the above formulas (1), (2), and (3), heating, and then replacing the alcohol solvent with a ketone, ether, or ester having 1 to 10 carbon atoms.
  15. 請求項11乃至請求項14の何れか1項に記載の製造方法を用いる中空シリカ粒子の表面電荷の調整方法。
     
    A method for adjusting the surface charge of hollow silica particles, which comprises using the method for producing hollow silica particles according to any one of claims 11 to 14.
PCT/JP2023/034712 2022-09-30 2023-09-25 Organic solvent sol of amine-containing hollow silica particles, and method for producing same WO2024071033A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-158163 2022-09-30
JP2022158163 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024071033A1 true WO2024071033A1 (en) 2024-04-04

Family

ID=90477864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034712 WO2024071033A1 (en) 2022-09-30 2023-09-25 Organic solvent sol of amine-containing hollow silica particles, and method for producing same

Country Status (2)

Country Link
TW (1) TW202428515A (en)
WO (1) WO2024071033A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010503693A (en) * 2006-09-15 2010-02-04 スリーエム イノベイティブ プロパティズ カンパニー Method for surface modification of nanoparticles
WO2014199904A1 (en) * 2013-06-10 2014-12-18 日産化学工業株式会社 Silica-containing resin composition and method for producing same, and molded article produced from silica-containing resin composition
WO2016181997A1 (en) * 2015-05-11 2016-11-17 日産化学工業株式会社 Aminosilane-modified colloidal silica dispersion and method of manufacturing same
WO2018186468A1 (en) * 2017-04-06 2018-10-11 株式会社日本触媒 Silica particles
JP2020059624A (en) * 2018-10-10 2020-04-16 株式会社日本触媒 Surface-treated silica particles, dispersion and resin composition comprising the same, and cured product of resin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010503693A (en) * 2006-09-15 2010-02-04 スリーエム イノベイティブ プロパティズ カンパニー Method for surface modification of nanoparticles
WO2014199904A1 (en) * 2013-06-10 2014-12-18 日産化学工業株式会社 Silica-containing resin composition and method for producing same, and molded article produced from silica-containing resin composition
WO2016181997A1 (en) * 2015-05-11 2016-11-17 日産化学工業株式会社 Aminosilane-modified colloidal silica dispersion and method of manufacturing same
WO2018186468A1 (en) * 2017-04-06 2018-10-11 株式会社日本触媒 Silica particles
JP2020059624A (en) * 2018-10-10 2020-04-16 株式会社日本触媒 Surface-treated silica particles, dispersion and resin composition comprising the same, and cured product of resin composition

Also Published As

Publication number Publication date
TW202428515A (en) 2024-07-16

Similar Documents

Publication Publication Date Title
KR20100099240A (en) Blocked isocyanato bearing silicon containing composition for the formation of resist undercoat
US11961636B2 (en) Silica-containing insulating composition
WO2019124514A1 (en) Composition for forming photocurable silicon-containing coating film
US20230168582A1 (en) Composition for forming resist underlying film
WO2022260154A1 (en) Composition for forming silicon-containing resist underlayer film
JP7564503B2 (en) Method for producing silicon-containing resist underlayer film
JP2024109670A (en) Additive-containing composition for forming silicon-containing resist underlayer film
WO2024071033A1 (en) Organic solvent sol of amine-containing hollow silica particles, and method for producing same
WO2020196563A1 (en) Film-forming composition
WO2024096130A1 (en) Hollow silica particles containing aluminum atoms and method for producing same
JP7586384B1 (en) Organic solvent dispersion sol containing conductive stannic oxide particles and method for producing the same
JP5585757B2 (en) Method for planarizing a semiconductor substrate
WO2022230940A1 (en) Composition for forming silicon-containing resist underlayer film
KR20230165801A (en) Composition for forming a silicon-containing resist underlayer film
WO2022114132A1 (en) Silicon-containing resist underlyaer film forming composition
WO2024209991A1 (en) Organic solvent dispersion sol containing conductive stannic oxide particles, and production method for same
CN118488926A (en) Hollow silica particles containing aluminum atoms and method for producing same
WO2022114134A1 (en) Composition for resist underlayer film formation
JP7365010B2 (en) Composition containing metal oxide particles that reduces volatile aldehyde generation
WO2024150761A1 (en) Water-based silica sol containing mercapto-group-containing silica particles
WO2024080286A1 (en) Nanosheets, coating layer forming composition using same, and molded article
CN118055985A (en) Composition containing metal oxide particles with reduced production of volatile aldehydes
CN117881628A (en) Epoxy group-containing organosilicon sol, epoxy resin composition, and method for producing same
WO2024176909A1 (en) Sol containing silica particles having epoxy-group-containing silicon compound bound thereto, and method for producing same
WO2024181394A1 (en) Composition for forming silicon-containing resist underlayer film having carbon-carbon double bond

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872256

Country of ref document: EP

Kind code of ref document: A1