Nothing Special   »   [go: up one dir, main page]

WO2024070720A1 - Multilayer film - Google Patents

Multilayer film Download PDF

Info

Publication number
WO2024070720A1
WO2024070720A1 PCT/JP2023/033477 JP2023033477W WO2024070720A1 WO 2024070720 A1 WO2024070720 A1 WO 2024070720A1 JP 2023033477 W JP2023033477 W JP 2023033477W WO 2024070720 A1 WO2024070720 A1 WO 2024070720A1
Authority
WO
WIPO (PCT)
Prior art keywords
propylene
film
molecular weight
based polymer
average molecular
Prior art date
Application number
PCT/JP2023/033477
Other languages
French (fr)
Japanese (ja)
Inventor
知也 村上
淳 尾留川
智也 大川
Original Assignee
株式会社プライムポリマー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社プライムポリマー filed Critical 株式会社プライムポリマー
Publication of WO2024070720A1 publication Critical patent/WO2024070720A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/02Wrappers or flexible covers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes

Definitions

  • the present invention relates to a laminated film, and more specifically to a laminated film having a polypropylene film and an inorganic oxide layer.
  • Propylene-based polymers are widely used as materials for various molded products (e.g., Patent Documents 1 and 2).
  • films made of propylene-based polymers are widely used as packaging films for food and miscellaneous goods, taking advantage of their excellent mechanical properties such as rigidity, and optical properties such as gloss.
  • unstretched polypropylene films are known to have a good balance of rigidity and heat resistance.
  • materials with excellent gas barrier properties have included aluminum foil, aluminum vapor deposition film, polyvinylidene chloride coated film, and ethylene vinyl alcohol film, but with the spread of environmental regulations in recent years, the use of materials that produce incineration residues, such as aluminum foil, has been restricted. Additionally, aluminum foil and aluminum vapor deposition film have problems in that the contents cannot be seen and they cannot be heated in a microwave oven.
  • a transparent gas barrier film in which oxides such as silicon oxide and aluminum oxide are vapor-deposited onto a non-oriented polypropylene film (see, for example, Patent Documents 3 and 4).
  • This film has the advantages of having excellent gas barrier properties, being environmentally friendly, allowing the contents to be checked, and being suitable for use in microwave ovens.
  • an object of the present invention is to provide a laminated film with improved appearance (i.e., fewer wrinkles).
  • a laminate film comprising a non-stretched polypropylene film containing a propylene-based polymer satisfying the following requirements (i) to (iii) and an inorganic oxide layer in contact with the film: (i) the melt flow rate (MFR) measured under conditions of 230°C and a load of 2.16 kgf is in the range of 3 to 25 g/10 min; (ii) the ratio (Mw/Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) measured by GPC is in the range of 6 to 15; (iii) The ratio (Mz/Mn) of Z-average molecular weight (Mz) to number-average molecular weight (Mn) measured by GPC is in the range of 40 to 150.
  • MFR melt flow rate
  • Mw weight average molecular weight
  • Mn number average molecular weight measured by GPC
  • the present invention provides a laminated film with improved appearance (i.e., fewer wrinkles).
  • a laminated film with fewer wrinkles is provided, with improvements in the degree of wrinkle formation.
  • the laminated film of the present invention comprises a non-oriented polypropylene film (hereinafter referred to as "CPP film”) and an inorganic oxide layer in contact with the CPP film.
  • CPP film non-oriented polypropylene film
  • inorganic oxide layer in contact with the CPP film.
  • the CPP film contains a propylene-based polymer that satisfies the following requirements (i) to (iii).
  • the melt flow rate (MFR) measured at 230° C. under a load of 2.16 kgf is 3 to 25 g/10 min, preferably 4 to 23 g/10 min, and more preferably 4 to 22 g/10 min.
  • MFR melt flow rate
  • the smoothness and gas barrier properties of the formed film are reduced, and if the MFR is higher than the upper limit, the discharge amount from the extruder during film formation is reduced, resulting in reduced productivity.
  • the ratio (Mz/Mn) of Z-average molecular weight (Mz) to number-average molecular weight (Mn) measured by GPC is in the range of 40-150, preferably 40-140, and more preferably 40-135.
  • Mz/Mn ratio is too small compared to the lower limit, the elastic modulus of the film formed is insufficient, whereas if the Mz/Mn ratio is too large compared to the upper limit, the smoothness of the film formed is reduced.
  • the above requirements (ii) and (iii) are satisfied, that is, a propylene-based polymer with a wide molecular weight distribution is used, and the degree of orientation of the propylene-based polymer molecules in the MD direction of molding is increased during film molding, resulting in a high film rigidity.
  • the orientation promotes crystallization of the propylene-based polymer, improving the heat resistance of the film.
  • the rigidity of the film is maintained during deposition processing at high processing temperatures, resulting in a laminated film with excellent appearance, i.e., a CPP film with an inorganic oxide layer.
  • propylene-based polymer examples include propylene homopolymers, propylene copolymers, and mixtures thereof.
  • examples of the mixture include a mixture of multiple types of propylene-based homopolymers, a mixture of multiple types of propylene-based copolymers, and a mixture of one or more types of propylene-based homopolymers and one or more types of propylene-based copolymers.
  • a preferred embodiment of the propylene-based polymer is a propylene homopolymer.
  • the laminate film of the present invention obtained from a propylene homopolymer that satisfies the above requirements (i) to (iii) has excellent appearance, i.e., has few wrinkles.
  • propylene-based polymer is a copolymer of propylene and an ⁇ -olefin having 2 to 8 carbon atoms (excluding propylene).
  • examples of the ⁇ -olefin include ethylene, 1-butene, 4-methyl-1-pentene, 1-hexene, and 1-octene.
  • the ⁇ -olefin may be used alone or in combination.
  • the content of structural units derived from propylene is preferably 90% by mass or more, more preferably 92% by mass or more, even more preferably 96% by mass or more, still more preferably more than 98% by mass, and particularly preferably 98.6% by mass or more, and the content of structural units derived from an ⁇ -olefin having 2 to 8 carbon atoms (excluding propylene) is preferably 10% by mass or less, more preferably 8% by mass or less, even more preferably 4% by mass or less, still more preferably less than 2% by mass, and particularly preferably 1.4% by mass or less.
  • the content can be measured by 13 C-NMR.
  • the laminated film of the present invention obtained from a copolymer of propylene and an ⁇ -olefin having 2 to 8 carbon atoms (excluding propylene), in which the content ratio of structural units derived from an ⁇ -olefin having 2 to 8 carbon atoms (excluding propylene) is within the above-mentioned range, has excellent appearance, i.e., has few wrinkles.
  • the propylene homopolymer and the copolymer of propylene and an ⁇ -olefin having 2 to 8 carbon atoms (excluding propylene) may each contain at least one or more biomass-derived monomers (propylene, an ⁇ -olefin having 2 to 8 carbon atoms (excluding propylene)).
  • the same type of monomer constituting the polymer may be only a biomass-derived monomer, may be only a fossil fuel-derived monomer, or may contain both a biomass-derived monomer and a fossil fuel-derived monomer.
  • the biomass-derived monomer is a monomer made from any renewable natural raw material, such as a plant-derived or animal-derived monomer, including fungi, yeast, algae, and bacteria, and its residue, which contains about 1 ⁇ 10 ⁇ 12 of 14 C isotope as carbon and has a biomass carbon concentration (pMC) of about 100 (pMC) measured in accordance with ASTM D6866.
  • the biomass-derived monomer (propylene, an ⁇ -olefin having 2 to 8 carbon atoms (excluding propylene)) can be obtained, for example, by a conventionally known method. It is preferable that the homopolymer and/or the copolymer contain a biomass-derived monomer from the viewpoint of reducing the environmental load.
  • the polymer production conditions such as the polymerization catalyst and polymerization temperature
  • the raw olefin is a propylene-based polymer containing a biomass-derived olefin
  • the molecular structure other than the inclusion of 14C isotope at a ratio of about 1 ⁇ 10 ⁇ 12 is the same as that of a propylene-based polymer made of a fossil fuel-derived monomer. Therefore, the performance is said to be the same.
  • the propylene homopolymer and the copolymer of propylene and ⁇ -olefin having 2 to 8 carbon atoms (excluding propylene) may each contain at least one or more chemically recycled monomers (propylene, ⁇ -olefin having 2 to 8 carbon atoms (excluding propylene)).
  • the same type of monomer constituting the polymer may be only chemically recycled monomers, or may contain chemically recycled monomers and fossil fuel-derived monomers and/or biomass-derived monomers.
  • the chemically recycled monomers (propylene, ⁇ -olefin having 2 to 8 carbon atoms (excluding propylene)) can be obtained, for example, by a conventionally known method.
  • the homopolymer and/or the copolymer contain chemically recycled monomers.
  • Chemically recycled monomers are monomers obtained by depolymerizing or pyrolyzing polymers such as waste plastics back into monomer units such as propylene, as well as monomers produced using such monomers as raw materials. Therefore, even if the raw material monomer is a propylene-based polymer containing a monomer derived from chemical recycling, if the polymer production conditions such as the polymerization catalyst, polymerization process, and polymerization temperature are the same, the molecular structure will be the same as a propylene-based polymer made from a monomer derived from fossil fuels. Therefore, the performance is said to be the same.
  • a preferred example of the propylene-based polymer is a propylene-based polymer composition (X) containing a propylene homopolymer (A) and a propylene-based polymer (B) as described below.
  • the melt flow rate (MFR) of the propylene homopolymer (A) measured under conditions of 230° C. and a load of 2.16 kgf is preferably in the range of 5 to 40 g/10 min, more preferably 7 to 35 g/10 min.
  • the ratio (Mw/Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the propylene homopolymer (A) is preferably in the range of 3.0 to 8.0, more preferably 3.5 to 6.0.
  • Mw/Mn of the propylene homopolymer (A) is within the above range, the laminate film of the present invention is excellent in rigidity and transparency.
  • the propylene homopolymer (A) can be produced by homopolymerizing propylene using a catalyst, and may be a commercially available product.
  • the catalyst examples include catalysts formed from a solid catalyst component having magnesium, titanium, and a halogen as essential components, an organometallic compound catalyst component such as an organoaluminum compound, and an electron donor compound catalyst component such as an organosilicon compound (representative examples are the catalysts described in paragraphs [0050] to [0075] of WO 2021/025142); and metallocene catalysts that use a metallocene compound as one of the catalyst components.
  • the propylene polymer (B) contains 20 to 50 mass % of a propylene polymer (b1) having an intrinsic viscosity [ ⁇ ] of 8 to 12 dL/g measured in tetralin solvent at 135° C., and 50 to 80 mass % of a propylene polymer (b2) having an intrinsic viscosity [ ⁇ ] of 0.5 to 1.5 dL/g measured in tetralin solvent at 135° C. (wherein the total amount of (b1) and (b2) is 100 mass %).
  • the intrinsic viscosity [ ⁇ ] measured at 135° C. in a tetralin solvent will be simply referred to as “intrinsic viscosity [ ⁇ ]”.
  • the intrinsic viscosity [ ⁇ ] of the propylene polymer (b1) is in the range of 8 to 12 dL/g, preferably in the range of 10 to 12 dL/g, and more preferably in the range of 10.5 to 11.5 dL/g.
  • the laminated film of the present invention has excellent rigidity and heat resistance.
  • the intrinsic viscosity [ ⁇ ] is equal to or less than the upper limit, a CPP film can be produced with excellent moldability, and the laminated film of the present invention has excellent surface appearance.
  • the mass fraction of the propylene-based polymer (b1) in the propylene-based polymer (B) is in the range of 20 to 50 mass%, preferably 20 to 45 mass%, more preferably 20 to 40 mass%, and even more preferably 22 to 40 mass%.
  • the propylene-based polymer composition (X) When the mass fraction is equal to or greater than the lower limit, the propylene-based polymer composition (X) has sufficient melt tension, and a CPP film having excellent rigidity and heat resistance can be produced. When the mass fraction is equal to or less than the upper limit, the occurrence of defective appearance during molding of the propylene-based polymer composition (X) can be suppressed.
  • the propylene-based polymer (b1) may be, for example, a homopolymer of propylene or a copolymer of propylene and an ⁇ -olefin having 2 to 8 carbon atoms (excluding propylene).
  • the ⁇ -olefin having 2 to 8 carbon atoms include ethylene, 1-butene, 1-hexene, 1-octene, and 4-methyl-1-pentene. Of these ⁇ -olefins, ethylene is preferred.
  • One or more types of ⁇ -olefins may be used.
  • the content of structural units derived from propylene is usually 90% by mass or more, preferably 95% by mass or more, and more preferably 98% by mass or more, and the content of structural units derived from an ⁇ -olefin having 2 to 8 carbon atoms (excluding propylene) is usually 10% by mass or less, preferably 5% by mass or less, and more preferably 2% by mass or less.
  • the above content can be measured by 13 C-NMR.
  • the propylene-based polymer (b1) may be used alone or in combination.
  • the intrinsic viscosity [ ⁇ ] of the propylene polymer (b2) is in the range of 0.5 to 1.5 dL/g, preferably 0.6 to 1.5 dL/g, and more preferably 0.8 to 1.5 dL/g.
  • the mass fraction of the propylene-based polymer (b2) in the propylene-based polymer (B) is in the range of 50 to 80 mass%, preferably 55 to 80 mass%, more preferably 60 to 80 mass%, and even more preferably 60 to 78 mass%.
  • the mass fraction is equal to or greater than the lower limit, the occurrence of defective appearance during molding of the propylene-based polymer composition (X) can be suppressed.
  • the mass fraction is equal to or less than the upper limit, sufficient melt tension can be imparted to the propylene-based polymer (B), and the laminate film of the present invention has excellent rigidity and heat resistance.
  • the propylene-based polymer (b2) may be, for example, a homopolymer of propylene or a copolymer of propylene and an ⁇ -olefin having 2 to 8 carbon atoms (excluding propylene).
  • the ⁇ -olefin having 2 to 8 carbon atoms include ethylene, 1-butene, 1-hexene, 1-octene, and 4-methyl-1-pentene. Of these ⁇ -olefins, ethylene is preferred.
  • One or more types of ⁇ -olefins may be used.
  • the content of structural units derived from propylene is usually 90% by mass or more, preferably 93% by mass or more, and more preferably 94% by mass or more, and the content of structural units derived from an ⁇ -olefin having 2 to 8 carbon atoms (excluding propylene) is usually 10% by mass or less, preferably 7% by mass or less, and more preferably 6% by mass or less.
  • the above content can be measured by 13 C-NMR.
  • the propylene-based polymer (b2) may be used alone or in combination of two or more.
  • the propylene-based polymer (B) may contain additives such as antioxidants, neutralizing agents, flame retardants, and crystal nucleating agents, if necessary.
  • additives such as antioxidants, neutralizing agents, flame retardants, and crystal nucleating agents, if necessary.
  • One or more additives may be used.
  • the proportion of the additives is not particularly limited and may be appropriately adjusted.
  • the propylene polymer (B) has a melt flow rate (MFR) measured at 230° C. under a load of 2.16 kgf in the range of preferably 0.01 to 5 g/10 min, more preferably 0.05 to 4 g/10 min, and further preferably 0.1 to 3 g/10 min.
  • MFR melt flow rate
  • the propylene polymer composition (X) has excellent film formability.
  • the propylene-based polymer (B) has an area ratio of a high molecular weight region having a molecular weight of 1.5 million or more (corresponding to the mass ratio of high molecular weight components having a molecular weight of 1.5 million or more) of the total area surrounded by a molecular weight distribution curve measured by gel permeation chromatography (GPC) of preferably 7% or more, more preferably 10% or more, and even more preferably 12% or more.
  • GPC gel permeation chromatography
  • the upper limit of the area ratio is, for example, 30%, preferably 25%.
  • the area ratio of the high molecular weight region is equal to or greater than a specific ratio means that the propylene-based polymer (B) contains high molecular weight components with a molecular weight of 1.5 million or more. At least a portion of these high molecular weight components has an intrinsic viscosity [ ⁇ ] of 10 to 12 dL/g. Therefore, if the ratio of the high molecular weight components is within the above range, the melt tension of the propylene-based polymer (B) will be superior.
  • the propylene-based polymer (B) preferably has two peaks in the molecular weight distribution curve measured by GPC.
  • the ratio (MH/ML) of the peak molecular weight (MH) on the high molecular weight side to the peak molecular weight (ML) on the low molecular weight side is preferably 50 or more, more preferably 70 or more, and even more preferably 90 or more.
  • the upper limit of the ratio (MH/ML) is, for example, 500, preferably 300.
  • the fact that the molecular weight distribution curve has two peaks and MH/ML is a specific value or more indicates that the polymer contains a large amount of high molecular weight components and that the intrinsic viscosity [ ⁇ ] is also high. Therefore, the propylene-based polymer (B) of such an embodiment contributes to improving the melt tension and improving the rigidity and heat resistance of the film formed from the propylene-based polymer composition (X).
  • the propylene-based polymer (B) has a peak molecular weight ML on the low molecular weight side of the molecular weight distribution curve measured by GPC, from the viewpoints of viscosity and film formability of the propylene-based polymer composition (X), of preferably 100,000 or less, more preferably 80,000 or less, and even more preferably 50,000 or less.
  • the propylene polymer composition (X) contains the propylene homopolymer (A) and the propylene polymer (B) in such proportions that the entire composition satisfies the requirements (i) to (iii), for example, 60 to 99 mass %, preferably 70 to 99 mass %, more preferably 70 to 97 mass %, and even more preferably 70 to 95 mass % of the propylene homopolymer (A) and 1 to 40 mass %, preferably 1 to 30 mass %, more preferably 3 to 30 mass %, and even more preferably 5 to 30 mass % of the propylene polymer (B) (wherein the total amount of (A) and (B) is 100 mass %).
  • the resulting CPP film and the laminate film of the present invention are excellent in rigidity (tensile modulus).
  • the proportion of the propylene polymer (B) is equal to or less than the upper limit, the resulting CPP film and the laminate film of the present invention are excellent in transparency and appearance.
  • the molecular weight of the propylene-based polymer (b1) is high, by mixing the propylene homopolymer (A) and the propylene-based polymer (B), it is possible to prepare a propylene-based polymer composition (X) that satisfies the requirements (ii) and (iii), i.e., has a wide molecular weight distribution.
  • the propylene polymer composition (X) can be produced by adopting any known method. For example, there can be mentioned a method in which the propylene homopolymer (A), the propylene polymer (B), and, if necessary, additives are mixed using a Henschel mixer, a V-type blender, a ribbon blender, a tumbler blender, or the like, or a method in which the mixture is melt-kneaded using a single-screw extruder, a twin-screw extruder, a kneader, a Banbury mixer, a roll, or the like, and then granulated or pulverized.
  • a Henschel mixer a V-type blender, a ribbon blender, a tumbler blender, or the like
  • a method in which the mixture is melt-kneaded using a single-screw extruder, a twin-screw extruder, a kneader, a Banbury mixer, a roll,
  • the CPP film may contain additives such as weather resistance stabilizers, heat resistance stabilizers, antistatic agents, slip agents, antiblocking agents, antifogging agents, nucleating agents, decomposition agents, pigments, dyes, plasticizers, hydrochloric acid absorbers, antioxidants, crosslinking agents, crosslinking accelerators, reinforcing agents, fillers, softeners, processing aids, activators, moisture absorbents, adhesives, flame retardants, release agents, etc.
  • additives such as weather resistance stabilizers, heat resistance stabilizers, antistatic agents, slip agents, antiblocking agents, antifogging agents, nucleating agents, decomposition agents, pigments, dyes, plasticizers, hydrochloric acid absorbers, antioxidants, crosslinking agents, crosslinking accelerators, reinforcing agents, fillers, softeners, processing aids, activators, moisture absorbents, adhesives, flame retardants, release agents, etc.
  • the CPP film may contain a nucleating agent to improve transparency, heat resistance, etc.
  • nucleating agents include sorbitol compounds such as dibenzylidene sorbitol, organic phosphate compounds, rosin acid salt compounds, C4 to C12 aliphatic dicarboxylic acids and metal salts thereof. Of these, organic phosphate compounds are preferred.
  • One or more types of nucleating agents may be used.
  • the amount of the nucleating agent in the CPP film is preferably 0.05 to 0.5 parts by mass, and more preferably 0.1 to 0.3 parts by mass, per 100 parts by mass of the propylene-based polymer.
  • the CPP film may contain a resin component other than the propylene-based polymer (e.g., polyethylene), but the amount of the resin component is preferably 2 parts by mass or less, more preferably 1 part by mass or less, and even more preferably 0.5 parts by mass or less, per 100 parts by mass of the propylene-based polymer.
  • a resin component other than the propylene-based polymer e.g., polyethylene
  • the amount of the resin component is preferably 2 parts by mass or less, more preferably 1 part by mass or less, and even more preferably 0.5 parts by mass or less, per 100 parts by mass of the propylene-based polymer.
  • the CPP film can be produced by forming the propylene-based polymer into a film.
  • the molding method include extrusion molding methods such as a T-die method and an inflation method, compression molding, calendar molding, and casting.
  • the CPP film can be formed, for example, as follows.
  • the propylene-based polymer and any additives may be directly charged into a hopper or the like of a film-forming machine, or the components may be mixed in advance using a ribbon blender, a Banbury mixer, a Henschel mixer, a super mixer or the like, or may be melt-kneaded using a kneader such as a single-screw or twin-screw extruder or a roll to obtain a propylene-based polymer, which may then be molded into a film.
  • a kneader such as a single-screw or twin-screw extruder or a roll
  • a specific example of the production of a CPP film will be described using the T-die method.
  • the above-mentioned components are fed into an extruder and melt-kneaded usually at a temperature of 180 to 280°C, preferably 200 to 270°C, and then extruded into a film from the die lip of a T-die.
  • the molten film is cooled and taken up by a take-up machine such as a nip roll to obtain a CPP film.
  • Methods for cooling the molten film include, for example, cooling methods using rolls and air cooling such as the air knife method or the air chamber method, narrow pressure cooling methods such as the polishing roll method, swing roll method and belt casting method, and contact cooling with a refrigerant such as the water cooling method.
  • the obtained CPP film may be subjected to a film treatment method generally used in film molding, such as a corona discharge treatment or a liquid coating treatment.
  • the laminate film of the present invention has an inorganic oxide layer.
  • the inorganic oxide layer can be formed by vapor deposition of an inorganic oxide onto the CPP film. Examples of deposition methods include conventional methods such as chemical vapor deposition (CVD) and physical vapor deposition (PVD). Examples of the inorganic oxide include inorganic oxides of aluminum, zinc, magnesium, silicon, and the like.
  • the thickness of the inorganic oxide layer is, for example, 20 to 150 nm, and preferably 30 to 60 nm. When the thickness is in the above range, the laminated film of the present invention has excellent appearance and gas barrier properties.
  • the laminated film of the present invention has the CPP film and the inorganic oxide layer in contact with the CPP film.
  • the laminate film of the present invention preferably has excellent gas barrier properties such as water vapor barrier properties and oxygen gas barrier properties.
  • the water vapor transmission rate is preferably not more than 5, and more preferably not more than 1. This water vapor transmission rate can be adjusted, for example, by changing the thickness of the deposited film.
  • the oxygen gas permeability is preferably not more than 1000, more preferably not more than 100. It can be adjusted by changing the thickness of the deposited film.
  • the tensile modulus of the laminated film of the present invention at 80°C, measured by the method employed in the examples described below, is preferably 800 MPa or more, more preferably 850 MPa or more, and the upper limit may be, for example, 1300 MPa.
  • This tensile modulus value can be adjusted, for example, by changing the film take-up speed during film formation.
  • the laminated film of the present invention may have an optional layer in addition to the CPP film and the inorganic oxide layer.
  • the optional layer may be one or more.
  • the optional layer may be provided in the following locations: A location on the side of the CPP film opposite the inorganic oxide layer A location between the CPP film and the inorganic oxide layer, where the CPP film and the inorganic oxide layer are not in contact with each other A location on the side of the inorganic oxide layer opposite the CPP film
  • the optional layer examples include a biaxially oriented polypropylene film, a CPP film (which may be a CPP film containing a propylene-based polymer satisfying the above-mentioned requirements (i) to (iii), or a different CPP film), a barrier layer against gases such as water vapor and oxygen, a sound absorbing layer, a light shielding layer, an adhesive layer, a pressure sensitive adhesive layer, a colored layer, a conductive layer, and a recycled resin-containing layer.
  • gases such as water vapor and oxygen
  • a sound absorbing layer such as water vapor and oxygen
  • a light shielding layer such as an adhesive layer, a pressure sensitive adhesive layer, a colored layer, a conductive layer, and a recycled resin-containing layer.
  • Specific examples of materials for forming the optional layers include olefin polymer compositions other than the propylene polymers, gas barrier resin compositions, and adhesive resin compositions.
  • Methods for forming the optional layers include, for example, coextrusion and extrusion coating. It is preferable to have a biaxially oriented polypropylene film as an optional layer, and a preferred embodiment of the laminated film of the present invention is to have a biaxially oriented polypropylene film on the opposite side to the non-oriented polypropylene film via an adhesive layer in contact with the inorganic oxide layer.
  • the adhesive layer include an anchor coating agent such as a urethane-based or isocyanate-based adhesive, and an adhesive resin such as a modified polyolefin such as an unsaturated carboxylic acid grafted polyolefin.
  • the above laminated film is preferable from the viewpoint of mono-materialization and reduction of environmental load, compared with a laminated film having a biaxially oriented polyethylene terephthalate film, a biaxially oriented nylon film, or the like as a biaxially oriented film.
  • the laminated film of the present invention is used as a packaging material for, for example, foods, beverages, industrial parts, miscellaneous goods, toys, daily necessities, office supplies, medical supplies, and the like.
  • the laminated film of the present invention can be used as a packaging film in a wide range of packaging fields, including, for example, packaging various foods such as fresh foods such as fish meat, dried foods such as snacks and noodles, and water-based foods such as soups and pickles; packaging medical products such as medical products in various forms such as tablets, powders, and liquids, and medical peripheral materials; and packaging various electrical devices such as cassette tapes and electrical components.
  • the weight average molecular weight (Mw), number average molecular weight (Mn) and Z average molecular weight (Mz) were calculated based on the following conversion method using a calibration curve prepared using commercially available monodisperse standard polystyrene.
  • Measurement condition Apparatus: Gel permeation chromatograph HLC-8321 GPC/HT type (manufactured by Tosoh Corporation) Organic solvent: o-dichlorobenzene Column: 2 TSKgel GMH6-HT columns, 2 TSKgel GMH6-HTL columns (both manufactured by Tosoh Corporation) Flow rate: 1.0 mL/min Sample: 0.10 mg/mL o-dichlorobenzene solution Temperature: 140° C.
  • transition metal catalyst component (c-1) contained 2 wt% titanium and 18 wt% diisobutyl phthalate.
  • prepolymerized catalyst (d-1) 100 g of transition metal catalyst component (c-1), 15.4 mL of triethylaluminum, and 100 L of heptane were charged into a 200 L autoclave equipped with a stirrer, and 600 g of propylene was charged while maintaining the internal temperature at 5°C, and propylene was polymerized for 60 minutes while stirring. After the polymerization was completed, 4.1 mL of titanium tetrachloride was charged to obtain a prepolymerized catalyst (d-1). This prepolymerized catalyst (d-1) contained 6 g of polypropylene per 1 g of the transition metal catalyst component.
  • the obtained propylene homopolymer (a-1) had an MFR of 1.7 g/10 min.
  • the obtained propylene homopolymer (A-1) had an MFR of 9 g/10 min and an Mw/Mn of 3.7.
  • the homogeneous solution thus obtained was cooled to room temperature, and then 75 mL of the homogeneous solution was added dropwise over 1 hour to 200 mL of titanium tetrachloride kept at -20°C. After the addition, the temperature of the mixture was raised to 110°C over 4 hours, and when it reached 110°C, 5.22 g of diisobutyl phthalate (DIBP) was added, and the mixture was stirred and maintained at the same temperature for 2 hours. After the 2-hour stirring, the solid portion was collected by hot filtration, and the solid portion was resuspended in 275 mL of titanium tetrachloride, and then heated again at 110°C for 2 hours.
  • DIBP diisobutyl phthalate
  • the solid titanium catalyst component prepared as above was stored as a hexane slurry, and a portion of this was dried to examine the catalyst composition.
  • the solid titanium catalyst component contained titanium in the amounts of 2.3 wt%, chlorine in the amount of 61 wt%, magnesium in the amount of 19 wt%, and DIBP in the amount of 12.5 wt%.
  • prepolymerized catalyst (d-2) 100.0 g of solid titanium catalyst component (c-2), 19.2 mL of cyclohexylmethyldimethoxysilane, 65.6 mL of triethylaluminum, and 10 L of heptane were charged into a 20 L autoclave equipped with a stirrer, and 600 g of propylene was charged while maintaining the internal temperature at 15 to 20°C, and propylene was polymerized while stirring for 100 minutes. After the polymerization was completed, the solid component was allowed to settle, and the supernatant was removed and washed with heptane twice. The obtained prepolymerized catalyst was resuspended in purified heptane, and the concentration of the solid catalyst component was adjusted to 1.0 g/L with heptane.
  • the obtained slurry was sent to a vessel polymerization vessel having a capacity of 70 L equipped with a stirrer, and further polymerization was performed.
  • propylene was continuously supplied at 45 kg/hour, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 2.9 mol%.
  • Polymerization was performed at a polymerization temperature of 70°C and a pressure of 3.1 MPa/G.
  • propylene was evaporated to obtain a powdery propylene homopolymer (A-2).
  • the resulting propylene homopolymer (A-2) had an MFR of 9 g/10 min and an Mw/Mn of 5.0.
  • the homogeneous solution thus obtained was cooled to room temperature, and then 75 mL of the homogeneous solution was added dropwise over 1 hour to 200 mL of titanium tetrachloride kept at -20°C. After the addition, the temperature of the mixture was raised to 110°C over 4 hours, and when it reached 110°C, 5.22 g of diisobutyl phthalate (DIBP) was added, and the mixture was stirred and held at the same temperature for 2 hours. After the reaction for 2 hours was completed, the solid portion was collected by hot filtration, and the solid portion was resuspended in 275 mL of titanium tetrachloride, and then heated again at 110°C for 2 hours.
  • DIBP diisobutyl phthalate
  • the solid titanium catalyst component prepared as above was stored as a hexane slurry, and a portion of this was dried to examine the catalyst composition.
  • the solid titanium catalyst component contained titanium in the amounts of 2.3 wt%, chlorine in the amount of 61 wt%, magnesium in the amount of 19 wt%, and DIBP in the amount of 12.5 wt%.
  • prepolymerized catalyst (d-3) 100.0 g of solid titanium catalyst component (c-3), 22.4 mL of dicyclopentyldimethoxysilane, 65.6 mL of triethylaluminum, and 10 L of heptane were charged into a 20 L autoclave equipped with a stirrer, and 600 g of propylene was charged while maintaining the internal temperature at 15 to 20°C, and propylene was polymerized while stirring for 100 minutes. After the polymerization was completed, the solid component was allowed to settle, and the supernatant was removed and washed with heptane twice. The obtained prepolymerized catalyst was resuspended in purified heptane, and the concentration of the solid catalyst component was adjusted to 1.0 g/L with heptane.
  • the obtained slurry was sent to a vessel polymerization vessel having a capacity of 70 L equipped with a stirrer, and further polymerization was performed.
  • propylene was continuously supplied at 45 kg/hour, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 15.8 mol%.
  • Polymerization was performed at a polymerization temperature of 63°C and a pressure of 3.2 MPaG.
  • propylene was evaporated to obtain a powdery propylene homopolymer (A-3).
  • the resulting propylene homopolymer (A-3) had an MFR of 30 g/10 min and an Mw/Mn of 5.2.
  • Propylene homopolymer (A-4) has an MFR of 7.2 g/10 min and an intrinsic viscosity [ ⁇ ] A propylene homopolymer having a viscosity of 1.8 dL/g, a melting point of 165° C., and an Mw/Mn ratio of 4.8 (manufactured by Prime Polymer Co., Ltd., trade name: Prime Polypro F107BA) was used.
  • Propylene-based polymer (B) was produced according to Production Example 1 of WO 2021/025142.
  • the propylene-based polymer (A-1), propylene-based polymer (a1-1), and propylene-based polymer (a2-1) in Production Example 1 of WO 2021/025142 are to be read as propylene-based polymer (B), propylene-based polymer (b1), and propylene-based polymer (b2), respectively.
  • Table 1 shows the physical properties of the propylene polymer (B) and the like measured in the same manner as in Production Example 1 of WO 2021/025142.
  • Comparative Example 1 Manufacture of laminated film
  • the propylene-based polymer As the propylene-based polymer, the propylene homopolymer (100 parts by mass) obtained in Production Example 1 was prepared. Using a film molding machine equipped with a 600 mm wide T-die at the tip of an extruder having a screw diameter of 75 mm and set at a temperature of 286° C., a propylene-based polymer was fed into the extruder and extruded into a film, which was then cooled with a chill roll set at a temperature of 30° C. to obtain a CPP film having a thickness of 25 ⁇ m.
  • a part of the obtained CPP film was cut out to prepare a test piece, and an inorganic oxide layer was formed on the surface of the remaining part by the following method. Specifically, the formed film was cut to a width of 130 mm and set in a vacuum deposition apparatus equipped with a film unwinder and winder. After creating a vacuum of 2.3 ⁇ 10 ⁇ 2 Pa, the film was wound around a cooled metal drum at ⁇ 20° C. Aluminum oxide or silicon oxide was heated and evaporated to deposit an inorganic oxide on the surface of the film in contact with the cooled metal drum. In this way, a laminated film was obtained. Further, for the evaluation of the number of wrinkles described later, an A4 size (210 mm in the transverse (TD) direction ⁇ 290 mm in the MD) laminated film was prepared.
  • TD transverse
  • the thickness of the inorganic oxide layer was measured as follows. The obtained laminated film was cut with a microtome to expose a cross section. The cross section was observed with a scanning electron microscope (SEM) to measure the thickness of the inorganic oxide layer. The SEM observation was performed using a Hitachi High-Tech Regulus 8220 with a backscattered electron detector.
  • Comparative Examples 5-1 to 5-3 A laminate film was produced and evaluated in the same manner as in Comparative Example 5, except that the conditions for forming the inorganic oxide layer were changed to change the type of inorganic oxide and the thickness of the inorganic oxide layer. Furthermore, the discoloration of the laminated film was also evaluated. A film without an inorganic oxide layer was prepared and placed next to the film with the inorganic oxide layer formed thereon, and the presence or absence of a difference in color was visually evaluated. The results are shown in Table 3.
  • Example 6-1 to 6-3 A laminate film was produced and evaluated in the same manner as in Example 6, except that the conditions for forming the inorganic oxide layer were changed to change the type of inorganic oxide and the thickness of the inorganic oxide layer. In addition, the laminate film was also evaluated for discoloration. The results are shown in Table 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention provides a multilayer film which has improved appearance (particularly, with fewer wrinkles), specifically, a multilayer film which is improved in terms of the degree of occurrence of wrinkles, thereby having fewer wrinkles. This multilayer film comprises: an unstretched polypropylene film which contains a propylene polymer that satisfies requirements (i) to (iii); and an inorganic oxide layer which is in contact with the film. (i) The melt flow rate (MFR) as measured at 230°C under a load of 2.16 kgf is within the range of 3 g/10 minutes to 25 g/10 minutes. (ii) The ratio (Mw/Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) as determined by GPC is within the range of 6 to 15. (iii) The ratio (Mz/Mn) of the Z-average molecular weight (Mz) to the number average molecular weight (Mn) as determined by GPC is within the range of 40 to 150.

Description

積層フィルムLaminated Film
 本発明は、積層フィルムに関し、より詳細にはポリプロピレンフィルムと無機酸化物層とを備える積層フィルムに関する。 The present invention relates to a laminated film, and more specifically to a laminated film having a polypropylene film and an inorganic oxide layer.
 プロピレン系重合体は、各種成形体の材料として広く使用されている(例えば、特許文献1または2)。例えばプロピレン系重合体からなるフィルムは、優れた剛性などの機械物性や、光沢などの光学的特性を生かして、食品や雑貨の包装用フィルムとして広く利用されている。また、無延伸ポリプロピレンフィルムは、剛性および耐熱性にバランス良く優れていることが知られている。 Propylene-based polymers are widely used as materials for various molded products (e.g., Patent Documents 1 and 2). For example, films made of propylene-based polymers are widely used as packaging films for food and miscellaneous goods, taking advantage of their excellent mechanical properties such as rigidity, and optical properties such as gloss. In addition, unstretched polypropylene films are known to have a good balance of rigidity and heat resistance.
 食品を長期間保存するためには、腐敗や変質を促進する外気の酸素や水蒸気を遮断するために、ガスバリア性に優れた包装材料を用いることが必要である。ガスバリア性を有する素材としては、従来、アルミ箔、アルミ蒸着フィルム、ポリ塩化ビニリデンコートフィルム、エチレンビニルアルコールフィルムなどが用いられているが、近年の環境問題に関する規制が広がる中で、アルミ箔のような焼却残渣が発生する素材の使用は制限されている。また、アルミ箔やアルミ蒸着フィルムは内容物が見えず、また、電子レンジによる加熱処理ができないという問題がある。 In order to preserve food for long periods of time, it is necessary to use packaging materials with excellent gas barrier properties to block oxygen and water vapor from the outside air, which promote spoilage and deterioration. Traditionally, materials with gas barrier properties have included aluminum foil, aluminum vapor deposition film, polyvinylidene chloride coated film, and ethylene vinyl alcohol film, but with the spread of environmental regulations in recent years, the use of materials that produce incineration residues, such as aluminum foil, has been restricted. Additionally, aluminum foil and aluminum vapor deposition film have problems in that the contents cannot be seen and they cannot be heated in a microwave oven.
 一方、無延伸ポリプロピレンフィルムに酸化珪素や酸化アルミニウムなどの酸化物を蒸着させた、透明なガスバリアフィルムが知られている(例えば、特許文献3または4)。このフィルムは、ガスバリア性に優れており、環境に対する負荷が小さいことや、内容物を確認することができ、電子レンジにも適用することができるといった利点を有する。 On the other hand, a transparent gas barrier film is known in which oxides such as silicon oxide and aluminum oxide are vapor-deposited onto a non-oriented polypropylene film (see, for example, Patent Documents 3 and 4). This film has the advantages of having excellent gas barrier properties, being environmentally friendly, allowing the contents to be checked, and being suitable for use in microwave ovens.
特開2001-302858号公報JP 2001-302858 A 特開2006-045446号公報JP 2006-045446 A 特開平9-156021号公報Japanese Patent Application Laid-Open No. 9-156021 特開平9-143294号公報Japanese Patent Application Laid-Open No. 9-143294
 しかしながら、従来、金属酸化物が蒸着された無延伸ポリプロピレンフィルムには、外観(すなわち、シワが多い)の観点でさらなる改善の余地があった。
 そこで本発明は、外観(すなわち、シワが少ない)が改善された積層フィルムを提供することを目的とする。
However, conventional metal oxide-deposited non-oriented polypropylene films have room for further improvement in terms of appearance (i.e., many wrinkles).
Therefore, an object of the present invention is to provide a laminated film with improved appearance (i.e., fewer wrinkles).
 本発明者らは、鋭意検討した結果、無延伸ポリプロピレンフィルムのプロピレン系重合体として要件(i)~(iii)を満たすプロピレン系重合体を用いることにより、外観を改善できることを見出し、本発明を完成するに至った。 As a result of extensive research, the inventors discovered that the appearance of a non-oriented polypropylene film can be improved by using a propylene-based polymer that satisfies requirements (i) to (iii), and thus completed the present invention.
 本発明は、たとえば以下の[1]~[5]に関する。
 [1]
 下記要件(i)~要件(iii)を満たすプロピレン系重合体を含む無延伸ポリプロピレンフィルムおよび前記フィルムに接する無機酸化物層を備える積層フィルム:
 (i)230℃、2.16kgf荷重の条件下で測定されるメルトフローレート(MFR)が3~25g/10分の範囲にある;
 (ii)GPCにより測定される重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が6~15の範囲にある;
 (iii)GPCにより測定されるZ平均分子量(Mz)と数平均分子量(Mn)との比(Mz/Mn)が40~150の範囲にある。
The present invention relates to, for example, the following [1] to [5].
[1]
A laminate film comprising a non-stretched polypropylene film containing a propylene-based polymer satisfying the following requirements (i) to (iii) and an inorganic oxide layer in contact with the film:
(i) the melt flow rate (MFR) measured under conditions of 230°C and a load of 2.16 kgf is in the range of 3 to 25 g/10 min;
(ii) the ratio (Mw/Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) measured by GPC is in the range of 6 to 15;
(iii) The ratio (Mz/Mn) of Z-average molecular weight (Mz) to number-average molecular weight (Mn) measured by GPC is in the range of 40 to 150.
 [2]
 ガスバリア性を有する[1]に記載の積層フィルム。
[2]
The laminate film according to [1], which has gas barrier properties.
 [3]
 80℃での引張弾性率が800MPa以上である[1]または[2]に記載の積層フィルム。
[3]
The laminated film according to [1] or [2], having a tensile modulus at 80° C. of 800 MPa or more.
 [4]
 前記無機酸化物層の膜厚が20~150nmである[1]~[3]のいずれかに記載の積層フィルム。
[4]
The laminate film according to any one of [1] to [3], wherein the inorganic oxide layer has a thickness of 20 to 150 nm.
 [5]
 さらに前記無延伸ポリプロピレンフィルムとは反対側に、前記無機酸化物層に接する接着層を介して二軸延伸ポリプロピレンフィルムを備える[1]~[4]のいずれかに記載の積層フィルム。
[5]
The laminated film according to any one of [1] to [4], further comprising a biaxially oriented polypropylene film on the opposite side to the non-oriented polypropylene film via an adhesive layer in contact with the inorganic oxide layer.
 本発明によれば、外観(すなわち、シワが少ない)が改善された積層フィルムが提供される。すなわち、シワの発生程度の点で改善され、よりシワの少ない積層フィルムが提供される。 The present invention provides a laminated film with improved appearance (i.e., fewer wrinkles). In other words, a laminated film with fewer wrinkles is provided, with improvements in the degree of wrinkle formation.
 以下、本発明をさらに詳細に説明する。
                [積層フィルム]
 本発明の積層フィルムは、無延伸ポリプロピレンフィルム(以下「CPPフィルム」と記載する。)および前記CPPフィルムに接する無機酸化物層を備えている。
The present invention will now be described in further detail.
[Laminated film]
The laminated film of the present invention comprises a non-oriented polypropylene film (hereinafter referred to as "CPP film") and an inorganic oxide layer in contact with the CPP film.
 〔CPPフィルム〕
 (プロピレン系重合体)
 前記CPPフィルムは、下記要件(i)~(iii)を満たすプロピレン系重合体を含んでいる。
 要件(i):
 230℃、2.16kgf荷重で測定されるメルトフローレート(MFR)が3~25g/10分、好ましくは4~23g/10分、より好ましくは4~22g/10分である。
 一方、前記MFRが前記下限値よりも過小であると製膜したフィルムの平滑性やガスバリア性が低下し、前記MFRが前記上限値よりも過大であるとフィルム製膜時に押出機からの吐出量が低下し、生産性が低下する。
[CPP film]
(Propylene-based polymer)
The CPP film contains a propylene-based polymer that satisfies the following requirements (i) to (iii).
Requirement (i):
The melt flow rate (MFR) measured at 230° C. under a load of 2.16 kgf is 3 to 25 g/10 min, preferably 4 to 23 g/10 min, and more preferably 4 to 22 g/10 min.
On the other hand, if the MFR is lower than the lower limit, the smoothness and gas barrier properties of the formed film are reduced, and if the MFR is higher than the upper limit, the discharge amount from the extruder during film formation is reduced, resulting in reduced productivity.
 要件(ii):
 GPC(ゲルパーミエーションクロマトグラフィー)により後述の実施例で採用された条件下で測定される重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が6~15、好ましくは7~15、さらに好ましくは7~14の範囲にある。
 一方、前記Mw/Mnが前記下限値よりも過小であると製膜したフィルムの弾性率が不十分であり、前記Mw/Mnが前記上限値よりも過大であると製膜したフィルムの平滑性が低下する。
Requirement (ii):
The ratio (Mw/Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn), measured by GPC (gel permeation chromatography) under the conditions employed in the examples described later, is in the range of 6 to 15, preferably 7 to 15, and more preferably 7 to 14.
On the other hand, if the Mw/Mn is too small below the lower limit, the elastic modulus of the film produced is insufficient, and if the Mw/Mn is too large above the upper limit, the smoothness of the film produced is reduced.
 要件(iii):
 GPCにより測定されるZ平均分子量(Mz)と数平均分子量(Mn)との比(Mz/Mn)が40~150、好ましくは40~140、さらに好ましくは40~135の範囲にある。
 一方、前記Mz/Mnが前記下限値よりも過小であると製膜したフィルムの弾性率が不十分であり、前記Mz/Mnが前記上限値よりも過大であると製膜したフィルムの平滑性が低下する。
Requirement (iii):
The ratio (Mz/Mn) of Z-average molecular weight (Mz) to number-average molecular weight (Mn) measured by GPC is in the range of 40-150, preferably 40-140, and more preferably 40-135.
On the other hand, if the Mz/Mn ratio is too small compared to the lower limit, the elastic modulus of the film formed is insufficient, whereas if the Mz/Mn ratio is too large compared to the upper limit, the smoothness of the film formed is reduced.
 本発明においては、前記要件(ii)および(iii)が満たされる、すなわち分子量分布の広いプロピレン系重合体を用いることにより、フィルム成形時に、成形のMD方向へのプロピレン系重合体分子の配向度が増大することで、フィルムが高剛性化する。また、配向によりプロピレン系重合体の結晶化が進み、フィルムの耐熱性も向上する。その結果、加工温度の高い蒸着加工時にフィルムの剛性が保たれるため、外観が優れる積層フィルム、すなわち無機酸化物層付きCPPフィルムが得られると推測される。 In the present invention, the above requirements (ii) and (iii) are satisfied, that is, a propylene-based polymer with a wide molecular weight distribution is used, and the degree of orientation of the propylene-based polymer molecules in the MD direction of molding is increased during film molding, resulting in a high film rigidity. In addition, the orientation promotes crystallization of the propylene-based polymer, improving the heat resistance of the film. As a result, it is presumed that the rigidity of the film is maintained during deposition processing at high processing temperatures, resulting in a laminated film with excellent appearance, i.e., a CPP film with an inorganic oxide layer.
 前記プロピレン系重合体の例としては、プロピレン単独重合体、プロピレン系共重合体、これらの混合物が挙げられる。混合物としては、複数種のプロピレン系単独重合体の混合物、複数種のプロピレン系共重合体の混合物、1種以上のプロピレン系単独重合体と1種以上のプロピレン系共重合体との混合物が挙げられる。混合物の場合、混合物全体として前記要件(i)~(iii)が満たされればよく、混合物に含まれる成分のそれぞれは、必ずしも前記要件(i)~(iii)を満たしていなくてもよい。 Examples of the propylene-based polymer include propylene homopolymers, propylene copolymers, and mixtures thereof. Examples of the mixture include a mixture of multiple types of propylene-based homopolymers, a mixture of multiple types of propylene-based copolymers, and a mixture of one or more types of propylene-based homopolymers and one or more types of propylene-based copolymers. In the case of a mixture, it is sufficient that the mixture as a whole satisfies the above requirements (i) to (iii), and each of the components contained in the mixture does not necessarily have to satisfy the above requirements (i) to (iii).
 前記プロピレン系重合体の好ましい一実施形態としては、プロピレン単独重合体が挙げられる。前記要件(i)~(iii)を満たすプロピレン単独重合体により得られる本発明の積層フィルムは、外観に優れる、すなわちシワが少ない。 A preferred embodiment of the propylene-based polymer is a propylene homopolymer. The laminate film of the present invention obtained from a propylene homopolymer that satisfies the above requirements (i) to (iii) has excellent appearance, i.e., has few wrinkles.
 前記プロピレン系重合体の別の好ましい一実施形態としては、プロピレンと炭素数2~8のα-オレフィン(ただし、プロピレンを除く。)との共重合体が挙げられる。
 前記α-オレフィンの例としては、エチレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテンが挙げられる。α-オレフィンは1種または2種以上用いることができる。
Another preferred embodiment of the propylene-based polymer is a copolymer of propylene and an α-olefin having 2 to 8 carbon atoms (excluding propylene).
Examples of the α-olefin include ethylene, 1-butene, 4-methyl-1-pentene, 1-hexene, and 1-octene. The α-olefin may be used alone or in combination.
 前記プロピレンと炭素数2~8のα-オレフィン(ただし、プロピレンを除く。)との共重合体において、プロピレンに由来する構成単位の含有割合は、好ましくは90質量%以上、より好ましくは92質量%以上、さらに好ましくは96質量%以上、さらにより好ましくは98質量%を超え、特に好ましくは98.6質量%以上であり、炭素数2~8のα-オレフィン(ただし、プロピレンを除く。)に由来する構成単位の含有割合は、好ましくは10質量%以下、より好ましくは8質量%以下、さらに好ましくは4質量%以下、さらにより好ましくは2質量%未満、特に好ましくは1.4質量%以下である。前記含有割合は、13C-NMRにより測定することができる。
 炭素数2~8のα-オレフィン(ただし、プロピレンを除く。)に由来する構成単位の含有割合が前記範囲内である、プロピレンと炭素数2~8のα-オレフィン(ただし、プロピレンを除く。)との共重合体により得られる本発明の積層フィルムは、外観に優れる、すなわちシワが少ない。
In the copolymer of propylene and an α-olefin having 2 to 8 carbon atoms (excluding propylene), the content of structural units derived from propylene is preferably 90% by mass or more, more preferably 92% by mass or more, even more preferably 96% by mass or more, still more preferably more than 98% by mass, and particularly preferably 98.6% by mass or more, and the content of structural units derived from an α-olefin having 2 to 8 carbon atoms (excluding propylene) is preferably 10% by mass or less, more preferably 8% by mass or less, even more preferably 4% by mass or less, still more preferably less than 2% by mass, and particularly preferably 1.4% by mass or less. The content can be measured by 13 C-NMR.
The laminated film of the present invention obtained from a copolymer of propylene and an α-olefin having 2 to 8 carbon atoms (excluding propylene), in which the content ratio of structural units derived from an α-olefin having 2 to 8 carbon atoms (excluding propylene) is within the above-mentioned range, has excellent appearance, i.e., has few wrinkles.
 前記プロピレン単独重合体およびプロピレンと炭素数2~8のα-オレフィン(ただし、プロピレンを除く。)との共重合体は、それぞれ、少なくとも1種以上のバイオマス由来モノマー(プロピレン、炭素数2~8のα-オレフィン(ただし、プロピレンを除く。))を含んでいてもよい。重合体を構成する同じ種類のモノマーがバイオマス由来モノマーのみでもよいし、化石燃料由来モノマーのみであってもよいし、バイオマス由来モノマーと化石燃料由来モノマーの両方を含んでもよい。バイオマス由来モノマーとは、菌類、酵母、藻類および細菌類を含む、植物由来または動物由来などの、あらゆる再生可能な天然原料およびその残渣を原料としてなるモノマーで、炭素として14C同位体を1×10-12程度の割合で含有し、ASTM D6866に準拠して測定したバイオマス炭素濃度(pMC)が100(pMC)程度である。バイオマス由来モノマー(プロピレン、炭素数2~8のα-オレフィン(ただし、プロピレンを除く。))は、たとえば、従来知られている方法により得られる。前記単独重合体および/または前記共重合体がバイオマス由来モノマーを含むことは環境負荷低減の観点から好ましい。重合用触媒、重合温度などの重合体製造条件が同等であれば、原料オレフィンがバイオマス由来オレフィンを含むプロピレン系重合体であっても、14C同位体を1×10-12程度の割合で含む以外の分子構造は化石燃料由来モノマーからなるプロピレン系重合体と同等である。従って、性能も変わらないとされる。 The propylene homopolymer and the copolymer of propylene and an α-olefin having 2 to 8 carbon atoms (excluding propylene) may each contain at least one or more biomass-derived monomers (propylene, an α-olefin having 2 to 8 carbon atoms (excluding propylene)). The same type of monomer constituting the polymer may be only a biomass-derived monomer, may be only a fossil fuel-derived monomer, or may contain both a biomass-derived monomer and a fossil fuel-derived monomer. The biomass-derived monomer is a monomer made from any renewable natural raw material, such as a plant-derived or animal-derived monomer, including fungi, yeast, algae, and bacteria, and its residue, which contains about 1×10 −12 of 14 C isotope as carbon and has a biomass carbon concentration (pMC) of about 100 (pMC) measured in accordance with ASTM D6866. The biomass-derived monomer (propylene, an α-olefin having 2 to 8 carbon atoms (excluding propylene)) can be obtained, for example, by a conventionally known method. It is preferable that the homopolymer and/or the copolymer contain a biomass-derived monomer from the viewpoint of reducing the environmental load. If the polymer production conditions, such as the polymerization catalyst and polymerization temperature, are the same, even if the raw olefin is a propylene-based polymer containing a biomass-derived olefin, the molecular structure other than the inclusion of 14C isotope at a ratio of about 1×10 −12 is the same as that of a propylene-based polymer made of a fossil fuel-derived monomer. Therefore, the performance is said to be the same.
 前記プロピレン単独重合体およびプロピレンと炭素数2~8のα-オレフィン(ただし、プロピレンを除く。)との共重合体は、それぞれ、少なくとも1種以上のケミカルリサイクル由来モノマー(プロピレン、炭素数2~8のα-オレフィン(ただし、プロピレンを除く。))を含んでいてもよい。重合体を構成する同じ種類のモノマーがケミカルリサイクル由来モノマーのみでもよいし、ケミカルリサイクル由来モノマーと化石燃料由来モノマーおよび/またはバイオマス由来モノマーを含んでもよい。ケミカルリサイクル由来モノマー(プロピレン、炭素数2~8のα-オレフィン(ただし、プロピレンを除く。))は、たとえば従来から知られている方法により得られる。前記単独重合体および/または前記共重合体がケミカルリサイクル由来モノマーを含むことは環境負荷低減(主に廃棄物削減)の観点から好ましい。ケミカルリサイクル由来モノマーは廃プラスチックなどの重合体を解重合、熱分解等でプロピレンなどのモノマー単位にまで戻したモノマー、ならびに該モノマーを原料にして製造したモノマーである。そのため、原料モノマーがケミカルリサイクル由来モノマーを含むプロピレン系重合体であっても、重合用触媒、重合プロセス、重合温度などの重合体製造条件が同等であれば、分子構造は化石燃料由来モノマーからなるプロピレン系重合体と同等である。従って、性能も変わらないとされる。 The propylene homopolymer and the copolymer of propylene and α-olefin having 2 to 8 carbon atoms (excluding propylene) may each contain at least one or more chemically recycled monomers (propylene, α-olefin having 2 to 8 carbon atoms (excluding propylene)). The same type of monomer constituting the polymer may be only chemically recycled monomers, or may contain chemically recycled monomers and fossil fuel-derived monomers and/or biomass-derived monomers. The chemically recycled monomers (propylene, α-olefin having 2 to 8 carbon atoms (excluding propylene)) can be obtained, for example, by a conventionally known method. It is preferable from the viewpoint of reducing the environmental load (mainly reducing waste) that the homopolymer and/or the copolymer contain chemically recycled monomers. Chemically recycled monomers are monomers obtained by depolymerizing or pyrolyzing polymers such as waste plastics back into monomer units such as propylene, as well as monomers produced using such monomers as raw materials. Therefore, even if the raw material monomer is a propylene-based polymer containing a monomer derived from chemical recycling, if the polymer production conditions such as the polymerization catalyst, polymerization process, and polymerization temperature are the same, the molecular structure will be the same as a propylene-based polymer made from a monomer derived from fossil fuels. Therefore, the performance is said to be the same.
 前記プロピレン系重合体の好ましい例としては、以下に説明するプロピレン単独重合体(A)およびプロピレン系重合体(B)を含有するプロピレン系重合体組成物(X)が挙げられる。 A preferred example of the propylene-based polymer is a propylene-based polymer composition (X) containing a propylene homopolymer (A) and a propylene-based polymer (B) as described below.
 <プロピレン単独重合体(A)>
 前記プロピレン単独重合体(A)の、230℃、2.16kgf荷重の条件下で測定したメルトフローレート(MFR)は、好ましくは5~40g/10分、さらに好ましくは7~35g/10分の範囲にある。
<Propylene homopolymer (A)>
The melt flow rate (MFR) of the propylene homopolymer (A) measured under conditions of 230° C. and a load of 2.16 kgf is preferably in the range of 5 to 40 g/10 min, more preferably 7 to 35 g/10 min.
 前記プロピレン単独重合体(A)の重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は、好ましくは3.0~8.0、より好ましくは3.5~6.0の範囲にある。
 前記プロピレン単独重合体(A)のMw/Mnが上記範囲にあると、本発明の積層フィルムは剛性および透明性に優れる。
The ratio (Mw/Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the propylene homopolymer (A) is preferably in the range of 3.0 to 8.0, more preferably 3.5 to 6.0.
When the Mw/Mn of the propylene homopolymer (A) is within the above range, the laminate film of the present invention is excellent in rigidity and transparency.
 ≪プロピレン単独重合体(A)の製造方法≫
 前記プロピレン単独重合体(A)は、触媒を用いてプロピレンを単独重合することにより製造することができ、また、市販品であってもよい。
<<Method for producing propylene homopolymer (A)>>
The propylene homopolymer (A) can be produced by homopolymerizing propylene using a catalyst, and may be a commercially available product.
 触媒としては、例えば、マグネシウム、チタンおよびハロゲンを必須成分とする固体触媒成分と、有機アルミニウム化合物等の有機金属化合物触媒成分と、有機ケイ素化合物等の電子供与性化合物触媒成分とから形成される触媒(代表的なものとして、国際公開第2021/025142号の段落[0050]~[0075]に記載された触媒);メタロセン化合物を触媒の一成分として用いたメタロセン触媒が挙げられる。 Examples of the catalyst include catalysts formed from a solid catalyst component having magnesium, titanium, and a halogen as essential components, an organometallic compound catalyst component such as an organoaluminum compound, and an electron donor compound catalyst component such as an organosilicon compound (representative examples are the catalysts described in paragraphs [0050] to [0075] of WO 2021/025142); and metallocene catalysts that use a metallocene compound as one of the catalyst components.
 <プロピレン系重合体(B)>
 前記プロピレン系重合体(B)は、135℃、テトラリン溶媒中で測定される極限粘度[η]が8~12dL/gの範囲にあるプロピレン系重合体(b1)を20~50質量%の範囲で、および135℃、テトラリン溶媒中で測定した極限粘度[η]が0.5~1.5dL/gの範囲にあるプロピレン系重合体(b2)を50~80質量%の範囲〔但し、(b1)と(b2)の合計量を100質量%とする。〕で含む。
 以下、135℃、テトラリン溶媒中で測定される極限粘度[η]を単に「極限粘度[η]」ともいう。
<Propylene-Based Polymer (B)>
The propylene polymer (B) contains 20 to 50 mass % of a propylene polymer (b1) having an intrinsic viscosity [η] of 8 to 12 dL/g measured in tetralin solvent at 135° C., and 50 to 80 mass % of a propylene polymer (b2) having an intrinsic viscosity [η] of 0.5 to 1.5 dL/g measured in tetralin solvent at 135° C. (wherein the total amount of (b1) and (b2) is 100 mass %).
Hereinafter, the intrinsic viscosity [η] measured at 135° C. in a tetralin solvent will be simply referred to as “intrinsic viscosity [η]”.
 ≪プロピレン系重合体(b1)≫
 前記プロピレン系重合体(b1)の極限粘度[η]は、8~12dL/gの範囲にあり、好ましくは10~12dL/gの範囲にあり、より好ましくは10.5~11.5dL/gの範囲にある。
<Propylene polymer (b1)>
The intrinsic viscosity [η] of the propylene polymer (b1) is in the range of 8 to 12 dL/g, preferably in the range of 10 to 12 dL/g, and more preferably in the range of 10.5 to 11.5 dL/g.
 極限粘度[η]が前記下限値以上であると、本発明の積層フィルムは剛性および耐熱に優れる。極限粘度[η]が前記上限値以下であると、優れた成形性でCPPフィルムを製造することができ、かつ本発明の積層フィルムは表面外観に優れる。 When the intrinsic viscosity [η] is equal to or greater than the lower limit, the laminated film of the present invention has excellent rigidity and heat resistance. When the intrinsic viscosity [η] is equal to or less than the upper limit, a CPP film can be produced with excellent moldability, and the laminated film of the present invention has excellent surface appearance.
 前記プロピレン系重合体(B)における前記プロピレン系重合体(b1)の質量分率は、20~50質量%の範囲にあり、好ましくは20~45質量%、より好ましくは20~40質量%、さらに好ましくは22~40質量%の範囲にある。 The mass fraction of the propylene-based polymer (b1) in the propylene-based polymer (B) is in the range of 20 to 50 mass%, preferably 20 to 45 mass%, more preferably 20 to 40 mass%, and even more preferably 22 to 40 mass%.
 前記質量分率が前記下限値以上であると、前記プロピレン系重合体組成物(X)は十分な溶融張力を有し、剛性および耐熱性に優れたCPPフィルムを製造することができる。前記質量分率が前記上限値以下であると、前記プロピレン系重合体組成物(X)を成形する際の外観不良の発生を抑制することができる。 When the mass fraction is equal to or greater than the lower limit, the propylene-based polymer composition (X) has sufficient melt tension, and a CPP film having excellent rigidity and heat resistance can be produced. When the mass fraction is equal to or less than the upper limit, the occurrence of defective appearance during molding of the propylene-based polymer composition (X) can be suppressed.
 前記プロピレン系重合体(b1)としては、例えば、プロピレンの単独重合体、プロピレンと炭素数2~8のα-オレフィン(ただし、プロピレンを除く)との共重合体が挙げられる。炭素数2~8のα-オレフィンとしては、例えば、エチレン、1-ブテン、1-ヘキセン、1-オクテン、4-メチル-1-ペンテンが挙げられる。これらα-オレフィンとしてはエチレンが好ましい。α-オレフィンは1種または2種以上用いることができる。 The propylene-based polymer (b1) may be, for example, a homopolymer of propylene or a copolymer of propylene and an α-olefin having 2 to 8 carbon atoms (excluding propylene). Examples of the α-olefin having 2 to 8 carbon atoms include ethylene, 1-butene, 1-hexene, 1-octene, and 4-methyl-1-pentene. Of these α-olefins, ethylene is preferred. One or more types of α-olefins may be used.
 プロピレンと炭素数2~8のα-オレフィンとの共重合体において、プロピレンに由来する構成単位の含有割合は、通常は90質量%以上、好ましくは95質量%以上、より好ましくは98質量%以上であり、炭素数2~8のα-オレフィン(ただし、プロピレンを除く)に由来する構成単位の含有割合は、通常は10質量%以下、好ましくは5質量%以下、より好ましくは2質量%以下である。前記含有割合は、13C-NMRにより測定することができる。
 前記プロピレン系重合体(b1)は1種または2種以上用いることができる。
In a copolymer of propylene and an α-olefin having 2 to 8 carbon atoms, the content of structural units derived from propylene is usually 90% by mass or more, preferably 95% by mass or more, and more preferably 98% by mass or more, and the content of structural units derived from an α-olefin having 2 to 8 carbon atoms (excluding propylene) is usually 10% by mass or less, preferably 5% by mass or less, and more preferably 2% by mass or less. The above content can be measured by 13 C-NMR.
The propylene-based polymer (b1) may be used alone or in combination.
 ≪プロピレン系重合体(b2)≫
 前記プロピレン系重合体(b2)の極限粘度[η]は、0.5~1.5dL/gの範囲にあり、好ましくは0.6~1.5dL/g、より好ましくは0.8~1.5dL/gの範囲にある。
<Propylene polymer (b2)>
The intrinsic viscosity [η] of the propylene polymer (b2) is in the range of 0.5 to 1.5 dL/g, preferably 0.6 to 1.5 dL/g, and more preferably 0.8 to 1.5 dL/g.
 極限粘度[η]が前記下限値以上であると、プロピレン系重合体(B)に十分な溶融張力を付与することができ、極限粘度[η]が前記上限値以下であると、優れた成形性でCPPフィルムを製造することができる。 When the intrinsic viscosity [η] is equal to or greater than the lower limit, sufficient melt tension can be imparted to the propylene-based polymer (B), and when the intrinsic viscosity [η] is equal to or less than the upper limit, a CPP film with excellent moldability can be produced.
 前記プロピレン系重合体(B)における前記プロピレン系重合体(b2)の質量分率は、50~80質量%の範囲にあり、好ましくは55~80質量%、より好ましくは60~80質量%、さらに好ましくは60~78質量%の範囲にある。 The mass fraction of the propylene-based polymer (b2) in the propylene-based polymer (B) is in the range of 50 to 80 mass%, preferably 55 to 80 mass%, more preferably 60 to 80 mass%, and even more preferably 60 to 78 mass%.
 質量分率が前記下限値以上であると、前記プロピレン系重合体組成物(X)を成形する際の外観不良の発生を抑制することができる。質量分率が前記上限値以下であると、前プロピレン系重合体(B)に十分な溶融張力を付与することができ、本発明の積層フィルムは剛性および耐熱性に優れる。 When the mass fraction is equal to or greater than the lower limit, the occurrence of defective appearance during molding of the propylene-based polymer composition (X) can be suppressed. When the mass fraction is equal to or less than the upper limit, sufficient melt tension can be imparted to the propylene-based polymer (B), and the laminate film of the present invention has excellent rigidity and heat resistance.
 前記プロピレン系重合体(b2)としては、例えば、プロピレンの単独重合体、プロピレンと炭素数2~8のα-オレフィン(ただし、プロピレンを除く)との共重合体が挙げられる。炭素数2~8のα-オレフィンとしては、例えば、エチレン、1-ブテン、1-ヘキセン、1-オクテン、4-メチル-1-ペンテンが挙げられる。これらα-オレフィンとしてはエチレンが好ましい。α-オレフィンは1種または2種以上用いることができる。 The propylene-based polymer (b2) may be, for example, a homopolymer of propylene or a copolymer of propylene and an α-olefin having 2 to 8 carbon atoms (excluding propylene). Examples of the α-olefin having 2 to 8 carbon atoms include ethylene, 1-butene, 1-hexene, 1-octene, and 4-methyl-1-pentene. Of these α-olefins, ethylene is preferred. One or more types of α-olefins may be used.
 プロピレンと炭素数2~8のα-オレフィンとの共重合体において、プロピレンに由来する構成単位の含有割合は、通常は90質量%以上、好ましくは93質量%以上、より好ましくは94質量%以上であり、炭素数2~8のα-オレフィン(ただし、プロピレンを除く)に由来する構成単位の含有割合は、通常は10質量%以下、好ましくは7質量%以下、より好ましくは6質量%以下である。前記含有割合は、13C-NMRにより測定することができる。
 前記プロピレン系重合体(b2)は1種または2種以上用いることができる。
In a copolymer of propylene and an α-olefin having 2 to 8 carbon atoms, the content of structural units derived from propylene is usually 90% by mass or more, preferably 93% by mass or more, and more preferably 94% by mass or more, and the content of structural units derived from an α-olefin having 2 to 8 carbon atoms (excluding propylene) is usually 10% by mass or less, preferably 7% by mass or less, and more preferably 6% by mass or less. The above content can be measured by 13 C-NMR.
The propylene-based polymer (b2) may be used alone or in combination of two or more.
 ≪添加剤≫
 前記プロピレン系重合体(B)には、必要に応じて、酸化防止剤、中和剤、難燃剤、結晶核剤等の添加剤を配合することができる。添加剤は1種または2種以上用いることができる。添加剤の割合は特に制限されず、適宜調節することが可能である。
Additives
The propylene-based polymer (B) may contain additives such as antioxidants, neutralizing agents, flame retardants, and crystal nucleating agents, if necessary. One or more additives may be used. The proportion of the additives is not particularly limited and may be appropriately adjusted.
 ≪プロピレン系重合体(B)の物性≫
 前記プロピレン系重合体(B)は、230℃、2.16kgf荷重で測定されるメルトフローレート(MFR)が、好ましくは0.01~5g/10分、より好ましくは0.05~4g/10分、さらに好ましくは0.1~3g/10分の範囲にある。プロピレン系重合体(B)のMFRが上記範囲にあると、前記プロピレン系重合体組成物(X)はフィルム成形性に優れる。
<Physical properties of propylene polymer (B)>
The propylene polymer (B) has a melt flow rate (MFR) measured at 230° C. under a load of 2.16 kgf in the range of preferably 0.01 to 5 g/10 min, more preferably 0.05 to 4 g/10 min, and further preferably 0.1 to 3 g/10 min. When the propylene polymer (B) has an MFR in the above range, the propylene polymer composition (X) has excellent film formability.
 前記プロピレン系重合体(B)は、ゲルパーミエーションクロマトグラフィー(GPC)により測定された分子量分布曲線で囲まれる領域の全面積に占める、分子量150万以上の高分子量領域の面積割合(分子量150万以上の高分子量成分の質量割合に相当する)が、好ましくは7%以上、より好ましくは10%以上、さらに好ましくは12%以上である。前記面積割合の上限は、例えば30%、好ましくは25%である。 The propylene-based polymer (B) has an area ratio of a high molecular weight region having a molecular weight of 1.5 million or more (corresponding to the mass ratio of high molecular weight components having a molecular weight of 1.5 million or more) of the total area surrounded by a molecular weight distribution curve measured by gel permeation chromatography (GPC) of preferably 7% or more, more preferably 10% or more, and even more preferably 12% or more. The upper limit of the area ratio is, for example, 30%, preferably 25%.
 前記高分子量領域の面積割合が特定の割合以上を占めているということは、プロピレン系重合体(B)中に分子量150万以上の高分子量成分が含有されていることを意味している。この高分子量成分の少なくとも一部は極限粘度[η]が10~12dL/gの高分子量成分である。したがって、前記高分子量成分の割合が前記範囲であれば、プロピレン系重合体(B)の溶融張力はより優れたものとなる。 The fact that the area ratio of the high molecular weight region is equal to or greater than a specific ratio means that the propylene-based polymer (B) contains high molecular weight components with a molecular weight of 1.5 million or more. At least a portion of these high molecular weight components has an intrinsic viscosity [η] of 10 to 12 dL/g. Therefore, if the ratio of the high molecular weight components is within the above range, the melt tension of the propylene-based polymer (B) will be superior.
 前記プロピレン系重合体(B)は、GPCにより測定された分子量分布曲線が2つのピークを有することが好ましい。ここで、高分子量側のピーク分子量(MH)と低分子量側のピーク分子量(ML)との比(MH/ML)は、好ましくは50以上、より好ましくは70以上、さらに好ましくは90以上である。比(MH/ML)の上限は、例えば500、好ましくは300である。分子量分布曲線が2つのピークを有し、MH/MLが特定の値以上になるということは、重合体における高分子量成分の含有量が多く、その極限粘度[η]も高いことを示す。したがって、このような態様のプロピレン系重合体(B)は、溶融張力の向上、前記プロピレン系重合体組成物(X)から形成されるフィルムの剛性、耐熱性の向上に寄与する。 The propylene-based polymer (B) preferably has two peaks in the molecular weight distribution curve measured by GPC. Here, the ratio (MH/ML) of the peak molecular weight (MH) on the high molecular weight side to the peak molecular weight (ML) on the low molecular weight side is preferably 50 or more, more preferably 70 or more, and even more preferably 90 or more. The upper limit of the ratio (MH/ML) is, for example, 500, preferably 300. The fact that the molecular weight distribution curve has two peaks and MH/ML is a specific value or more indicates that the polymer contains a large amount of high molecular weight components and that the intrinsic viscosity [η] is also high. Therefore, the propylene-based polymer (B) of such an embodiment contributes to improving the melt tension and improving the rigidity and heat resistance of the film formed from the propylene-based polymer composition (X).
 前記プロピレン系重合体(B)は、GPCにより測定された分子量分布曲線の前記低分子量側のピーク分子量MLが、粘性、前記プロピレン系重合体組成物(X)のフィルム成形性の観点から、好ましくは10万以下、より好ましくは8万以下、さらに好ましくは5万以下である。 The propylene-based polymer (B) has a peak molecular weight ML on the low molecular weight side of the molecular weight distribution curve measured by GPC, from the viewpoints of viscosity and film formability of the propylene-based polymer composition (X), of preferably 100,000 or less, more preferably 80,000 or less, and even more preferably 50,000 or less.
 ≪プロピレン系重合体(B)の製造方法≫
 前記プロピレン系重合体(B)の製造方法としては、種々公知の製造方法が挙げられ、たとえば、国際公開第2021/025142号の段落[0038]~[0075]に記載された方法が挙げられる。
<<Method for producing propylene polymer (B)>>
Examples of the production method of the propylene-based polymer (B) include various known production methods, such as those described in paragraphs [0038] to [0075] of WO 2021/025142.
 <プロピレン系重合体組成物(X)>
 前記プロピレン系重合体組成物(X)は、前記プロピレン単独重合体(A)および前記プロピレン系重合体(B)を、組成物全体として前記要件(i)~(iii)を満たすような割合で、たとえば前記プロピレン単独重合体(A)を60~99質量%、好ましくは70~99質量%、より好ましくは70~97質量%、さらに好ましくは70~95質量%、および前記プロピレン系重合体(B)を1~40質量%、好ましくは1~30質量%、より好ましくは3~30質量%、さらに好ましくは5~30質量%の割合で含む〔但し、(A)と(B)との合計量を100質量%とする。〕。
<Propylene-Based Polymer Composition (X)>
The propylene polymer composition (X) contains the propylene homopolymer (A) and the propylene polymer (B) in such proportions that the entire composition satisfies the requirements (i) to (iii), for example, 60 to 99 mass %, preferably 70 to 99 mass %, more preferably 70 to 97 mass %, and even more preferably 70 to 95 mass % of the propylene homopolymer (A) and 1 to 40 mass %, preferably 1 to 30 mass %, more preferably 3 to 30 mass %, and even more preferably 5 to 30 mass % of the propylene polymer (B) (wherein the total amount of (A) and (B) is 100 mass %).
 前記プロピレン系重合体(B)の割合が前記下限値以上であると、得られるCPPフィルムおよび本発明の積層フィルムは剛性(引張弾性率)に優れる。
 前記プロピレン系重合体(B)の割合が前記上限値以下であると、得られるCPPフィルムおよび本発明の積層フィルムは透明性に優れ、かつ外観に優れる。
When the proportion of the propylene polymer (B) is at least the lower limit, the resulting CPP film and the laminate film of the present invention are excellent in rigidity (tensile modulus).
When the proportion of the propylene polymer (B) is equal to or less than the upper limit, the resulting CPP film and the laminate film of the present invention are excellent in transparency and appearance.
 前記プロピレン系重合体(b1)の分子量が高いことから、前記プロピレン単独重合体(A)と前記プロピレン系重合体(B)を混合することにより、前記要件(ii)および(iii)が満たされる、すなわち分子量分布の広い、プロピレン系重合体組成物(X)を調製することができる。 Since the molecular weight of the propylene-based polymer (b1) is high, by mixing the propylene homopolymer (A) and the propylene-based polymer (B), it is possible to prepare a propylene-based polymer composition (X) that satisfies the requirements (ii) and (iii), i.e., has a wide molecular weight distribution.
 ≪プロピレン系重合体組成物(X)の製造方法≫
 前記プロピレン系重合体組成物(X)は、公知の任意の方法を採用して製造することができ、例えば、プロピレン単独重合体(A)およびプロピレン系重合体(B)、必要に応じて添加剤を、ヘンシェルミキサー、V型ブレンダー、リボンブレンダー、タンブラーブレンダー等で混合する方法、または前記混合後、一軸押出機、二軸押出機、ニーダー、バンバリーミキサー、ロール等で溶融混練した後、造粒もしくは粉砕する方法が挙げられる。
<<Method for producing propylene polymer composition (X)>>
The propylene polymer composition (X) can be produced by adopting any known method. For example, there can be mentioned a method in which the propylene homopolymer (A), the propylene polymer (B), and, if necessary, additives are mixed using a Henschel mixer, a V-type blender, a ribbon blender, a tumbler blender, or the like, or a method in which the mixture is melt-kneaded using a single-screw extruder, a twin-screw extruder, a kneader, a Banbury mixer, a roll, or the like, and then granulated or pulverized.
 (添加剤)
 前記CPPフィルムは、本発明の目的を損なわない範囲で、耐候性安定剤、耐熱安定剤、帯電防止剤、スリップ剤、アンチブロッキング剤、防曇剤、造核剤、分解剤、顔料、染料、可塑剤、塩酸吸収剤、酸化防止剤、架橋剤、架橋促進剤、補強剤、充填剤、軟化剤、加工助剤、活性剤、吸湿剤、粘着剤、難燃剤、離型剤等の添加剤を含んでいてもよい。添加剤は1種または2種以上用いることができる。
(Additive)
The CPP film may contain additives such as weather resistance stabilizers, heat resistance stabilizers, antistatic agents, slip agents, antiblocking agents, antifogging agents, nucleating agents, decomposition agents, pigments, dyes, plasticizers, hydrochloric acid absorbers, antioxidants, crosslinking agents, crosslinking accelerators, reinforcing agents, fillers, softeners, processing aids, activators, moisture absorbents, adhesives, flame retardants, release agents, etc. One or more additives may be used.
 前記CPPフィルムは、透明性や耐熱性などの改良のため、造核剤を含んでいてもよい。造核剤としては、例えば、ジベンジリデンソルビトール等のソルビトール系化合物、有機リン酸エステル系化合物、ロジン酸塩系化合物、C4~C12の脂肪族ジカルボン酸およびその金属塩が挙げられる。これらのうちでは、有機リン酸エステル系化合物が好ましい。造核剤は1種または2種以上用いることができる。 The CPP film may contain a nucleating agent to improve transparency, heat resistance, etc. Examples of nucleating agents include sorbitol compounds such as dibenzylidene sorbitol, organic phosphate compounds, rosin acid salt compounds, C4 to C12 aliphatic dicarboxylic acids and metal salts thereof. Of these, organic phosphate compounds are preferred. One or more types of nucleating agents may be used.
 前記CPPフィルム中の造核剤の配合量は、前記プロピレン系重合体100質量部に対して、好ましくは0.05~0.5質量部、より好ましくは0.1~0.3質量部である。 The amount of the nucleating agent in the CPP film is preferably 0.05 to 0.5 parts by mass, and more preferably 0.1 to 0.3 parts by mass, per 100 parts by mass of the propylene-based polymer.
 前記CPPフィルムは、前記プロピレン系重合体以外の樹脂成分(たとえば、ポリエチレン)を含んでいてもよいが、その配合量は、前記プロピレン系重合体100質量部に対して、好ましくは2質量部以下、より好ましくは1質量部以下、さらに好ましくは0.5質量部以下である。 The CPP film may contain a resin component other than the propylene-based polymer (e.g., polyethylene), but the amount of the resin component is preferably 2 parts by mass or less, more preferably 1 part by mass or less, and even more preferably 0.5 parts by mass or less, per 100 parts by mass of the propylene-based polymer.
 (CPPフィルム)
 前記CPPフィルムは、前記プロピレン系重合体をフィルムに成形することにより製造することができる。
 成形方法としては、例えば、Tダイ法やインフレーション法等の押出成形法、圧縮成形法、カレンダー成形法、流延法が挙げられる。
(CPP film)
The CPP film can be produced by forming the propylene-based polymer into a film.
Examples of the molding method include extrusion molding methods such as a T-die method and an inflation method, compression molding, calendar molding, and casting.
 CPPフィルムの成形は、例えば、以下のように行うことができる。
 前記プロピレン系重合体および任意の添加剤はフィルム成形機のホッパー等に直接投入してもよいし、リボンブレンダー、バンバリーミキサー、ヘンシェルミキサー、スーパーミキサー等を用いて上記各成分を予め混合し、あるいはさらに、単軸または二軸押出機、ロールなどの混練機を用いて溶融混練してプロピレン系重合体を得た後、フィルム成形してもよい。
The CPP film can be formed, for example, as follows.
The propylene-based polymer and any additives may be directly charged into a hopper or the like of a film-forming machine, or the components may be mixed in advance using a ribbon blender, a Banbury mixer, a Henschel mixer, a super mixer or the like, or may be melt-kneaded using a kneader such as a single-screw or twin-screw extruder or a roll to obtain a propylene-based polymer, which may then be molded into a film.
 CPPフィルムの具体的な製造例を、T-ダイ法で説明すると、押出機に上記各成分を投入し、通常は180~280℃、好ましくは200~270℃の温度で溶融混練した後、T-ダイのダイリップよりフィルム状に押出し、この溶融フィルムを冷却して、ニップロール等による引取機で引き取り、CPPフィルムが得られる。
 溶融フィルムの冷却法としては、例えば、エアーナイフ法やエアーチャンバー法によるロールと空冷による冷却法、ポリシングロール法、スイングロール法、ベルトキャスト法などによる狭圧冷却法、水冷法等による冷媒による接触冷却法が挙げられる。
 得られたCPPフィルムには、通常のフィルム成形に用いられるフィルムの処理方法、例えば、コロナ放電処理、液剤塗布処理を行なってもよい。
A specific example of the production of a CPP film will be described using the T-die method. The above-mentioned components are fed into an extruder and melt-kneaded usually at a temperature of 180 to 280°C, preferably 200 to 270°C, and then extruded into a film from the die lip of a T-die. The molten film is cooled and taken up by a take-up machine such as a nip roll to obtain a CPP film.
Methods for cooling the molten film include, for example, cooling methods using rolls and air cooling such as the air knife method or the air chamber method, narrow pressure cooling methods such as the polishing roll method, swing roll method and belt casting method, and contact cooling with a refrigerant such as the water cooling method.
The obtained CPP film may be subjected to a film treatment method generally used in film molding, such as a corona discharge treatment or a liquid coating treatment.
 <無機酸化物層>
 本発明の積層フィルムは、無機酸化物層を有する。
 前記無機酸化物層は、前記CPPフィルムに無機酸化物を蒸着することにより形成することができる。
 蒸着方法の例としては、従来公知の方法、たとえば化学気相成長法(CVD法)および物理気相成長法(PVD法)が挙げられる。
 前記無機酸化物としては、アルミニウム、亜鉛、マグネシウム、ケイ素などの無機酸化物が挙げられる。
 前記無機酸化物層の、後述する実施例で採用された方法で測定される厚さは、たとえば20~150nm、好ましくは30~60nmである。厚さが上記範囲にあると、本発明の積層フィルムは外観およびガスバリア性に優れる。
<Inorganic oxide layer>
The laminate film of the present invention has an inorganic oxide layer.
The inorganic oxide layer can be formed by vapor deposition of an inorganic oxide onto the CPP film.
Examples of deposition methods include conventional methods such as chemical vapor deposition (CVD) and physical vapor deposition (PVD).
Examples of the inorganic oxide include inorganic oxides of aluminum, zinc, magnesium, silicon, and the like.
The thickness of the inorganic oxide layer, as measured by the method employed in the examples described below, is, for example, 20 to 150 nm, and preferably 30 to 60 nm. When the thickness is in the above range, the laminated film of the present invention has excellent appearance and gas barrier properties.
 〔積層フィルム〕
 本発明の積層フィルムは、前記CPPフィルムと、前記CPPフィルムに接する前記無機酸化物層とを有している。
[Laminated film]
The laminated film of the present invention has the CPP film and the inorganic oxide layer in contact with the CPP film.
 本発明の積層フィルムは、好ましくは水蒸気バリア性や酸素ガスバリア性などのガスバリア性に優れる。
 水蒸気透過率は、好ましくは5以下、より好ましくは1以下である。この水蒸気透過率は、例えば蒸着膜厚を変更することにより調整できる。
 酸素ガス透過率は、好ましくは1000以下、より好ましくは100以下である。蒸着膜厚を変更することにより調整できる。
The laminate film of the present invention preferably has excellent gas barrier properties such as water vapor barrier properties and oxygen gas barrier properties.
The water vapor transmission rate is preferably not more than 5, and more preferably not more than 1. This water vapor transmission rate can be adjusted, for example, by changing the thickness of the deposited film.
The oxygen gas permeability is preferably not more than 1000, more preferably not more than 100. It can be adjusted by changing the thickness of the deposited film.
 本発明の積層フィルムの、後述する実施例で採用された方法で測定される80℃での引張弾性率は、好ましくは800MPa以上、より好ましくは850MPa以上であり、その上限は、例えば1300MPaであってもよい。この引張弾性率の値は、例えば製膜時のフィルムの引き取り速度を変更することにより調整できる。 The tensile modulus of the laminated film of the present invention at 80°C, measured by the method employed in the examples described below, is preferably 800 MPa or more, more preferably 850 MPa or more, and the upper limit may be, for example, 1300 MPa. This tensile modulus value can be adjusted, for example, by changing the film take-up speed during film formation.
 本発明の積層フィルムは、前記CPPフィルムおよび前記無機酸化物層に加えて、任意の層を有していてもよい。任意の層を有することで、様々な機能を本発明の積層フィルムに付与することができる。任意の層は1つであってもよく、複数であってもよい。
 任意の層が設けられる場所としては、
  前記CPPフィルムの、前記無機酸化物層とは反対側
  前記CPPフィルムと前記無機酸化物層との間であって、前記CPPフィルムと前記無機酸化物層とが接していない場所
  前記無機酸化物層の、前記CPPフィルムとは反対側
が挙げられる。
The laminated film of the present invention may have an optional layer in addition to the CPP film and the inorganic oxide layer. By having the optional layer, various functions can be imparted to the laminated film of the present invention. The optional layer may be one or more.
The optional layer may be provided in the following locations:
A location on the side of the CPP film opposite the inorganic oxide layer A location between the CPP film and the inorganic oxide layer, where the CPP film and the inorganic oxide layer are not in contact with each other A location on the side of the inorganic oxide layer opposite the CPP film
 任意の層としては、二軸延伸ポリプロピレンフィルム、CPPフィルム(上述した要件(i)~(iii)を満たすプロピレン系重合体を含むCPPフィルムであってもよく、これとは異なるCPPフィルムであってもよい)、水蒸気、酸素などの気体に対するバリア層、吸音層、遮光層、接着層、粘着層、着色層、導電性層、再生樹脂含有層が挙げられる。
 任意の層を形成する素材としては、具体的には、前記プロピレン系重合体以外のオレフィン系重合体組成物、ガスバリア性樹脂組成物、接着性樹脂組成物などが挙げられる。
 任意の層を形成する方法としては、たとえば共押出法、押出コーティング法が挙げられる。
 任意の層として二軸延伸ポリプロピレンフィルムを有することが好ましく、前記無延伸ポリプロピレンフィルムとは反対側に、前記無機酸化物層に接する接着層を介して二軸延伸ポリプロピレンフィルムを備えることが本発明の積層フィルムの好ましい一形態である。接着層としては、ウレタン系やイソシアネート系接着剤のようなアンカーコート剤や、不飽和カルボン酸グラフトポリオレフィンのような変性ポリオレフィンなどの接着性樹脂が挙げられる。上記の積層フィルムは、二軸延伸フィルムとして二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ナイロンフィルムなどを備える積層フィルムと比べ、モノマテリアル化、環境負荷の低減の観点から好ましい。
Examples of the optional layer include a biaxially oriented polypropylene film, a CPP film (which may be a CPP film containing a propylene-based polymer satisfying the above-mentioned requirements (i) to (iii), or a different CPP film), a barrier layer against gases such as water vapor and oxygen, a sound absorbing layer, a light shielding layer, an adhesive layer, a pressure sensitive adhesive layer, a colored layer, a conductive layer, and a recycled resin-containing layer.
Specific examples of materials for forming the optional layers include olefin polymer compositions other than the propylene polymers, gas barrier resin compositions, and adhesive resin compositions.
Methods for forming the optional layers include, for example, coextrusion and extrusion coating.
It is preferable to have a biaxially oriented polypropylene film as an optional layer, and a preferred embodiment of the laminated film of the present invention is to have a biaxially oriented polypropylene film on the opposite side to the non-oriented polypropylene film via an adhesive layer in contact with the inorganic oxide layer. Examples of the adhesive layer include an anchor coating agent such as a urethane-based or isocyanate-based adhesive, and an adhesive resin such as a modified polyolefin such as an unsaturated carboxylic acid grafted polyolefin. The above laminated film is preferable from the viewpoint of mono-materialization and reduction of environmental load, compared with a laminated film having a biaxially oriented polyethylene terephthalate film, a biaxially oriented nylon film, or the like as a biaxially oriented film.
 本発明の積層フィルムは、例えば、食品、飲料、工業部品、雑貨、玩具、日用品、事務用品、医療用品などの包装材として用いられる。
 本発明の積層フィルムは、例えば、魚肉などの生鮮食品、スナック、麺類の乾燥食品、スープ、漬物などの水物食品などの各種食品包装用分野;錠剤、粉末、液体などの各種形態の医療品、医療周辺材料などに用いる医療関連品包装用分野;カセットテープ、電気部品などの各種電気機器包装用分野など、広範囲な包装用分野における包装用フィルムとして使用することができる。
The laminated film of the present invention is used as a packaging material for, for example, foods, beverages, industrial parts, miscellaneous goods, toys, daily necessities, office supplies, medical supplies, and the like.
The laminated film of the present invention can be used as a packaging film in a wide range of packaging fields, including, for example, packaging various foods such as fresh foods such as fish meat, dried foods such as snacks and noodles, and water-based foods such as soups and pickles; packaging medical products such as medical products in various forms such as tablets, powders, and liquids, and medical peripheral materials; and packaging various electrical devices such as cassette tapes and electrical components.
 以下、本発明の一実施形態を実施例により説明するが、本発明はこれら実施例に限定されない。
 (プロピレン系重合体の測定、評価)
 〔重量平均分子量(Mw)、数平均分子量(Mn)、Z平均分子量(Mz)および分子量分布(Mw/Mn、Mz/Mn)〕
 重量平均分子量(Mw)、数平均分子量(Mn)、Z平均分子量(Mz)および分子量分布(Mw/Mn、Mz/Mn)は、GPCを用い以下の条件で測定した。また、重量平均分子量(Mw)、数平均分子量(Mn)およびZ平均分子量(Mz)は、市販の単分散標準ポリスチレンを用いて検量線を作成し、下記の換算法に基づいて求めた。
 (測定条件)
 装置:ゲル浸透クロマトグラフ HLC-8321 GPC/HT型 (東ソー社製)
 有機溶媒:o-ジクロロベンゼン
 カラム:TSKgel GMH6-HT2本、TSKgel GMH6-HTLカラム2本(何れも東ソー社製)
 流速:1.0mL/分
 試料:0.10mg/mL o-ジクロロベンゼン溶液
 温度:140℃
 分子量換算:PS換算/汎用較正法
 なお、汎用較正の計算には、Mark-Houwink粘度式の係数を用いた。PSのMark-Houwink係数はそれぞれ、文献(J.Polym.Sci.,PartA-2,8,1803(1970))に記載の値を用いた。
Hereinafter, one embodiment of the present invention will be described with reference to examples, but the present invention is not limited to these examples.
(Measurement and Evaluation of Propylene Polymers)
[Weight average molecular weight (Mw), number average molecular weight (Mn), Z average molecular weight (Mz) and molecular weight distribution (Mw/Mn, Mz/Mn)]
The weight average molecular weight (Mw), number average molecular weight (Mn), Z average molecular weight (Mz) and molecular weight distribution (Mw/Mn, Mz/Mn) were measured using GPC under the following conditions. The weight average molecular weight (Mw), number average molecular weight (Mn) and Z average molecular weight (Mz) were calculated based on the following conversion method using a calibration curve prepared using commercially available monodisperse standard polystyrene.
(Measurement condition)
Apparatus: Gel permeation chromatograph HLC-8321 GPC/HT type (manufactured by Tosoh Corporation)
Organic solvent: o-dichlorobenzene Column: 2 TSKgel GMH6-HT columns, 2 TSKgel GMH6-HTL columns (both manufactured by Tosoh Corporation)
Flow rate: 1.0 mL/min Sample: 0.10 mg/mL o-dichlorobenzene solution Temperature: 140° C.
Molecular weight conversion: PS conversion/universal calibration method For the calculation of universal calibration, the coefficients of the Mark-Houwink viscosity equation were used. The Mark-Houwink coefficients of PS were the values described in the literature (J. Polym. Sci., Part A-2, 8, 1803 (1970)).
 〔プロピレン単独重合体(A)の製造〕
 〔プロピレン単独重合体(A-1)の製造〕
 [製造例1]
 (1)遷移金属触媒成分(c-1)の調製
 直径12mmの鋼球9kgの入った内容積4Lの粉砕用ポットを4個装備した振動ミルを用意した。各ポットに窒素雰囲気中で塩化マグネシウム300g、フタル酸ジイソブチル115mL、四塩化チタン60mLを加え、塩化マグネシウムを40時間かけて粉砕した。得られた混合物75gを5Lのフラスコに入れ、さらにトルエン1.5Lを加え114℃で30分間攪拌処理し、次いで静置して上澄み液を除去した。得られた固形分を、20℃で1.5Lのn-ヘプタンで3回に分けて洗浄した。さらに1.5Lのn-ヘプタンに分散して遷移金属触媒成分(c-1)のスラリーを得た。得られた遷移金属触媒成分(c-1)は、チタンを2重量%含有し、フタル酸ジイソブチルを18重量%含有していた。
[Production of Propylene Homopolymer (A)]
[Production of Propylene Homopolymer (A-1)]
[Production Example 1]
(1) Preparation of transition metal catalyst component (c-1) A vibration mill equipped with four grinding pots with an internal volume of 4 L containing 9 kg of steel balls with a diameter of 12 mm was prepared. 300 g of magnesium chloride, 115 mL of diisobutyl phthalate, and 60 mL of titanium tetrachloride were added to each pot in a nitrogen atmosphere, and the magnesium chloride was ground over 40 hours. 75 g of the resulting mixture was placed in a 5 L flask, and 1.5 L of toluene was added and the mixture was stirred at 114°C for 30 minutes, then allowed to stand and the supernatant liquid was removed. The resulting solid was washed three times with 1.5 L of n-heptane at 20°C. It was further dispersed in 1.5 L of n-heptane to obtain a slurry of transition metal catalyst component (c-1). The resulting transition metal catalyst component (c-1) contained 2 wt% titanium and 18 wt% diisobutyl phthalate.
 (2)予備重合触媒(d-1)の製造
 遷移金属触媒成分(c-1)100g、トリエチルアルミニウム15.4mL、ヘプタン100Lを内容量200Lの攪拌機付きオートクレーブに挿入し、内温5℃に保ちプロピレンを600g挿入し、60分間攪拌しながらプロピレンを重合させた。重合終了後、四塩化チタン4.1mLを装入し、予重合触媒(d-1)を得た。この予重合触媒(d-1)は遷移金属触媒成分1g当りポリプロピレンを6g含んでいた。
(2) Production of prepolymerized catalyst (d-1) 100 g of transition metal catalyst component (c-1), 15.4 mL of triethylaluminum, and 100 L of heptane were charged into a 200 L autoclave equipped with a stirrer, and 600 g of propylene was charged while maintaining the internal temperature at 5°C, and propylene was polymerized for 60 minutes while stirring. After the polymerization was completed, 4.1 mL of titanium tetrachloride was charged to obtain a prepolymerized catalyst (d-1). This prepolymerized catalyst (d-1) contained 6 g of polypropylene per 1 g of the transition metal catalyst component.
 (3)プロピレン単独重合体(A-1)の製造
 内容量500Lの攪拌機付きベッセル重合器に、プロピレンを130kg/時間、水素を136NL/時間、予備重合触媒(d-1)を1.05g/時間、トリエチルアルミニウムを5.2mL/時間、シクロヘキシルメチルジメトキシシランを0.4mL/時間で連続的に供給し、水素を気相部の水素濃度が2.6mol%になるように供給した。攪拌機付きベッセル重合器の温度は73℃であり、圧力は3.2MPa/Gであった。得られたスラリーは失活後、プロピレンを蒸発させてパウダー状のプロピレン単独重合体(a-1)を得た。得られたプロピレン単独重合体(a-1)は、MFRが1.7g/10分であった。得られたプロピレン単独重合体(a-1):100質量部に対し、有機過酸化物パーヘキサ25B-40(日油株式会社):0.07質量部を加え、攪拌を十分に行った。これを、KTX30mm二軸押出機を用い、シリンダー温度230℃、押出量25kg/時間で溶融混錬した。得られたプロピレン単独重合体(A-1)のMFRは9g/10分、Mw/Mnは3.7であった。
(3) Production of Propylene Homopolymer (A-1) To a 500 L stirred vessel polymerization reactor, 130 kg/hour of propylene, 136 NL/hour of hydrogen, 1.05 g/hour of prepolymerization catalyst (d-1), 5.2 mL/hour of triethylaluminum, and 0.4 mL/hour of cyclohexylmethyldimethoxysilane were continuously fed, and hydrogen was fed so that the hydrogen concentration in the gas phase was 2.6 mol%. The temperature of the stirred vessel polymerization reactor was 73°C, and the pressure was 3.2 MPa/G. The obtained slurry was deactivated, and then propylene was evaporated to obtain a powdery propylene homopolymer (a-1). The obtained propylene homopolymer (a-1) had an MFR of 1.7 g/10 min. To 100 parts by mass of the obtained propylene homopolymer (a-1), 0.07 parts by mass of organic peroxide Perhexa 25B-40 (NOF Corporation) was added and thoroughly stirred. This was melt-kneaded using a KTX 30 mm twin-screw extruder at a cylinder temperature of 230° C. and an extrusion rate of 25 kg/hour. The obtained propylene homopolymer (A-1) had an MFR of 9 g/10 min and an Mw/Mn of 3.7.
 〔プロピレン単独重合体(A-2)の製造〕
 [製造例2]
 (1)固体状チタン触媒成分(c-2)の調製
 無水塩化マグネシウム95.2g、デカン442mLおよび2-エチルヘキシルアルコール390.6gを130℃で2時間加熱反応を行って均一溶液とした後、この溶液中に無水フタル酸21.3gを添加し、さらに130℃にて1時間攪拌混合を行い、無水フタル酸を溶解させた。このようにして得られた均一溶液を室温に冷却した後、-20℃に保持した四塩化チタン200mL中に、この均一溶液の75mLを1時間にわたって滴下装入した。装入終了後、この混合液の温度を4時間かけて110℃に昇温し、110℃に達したところでフタル酸ジイソブチル(DIBP)5.22gを添加し、これより2時間同温度にて攪拌保持した。2時間の攪拌終了後、熱濾過にて固体部を採取し、この固体部を275mLの四塩化チタンに再懸濁させた後、再び110℃で2時間加熱した。反応終了後、再び熱濾過にて固体部を採取し、110℃のデカンおよびヘキサンにて溶液中に遊離のチタン化合物が検出されなくなるまで充分洗浄した。上記の様に調製された固体状チタン触媒成分はヘキサンスラリーとして保存されるが、このうち一部を乾燥して触媒組成を調べた。固体状チタン触媒成分は、チタンを2.3重量%、塩素を61重量%、マグネシウムを19重量%およびDIBPを12.5重量%の量で含有していた。
[Production of Propylene Homopolymer (A-2)]
[Production Example 2]
(1) Preparation of solid titanium catalyst component (c-2) 95.2 g of anhydrous magnesium chloride, 442 mL of decane, and 390.6 g of 2-ethylhexyl alcohol were reacted at 130°C for 2 hours to obtain a homogeneous solution, and then 21.3 g of phthalic anhydride was added to the solution, and the mixture was stirred and mixed at 130°C for 1 hour to dissolve the phthalic anhydride. The homogeneous solution thus obtained was cooled to room temperature, and then 75 mL of the homogeneous solution was added dropwise over 1 hour to 200 mL of titanium tetrachloride kept at -20°C. After the addition, the temperature of the mixture was raised to 110°C over 4 hours, and when it reached 110°C, 5.22 g of diisobutyl phthalate (DIBP) was added, and the mixture was stirred and maintained at the same temperature for 2 hours. After the 2-hour stirring, the solid portion was collected by hot filtration, and the solid portion was resuspended in 275 mL of titanium tetrachloride, and then heated again at 110°C for 2 hours. After the reaction was completed, the solid portion was collected by hot filtration again and thoroughly washed with decane and hexane at 110°C until no free titanium compounds were detected in the solution. The solid titanium catalyst component prepared as above was stored as a hexane slurry, and a portion of this was dried to examine the catalyst composition. The solid titanium catalyst component contained titanium in the amounts of 2.3 wt%, chlorine in the amount of 61 wt%, magnesium in the amount of 19 wt%, and DIBP in the amount of 12.5 wt%.
 (2)予備重合触媒(d-2)の製造
 固体状チタン触媒成分(c-2)100.0g、シクロヘキシルメチルジメトキシシラン19.2mL、トリエチルアルミニウム65.6mL、ヘプタン10Lを内容量20Lの攪拌機付きオートクレーブに挿入し、内温15~20℃に保ちプロピレンを600g挿入し、100分間攪拌しながらプロピレンを重合させた。重合終了後、固体成分を沈降させ、上澄み液の除去およびヘプタンによる洗浄を2回行った。得られた予備重合触媒を精製ヘプタンに再懸濁して、固体触媒成分濃度で1.0g/Lとなるよう、ヘプタンにより調整を行った。
(2) Production of prepolymerized catalyst (d-2) 100.0 g of solid titanium catalyst component (c-2), 19.2 mL of cyclohexylmethyldimethoxysilane, 65.6 mL of triethylaluminum, and 10 L of heptane were charged into a 20 L autoclave equipped with a stirrer, and 600 g of propylene was charged while maintaining the internal temperature at 15 to 20°C, and propylene was polymerized while stirring for 100 minutes. After the polymerization was completed, the solid component was allowed to settle, and the supernatant was removed and washed with heptane twice. The obtained prepolymerized catalyst was resuspended in purified heptane, and the concentration of the solid catalyst component was adjusted to 1.0 g/L with heptane.
 (3)プロピレン単独重合体(A-2)の製造
 内容量58Lの管状重合器に、プロピレンを43kg/時間、水素を56NL/時間、予備重合触媒(d-2)を0.77g/時間、トリエチルアルミニウムを2.3mL/時間、シクロヘキシルメチルジメトキシシランを4.3mL/時間で連続的に供給し、気相の存在しない満液の状態にて重合した。管状重合器の温度は70℃であり、圧力は3.4MPa/Gであった。得られたスラリーは内容量70Lの攪拌機付きベッセル重合器へ送り、更に重合を行った。重合器へは、プロピレンを45kg/時間で連続的に供給し、水素を気相部の水素濃度が2.9mol%になるように供給した。重合温度70℃、圧力3.1MPa/Gで重合を行った。得られたスラリーは失活後、プロピレンを蒸発させてパウダー状のプロピレン単独重合体(A-2)を得た。得られたプロピレン単独重合体(A-2)は、MFRが9g/10分、Mw/Mnは5.0であった。
(3) Production of propylene homopolymer (A-2) To a tubular polymerization vessel having a capacity of 58 L, propylene was continuously supplied at 43 kg/hour, hydrogen at 56 NL/hour, prepolymerization catalyst (d-2) at 0.77 g/hour, triethylaluminum at 2.3 mL/hour, and cyclohexylmethyldimethoxysilane at 4.3 mL/hour, and polymerization was performed in a liquid-filled state in which no gas phase was present. The temperature of the tubular polymerization vessel was 70°C, and the pressure was 3.4 MPa/G. The obtained slurry was sent to a vessel polymerization vessel having a capacity of 70 L equipped with a stirrer, and further polymerization was performed. To the polymerization vessel, propylene was continuously supplied at 45 kg/hour, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 2.9 mol%. Polymerization was performed at a polymerization temperature of 70°C and a pressure of 3.1 MPa/G. After the obtained slurry was deactivated, propylene was evaporated to obtain a powdery propylene homopolymer (A-2). The resulting propylene homopolymer (A-2) had an MFR of 9 g/10 min and an Mw/Mn of 5.0.
 〔プロピレン単独重合体(A-3)の製造〕
 [製造例3]
 (1)固体状チタン触媒成分(c-3)の調製
 無水塩化マグネシウム95.2g、デカン442mLおよび2-エチルヘキシルアルコール390.6gを130℃で2時間加熱反応を行って均一溶液とした後、この溶液中に無水フタル酸21.3gを添加し、さらに130℃にて1時間攪拌混合を行い、無水フタル酸を溶解させた。このようにして得られた均一溶液を室温に冷却した後、-20℃に保持した四塩化チタン200mL中に、この均一溶液の75mLを1時間にわたって滴下装入した。装入終了後、この混合液の温度を4時間かけて110℃に昇温し、110℃に達したところでフタル酸ジイソブチル(DIBP)5.22gを添加し、これより2時間同温度にて攪拌保持した。2時間の反応終了後、熱濾過にて固体部を採取し、この固体部を275mLの四塩化チタンに再懸濁させた後、再び110℃で2時間加熱した。反応終了後、再び熱濾過にて固体部を採取し、110℃のデカンおよびヘキサンにて溶液中に遊離のチタン化合物が検出されなくなるまで充分洗浄した。上記の様に調製された固体状チタン触媒成分はヘキサンスラリーとして保存されるが、このうち一部を乾燥して触媒組成を調べた。固体状チタン触媒成分は、チタンを2.3重量%、塩素を61重量%、マグネシウムを19重量%およびDIBPを12.5重量%の量で含有していた。
[Production of Propylene Homopolymer (A-3)]
[Production Example 3]
(1) Preparation of solid titanium catalyst component (c-3) 95.2 g of anhydrous magnesium chloride, 442 mL of decane, and 390.6 g of 2-ethylhexyl alcohol were reacted at 130°C for 2 hours to obtain a homogeneous solution, and then 21.3 g of phthalic anhydride was added to the solution, and the mixture was stirred and mixed at 130°C for 1 hour to dissolve the phthalic anhydride. The homogeneous solution thus obtained was cooled to room temperature, and then 75 mL of the homogeneous solution was added dropwise over 1 hour to 200 mL of titanium tetrachloride kept at -20°C. After the addition, the temperature of the mixture was raised to 110°C over 4 hours, and when it reached 110°C, 5.22 g of diisobutyl phthalate (DIBP) was added, and the mixture was stirred and held at the same temperature for 2 hours. After the reaction for 2 hours was completed, the solid portion was collected by hot filtration, and the solid portion was resuspended in 275 mL of titanium tetrachloride, and then heated again at 110°C for 2 hours. After the reaction was completed, the solid portion was collected by hot filtration again and thoroughly washed with decane and hexane at 110°C until no free titanium compounds were detected in the solution. The solid titanium catalyst component prepared as above was stored as a hexane slurry, and a portion of this was dried to examine the catalyst composition. The solid titanium catalyst component contained titanium in the amounts of 2.3 wt%, chlorine in the amount of 61 wt%, magnesium in the amount of 19 wt%, and DIBP in the amount of 12.5 wt%.
 (2)予備重合触媒(d-3)の製造
 固体状チタン触媒成分(c-3)100.0g、ジシクロペンチルジメトキシシラン22.4mL、トリエチルアルミニウム65.6mL、ヘプタン10Lを内容量20Lの攪拌機付きオートクレーブに挿入し、内温15~20℃に保ちプロピレンを600g挿入し、100分間攪拌しながらプロピレンを重合させた。重合終了後、固体成分を沈降させ、上澄み液の除去およびヘプタンによる洗浄を2回行った。得られた予備重合触媒を精製ヘプタンに再懸濁して、固体触媒成分濃度で1.0g/Lとなるよう、ヘプタンにより調整を行った。
(2) Production of prepolymerized catalyst (d-3) 100.0 g of solid titanium catalyst component (c-3), 22.4 mL of dicyclopentyldimethoxysilane, 65.6 mL of triethylaluminum, and 10 L of heptane were charged into a 20 L autoclave equipped with a stirrer, and 600 g of propylene was charged while maintaining the internal temperature at 15 to 20°C, and propylene was polymerized while stirring for 100 minutes. After the polymerization was completed, the solid component was allowed to settle, and the supernatant was removed and washed with heptane twice. The obtained prepolymerized catalyst was resuspended in purified heptane, and the concentration of the solid catalyst component was adjusted to 1.0 g/L with heptane.
 (3)プロピレン単独重合体(A-3)の製造
 内容量58Lの管状重合器に、プロピレンを43kg/時間、水素を163NL/時間、予備重合触媒(d-3)を0.55g/時間、トリエチルアルミニウムを1.9mL/時間、ジシクロペンチルジメトキシシランを3.8mL/時間で連続的に供給し、気相の存在しない満液の状態にて重合した。管状重合器の温度は70℃であり、圧力は3.5MPa/Gであった。得られたスラリーは内容量70Lの攪拌機付きベッセル重合器へ送り、更に重合を行った。重合器へは、プロピレンを45kg/時間で連続的に供給し、水素を気相部の水素濃度が15.8mol%になるように供給した。重合温度63℃、圧力3.2MPaGで重合を行った。得られたスラリーは失活後、プロピレンを蒸発させてパウダー状のプロピレン単独重合体(A-3)を得た。得られたプロピレン単独重合体(A-3)は、MFRが30g/10分、Mw/Mnは5.2であった。
(3) Production of propylene homopolymer (A-3) To a tubular polymerization vessel having a capacity of 58 L, propylene was continuously supplied at 43 kg/hour, hydrogen at 163 NL/hour, prepolymerization catalyst (d-3) at 0.55 g/hour, triethylaluminum at 1.9 mL/hour, and dicyclopentyldimethoxysilane at 3.8 mL/hour, and polymerization was performed in a liquid-filled state in which no gas phase was present. The temperature of the tubular polymerization vessel was 70°C, and the pressure was 3.5 MPa/G. The obtained slurry was sent to a vessel polymerization vessel having a capacity of 70 L equipped with a stirrer, and further polymerization was performed. To the polymerization vessel, propylene was continuously supplied at 45 kg/hour, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 15.8 mol%. Polymerization was performed at a polymerization temperature of 63°C and a pressure of 3.2 MPaG. After the obtained slurry was deactivated, propylene was evaporated to obtain a powdery propylene homopolymer (A-3). The resulting propylene homopolymer (A-3) had an MFR of 30 g/10 min and an Mw/Mn of 5.2.
 〔プロピレン単独重合体(A-4)の製造〕
 [製造例4]
 プロピレン単独重合体(A-4)として、MFR:7.2g/10分、極限粘度[η]
:1.8dL/g、融点:165℃、およびMw/Mn:4.8のプロピレン単独重合体(プライムポリマー社製 商品名 プライムポリプロF107BA)を用いた。
[Production of Propylene Homopolymer (A-4)]
[Production Example 4]
Propylene homopolymer (A-4) has an MFR of 7.2 g/10 min and an intrinsic viscosity [η]
A propylene homopolymer having a viscosity of 1.8 dL/g, a melting point of 165° C., and an Mw/Mn ratio of 4.8 (manufactured by Prime Polymer Co., Ltd., trade name: Prime Polypro F107BA) was used.
 〔プロピレン系重合体(B)の製造〕
 [製造例5]
 国際公開第2021/025142号の製造例1に従ってプロピレン系重合体(B)を製造した。なお、この製造例5では、国際公開第2021/025142号の製造例1におけるプロピレン系重合体(A-1)、プロピレン系重合体(a1-1)およびプロピレン系重合体(a2-1)を、それぞれプロピレン系重合体(B)、プロピレン系重合体(b1)およびプロピレン系重合体(b2)と読み替えるものとする。
 国際公開第2021/025142号の製造例1と同様の方法で測定されたプロピレン系重合体(B)等の物性を表1に示す。
[Production of Propylene-Based Polymer (B)]
[Production Example 5]
Propylene-based polymer (B) was produced according to Production Example 1 of WO 2021/025142. In this Production Example 5, the propylene-based polymer (A-1), propylene-based polymer (a1-1), and propylene-based polymer (a2-1) in Production Example 1 of WO 2021/025142 are to be read as propylene-based polymer (B), propylene-based polymer (b1), and propylene-based polymer (b2), respectively.
Table 1 shows the physical properties of the propylene polymer (B) and the like measured in the same manner as in Production Example 1 of WO 2021/025142.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 〔比較例1〕
 (積層フィルムの製造)
 プロピレン系重合体として、製造例1で得られたプロピレン単独重合体(100質量部)を準備した。
 温度を286℃に設定したスクリュー径75mmの押出機の先端に幅600mmのT-ダイを備えたフィルム成形機を用い、プロピレン系重合体を押出機に投入し、フィルム状に押出した後、温度30℃に設定したチルロールで冷却して、厚さ25μmのCPPフィルムを得た。
 得られたCPPフィルムの一部を試験片作製のために切り取り、残部の表面に以下の方法で無機酸化物層を形成した。
 具体的には、成形したフィルムを幅130mmにカットし、フィルム繰出し機および巻取機のついた真空蒸着装置内にセットした。2.3×10-2Paの真空状態にした後、-20℃の冷却金属ドラムに沿わせてフィルムを巻き取った。酸化アルミニウムまたは酸化ケイ素を加熱蒸着させ、フィルムの冷却金属ドラムに接している面に無機酸化物を堆積させた。
 このようにして積層フィルムが得られた。
 また、後述するシワの本数に関する評価用に、A4サイズ(垂直(TD)方向210mm×MD290mm)の積層フィルムを用意した。
Comparative Example 1
(Manufacture of laminated film)
As the propylene-based polymer, the propylene homopolymer (100 parts by mass) obtained in Production Example 1 was prepared.
Using a film molding machine equipped with a 600 mm wide T-die at the tip of an extruder having a screw diameter of 75 mm and set at a temperature of 286° C., a propylene-based polymer was fed into the extruder and extruded into a film, which was then cooled with a chill roll set at a temperature of 30° C. to obtain a CPP film having a thickness of 25 μm.
A part of the obtained CPP film was cut out to prepare a test piece, and an inorganic oxide layer was formed on the surface of the remaining part by the following method.
Specifically, the formed film was cut to a width of 130 mm and set in a vacuum deposition apparatus equipped with a film unwinder and winder. After creating a vacuum of 2.3×10 −2 Pa, the film was wound around a cooled metal drum at −20° C. Aluminum oxide or silicon oxide was heated and evaporated to deposit an inorganic oxide on the surface of the film in contact with the cooled metal drum.
In this way, a laminated film was obtained.
Further, for the evaluation of the number of wrinkles described later, an A4 size (210 mm in the transverse (TD) direction×290 mm in the MD) laminated film was prepared.
 (積層フィルムの測定、評価)
 〔無機酸化物層の厚さ〕
 無機酸化物層の厚さは、以下のように測定した。
 得られた積層フィルムをミクロトームでカットし、断面を露出させた。この断面を走査型電子顕微鏡(SEM)を用いて観察し、無機酸化物層の厚さを測定した。SEM観察は日立ハイテク製Regulus8220を使用し、反射電子検出器を用いて行った。
(Measurement and evaluation of laminated films)
[Thickness of inorganic oxide layer]
The thickness of the inorganic oxide layer was measured as follows.
The obtained laminated film was cut with a microtome to expose a cross section. The cross section was observed with a scanning electron microscope (SEM) to measure the thickness of the inorganic oxide layer. The SEM observation was performed using a Hitachi High-Tech Regulus 8220 with a backscattered electron detector.
 〔引張弾性率〕
 引張弾性率(MPa)は、JIS K7161の方法に従い測定した。なお、測定は成
形の押出方向(MD)に対して、60℃と80℃の条件で行った。引張弾性率が高いほど、剛性が高いといえる。
[Tensile modulus]
The tensile modulus (MPa) was measured according to the method of JIS K7161. The measurement was carried out at 60° C. and 80° C. in the extrusion direction (MD) of molding. It can be said that the higher the tensile modulus, the higher the rigidity.
 〔シワ〕
 積層フィルムが有するCPPフィルム上のTD方向のシワを目視で観察し、シワの本数に関して評価を行った。
 表2、3中の記号の意味は以下のとおりである。
 (シワ)
   ○:2本以下
   △:3~9本
   ×:10本以上
〔Wrinkle〕
The laminated film was visually observed for wrinkles in the TD direction on the CPP film, and the number of wrinkles was evaluated.
The symbols in Tables 2 and 3 have the following meanings:
(Wrinkle)
○: 2 or less △: 3 to 9 ×: 10 or more
 〔比較例2~5、実施例1~7〕
 プロピレン系重合体を表2に記載のとおり変更したこと以外は比較例1と同様にして、積層フィルムを製造し、評価した。結果を表2に示す。
[Comparative Examples 2 to 5, Examples 1 to 7]
A laminated film was produced and evaluated in the same manner as in Comparative Example 1, except that the propylene-based polymer was changed as shown in Table 2. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 〔比較例5-1~5-3〕
 無機酸化物層の形成条件を変更して無機酸化物の種類および無機酸化物層の厚さを変更したこと以外は比較例5と同様にして、積層フィルムを製造し、評価した。
 さらに、積層フィルムの変色も評価した。無機酸化物層を形成していないフィルムを用意し、無機酸化物層を形成した後のフィルムと共に並べて観察し、目視で色味の差の有無を評価した。結果を表3に示す。
Comparative Examples 5-1 to 5-3
A laminate film was produced and evaluated in the same manner as in Comparative Example 5, except that the conditions for forming the inorganic oxide layer were changed to change the type of inorganic oxide and the thickness of the inorganic oxide layer.
Furthermore, the discoloration of the laminated film was also evaluated. A film without an inorganic oxide layer was prepared and placed next to the film with the inorganic oxide layer formed thereon, and the presence or absence of a difference in color was visually evaluated. The results are shown in Table 3.
 〔実施例6-1~6-3〕
 無機酸化物層の形成条件を変更して無機酸化物の種類および無機酸化物層の厚さを変更したこと以外は実施例6と同様にして、積層フィルムを製造し、評価した。さらに、積層フィルムの変色の有無も評価した。結果を表3に示す。
[Examples 6-1 to 6-3]
A laminate film was produced and evaluated in the same manner as in Example 6, except that the conditions for forming the inorganic oxide layer were changed to change the type of inorganic oxide and the thickness of the inorganic oxide layer. In addition, the laminate film was also evaluated for discoloration. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

Claims (5)

  1.  下記要件(i)~要件(iii)を満たすプロピレン系重合体を含む無延伸ポリプロピレンフィルムおよび前記フィルムに接する無機酸化物層を備える積層フィルム:
     (i)230℃、2.16kgf荷重の条件下で測定されるメルトフローレート(MFR)が3~25g/10分の範囲にある;
     (ii)GPCにより測定される重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が6~15の範囲にある;
     (iii)GPCにより測定されるZ平均分子量(Mz)と数平均分子量(Mn)との比(Mz/Mn)が40~150の範囲にある。
    A laminate film comprising a non-stretched polypropylene film containing a propylene-based polymer satisfying the following requirements (i) to (iii) and an inorganic oxide layer in contact with the film:
    (i) the melt flow rate (MFR) measured under conditions of 230°C and a load of 2.16 kgf is in the range of 3 to 25 g/10 min;
    (ii) the ratio (Mw/Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) measured by GPC is in the range of 6 to 15;
    (iii) The ratio (Mz/Mn) of Z-average molecular weight (Mz) to number-average molecular weight (Mn) measured by GPC is in the range of 40 to 150.
  2.  ガスバリア性を有する請求項1に記載の積層フィルム。 The laminated film according to claim 1, which has gas barrier properties.
  3.  80℃での引張弾性率が800MPa以上である請求項1に記載の積層フィルム。 The laminated film according to claim 1, which has a tensile modulus of elasticity of 800 MPa or more at 80°C.
  4.  前記無機酸化物層の膜厚が20~150nmである請求項1に記載の積層フィルム。 The laminated film according to claim 1, wherein the inorganic oxide layer has a thickness of 20 to 150 nm.
  5.  さらに前記無延伸ポリプロピレンフィルムとは反対側に、前記無機酸化物層に接する接着層を介して二軸延伸ポリプロピレンフィルムを備える請求項1に記載の積層フィルム。 The laminated film according to claim 1 further comprises a biaxially oriented polypropylene film on the opposite side to the unoriented polypropylene film, via an adhesive layer that contacts the inorganic oxide layer.
PCT/JP2023/033477 2022-09-27 2023-09-14 Multilayer film WO2024070720A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-153631 2022-09-27
JP2022153631 2022-09-27

Publications (1)

Publication Number Publication Date
WO2024070720A1 true WO2024070720A1 (en) 2024-04-04

Family

ID=90477460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033477 WO2024070720A1 (en) 2022-09-27 2023-09-14 Multilayer film

Country Status (1)

Country Link
WO (1) WO2024070720A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006143975A (en) * 2004-11-25 2006-06-08 Prime Polymer:Kk Polypropylene and application of the polypropylene for electric material
JP2015124272A (en) * 2013-12-26 2015-07-06 株式会社プライムポリマー Polypropylene resin composition
JP2018176605A (en) * 2017-04-18 2018-11-15 株式会社プライムポリマー Laminate for liquid packaging
JP2021191842A (en) * 2020-06-02 2021-12-16 日本ポリプロ株式会社 Polypropylene-based resin composition, laminate and method for producing them
JP2022088132A (en) * 2020-12-02 2022-06-14 王子ホールディングス株式会社 Biaxially-oriented polypropylene film, metal layer-integrated polypropylene film, film capacitor and film roll

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006143975A (en) * 2004-11-25 2006-06-08 Prime Polymer:Kk Polypropylene and application of the polypropylene for electric material
JP2015124272A (en) * 2013-12-26 2015-07-06 株式会社プライムポリマー Polypropylene resin composition
JP2018176605A (en) * 2017-04-18 2018-11-15 株式会社プライムポリマー Laminate for liquid packaging
JP2021191842A (en) * 2020-06-02 2021-12-16 日本ポリプロ株式会社 Polypropylene-based resin composition, laminate and method for producing them
JP2022088132A (en) * 2020-12-02 2022-06-14 王子ホールディングス株式会社 Biaxially-oriented polypropylene film, metal layer-integrated polypropylene film, film capacitor and film roll

Similar Documents

Publication Publication Date Title
EP0877051B1 (en) Ethylene copolymers having narrow composition distribution, their production and use
JP5169262B2 (en) Propylene-based copolymer material, film comprising the same, and method for producing propylene-based copolymer material
KR20070089820A (en) Polypropylene film and layered product thereof
EP1871832B1 (en) Biaxially oriented propylene polymer films
US7722961B2 (en) Resin composition and stretched film obtained by using the same
JP4883863B2 (en) Composition of random copolymers of propene containing α-olefin as comonomer
JP4844091B2 (en) Propylene resin composition and film thereof
JP4002794B2 (en) Resin composition and film formed by molding the same
CN111065678A (en) Polypropylene composition
JP5231808B2 (en) Polyolefin composition and breathable film thereof
JP7308954B2 (en) Propylene-based polymer composition, unstretched film and laminate
WO2024070720A1 (en) Multilayer film
JP7257522B2 (en) Non-foamed sheets and containers
JP4759235B2 (en) Polypropylene-based laminated film
WO2023132306A1 (en) Non-oriented film, sealant film, and multilayered sealant film
WO2024210117A1 (en) Propylene polymer composition, film, and multilayer film
JP3440798B2 (en) Retort food packaging film
WO2023090201A1 (en) Non-stretched film comprising propylene polymer composition
JP2013213170A (en) Polypropylene-based resin composition for packaging film of heat sterilization food, and packaging film
JP5919768B2 (en) Film with excellent blocking resistance
CN118451138A (en) Non-stretch film, sealing film and multilayer sealing film
JPH0417962B2 (en)
JP2006056937A (en) Propylenic resin composition and film comprising the resin composition
JP2023184219A (en) Stretched polyethylene film for lamination
JPH02255742A (en) Thermoplastic resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871953

Country of ref document: EP

Kind code of ref document: A1