Nothing Special   »   [go: up one dir, main page]

WO2023238253A1 - Buffer sheet, method for mounting electronic component, and method for manufacturing electronic component device - Google Patents

Buffer sheet, method for mounting electronic component, and method for manufacturing electronic component device Download PDF

Info

Publication number
WO2023238253A1
WO2023238253A1 PCT/JP2022/023007 JP2022023007W WO2023238253A1 WO 2023238253 A1 WO2023238253 A1 WO 2023238253A1 JP 2022023007 W JP2022023007 W JP 2022023007W WO 2023238253 A1 WO2023238253 A1 WO 2023238253A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic component
buffer sheet
thermosetting layer
layer
meth
Prior art date
Application number
PCT/JP2022/023007
Other languages
French (fr)
Japanese (ja)
Inventor
一尊 本田
昌貴 西田
佑太郎 高松
栄作 石川
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Priority to PCT/JP2022/023007 priority Critical patent/WO2023238253A1/en
Publication of WO2023238253A1 publication Critical patent/WO2023238253A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation

Definitions

  • the present disclosure relates to a buffer sheet, a method for mounting electronic components, and a method for manufacturing an electronic component device.
  • LEDs Light Emitting Diodes
  • LED packages chip LEDs
  • mini LEDs, micro LEDs, etc. a method of directly mounting small LEDs called mini LEDs, micro LEDs, etc. on a substrate by flip-chip bonding.
  • thermocompression bonding As a method for mounting multiple electronic components on a board at once, multiple electronic components are placed on the board via a connecting material such as solder, and a member is heated to a temperature that melts the connecting material.
  • thermocompression bonding There is a method (thermo-compression bonding) in which electronic components are pressed onto a board using a method called thermocompression bonding. With this method, if the shape, height, etc. of the electronic component is not constant, or if the surface of the heated member that contacts the electronic component is tilted, the pressure will be applied evenly to the electronic component (especially the connection part with the board). Otherwise, a connection failure may occur.
  • Patent Document 1 discloses that a sheet in which cured layers of a silicone rubber composition are laminated on both sides of a heat-resistant resin film is used to apply heat. It has been proposed to perform crimping.
  • the present disclosure provides a buffer sheet that enables good mounting of electronic components on a board, a method for mounting electronic components using this buffer sheet, and a method for manufacturing an electronic component device using this buffer sheet.
  • the task is to do so.
  • Means for solving the above problems include the following embodiments.
  • a buffer sheet comprising a thermosetting layer and a non-thermosetting layer, the thickness of the non-thermosetting layer being 10 ⁇ m or less.
  • the buffer sheet according to ⁇ 1> for use in the process of mounting electronic components on a board.
  • the electronic component includes a micro LED.
  • the non-thermosetting layer is disposed on a side facing the electronic component.
  • ⁇ 5> The buffer sheet according to any one of ⁇ 1> to ⁇ 4>, wherein the thermosetting layer has a thickness of 10 ⁇ m to 100 ⁇ m.
  • thermosetting layer contains a (meth)acrylate compound.
  • thermosetting layer contains a polymer component.
  • thermosetting layer contains a polymer component.
  • thermosetting layer contains a polymer component.
  • thermocompression bonding an electronic component and a board using a heating member, and the thermocompression bonding includes any one of ⁇ 1> to ⁇ 8> between the heating member and the electronic component.
  • a method for manufacturing an electronic component device which is carried out in a state in which the buffer sheet described in 1.
  • a buffer sheet that enables good mounting of electronic components on a board, a method for mounting electronic components using this buffer sheet, and a method for manufacturing an electronic component device using this buffer sheet are provided.
  • FIG. 2 is a schematic diagram showing an example of the configuration of a buffer sheet. It is a schematic diagram showing an example of a thermocompression bonding process using a buffer sheet. It is a schematic diagram showing an example of a thermocompression bonding process using a buffer sheet. It is a schematic diagram showing an example of a thermocompression bonding process using a buffer sheet. It is a schematic diagram showing an example of a thermocompression bonding process using a buffer sheet.
  • the present disclosure is not limited to the following embodiments.
  • the constituent elements including elemental steps and the like
  • the term "step” includes not only a step that is independent from other steps, but also a step that cannot be clearly distinguished from other steps, as long as the purpose of the step is achieved.
  • numerical ranges indicated using " ⁇ ” include the numerical values written before and after " ⁇ " as minimum and maximum values, respectively.
  • each component may contain multiple types of corresponding substances. If there are multiple types of substances corresponding to each component in the composition, the content rate or content of each component is the total content rate or content of the multiple types of substances present in the composition, unless otherwise specified. means quantity.
  • the buffer sheet of the present disclosure includes a thermosetting layer and a non-thermosetting layer, and the thickness of the non-thermosetting layer is 10 ⁇ m or less.
  • the term “buffer sheet” refers to a material used to reduce uneven pressure applied to an object when pressing one object onto another object.
  • the term “thermosetting layer” refers to a layer that has the property of being hardened by heating.
  • a “non-thermosetting layer” means a layer that does not have the property of being hardened by heating.
  • the buffer sheet of the present disclosure is used, for example, in the process of mounting electronic components on a board.
  • the buffer sheet having the above configuration it is possible to successfully mount electronic components onto a board.
  • the occurrence of connection failures can be effectively suppressed even when small electronic components are mounted at high density. The reason for this is thought to be as follows.
  • thermosetting layer included in the buffer sheet is deformed to match the shape of the electronic component by pressure applied from a member (hereinafter also referred to as a heating member) that applies heat and pressure to the electronic component placed on the substrate. , is cured by heat applied from a heating member. That is, the thermosetting layer is cured in a deformed state that conforms to the shape of the electronic component, so that the deformed state is maintained.
  • a heating member a member that applies heat and pressure to the electronic component placed on the substrate.
  • the non-thermosetting layer included in the buffer sheet deforms in response to deformation of the thermosetting layer depending on the shape of the electronic component.
  • the thickness of the non-thermosetting layer is 10 ⁇ m or less, it is possible to sufficiently follow the deformation of the thermosetting layer even when the distance between electronic components is narrow (for example, 100 ⁇ m or less).
  • the distance between electronic components is narrow (for example, 100 ⁇ m or less).
  • a sufficient contact area of the buffer sheet with respect to the electronic component can be ensured, and the effect of buffering the pressure applied to the electronic component can be satisfactorily exhibited.
  • the buffer sheet has a non-thermosetting layer having a thickness of 10 ⁇ m or less on the side that comes into contact with electronic components in the thermocompression bonding process.
  • a non-thermosetting layer having a thickness of 10 ⁇ m or less on the side where the buffer sheet contacts electronic components during the thermocompression bonding process, a sufficient contact area of the buffer sheet with the electronic components during thermocompression bonding can be ensured, reducing the pressure applied to the electronic components.
  • the buffering effect is well exhibited.
  • the buffer sheet can be removed from the electronic component after the thermocompression bonding process is completed without the thermosetting layer adhering to the electronic component.
  • thermosetting layer is temporarily softened by the heat applied in the thermocompression bonding process, and then hardened.
  • the melting point of the components contained in the non-thermo-cured layer is higher than the temperature of the heat applied in the thermocompression bonding process.
  • the component contained in the non-thermosetting layer is a thermoplastic resin
  • its melting point is preferably 30°C or more higher than the temperature of the heat applied in the thermocompression bonding process, and more preferably 50°C or more higher. , more preferably 70°C or more.
  • the component contained in the non-thermosetting layer is a metal
  • its melting point is preferably 30°C or more higher than the temperature of the heat applied in the thermocompression bonding process, more preferably 50°C or more higher, and 70°C or more higher. It is even more preferable.
  • the glass transition temperature of the thermoplastic resin is measured using a differential scanning calorimeter (DSC, manufactured by PerkinElmer, Model DSC-7) at a sample amount of 10 mg, a heating rate of 5°C/min, and a measurement atmosphere. : Value measured under air conditions.
  • the thickness (total thickness) of the buffer sheet is not particularly limited, and can be selected depending on the thermocompression bonding method, the condition of the object to be thermocompression bonded, etc. From the viewpoint of ensuring a sufficient pressure buffering effect, the thickness of the buffer sheet is preferably 20 ⁇ m or more, more preferably 40 ⁇ m or more, and even more preferably 60 ⁇ m or more. From the viewpoint of ensuring sufficient thermal conductivity, the thickness of the buffer sheet is preferably 150 ⁇ m or less, more preferably 125 ⁇ m or less, and even more preferably 100 ⁇ m or less.
  • thermosetting layer contains, for example, a curable component.
  • the curable component include (meth)acrylate compounds, epoxy resins, bismaleimide compounds, cyanate compounds, and phenol compounds.
  • the curable component may be a combination of a base agent and a curing agent.
  • the curable component is at least one selected from the group consisting of (meth)acrylate compounds, epoxy resins, bismaleimide compounds, and phenol compounds.
  • (meth)acrylate compounds are preferred, at least one selected from the group consisting of (meth)acrylate compounds, epoxy resins, and bismaleimide compounds is more preferred, and (meth)acrylate compounds are even more preferred from the viewpoint of curing speed.
  • the thermosetting layer may contain only one type of curable component or a combination of two or more types. In the present disclosure, "(meth)acrylate” means acrylate or methacrylate.
  • the (meth)acrylate compound is not particularly limited and can be appropriately selected from commonly used (meth)acrylate compounds.
  • the (meth)acrylate compound may be a monofunctional (meth)acrylate compound or a bifunctional or more (meth)acrylate compound.
  • the (meth)acrylate compounds include erythritol-type poly(meth)acrylate compounds, glycidyl ether-type (meth)acrylate compounds, bisphenol A-type di(meth)acrylate compounds, cyclodecane-type di(meth)acrylate compounds, and methylol-type di(meth)acrylate compounds.
  • (meth)acrylate compounds dioxane type di(meth)acrylate compounds, bisphenol F type (meth)acrylate compounds, dimethylol type (meth)acrylate compounds, isocyanuric acid type di(meth)acrylate compounds, isocyanuric acid type tri(meth)acrylates compounds, trimethylol type tri(meth)acrylate compounds, and the like.
  • trimethylol type tri(meth)acrylate compounds isocyanuric acid type di(meth)acrylate compounds, isocyanuric acid type tri(meth)acrylate compounds, bisphenol F type (meth)acrylate compounds, cyclodecane type di(meth)acrylate compounds, and glycidyl ether type (meth)acrylate compounds.
  • the (meth)acrylate compound is preferably a difunctional or more functional (meth)acrylate compound.
  • (meth)acrylate compounds are difunctional (meth)acrylates.
  • a compound or a trifunctional (meth)acrylate compound is preferable.
  • the number of (meth)acrylate compounds contained in the thermosetting layer may be one or two or more.
  • thermosetting layer When the thermosetting layer contains a (meth)acrylate compound, it may contain a polymerization initiator to promote the polymerization reaction of the (meth)acrylate compound.
  • a polymerization initiator examples include compounds that generate radicals by heat (thermal radical polymerization initiators).
  • thermal radical polymerization initiators examples include azo compounds and organic peroxides. From the viewpoint of handleability and storage stability, organic peroxides are preferred.
  • thermal radical polymerization initiator examples include ketone peroxide, hydroperoxide, diacyl peroxide, dialkyl peroxide, peroxyketal, alkyl perester (alkyl peroxy ester), and peroxy carbonate. Thermal radical polymerization initiators may be used alone or in combination of two or more.
  • ketone peroxide examples include methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, acetylacetone peroxide, cyclohexanone peroxide, and methyl cyclohexanone peroxide.
  • hydroperoxides include 1,1,3,3-tetramethylbutyl hydroperoxide, cumene hydroperoxide, t-butyl hydroperoxide, p-menthane hydroperoxide, and diisopropylbenzene hydroperoxide. Can be mentioned.
  • diacyl peroxide examples include diisobutyryl peroxide, bis-3,5,5-trimethylhexanoyl peroxide, dilauroyl peroxide, dibenzoyl peroxide, m-toluylbenzoyl peroxide, and succinic acid peroxide. can be mentioned.
  • dialkyl peroxide examples include dicumyl peroxide, 2,5-dimethyl-2,5-bis(t-butylperoxy)hexane, 1,3-bis(t-butylperoxyisopropyl)hexane, t-butyl Cumyl peroxide, di-t-butyl peroxide, di-t-hexyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne-3, and di(t-butyl peroxide) Diisopropylbenzene is mentioned.
  • peroxyketals include 1,1-bis(t-hexylperoxy)-3,3,5-trimethylcyclohexane, 1,1-bis(t-hexylperoxy)cyclohexane, and 1,1-bis(t-hexylperoxy)-3,3,5-trimethylcyclohexane.
  • alkyl peresters include 1,1,3,3-tetramethylbutylperoxyneodecanoate, ⁇ -cumylperoxyneodecanoate, and t-butylperoxyneodecanoate.
  • peroxycarbonates include di-n-propylperoxydicarbonate, diisopropylperoxycarbonate, di-4-t-butylcyclohexylperoxycarbonate, di-2-ethylhexylperoxycarbonate, di-sec-butylperoxycarbonate, and di-sec-butylperoxycarbonate.
  • the polymerization initiators include 1,1-bis(t-butylperoxy)cyclohexane, di(t-butylperoxide)diisopropylbenzene, dicumyl peroxide, and 2,5-dimethyl. -2,5-di(t-butylperoxy)hexane, t-butylcumyl peroxide, and di-t-butyl peroxide are preferred.
  • thermosetting layer contains a polymerization initiator
  • the content thereof is preferably 0.1 to 20 parts by mass, and 1 to 10 parts by mass, based on 100 parts by mass of the curable component contained in the thermosetting layer. It is more preferably 2 parts by mass to 5 parts by mass.
  • the thermosetting layer may contain a polymer component from the viewpoint of adjusting film-forming properties and viscosity before the curing reaction, mechanical properties after the curing reaction, etc.
  • thermosetting layer examples include thermoplastic resins such as acrylic resin, styrene resin, butadiene resin, imide resin, and amide resin.
  • the thermosetting layer may contain only one type of polymer component or a combination of two or more types.
  • the polymer component can be produced, for example, by radical polymerizing polymerizable monomers.
  • the polymerizable monomer include (meth)acrylic acid; (meth)acrylic acid esters such as methyl (meth)acrylate, ethyl (meth)acrylate, and benzyl (meth)acrylate; diacetone (meth)acrylamide; (meth)acrylamides such as; styrene or styrene derivatives such as styrene, vinyltoluene, and ⁇ -methylstyrene; ethers of vinyl alcohols such as vinyl-n-butyl ether; maleic acid; monomaleic acids such as monomethyl maleate and monoethyl maleate; Esters; fumaric acid; cinnamic acid; itaconic acid; and crotonic acid.
  • the polymer component may be an acrylic block copolymer obtained by block copolymerization using at least one selected from the above-mentioned (meth)acrylate compounds as a polymerization component as a curable component.
  • (meth)acrylic acid means acrylic acid or methacrylic acid
  • (meth)acrylamide means acrylamide or methacrylamide.
  • the weight average molecular weight of the polymer component is preferably from 5,000 to 1,000,000, more preferably from 20,000 to 500,000, from the viewpoint of film formability and fluidity.
  • the weight average molecular weight of the polymer component in the present disclosure is a value measured by gel permeation chromatography (GPC) and converted using a calibration curve prepared using standard polystyrene. The conditions for GPC are shown below.
  • the content of the polymer component is, for example, preferably 1 part by mass to 500 parts by mass, and 10 parts by mass, based on 100 parts by mass of the curable component. It is more preferably from 100 parts to 300 parts by weight, and even more preferably from 100 parts to 300 parts by weight.
  • the content of the polymer component is 1 part by mass or more per 100 parts by mass of the curable component, film formability tends to improve.
  • the content of the polymer component is 500 parts by mass or less based on 100 parts by mass of the curable component, the curability of the thermosetting layer is sufficiently ensured and a sufficient pressure buffering effect tends to be obtained.
  • the thermoset layer may contain an inorganic filler.
  • inorganic fillers include silica such as fused silica and crystalline silica, calcium carbonate, clay, alumina, silicon nitride, silicon carbide, boron nitride, calcium silicate, potassium titanate, aluminum nitride, beryllia, zirconia, zircon, and phosphatide.
  • examples include inorganic materials such as stellite, steatite, spinel, mullite, titania, and glass.
  • shape of the inorganic filler include particles, beads made of spherical particles, fibers, and the like.
  • the thermosetting layer may contain only one type of inorganic filler or a combination of two or more types.
  • the volume average particle diameter is preferably in the range of 0.01 ⁇ m to 15.0 ⁇ m, more preferably in the range of 0.3 ⁇ m to 5.0 ⁇ m, for example.
  • the volume average particle diameter of the inorganic filler is 0.01 ⁇ m or more, the addition of the inorganic filler can sufficiently provide effects such as adjusting the viscosity of the thermoset layer.
  • the volume average particle size of the inorganic filler is 15.0 ⁇ m or less, the hardenability of the thermoset layer and the elastic modulus after curing can be effectively controlled without impairing the conformability of the thermoset layer to the shape of electronic components. .
  • the "volume average particle diameter" is measured by a laser diffraction scattering method. Specifically, in a volume-based particle size distribution curve obtained using a laser diffraction type particle size distribution measuring device, the particle size (D50) when the accumulation from the small diameter side is 50% is defined as the volume average particle size.
  • the content of the inorganic filler is, for example, preferably 5% to 90% by mass, and 20% to 80% by mass of the total nonvolatile content contained in the thermosetting layer. It is more preferably 60% to 75% by mass, and even more preferably 60% to 75% by mass.
  • the content of the inorganic filler is 5% by mass or more of the total nonvolatile content contained in the thermoset layer, the effect of reducing the coefficient of thermal expansion of the thermoset layer tends to be large, and the moisture resistance reliability is improved. There is a tendency.
  • the content of the inorganic filler is 90% by mass or less of the total nonvolatile content contained in the thermoset layer, the effects of addition of the inorganic filler such as deterioration of moldability of the thermoset layer and powder falling off tend to be suppressed. be.
  • thermosetting layer may contain components other than those mentioned above, if necessary.
  • Other components include polymerization inhibitors, curing accelerators, coupling agents, colorants, surfactants, ion trapping agents, and the like.
  • the material used for forming the thermosetting layer may contain a solvent.
  • the thermosetting layer may contain a solvent (varnish-like), the thermosetting layer with a desired thickness can be formed with high precision.
  • the solvent include methyl ethyl ketone, xylene, toluene, acetone, ethylene glycol monoethyl ether, cyclohexanone, ethyl ethoxypropionate, N,N-dimethylformamide, N,N-dimethylacetamide, and the like.
  • the number of solvents contained in the material used to form the thermosetting layer may be one type or a combination of two or more types.
  • the proportion of the solvent contained in the material used to form the thermosetting layer is not particularly limited, and can be adjusted according to the conditions for producing the thermosetting layer.
  • the thickness of the thermosetting layer is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, and even more preferably 30 ⁇ m or more. From the viewpoint of ensuring sufficient thermal conductivity, the thickness of the thermoset layer is preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, and even more preferably 60 ⁇ m or less.
  • Non-thermosetting layer The material of the non-thermosetting layer is not particularly limited and can be selected in consideration of heat resistance to heat during thermocompression bonding, releasability from electronic components after the thermocompression bonding process, etc. From the viewpoint of conformability to the shape of the electronic component and peelability from the electronic component, the non-thermosetting layer preferably has thermoplasticity (a property of softening when heated and hardening when cooled).
  • the non-thermosetting layer may be a layer containing, for example, a thermoplastic resin, a metal such as copper or aluminum, an inorganic oxide, or the like.
  • thermoplastic resins include polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate, polyvinyl chloride, polycarbonate, polyimide, ABS (acrylonitrile-butadiene-styrene) resin, and AS ( Examples include acrylonitrile-styrene) resin, acrylic resin, polyamide, and polyamideimide.
  • the number of thermoplastic resins contained in the non-thermosetting layer may be one or two or more.
  • the non-thermosetting layer contains a thermoplastic resin
  • polyethylene terephthalate and polyimide are preferable as the thermoplastic resin from the viewpoint of heat resistance and processability (external shape processing, thickness adjustment, etc.).
  • the non-thermosetting layer may be a single layer or a stack of multiple layers.
  • the non-thermosetting layer may be a laminated state of a layer containing a thermoplastic resin and a layer containing a metal.
  • the thickness of the non-thermosetting layer is preferably 9 ⁇ m or less, more preferably 8 ⁇ m or less, and even more preferably 7 ⁇ m or less. From the viewpoint of avoiding defects such as tearing during thermocompression bonding, the thickness of the non-thermosetting layer is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, and even more preferably 3 ⁇ m or more.
  • the buffer sheet may have a cover layer on the opposite side of the thermosetting layer to the side facing the non-thermosetting layer. That is, the buffer sheet may have a non-thermosetting layer, a thermosetting layer, and a cover layer in this order.
  • the cover layer plays the role of, for example, protecting the surface of the thermosetting layer of the buffer sheet, and facilitating the peeling of the buffer sheet from the heating member after the thermocompression bonding process.
  • the material of the cover layer is not particularly limited and can be selected depending on the desired function.
  • it may be a layer containing a resin, a metal such as copper, aluminum, an inorganic oxide, or the like.
  • the resin may be the curable component exemplified as the curable component contained in the thermosetting layer, the thermoplastic resin exemplified as the thermoplastic resin contained in the non-thermosetting layer, or the like.
  • the thickness of the cover layer is not particularly limited and can be selected depending on its function. For example, it may be in the range of 1 ⁇ m to 50 ⁇ m. From the viewpoint of ensuring sufficient strength, the thickness of the cover layer is preferably 10 ⁇ m or more. From the viewpoint of ensuring sufficient thermal conductivity, the thickness of the cover layer is preferably 50 ⁇ m or less.
  • FIG. 1 is a schematic diagram showing an example of the configuration of a buffer sheet.
  • the buffer sheet 1 shown in FIG. 1 has a cover layer 1-a, a thermosetting layer 1-b, and a non-thermosetting layer 1-c in this order.
  • FIGS. 2 to 5 are schematic diagrams showing an example of a thermocompression bonding process using a buffer sheet.
  • the electronic component 2 is placed on the substrate 5 so that the bumps 3 of the electronic component 2 face the pads or wiring 4 on the substrate 5.
  • the bump 3 and the pad or wiring 4 are made of a metal material such as solder that melts with the heat of thermocompression bonding.
  • the heating member 6 is used to press the electronic component 2 toward the substrate 5 side.
  • the buffer sheet 1 is placed between the heating member 6 and the electronic component 2.
  • the buffer sheet 1 shown in FIG. 3 is arranged so that the non-thermosetting layer 1-c is in contact with the electronic component 2.
  • thermosetting layer 1-b of the buffer sheet 1 is deformed to match the shape of the electronic component 2.
  • the non-thermosetting layer 1-c also deforms in accordance with the shape of the thermosetting layer 1-b.
  • the non-thermosetting layer 1-c since the thickness of the non-thermosetting layer 1-c is 10 ⁇ m or less, the non-thermosetting layer 1-c has excellent ability to follow the deformation of the thermosetting layer 1-b. Therefore, a sufficient contact area between the buffer sheet 1 and the electronic component 2 is ensured.
  • the heat applied from the heating member 6 hardens the thermosetting layer 1-b, and the metal material contained in the bumps 3 and pads or wirings 4 melts and joins them together.
  • the release sheet 1 is removed from the electronic component 2, as shown in FIG. Since the buffer sheet 1 has the non-thermosetting layer 1-c on the side in contact with the electronic component 2, the buffer sheet 1 can be removed from the electronic component 2 without the thermosetting layer 1-b adhering to the electronic component 2. Can be removed.
  • the electronic component mounting method of the present disclosure includes a step of thermocompression bonding the electronic component and the board using a heating member, and the thermocompression bonding includes the above-mentioned buffer sheet between the heating member and the electronic component. This is a mounting method for electronic components that is performed with the
  • a method for manufacturing an electronic component device includes a step of thermocompression bonding an electronic component and a board using a heating member, and the thermocompression bonding includes the above-mentioned buffer between the heating member and the electronic component. This is a method of manufacturing an electronic component device, which is performed with sheets arranged.
  • the electronic component mounting method of the present disclosure and the electronic component device manufacturing method of the present disclosure may be collectively referred to as the "method of the present disclosure.”
  • electronic components can be mounted on a board in good condition. It is particularly suitable for mounting a plurality of electronic components on a board. For example, even when small electronic components are mounted at high density, the occurrence of connection failures can be effectively suppressed.
  • the method of the present disclosure may be a method of mounting electronic components on a substrate with high density (ie, the distance between adjacent electronic components is small).
  • the distance between adjacent electronic components (or the minimum value if the distance is not constant) may be 300 ⁇ m or less, 200 ⁇ m or less, 100 ⁇ m or less, or 50 ⁇ m or less. It's okay.
  • the lower limit of the distance between adjacent electronic components (or the minimum value if the distance is not constant) is not particularly limited, but may be 10 ⁇ m or more.
  • conditions for carrying out thermocompression bonding are not particularly limited.
  • the temperature of the heating member may be within the range of 25°C to 400°C.
  • the temperature of the heating member is preferably such that the buffer sheet becomes deformable.
  • the temperature of the heating member is preferably such that the components contained in the buffer sheet do not melt.
  • the time during which the heating member is in contact with the electronic component may be within the range of 1 second to 600 seconds.
  • the type of electronic component used in the method of the present disclosure is not particularly limited. Examples include semiconductor elements such as diodes, transistors, and thyristors, and various parts used in electronic component devices.
  • the type of semiconductor element is not particularly limited, and can be selected from LEDs, elemental semiconductors such as silicon and germanium, and compound semiconductors such as gallium arsenide and indium phosphide.
  • the disclosed method uses micro-LEDs as electronic components.
  • Micro LEDs are LEDs that are smaller than conventional LEDs (for example, the maximum diameter is less than 1000 ⁇ m), and are used in direct backlights of liquid crystal screens, etc.
  • the maximum diameter is less than 1000 ⁇ m
  • micro-LEDs In order to achieve high definition images, there is a tendency for micro-LEDs to be mounted on a substrate at high density (that is, the intervals between micro-LEDs are narrow). According to the method of the present disclosure, high-density packaging of micro-LEDs can be performed satisfactorily.
  • the material of the bumps of the electronic component used in the method of the present disclosure is not particularly limited. Examples include gold, silver, copper, solder, tin, nickel, indium tin oxide (ITO), and indium. Examples of the solder include alloys whose main components are tin-silver, tin-lead, tin-bismuth, tin-copper, and the like.
  • the bumps may be made of one type of material or a combination of two or more types.
  • the bump may have a structure in which multiple types of metals are laminated.
  • the material of the substrate used in the method of the present disclosure is not particularly limited. Examples include glass, glass epoxy, polyester, ceramic, epoxy, bismaleimide triazine, polyimide, and the like.
  • the substrate may have a wiring pattern on its surface.
  • the wiring pattern is formed by etching away unnecessary parts of the metal layer formed on the surface of the substrate, by plating metal on the surface of the substrate, and by printing a conductive substance on the surface of the substrate. Examples include things.
  • the material of the wiring pattern is not particularly limited, and examples include gold, silver, copper, solder, tin, nickel, indium tin oxide (ITO), and indium. Examples of the solder include alloys whose main components are tin-silver, tin-lead, tin-bismuth, tin-copper, and the like.
  • the wiring pattern may be made of only one material or a combination of two or more materials.
  • the wiring pattern may have a structure in which multiple types of metals are laminated.
  • the substrate may have a connection portion called a pad on its surface.
  • Pads can be formed by etching away unnecessary parts of the metal layer formed on the surface of the substrate, pads formed by plating metal on the surface of the substrate, or pads formed by printing a conductive material on the surface of the substrate. etc.
  • the material of the pad is not particularly limited, and examples include gold, silver, copper, solder, tin, nickel, indium tin oxide (ITO), and indium. Examples of the solder include alloys whose main components are tin-silver, tin-lead, tin-bismuth, tin-copper, and the like.
  • the material of the pad may be one type or a combination of two or more types.
  • the pad may have a structure in which multiple types of metals are laminated.
  • the electronic component device obtained by the method of the present disclosure is not particularly limited.
  • it may be an electronic component device having an image display function such as a computer, a television, a game machine, a mobile phone, or a car navigation system. Since the method of the present disclosure allows small electronic components to be mounted on a substrate at high density, it can also be suitably used for manufacturing an image display device equipped with a direct backlight.
  • thermosetting layer composition was coated on a polyimide film (manufactured by DuPont-Toray Co., Ltd., trade name "Kapton 100H", thickness: 25 ⁇ m) as a cover layer, and dried in a dryer at 70°C. It was dried by heating for 10 minutes to form a thermoset layer with a thickness of 50 ⁇ m on the polyimide film.
  • a polyethylene terephthalate film manufactured by Toray Industries, Inc., thickness: 6 ⁇ m
  • a buffer sheet having a cover layer, a thermosetting layer, and a non-thermosetting layer in this order was obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

This buffer sheet comprises a thermally cured layer and a non-thermally cured layer, wherein the thickness of the non-thermally cured layer is 10 μm or less.

Description

緩衝シート、電子部品の実装方法及び電子部品装置の製造方法Buffer sheet, electronic component mounting method, and electronic component device manufacturing method
 本開示は、緩衝シート、電子部品の実装方法及び電子部品装置の製造方法に関する。 The present disclosure relates to a buffer sheet, a method for mounting electronic components, and a method for manufacturing an electronic component device.
 従来、LED(Light Emitting Diode)を用いたディスプレイでは、LEDをワイヤーボンディングによって基板に実装して作製された、約1mm以上のサイズのLEDパッケージ(チップLED)が主に用いられていた。近年では、画素密度及び応答速度の高度化を達成する観点から、ミニLED、マイクロLED等と称される小型のLEDをフリップチップボンディングによって基板に直接実装する方式が採用されつつある。 Conventionally, displays using LEDs (Light Emitting Diodes) have mainly used LED packages (chip LEDs) with a size of about 1 mm or more, which are manufactured by mounting LEDs on a substrate by wire bonding. In recent years, from the viewpoint of achieving higher pixel density and response speed, a method of directly mounting small LEDs called mini LEDs, micro LEDs, etc. on a substrate by flip-chip bonding is being adopted.
 LED等のディスプレイ周辺部品に限らず、FO-WLP(Fan Out Wafer Level Package)、FI-WLP(Fan In Wafer Level Package)等のパッケージ形態、コンデンサ等の単一機能を担うディスクリート半導体などが普及するにつれて、基板に実装される電子部品のサイズは小さくなりつつある。小型化した電子部品の基板への実装を個別に実施すると多大な時間を要するため、生産性向上のために複数個を一括して実装する方法に転換する傾向にある。 In addition to display peripheral components such as LEDs, package forms such as FO-WLP (Fan Out Wafer Level Package) and FI-WLP (Fan In Wafer Level Package), and discrete semiconductors that perform a single function such as capacitors will become widespread. Accordingly, the size of electronic components mounted on boards is becoming smaller. Since it takes a lot of time to individually mount miniaturized electronic components onto a board, there is a trend toward a method of mounting multiple electronic components at once in order to improve productivity.
 複数個の電子部品を基板に一括して実装する方法として、基板上に複数個の電子部品をはんだ等の接続材料を介して配置した状態で、接続材料が溶融する温度に加熱した部材を用いて電子部品を基板に押し付ける方法(熱圧着)がある。この方法では、電子部品の形状、高さ等が一定でなかったり、加熱した部材の電子部品に接する面が傾いていたりすると、電子部品(特に、基板との接続部)に圧力が均等にかからず、接続不良が発生するおそれがある。基板上に配置したLEDチップに均等に圧力をかけるための方策として、例えば、特許文献1には、耐熱性樹脂フィルムの両面にシリコーンゴム組成物の硬化物層が積層されたシートを用いて熱圧着を行うことが提案されている。 As a method for mounting multiple electronic components on a board at once, multiple electronic components are placed on the board via a connecting material such as solder, and a member is heated to a temperature that melts the connecting material. There is a method (thermo-compression bonding) in which electronic components are pressed onto a board using a method called thermocompression bonding. With this method, if the shape, height, etc. of the electronic component is not constant, or if the surface of the heated member that contacts the electronic component is tilted, the pressure will be applied evenly to the electronic component (especially the connection part with the board). Otherwise, a connection failure may occur. As a measure to apply pressure evenly to LED chips arranged on a substrate, for example, Patent Document 1 discloses that a sheet in which cured layers of a silicone rubber composition are laminated on both sides of a heat-resistant resin film is used to apply heat. It has been proposed to perform crimping.
特開2015-170690号公報Japanese Patent Application Publication No. 2015-170690
 電子部品の小型化が進むにつれて、わずかな熱圧着条件の不均等が原因となって接続不良が生じる可能性が高まる傾向にある。これに加え、電子部品の高密度化に伴って基板上に配置される電子部品の間隔が狭まる傾向にある。このため、既存のシートでは狭小化した電子部品の間隔に対応して充分に変形できず、電子部品に対する接触面積が充分に得られないために、良好な圧力緩衝効果が得られない場合が生じている。 As electronic components become smaller, there is an increasing possibility that connection failures will occur due to slight unevenness in thermocompression bonding conditions. In addition, as the density of electronic components increases, the distance between electronic components arranged on a substrate tends to become narrower. For this reason, existing sheets cannot be sufficiently deformed to accommodate the narrower spacing between electronic components, and as a result, a sufficient contact area with electronic components cannot be obtained, resulting in cases where good pressure buffering effects cannot be obtained. ing.
 上記事情に鑑み、本開示は、電子部品の基板への良好な実装を可能にする緩衝シート、この緩衝シートを用いる電子部品の実装方法、及びこの緩衝シートを用いる電子部品装置の製造方法を提供することを課題とする。 In view of the above circumstances, the present disclosure provides a buffer sheet that enables good mounting of electronic components on a board, a method for mounting electronic components using this buffer sheet, and a method for manufacturing an electronic component device using this buffer sheet. The task is to do so.
 上記課題を解決するための手段には、以下の実施態様が含まれる。
<1>熱硬化層と、非熱硬化層と、を備え、前記非熱硬化層の厚みが10μm以下である、緩衝シート。
<2>電子部品を基板に実装する工程に用いるための、<1>に記載の緩衝シート。
<3>前記電子部品はマイクロLEDを含む、<2>に記載の緩衝シート。
<4>前記非熱硬化層は前記電子部品に対向する側に配置される、<2>又は<3>に記載の緩衝シート。
<5>前記熱硬化層の厚みは10μm~100μmである、<1>~<4>のいずれか1項に記載の緩衝シート。
<6>前記熱硬化層は(メタ)アクリレート化合物を含む、<1>~<5>のいずれか1項に記載の緩衝シート。
<7>前記熱硬化層は高分子成分を含む、<1>~<6>のいずれか1項に記載の緩衝シート。
<8>前記非熱硬化層、前記熱硬化層及びカバー層をこの順に備える、<1>~<7>のいずれか1項に記載の緩衝シート。
<9>加熱用部材を用いて電子部品と基板とを熱圧着する工程を有し、前記熱圧着は前記加熱用部材と前記電子部品との間に<1>~<8>のいずれか1項に記載の緩衝シートを配置した状態で行う、電子部品の実装方法。
<10>加熱用部材を用いて電子部品と基板とを熱圧着する工程を有し、前記熱圧着は前記加熱用部材と前記電子部品との間に<1>~<8>のいずれか1項に記載の緩衝シートを配置した状態で行う、電子部品装置の製造方法。
Means for solving the above problems include the following embodiments.
<1> A buffer sheet comprising a thermosetting layer and a non-thermosetting layer, the thickness of the non-thermosetting layer being 10 μm or less.
<2> The buffer sheet according to <1> for use in the process of mounting electronic components on a board.
<3> The buffer sheet according to <2>, wherein the electronic component includes a micro LED.
<4> The buffer sheet according to <2> or <3>, wherein the non-thermosetting layer is disposed on a side facing the electronic component.
<5> The buffer sheet according to any one of <1> to <4>, wherein the thermosetting layer has a thickness of 10 μm to 100 μm.
<6> The buffer sheet according to any one of <1> to <5>, wherein the thermosetting layer contains a (meth)acrylate compound.
<7> The buffer sheet according to any one of <1> to <6>, wherein the thermosetting layer contains a polymer component.
<8> The buffer sheet according to any one of <1> to <7>, comprising the non-thermosetting layer, the thermosetting layer, and the cover layer in this order.
<9> A step of thermocompression bonding an electronic component and a board using a heating member, and the thermocompression bonding includes any one of <1> to <8> between the heating member and the electronic component. A method for mounting electronic components with the buffer sheet described in section 2.
<10> A step of thermocompression bonding an electronic component and a board using a heating member, and the thermocompression bonding includes any one of <1> to <8> between the heating member and the electronic component. A method for manufacturing an electronic component device, which is carried out in a state in which the buffer sheet described in 1.
 本開示によれば、電子部品の基板への良好な実装を可能にする緩衝シート、この緩衝シートを用いる電子部品の実装方法、及びこの緩衝シートを用いる電子部品装置の製造方法が提供される。 According to the present disclosure, a buffer sheet that enables good mounting of electronic components on a board, a method for mounting electronic components using this buffer sheet, and a method for manufacturing an electronic component device using this buffer sheet are provided.
緩衝シートの構成の一例を示す概略図である。FIG. 2 is a schematic diagram showing an example of the configuration of a buffer sheet. 緩衝シートを用いる熱圧着工程の一例を示す概略図である。It is a schematic diagram showing an example of a thermocompression bonding process using a buffer sheet. 緩衝シートを用いる熱圧着工程の一例を示す概略図である。It is a schematic diagram showing an example of a thermocompression bonding process using a buffer sheet. 緩衝シートを用いる熱圧着工程の一例を示す概略図である。It is a schematic diagram showing an example of a thermocompression bonding process using a buffer sheet. 緩衝シートを用いる熱圧着工程の一例を示す概略図である。It is a schematic diagram showing an example of a thermocompression bonding process using a buffer sheet.
 以下、本開示に係る実施形態について詳細に説明する。但し、本開示は以下の実施形態に限定されるものではない。
 以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
Hereinafter, embodiments according to the present disclosure will be described in detail. However, the present disclosure is not limited to the following embodiments.
In the following embodiments, the constituent elements (including elemental steps and the like) are not essential unless otherwise specified. The same applies to numerical values and their ranges, and they do not limit the present invention.
In this disclosure, the term "step" includes not only a step that is independent from other steps, but also a step that cannot be clearly distinguished from other steps, as long as the purpose of the step is achieved. .
In the present disclosure, numerical ranges indicated using "~" include the numerical values written before and after "~" as minimum and maximum values, respectively.
In the numerical ranges described step by step in this disclosure, the upper limit or lower limit described in one numerical range may be replaced with the upper limit or lower limit of another numerical range described step by step. . Furthermore, in the numerical ranges described in this disclosure, the upper limit or lower limit of the numerical range may be replaced with the values shown in the Examples.
In the present disclosure, each component may contain multiple types of corresponding substances. If there are multiple types of substances corresponding to each component in the composition, the content rate or content of each component is the total content rate or content of the multiple types of substances present in the composition, unless otherwise specified. means quantity.
<緩衝シート>
 本開示の緩衝シートは、熱硬化層と、非熱硬化層と、を備え、前記非熱硬化層の厚みが10μm以下である、緩衝シートである。
 本開示において「緩衝シート」とは、ある物体を別の物体に圧着する際に、これらの物体にかかる圧力の不均等を低減するために用いる材料を意味する。
 本開示において「熱硬化層」とは、加熱によって硬化する性質を有する層を意味する。
 本開示において「非熱硬化層」とは、加熱によって硬化する性質を有しない層を意味する。
<Buffer sheet>
The buffer sheet of the present disclosure includes a thermosetting layer and a non-thermosetting layer, and the thickness of the non-thermosetting layer is 10 μm or less.
In the present disclosure, the term "buffer sheet" refers to a material used to reduce uneven pressure applied to an object when pressing one object onto another object.
In the present disclosure, the term "thermosetting layer" refers to a layer that has the property of being hardened by heating.
In the present disclosure, a "non-thermosetting layer" means a layer that does not have the property of being hardened by heating.
 本開示の緩衝シートは、例えば、電子部品を基板に実装する工程に用いられる。上記構成の緩衝シートを用いることで、電子部品の基板への良好な実装が可能になる。特に、小型の電子部品を高密度で実装する場合であっても接続不良の発生を効果的に抑制することができる。その理由は下記のように考えられる。 The buffer sheet of the present disclosure is used, for example, in the process of mounting electronic components on a board. By using the buffer sheet having the above configuration, it is possible to successfully mount electronic components onto a board. In particular, the occurrence of connection failures can be effectively suppressed even when small electronic components are mounted at high density. The reason for this is thought to be as follows.
 緩衝シートに含まれる熱硬化層は、基板上に配置された電子部品に熱及び圧力を付与する部材(以下、加熱用部材ともいう)から与えられる圧力によって電子部品の形状にあわせて変形するとともに、加熱用部材から与えられる熱によって硬化する。すなわち、熱硬化層は電子部品の形状にあわせて変形した状態で硬化することで、変形した状態が保持される。 The thermosetting layer included in the buffer sheet is deformed to match the shape of the electronic component by pressure applied from a member (hereinafter also referred to as a heating member) that applies heat and pressure to the electronic component placed on the substrate. , is cured by heat applied from a heating member. That is, the thermosetting layer is cured in a deformed state that conforms to the shape of the electronic component, so that the deformed state is maintained.
 緩衝シートに含まれる非熱硬化層は、熱硬化層の電子部品の形状に応じた変形に対応して変形する。非熱硬化層の厚みが10μm以下であることで、電子部品の間隔が狭い(例えば、100μm以下である)場合であっても熱硬化層の変形に充分に追従できる。
 その結果、電子部品に対する緩衝シートの接触面積が充分に確保でき、電子部品に加わる圧力の緩衝効果が良好に発揮される。
The non-thermosetting layer included in the buffer sheet deforms in response to deformation of the thermosetting layer depending on the shape of the electronic component. When the thickness of the non-thermosetting layer is 10 μm or less, it is possible to sufficiently follow the deformation of the thermosetting layer even when the distance between electronic components is narrow (for example, 100 μm or less).
As a result, a sufficient contact area of the buffer sheet with respect to the electronic component can be ensured, and the effect of buffering the pressure applied to the electronic component can be satisfactorily exhibited.
 緩衝シートは、熱圧着工程において電子部品と接する側に厚みが10μm以下の非熱硬化層を有することが好ましい。
 緩衝シートが熱圧着工程において電子部品と接する側に厚みが10μm以下の非熱硬化層を有することで、熱圧着時の電子部品に対する緩衝シートの接触面積が充分に確保でき、電子部品に加わる圧力の緩衝効果が良好に発揮される。さらに、熱圧着工程の終了後に熱硬化層が電子部品に付着することなく緩衝シートを電子部品から除去することができる。
It is preferable that the buffer sheet has a non-thermosetting layer having a thickness of 10 μm or less on the side that comes into contact with electronic components in the thermocompression bonding process.
By having a non-thermosetting layer with a thickness of 10 μm or less on the side where the buffer sheet contacts electronic components during the thermocompression bonding process, a sufficient contact area of the buffer sheet with the electronic components during thermocompression bonding can be ensured, reducing the pressure applied to the electronic components. The buffering effect is well exhibited. Furthermore, the buffer sheet can be removed from the electronic component after the thermocompression bonding process is completed without the thermosetting layer adhering to the electronic component.
 緩衝シートと電子部品との接触面積を充分に確保する観点からは、熱硬化層は熱圧着工程において与えられる熱により一時的に軟化し、その後硬化することが好ましい。 From the viewpoint of ensuring a sufficient contact area between the buffer sheet and the electronic component, it is preferable that the thermosetting layer is temporarily softened by the heat applied in the thermocompression bonding process, and then hardened.
 電子部品への非熱硬化層の付着等を回避する観点からは、非熱硬化層に含まれる成分の融点は熱圧着工程において与えられる熱の温度よりも高いことが好ましい。例えば、非熱硬化層に含まれる成分が熱可塑性樹脂である場合は、その融点は、熱圧着工程において与えられる熱の温度よりも30℃以上高いことが好ましく、50℃以上高いことがより好ましく、70℃以上高いことがさらに好ましい。
 非熱硬化層に含まれる成分が金属である場合は、その融点は熱圧着工程において与えられる熱の温度よりも30℃以上高いことが好ましく、50℃以上高いことがより好ましく、70℃以上高いことがさらに好ましい。
 本開示において熱可塑性樹脂のガラス転移温度は、示差走査熱量測定装置(DSC、パーキンエルマー社製、DSC-7型)を用いて、サンプル量:10mg、昇温速度:5℃/min、測定雰囲気:空気の条件で測定される値である。
From the viewpoint of avoiding adhesion of the non-thermo-cured layer to electronic components, it is preferable that the melting point of the components contained in the non-thermo-cured layer is higher than the temperature of the heat applied in the thermocompression bonding process. For example, when the component contained in the non-thermosetting layer is a thermoplastic resin, its melting point is preferably 30°C or more higher than the temperature of the heat applied in the thermocompression bonding process, and more preferably 50°C or more higher. , more preferably 70°C or more.
When the component contained in the non-thermosetting layer is a metal, its melting point is preferably 30°C or more higher than the temperature of the heat applied in the thermocompression bonding process, more preferably 50°C or more higher, and 70°C or more higher. It is even more preferable.
In the present disclosure, the glass transition temperature of the thermoplastic resin is measured using a differential scanning calorimeter (DSC, manufactured by PerkinElmer, Model DSC-7) at a sample amount of 10 mg, a heating rate of 5°C/min, and a measurement atmosphere. : Value measured under air conditions.
 緩衝シートの厚み(総厚み)は特に制限されず、熱圧着の方法、熱圧着させる対象物の状態等に応じて選択できる。
 充分な圧力緩衝効果を確保する観点からは、緩衝シートの厚みは20μm以上であることが好ましく、40μm以上であることがより好ましく、60μm以上であることがさらに好ましい。
 充分な熱伝導性を確保する観点からは、緩衝シートの厚みは150μm以下であることが好ましく、125μm以下であることがより好ましく、100μm以下であることがさらに好ましい。
The thickness (total thickness) of the buffer sheet is not particularly limited, and can be selected depending on the thermocompression bonding method, the condition of the object to be thermocompression bonded, etc.
From the viewpoint of ensuring a sufficient pressure buffering effect, the thickness of the buffer sheet is preferably 20 μm or more, more preferably 40 μm or more, and even more preferably 60 μm or more.
From the viewpoint of ensuring sufficient thermal conductivity, the thickness of the buffer sheet is preferably 150 μm or less, more preferably 125 μm or less, and even more preferably 100 μm or less.
(熱硬化層)
 熱硬化層は、例えば、硬化性成分を含む。硬化性成分としては、例えば、(メタ)アクリレート化合物、エポキシ樹脂、ビスマレイミド化合物、シアネート化合物、及びフェノール化合物が挙げられる。硬化性成分は、主剤と硬化剤との組み合わせであってもよい。
(Thermosetting layer)
The thermosetting layer contains, for example, a curable component. Examples of the curable component include (meth)acrylate compounds, epoxy resins, bismaleimide compounds, cyanate compounds, and phenol compounds. The curable component may be a combination of a base agent and a curing agent.
 熱硬化層の硬化反応前の粘度及び硬化反応後の熱膨張率の観点から、硬化性成分は(メタ)アクリレート化合物、エポキシ樹脂、ビスマレイミド化合物、及びフェノール化合物からなる群より選択される少なくとも1種が好ましく、(メタ)アクリレート化合物、エポキシ樹脂、及びビスマレイミド化合物からなる群より選択される少なくとも1種がより好ましく、硬化速度の観点から、(メタ)アクリレート化合物がさらに好ましい。熱硬化層に含まれる硬化性成分は、1種のみでも2種以上の組み合わせであってもよい。
 本開示において「(メタ)アクリレート」とは、アクリレート又はメタクリレートを意味する。
From the viewpoint of the viscosity before the curing reaction of the thermosetting layer and the coefficient of thermal expansion after the curing reaction, the curable component is at least one selected from the group consisting of (meth)acrylate compounds, epoxy resins, bismaleimide compounds, and phenol compounds. (meth)acrylate compounds are preferred, at least one selected from the group consisting of (meth)acrylate compounds, epoxy resins, and bismaleimide compounds is more preferred, and (meth)acrylate compounds are even more preferred from the viewpoint of curing speed. The thermosetting layer may contain only one type of curable component or a combination of two or more types.
In the present disclosure, "(meth)acrylate" means acrylate or methacrylate.
 熱硬化層が(メタ)アクリレート化合物を含有する場合、(メタ)アクリレート化合物としては特に制限されず、通常用いられる(メタ)アクリレート化合物から適宜選択することができる。(メタ)アクリレート化合物は単官能(メタ)アクリレート化合物であっても、2官能以上の(メタ)アクリレート化合物であってもよい。(メタ)アクリレート化合物として具体的には、エリスリトール型ポリ(メタ)アクリレート化合物、グリシジルエーテル型(メタ)アクリレート化合物、ビスフェノールA型ジ(メタ)アクリレート化合物、シクロデカン型ジ(メタ)アクリレート化合物、メチロール型(メタ)アクリレート化合物、ジオキサン型ジ(メタ)アクリレート化合物、ビスフェノールF型(メタ)アクリレート化合物、ジメチロール型(メタ)アクリレート化合物、イソシアヌル酸型ジ(メタ)アクリレート化合物、イソシアヌル酸型トリ(メタ)アクリレート化合物、トリメチロール型トリ(メタ)アクリレート化合物等が挙げられる。中でも、トリメチロール型トリ(メタ)アクリレート化合物、イソシアヌル酸型ジ(メタ)アクリレート化合物、イソシアヌル酸型トリ(メタ)アクリレート化合物、ビスフェノールF型(メタ)アクリレート化合物、シクロデカン型ジ(メタ)アクリレート化合物、及びグリシジルエーテル型(メタ)アクリレート化合物からなる群より選択される少なくとも1種が好ましい。 When the thermosetting layer contains a (meth)acrylate compound, the (meth)acrylate compound is not particularly limited and can be appropriately selected from commonly used (meth)acrylate compounds. The (meth)acrylate compound may be a monofunctional (meth)acrylate compound or a bifunctional or more (meth)acrylate compound. Specifically, the (meth)acrylate compounds include erythritol-type poly(meth)acrylate compounds, glycidyl ether-type (meth)acrylate compounds, bisphenol A-type di(meth)acrylate compounds, cyclodecane-type di(meth)acrylate compounds, and methylol-type di(meth)acrylate compounds. (meth)acrylate compounds, dioxane type di(meth)acrylate compounds, bisphenol F type (meth)acrylate compounds, dimethylol type (meth)acrylate compounds, isocyanuric acid type di(meth)acrylate compounds, isocyanuric acid type tri(meth)acrylates compounds, trimethylol type tri(meth)acrylate compounds, and the like. Among them, trimethylol type tri(meth)acrylate compounds, isocyanuric acid type di(meth)acrylate compounds, isocyanuric acid type tri(meth)acrylate compounds, bisphenol F type (meth)acrylate compounds, cyclodecane type di(meth)acrylate compounds, and glycidyl ether type (meth)acrylate compounds.
 硬化速度及び硬化反応後の硬化物の強度の観点からは、(メタ)アクリレート化合物は2官能以上の(メタ)アクリレート化合物であることが好ましい。
 (メタ)アクリレート化合物の官能基数が多いために生じる反応阻害(全ての官能基が充分に反応しない現象を意味する)を抑制する観点からは、(メタ)アクリレート化合物は2官能の(メタ)アクリレート化合物又は3官能の(メタ)アクリレート化合物であることが好ましい。
 熱硬化層に含まれる(メタ)アクリレート化合物は、1種のみでも2種以上であってもよい。
From the viewpoint of the curing rate and the strength of the cured product after the curing reaction, the (meth)acrylate compound is preferably a difunctional or more functional (meth)acrylate compound.
From the viewpoint of suppressing reaction inhibition (meaning a phenomenon in which all functional groups do not react sufficiently) caused by the large number of functional groups in (meth)acrylate compounds, (meth)acrylate compounds are difunctional (meth)acrylates. A compound or a trifunctional (meth)acrylate compound is preferable.
The number of (meth)acrylate compounds contained in the thermosetting layer may be one or two or more.
 熱硬化層が(メタ)アクリレート化合物を含む場合、(メタ)アクリレート化合物の重合反応を促進するため、重合開始剤を含有してもよい。重合開始剤としては、熱によりラジカルを発生する化合物(熱ラジカル重合開始剤)が挙げられる。 When the thermosetting layer contains a (meth)acrylate compound, it may contain a polymerization initiator to promote the polymerization reaction of the (meth)acrylate compound. Examples of the polymerization initiator include compounds that generate radicals by heat (thermal radical polymerization initiators).
 熱ラジカル重合開始剤としては、アゾ化合物、有機過酸化物等が挙げられる。取り扱い性及び保存安定性の観点からは、有機過酸化物が好ましい。 Examples of thermal radical polymerization initiators include azo compounds and organic peroxides. From the viewpoint of handleability and storage stability, organic peroxides are preferred.
 熱ラジカル重合開始剤としては、ケトンパーオキサイド、ハイドロパーオキサイド、ジアシルパーオキサイド、ジアルキルパーオキサイド、パーオキシケタール、アルキルパーエステル(アルキルパーオキシエステル)、及びパーオキシカーボネートが挙げられる。
熱ラジカル重合開始剤は1種のみを用いても、2種以上を組み合わせて用いてもよい。
Examples of the thermal radical polymerization initiator include ketone peroxide, hydroperoxide, diacyl peroxide, dialkyl peroxide, peroxyketal, alkyl perester (alkyl peroxy ester), and peroxy carbonate.
Thermal radical polymerization initiators may be used alone or in combination of two or more.
 ケトンパーオキサイドの具体例としては、メチルエチルケトンパーオキサイド、メチルイソブチルケトンパーオキサイド、アセチルアセトンパーオキサイド、シクロヘキサノンパーオキサイド、及びメチルシクロヘキサノンパーオキサイドが挙げられる。 Specific examples of ketone peroxide include methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, acetylacetone peroxide, cyclohexanone peroxide, and methyl cyclohexanone peroxide.
 ハイドロパーオキサイドの具体例としては、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、p-メンタンハイドロパーオキサイド、及びジイソプロピルベンゼンハイドロパーオキサイドが挙げられる。 Specific examples of hydroperoxides include 1,1,3,3-tetramethylbutyl hydroperoxide, cumene hydroperoxide, t-butyl hydroperoxide, p-menthane hydroperoxide, and diisopropylbenzene hydroperoxide. Can be mentioned.
 ジアシルパーオキサイドの具体例としては、ジイソブチリルパーオキサイド、ビス-3,5,5-トリメチルヘキサノイルパーオキサイド、ジラウロイルパーオキサイド、ジベンゾイルパーオキサイド、m-トルイルベンゾイルパーオキサイド、及びコハク酸パーオキサイドが挙げられる。 Specific examples of diacyl peroxide include diisobutyryl peroxide, bis-3,5,5-trimethylhexanoyl peroxide, dilauroyl peroxide, dibenzoyl peroxide, m-toluylbenzoyl peroxide, and succinic acid peroxide. can be mentioned.
 ジアルキルパーオキサイドの具体例としては、ジクミルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルペルオキシ)ヘキサン、1,3-ビス(t-ブチルペルオキシイソプロピル)ヘキサン、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド、ジ-t-ヘキシルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキシン-3、及びジ(t-ブチルパーオキサイド)ジイソプロピルベンゼンが挙げられる。 Specific examples of dialkyl peroxide include dicumyl peroxide, 2,5-dimethyl-2,5-bis(t-butylperoxy)hexane, 1,3-bis(t-butylperoxyisopropyl)hexane, t-butyl Cumyl peroxide, di-t-butyl peroxide, di-t-hexyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne-3, and di(t-butyl peroxide) Diisopropylbenzene is mentioned.
 パーオキシケタールの具体例としては、1,1-ビス(t-ヘキシルペルオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ヘキシルペルオキシ)シクロヘキサン、1,1-ビス(t-ブチルペルオキシ)-2-メチルシクロヘキサン、1,1-ビス(t-ブチルペルオキシ)シクロヘキサン、2,2-ビス(t-ブチルペルオキシ)ブタン、及び4,4-ビス[(t-ブチル)ペルオキシ]ペンタン酸ブチルが挙げられる。 Specific examples of peroxyketals include 1,1-bis(t-hexylperoxy)-3,3,5-trimethylcyclohexane, 1,1-bis(t-hexylperoxy)cyclohexane, and 1,1-bis(t-hexylperoxy)-3,3,5-trimethylcyclohexane. -butylperoxy)-2-methylcyclohexane, 1,1-bis(t-butylperoxy)cyclohexane, 2,2-bis(t-butylperoxy)butane, and 4,4-bis[(t-butyl)peroxy] Butyl pentanoate is mentioned.
 アルキルパーエステル(アルキルパーオキシエステル)の具体例としては、1,1,3,3-テトラメチルブチルペルオキシネオデカノエート、α-クミルペルオキシネオデカノエート、t-ブチルペルオキシネオデカノエート、t-ヘキシルペルオキシネオデカノエート、t-ブチルペルオキシネオヘプタノエート、t-ヘキシルペルオキシピバレート、t-ブチルペルオキシピバレート、1,1,3,3-テトラメチルブチルペルオキシ-2-エチルヘキサノエート、t-アミルペルオキシ-2-エチルヘキサノエート、t-ブチルペルオキシ-2-エチルヘキサノエート、t-ブチルペルオキシイソブチレート、ジ-t-ブチルペルオキシヘキサヒドロテレフタレート、1,1,3,3-テトラメチルブチルペルオキシ-3,5,5-トリメチルヘキサネート、t-アミルペルオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルペルオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルペルオキシアセテート、t-ブチルペルオキシベンゾエート、ジブチルペルオキシトリメチルアジペート、2,5-ジメチル-2,5-ジ-2-エチルヘキサノイルペルオキシヘキサン、t-ヘキシルペルオキシ-2-エチルヘキサノエート、t-ヘキシルペルオキシイソプロピルモノカーボネート、t-ブチルペルオキシラウレート、t-ブチルペルオキシイソプロピルモノカーボネート、t-ブチルペルオキシ-2-エチルヘキシルモノカーボネート、及び2,5-ジメチル-2,5-ジ-ベンゾイルペルオキシヘキサンが挙げられる。 Specific examples of alkyl peresters (alkyl peroxy esters) include 1,1,3,3-tetramethylbutylperoxyneodecanoate, α-cumylperoxyneodecanoate, and t-butylperoxyneodecanoate. , t-hexylperoxyneodecanoate, t-butylperoxyneoheptanoate, t-hexylperoxypivalate, t-butylperoxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexa Noate, t-amylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, t-butylperoxyisobutyrate, di-t-butylperoxyhexahydroterephthalate, 1,1,3 , 3-tetramethylbutylperoxy-3,5,5-trimethylhexanoate, t-amylperoxy-3,5,5-trimethylhexanoate, t-butylperoxy-3,5,5-trimethylhexanoate, t-Butylperoxyacetate, t-butylperoxybenzoate, dibutylperoxytrimethyladipate, 2,5-dimethyl-2,5-di-2-ethylhexanoylperoxyhexane, t-hexylperoxy-2-ethylhexanoate, t -hexylperoxyisopropyl monocarbonate, t-butylperoxylaurate, t-butylperoxyisopropyl monocarbonate, t-butylperoxy-2-ethylhexyl monocarbonate, and 2,5-dimethyl-2,5-di-benzoylperoxyhexane Can be mentioned.
 パーオキシカーボネートの具体例としては、ジ-n-プロピルペルオキシジカーボネート、ジイソプロピルペルオキシカーボネート、ジ-4-t-ブチルシクロヘキシルペルオキシカーボネート、ジ-2-エチルヘキシルペルオキシカーボネート、ジ-sec-ブチルペルオキシカーボネート、ジ-3-メトキシブチルペルオキシジカーボネート、ジ-2-エチルヘキシルペルオキシジカーボネート、ジイソプロピルオキシジカーボネート、t-アミルペルオキシイソプロピルカーボネート、t-ブチルペルオキシイソプロピルカーボネート、t-ブチルペルオキシ-2-エチルヘキシルカーボネート、1,6-ビス(t-ブチルペルオキシカルボキシロキシ)ヘキサンが挙げられる。 Specific examples of peroxycarbonates include di-n-propylperoxydicarbonate, diisopropylperoxycarbonate, di-4-t-butylcyclohexylperoxycarbonate, di-2-ethylhexylperoxycarbonate, di-sec-butylperoxycarbonate, and di-sec-butylperoxycarbonate. -3-methoxybutyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, diisopropyloxydicarbonate, t-amylperoxyisopropyl carbonate, t-butylperoxyisopropyl carbonate, t-butylperoxy-2-ethylhexyl carbonate, 1,6 -bis(t-butylperoxycarboxyloxy)hexane.
 反応速度及び保存安定性の観点から、重合開始剤としては1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、ジ(t-ブチルパーオキサイド)ジイソプロピルベンゼン、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサン、t-ブチルクミルパーオキサイド、及びジ-t-ブチルパーオキサイドが好ましい。 From the viewpoint of reaction rate and storage stability, the polymerization initiators include 1,1-bis(t-butylperoxy)cyclohexane, di(t-butylperoxide)diisopropylbenzene, dicumyl peroxide, and 2,5-dimethyl. -2,5-di(t-butylperoxy)hexane, t-butylcumyl peroxide, and di-t-butyl peroxide are preferred.
 熱硬化層が重合開始剤を含有する場合、その含有量は、熱硬化層に含まれる硬化性成分100質量部に対して0.1~20質量部であることが好ましく、1質量部~10質量部であることがより好ましく、2質量部~5質量部であることがさらに好ましい。 When the thermosetting layer contains a polymerization initiator, the content thereof is preferably 0.1 to 20 parts by mass, and 1 to 10 parts by mass, based on 100 parts by mass of the curable component contained in the thermosetting layer. It is more preferably 2 parts by mass to 5 parts by mass.
 熱硬化層は、硬化反応前のフィルム形成性及び粘度、硬化反応後の機械物性等を調整する観点から、高分子成分を含有してもよい。 The thermosetting layer may contain a polymer component from the viewpoint of adjusting film-forming properties and viscosity before the curing reaction, mechanical properties after the curing reaction, etc.
 熱硬化層に含まれる高分子成分としては、アクリル樹脂、スチレン樹脂、ブタジエン樹脂、イミド樹脂、アミド樹脂等の熱可塑性樹脂が挙げられる。
 熱硬化層に含まれる高分子成分は、1種のみでも2種以上の組み合わせであってもよい。
Examples of the polymer component contained in the thermosetting layer include thermoplastic resins such as acrylic resin, styrene resin, butadiene resin, imide resin, and amide resin.
The thermosetting layer may contain only one type of polymer component or a combination of two or more types.
 高分子成分は、例えば、重合性単量体をラジカル重合させることにより製造することができる。重合性単量体としては、例えば、(メタ)アクリル酸;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ベンジル等の(メタ)アクリル酸エステル;ジアセトン(メタ)アクリルアミド等の(メタ)アクリルアミド;スチレン、ビニルトルエン、α-メチルスチレン等のスチレン又はスチレン誘導体;ビニル-n-ブチルエーテル等のビニルアルコールのエーテル;マレイン酸;マレイン酸モノメチル、マレイン酸モノエチル等のマレイン酸モノエステル;フマル酸;ケイ皮酸;イタコン酸;及びクロトン酸が挙げられる。これらの重合性単量体は、1種を単独で用いても2種以上を組み合わせて用いてもよい。高分子成分は、硬化性成分として上述した(メタ)アクリレート化合物から選択される少なくとも1種を重合成分とするブロック共重合により得られるアクリル系ブロック共重合体であってもよい。
 本開示において、「(メタ)アクリル酸」とは、アクリル酸又はメタクリル酸を意味し、「(メタ)アクリルアミド」とは、アクリルアミド又はメタクリルアミドを意味する。
The polymer component can be produced, for example, by radical polymerizing polymerizable monomers. Examples of the polymerizable monomer include (meth)acrylic acid; (meth)acrylic acid esters such as methyl (meth)acrylate, ethyl (meth)acrylate, and benzyl (meth)acrylate; diacetone (meth)acrylamide; (meth)acrylamides such as; styrene or styrene derivatives such as styrene, vinyltoluene, and α-methylstyrene; ethers of vinyl alcohols such as vinyl-n-butyl ether; maleic acid; monomaleic acids such as monomethyl maleate and monoethyl maleate; Esters; fumaric acid; cinnamic acid; itaconic acid; and crotonic acid. These polymerizable monomers may be used alone or in combination of two or more. The polymer component may be an acrylic block copolymer obtained by block copolymerization using at least one selected from the above-mentioned (meth)acrylate compounds as a polymerization component as a curable component.
In the present disclosure, "(meth)acrylic acid" means acrylic acid or methacrylic acid, and "(meth)acrylamide" means acrylamide or methacrylamide.
 高分子成分の重量平均分子量は、成膜性及び流動性の観点から、5,000~1000,000であることが好ましく、20,000~500,000であることがより好ましい。
 本開示における高分子成分の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により測定され、標準ポリスチレンを用いて作成した検量線により換算された値である。GPCの条件を以下に示す。
 ポンプ:L-6000型((株)日立製作所製、商品名)
 カラム:Gelpack GL-R420+Gelpack GL-R430+Gelpack GL-R440(計3本)(昭和電工マテリアルズ(株)製、商品名)
 溶離液:テトラヒドロフラン(THF)
 測定温度:40℃
 流速:2.05mL/分
 検出器:L-3300型RI((株)日立製作所製、商品名)
The weight average molecular weight of the polymer component is preferably from 5,000 to 1,000,000, more preferably from 20,000 to 500,000, from the viewpoint of film formability and fluidity.
The weight average molecular weight of the polymer component in the present disclosure is a value measured by gel permeation chromatography (GPC) and converted using a calibration curve prepared using standard polystyrene. The conditions for GPC are shown below.
Pump: L-6000 type (manufactured by Hitachi, Ltd., product name)
Column: Gelpack GL-R420 + Gelpack GL-R430 + Gelpack GL-R440 (3 columns in total) (manufactured by Showa Denko Materials Co., Ltd., product name)
Eluent: Tetrahydrofuran (THF)
Measurement temperature: 40℃
Flow rate: 2.05 mL/min Detector: L-3300 RI (manufactured by Hitachi, Ltd., trade name)
 熱硬化層が硬化性成分と高分子成分とを含有する場合、高分子成分の含有量は、例えば、硬化性成分100質量部に対して1質量部~500質量部であることが好ましく、10質量部~400質量部であることがより好ましく、100質量部~300質量部であることがさらに好ましい。
 高分子成分の含有量が硬化性成分100質量部に対して1質量部以上であると、成膜性が向上する傾向にある。高分子成分の含有量が硬化性成分100質量部に対して500質量部以下であると、熱硬化層の硬化性が充分に確保され、充分な圧力緩衝効果が得られる傾向にある。
When the thermosetting layer contains a curable component and a polymer component, the content of the polymer component is, for example, preferably 1 part by mass to 500 parts by mass, and 10 parts by mass, based on 100 parts by mass of the curable component. It is more preferably from 100 parts to 300 parts by weight, and even more preferably from 100 parts to 300 parts by weight.
When the content of the polymer component is 1 part by mass or more per 100 parts by mass of the curable component, film formability tends to improve. When the content of the polymer component is 500 parts by mass or less based on 100 parts by mass of the curable component, the curability of the thermosetting layer is sufficiently ensured and a sufficient pressure buffering effect tends to be obtained.
 熱硬化層は、無機充填材を含有してもよい。無機充填材としては、例えば、溶融シリカ、結晶シリカ等のシリカ、炭酸カルシウム、クレー、アルミナ、窒化珪素、炭化珪素、窒化ホウ素、珪酸カルシウム、チタン酸カリウム、窒化アルミニウム、ベリリア、ジルコニア、ジルコン、フォステライト、ステアタイト、スピネル、ムライト、チタニア、ガラス等の無機材料が挙げられる。
 無機充填材の形状としては、粒子、粒子を球形化したビーズ、繊維等が挙げられる。
 熱硬化層に含まれる無機充填材は、1種のみでも2種以上の組み合わせであってもよい。
The thermoset layer may contain an inorganic filler. Examples of inorganic fillers include silica such as fused silica and crystalline silica, calcium carbonate, clay, alumina, silicon nitride, silicon carbide, boron nitride, calcium silicate, potassium titanate, aluminum nitride, beryllia, zirconia, zircon, and phosphatide. Examples include inorganic materials such as stellite, steatite, spinel, mullite, titania, and glass.
Examples of the shape of the inorganic filler include particles, beads made of spherical particles, fibers, and the like.
The thermosetting layer may contain only one type of inorganic filler or a combination of two or more types.
 無機充填材が粒子である場合、その体積平均粒径は、例えば、0.01μm~15.0μmの範囲が好ましく、0.3μm~5.0μmの範囲がより好ましい。無機充填材の体積平均粒径が0.01μm以上であると、無機充填材の添加による熱硬化層の粘度調整等の効果が充分に得られる。無機充填材の体積平均粒径が15.0μm以下であると、熱硬化層の電子部品の形状追従性を損なうことなく、熱硬化層の硬化性及び硬化後の弾性率を効果的に制御できる。
 本開示において「体積平均粒径」とは、レーザー回折散乱法により測定される。具体的には、レーザー回折式粒度分布測定装置を用いて得られる体積基準の粒度分布曲線において、小径側からの累積が50%となるときの粒子径(D50)を体積平均粒径とする。
When the inorganic filler is a particle, the volume average particle diameter is preferably in the range of 0.01 μm to 15.0 μm, more preferably in the range of 0.3 μm to 5.0 μm, for example. When the volume average particle diameter of the inorganic filler is 0.01 μm or more, the addition of the inorganic filler can sufficiently provide effects such as adjusting the viscosity of the thermoset layer. When the volume average particle size of the inorganic filler is 15.0 μm or less, the hardenability of the thermoset layer and the elastic modulus after curing can be effectively controlled without impairing the conformability of the thermoset layer to the shape of electronic components. .
In the present disclosure, the "volume average particle diameter" is measured by a laser diffraction scattering method. Specifically, in a volume-based particle size distribution curve obtained using a laser diffraction type particle size distribution measuring device, the particle size (D50) when the accumulation from the small diameter side is 50% is defined as the volume average particle size.
 熱硬化層が無機充填材を含有する場合、無機充填材の含有量は、例えば、熱硬化層に含まれる不揮発分全体の5質量%~90質量%であることが好ましく、20質量%~80質量%であることがより好ましく、60質量%~75質量%であることがさらに好ましい。
 無機充填材の含有量が熱硬化層に含まれる不揮発分全体の5質量%以上であると、熱硬化層の熱膨張係数の低減効果が大きくなる傾向にあり、且つ、耐湿信頼性が向上する傾向にある。無機充填材の含有量が熱硬化層に含まれる不揮発分全体の90質量%以下であると、無機充填材の添加による熱硬化層の成形性の低下、粉落ち等の影響が抑えられる傾向にある。
When the thermosetting layer contains an inorganic filler, the content of the inorganic filler is, for example, preferably 5% to 90% by mass, and 20% to 80% by mass of the total nonvolatile content contained in the thermosetting layer. It is more preferably 60% to 75% by mass, and even more preferably 60% to 75% by mass.
When the content of the inorganic filler is 5% by mass or more of the total nonvolatile content contained in the thermoset layer, the effect of reducing the coefficient of thermal expansion of the thermoset layer tends to be large, and the moisture resistance reliability is improved. There is a tendency. When the content of the inorganic filler is 90% by mass or less of the total nonvolatile content contained in the thermoset layer, the effects of addition of the inorganic filler such as deterioration of moldability of the thermoset layer and powder falling off tend to be suppressed. be.
 熱硬化層は、必要に応じて上述した成分以外の成分を含有してもよい。その他の成分としては、重合禁止剤、硬化促進剤、カップリング剤、着色剤、界面活性剤、イオントラップ剤等を挙げることができる。 The thermosetting layer may contain components other than those mentioned above, if necessary. Other components include polymerization inhibitors, curing accelerators, coupling agents, colorants, surfactants, ion trapping agents, and the like.
 熱硬化層の形成を良好にする観点からは、熱硬化層の形成に用いる材料は溶剤を含んでもよい。例えば、熱硬化層の形成に用いる材料が溶剤を含む状態(ワニス状)であると、所望の厚みの熱硬化層を精度よく形成することができる。
 溶剤としては、メチルエチルケトン、キシレン、トルエン、アセトン、エチレングリコールモノエチルエーテル、シクロヘキサノン、エチルエトキシプロピオネート、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等を挙げることができる。
 熱硬化層の形成に用いる材料に含まれる溶剤は、1種のみでも2種以上の組み合わせであってもよい。
 熱硬化層の形成に用いる材料に含まれる溶剤の割合は特に制限されず、熱硬化層の作製条件に合わせて調節できる。
From the viewpoint of improving the formation of the thermosetting layer, the material used for forming the thermosetting layer may contain a solvent. For example, if the material used to form the thermosetting layer contains a solvent (varnish-like), the thermosetting layer with a desired thickness can be formed with high precision.
Examples of the solvent include methyl ethyl ketone, xylene, toluene, acetone, ethylene glycol monoethyl ether, cyclohexanone, ethyl ethoxypropionate, N,N-dimethylformamide, N,N-dimethylacetamide, and the like.
The number of solvents contained in the material used to form the thermosetting layer may be one type or a combination of two or more types.
The proportion of the solvent contained in the material used to form the thermosetting layer is not particularly limited, and can be adjusted according to the conditions for producing the thermosetting layer.
 充分な圧力緩衝効果を確保する観点からは、熱硬化層の厚みは10μm以上であることが好ましく、20μm以上であることがより好ましく、30μm以上であることがさらに好ましい。
 充分な熱伝導性を確保する観点からは、熱硬化層の厚みは100μm以下であることが好ましく、80μm以下であることがより好ましく、60μm以下であることがさらに好ましい。
From the viewpoint of ensuring a sufficient pressure buffering effect, the thickness of the thermosetting layer is preferably 10 μm or more, more preferably 20 μm or more, and even more preferably 30 μm or more.
From the viewpoint of ensuring sufficient thermal conductivity, the thickness of the thermoset layer is preferably 100 μm or less, more preferably 80 μm or less, and even more preferably 60 μm or less.
(非熱硬化層)
 非熱硬化層の材質は特に制限されず、熱圧着時の熱に対する耐熱性、熱圧着工程後の電子部品からの剥離性等を考慮して選択できる。
 電子部品の形状に対する追従性及び電子部品からの剥離性の観点からは、非熱硬化層は熱可塑性(加熱すると軟化し、冷却すると固くなる性質)を有することが好ましい。
(Non-thermosetting layer)
The material of the non-thermosetting layer is not particularly limited and can be selected in consideration of heat resistance to heat during thermocompression bonding, releasability from electronic components after the thermocompression bonding process, etc.
From the viewpoint of conformability to the shape of the electronic component and peelability from the electronic component, the non-thermosetting layer preferably has thermoplasticity (a property of softening when heated and hardening when cooled).
 非熱硬化層は、例えば、熱可塑性樹脂、銅、アルミニウム等の金属、無機酸化物等を含む層であってもよい。
 熱可塑性樹脂として具体的には、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート等のポリエステル、ポリ塩化ビニル、ポリカーボネート、ポリイミド、ABS(アクリロニトリル-ブタジエン-スチレン)樹脂、AS(アクリロニトリル-スチレン)樹脂、アクリル樹脂、ポリアミド、ポリアミドイミドなどが挙げられる。
 非熱硬化層に含まれる熱可塑性樹脂は、1種のみでも2種以上であってもよい。
The non-thermosetting layer may be a layer containing, for example, a thermoplastic resin, a metal such as copper or aluminum, an inorganic oxide, or the like.
Specifically, thermoplastic resins include polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate, polyvinyl chloride, polycarbonate, polyimide, ABS (acrylonitrile-butadiene-styrene) resin, and AS ( Examples include acrylonitrile-styrene) resin, acrylic resin, polyamide, and polyamideimide.
The number of thermoplastic resins contained in the non-thermosetting layer may be one or two or more.
 非熱硬化層が熱可塑性樹脂を含む場合、耐熱性及び加工性(外形加工、厚み調整等)の観点から、熱可塑性樹脂としてはポリエチレンテレフタレート及びポリイミドが好ましい。 When the non-thermosetting layer contains a thermoplastic resin, polyethylene terephthalate and polyimide are preferable as the thermoplastic resin from the viewpoint of heat resistance and processability (external shape processing, thickness adjustment, etc.).
 非熱硬化層は、単層であっても複数の層が積層した状態であってもよい。例えば、非熱硬化層は熱可塑性樹脂を含む層と、金属を含む層とが積層した状態であってもよい。 The non-thermosetting layer may be a single layer or a stack of multiple layers. For example, the non-thermosetting layer may be a laminated state of a layer containing a thermoplastic resin and a layer containing a metal.
 電子部品の形状に対する追従性の観点から、非熱硬化層の厚みは9μm以下であることが好ましく、8μm以下であることがより好ましく、7μm以下であることがさらに好ましい。
 熱圧着時の破れ等の不具合を回避する観点からは、非熱硬化層の厚みは1μm以上であることが好ましく、2μm以上であることがより好ましく、3μm以上であることがさらに好ましい。
From the viewpoint of conformability to the shape of the electronic component, the thickness of the non-thermosetting layer is preferably 9 μm or less, more preferably 8 μm or less, and even more preferably 7 μm or less.
From the viewpoint of avoiding defects such as tearing during thermocompression bonding, the thickness of the non-thermosetting layer is preferably 1 μm or more, more preferably 2 μm or more, and even more preferably 3 μm or more.
(カバー層)
 必要に応じ、緩衝シートは熱硬化層の非熱硬化層に対向する側と逆の側にカバー層を有していてもよい。すなわち、緩衝シートは非熱硬化層、熱硬化層及びカバー層をこの順に有してもよい。
 カバー層は、例えば、緩衝シートの熱硬化層の表面を保護する役割、熱圧着工程後の緩衝シートの加熱用部材からの剥離を容易にする役割等を果たす。
(cover layer)
If necessary, the buffer sheet may have a cover layer on the opposite side of the thermosetting layer to the side facing the non-thermosetting layer. That is, the buffer sheet may have a non-thermosetting layer, a thermosetting layer, and a cover layer in this order.
The cover layer plays the role of, for example, protecting the surface of the thermosetting layer of the buffer sheet, and facilitating the peeling of the buffer sheet from the heating member after the thermocompression bonding process.
 カバー層の材質は特に制限されず、所望の機能に応じて選択できる。例えば、樹脂、銅、アルミニウム等の金属、無機酸化物等を含む層であってもよい。樹脂は熱硬化層に含まれる硬化性成分として例示した硬化性成分、非熱硬化層に含まれる熱可塑性樹脂として例示した熱可塑性樹脂等であってもよい。 The material of the cover layer is not particularly limited and can be selected depending on the desired function. For example, it may be a layer containing a resin, a metal such as copper, aluminum, an inorganic oxide, or the like. The resin may be the curable component exemplified as the curable component contained in the thermosetting layer, the thermoplastic resin exemplified as the thermoplastic resin contained in the non-thermosetting layer, or the like.
 カバー層の厚みは特に制限されず、その機能に応じて選択できる。例えば、1μm~50μmの範囲であってもよい。充分な強度を確保する観点からは、カバー層の厚みは10μm以上であることが好ましい。充分な熱伝導性を確保する観点からは、カバー層の厚みは50μm以下であることが好ましい。 The thickness of the cover layer is not particularly limited and can be selected depending on its function. For example, it may be in the range of 1 μm to 50 μm. From the viewpoint of ensuring sufficient strength, the thickness of the cover layer is preferably 10 μm or more. From the viewpoint of ensuring sufficient thermal conductivity, the thickness of the cover layer is preferably 50 μm or less.
 本開示の緩衝シート及び緩衝シートを用いる熱圧着工程の具体例を、図面を参照して説明する。ただし本開示はこの具体例に限定されるものではない。 A specific example of the buffer sheet of the present disclosure and a thermocompression bonding process using the buffer sheet will be described with reference to the drawings. However, the present disclosure is not limited to this specific example.
 図1は緩衝シートの構成の一例を示す概略図である。図1に示す緩衝シート1は、カバー層1-a、熱硬化層1-b及び非熱硬化層1-cをこの順に有している。 FIG. 1 is a schematic diagram showing an example of the configuration of a buffer sheet. The buffer sheet 1 shown in FIG. 1 has a cover layer 1-a, a thermosetting layer 1-b, and a non-thermosetting layer 1-c in this order.
 図2~図5は緩衝シートを用いる熱圧着工程の一例を示す概略図である。
 図2に示すように、電子部品2のバンプ3が基板5の上のパッド又は配線4に対向するように、電子部品2を基板5の上に配置する。バンプ3とパッド又は配線4とは、はんだ等の熱圧着の熱で溶融する金属材料からなる。
2 to 5 are schematic diagrams showing an example of a thermocompression bonding process using a buffer sheet.
As shown in FIG. 2, the electronic component 2 is placed on the substrate 5 so that the bumps 3 of the electronic component 2 face the pads or wiring 4 on the substrate 5. The bump 3 and the pad or wiring 4 are made of a metal material such as solder that melts with the heat of thermocompression bonding.
 次いで、図3に示すように、加熱用部材6を用いて、電子部品2を基板5側に向けて押し付ける。このとき、加熱用部材6と電子部品2との間には緩衝シート1が配置されている。図3に示す緩衝シート1は、電子部品2に非熱硬化層1-cが接するように配置されている。 Next, as shown in FIG. 3, the heating member 6 is used to press the electronic component 2 toward the substrate 5 side. At this time, the buffer sheet 1 is placed between the heating member 6 and the electronic component 2. The buffer sheet 1 shown in FIG. 3 is arranged so that the non-thermosetting layer 1-c is in contact with the electronic component 2.
 図4に示すように、加熱用部材6を用いて電子部品2を基板5側に向けて押し付けると、緩衝シート1の熱硬化層1-bが電子部品2の形状にあわせて変形する。このとき、非熱硬化層1-cも熱硬化層1-bの形状にあわせて変形する。
 本開示の緩衝シートは非熱硬化層1-cの厚みが10μm以下であるために、非熱硬化層1-cは熱硬化層1-bの変形に対する追従性に優れている。このため、緩衝シート1と電子部品2との接触面積が充分に確保される。
 加熱用部材6から与えられる熱によって熱硬化層1-bは硬化し、バンプ3とパッド又は配線4とに含まれる金属材料が溶融して両者を接合する。
As shown in FIG. 4, when the electronic component 2 is pressed toward the substrate 5 using the heating member 6, the thermosetting layer 1-b of the buffer sheet 1 is deformed to match the shape of the electronic component 2. At this time, the non-thermosetting layer 1-c also deforms in accordance with the shape of the thermosetting layer 1-b.
In the buffer sheet of the present disclosure, since the thickness of the non-thermosetting layer 1-c is 10 μm or less, the non-thermosetting layer 1-c has excellent ability to follow the deformation of the thermosetting layer 1-b. Therefore, a sufficient contact area between the buffer sheet 1 and the electronic component 2 is ensured.
The heat applied from the heating member 6 hardens the thermosetting layer 1-b, and the metal material contained in the bumps 3 and pads or wirings 4 melts and joins them together.
 熱圧着工程の終了後、図5に示すように、離型シート1を電子部品2から除去する。緩衝シート1は、電子部品2と接する側に非熱硬化層1-cを有しているために、熱硬化層1-bが電子部品2に付着することなく緩衝シート1を電子部品2から除去することができる。 After the thermocompression bonding process is completed, the release sheet 1 is removed from the electronic component 2, as shown in FIG. Since the buffer sheet 1 has the non-thermosetting layer 1-c on the side in contact with the electronic component 2, the buffer sheet 1 can be removed from the electronic component 2 without the thermosetting layer 1-b adhering to the electronic component 2. Can be removed.
<電子部品の実装方法及び電子部品装置の製造方法>
 本開示の電子部品の実装方法は、加熱用部材を用いて電子部品と基板とを熱圧着する工程を有し、前記熱圧着は前記加熱用部材と前記電子部品との間に上述した緩衝シートを配置した状態で行う、電子部品の実装方法である。
<Method for mounting electronic components and method for manufacturing electronic component devices>
The electronic component mounting method of the present disclosure includes a step of thermocompression bonding the electronic component and the board using a heating member, and the thermocompression bonding includes the above-mentioned buffer sheet between the heating member and the electronic component. This is a mounting method for electronic components that is performed with the
 本開示の電子部品装置の製造方法は、加熱用部材を用いて電子部品と基板とを熱圧着する工程を有し、前記熱圧着は前記加熱用部材と前記電子部品との間に上述した緩衝シートを配置した状態で行う、電子部品装置の製造方法である。 A method for manufacturing an electronic component device according to the present disclosure includes a step of thermocompression bonding an electronic component and a board using a heating member, and the thermocompression bonding includes the above-mentioned buffer between the heating member and the electronic component. This is a method of manufacturing an electronic component device, which is performed with sheets arranged.
 以下、本開示の電子部品の実装方法と本開示の電子部品装置の製造方法とをあわせて「本開示の方法」と称する場合がある。
 本開示の方法によれば、電子部品を良好な状態で基板に実装することができる。特に、複数の電子部品を基板に実装する場合に好適である。例えば、小型の電子部品を高密度で実装する場合であっても接続不良の発生を効果的に抑制することができる。
Hereinafter, the electronic component mounting method of the present disclosure and the electronic component device manufacturing method of the present disclosure may be collectively referred to as the "method of the present disclosure."
According to the method of the present disclosure, electronic components can be mounted on a board in good condition. It is particularly suitable for mounting a plurality of electronic components on a board. For example, even when small electronic components are mounted at high density, the occurrence of connection failures can be effectively suppressed.
 本開示の方法は、電子部品を高密度で基板上に実装する(すなわち、隣接する電子部品間の距離が小さい)方法であってもよい。
 例えば、隣接する電子部品間の距離(距離が一定でない場合は、その最小値)が300μm以下であってもよく、200μm以下であってもよく、100μm以下であってもよく、50μm以下であってもよい。隣接する電子部品間の距離の下限値(距離が一定でない場合は、その最小値)は特に制限されないが、10μm以上であってもよい。
The method of the present disclosure may be a method of mounting electronic components on a substrate with high density (ie, the distance between adjacent electronic components is small).
For example, the distance between adjacent electronic components (or the minimum value if the distance is not constant) may be 300 μm or less, 200 μm or less, 100 μm or less, or 50 μm or less. It's okay. The lower limit of the distance between adjacent electronic components (or the minimum value if the distance is not constant) is not particularly limited, but may be 10 μm or more.
 本開示の方法において、熱圧着を実施する際の条件は、特に制限されない。例えば、加熱用部材の温度は25℃~400℃の範囲内であってもよい。
 良好な圧力緩衝効果を得る観点からは、加熱用部材の温度は緩衝シートが変形可能な状態になる温度であることが好ましい。
 緩衝シートの電子部品への付着を回避する観点からは、加熱用部材の温度は緩衝シートに含まれる成分が溶融しない温度であることが好ましい。
 加熱用部材が電子部品に接触している時間(熱圧着時間)は1秒~600秒の範囲内であってもよい。
In the method of the present disclosure, conditions for carrying out thermocompression bonding are not particularly limited. For example, the temperature of the heating member may be within the range of 25°C to 400°C.
From the viewpoint of obtaining a good pressure buffering effect, the temperature of the heating member is preferably such that the buffer sheet becomes deformable.
From the viewpoint of avoiding adhesion of the buffer sheet to electronic components, the temperature of the heating member is preferably such that the components contained in the buffer sheet do not melt.
The time during which the heating member is in contact with the electronic component (thermocompression bonding time) may be within the range of 1 second to 600 seconds.
 本開示の方法に用いる電子部品の種類は、特に制限されない。例えば、ダイオード、トランジスタ、サイリスタ等の半導体素子、及び電子部品装置に用いられる各種部品が挙げられる。
 半導体素子の種類は特に制限されず、LED、シリコン、ゲルマニウム等の元素半導体、ガリウムヒ素、インジウムリン等の化合物半導体などから選択できる。
The type of electronic component used in the method of the present disclosure is not particularly limited. Examples include semiconductor elements such as diodes, transistors, and thyristors, and various parts used in electronic component devices.
The type of semiconductor element is not particularly limited, and can be selected from LEDs, elemental semiconductors such as silicon and germanium, and compound semiconductors such as gallium arsenide and indium phosphide.
 ある実施態様では、本開示の方法は電子部品としてマイクロLEDを用いる。マイクロLEDは従来のLEDよりも小型(例えば、最大径が1000μm未満である)のLEDであり、液晶画面の直下型バックライト等に利用されている。画像の高精細化を実現するために、マイクロLEDは基板上に高密度で実装される(すなわち、マイクロLEDの間隔が狭い)傾向にある。本開示の方法によれば、マイクロLEDの高密度実装を良好に行うことができる。 In some embodiments, the disclosed method uses micro-LEDs as electronic components. Micro LEDs are LEDs that are smaller than conventional LEDs (for example, the maximum diameter is less than 1000 μm), and are used in direct backlights of liquid crystal screens, etc. In order to achieve high definition images, there is a tendency for micro-LEDs to be mounted on a substrate at high density (that is, the intervals between micro-LEDs are narrow). According to the method of the present disclosure, high-density packaging of micro-LEDs can be performed satisfactorily.
 本開示の方法に用いる電子部品のバンプの材質は、特に制限されない。例えば、金、銀、銅、はんだ、スズ、ニッケル、酸化インジウムスズ(ITO)、インジウム等が挙げられる。はんだとしては、スズ-銀、スズ-鉛、スズ-ビスマス、スズ-銅等を主成分とする合金が挙げられる。バンプの材質は1種のみでも2種以上の組み合わせであってもよい。バンプは、複数種の金属が積層した状態の構造を有してもよい。 The material of the bumps of the electronic component used in the method of the present disclosure is not particularly limited. Examples include gold, silver, copper, solder, tin, nickel, indium tin oxide (ITO), and indium. Examples of the solder include alloys whose main components are tin-silver, tin-lead, tin-bismuth, tin-copper, and the like. The bumps may be made of one type of material or a combination of two or more types. The bump may have a structure in which multiple types of metals are laminated.
 本開示の方法に用いる基板の材質は、特に制限されない。例えば、ガラス、ガラスエポキシ、ポリエステル、セラミック、エポキシ、ビスマレイミドトリアジン、ポリイミド等が挙げられる。 The material of the substrate used in the method of the present disclosure is not particularly limited. Examples include glass, glass epoxy, polyester, ceramic, epoxy, bismaleimide triazine, polyimide, and the like.
 基板は表面に配線パターンを有するものであってもよい。配線パターンとしては、基板表面に形成された金属層の不要な個所をエッチング除去して形成したもの、基板表面に金属めっきを施して形成したもの、基板表面に導電性物質を印刷して形成したもの等が挙げられる。
 配線パターンの材質は特に制限されず、金、銀、銅、はんだ、スズ、ニッケル、酸化インジウムスズ(ITO)、インジウム等が挙げられる。はんだとしては、スズ-銀、スズ-鉛、スズ-ビスマス、スズ-銅等を主成分とする合金が挙げられる。配線パターンの材質は1種のみでも2種以上の組み合わせであってもよい。配線パターンは、複数種の金属が積層した状態の構造を有してもよい。
The substrate may have a wiring pattern on its surface. The wiring pattern is formed by etching away unnecessary parts of the metal layer formed on the surface of the substrate, by plating metal on the surface of the substrate, and by printing a conductive substance on the surface of the substrate. Examples include things.
The material of the wiring pattern is not particularly limited, and examples include gold, silver, copper, solder, tin, nickel, indium tin oxide (ITO), and indium. Examples of the solder include alloys whose main components are tin-silver, tin-lead, tin-bismuth, tin-copper, and the like. The wiring pattern may be made of only one material or a combination of two or more materials. The wiring pattern may have a structure in which multiple types of metals are laminated.
 基板は表面にパッドと称される接続部を有するものであってもよい。パッドとしては、基板表面に形成された金属層の不要な個所をエッチング除去して形成したもの、基板表面に金属めっきを施して形成したもの、基板表面に導電性物質を印刷して形成したもの等が挙げられる。
 パッドの材質は特に制限されず、金、銀、銅、はんだ、スズ、ニッケル、酸化インジウムスズ(ITO)、インジウム等が挙げられる。はんだとしては、スズ-銀、スズ-鉛、スズ-ビスマス、スズ-銅等を主成分とする合金が挙げられる。パッドの材質は1種のみでも2種以上の組み合わせであってもよい。パッドは、複数種の金属が積層した状態の構造を有してもよい。
The substrate may have a connection portion called a pad on its surface. Pads can be formed by etching away unnecessary parts of the metal layer formed on the surface of the substrate, pads formed by plating metal on the surface of the substrate, or pads formed by printing a conductive material on the surface of the substrate. etc.
The material of the pad is not particularly limited, and examples include gold, silver, copper, solder, tin, nickel, indium tin oxide (ITO), and indium. Examples of the solder include alloys whose main components are tin-silver, tin-lead, tin-bismuth, tin-copper, and the like. The material of the pad may be one type or a combination of two or more types. The pad may have a structure in which multiple types of metals are laminated.
 本開示の方法で得られる電子部品装置は特に制限されない。例えば、コンピュータ、テレビ、ゲーム機、携帯電話、カーナビゲーション等の画像表示機能を有する電子部品装置であってもよい。
 本開示の方法は小型の電子部品を高密度で基板に実装することができるため、直下型バックライトを備える画像表示装置の製造にも好適に用いることができる。
The electronic component device obtained by the method of the present disclosure is not particularly limited. For example, it may be an electronic component device having an image display function such as a computer, a television, a game machine, a mobile phone, or a car navigation system.
Since the method of the present disclosure allows small electronic components to be mounted on a substrate at high density, it can also be suitably used for manufacturing an image display device equipped with a direct backlight.
 以下、本開示を実施例に基づいて具体的に説明するが、本開示はこれらの実施例に限定されるものではない。 Hereinafter, the present disclosure will be specifically described based on Examples, but the present disclosure is not limited to these Examples.
(熱硬化層用組成物の調製)
 撹拌機を備えたフラスコに、高分子成分としてアクリル系ブロック共重合体(クラレ(株)製、商品名「LA4285」)を4g、硬化性成分としてトリス(2-アクリロイルオキシエチル)イソシアヌレート(昭和電工マテリアルズ(株)製、商品名「FA731A」)を2g入れ、更に重合開始剤としてジクミルパーオキサイド(日油(株)製、商品名「パークミルD」)0.08g、無機充填材としてシリカ粒子(アドマテック(株)製、商品名「SE2050」、体積平均粒径:0.5μm)を16.7g、溶剤としてメチルエチルケトン12.8gを加えた。これらを撹拌して混合し、ワニス状の熱硬化層用組成物を得た。
(Preparation of composition for thermosetting layer)
In a flask equipped with a stirrer, 4 g of an acrylic block copolymer (manufactured by Kuraray Co., Ltd., trade name "LA4285") was added as a polymer component, and tris (2-acryloyloxyethyl) isocyanurate (Showa) was added as a curable component. 2 g of Denko Materials Co., Ltd., trade name "FA731A") was added, and 0.08 g of dicumyl peroxide (manufactured by NOF Corporation, trade name "Perc Mill D") was added as a polymerization initiator, and as an inorganic filler. 16.7 g of silica particles (manufactured by Admatec Co., Ltd., trade name "SE2050", volume average particle diameter: 0.5 μm) and 12.8 g of methyl ethyl ketone as a solvent were added. These were stirred and mixed to obtain a varnish-like composition for a thermosetting layer.
(緩衝シートの作製)
 得られた熱硬化層用組成物を、カバー層としてのポリイミドフィルム(東レ・デュポン(株)製、商品名「カプトン100H」、厚み:25μm)の上に塗工し、70℃の乾燥機で10分間の加熱により乾燥して、ポリイミドフィルム上に厚みが50μmの熱硬化層を形成した。
 熱硬化層の上に、非熱硬化層としてのポリエチレンテレフタレートフィルム(東レ(株)製、厚み:6μm)を重ね、ホットロールラミネーターを用いて100℃、0.5MPa、1.0m/分の条件で貼り合わせることで、カバー層、熱硬化層及び非熱硬化層をこの順に有する緩衝シートを得た。
(Preparation of buffer sheet)
The obtained thermosetting layer composition was coated on a polyimide film (manufactured by DuPont-Toray Co., Ltd., trade name "Kapton 100H", thickness: 25 μm) as a cover layer, and dried in a dryer at 70°C. It was dried by heating for 10 minutes to form a thermoset layer with a thickness of 50 μm on the polyimide film.
A polyethylene terephthalate film (manufactured by Toray Industries, Inc., thickness: 6 μm) as a non-thermoset layer is layered on the thermoset layer, and heated at 100°C, 0.5MPa, and 1.0m/min using a hot roll laminator. By bonding them together, a buffer sheet having a cover layer, a thermosetting layer, and a non-thermosetting layer in this order was obtained.
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に援用されて取り込まれる。 All documents, patent applications, and technical standards mentioned herein are incorporated by reference to the same extent as if each individual document, patent application, and technical standard was specifically and individually indicated to be incorporated by reference. Incorporated herein by reference.

Claims (10)

  1.  熱硬化層と、非熱硬化層と、を備え、前記非熱硬化層の厚みが10μm以下である、緩衝シート。 A buffer sheet comprising a thermosetting layer and a non-thermosetting layer, the thickness of the non-thermosetting layer being 10 μm or less.
  2.  電子部品を基板に実装する工程に用いるための、請求項1に記載の緩衝シート。 The buffer sheet according to claim 1, for use in the process of mounting electronic components on a board.
  3.  前記電子部品はマイクロLEDを含む、請求項2に記載の緩衝シート。 The buffer sheet according to claim 2, wherein the electronic component includes a micro LED.
  4.  前記非熱硬化層は前記電子部品に対向する側に配置される、請求項2又は請求項3に記載の緩衝シート。 The buffer sheet according to claim 2 or 3, wherein the non-thermosetting layer is arranged on a side facing the electronic component.
  5.  前記熱硬化層の厚みは10μm~100μmである、請求項1~請求項4のいずれか1項に記載の緩衝シート。 The buffer sheet according to any one of claims 1 to 4, wherein the thermosetting layer has a thickness of 10 μm to 100 μm.
  6.  前記熱硬化層は(メタ)アクリレート化合物を含む、請求項1~請求項5のいずれか1項に記載の緩衝シート。 The buffer sheet according to any one of claims 1 to 5, wherein the thermosetting layer contains a (meth)acrylate compound.
  7.  前記熱硬化層は高分子成分を含む、請求項1~請求項6のいずれか1項に記載の緩衝シート。 The buffer sheet according to any one of claims 1 to 6, wherein the thermosetting layer contains a polymer component.
  8.  前記非熱硬化層、前記熱硬化層及びカバー層をこの順に備える、請求項1~請求項7のいずれか1項に記載の緩衝シート。 The buffer sheet according to any one of claims 1 to 7, comprising the non-thermosetting layer, the thermosetting layer, and the cover layer in this order.
  9.  加熱用部材を用いて電子部品と基板とを熱圧着する工程を有し、前記熱圧着は前記加熱用部材と前記電子部品との間に請求項1~請求項8のいずれか1項に記載の緩衝シートを配置した状態で行う、電子部品の実装方法。 The method according to any one of claims 1 to 8, further comprising the step of thermocompression bonding an electronic component and a substrate using a heating member, and the thermocompression bonding is performed between the heating member and the electronic component. A method for mounting electronic components with a buffer sheet in place.
  10.  加熱用部材を用いて電子部品と基板とを熱圧着する工程を有し、前記熱圧着は前記加熱用部材と前記電子部品との間に請求項1~請求項8のいずれか1項に記載の緩衝シートを配置した状態で行う、電子部品装置の製造方法。 The method according to any one of claims 1 to 8, further comprising the step of thermocompression bonding an electronic component and a substrate using a heating member, and the thermocompression bonding is performed between the heating member and the electronic component. A method of manufacturing an electronic component device in which a buffer sheet is placed.
PCT/JP2022/023007 2022-06-07 2022-06-07 Buffer sheet, method for mounting electronic component, and method for manufacturing electronic component device WO2023238253A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/023007 WO2023238253A1 (en) 2022-06-07 2022-06-07 Buffer sheet, method for mounting electronic component, and method for manufacturing electronic component device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/023007 WO2023238253A1 (en) 2022-06-07 2022-06-07 Buffer sheet, method for mounting electronic component, and method for manufacturing electronic component device

Publications (1)

Publication Number Publication Date
WO2023238253A1 true WO2023238253A1 (en) 2023-12-14

Family

ID=89117715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023007 WO2023238253A1 (en) 2022-06-07 2022-06-07 Buffer sheet, method for mounting electronic component, and method for manufacturing electronic component device

Country Status (1)

Country Link
WO (1) WO2023238253A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017045996A (en) * 2015-08-28 2017-03-02 日立化成株式会社 Composition for buffer sheet with release layer and buffer sheet with release layer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017045996A (en) * 2015-08-28 2017-03-02 日立化成株式会社 Composition for buffer sheet with release layer and buffer sheet with release layer

Similar Documents

Publication Publication Date Title
JP7056775B2 (en) Cushioning sheet composition and cushioning sheet
US8613623B2 (en) Acrylic insulating adhesive
US10703939B2 (en) Acrylic composition for sealing, sheet material, multilayer sheet, cured product, semiconductor device and method for manufacturing semiconductor device
WO2023238253A1 (en) Buffer sheet, method for mounting electronic component, and method for manufacturing electronic component device
WO2014010258A1 (en) Acrylic resin composition for semiconductor sealing, semiconductor device using same, and manufacturing method thereof
WO2023062670A1 (en) Buffer sheet, method for mounting electronic component, and method for manufacturing electronic component device
WO2023062671A1 (en) Electronic component device manufacturing method, electronic component mounting method, and buffer sheet
JP2022129827A (en) Mounting method for buffer sheet and electronic component device and manufacturing method for electronic component device
KR102325868B1 (en) Underfill material, underfill film, and method for manufacturing a semiconductor device using the same
TW202348713A (en) Buffer sheet, method for mounting electronic components, and method for producing electronic component device
JP7180152B2 (en) METHOD FOR MANUFACTURING ELECTRONIC PARTS DEVICE, HOT-PRESS SHEET AND HOT-PRESS THERMO-CURABLE RESIN COMPOSITION
JP2019153767A (en) Semiconductor device and manufacturing method thereof
WO2023149210A1 (en) Underfill material
WO2024225084A1 (en) Film-shaped sealant and circuit device
JP2017203138A (en) Adhesive for semiconductor, semiconductor device and manufacturing method therefor
JP2017114960A (en) Prior-supply type underfill material, cured product of prior-supply type underfill material, electronic component device, and method for producing electronic component device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22945760

Country of ref document: EP

Kind code of ref document: A1