WO2023226892A1 - 一种含凝灰岩粉的混凝土复合掺合料及其制备方法 - Google Patents
一种含凝灰岩粉的混凝土复合掺合料及其制备方法 Download PDFInfo
- Publication number
- WO2023226892A1 WO2023226892A1 PCT/CN2023/095275 CN2023095275W WO2023226892A1 WO 2023226892 A1 WO2023226892 A1 WO 2023226892A1 CN 2023095275 W CN2023095275 W CN 2023095275W WO 2023226892 A1 WO2023226892 A1 WO 2023226892A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tuff
- powder
- composite admixture
- concrete composite
- admixture containing
- Prior art date
Links
- 239000000843 powder Substances 0.000 title claims abstract description 76
- 239000004567 concrete Substances 0.000 title claims abstract description 44
- 239000002131 composite material Substances 0.000 title claims abstract description 43
- 238000002360 preparation method Methods 0.000 title claims abstract description 12
- 230000000694 effects Effects 0.000 claims abstract description 34
- 229920000877 Melamine resin Polymers 0.000 claims abstract description 19
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 claims abstract description 19
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 claims abstract description 16
- 235000019982 sodium hexametaphosphate Nutrition 0.000 claims abstract description 16
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 claims abstract description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000012190 activator Substances 0.000 claims abstract description 13
- 238000002156 mixing Methods 0.000 claims abstract description 12
- 238000000498 ball milling Methods 0.000 claims abstract description 7
- 238000000227 grinding Methods 0.000 claims description 56
- 239000010881 fly ash Substances 0.000 claims description 17
- 239000000463 material Substances 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 13
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 claims description 12
- 239000002893 slag Substances 0.000 claims description 11
- DAJSVUQLFFJUSX-UHFFFAOYSA-M sodium;dodecane-1-sulfonate Chemical compound [Na+].CCCCCCCCCCCCS([O-])(=O)=O DAJSVUQLFFJUSX-UHFFFAOYSA-M 0.000 claims description 11
- HXKKHQJGJAFBHI-UHFFFAOYSA-N 1-aminopropan-2-ol Chemical compound CC(O)CN HXKKHQJGJAFBHI-UHFFFAOYSA-N 0.000 claims description 10
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 9
- 239000011707 mineral Substances 0.000 claims description 9
- 235000010755 mineral Nutrition 0.000 claims description 9
- 150000004683 dihydrates Chemical class 0.000 claims description 8
- 239000010440 gypsum Substances 0.000 claims description 8
- 229910052602 gypsum Inorganic materials 0.000 claims description 8
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 6
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 5
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 5
- 239000000292 calcium oxide Substances 0.000 claims description 3
- 235000012255 calcium oxide Nutrition 0.000 claims description 3
- 238000003756 stirring Methods 0.000 claims description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 2
- 239000010424 alunite Substances 0.000 claims description 2
- 229910052934 alunite Inorganic materials 0.000 claims description 2
- KPZTWMNLAFDTGF-UHFFFAOYSA-D trialuminum;potassium;hexahydroxide;disulfate Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Al+3].[Al+3].[Al+3].[K+].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O KPZTWMNLAFDTGF-UHFFFAOYSA-D 0.000 claims description 2
- 229910052681 coesite Inorganic materials 0.000 claims 1
- 229910052593 corundum Inorganic materials 0.000 claims 1
- 229910052906 cristobalite Inorganic materials 0.000 claims 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims 1
- 239000000377 silicon dioxide Substances 0.000 claims 1
- 235000012239 silicon dioxide Nutrition 0.000 claims 1
- 229910052682 stishovite Inorganic materials 0.000 claims 1
- 229910052905 tridymite Inorganic materials 0.000 claims 1
- 229910001845 yogo sapphire Inorganic materials 0.000 claims 1
- 239000000126 substance Substances 0.000 abstract description 9
- 230000009471 action Effects 0.000 abstract description 6
- 230000005284 excitation Effects 0.000 abstract description 3
- 239000004566 building material Substances 0.000 abstract description 2
- 230000001603 reducing effect Effects 0.000 abstract description 2
- 238000003801 milling Methods 0.000 abstract 2
- 230000000052 comparative effect Effects 0.000 description 18
- 238000000034 method Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000011435 rock Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 238000005054 agglomeration Methods 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 239000004568 cement Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 1
- 239000002956 ash Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000000404 calcium aluminium silicate Substances 0.000 description 1
- 235000012215 calcium aluminium silicate Nutrition 0.000 description 1
- WNCYAPRTYDMSFP-UHFFFAOYSA-N calcium aluminosilicate Chemical compound [Al+3].[Al+3].[Ca+2].[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O WNCYAPRTYDMSFP-UHFFFAOYSA-N 0.000 description 1
- 229940078583 calcium aluminosilicate Drugs 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 239000011083 cement mortar Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 238000009440 infrastructure construction Methods 0.000 description 1
- 230000037081 physical activity Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910021487 silica fume Inorganic materials 0.000 description 1
- 238000005063 solubilization Methods 0.000 description 1
- 230000007928 solubilization Effects 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B40/00—Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
- C04B40/0028—Aspects relating to the mixing step of the mortar preparation
- C04B40/0039—Premixtures of ingredients
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Definitions
- the invention belongs to the technical field of building materials, and specifically relates to a concrete composite admixture containing tuff powder and a preparation method thereof.
- mineral admixtures can significantly improve the workability of concrete, increase the strength and durability of concrete, and effectively reduce the cost of concrete. They have become an indispensable component of concrete cementitious materials.
- mineral admixtures include industrial by-products such as fly ash, slag powder, silica fume, etc.
- high-quality mineral admixtures such as ore powder and fly ash are facing resource shortages and uneven regional distribution.
- traditional mineral admixtures are in very short supply in these areas.
- materials such as fly ash need to be purchased and transported from other provinces, which greatly increases the time required for project construction. cost.
- igneous rock minerals have a chemical composition similar to that of fly ash. After grinding and processing it to a certain fineness, it has a certain potential hydration activity. Its chemical activity is similar to that of volcanic ash materials, fly ash, etc. , activated silica, activated alumina and calcium hydroxide react to form hydrated calcium aluminosilicate with gel properties, which can be used to produce concrete instead of fly ash.
- some igneous rock minerals contain more than 50% pores by volume. Using them as concrete admixtures will greatly increase the water demand and have a low fluidity ratio, which is not conducive to the working performance of concrete. In addition, its reactivity is low and it is not suitable for concrete work.
- Chinese patent CN106242333A discloses a preparation method of tuff rock powder admixture, in which 1,000 parts by weight of tuff are mixed with 0.13-1.3 parts by weight of a modifier.
- the modifier consists of a grinding aid component and an air-entraining component. and thickening components.
- the 7d and 28d activity index of this tuff stone powder admixture is low, and its ability to improve the later strength of concrete is limited.
- the purpose of the present invention is to provide a concrete composite admixture containing tuff powder.
- the composite admixture has a high activity index and a high fluidity ratio, and can effectively improve the fluidity of fresh concrete. , improve the compressive strength of concrete.
- a concrete composite admixture containing tuff powder including each component in the following mass percentages: 50% to 70% tuff powder, 30% to 50% ultrafine powder;
- the preparation method of the tuff powder is as follows: mix the tuff ore with sodium hexametaphosphate, melamine, and active activator, and then perform ball milling for 1 to 2 hours to obtain the tuff powder.
- the present invention mixes and grinds tuff with melamine and active activator.
- melamine can improve the grinding efficiency, and on the other hand, it can reduce water, thereby improving the fluidity ratio of the composite admixture.
- active activators are added during grinding. Under the combined action of mechanical chemical action and chemical excitation, the activity index of the composite admixture is improved to ensure the strength of concrete at all ages.
- the inventor found that after grinding a single tuff, more debris is adsorbed on the surface of the large tuff particles, and as the grinding time increases, the adsorption phenomenon on the surface of the tuff particles becomes more obvious; indicating that the tuff powder has an agglomeration effect. (As shown in Figures 1-2), this will affect the grinding effect and the reactivity of the tuff powder; in the present invention, sodium hexametaphosphate is added during the tuff grinding process, and the sodium hexametaphosphate has good dispersion It can disperse the tuff powder and avoid the agglomeration effect of the tuff powder. On the one hand, it can improve the grinding efficiency, and on the other hand, it can also improve the activity index of the composite admixture.
- the present invention can effectively improve the grinding efficiency by adding sodium hexametaphosphate, melamine and active activator during grinding, and at the same time effectively improve the fluidity ratio and activity index of the composite admixture.
- the ball milling conditions are: the ball-to-material ratio is 1:(1.5-2), and the rotation speed is 100-140 rpm.
- the content of SiO 2 is greater than 65 wt%
- the content of Al 2 O 3 is greater than 15 wt%
- the content of Fe 2 O 3 is greater than 2.5 wt%.
- the mass ratio of the tuff ore, melamine and active activator is 100: (1-2): (3-5): (0.2-0.5).
- the activity activating agent includes at least one of dihydrate gypsum, alunite or quicklime.
- the ultrafine powder is prepared by mixing and grinding fly ash, slag powder and grinding aid in a mass ratio of (40-50): (45-55): (0.1-0.5).
- the grinding aid is obtained by mixing triethanolamine, diethanol monoisopropanolamine, sodium dodecyl sulfonate and water in a weight ratio of 20:19:6:55.
- Triethanolamine has grinding aid and strengthening effect.
- Sodium dodecyl sulfonate acts as a surfactant to disperse, emulsify and solubilize, which can make triethanolamine and diethanol monoisopropanolamine better dispersed in water. ;
- Mixing triethanolamine, diethanol monoisopropanolamine and sodium dodecyl sulfonate can achieve better grinding aid effect.
- the specific surface area of the ultrafine powder is 600-700 m 2 /kg.
- the fineness of the fly ash is less than 30%, the total mass fraction of SiO 2 , Al 2 O 3 and Fe 2 O 3 is greater than 70%, and the 28d activity index is greater than 70%.
- Another object of the present invention is to provide a method for preparing the concrete composite admixture.
- the steps are as follows: mix tuff powder and ultrafine powder according to the mass ratio, and stir evenly to obtain the concrete composite admixture.
- tuff is mixed and ground with melamine and active activator.
- melamine can improve the grinding efficiency, and on the other hand, it can have a water-reducing effect, thereby improving the fluidity ratio of the composite admixture; at the same time, Active activators are added during grinding, and under the combined action of mechanical chemical action and chemical excitation, the activity index of the composite admixture is increased to ensure the strength of concrete at all ages.
- the present invention adds sodium hexametaphosphate during the tuff grinding process.
- Sodium hexametaphosphate has good dispersibility and can disperse the tuff powder to avoid the agglomeration effect of the tuff powder. On the one hand, it can improve the grinding efficiency. , on the other hand, it can also improve the activity index of the composite admixture.
- Triethanolamine has a grinding aid and strengthening effect.
- Sodium dodecyl sulfonate serves as a surfactant and plays the role of dispersion, emulsification and solubilization. It can disperse triethanolamine and diethanol monoisopropanolamine in water. The effect is better; mixing triethanolamine, diethanol monoisopropanolamine and sodium dodecyl sulfonate can achieve better grinding aid effect.
- Figure 1 shows the SEM image of a single tuff ore after grinding for 1 hour
- Figure 2 shows the SEM image of a single tuff ore after grinding for 2 hours.
- the chemical composition of tuff is as follows: the content of SiO 2 is 68.71wt%, the content of Al 2 O 3 is 15.16wt%, the content of Fe 2 O 3 is 2.79wt%, and the content of CaO is 2.23 wt%, the content of MgO is 1.34wt%, the content of SO3 is 0.2wt%, and the loss on ignition is 3.2%.
- the fineness of fly ash is less than 30%, the total mass fraction of SiO 2 , Al 2 O 3 and Fe 2 O 3 is greater than 70%, and the 28d activity index is greater than 70%.
- the slag powder is S95 slag powder.
- This embodiment provides a method for preparing a concrete composite admixture containing tuff powder, which includes the following steps:
- the fly ash, slag powder and grinding aid into the grinding equipment according to the mass ratio of 45:55:0.3 for mixing and grinding to obtain ultrafine powder with a specific surface area greater than 600m 2 /kg;
- the grinding aid is composed of Triethanolamine, diethanol monoisopropanolamine, sodium dodecyl sulfonate and water are mixed according to the weight ratio of 20:19:6:55;
- tuff powder and ultrafine powder are first prepared in steps, and then the two are mixed, and sodium hexametaphosphate, melamine and dihydrate gypsum are added during the grinding process of tuff ore, and then the fly ash and slag are grinded.
- Adding grinding aids during the grinding process can improve the grinding efficiency, reduce the energy consumption of the grinding process, and obtain a composite admixture with high activity index and high fluidity ratio.
- This embodiment provides a method for preparing a concrete composite admixture containing tuff powder, which includes the following steps:
- the fly ash, slag powder and grinding aid into the grinding equipment according to the mass ratio of 50:50:0.5 for mixing and grinding to obtain ultra-fine powder with a specific surface area greater than 600m 2 /kg;
- the grinding aid is composed of Triethanolamine, diethanol monoisopropanolamine, sodium dodecyl sulfonate and water are mixed according to the weight ratio of 20:19:6:55;
- This embodiment provides a method for preparing a concrete composite admixture containing tuff powder, which includes the following steps:
- the fly ash, slag powder and grinding aid into the grinding equipment according to the mass ratio of 40:55:0.1 for mixing and grinding to obtain ultra-fine powder with a specific surface area greater than 600m 2 /kg;
- the grinding aid is composed of Triethanolamine, diethanol monoisopropanolamine, sodium dodecyl sulfonate and water are mixed according to the weight ratio of 20:19:6:55;
- Example 4 is basically the same as Example 1, except that in step S1, the ball milling time is 2 hours. The resulting tuff had a fineness of 8.05%.
- This comparative example is basically the same as Example 1, except that in step S1, the ball milling time is 0.5h. The fineness of the resulting tuff was 22.20%.
- step S1 is as follows:
- Steps S2 and S3 are the same as Example 1, that is, compared with Example 1, the composite admixture of this comparative example lacks melamine.
- step S1 is as follows:
- Steps S2 and S3 are the same as Example 1, that is, compared with Example 1, the composite admixture of this comparative example lacks sodium hexametaphosphate.
- step S2 is as follows:
- the fly ash, slag powder and grinding aid into the grinding equipment according to the mass ratio of 45:55:0.3 for mixing and grinding to obtain ultrafine powder with a specific surface area greater than 600m 2 /kg;
- the grinding aid is composed of Triethanolamine, diethanol monoisopropanolamine and water are mixed according to the weight ratio of 20:19:61;
- Steps S1 and S3 are the same as Example 1, that is, compared with Example 1, the grinding aid of this comparative example lacks sodium dodecyl sulfonate.
- Comparative Example 3 lacks sodium hexametaphosphate, the dispersibility of tuff powder is reduced, and the activity index of the composite admixture is reduced.
- the grinding aid of Comparative Example 4 lacks sodium dodecyl sulfonate, resulting in a weakened grinding aid effect, and the grinding time becomes longer while ensuring that the specific surface area of the ultrafine powder meets the requirements.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
本发明公开一种含凝灰岩粉的混凝土复合掺合料及其制备方法,属于建筑材料技术领域。包括以下质量百分比的各组分:凝灰岩粉50~70%、超细粉体30~50%;所述凝灰岩粉的制备方法如下:将凝灰岩矿与六偏磷酸钠、三聚氰胺、活性激发剂混合,然后进行球磨,球磨时间为1~2h,得到所述凝灰岩粉。本发明通过将凝灰岩与三聚氰胺、活性激发剂进行混磨,三聚氰胺一方面可以提高粉磨效率,另一方面可以起到减水效果,从而提高复合掺合料的流动度比;同时在粉磨时加入活性激发剂,在机械力化学作用和化学激发的共同作用下,提高复合掺合料的活性指数,保证混凝土各龄期的强度。
Description
本发明属于建筑材料技术领域,具体涉及一种含凝灰岩粉的混凝土复合掺合料及其制备方法。
矿物掺合料作为土木工程主体结构混凝土的重要组成材料,能显著改善混凝土和易性、提高混凝土强度和耐久性、有效降低混凝土成本,已成为混凝土胶凝材料中不可或缺的组分。传统常用矿物掺合料有工业副产品粉煤灰、矿渣粉、硅灰等,随着我国基础建设的高速推进,矿粉、粉煤灰等优质矿物掺合料面临着资源短缺且地区分布不均的问题。如在整个川西和西藏地区,由于环保要求和工业发展程度低,这些区域传统矿物掺合料都非常紧缺,为满足工程建设需要,需从外省购运粉煤灰等材料,大大增加了工程建设成本。
研究表明,火成岩矿物具有与粉煤灰相似的化学组成,将其磨细加工至一定细度后具有一定的潜在水化活性,其化学活性与火山灰质材料、粉煤灰等的化学活性相类似,活性氧化硅、活性氧化铝与氢氧化钙发生反应,生成具有凝胶性质的水化铝硅酸钙,可代替粉煤灰用于生产混凝土。但是有些火成岩质矿物中含有超过50%体积含量的气孔,将其作为混凝土掺合料会极大的增加需水量,流动度比小,不利于混凝土工作性能;此外,其反应活性较低,不利于混凝土后期强度发展,造成后期强度增长慢、混凝土密实度较差等问题。所以,将火成岩质材料作为混凝土矿物掺合料,需对其进行改性,才能有效的解决上述问题。如中国专利CN106242333A公开了一种凝灰岩石粉掺合料的制备方法,其中将1000重量份的凝灰岩与0.13~1.3重量份的改性剂进行混合,改性剂由助磨组分、引气组分以及增稠组分组成。但是该凝灰岩石粉掺合料的7d和28d活性指数较低,对混凝土后期强度的改善能力有限。
因此,为满足实际工程需要,制备出一种可替代传统粉煤灰、矿渣粉,且成本较低、制备方法简单、性能优异的矿物掺合料迫在眉睫。
发明内容
针对以上现有技术的不足,本发明的目的是提供一种含凝灰岩粉的混凝土复合掺合料,所述复合掺合料活性指数高,流动度比高,可有效提高新拌混凝土的流动性,提高混凝土的抗压强度。
为实现上述目的,本发明的具体技术方案如下:
一种含凝灰岩粉的混凝土复合掺合料,包括以下质量百分比的各组分:凝灰岩粉50~70%、超细粉体30~50%;
所述凝灰岩粉的制备方法如下:将凝灰岩矿与六偏磷酸钠、三聚氰胺、活性激发剂混合,然后进行球磨,球磨时间为1~2h,得到所述凝灰岩粉。
通过粉磨可以对凝灰岩发挥物理活性的效果,提高凝灰岩的活性指数,但是凝灰岩经过粉磨后,颗粒尺寸减小,比表面积增大,在保证颗粒表面水膜厚度不变的情况下,浆体达到相同流动度时,浆体中自由的拌合水数量减少,从而引起整体的流动性降低,需水量增大。为了解决上述技术问题,本发明通过将凝灰岩与三聚氰胺、活性激发剂进行混磨,三聚氰胺一方面可以提高粉磨效率,另一方面可以起到减水效果,从而提高复合掺合料的流动度比;同时在粉磨时加入活性激发剂,在机械力化学作用和化学激发的共同作用下,提高复合掺合料的活性指数,保证混凝土各龄期的强度。
同时发明人发现,单独的凝灰岩粉磨后,凝灰岩大尺寸颗粒的表面吸附有较多的碎屑,并且随着粉磨时间的延长,凝灰岩颗粒表面的吸附现象越明显;说明凝灰岩粉具有团聚效应(如图1~2所示),这将影响粉磨的效果,也会影响凝灰岩粉的反应活性;本发明通过在凝灰岩粉磨过程中添加六偏磷酸钠,六偏磷酸钠具有良好的分散性,可以将凝灰岩粉分散开来,避免凝灰岩粉的团聚效应,一方面可以提高粉磨效率,另一方面还可以提高复合掺合料的活性指数。
本发明通过在粉磨时加入六偏磷酸钠、三聚氰胺和活性激发剂可以有效提高粉磨效率,同时有效提高复合掺合料的流动度比和活性指数。
优选的,球磨的条件为:球料比为1:(1.5~2),转速为100~140rpm。
优选的,所述凝灰岩中,SiO2的含量大于65wt%,Al2O3的含量大于15wt%,Fe2O3的含量大于2.5wt%。
优选的,所述凝灰岩矿、三聚氰胺和活性激发剂的质量比为100:(1~2):(3~5):(0.2~0.5)。
优选的,所述活性激发剂包括二水石膏、明矾石或生石灰中的至少一种。
优选的,所述超细粉体由粉煤灰、矿渣粉和助磨剂按质量比(40~50):(45~55):(0.1~0.5)混合粉磨制备而成。
优选的,所述助磨剂由三乙醇胺、二乙醇单异丙醇胺、十二烷基磺酸钠和水按照重量比20:19:6:55混合得到。三乙醇胺具有助磨、增强效果,十二烷基磺酸钠作为表面活性剂,起到分散、乳化、增溶作用,可以使三乙醇胺和二乙醇单异丙醇胺在水中的分散效果更好;将三乙醇胺、二乙醇单异丙醇胺和十二烷基磺酸钠混合使用可以取得更好的助磨效果。
优选的,所述超细粉体的比表面积为600~700m2/kg。
优选的,所述粉煤灰细度小于30%,SiO2、Al2O3和Fe2O3的总质量分数大于70%,28d活性指数大于70%。
本发明的另一目的在于提供所述混凝土复合掺合料的制备方法,步骤如下:按照质量比将凝灰岩粉和超细粉体进行混合,搅拌均匀即得到所述混凝土复合掺合料。
与现有技术相比,本发明的有益之处在于:
(1)本发明通过将凝灰岩与三聚氰胺、活性激发剂进行混磨,三聚氰胺一方面可以提高粉磨效率,另一方面可以起到减水效果,从而提高复合掺合料的流动度比;同时在粉磨时加入活性激发剂,在机械力化学作用和化学激发的共同作用下,提高复合掺合料的活性指数,保证混凝土各龄期的强度。
(2)本发明通过在凝灰岩粉磨过程中添加六偏磷酸钠,六偏磷酸钠具有良好的分散性,可以将凝灰岩粉分散开来,避免凝灰岩粉的团聚效应,一方面可以提高粉磨效率,另一方面还可以提高复合掺合料的活性指数。
(3)三乙醇胺具有助磨、增强效果,十二烷基磺酸钠作为表面活性剂,起到分散、乳化、增溶作用,可以使三乙醇胺和二乙醇单异丙醇胺在水中的分散效果更好;将三乙醇胺、二乙醇单异丙醇胺和十二烷基磺酸钠混合使用可以取得更好的助磨效果。
图1为单独的凝灰岩矿粉磨1小时后的SEM图;
图2为单独的凝灰岩矿粉磨2小时后的SEM图。
下面将对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动条件下所获得的所有其它实施例,都属于本发明保护的范围。
以下实施例和对比例中,凝灰岩的化学成分如下:SiO2的含量为68.71wt%,Al2O3的含量为15.16wt%,Fe2O3的含量为2.79wt%,CaO的含量为2.23wt%,MgO的含量为1.34wt%,SO3的含量为0.2wt%,烧失量为3.2%。粉煤灰细度小于30%,SiO2、Al2O3和Fe2O3的总质量分数大于70%,28d活性指数大于70%。矿渣粉为S95矿渣粉。
实施例1
本实施例提供一种含凝灰岩粉的混凝土复合掺合料的制备方法,包括以下步骤:
S1.将凝灰岩矿、六偏磷酸钠、三聚氰胺和二水石膏按质量比100:1.5:4:0.3进行混合,
然后转移至球磨机中,在球料比1:1.8,转速120rpm的条件下球磨1h,得到凝灰岩粉;所得的凝灰岩的细度为9.25%。
S2.将粉煤灰、矿渣粉和助磨剂按质量比45:55:0.3放入粉磨设备中进行混磨,得到比表面积大于600m2/kg的超细粉体;其中助磨剂由三乙醇胺、二乙醇单异丙醇胺、十二烷基磺酸钠和水按照重量比20:19:6:55混合得到;
S3.将60wt%步骤S1得到的凝灰岩粉和40wt%步骤S2得到的超细粉体搅拌均匀,得到混凝土复合掺合料。
本实施例先分步骤制备凝灰岩粉和超细粉体,再将两者进行混合,并在粉磨凝灰岩矿过程中添加六偏磷酸钠、三聚氰胺和二水石膏,在粉磨粉煤灰和矿渣粉的过程中添加助磨剂,可以提升粉磨效率,降低粉磨加工能耗,并且得到活性指数高,流动度比高的复合掺合料。
实施例2
本实施例提供一种含凝灰岩粉的混凝土复合掺合料的制备方法,包括以下步骤:
S1.将凝灰岩矿、六偏磷酸钠、三聚氰胺和二水石膏按质量比100:1:5:0.5进行混合,然后转移至球磨机中,在球料比1:1,转速140rpm的条件下球磨1h,得到凝灰岩粉;所得的凝灰岩的细度为11.23%。
S2.将粉煤灰、矿渣粉和助磨剂按质量比50:50:0.5放入粉磨设备中进行混磨,得到比表面积大于600m2/kg的超细粉体;其中助磨剂由三乙醇胺、二乙醇单异丙醇胺、十二烷基磺酸钠和水按照重量比20:19:6:55混合得到;
S3.将50wt%步骤S1得到的凝灰岩粉和50wt%步骤S2得到的超细粉体搅拌均匀,得到混凝土复合掺合料。
实施例3
本实施例提供一种含凝灰岩粉的混凝土复合掺合料的制备方法,包括以下步骤:
S1.将凝灰岩矿、六偏磷酸钠、三聚氰胺和二水石膏按质量比100:2:3:0.2进行混合,然后转移至球磨机中,在球料比1:2,转速100rpm的条件下球磨1h,得到凝灰岩粉;所得的凝灰岩的细度为12.81%。
S2.将粉煤灰、矿渣粉和助磨剂按质量比40:55:0.1放入粉磨设备中进行混磨,得到比表面积大于600m2/kg的超细粉体;其中助磨剂由三乙醇胺、二乙醇单异丙醇胺、十二烷基磺酸钠和水按照重量比20:19:6:55混合得到;
S3.将70wt%步骤S1得到的凝灰岩粉和30wt%步骤S2得到的超细粉体搅拌均匀,得
到混凝土复合掺合料。
实施例4
实施例4的与实施例1基本相同,区别之处在于,步骤S1中,球磨时间为2h。所得的凝灰岩的细度为8.05%。
对比例1
本对比例与实施例1基本相同,区别之处在于,步骤S1中,球磨时间为0.5h。所得的凝灰岩的细度为22.20%。
对比例2
本对比例的制备方法与实施例1基本相同,区别之处在于,步骤S1如下:
S1.将凝灰岩矿、六偏磷酸钠和二水石膏按质量比104:1.5:0.3进行混合,然后转移至球磨机中,在球料比1:1.8,转速120rpm的条件下球磨1h,得到凝灰岩粉;
步骤S2和S3与实施例1相同,即与实施例1相比,本对比例的复合掺合料中缺少三聚氰胺。
对比例3
本对比例的制备方法与实施例1基本相同,区别之处在于,步骤S1如下:
S1.将凝灰岩矿、三聚氰胺和二水石膏按质量比101.5:4:0.3进行混合,然后转移至球磨机中,在球料比1:1.8,转速120rpm的条件下球磨1h,得到凝灰岩粉;
步骤S2和S3与实施例1相同,即与实施例1相比,本对比例的复合掺合料中缺少六偏磷酸钠。
对比例4
本对比例的制备方法与实施例1基本相同,区别之处在于,步骤S2如下:
S2.将粉煤灰、矿渣粉和助磨剂按质量比45:55:0.3放入粉磨设备中进行混磨,得到比表面积大于600m2/kg的超细粉体;其中助磨剂由三乙醇胺、二乙醇单异丙醇胺和水按照重量比20:19:61混合得到;
步骤S1和S3与实施例1相同,即与实施例1相比,本对比例的助磨剂中缺少十二烷基磺酸钠。
试验例
按照JG/T315-2011《水泥砂浆和混凝土用天然火山灰质材料》的相关规定,测试实施例和对比例复合掺合料的流动度比和活性指数。采用华新P·O 42.5水泥和ISO标准砂成型尺寸为40mm×40mm×160mm砂浆试件,控制砂浆的水胶比为0.5,复合掺合料的掺量为
30%,胶凝材料与标准砂的质量比为1:3。试件在20℃环境下成型并带模养护24h,然后拆模并移入标准养护室,养护至各龄期后进行流动度比和活性指数测试。测试结果如表1所示。
表1流动度比和活性指数
从表1中数据可以看出,与对比例1~4相比,本发明实施例1~4的复合掺合料具有高的流动度比和活性指数;对比例1凝灰岩矿的粉磨时间太短,导致凝灰岩粉的细度增大,复合掺合料的活性指数降低。对比例2缺少三聚氰胺,一方面凝灰岩矿的粉磨效率降低,活性指数降低,另一方面由于缺少减水效果,其流动度比降低。对比例3缺少六偏磷酸钠,凝灰岩粉的分散性降低,复合掺合料的活性指数降低。对比例4的助磨剂中缺少十二烷基磺酸钠,导致其助磨效果减弱,在保证超细粉体的比表面积符合要求的情况下,粉磨时间变长。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。
Claims (10)
- 一种含凝灰岩粉的混凝土复合掺合料,其特征在于,包括以下质量百分比的各组分:凝灰岩粉50~70%、超细粉体30~50%;所述凝灰岩粉的制备方法如下:将凝灰岩矿与六偏磷酸钠、三聚氰胺、活性激发剂混合,然后进行球磨,球磨时间为1~2h,得到所述凝灰岩粉。
- 根据权利要求1所述的一种含凝灰岩粉的混凝土复合掺合料,其特征在于,球磨的条件为:球料比为1:(1.5~2),转速为100~140rpm。
- 根据权利要求1所述的一种含凝灰岩粉的混凝土复合掺合料,其特征在于,所述凝灰岩中,SiO2的含量大于65wt%,Al2O3的含量大于15wt%,Fe2O3的含量大于2.5wt%。
- 根据权利要求1所述的一种含凝灰岩粉的混凝土复合掺合料,其特征在于,所述凝灰岩矿、六偏磷酸钠、三聚氰胺和活性激发剂的质量比为100:(1~2):(3~5):(0.2~0.5)。
- 根据权利要求1所述的一种含凝灰岩粉的混凝土复合掺合料,其特征在于,所述活性激发剂包括二水石膏、明矾石或生石灰中的至少一种。
- 根据权利要求1所述的一种含凝灰岩粉的混凝土复合掺合料,其特征在于,所述超细粉体由粉煤灰、矿渣粉和助磨剂按质量比(40~50):(45~55):(0.1~0.5)混合粉磨制备而成。
- 根据权利要求6所述的一种含凝灰岩粉的混凝土复合掺合料,其特征在于,所述助磨剂由三乙醇胺、二乙醇单异丙醇胺、十二烷基磺酸钠和水按照重量比20:19:6:55混合得到。
- 根据权利要求6所述的一种含凝灰岩粉的混凝土复合掺合料,其特征在于,所述超细粉体的比表面积为600~700m2/kg。
- 根据权利要求6所述的一种含凝灰岩粉的混凝土复合掺合料,其特征在于,所述粉煤灰细度小于30%,SiO2、Al2O3和Fe2O3的总质量分数大于70%,28d活性指数大于70%。
- 权利要求1~9任一项所述的混凝土复合掺合料的制备方法,步骤如下:按照质量比将凝灰岩粉和超细粉体进行混合,搅拌均匀即得到所述混凝土复合掺合料。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210562082.3 | 2022-05-23 | ||
CN202210562082.3A CN115259730B (zh) | 2022-05-23 | 2022-05-23 | 一种含凝灰岩粉的混凝土复合掺合料及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023226892A1 true WO2023226892A1 (zh) | 2023-11-30 |
Family
ID=83759029
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/095275 WO2023226892A1 (zh) | 2022-05-23 | 2023-05-19 | 一种含凝灰岩粉的混凝土复合掺合料及其制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115259730B (zh) |
WO (1) | WO2023226892A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117658510A (zh) * | 2024-01-31 | 2024-03-08 | 北京中航天业科技有限公司 | 一种基于高温-化学-机械耦合激发的钢渣微粉活性激发剂及其制备方法和应用 |
CN118307224A (zh) * | 2024-06-11 | 2024-07-09 | 湖南高翔新材料有限公司 | 一种高强高性能混凝土用复合掺合料及其制备方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115259730B (zh) * | 2022-05-23 | 2023-07-14 | 长江水利委员会长江科学院 | 一种含凝灰岩粉的混凝土复合掺合料及其制备方法 |
CN117361909A (zh) * | 2023-10-08 | 2024-01-09 | 中国建筑土木建设有限公司 | 一种高强度凝灰岩复合胶凝材料的制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101219882A (zh) * | 2008-01-22 | 2008-07-16 | 桂林工学院 | 一种利用火成岩制备混凝土掺合料的方法 |
CN106746818A (zh) * | 2016-12-29 | 2017-05-31 | 宁波工程学院 | 一种混凝土掺和料、制备方法及含有该掺合料的混凝土 |
CN108046745A (zh) * | 2018-01-03 | 2018-05-18 | 景德镇陶瓷大学 | 一种石墨烯增强的镁质日用瓷的制备方法 |
CN113371701A (zh) * | 2021-06-08 | 2021-09-10 | 清华大学 | 一种石墨烯及其绿色制备方法 |
CN115259730A (zh) * | 2022-05-23 | 2022-11-01 | 长江水利委员会长江科学院 | 一种含凝灰岩粉的混凝土复合掺合料及其制备方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101172799A (zh) * | 2007-10-15 | 2008-05-07 | 张仲 | 一种天然活性的火山灰质混凝土掺合料及应用 |
KR101492878B1 (ko) * | 2014-09-05 | 2015-02-12 | (주)지에프시알엔디 | 콘크리트 혼입용 균열 자가 치유형 내구성 증진 조성물 및 이를 사용하여 내구성이 증진된 콘크리트를 제조하는 방법 |
CN108002720A (zh) * | 2017-11-08 | 2018-05-08 | 马鞍山豹龙新型建材有限公司 | 一种高活性超细粒化矿渣微粉的制备方法 |
CN109400062B (zh) * | 2018-11-16 | 2021-04-30 | 中国路桥工程有限责任公司 | 一种天然火山灰绿色高性能混凝土 |
CN112608104B (zh) * | 2020-12-23 | 2023-03-21 | 中建西部建设新疆有限公司 | 一种轻质高强抗开裂自修复凝灰岩混凝土及其制备方法 |
-
2022
- 2022-05-23 CN CN202210562082.3A patent/CN115259730B/zh active Active
-
2023
- 2023-05-19 WO PCT/CN2023/095275 patent/WO2023226892A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101219882A (zh) * | 2008-01-22 | 2008-07-16 | 桂林工学院 | 一种利用火成岩制备混凝土掺合料的方法 |
CN106746818A (zh) * | 2016-12-29 | 2017-05-31 | 宁波工程学院 | 一种混凝土掺和料、制备方法及含有该掺合料的混凝土 |
CN108046745A (zh) * | 2018-01-03 | 2018-05-18 | 景德镇陶瓷大学 | 一种石墨烯增强的镁质日用瓷的制备方法 |
CN113371701A (zh) * | 2021-06-08 | 2021-09-10 | 清华大学 | 一种石墨烯及其绿色制备方法 |
CN115259730A (zh) * | 2022-05-23 | 2022-11-01 | 长江水利委员会长江科学院 | 一种含凝灰岩粉的混凝土复合掺合料及其制备方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117658510A (zh) * | 2024-01-31 | 2024-03-08 | 北京中航天业科技有限公司 | 一种基于高温-化学-机械耦合激发的钢渣微粉活性激发剂及其制备方法和应用 |
CN117658510B (zh) * | 2024-01-31 | 2024-04-12 | 北京中航天业科技有限公司 | 一种基于高温-化学-机械耦合激发的钢渣微粉活性激发剂及其制备方法和应用 |
CN118307224A (zh) * | 2024-06-11 | 2024-07-09 | 湖南高翔新材料有限公司 | 一种高强高性能混凝土用复合掺合料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN115259730B (zh) | 2023-07-14 |
CN115259730A (zh) | 2022-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023226892A1 (zh) | 一种含凝灰岩粉的混凝土复合掺合料及其制备方法 | |
CN112079589A (zh) | 一种改性锂渣复合矿物掺合料及其制备和应用 | |
CN112299795B (zh) | 一种再生混凝土及其制备方法 | |
CN114349431B (zh) | 一种复合碱激发锂渣低温早强混凝土及其制备方法 | |
CN106810105A (zh) | 一种混凝土添加剂 | |
CN113998960B (zh) | 改性微纳复合超细掺和料高耐久抗裂混凝土及其制备方法 | |
CN113816640B (zh) | 一种凝灰岩基复合矿物掺合料及其制备方法 | |
CN112537920B (zh) | 用于硫酸钠和碳酸钠碱激发胶凝材料的纳米增强剂及其制备方法和应用 | |
CN113860781A (zh) | 一种用于超高性能混凝土的工业固废掺合料及其制备方法 | |
CN108546009B (zh) | 掺多尺度粒径CaCO3的高性能混凝土浆状掺合料 | |
CN114873961A (zh) | 一种钼尾矿干混砂浆及其应用方法 | |
Zhang et al. | Enhanced hydration and mechanical properties of cement-based materials with steel slag modified by water glass | |
CN110128043B (zh) | 一种亚微米活性混合材及其制备方法 | |
CN112456851B (zh) | 一种减水型早强矿物掺合料及其制备方法 | |
Li et al. | A study of high-performance slag-based composite admixtures | |
CN108249849B (zh) | 一种高石灰石粉掺量绿色混凝土 | |
Ming et al. | Experimental research of concrete with steel slag powder and zeolite powder | |
CN110255954B (zh) | 一种纳米锂渣早强剂及其制备方法和应用 | |
CN110240438B (zh) | 一种用于水泥基材料密实增强剂及其制备方法 | |
CN110255943B (zh) | 一种湿磨钡渣掺合料及其制备方法和应用 | |
CN109180060B (zh) | 一种增强型混凝土膨胀剂及其制备方法 | |
Jin et al. | The Mechanical and Erosion Resistance Properties of an Alkali-activated Steel Slag Cementitious System. | |
CN112551936A (zh) | 一种混凝土掺合料的制备方法 | |
CN114105502A (zh) | 胶凝材料、古建筑修复砂浆及其制备方法 | |
Sarkar et al. | Microstructural development in a high-strength concrete containing a ternary cementitious system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23810963 Country of ref document: EP Kind code of ref document: A1 |