Nothing Special   »   [go: up one dir, main page]

WO2023276504A1 - アルミニウム合金押出材およびその製造方法 - Google Patents

アルミニウム合金押出材およびその製造方法 Download PDF

Info

Publication number
WO2023276504A1
WO2023276504A1 PCT/JP2022/021574 JP2022021574W WO2023276504A1 WO 2023276504 A1 WO2023276504 A1 WO 2023276504A1 JP 2022021574 W JP2022021574 W JP 2022021574W WO 2023276504 A1 WO2023276504 A1 WO 2023276504A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
aluminum alloy
extruded material
alloy extruded
content
Prior art date
Application number
PCT/JP2022/021574
Other languages
English (en)
French (fr)
Inventor
健太郎 伊原
大晃 福田
隆広 志鎌
伸二 吉原
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to US18/569,680 priority Critical patent/US20240287654A1/en
Priority to KR1020247001286A priority patent/KR20240022570A/ko
Priority to CN202280043632.9A priority patent/CN117500950A/zh
Priority to EP22832662.5A priority patent/EP4350021A4/en
Publication of WO2023276504A1 publication Critical patent/WO2023276504A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/002Extruding materials of special alloys so far as the composition of the alloy requires or permits special extruding methods of sequences
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent

Definitions

  • the present disclosure relates to an aluminum alloy extruded material and a manufacturing method thereof.
  • Patent Document 1 discloses an Al-Zn-Mg alloy extruded material (that is, a 7000 series aluminum alloy extruded material) in which the stress corrosion cracking resistance etc. of the T6 treated material are improved by controlling the alloy composition etc. . Specifically, it discloses an alloy extruded material that does not crack when it is held in a chromic acid boiling solution for 12 hours after being loaded with a stress of 95% of the yield strength by three-point bending.
  • the present invention has been made in view of such circumstances, and one of its purposes is to provide an aluminum alloy extruded material with improved stress corrosion cracking resistance and a method for manufacturing the same.
  • Aspect 1 of the present invention is Ingredient composition Zn: 3.0 to 6.0% by mass, Mg: 0.4 to 1.4% by mass, Fe: 0.05 to 0.2% by mass, Cu: 0.05 to 0.4% by mass, Ti: 0.005 to 0.2% by mass, Zr: 0.1 to 0.3% by mass, Cr: 0.050 to 0.160% by mass, and the balance: Al and inevitable impurities, An aluminum alloy extruded material with a conductivity of 40.1 to 44.3% IACS.
  • Aspect 2 of the present invention is The aluminum alloy extruded material according to aspect 1, wherein the Cr content is 0.070 to 0.120% by mass.
  • Aspect 3 of the present invention is Ingredient composition Zn: 3.0 to 6.0% by mass, Mg: 0.4 to 1.4% by mass, Fe: 0.05 to 0.2% by mass, Cu: 0.05 to 0.4% by mass, Ti: 0.005 to 0.2% by mass, Zr: 0.1 to 0.3% by mass, A step of preparing a billet consisting of Cr: 0.05 to 0.15% by mass and the balance: Al and inevitable impurities; heating the billet to 450-550° C.; cooling the heated billet to 300° C. or less at an average cooling rate of 90° C./hour or more; a step of reheating the cooled billet to 470° C. or higher for extrusion; and quenching the extruded billet.
  • FIG. 1 is a graph showing the relationship between Cr content and electrical conductivity when an aluminum alloy extruded material is produced by the production method described below.
  • FIG. 2 is a graph showing the relationship between the Cr content and the crack life in a stress corrosion cracking resistance test when an aluminum alloy extruded material is produced by the production method described later.
  • FIG. 3 schematically shows an example of temperature history in the method for producing an aluminum alloy extruded material according to the embodiment of the present invention.
  • the present inventors studied from various angles in order to realize an aluminum alloy extruded material with improved stress corrosion cracking resistance. As a result, by essentially including Zn, Mg, Fe, Cu, Ti, Zr and Cr, controlling their contents (especially Cr content) within a predetermined range and controlling the conductivity within a predetermined range, We have found that an aluminum alloy extruded material with improved stress corrosion cracking resistance can be realized. In addition, in order to control the conductivity within a predetermined range, it is necessary to control the component composition (especially the Cr content) and appropriately control the manufacturing conditions (especially the billet heating temperature, cooling rate, reheating temperature, etc.). I found that at the same time.
  • the aluminum alloy extruded material according to the embodiment of the present invention has a chemical composition of Zn: 3.0 to 6.0 mass%, Mg: 0.4 to 1.4 mass%, Fe: 0.05 to 0.2. Mass %, Cu: 0.05 to 0.4 mass %, Ti: 0.005 to 0.2 mass %, Zr: 0.1 to 0.3 mass %, Cr: 0.050 to 0.160 mass % and the balance being aluminum and inevitable impurities.
  • Zn 3.0 to 6.0 mass%
  • Mg 0.4 to 1.4 mass%
  • Fe 0.05 to 0.2.
  • Mass % Mass %
  • Cu 0.05 to 0.4 mass %
  • Ti 0.005 to 0.2 mass %
  • Zr 0.1 to 0.3 mass %
  • Cr 0.050 to 0.160 mass %
  • Zn 3.0 to 6.0% by mass
  • Zn is an element that improves the strength of the aluminum alloy extruded material together with Mg. In order to fully exhibit this effect, the Zn content is set to 3.0% by mass or more. On the other hand, if the Zn content exceeds 6.0% by mass, stress corrosion cracking resistance and general corrosion resistance are lowered. Therefore, the Zn content should be 3.0 to 6.0% by mass.
  • Mg is an element that improves the strength of the aluminum alloy extruded material together with Zn. In order to fully exhibit this effect, the Mg content is set to 0.4% by mass or more. On the other hand, if the Mg content exceeds 1.4% by mass, the extrudability is lowered and the elongation is lowered as the extrusion pressure increases. Therefore, the content of Mg is set to 0.4 to 1.4% by mass.
  • Fe 0.05 to 0.2% by mass
  • Fe is a major unavoidable impurity in aluminum alloys, and is made 0.2% by mass or less so as not to degrade various properties of aluminum alloy extruded materials.
  • reducing the Fe content in the aluminum alloy extruded material to less than 0.05% by mass imposes a large cost burden. Therefore, the Fe content is set to 0.05 to 0.2% by mass.
  • Cu 0.05 to 0.4% by mass
  • Cu is an element that improves the strength of the aluminum alloy extruded material. If the Cu content is less than 0.05% by mass, there is no sufficient strength improvement effect, while if it exceeds 0.4% by mass, the extrudability is lowered. Therefore, the Cu content should be 0.05 to 0.4% by mass. From the viewpoint of extrudability, the upper limit of the Cu content is preferably 0.2% by mass.
  • Ti 0.005 to 0.2% by mass
  • Ti has the effect of improving the formability of the extruded material, and is added in an amount of 0.005% by mass or more.
  • the Ti content is 0.005 to 0.2% by mass, preferably 0.005 to 0.1% by mass, more preferably 0.005 to 0.05% by mass.
  • Zr 0.1 to 0.3% by mass
  • Zr has the effect of suppressing recrystallization of the aluminum alloy extruded material and improving stress corrosion cracking resistance. If the Zr content is less than 0.1% by mass, the above effects are not sufficient, and if it exceeds 0.3% by mass, the extrudability is lowered and the quenching sensitivity is increased, resulting in a decrease in strength. Therefore, the Zr content should be 0.1 to 0.3% by mass.
  • Cr 0.050 to 0.160% by mass
  • Cr is closely related to stress corrosion cracking resistance when an aluminum alloy extruded material is produced by the production method described below. If the Cr content is less than 0.050% by mass, stress corrosion cracking resistance is lowered. Preferably, the Cr content is 0.063% by mass or more, more preferably 0.070% by mass or more. On the other hand, when the Cr content exceeds 0.160% by mass, intermetallic compounds of Cr begin to precipitate, resulting in deterioration in stress corrosion cracking resistance. Preferably, the Cr content is 0.135% by mass or less, more preferably 0.120% by mass or less.
  • An aluminum alloy extruded material preferably contains the above composition, and in one embodiment of the present invention, the balance is aluminum and unavoidable impurities.
  • unavoidable impurities contamination of elements brought in depending on the conditions of raw materials, materials, manufacturing equipment, etc. is allowed.
  • unavoidable impurities include Mn and Si, and it is preferable that the single content of Mn and Si be 0.05% by mass or less.
  • the total amount of unavoidable impurities is preferably 0.20% by mass or less.
  • the aluminum alloy extruded material according to the embodiment of the present invention preferably has a ratio of Zn content to Mg content (hereinafter also referred to as "Zn/Mg mass ratio") of 2.92 to 9.12. This makes it possible to increase the proof stress to 260 MPa or more. More preferably, the Zn/Mg mass ratio is 3.15-8.32. This makes it possible to increase the proof stress to 270 MPa or more.
  • the aluminum alloy extruded material according to the embodiment of the present invention can be manufactured with a conductivity of 40.1 to 44.3% IACS by using the manufacturing method described later.
  • %IACS is an index with the conductivity of international standard annealed copper (resistivity 1.7241 ⁇ 10 ⁇ 8 ⁇ m) as 100%.
  • resistivity 1.7241 ⁇ 10 ⁇ 8 ⁇ m the electrical conductivity decreases as the amount of solid solution of Cr increases. If the electrical conductivity exceeds 44.3% IACS, the stress corrosion cracking resistance is lowered.
  • the definite mechanism is not clear, it is considered that when the electrical conductivity exceeds 44.3% IACS, the solid solution amount of Cr is insufficient and the susceptibility to stress corrosion cracking increases.
  • the electrical conductivity is 43.7% IACS or less, more preferably 43.4% IACS or less.
  • the lower limit of the conductivity is not particularly limited, but in order to keep the Cr content at 0.160% by mass or less and the conductivity to be less than 40.1% IACS, it is necessary to set more detailed manufacturing conditions. In consideration of productivity, it is preferable to set the electrical conductivity to 40.1% IACS or more. More preferably, the conductivity is 40.9% IACS or higher, and even more preferably 41.3% IACS or higher.
  • resistivity can be measured by inducing eddy currents in a sample using a sigma tester, and conductivity (IACS conductivity) is the resistivity of standard copper at 20°C. is divided by the resistivity of the measurement sample and expressed as a percentage.
  • IACS conductivity is the resistivity of standard copper at 20°C. is divided by the resistivity of the measurement sample and expressed as a percentage.
  • FIG. 3 schematically shows an example of temperature history in the method for producing an aluminum alloy extruded material according to an embodiment of the present invention.
  • a method for producing an aluminum alloy extruded material according to an embodiment of the present invention includes (a) a step of heating a billet having the above composition to 450 to 550 ° C., and (b) an average cooling of 90 ° C./hour or more. (c) reheating to 470° C. or higher for extrusion processing; and (d) quenching. In the second half of the step (c) in FIG. 3, the temperature is set to rise in consideration of heat generation during extrusion, but it does not necessarily have to rise. Each step will be described below.
  • a billet having the above component composition is heated to 450-550°C.
  • elements such as Zn and Mg that improve strength can be dispersed, and Cr can be solid-solved in the Al matrix.
  • the heating temperature is preferably 490° C. or higher, more preferably 500° C. or higher, and still more preferably 510° C. or higher.
  • the heating temperature can be measured by attaching a thermocouple to the billet in the heating furnace.
  • the heating time is not particularly limited, but may be, for example, 1 hour or more.
  • step (b) Step of cooling to 300°C or less at an average cooling rate of 90°C/hour or more
  • the billet is cooled to 300°C or less at an average cooling rate of 90°C/hour or more. If the average cooling rate is less than 90° C./hour, the Cr solid solution in the billet precipitates, the amount of Cr solid solution decreases, and the stress corrosion cracking resistance decreases.
  • the average cooling rate is preferably 200° C./hour or higher, more preferably 400° C./hour or higher.
  • the average cooling rate is measured by dividing the difference between the billet heating temperature and 300°C after cooling, which is measured using a thermocouple, by the time required for cooling from the heating temperature to 300°C. be able to.
  • step (b) the material is reheated to 470° C. or higher for extrusion. If the reheating temperature is lower than 470° C., the Cr solid solution in the billet precipitates, the amount of Cr solid solution decreases, and the stress corrosion cracking resistance decreases.
  • the temperature during reheating can be measured by attaching a thermocouple to the billet.
  • the die temperature and container temperature during extrusion are preferably heated to 400° C. or higher so that the reheating temperature can be maintained during extrusion.
  • the extrusion conditions are not particularly limited, but may be, for example, an extrusion ratio of 10 or more and an extrusion speed of 1 m/min or more.
  • the shape and the like of the extruded material after extrusion are not particularly limited.
  • the steel is quenched by a known method in order to secure a predetermined strength and to suppress precipitation of Cr.
  • quenching can be performed by air cooling, water cooling, misting, or the like.
  • the method for producing an aluminum alloy extruded material according to an embodiment of the present invention may include other steps (for example, an artificial aging treatment step performed after step (d)). .
  • FIG. 1 shows the relationship between the Cr content and the conductivity when an aluminum alloy extruded material is produced by the above production method.
  • the hatched areas in FIG. 1 indicate areas where the conductivity is between 40.1 and 44.3% IACS.
  • the conductivity decreases as the Cr content increases, and the conductivity becomes 40.1 to 44.3% IACS by setting the Cr content to 0.050 to 0.160% by mass. I understand.
  • FIG. 1 shows the relationship between the Cr content and the conductivity when an aluminum alloy extruded material is produced by the above production method.
  • the hatched areas in FIG. 1 indicate areas where the conductivity is between 40.1 and 44.3% IACS.
  • the conductivity decreases as the Cr content increases, and the conductivity becomes 40.1 to 44.3% IACS by setting the Cr content to 0.050 to 0.160% by mass. I understand.
  • FIG. 2 shows the cracking life in the stress corrosion cracking resistance test for the Cr content when the aluminum alloy extruded material is produced by the above production method (specifically, higher stress at three-point bending (100% of proof stress ), and the time until cracking occurs when held in a chromic acid boiling solution for 10 hours or more after being loaded.
  • the hatched area in FIG. 2 indicates the area where the crack life is 10 hours or longer. From FIG. 2, it can be seen that when the Cr content is 0.050 to 0.160% by mass, the cracking life becomes 10 hours or more, and the stress corrosion cracking resistance can be improved. It can be seen that when the Cr content is less than 0.050% by mass, the crack life is less than 10 hours.
  • the susceptibility to stress corrosion cracking increases when the Cr solid solution amount is small. Also, it can be seen that when the Cr content exceeds 0.160% by mass, the crack life is less than 10 hours. This is because when the Cr content exceeds 0.160% by mass, an intermetallic compound of Cr begins to precipitate (although the electrical conductivity is low and the amount of Cr in solid solution is large). Furthermore, from FIG. 2, by setting the Cr content to 0.063 to 0.135% by mass, the cracking life becomes 12.5 hours or more, and the stress corrosion cracking resistance can be further improved. It can be seen that by setting the content to 070 to 0.120% by mass, the cracking life becomes 14 hours or more, and the stress corrosion cracking resistance can be further improved.
  • the aluminum alloy extruded material according to the embodiment of the present invention can have a yield strength of 260 MPa or more by general artificial aging treatment. More preferably, the proof stress can be 270 MPa or more. Further, the tensile strength after general artificial aging treatment is preferably 330 MPa or more, and the elongation after general artificial aging treatment is preferably 10% or more, more preferably 11% or more.
  • An aluminum alloy billet having the chemical composition shown in Table 1 was cast and heated to 470°C.
  • the heating time at 470° C. was 6 hours. After that, it was air-cooled to room temperature (about 25°C) at an average cooling rate of 90°C/hour or more. After that, the billet is reheated to 480° C. and extruded at a die temperature of 450° C., a container temperature of 450° C., an extrusion ratio of 60.9, and an extrusion speed of 4 m/min. and After that, quenching was performed by air cooling.
  • ⁇ Tensile test> Two JIS13B test pieces are cut out from the aluminum alloy extruded material so that the tensile direction is parallel to the extrusion direction (L direction), and a tensile test is performed according to the metal material test method specified in JISZ2241. Yield strength and elongation were measured.
  • ⁇ Stress corrosion cracking resistance test (chromic acid accelerated test)> A stress was applied to the aluminum alloy extruded material by three-point bending.
  • the stress loading direction was the transverse direction (LT direction), and the load stress level was 100% of the proof stress after each artificial aging treatment. After that, two of each were immersed in a chromic acid boiling solution and visually observed every two hours up to 16 hours.
  • Table 2 shows the results of each test. In the stress corrosion cracking resistance test, if cracking was not observed even after 16 hours had elapsed, "16" was entered in the crack life column.
  • Test No. in Table 2 Both Nos. 1 and 2 satisfied the requirements defined in the embodiments of the present invention, had a cracking life of at least 10 hours, and had improved stress corrosion cracking resistance. On the other hand, test no. 3 to 5 do not meet the requirements specified in the embodiments of the present invention (Cr content 0.050 to 0.160% by mass and conductivity 40.1 to 44.3% IACS), and crack life was less than 10 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Extrusion Of Metal (AREA)

Abstract

成分組成が、Zn:3.0~6.0質量%、Mg:0.4~1.4質量%、Fe:0.05~0.2質量%、Cu:0.05~0.4質量%、Ti:0.005~0.2質量%、Zr:0.1~0.3質量%、Cr:0.050~0.160質量%、ならびに残部:Alおよび不可避不純物からなり、導電率が40.1~44.3%IACSである、アルミニウム合金押出材。

Description

アルミニウム合金押出材およびその製造方法
 本開示はアルミニウム合金押出材およびその製造方法に関する。
 従来、フレーム材に用いられるアルミニウム部材として、高強度の6000系アルミニウム合金押出材が主に使用されてきた。しかし、6000系アルミニウム合金は焼入れ感受性が高く、焼入れによって歪が生じやすいために、精度が要求される部材への適用は難しい。そこで、応力腐食割れの問題があるものの焼入れ感受性が低い7000系アルミニウム合金のフレーム材への適用が試みられている。
 特許文献1には、合金組成等を制御することによりT6処理材の耐応力腐食割れ性等を改善したAl-Zn-Mg系合金押出材(すなわち7000系アルミニウム合金押出材)が開示されている。具体的には、3点曲げにて耐力の95%の応力を負荷した後、クロム酸沸騰溶液中に12時間保持して、割れが発生しない合金押出材が開示されている。
特開平10-30147号公報
 しかしながら、特許文献1に開示されるような従来技術では、3点曲げにてより高応力(耐力の100%)を負荷した後、クロム酸沸騰溶液中に10時間以上保持した場合に、割れが発生するおそれがあることがわかり、耐応力腐食割れ性に更なる改善の余地があることがわかった。
 本発明はこのような状況に鑑みてなされたものであり、その目的の1つは、耐応力腐食割れ性が改善されたアルミニウム合金押出材およびその製造方法を提供することである。
 本発明の態様1は、
 成分組成が、
 Zn:3.0~6.0質量%、
 Mg:0.4~1.4質量%、
 Fe:0.05~0.2質量%、
 Cu:0.05~0.4質量%、
 Ti:0.005~0.2質量%、
 Zr:0.1~0.3質量%、
 Cr:0.050~0.160質量%、ならびに
 残部:Alおよび不可避不純物からなり、
 導電率が40.1~44.3%IACSである、アルミニウム合金押出材である。
 本発明の態様2は、
 前記Crの含有量が0.070~0.120質量%である、態様1に記載のアルミニウム合金押出材である。
 本発明の態様3は、
 成分組成が、
 Zn:3.0~6.0質量%、
 Mg:0.4~1.4質量%、
 Fe:0.05~0.2質量%、
 Cu:0.05~0.4質量%、
 Ti:0.005~0.2質量%、
 Zr:0.1~0.3質量%、
 Cr:0.05~0.15質量%、ならびに
 残部:Alおよび不可避不純物からなるビレットを用意する工程と、
 前記ビレットを、450~550℃に加熱する工程と、
 加熱した前記ビレットを、90℃/時間以上の平均冷却速度で300℃以下に冷却する工程と、
 冷却した前記ビレットを、470℃以上に再加熱して押出加工を行う工程と、
 押出加工した前記ビレットを焼入れする工程と、を含む態様1または2に記載のアルミニウム合金押出材の製造方法である。
 本発明の実施形態によれば、耐応力腐食割れ性が改善されたアルミニウム合金押出材およびその製造方法を提供することが可能である。
図1は、後述する製造方法でアルミニウム合金押出材を製造した場合の、Cr含有量に対する導電率の関係を示すグラフである。 図2は、後述する製造方法でアルミニウム合金押出材を製造した場合の、Cr含有量に対する、耐応力腐食割れ性試験における割れ寿命の関係を示すグラフである。 図3は、本発明の実施形態に係るアルミニウム合金押出材の製造方法の温度履歴の一例を模式的に示したものである。
 本発明者らは、耐応力腐食割れ性が改善されたアルミニウム合金押出材を実現するべく、様々な角度から検討した。その結果、Zn、Mg、Fe、Cu、Ti、ZrおよびCrを必須で含み、それらの含有量(特にCr含有量)を所定範囲に制御するとともに、導電率を所定範囲に制御することにより、耐応力腐食割れ性が改善されたアルミニウム合金押出材を実現できることを見出した。また、導電率を所定範囲に制御するために、成分組成(特にCr含有量)を制御するとともに、製造条件(特にビレット加熱温度、冷却速度および再加熱温度等)を適切に制御する必要があることも同時に見出した。
 以下に、本発明の実施形態が規定する各要件の詳細を示す。
<1.成分組成>
 本発明の実施形態に係るアルミニウム合金押出材は、成分組成が、Zn:3.0~6.0質量%、Mg:0.4~1.4質量%、Fe:0.05~0.2質量%、Cu:0.05~0.4質量%、Ti:0.005~0.2質量%、Zr:0.1~0.3質量%、Cr:0.050~0.160質量%を含み、さらに、残部がアルミニウムおよび不可避不純物であることが好ましい。
 以下、各元素について詳述する。
 (Zn:3.0~6.0質量%)
 Znは、Mgと共にアルミニウム合金押出材の強度を向上させる元素である。この効果を十分に発揮させるために、Zn含有量を3.0質量%以上とする。一方、Zn含有量が6.0質量%超だと耐応力腐食割れ性および一般耐食性が低下する。よって、Zn含有量は3.0~6.0質量%とする。
 (Mg:0.4~1.4質量%)
 MgはZnと共にアルミニウム合金押出材の強度を向上させる元素である。この効果を十分に発揮させるために、Mg含有量を0.4質量%以上とする。一方、Mg含有量が1.4質量%超だと、押出圧力の増大に伴い押出性が低下するとともに伸びも低下する。よって、Mgの含有量は0.4~1.4質量%とする。
 (Fe:0.05~0.2質量%)
 Feはアルミニウム合金の主要な不可避不純物であり、アルミニウム合金押出材の諸特性を低下させないため、0.2質量%以下とする。一方、アルミニウム合金押出材中のFeを0.05質量%未満に低減することはコスト面の負担が大きい。よって、Fe含有量は0.05~0.2質量%とする。
 (Cu:0.05~0.4質量%)
 Cuはアルミニウム合金押出材の強度を向上させる元素である。Cu含有量が0.05質量%未満では十分な強度向上効果が無く、一方、0.4質量%超だと押出性の低下を招く。よって、Cu含有量は0.05~0.4質量%とする。押出性の観点から、Cu含有量の上限値は0.2質量%であることが好ましい。
 (Ti:0.005~0.2質量%)
 Tiは、押出材の成形性を向上させる作用があり、0.005質量%以上を添加する。一方、0.2質量%超だとその作用が飽和し、粗大な金属間化合物が晶出して破壊の起点になりうるため機械的性質が低下する。よって、Ti含有量は0.005~0.2質量%とし、好ましくは0.005~0.1質量%とし、より好ましくは0.005~0.05質量%とする。
 (Zr:0.1~0.3質量%)
 Zrはアルミニウム合金押出材の再結晶を抑制して、耐応力腐食割れ性を向上させる作用がある。Zrの含有量が0.1質量%未満では前記効果が十分ではなく、0.3質量%超だと押出性が低下し、さらに焼入れ感受性を高めて強度低下を招く。よって、Zr含有量は0.1~0.3質量%とする。
 (Cr:0.050~0.160質量%)
 本発明者らは、後述するような製造方法でアルミニウム合金押出材を製造した場合において、Crが耐応力腐食割れ性と密接に関連することを見出した。Cr含有量が0.050質量%未満であると、耐応力腐食割れ性が低下する。好ましくは、Cr含有量が0.063質量%以上、より好ましくは0.070質量%以上である。一方、Cr含有量が0.160質量%超であると、Crの金属間化合物が析出し始め、耐応力腐食割れ性が低下する。好ましくは、Cr含有量が0.135質量%以下、より好ましくは0.120質量%以下である。
 本発明の実施形態に係るアルミニウム合金押出材は、上記の成分組成を含み、本発明の1つの実施形態では、残部はアルミニウムおよび不可避不純物であることが好ましい。不可避不純物として、原料、資材、製造設備等の状況によって持ち込まれる元素の混入が許容される。なお、例えば、Feのように、通常、含有量が少ないほど好ましく、従って不可避不純物であるが、その組成範囲について上記のように別途規定している元素がある。このため、本明細書において、「不可避不純物」という場合は、別途その組成範囲が規定されている元素を除いた概念である。
 不可避不純物としては、MnおよびSiなどが挙げられ、単体で0.05質量%以下とすることが好ましい。また、不可避不純物は総量で0.20質量%以下することが好ましい。
 本発明の実施形態に係るアルミニウム合金押出材は、Mg含有量に対するZn含有量の比(以下、「Zn/Mg質量比」とも称する)を2.92~9.12にすることが好ましい。これにより耐力を260MPa以上にすることが可能となる。より好ましくは、Zn/Mg質量比を3.15~8.32にすることである。これにより、耐力を270MPa以上にすることが可能となる。
<2.導電率>
 本発明の実施形態に係るアルミニウム合金押出材は、後述するような製造方法で製造することにより、導電率を40.1~44.3%IACSにすることができる。なお、「%IACS」は国際標準軟銅(抵抗率1.7241×10-8Ωm)の導電率を100%とした指標である。本合金系では、Crの固溶量増大に伴い、導電率が低下することがわかっている。
 導電率が44.3%IACS超だと、耐応力腐食割れ性が低下する。明確なメカニズムは明らかではないが、導電率が44.3%IACS超の場合には、Crの固溶量が十分ではなく、耐応力腐食割れに対する感受性が高まると考えられる。好ましくは、導電率が43.7%IACS以下であり、より好ましくは43.4%IACS以下である。
 一方、導電率の下限は特に制限されないが、Cr含有量を0.160質量%以下としつつ、導電率を40.1%IACS未満にするためには、より詳細な製造条件の設定が必要となり、生産性を考慮すると導電率を40.1%IACS以上にしておくことが好ましい。より好ましくは、導電率は40.9%IACS以上であり、さらに好ましくは、41.3%IACS以上である。
 本発明の実施形態において、抵抗率は、シグマテスターを用いて、試料中に渦電流を誘起させることによって測定することができ、導電率(IACS導電率)は、標準銅の20℃における抵抗率を測定試料の抵抗率で除して百分率で表して求めるものとする。
<3.製造方法>
 図3に、本発明の実施形態に係るアルミニウム合金押出材の製造方法の温度履歴の一例を模式的に示す。本発明の実施形態に係るアルミニウム合金押出材の製造方法は、上記成分組成を有するビレットに対して、(a)450~550℃に加熱する工程と、(b)90℃/時間以上の平均冷却速度で300℃以下に冷却する工程と、(c)470℃以上に再加熱して押出加工を行う工程と、(d)焼入れする工程と、を含む。なお、図3の工程(c)の後半において、押出中の発熱を考慮して温度を右肩上がりとしているが、必ずしも右肩上がりである必要はない。以下各工程について説明する。
[(a)450~550℃に加熱する工程]
 均質化のために、上記成分組成を有するビレットを450~550℃に加熱する。これにより、例えば、ZnおよびMg等の強度を向上させる元素を分散させ、CrをAlマトリクス中に固溶させることができる。加熱温度が上記範囲外であると、例えば耐力を十分に確保できず、また、CrをAlマトリクス中に固溶させることができない。加熱温度は、好ましくは490℃以上であり、より好ましくは500℃以上であり、さらに好ましくは510℃以上である。なお、加熱温度は、加熱炉中のビレットに熱電対を取り付けることにより測定することができる。加熱時間は特に制限されないが、例えば、1時間以上とし得る。
[(b)90℃/時間以上の平均冷却速度で300℃以下に冷却する工程]
 工程(a)後、ビレットを90℃/時間以上の平均冷却速度で300℃以下に冷却する。平均冷却速度が90℃/時間未満であると、ビレット中に固溶しているCrが析出してCr固溶量が低下し、耐応力腐食割れ性が低下する。平均冷却速度は、好ましくは200℃/時間以上であり、より好ましくは400℃/時間以上である。なお、平均冷却速度は、熱電対を用いて測定した、上記ビレット加熱温度と冷却後の300℃との差を、上記加熱温度から300℃までの冷却にかかった時間で除すことにより測定することができる。
[(c)470℃以上に再加熱して押出加工を行う工程]
 工程(b)後、470℃以上に再加熱して押出加工を行う。再加熱温度が470℃未満であると、ビレット中に固溶しているCrが析出してCr固溶量が低下し、耐応力腐食割れ性が低下する。なお、再加熱時の温度は、ビレットに熱電対を取り付けることにより測定することができる。押出加工時のダイス温度およびコンテナ温度は、押出加工時に上記再加熱温度を維持できるよう、400℃以上に加熱しておくことが好ましい。なお、押出加工の条件は特に制限されないが、例えば押出比10以上、押出速度1m/分以上としてもよい。押出加工後の押出材の形状等についても特に制限されない。
[(d)焼入れする工程]
 工程(c)後、所定の強度を確保するためおよびCrの析出を抑制するために、公知の方法で焼入れする。例えば空冷又は水冷、ミスト等により焼入れすることができる。
 本発明の実施形態に係るアルミニウム合金押出材の製造方法は、本発明の目的を達成する上で、他の工程(例えば、工程(d)後に行う人工時効処理工程等)を含んでいてもよい。
 本発明者らは、上記製造方法によりCrをAlマトリクス中に固溶させることができ、その場合、Cr含有量、導電率および耐応力腐食割れ性が密接に関連することを見出した。図1に、上記製造方法でアルミニウム合金押出材を製造した場合の、Cr含有量に対する導電率の関係を示す。図1のハッチング領域は、導電率が40.1~44.3%IACSである領域を示す。図1において、Cr含有量の増加に伴い導電率が低下し、Cr含有量を0.050~0.160質量%とすることにより、導電率が40.1~44.3%IACSになることがわかる。
 図2に、上記製造方法でアルミニウム合金押出材を製造した場合の、Cr含有量に対する耐応力腐食割れ性試験における割れ寿命(具体的には、3点曲げにてより高応力(耐力の100%)を負荷した後、クロム酸沸騰溶液中に10時間以上保持した場合の割れが発生するまでの時間)の関係を示す。図2のハッチング領域は、割れ寿命が10時間以上である領域を示す。図2より、Cr含有量が0.050~0.160質量%の場合に割れ寿命が10時間以上となって耐応力腐食割れ性を改善できることがわかる。Cr含有量が0.050質量%未満だと、割れ寿命が10時間未満となることがわかる。これは、Cr固溶量が少ないと耐応力腐食割れに対する感受性が高まるためと考えられる。また、Cr含有量が0.160質量%超の場合に割れ寿命が10時間未満となることがわかる。これは、Cr含有量が0.160質量%超の場合に、(導電率は低くCr固溶量は多いものの)Crの金属間化合物が析出し始めるためである。さらに図2より、Cr含有量を0.063~0.135質量%とすることにより、割れ寿命が12.5時間以上となって耐応力腐食割れ性をより改善でき、Cr含有量を0.070~0.120質量%とすることにより、割れ寿命が14時間以上となって耐応力腐食割れ性をさらに改善できることがわかる。
 本発明の実施形態に係るアルミニウム合金押出材は、一般的な人工時効処理によって、耐力を260MPa以上にできることが好ましい。より好ましくは耐力を270MPa以上にできることである。また、一般的な人工時効処理後の引張強度は330MPa以上であることが好ましく、一般的な人工時効処理後の伸びは10%以上であることが好ましく11%以上であることがより好ましい。
 以下、実施例を挙げて本発明の実施形態をより具体的に説明する。本発明の実施形態は以下の実施例によって制限を受けるものではなく、前述および後述する趣旨に合致し得る範囲で、適宜変更を加えて実施することも可能であり、それらはいずれも本発明の実施形態の技術的範囲に包含される。
 表1に示す成分組成のアルミニウム合金ビレットを造塊し、470℃に加熱した。470℃での加熱時間は6時間とした。その後、90℃/時間以上の平均冷却速度で室温(約25℃)まで空冷した。その後、ビレットを480℃に再加熱して、ダイス温度450℃、コンテナ温度450℃、押出比60.9、押出速度4m/分で押出加工を行い、断面形状を厚さ3mm、幅110mmの平板とした。その後、空冷にて焼入れを行った。
 その後、人工時効処理として、一般的な7000系アルミニウム合金のT7条件である70℃×5時間+165℃×6時間の熱処理を行った。得られたアルミニウム合金押出材に対して、以下に示す引張試験、耐応力腐食割れ性試験および導電率測定を行った。
 なお、表1において、「Tr.」は、Trace(トレース)の略で微量を意味し、例えば0.01質量%以下であり得る。
Figure JPOXMLDOC01-appb-T000001
 <引張試験>
 アルミニウム合金押出材からJIS13Bの試験片を引張方向が押出方向(L方向)と平行になるように各2本切出し、JISZ2241に規定する金属材料試験方法に準じて引張試験を行い、引張強さ、耐力および伸びを測定した。
 <耐応力腐食割れ性試験(クロム酸促進試験)>
 アルミニウム合金押出材に応力を3点曲げにて負荷した。応力負荷方向は横方向(LT方向)で、負荷応力水準は、それぞれの人工時効処理後の耐力に対して100%を負荷した。その後、各2本ずつクロム酸沸騰溶液中に浸漬して2時間おきに16時間まで目視観察を行い、いずれも割れが生じなかった最長時間を割れ寿命とした。
 <導電率測定>
 シグマテスターを用いて、アルミニウム合金押出材の導電率(IACS導電率)を測定した。具体的には、各アルミニウム合金押出材につき、室温環境下で導電率を各3回測定し、その平均値を採用した。
 表2に各試験の結果を示す。なお、耐応力腐食割れ性試験において16時間経過後も割れが認められなかったものは、割れ寿命の欄に「16」と記載した。
Figure JPOXMLDOC01-appb-T000002
 表2の結果より、次のように考察できる。表2の試験No.1および2は、いずれも本発明の実施形態で規定する要件を満足しており、割れ寿命が少なくとも10時間以上であり、耐応力腐食割れ性が改善されていた。
 一方、表2の試験No.3~5は、いずれも本発明の実施形態で規定する要件(Cr含有量0.050~0.160質量%および導電率40.1~44.3%IACS)を満たしておらず、割れ寿命が10時間未満であった。
 本出願は、出願日が2021年6月28日である日本国特許出願、特願第2021-106946号を基礎出願とする優先権主張を伴う。特願第2021-106946号は参照することにより本明細書に取り込まれる。

Claims (3)

  1.  成分組成が、
     Zn:3.0~6.0質量%、
     Mg:0.4~1.4質量%、
     Fe:0.05~0.2質量%、
     Cu:0.05~0.4質量%、
     Ti:0.005~0.2質量%、
     Zr:0.1~0.3質量%、
     Cr:0.050~0.160質量%、ならびに
     残部:Alおよび不可避不純物からなり、
     導電率が40.1~44.3%IACSである、アルミニウム合金押出材。
  2.  前記Crの含有量が0.070~0.120質量%である、請求項1に記載のアルミニウム合金押出材。
  3.  成分組成が、
     Zn:3.0~6.0質量%、
     Mg:0.4~1.4質量%、
     Fe:0.05~0.2質量%、
     Cu:0.05~0.4質量%、
     Ti:0.005~0.2質量%、
     Zr:0.1~0.3質量%、
     Cr:0.05~0.15質量%、ならびに
     残部:Alおよび不可避不純物からなるビレットを用意する工程と、
     前記ビレットを、450~550℃に加熱する工程と、
     加熱した前記ビレットを、90℃/時間以上の平均冷却速度で300℃以下に冷却する工程と、
     冷却した前記ビレットを、470℃以上に再加熱して押出加工を行う工程と、
     押出加工した前記ビレットを焼入れする工程と、を含む請求項1または2に記載のアルミニウム合金押出材の製造方法。
PCT/JP2022/021574 2021-06-28 2022-05-26 アルミニウム合金押出材およびその製造方法 WO2023276504A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/569,680 US20240287654A1 (en) 2021-06-28 2022-05-26 Aluminum alloy extruded material and method for manufacturing the same
KR1020247001286A KR20240022570A (ko) 2021-06-28 2022-05-26 알루미늄 합금 압출재 및 그 제조 방법
CN202280043632.9A CN117500950A (zh) 2021-06-28 2022-05-26 铝合金挤压材及其制造方法
EP22832662.5A EP4350021A4 (en) 2021-06-28 2022-05-26 EXTRUDED ALUMINUM ALLOY MATERIAL AND METHOD FOR PRODUCING SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021106946A JP7140892B1 (ja) 2021-06-28 2021-06-28 アルミニウム合金押出材およびその製造方法
JP2021-106946 2021-06-28

Publications (1)

Publication Number Publication Date
WO2023276504A1 true WO2023276504A1 (ja) 2023-01-05

Family

ID=83354839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021574 WO2023276504A1 (ja) 2021-06-28 2022-05-26 アルミニウム合金押出材およびその製造方法

Country Status (6)

Country Link
US (1) US20240287654A1 (ja)
EP (1) EP4350021A4 (ja)
JP (1) JP7140892B1 (ja)
KR (1) KR20240022570A (ja)
CN (1) CN117500950A (ja)
WO (1) WO2023276504A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1030147A (ja) 1996-07-17 1998-02-03 Furukawa Electric Co Ltd:The Al−Zn−Mg系合金押出材とその製造方法
JP2006505695A (ja) * 2002-11-06 2006-02-16 ペシネイ レナリュ Al−Zn−Mg合金製の圧延製品の簡易製造法、およびこの方法によって得られる製品
JP2006188730A (ja) * 2005-01-05 2006-07-20 Furukawa Sky Kk Al−Mg−Zn合金を用いたインパクト成形性に優れる小型構造部品
JP2009221566A (ja) * 2008-03-18 2009-10-01 Kobe Steel Ltd 耐水素脆化特性に優れた高圧ガス容器用アルミニウム合金材
JP2015221924A (ja) * 2014-05-22 2015-12-10 株式会社神戸製鋼所 アルミニウム合金押出材及びその製造方法
JP2021106946A (ja) 2018-09-24 2021-07-29 株式会社藤商事 遊技機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1030147A (ja) 1996-07-17 1998-02-03 Furukawa Electric Co Ltd:The Al−Zn−Mg系合金押出材とその製造方法
JP2006505695A (ja) * 2002-11-06 2006-02-16 ペシネイ レナリュ Al−Zn−Mg合金製の圧延製品の簡易製造法、およびこの方法によって得られる製品
JP2006188730A (ja) * 2005-01-05 2006-07-20 Furukawa Sky Kk Al−Mg−Zn合金を用いたインパクト成形性に優れる小型構造部品
JP2009221566A (ja) * 2008-03-18 2009-10-01 Kobe Steel Ltd 耐水素脆化特性に優れた高圧ガス容器用アルミニウム合金材
JP2015221924A (ja) * 2014-05-22 2015-12-10 株式会社神戸製鋼所 アルミニウム合金押出材及びその製造方法
JP2021106946A (ja) 2018-09-24 2021-07-29 株式会社藤商事 遊技機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4350021A4

Also Published As

Publication number Publication date
CN117500950A (zh) 2024-02-02
KR20240022570A (ko) 2024-02-20
EP4350021A1 (en) 2024-04-10
US20240287654A1 (en) 2024-08-29
EP4350021A4 (en) 2024-09-18
JP2023005182A (ja) 2023-01-18
JP7140892B1 (ja) 2022-09-21

Similar Documents

Publication Publication Date Title
JP4964586B2 (ja) 高強度Al−Zn合金およびそのような合金製品の製造方法
CN112996935A (zh) 7xxx系列铝合金产品
EP2675933B1 (en) 2xxx series aluminum lithium alloys
EP2847361B1 (en) 2xxx series aluminum lithium alloys
KR102565183B1 (ko) 7xxx-시리즈 알루미늄 합금 제품
JP7044863B2 (ja) Al-Mg-Si系アルミニウム合金材
EP3135790B1 (en) Method for manufacturing an aluminum alloy member and aluminum alloy member manufactured by the same
WO2016204043A1 (ja) 高強度アルミニウム合金熱間鍛造材
EP2885438A1 (en) 2xxx series aluminum lithium alloys
KR20230043868A (ko) 신규 6xxx 알루미늄 합금 및 이의 제조 방법
WO2023276504A1 (ja) アルミニウム合金押出材およびその製造方法
US20210404038A1 (en) 2xxx aluminum lithium alloys
US20210262065A1 (en) 2xxx aluminum alloys
EP4247991A1 (en) Method of manufacturing 2xxx-series aluminum alloy products
JP7543161B2 (ja) アルミニウム合金押出材
US20240175114A1 (en) Methods of producing 2xxx aluminum alloys
RU2778434C1 (ru) Изделие из алюминиевого сплава серии 7xxx

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832662

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18569680

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280043632.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022832662

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022832662

Country of ref document: EP

Effective date: 20240104

ENP Entry into the national phase

Ref document number: 20247001286

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247001286

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 202447004246

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE