Nothing Special   »   [go: up one dir, main page]

WO2023134571A1 - 用于无线通信的电子设备和方法以及计算机可读存储介质 - Google Patents

用于无线通信的电子设备和方法以及计算机可读存储介质 Download PDF

Info

Publication number
WO2023134571A1
WO2023134571A1 PCT/CN2023/070959 CN2023070959W WO2023134571A1 WO 2023134571 A1 WO2023134571 A1 WO 2023134571A1 CN 2023070959 W CN2023070959 W CN 2023070959W WO 2023134571 A1 WO2023134571 A1 WO 2023134571A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
candidate
beams
tracking
measurement
Prior art date
Application number
PCT/CN2023/070959
Other languages
English (en)
French (fr)
Inventor
马可
张帆
王昭诚
曹建飞
Original Assignee
索尼集团公司
马可
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼集团公司, 马可 filed Critical 索尼集团公司
Priority to CN202380016010.1A priority Critical patent/CN118591996A/zh
Publication of WO2023134571A1 publication Critical patent/WO2023134571A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/0874Hybrid systems, i.e. switching and combining using subgroups of receive antennas

Definitions

  • the present application relates to the technical field of wireless communication, and more particularly, relates to an electronic device and method for wireless communication and a computer-readable storage medium that facilitate proper determination of a beam tracking measurement range.
  • Beamforming technology is widely used in New Radio (NR) to compensate for high path loss and improve received power.
  • the beam management obtains and maintains the set of beams used by the base station end/user equipment end for uplink/downlink.
  • Traditional beam management uses beam scanning, that is, the base station/user equipment side measures all candidate beams, and selects the optimal beam with the best beam quality (such as the maximum Reference Signal Receiving Power (RSRP)) as the target beam.
  • RSRP Reference Signal Receiving Power
  • Beams used in data transmission When the number of candidate beams is large, the overhead of beam scanning is huge.
  • beam tracking technology which measures beam quality for beams (not all beams) within the measurement range on the basis of current beams, so as to track (optimal) beam changes.
  • One of the key points of beam tracking technology is to determine the measurement range of beam tracking.
  • an electronic device comprising a processing circuit configured to: based on a result of previous beam tracking using a candidate beam with respect to another device in communication with the electronic device, Estimating a predicted probability that each candidate beam is an optimal beam; and selecting, among the candidate beams, a measurement beam for next beam tracking based on the estimated predicted probability.
  • a method for wireless communication comprising: estimating each candidate beam as a predicted probability of the optimal beam; and selecting, among the candidate beams, a measurement beam for the next beam tracking based on the estimated predicted probability.
  • a non-transitory computer-readable storage medium storing executable instructions, the executable instructions, when executed by a processor, cause the processor to perform the above-mentioned method for wireless communication Or the individual functions of the aforementioned electronic devices.
  • the predicted probability that each candidate beam is the optimal beam is estimated by using the results of beam tracking using the candidate beams previously, and the measurement beam for the next beam tracking is determined based on such predicted probability, so that The measurement range of beam tracking can be appropriately determined.
  • FIG. 1 is a schematic diagram for illustrating changes in beam quality caused by user movement
  • FIG. 2 is a schematic diagram for illustrating beam switching of different terminal devices in a cell
  • FIG. 3 is a block diagram illustrating a configuration example of an electronic device according to an embodiment of the present disclosure
  • Fig. 4 is a schematic diagram for illustrating the variation of the beam quality of different beams with the orientation of the terminal device
  • Fig. 5 is a schematic diagram for illustrating the variation of the ratio of the beam qualities of different beams with the orientation of the terminal device
  • FIG. 6 is a block diagram illustrating another configuration example of an electronic device according to an embodiment of the present disclosure.
  • Fig. 7 is a schematic diagram schematically showing an example structure of a long short-term memory (Long Short-Term Memory, LSTM) model
  • FIG. 8 is a schematic diagram for explaining an example use of a prediction model by an estimation unit of an electronic device according to an embodiment
  • ULA Uniform Planar Array
  • UPA Uniform Rectangular Array
  • FIG. 11 is a block diagram showing still another configuration example of an electronic device according to an embodiment of the present disclosure.
  • FIG. 12 is a flowchart illustrating an example signaling interaction for implementing a beam tracking process of an electronic device on the network side
  • FIG. 13 is a flowchart illustrating an example signaling interaction for implementing a beam tracking process of an electronic device on the terminal side
  • 14 and 15 are schematic diagrams illustrating example simulation results of a beam tracking process of an electronic device according to an embodiment of the present disclosure
  • 16 is a flowchart illustrating a procedure example of a method for wireless communication according to an embodiment of the present disclosure
  • 17 is a block diagram showing a first example of a schematic configuration of an eNB to which the techniques of this disclosure can be applied;
  • FIG. 18 is a block diagram illustrating a second example of a schematic configuration of an eNB to which the technology of the present disclosure can be applied;
  • FIG. 19 is a block diagram showing an example of a schematic configuration of a smartphone to which the technology of the present disclosure can be applied;
  • FIG. 20 is a block diagram showing an example of a schematic configuration of a car navigation device to which the technology of the present disclosure can be applied.
  • Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms, and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known structures, and well-known technologies are not described in detail.
  • FIG. 1 is a schematic diagram for explaining changes in beam quality caused by user movement, which shows the current beam with an angle of 0 degrees caused by changes in the angle of the LOS path between the base station and the terminal equipment as the user moves.
  • Changes in signal quality (RSRP). When the user's orientation changes to a certain extent, the currently used beam is no longer the optimal beam, and a re-determined optimal beam needs to be used.
  • the optimal base station beam and terminal device beam tend to change continuously
  • the optimal base station beam and terminal device beam may Discrete hopping occurs where the end device beam is less stable than the base station beam. For this reason, continuous beam tracking is required to determine the optimal beam currently in use.
  • An adjacent beam tracking technology has been proposed in the prior art, which periodically performs measurements on beams within a certain range near the currently used optimal beam (also referred to herein as the currently used beam).
  • the current beam tracking scheme using a beam within a fixed measurement range near the beam may fail to track the beam when the measurement range is too small. , and cause unnecessary overhead when the measurement range is too large.
  • the measurement range of its beam tracking is determined for the fastest moving terminal equipment (such as a vehicle) in the entire cell.
  • the fastest moving terminal equipment such as a vehicle
  • FIG. 2 for a terminal device with a high moving speed, that is, a vehicle terminal device, its optimal beam is switched from BM1 to BM4, and the switching range is relatively large, so a larger measurement range is required;
  • the terminal equipment of the pedestrian is the terminal equipment of pedestrians, whose optimal beam is switched from BM2 to the adjacent BM3, and the beam switching range is small, so only a small measurement range is required.
  • the measurement range of the beam tracking of the base station determined for the entire cell may not be necessary for terminals that move slowly, such as pedestrians.
  • the inventor proposes to use the previous beam tracking results to dynamically determine the measurement range of the next beam tracking for another device communicating with the current electronic device, so that the appropriate measurement range of the beam tracking can be determined.
  • FIG. 3 is a block diagram showing a configuration example of an electronic device according to an embodiment of the present disclosure.
  • the electronic device 300 may include an estimation unit 310 , a selection unit 320 and an optional communication unit 330 .
  • each unit of the electronic device 300 may be included in the processing circuit.
  • the electronic device 300 may include one processing circuit, or may include multiple processing circuits.
  • the processing circuitry may include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and units with different titles may be realized by the same physical entity.
  • the electronic device 300 may be a network side device or a terminal device, which is not limited here.
  • the estimating unit 310 of the electronic device 300 may estimate each candidate beam as an optimal beam based on the result of beam tracking performed previously using the candidate beams with respect to another device communicating with the electronic device, for example, via the communication unit 330 predicted probability of .
  • the selection unit 320 of the electronic device 300 may select a measurement beam for next beam tracking among candidate beams based on the estimated prediction probability.
  • the beam tracking results used by the estimation unit 310 may include time series data of signal quality corresponding to candidate beams (also referred to herein as beam quality of candidate beams, such as RSRP) obtained through beam tracking.
  • candidate beams also referred to herein as beam quality of candidate beams, such as RSRP
  • the beam quality of different beams can reflect the orientation of the terminal equipment relative to the base station or the orientation of the LOS path between the base station and the terminal equipment.
  • the schematic diagrams shown in FIG. 4 and FIG. 5 for illustrating the beam quality of different beams and the ratio between the beam qualities of different beams as a function of the orientation of the terminal device, wherein FIG. 4 shows a single In the case of LOS path, the RSRP of different beams BM1 to BM3 varies with the LOS path angle.
  • Figure 5 shows the ratio of RSRP of beams BM3 to BM2 and the ratio of beams BM1 to BM2 in the case of a single LOS path (in the area where the relevant beams overlap). Variation of RSRP ratio with LOS radial angle.
  • the change of the beam quality of each beam can reflect the change of the orientation of the terminal equipment relative to the base station, and then reflect the movement characteristics of the terminal equipment.
  • the time series data of the beam quality of each candidate beam can reflect the orientation of the terminal device relative to the base station and the movement of the terminal device, and the movement of the terminal device in a short period of time, such as the speed and direction of the movement, is stable, so the above-mentioned
  • the time series data are used to estimate the predicted probability that each candidate beam is the optimal beam.
  • the selection unit 320 of the electronic device 300 may select a measurement beam for next beam tracking from among the candidate beams based on the prediction probability estimated by the estimation unit 310 .
  • the selection unit 320 may select the measurement beam by selecting as small a number of candidate beams as possible among the candidate beams and whose total prediction probability satisfies a predetermined condition.
  • the predetermined condition is such as but not limited to that the total predicted probability is greater than a predetermined threshold and the like.
  • the electronic device 300 may be applied to the determination of the measurement range of the transmitting beam tracking of the transmitting end or the receiving beam tracking of the receiving end.
  • the receiving beam can be used to measure its signal quality (such as RSRP), and it can correspond to each transmitting beam according to the obtained The signal quality in these transmit beams determines which beam to use in data transmission.
  • the current receiving beam can be used uniformly for each sending beam, or the receiving beam corresponding to the sending beam in the previous beam pairing process can be used for each sending beam, or the appropriate beam determined by other methods can be used. the receiving beam.
  • the receiving beam can be used to measure the signal quality of the transmitting beam, and the signal quality obtained by using each receiving beam ( For example RSRP) among these receive beams determines the beam to be used in the data transmission.
  • each receiving beam For example RSRP
  • the currently used sending beam is uniformly used for each receiving beam, or an appropriate sending beam determined in other ways is adopted.
  • the involved candidate beams and measurement beams refer to the transmission beam
  • the electronic device 300 is applied to the reception beam tracking of the receiving end
  • the involved candidate beams and measurement beams are both is the receiving beam.
  • the selection unit 320 of the electronic device 300 may also be configured to, before performing beam tracking on another device communicating with the electronic device for the first time, based on the fact that the candidate beam is used to perform beam scanning on the other device As a result, the measurement beam for the first beam tracking is selected among the candidate beams.
  • the selection unit may select the candidate beam with the best beam quality (for example, corresponding to the highest RSRP) in beam scanning as the measurement beam for the first beam tracking.
  • FIG. 6 shows a block diagram of another configuration example of an electronic device according to an embodiment of the present disclosure.
  • the electronic device 600 may further include an optional determination unit 640 .
  • the units 610 , 620 , 630 of the electronic device 600 may perform functions similar to those of the corresponding units of the electronic device 300 , therefore, only the difference between them, that is, the determining unit, will be described here.
  • the determination unit 640 may be configured to obtain the signal quality corresponding to each measurement beam in the next beam tracking, and determine the beam to be used in data transmission among the measurement beams according to the obtained signal quality. As an example, the determining unit 640 may determine the measurement beam with the best signal quality (for example, corresponding to the highest RSRP) in beam tracking as the beam to be used in data transmission.
  • the best signal quality for example, corresponding to the highest RSRP
  • another device communicating with the current electronic device uses the result of the previous beam tracking to dynamically determine the measurement range of the next beam tracking, so that an appropriate measurement range can be determined.
  • the measurement range of the next beam tracking is dynamically determined based on the results of the previous beam tracking (such as the time series data of the beam quality of the candidate beam obtained in the previous beam tracking) instead of setting a fixed measurement range (such as To reduce the overhead of beam tracking and set a smaller measurement range), it is possible to properly determine the measurement range even in the case of beam hopping caused by user motion.
  • the electronic device in this embodiment when the electronic device in this embodiment is implemented on the base station side, since the measurement range of its beam tracking is determined for another device that communicates with it, that is, a single terminal device rather than for the entire cell, it can be used for moving speeds. Slow end devices avoid unnecessary beam tracking overhead.
  • the estimation unit 310 of the electronic device 300 in the embodiment of the present disclosure may be configured to use a pre-acquired prediction model to determine the prediction probability of a candidate beam, the prediction model is obtained through machine learning using the training data of the beam tracking result .
  • the ratio between the beam qualities of different beams The orientation of the terminal device can be reflected, and the change of the beam quality of each beam can reflect the movement of the terminal device, so the result of such beam tracking can be used to estimate the prediction probability that each candidate beam is the optimal beam.
  • directly using the time series data of beam quality to estimate the prediction probability that the candidate beam is the optimal beam may have limited accuracy, because the ratio between beam qualities such as the RSRP ratio is interfered by multipath and noise, and every The change of the beam quality of each beam, such as the change of RSRP, is interfered by large-scale fading changes, multipath and noise, and cannot accurately reflect the orientation and movement of the terminal equipment.
  • the estimation unit 310 utilizes the prediction model obtained through machine learning using the training data of the results of beam tracking in advance to effectively analyze the ratio between the beam qualities of different beams and the variation of the beam quality of each beam , so as to accurately extract the orientation feature and motion feature of the terminal device.
  • the input of the prediction model can be the signal quality corresponding to the candidate beam obtained by the previous beam tracking, that is, the time series data [R 1 ,R 2 ,...,R t ] of the beam quality, in which each element R i ,1 ⁇ i ⁇ t is the beam quality of each candidate beam for the i-th beam tracking, that is, RSRP, and t is the current number of beam tracking.
  • the output of the prediction model may be, for example, the predicted probability that each candidate beam will be the optimal beam in the next beam tracking.
  • Predictive models may include various suitable models capable of extracting time-series features.
  • the predictive model may include a long short-term memory (LSTM) model.
  • LSTM is a deep learning model for extracting time series features.
  • Figure 7 schematically shows an example structure of the LSTM model. The operators in the shaded box in the figure indicate the point multiplication (the left operator of the first row) and the addition (the right operator of the first row ), tangent (tanh), Sigmod function ( ⁇ ) and other operations, which will not be repeated here.
  • the input information of the LSTM model at the current time t includes (1) the cell state and output at the previous time (t-1) time; and (2) the input of the LSTM model at the current time t. Therefore, such a model can extract time series features, and each time it is used, it only needs to provide the input at the current time t from outside the LSTM model, without repeatedly inputting the previous input information from outside the LSTM.
  • Fig. 8 schematically shows an example use of a predictive model by an estimation unit of an electronic device in a preferred embodiment.
  • the prediction model PM includes CNN, LTSM, fully connected layer and Softmax layer.
  • the input of the model is the result of beam tracking for the tth time (also called the current moment t), such as RSRP, and the output is for the (tth time +1) times (also referred to as the next moment, ie (t+1) moment) the predicted probability that each candidate beam is the optimal beam estimated by beam tracking.
  • the input of the prediction model PM may be the RSRP of each candidate beam in the t-th beam tracking, which may be in the form of a vector whose length is the number of candidate beams M, and each element in the vector corresponds to a candidate beam.
  • the corresponding index of the vector is the measured RSRP; for the t-th beam tracking the unmeasured beam, the corresponding index of the vector is 0.
  • the CNN in the prediction model PM is used to extract preliminary features from the result of the t-th beam tracking, namely RSRP.
  • the LSTM model in the prediction model PM inputs the preliminary features extracted by CNN from the result of the t-th beam tracking, and on the other hand, it inputs the output of its own LSTM model after the last (t-1) beam tracking and cell state.
  • the output x of the LSTM model for the t-th beam tracking is provided to the fully connected layer.
  • the Softmax layer converts the output of the fully connected layer into the predicted probability that the candidate beam is the optimal beam.
  • the Softmax layer is expressed as follows:
  • the output of the prediction model PM is the predicted probability ⁇ p 1 , p 2 , .
  • the above prediction model can be obtained through training by using pre-marked training data in various appropriate ways.
  • cross-entropy can be used as a loss function
  • various optimizers can be used to optimize model parameters, which will not be repeated here.
  • the selection unit 320 of the electronic device 300 in the embodiment of the present disclosure can select the measurement beams through various example processes, so that the total prediction probability of these candidate beams satisfies the condition that the number of the selected candidate beams is as small as possible.
  • the predetermined condition includes, but is not limited to, that the total predicted probability is greater than a predetermined threshold ⁇ .
  • the selection unit 320 may select the measurement beams, that is, determine the measurement beam set, by selecting the minimum number of candidate beams whose total prediction probability satisfies a predetermined condition among the candidate beams.
  • the predetermined condition may be that the total predicted probability is greater than a predetermined threshold ⁇ .
  • the prediction probabilities of the M candidate beams obtained by the estimation unit can be ranked from high to low as Right now
  • the selection unit 320 can select N candidate beams satisfying the following conditions as the measurement beams for the next beam tracking based on the probability threshold ⁇ and the predicted probability of each candidate beam:
  • the predetermined condition may be that the total predicted probability of the selected candidate beams is as large as possible and the number of candidate beams is as small as possible. For example, when the difference between the total predicted probability P total1 of the minimum number N1 of candidate beams and the total predicted probability P total2 of the next smallest number N2 of candidate beams is less than a predetermined probability difference threshold, the minimum number N1 of The candidate beam is used as the measurement beam for the next beam tracking; otherwise, the next smallest number N2 of candidate beams is selected as the measurement beam for the next beam tracking.
  • selection of measurement beams can be changed in units of individual candidate beams. Since the measurement beam for each beam tracking can be changed at the granularity of a single beam, the measurement range can be changed flexibly, so that the overhead of beam tracking is smaller.
  • the selection unit 320 may select the measurement beam by selecting the smallest candidate beam set whose total predicted probability of the included candidate beams satisfies a predetermined condition among multiple candidate beam sets.
  • the predetermined condition may be that the total predicted probability is greater than a predetermined threshold ⁇ .
  • each candidate beam set considered by the selection unit 320 may include one or more adjacent beam sets, and each adjacent beam set is centered on the optimal predicted beam with the highest prediction probability among all candidate beams, and includes Candidate beams with predetermined beam distances from the optimal prediction beam, wherein the Lth candidate beam set includes the set of adjacent beams whose beam distance is the minimum value and (L-1) adjacent beams whose beam distance increases sequentially from the minimum value Beam set, L is a natural number greater than or equal to 1.
  • a set of adjacent beams with increasing beam distances from the optimal predicted beam is defined.
  • the first set of candidate beams Including the set of adjacent beams with the smallest beam distance from the optimal predicted beam
  • the selection unit 320 may select the Lth candidate beam set that satisfies the following conditions based on the probability threshold n and the predicted probability p i of the ith candidate beam in the adjacent beam set B l included in each candidate beam set As the measurement beam for the next beamtracking:
  • the predetermined condition may be that the total predicted probability of the selected candidate beam set is as large as possible and the candidate beam set is as small as possible. For example, when the difference between the total predicted probability P total1 of the smallest L1-th candidate beam set and the total predicted probability P total2 of the next smallest L2-th candidate beam set is less than a predetermined probability difference threshold, you can select The L1th candidate beam is used as the measurement beam for the next beam tracking; otherwise, the L2th candidate beam is selected as the measurement beam for the next beam tracking.
  • the optimal prediction beam can be, for example, the beam with the largest prediction probability estimated by the estimation unit, and the beam distance between the candidate beam and the optimal prediction beam can be based on the direction of the candidate beam and the optimal prediction The difference between the directions of the beams is determined.
  • each candidate beam is sorted as 1,2,...,M h in the horizontal direction, and 1,2,...,M v in the vertical direction, then the horizontal direction index is i h , the vertical
  • the beam distance between the beam with direction index iv and the beam with index j h in the horizontal direction and j v in the vertical direction is defined as Wherein, i h and j h are natural numbers between 1 and M h , and iv and j v are natural numbers between 1 and M v .
  • selection of measurement beams may be changed in units of candidate beam sets. Since the candidate beam set may include more than one beam, if the next beam tracking can use the measurement beam of the previous beam tracking, that is, the candidate beam set, there is no need to change the measurement range of the beam tracking. Thus, signaling overhead associated with measurement range changes for beam tracking can be reduced.
  • the electronic device according to the embodiment and example processing of its constituent units are described above. Next, further example configurations or example processes thereof will be described for the case where the electronic device of the embodiment is implemented on the transmitting side and the case where it is implemented on the receiving side.
  • the following scenario is used as an example for description. Due to beam symmetry or beam consistency, after beam tracking is performed on the transmitting side (base station side) and the receiving side (terminal side) for the downlink scenario to obtain the optimal beam, the optimal beam for the uplink scenario can be correspondingly obtained.
  • those skilled in the art can apply the examples and processes for downlink scenarios given in the embodiments to uplink scenarios appropriately (for example, after appropriate deformation), so details are not repeated here.
  • an electronic device such as that previously described with reference to FIG. 3 or FIG. 6 is implemented on the transmitting side.
  • the candidate beam may be a transmission beam of a downlink reference signal (such as a channel state information reference signal (Channel State Information Reference Signal, CSI-RS)), and the electronic device may be a network side device, such as a base station or a TRP, etc.
  • CSI-RS Channel State Information Reference Signal
  • Another device communicating with the electronic device may be a terminal device.
  • the terminal device may also have the functions of the electronic device described above with reference to FIG. 3 or FIG. 6 .
  • FIG. 11 is a block diagram showing still another configuration example of an electronic device according to an embodiment of the present disclosure.
  • the electronic device 1100 in addition to the units 1110 , 1120 , 1130 , and 1140 corresponding to the estimation unit 610 , the selection unit 620 , the optional communication unit 630 , and the optional determination unit 640 in FIG. 6 , the electronic device 1100 can also Optional configuration unit 1150 is included.
  • the configuration unit 1150 of the electronic device 1100 may be configured to pre-generate configuration information of a resource set of downlink reference signals, and each downlink reference signal in the resource set can be sent separately (this resource set may therefore be called a flexible resource set) , and the electronic device 1100 may provide the configuration information to the terminal device via the communication unit 1130 .
  • each downlink reference signal in the resource set has a corresponding transmission beam, and the transmission beams of all the downlink reference signals in the resource set cover all possible transmission beams of the electronic device.
  • the flexible resource set configured by the configuring unit 1150 may be a flexible CSI-RS resource set.
  • the number of CSI-RS resources included in the traditional CSI-RS resource set is constant. Therefore, when using the traditional CSI-RS resource set to perform transmission beam tracking, for example, when the number of measurement beams tracked by the transmission beam changes, it may be necessary to configure a new CSI-RS resource set.
  • NR stipulates that the upper limit of the number of user CSI-RS resource sets is 16, and the beam tracking in which the number of measurement beams changes dynamically in the embodiment may occupy a large number of CSI-RS resource sets.
  • the electronic device can use the configuration unit to provide a flexible CSI-RS resource set, so that the single CSI-RS resource set can be used to support the scene where the number of measurement beams for beam tracking changes dynamically.
  • the electronic device 1100 when the electronic device 1100 selects a different downlink reference signal or a different number of downlink reference signals for the next beam tracking and the previous beam tracking via the selection unit 1120 When receiving a signal, an indication about the selected downlink reference signal or the number of the selected downlink reference signal for the next beam tracking may be sent to the terminal device via the communication unit 1130 . In this way, the electronic device 1100 does not have to configure a new CSI-RS resource set when the measurement beams tracked by the beam or the number of measurement beams changes, but only needs to activate or trigger the selected CSI-RS in the flexible CSI-RS resource set to It is enough to send these CSI-RS.
  • FIG. 12 is a flowchart for illustrating an example signaling interaction implementing a beam tracking procedure of an electronic device at the network side.
  • FIG. 12 is a flowchart for illustrating an example signaling interaction implementing a beam tracking procedure of an electronic device at the network side.
  • the electronic device 1100 is implemented as a base station BS, and another device communicating with it is a terminal device UE, and the electronic device can pass the first example described in "2.3 Exemplary processing performed by a selection unit"
  • the measurement beam selection method (measurement beam selection in units of a single beam) or the selection measurement beam method of the second example (measurement beam selection in units of candidate beam sets) determines a measurement beam, that is, determines a set of measurement beams, and can be used
  • the determined set of measurement beams is used for beam tracking.
  • the BS configures a flexible downlink reference signal resource set, such as a flexible CSI-RS resource set, in which each CSI-RS can be sent separately and has a corresponding The transmission beams of all CSI-RSs in the resource set cover all possible transmission beams of the BS. Due to the correspondence between CSI-RS and transmission beams in the context of the present disclosure, in the following, sometimes the selected CSI-RS is simply used to refer to the selected transmission beam, or the selected The transmit beam of refers to the selected CSI-RS.
  • step S2 optionally, the BS configures the probability threshold ⁇ TRP and the default number of measurement beams N TRP /measurement beam set number L TRP,de , and determines the measurement beam set for initial beam tracking.
  • the BS configures ⁇ TRP and N TRP , so that, for example, the N TRP with the best beam quality (for example, the highest RSRP) in the transmit beam scanning at the base station can be determined.
  • TRP candidate beams (for example, corresponding to N TRP CSI-RSs) are used as a set of measurement beams for initial beam tracking.
  • the BS configures ⁇ TRP and L TRP,de , so that it can be determined, for example, that the beam quality in the transmit beam scanning at the base station is the best (for example, has the highest RSRP ) with the transmission beam as the center (that is, constructing the transmission beam as the optimal prediction beam) the L TRP, de candidate beam set (and for example, the candidate CSI-RS numbered L TRP, de can be determined accordingly set) as the measurement beam for initial beam tracking (measurement CSI-RS set).
  • the BS may send a (base station) beam tracking notification to the UE to provide an indication about the beam tracking selected measurement beam, i.e. the selected CSI-RS.
  • step S4 the BS periodically sends the selected CSI-RS to the UE, so that the UE uses the receive beam to measure RSRP for each CSI-RS used as the measurement beam in turn.
  • step S5 the UE feeds back the RSRP of each CSI-RS used as the measurement beam to the BS as the measurement result of this beam tracking.
  • the BS may determine the beam to be used and the measurement beam for the next beam tracking based on the obtained beam tracking measurement result.
  • the measurement beam selection is performed in the unit of a single candidate beam in step S6; in step S2, the BS configures the probability threshold and the default measurement beam
  • the measurement beam is selected in units of the candidate beam set, and the specific selection method is as described above, and will not be repeated here.
  • steps S4 to S6 may be performed periodically until the number of measurement beams determined by the BS in step S6 is changed.
  • step S7 the BS sends a new beam tracking notification to the UE to provide an indication of the selected measurement beams for beam tracking, ie the selected CSI-RS.
  • the BS may also send a new base station beam tracking notification to the UE in step S7, so as to provide information about the selected measurement beams for beam tracking, namely Indication of the selected CSI-RS. Thereafter, processing similar to the processing from step S4 can be continued, and will not be repeated here.
  • the indication about the beam tracking selected CSI-RS sent in steps S3 and S7 can be used to indicate the number of selected CSI-RS (and the instruction in step S7 may be sent only when the number of measurement beams changes), so that the UE side can know the number of signal quality measurements it needs to perform.
  • the indication about the beam tracking selected CSI-RS sent in steps S3 and S7 can be used to indicate the selected Each CSI-RS (and the indication of step S7 can be sent when the measurement beam is changed), so that the UE side can also know which receiving beam it needs to use to perform the measurement.
  • an electronic device such as that previously described with reference to FIG. 3 or FIG. 6 is implemented on the receiving side.
  • the candidate beam may be a receiving beam for a downlink reference signal (such as CSI-RS), and the electronic device may be a terminal device.
  • Another device communicating with the electronic device may be a network side device, such as a base station or a TRP.
  • the network side device may also have the function of the electronic device described above with reference to FIG. 3 , FIG. 6 , or FIG. 11 .
  • the electronic device at the terminal side can pre-acquire configuration information of a resource set of downlink reference signals from the network side device via its communication unit, and each downlink reference signal in the resource set can be sent separately.
  • This collection of resources can therefore be referred to as a flexible collection of resources.
  • each downlink reference signal in the resource set has a corresponding transmission beam, and the transmission beams of all the downlink reference signals in the resource set cover all possible transmission beams of the network side device.
  • such a flexible set of resources may be a flexible set of CSI-RS resources.
  • the number of CSI-RS resources included in the traditional CSI-RS resource set is constant. Therefore, when using the traditional CSI-RS resource set for receiving beam tracking, for example, when the number of measurement beams tracked by the receiving beam changes, the network side device needs to send the number of times or the number of sending beams corresponding to the number, so that it is possible A new CSI-RS resource set needs to be configured.
  • the electronic device can use the flexible CSI-RS resource set configured on the network side, so that the single CSI-RS resource set can be used to support a scenario where the number of measurement beams for receiving beam tracking changes dynamically.
  • the communication unit can A request for the downlink reference signal for the next beam tracking is sent to the network side device.
  • the network side device does not need to configure a new CSI-RS resource set, but only needs to activate or trigger the required number or times of CSI-RS resource sets in the flexible CSI-RS resource set. RS to send.
  • Fig. 13 is a flow chart for illustrating an exemplary signaling interaction for implementing a beam tracking process of an electronic device at a terminal side.
  • the electronic device is realized as a terminal device UE, and another device communicating with it is a base station BS, and the electronic device can pass the measurement
  • the beam selection method (measurement beam selection in units of a single beam) or the selected measurement beam method of the second example (measurement beam selection in units of candidate beam sets) determines the measurement beam, that is, determines the set of measurement beams, and can use the determined
  • the set of measurement beams is used for beam tracking.
  • the BS configures a flexible downlink reference signal resource set, such as a flexible CSI-RS resource set, in which each CSI-RS can be sent separately and has a corresponding
  • the transmission beams of all CSI-RSs in the resource set cover all possible transmission beams of the BS.
  • step S2 optionally, the UE configures the probability threshold ⁇ UE and the default number of measurement beams N UE /measurement beam set number L UE,de , and determines the measurement beams for initial beam tracking.
  • the UE configures ⁇ UE and N UE , so that it can determine, for example, the N UE with the best beam quality (with the highest RSRP) in the receive beam scanning on the terminal side candidate beams as the measurement beams for initial beam tracking.
  • the UE configures ⁇ UE and L UE,de , so that it can be determined, for example, that the beam quality in the receiving beam scan on the terminal side is the best (with the highest RSRP)
  • the L UE,de -th candidate beam set with the receive beam as the center (that is, the receive beam is constructed as the optimal prediction beam) is used as the measurement beam for initial beam tracking.
  • the UE may send a (terminal) beam tracking request to the BS to indicate to the base station that the beam tracking requires CSI-RS.
  • the request sent by the UE may include the number of measurement beams tracked by the receiving beam or related information that can be used to determine the number (such as but not limited to the set number of measurement beams N UE / measurement beam set number L UE,de and the set number and Measuring the corresponding relationship of the number of beams, etc.), so that the base station side can know the number of times or the number of CSI-RS that it needs to send.
  • the BS may send the number of CSI-RSs corresponding to the number of measurement beams tracked by the receiving beams, so that the UE may sequentially use each receiving beam as a measurement beam to measure the CSI-RS sent by the BS.
  • the BS may send a terminal beam tracking resource notification to the UE, indicating the CSI-RS resources to be used for beam tracking.
  • step S5 the BS periodically sends the required CSI-RS to the UE, so that the UE uses each receiving beam as a measurement beam to measure the RSRP of the CSI-RS in turn, as the measurement result of this beam tracking.
  • the UE may determine the beam to be used and the measurement beam set for the next beam tracking based on the obtained beam tracking measurement results.
  • the measurement beam selection is performed in the unit of a single candidate beam in step S6; in step S2, the UE configures the probability threshold and the default measurement beam
  • the measurement beam is selected in units of candidate beam sets, and the specific selection method is as described above, and will not be repeated here.
  • steps S5 to S6 may be performed periodically until the number of beams in the measurement beam set determined by the UE in step S6 changes.
  • step S7 the UE sends a new terminal beam request notification to the BS to indicate to the base station the beam tracking request for the CSI-RS.
  • This request may be similar to the request in step S3.
  • step S8 the BS sends a new user beam tracking resource notification to the UE, indicating the CSI-RS resource to be used for beam tracking. Thereafter, processing similar to the processing from step S5 can be continued, and will not be repeated here.
  • an electronic device 600 such as that previously described with reference to FIG. 6 is implemented on the receiving side.
  • the determination unit 640 of the electronic device can obtain, for example, the signal quality corresponding to each measurement beam in the next beam tracking through various existing measurement methods, and determine in the measurement beam according to the obtained signal quality
  • it can also be further configured to measure the block error rate (Block Error Ratio, BLER) of the beam, and when the beam BLER is greater than the set threshold (the threshold can be pre-set, for example When the test is passed or properly set according to system requirements), a beam tracking recovery request is sent to the base station.
  • BLER Block Error Ratio
  • the electronic device may also use a selection unit or a determination unit to determine a backup beam, so as to use the determined backup beam to perform uplink random access.
  • the electronic device may determine a backup beam based on the measurement beam selected by the selection unit for beam tracking, that is, the measurement beam set. For example, other measurement beams in the measurement beam set except the adopted beam may be used as backup beams.
  • the electronic The device may determine, for example, via the determining unit, the measurement beam with the highest prediction probability except the beam that has been determined to be used in the set of measurement beams as the backup beam.
  • the electronic device may determine, for example, via the determination unit, the measurement beam with the highest prediction probability except the beam that has been determined to be used in the set of measurement beams as the backup beam. Alternatively, the electronic device may also determine the backup beam based on additional beam measurements. If the uplink random access using the determined spare beam fails, the electronic device serving as the terminal restores the link with the base station.
  • FIG. 14 and FIG. 15 are used to illustrate the beam tracking process of the electronic device according to the embodiment of the present disclosure. Schematic illustration of example simulation results showing the accuracy of the beam tracking process and the number of measured beams, respectively.
  • the electronic device 600 shown in FIG. 6 realizes the beam tracking of the base station transmission beam on the network side, such as the base station side, with respect to the specified terminal equipment, which, for example, uses the prediction model described above with reference to FIG. 8 to perform the candidate beam set
  • the selection of the measurement beam set for the unit and beam tracking, and the beam tracking is used to determine the beam in the measurement beam set.
  • the simulation scenario considers the LOS environment, the radius of the cell is 100m, the terminal equipment is only equipped with a single antenna, and the maximum movement speed of the terminal equipment is 30m/s, and its movement direction is randomly generated in [0,2 ⁇ ], using the existing COST 2100 wireless channel
  • the model produces channel data.
  • Center frequency 28GHz The number of antennas of the electronic equipment at the base station 64(ULA) The number of beams of the electronic equipment at the base station 64 bandwidth 200MHz beam tracking period 40ms Total Beam Tracking Time 500ms
  • the accuracy rate and the (average) number of measured beams of beam tracking are used as evaluation indicators of the beam tracking process. Assuming that the number of samples used for evaluation is N 1 , the number of samples obtained by beam tracking using the optimal beam is N 2 , and the accuracy rate is expressed as
  • the (average) number of measurement beams for beam tracking under different probability thresholds ⁇ is shown in Fig. 15, where the initial number of measurement beams is set to 7. It can be seen that as time increases, the number of measurement beams gradually decreases, because the prediction model has extracted user motion features more accurately from beam tracking RSRP over a period of time. After 0.2s, the electronic device of the embodiment of the present disclosure only needs to measure less than three beams on average.
  • the present disclosure provides the following method embodiments.
  • FIG. 16 is a flowchart illustrating a procedure example of a method for wireless communication according to an embodiment of the present disclosure.
  • step S1601 based on the results of previous beam tracking using the candidate beams with respect to another device communicating with the electronic device, the predicted probability that each candidate beam is the optimal beam is estimated.
  • step S1602 based on the estimated prediction probability, the measurement beam for the next beam tracking is selected among the candidate beams.
  • the beam tracking results used in step S1601 include time series data of signal quality corresponding to candidate beams obtained through beam tracking.
  • a pre-acquired prediction model may be used to determine the prediction probability of a candidate beam, and the prediction model is obtained through machine learning using training data of beam tracking results.
  • the measurement beam may be selected by selecting a minimum number of candidate beams whose total prediction probability satisfies a predetermined condition among candidate beams.
  • the measurement beam may also be selected by selecting the smallest candidate beam set whose total predicted probability of the included candidate beams satisfies a predetermined condition among multiple candidate beam sets.
  • the predetermined condition may include that the total predicted probability is greater than a predetermined threshold.
  • each candidate beam set may include one or more adjacent beam sets, and each adjacent beam set is centered on the optimal prediction beam with the highest prediction probability among all candidate beams , and includes candidate beams with predetermined beam distances from the optimal prediction beam, wherein the Lth candidate beam set includes the adjacent beam set whose beam distance is the minimum value and the beam distance increases sequentially from the minimum value ( L-1) sets of adjacent beams, L is a natural number greater than or equal to 1.
  • the distance between the candidate beam and the best predicted beam may be determined according to the difference between the direction of the candidate beam and the direction of the best predicted beam.
  • the method may further include: obtaining the signal quality corresponding to each measurement beam in the next beam tracking, and determining the signal quality to be used in the data transmission in the measurement beam according to the obtained signal quality beam.
  • the method may further include: before performing beam tracking on the other device for the first time, selecting among the candidate beams based on the result of beam scanning on the other device using the candidate beams Measurement beam for first beamtracking.
  • the method for wireless communication as shown in FIG. 16 may be applied to the sending end in a downlink scenario, that is, the network side.
  • the candidate beam may be a transmission beam of the downlink reference signal
  • the electronic device may be a network side device.
  • the method in this embodiment may further include: providing the other device with configuration information of a resource set of downlink reference signals in advance, and each downlink reference signal in the resource set can be sent separately.
  • the method may further include: when selecting a different number of downlink reference signals for the next beam tracking than for the previous beam tracking, sending information about the downlink reference signals selected for the next beam tracking to the other device number of instructions.
  • the method may further include: when selecting a different downlink reference signal for the next beam tracking and selecting a different downlink reference signal for the previous beam tracking, sending an indication of the downlink reference signal selected for the next beam tracking to the other device .
  • the method for wireless communication as shown in FIG. 16 may be applied to the receiving end in a downlink scenario, that is, the terminal side.
  • the candidate beam may be a receiving beam for the downlink reference signal
  • the electronic device may be a terminal device.
  • the method in this embodiment may further include: obtaining configuration information of a resource set of downlink reference signals in advance from the network side device, and each downlink reference signal in the resource set can be Sent separately.
  • the method may further include: when selecting a different number of receiving beams for the next beam tracking and the previous beam tracking, sending a request for the downlink reference signal for the next beam tracking to the network side device.
  • the method may further include: receiving, from the network side device, an indication about the downlink reference signal to be used for next beam tracking sent in response to the request.
  • the subject performing the above method may be the electronic device 300, 600 or 1100 according to the embodiment of the present disclosure, so all the above embodiments about the electronic device 300, 600, 1100 are applicable here.
  • the electronic device when an electronic device is implemented on the network side, the electronic device can be implemented as any type of base station equipment, such as macro eNB and small eNB, and can also be implemented as any type of gNB (base station in the 5G system).
  • a small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, micro eNB, and home (femto) eNB.
  • the base station may be implemented as any other type of base station, such as NodeB and Base Transceiver Station (BTS).
  • a base station may include: a main body (also referred to as a base station device) configured to control wireless communications; and one or more remote radio heads (RRHs) disposed at places different from the main body.
  • RRHs remote radio heads
  • the electronic equipment on the network side can also be implemented as any type of TRP.
  • the TRP may have sending and receiving functions, for example, it may receive information from user equipment and base station equipment, and may also send information to user equipment and base station equipment.
  • the TRP can provide services for user equipment and be controlled by the base station equipment.
  • the TRP may have a structure similar to that of the base station equipment, or may only have a structure related to sending and receiving information in the base station equipment.
  • the electronic device can be various user equipment, which can be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle type mobile routers and digital cameras) or vehicle-mounted terminals (such as car navigation equipment).
  • the user equipment may also be implemented as a terminal performing machine-to-machine (M2M) communication (also referred to as a machine type communication (MTC) terminal).
  • M2M machine-to-machine
  • MTC machine type communication
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single chip) mounted on each of the above-mentioned user equipment.
  • FIG. 17 is a block diagram showing a first example of a schematic configuration of an eNB to which the technology of the present disclosure can be applied.
  • An eNB 1800 includes one or more antennas 1810 and base station equipment 1820.
  • the base station apparatus 1820 and each antenna 1810 may be connected to each other via an RF cable.
  • Each of the antennas 1810 includes a single or a plurality of antenna elements such as a plurality of antenna elements included in a Multiple Input Multiple Output (MIMO) antenna, and is used for the base station apparatus 1820 to transmit and receive wireless signals.
  • eNB 1800 may include multiple antennas 1810.
  • multiple antennas 1810 may be compatible with multiple frequency bands used by eNB 1800.
  • FIG. 17 shows an example in which the eNB 1800 includes multiple antennas 1810, the eNB 1800 may also include a single antenna 1810.
  • the base station device 1820 includes a controller 1821 , a memory 1822 , a network interface 1823 and a wireless communication interface 1825 .
  • the controller 1821 may be, for example, a CPU or a DSP, and operates various functions of a higher layer of the base station apparatus 1820 .
  • the controller 1821 generates a data packet according to data in a signal processed by the wireless communication interface 1825 and transfers the generated packet via the network interface 1823 .
  • the controller 1821 may bundle data from a plurality of baseband processors to generate a bundled packet, and transfer the generated bundled packet.
  • the controller 1821 may have a logic function to perform control such as radio resource control, radio bearer control, mobility management, admission control and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 1822 includes RAM and ROM, and stores programs executed by the controller 1821 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • the network interface 1823 is a communication interface for connecting the base station apparatus 1820 to the core network 1824 .
  • the controller 1821 may communicate with a core network node or another eNB via a network interface 1823 .
  • eNB 1800 and core network nodes or other eNBs may be connected to each other through logical interfaces such as S1 interface and X2 interface.
  • the network interface 1823 can also be a wired communication interface or a wireless communication interface for wireless backhaul. If the network interface 1823 is a wireless communication interface, the network interface 1823 may use a higher frequency band for wireless communication than that used by the wireless communication interface 1825 .
  • the wireless communication interface 1825 supports any cellular communication scheme such as Long Term Evolution (LTE) and LTE-Advanced, and provides a wireless connection to a terminal located in the cell of the eNB 1800 via the antenna 1810.
  • Wireless communication interface 1825 may generally include, for example, a baseband (BB) processor 1826 and RF circuitry 1827 .
  • the BB processor 1826 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and execute layers such as L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol ( Various types of signal processing for PDCP)).
  • the BB processor 1826 may have a part or all of the logic functions described above.
  • the BB processor 1826 may be a memory storing a communication control program, or a module including a processor configured to execute the program and related circuits.
  • the update program can cause the function of the BB processor 1826 to change.
  • the module may be a card or a blade that plugs into a slot of the base station device 1820 .
  • the module can also be a chip mounted on a card or blade.
  • the RF circuit 1827 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1810 .
  • the wireless communication interface 1825 may include multiple BB processors 1826 .
  • multiple BB processors 1826 may be compatible with multiple frequency bands used by eNB 1800.
  • the wireless communication interface 1825 may include a plurality of RF circuits 1827 .
  • multiple RF circuits 1827 may be compatible with multiple antenna elements.
  • FIG. 17 shows an example in which the wireless communication interface 1825 includes a plurality of BB processors 1826 and a plurality of RF circuits 1827 , the wireless communication interface 1825 may also include a single BB processor 1826 or a single RF circuit 1827 .
  • the functions of the estimation unit and selection unit in the electronic devices 300 , 600 , and 1100 , the determination units in the electronic devices 600 and 1100 , and the configuration unit in the electronic device 1100 can be implemented by the controller 1821 .
  • the controller 1821 may implement the functions of the estimating unit, the selecting unit, the determining unit, and/or the configuring unit by executing instructions stored in the memory 1822 .
  • FIG. 18 is a block diagram showing a second example of a schematic configuration of an eNB to which the technology of the present disclosure can be applied.
  • eNB 1930 includes one or more antennas 1940, base station equipment 1950 and RRH 1960.
  • the RRH 1960 and each antenna 1940 may be connected to each other via RF cables.
  • the base station apparatus 1950 and the RRH 1960 may be connected to each other via a high-speed line such as an optical fiber cable.
  • Each of the antennas 1940 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for the RRH 1960 to transmit and receive wireless signals.
  • eNB 1930 may include multiple antennas 1940.
  • multiple antennas 1940 may be compatible with multiple frequency bands used by eNB 1930.
  • FIG. 18 shows an example in which the eNB 1930 includes multiple antennas 1940, the eNB 1930 may also include a single antenna 1940.
  • the base station device 1950 includes a controller 1951 , a memory 1952 , a network interface 1953 , a wireless communication interface 1955 and a connection interface 1957 .
  • the controller 1951, the memory 1952, and the network interface 1953 are the same as the controller 1821, the memory 1822, and the network interface 1823 described with reference to FIG. 17 .
  • the wireless communication interface 1955 supports any cellular communication scheme such as LTE and LTE-Advanced, and provides wireless communication to a terminal located in a sector corresponding to the RRH 1960 via the RRH 1960 and the antenna 1940.
  • the wireless communication interface 1955 may generally include, for example, a BB processor 1956 .
  • the BB processor 1956 is the same as the BB processor 1826 described with reference to FIG. 17 except that the BB processor 1956 is connected to the RF circuit 1964 of the RRH 1960 via a connection interface 1957.
  • the wireless communication interface 1955 may include multiple BB processors 1956 .
  • multiple BB processors 1956 may be compatible with multiple frequency bands used by eNB 1930.
  • FIG. 18 shows an example in which the wireless communication interface 1955 includes a plurality of BB processors 1956 , the wireless communication interface 1955 may also include a single BB processor 1956 .
  • connection interface 1957 is an interface for connecting the base station device 1950 (wireless communication interface 1955) to the RRH 1960.
  • the connection interface 1957 may also be a communication module for communication in the above-mentioned high-speed line for connecting the base station device 1950 (wireless communication interface 1955) to the RRH 1960.
  • the RRH 1960 includes a connection interface 1961 and a wireless communication interface 1963.
  • connection interface 1961 is an interface for connecting the RRH 1960 (wireless communication interface 1963) to the base station device 1950.
  • the connection interface 1961 may also be a communication module used for communication in the above-mentioned high-speed line.
  • the wireless communication interface 1963 transmits and receives wireless signals via the antenna 1940 .
  • Wireless communication interface 1963 may generally include RF circuitry 1964, for example.
  • the RF circuit 1964 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 1940 .
  • the wireless communication interface 1963 may include a plurality of RF circuits 1964 .
  • multiple RF circuits 1964 may support multiple antenna elements.
  • FIG. 18 shows an example in which the wireless communication interface 1963 includes a plurality of RF circuits 1964 , the wireless communication interface 1963 may also include a single RF circuit 1964 .
  • the functions of the estimation unit and the selection unit in the electronic devices 300 , 600 , and 1100 , the determination units in the electronic devices 600 and 1100 , and the configuration unit in the electronic device 1100 can be implemented by the controller 1951 .
  • the controller 1951 may implement the functions of the estimating unit, the selecting unit, the determining unit, and/or the configuring unit by executing instructions stored in the memory 1952 .
  • FIG. 19 is a block diagram showing an example of a schematic configuration of a smartphone 2000 to which the technology of the present disclosure can be applied.
  • the smart phone 2000 includes a processor 2001, a memory 2002, a storage device 2003, an external connection interface 2004, a camera device 2006, a sensor 2007, a microphone 2008, an input device 2009, a display device 2010, a speaker 2011, a wireless communication interface 2012, one or more Antenna switch 2015 , one or more antennas 2016 , bus 2017 , battery 2018 , and auxiliary controller 2019 .
  • the processor 2001 may be, for example, a CPU or a system on chip (SoC), and controls functions of application layers and other layers of the smartphone 2000 .
  • the memory 2002 includes RAM and ROM, and stores data and programs executed by the processor 2001 .
  • the storage device 2003 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 2004 is an interface for connecting an external device, such as a memory card and a universal serial bus (USB) device, to the smartphone 2000 .
  • USB universal serial bus
  • the imaging device 2006 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • the sensors 2007 may include a set of sensors such as measurement sensors, gyro sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 2008 converts sound input to the smartphone 2000 into an audio signal.
  • the input device 2009 includes, for example, a touch sensor configured to detect a touch on the screen of the display device 2010, a keypad, a keyboard, buttons, or switches, and receives operations or information input from the user.
  • the display device 2010 includes a screen such as a Liquid Crystal Display (LCD) and an Organic Light Emitting Diode (OLED) display, and displays an output image of the smartphone 2000 .
  • the speaker 2011 converts an audio signal output from the smartphone 2000 into sound.
  • the wireless communication interface 2012 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 2012 may generally include, for example, a BB processor 2013 and an RF circuit 2014 .
  • the BB processor 2013 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 2014 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 2016 .
  • the wireless communication interface 2012 may be a chip module on which a BB processor 2013 and an RF circuit 2014 are integrated. As shown in FIG.
  • the wireless communication interface 2012 may include multiple BB processors 2013 and multiple RF circuits 2014 .
  • FIG. 19 shows an example in which the wireless communication interface 2012 includes a plurality of BB processors 2013 and a plurality of RF circuits 2014
  • the wireless communication interface 2012 may include a single BB processor 2013 or a single RF circuit 2014 .
  • the wireless communication interface 2012 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless local area network (LAN) scheme, in addition to the cellular communication scheme.
  • the wireless communication interface 2012 may include a BB processor 2013 and an RF circuit 2014 for each wireless communication scheme.
  • Each of the antenna switches 2015 switches the connection destination of the antenna 916 among a plurality of circuits included in the wireless communication interface 2012 (eg, circuits for different wireless communication schemes).
  • Each of the antennas 2016 includes a single or multiple antenna elements, such as multiple antenna elements included in a MIMO antenna, and is used for the wireless communication interface 2012 to transmit and receive wireless signals.
  • smartphone 2000 may include multiple antennas 2016 .
  • FIG. 19 shows an example in which the smartphone 2000 includes multiple antennas 2016
  • the smartphone 2000 may include a single antenna 2016 as well.
  • the smartphone 2000 may include an antenna 2016 for each wireless communication scheme.
  • the antenna switch 2015 can be omitted from the configuration of the smartphone 2000 .
  • the bus 2017 connects the processor 2001, memory 2002, storage device 2003, external connection interface 2004, camera device 2006, sensor 2007, microphone 2008, input device 2009, display device 2010, speaker 2011, wireless communication interface 2012, and auxiliary controller 2019 to each other. connect.
  • the battery 2018 provides power to the various blocks of the smartphone 2000 shown in FIG. 19 via feed lines, which are partially shown as dashed lines in the figure.
  • the auxiliary controller 2019 operates the minimum necessary functions of the smartphone 2000 in sleep mode, for example.
  • the communication units in the electronic devices 300 and 600 described above with reference to FIGS. 3 and 6 can be realized through the wireless communication interface 2012 and the optional antenna 2016 .
  • the functions of the estimating unit and the selecting unit in the electronic device 300 , 600 and the determining unit in the electronic device 600 may be implemented by the processor 2001 or the auxiliary controller 2019 .
  • the processor 2001 or the auxiliary controller 2019 may implement the functions of the estimating unit, the selecting unit, and/or the determining unit by executing instructions stored in the memory 2002 or the storage device 2003 .
  • FIG. 20 is a block diagram showing an example of a schematic configuration of a car navigation device 2120 to which the technology of the present disclosure can be applied.
  • Car navigation device 2120 includes processor 2121, memory 2122, global positioning system (GPS) module 2124, sensor 2125, data interface 2126, content player 2127, storage medium interface 2128, input device 2129, display device 2130, speaker 2131, wireless communication interface 2133 , one or more antenna switches 2136 , one or more antennas 2137 , and battery 2138 .
  • GPS global positioning system
  • the processor 2121 may be, for example, a CPU or a SoC, and controls a navigation function and other functions of the car navigation device 2120 .
  • the memory 2122 includes RAM and ROM, and stores data and programs executed by the processor 2121 .
  • the GPS module 2124 measures the location (such as latitude, longitude, and altitude) of the car navigation device 2120 using GPS signals received from GPS satellites.
  • Sensors 2125 may include a set of sensors such as gyroscopic sensors, geomagnetic sensors, and air pressure sensors.
  • the data interface 2126 is connected to, for example, the in-vehicle network 2141 via a terminal not shown, and acquires data generated by the vehicle such as vehicle speed data.
  • the content player 2127 reproduces content stored in a storage medium such as CD and DVD, which is inserted into the storage medium interface 2128 .
  • the input device 2129 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 2130, and receives an operation or information input from a user.
  • the display device 2130 includes a screen such as an LCD or OLED display, and displays an image of a navigation function or reproduced content.
  • the speaker 2131 outputs sound of a navigation function or reproduced content.
  • the wireless communication interface 2133 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 2133 may generally include, for example, a BB processor 2134 and an RF circuit 2135 .
  • the BB processor 2134 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 2135 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 2137 .
  • the wireless communication interface 2133 can also be a chip module on which the BB processor 2134 and the RF circuit 2135 are integrated. As shown in FIG.
  • the wireless communication interface 2133 may include a plurality of BB processors 2134 and a plurality of RF circuits 2135 .
  • FIG. 20 shows an example in which the wireless communication interface 2133 includes a plurality of BB processors 2134 and a plurality of RF circuits 2135
  • the wireless communication interface 2133 may include a single BB processor 2134 or a single RF circuit 2135 .
  • the wireless communication interface 2133 may support another type of wireless communication scheme, such as a short-distance wireless communication scheme, a near field communication scheme, and a wireless LAN scheme, in addition to the cellular communication scheme.
  • the wireless communication interface 2133 may include a BB processor 2134 and an RF circuit 2135 for each wireless communication scheme.
  • Each of the antenna switches 2136 switches the connection destination of the antenna 2137 among a plurality of circuits included in the wireless communication interface 2133 , such as circuits for different wireless communication schemes.
  • Each of the antennas 2137 includes a single or a plurality of antenna elements such as a plurality of antenna elements included in a MIMO antenna, and is used for the wireless communication interface 2133 to transmit and receive wireless signals.
  • the car navigation device 2120 may include a plurality of antennas 2137 .
  • FIG. 20 shows an example in which the car navigation device 2120 includes a plurality of antennas 2137 , the car navigation device 2120 may also include a single antenna 2137 .
  • the car navigation device 2120 may include an antenna 2137 for each wireless communication scheme.
  • the antenna switch 2136 can be omitted from the configuration of the car navigation device 2120 .
  • the battery 2138 supplies power to the various blocks of the car navigation device 2120 shown in FIG. 20 via feed lines, which are partially shown as dotted lines in the figure.
  • the battery 2138 accumulates electric power supplied from the vehicle.
  • the functions of the estimating unit and the selecting unit in the electronic device 300 , 600 and the determining unit in the electronic device 600 may be implemented by the processor 2121 .
  • the processor 2121 may implement the functions of the estimating unit, the selecting unit, and/or the determining unit by executing instructions stored in the memory 2122 .
  • the technology of the present disclosure may also be implemented as an in-vehicle system (or vehicle) 2140 including one or more blocks in a car navigation device 2120 , an in-vehicle network 2141 , and a vehicle module 2142 .
  • the vehicle module 2142 generates vehicle data such as vehicle speed, engine speed, and breakdown information, and outputs the generated data to the in-vehicle network 2141 .
  • the units shown in dotted line boxes in the functional block diagrams shown in the accompanying drawings all indicate that the functional units are optional in the corresponding device, and each optional functional unit can be combined in an appropriate manner to realize the desired function .
  • a plurality of functions included in one unit in the above embodiments may be realized by separate devices.
  • a plurality of functions implemented by a plurality of units in the above embodiments may be respectively implemented by separate devices.
  • one of the above functions may be realized by a plurality of units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • the steps described in the flowcharts include not only processing performed in time series in the stated order but also processing performed in parallel or individually and not necessarily in time series. Furthermore, even in the steps of time-series processing, needless to say, the order can be appropriately changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了用于无线通信的电子设备和方法以及计算机可读存储介质。电子设备可以包括处理电路,所述处理电路被配置为:基于先前使用候选波束关于与所述电子设备通信的另一设备进行波束跟踪的结果,估计每个候选波束为最优波束的预测概率;以及基于所估计的预测概率,在候选波束中选择下一次波束跟踪的测量波束。

Description

用于无线通信的电子设备和方法以及计算机可读存储介质
本申请要求于2022年1月12日提交中国专利局、申请号为202210031216.9、发明名称为“用于无线通信的电子设备和方法以及计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,更具体地,涉及一种有利于适当确定波束跟踪的测量范围的用于无线通信的电子设备和方法以及计算机可读存储介质。
背景技术
波束赋形技术被广泛地应用于新无线电(New Radio,NR),以补偿高路径损耗,提高接收功率。为支持波束赋形技术,波束管理获取和维护基站端/用户设备端用于上行/下行链路的波束集合。传统波束管理采用波束扫描,即基站端/用户设备端针对所有候选波束进行测量,并选择波束质量最好(例如具有最大参考信号接收功率(Reference Signal Receiving Power,RSRP))的最优波束作为要在数据传输中使用的波束。在候选波束数目较多时,波束扫描开销巨大。
为了降低波束扫描开销,已经提出了波束跟踪技术,该技术在当前采用波束的基础上针对测量范围内的波束(而非全部波束)进行波束质量的测量,从而跟踪(最优)波束的变化。波束跟踪技术的重点之一是确定波束跟踪的测量范围。
发明内容
在下文中给出了关于本公开的简要概述,以便提供关于本公开的某些方面的基本理解。但是,应当理解,这个概述并不是关于本公开的穷举性概述。它并不是意图用来确定本公开的关键性部分或重要部分,也 不是意图用来限定本公开的范围。其目的仅仅是以简化的形式给出关于本公开的某些概念,以此作为稍后给出的更详细描述的前序。
本公开的至少一方面的目的是提供一种用于无线通信的电子设备和方法以及计算机可读存储介质,其利用先前使用各个波束进行波束跟踪的结果来选择下一次波束跟踪中要使用的波束,从而能够适当确定波束跟踪的测量范围。
根据本公开的一方面,提供了一种电子设备,该电子设备包括处理电路,该处理电路被配置成:基于先前使用候选波束关于与所述电子设备通信的另一设备进行波束跟踪的结果,估计每个候选波束为最优波束的预测概率;以及基于所估计的预测概率,在候选波束中选择下一次波束跟踪的测量波束。
根据本公开的另一方面,还提供了一种用于无线通信的方法,该方法包括:基于先前使用候选波束关于与电子设备通信的另一设备进行波束跟踪的结果,估计每个候选波束为最优波束的预测概率;以及基于所估计的预测概率,在候选波束中选择下一次波束跟踪的测量波束。
根据本公开的另一方面,还提供了一种存储有可执行指令的非暂态计算机可读存储介质,该可执行指令当由处理器执行时,使得处理器执行上述用于无线通信的方法或上述电子设备的各个功能。
根据本公开的其它方面,还提供了用于实现上述根据本公开的方法的计算机程序代码和计算机程序产品。
根据本公开的实施例的至少一方面,利用先前使用候选波束进行波束跟踪的结果来估计每个候选波束为最优波束的预测概率并基于这样的预测概率确定下一次波束跟踪的测量波束,从而能够适当地确定波束跟踪的测量范围。
在下面的说明书部分中给出本公开实施例的其它方面,其中,详细说明用于充分地公开本公开实施例的优选实施例,而不对其施加限定。
附图说明
在此描述的附图只是为了所选实施例的示意的目的而非全部可能的实施,并且不旨在限制本公开的范围。在附图中:
图1是用于说明用户移动导致波束质量变化的示意图;
图2是用于说明小区内的不同终端设备的波束切换的示意图;
图3是示出根据本公开的实施例的电子设备的配置示例的框图;
图4是用于说明不同波束的波束质量随终端设备的方位的变化的示意图;
图5是用于说明不同波束的波束质量之间的比值随终端设备的方位的变化的示意图;
图6是示出了根据本公开的实施例的电子设备的另一配置示例的框图;
图7是示意性地示出了长短期记忆(Long Short-Term Memory,LSTM)模型的示例结构的示意图;
图8是用于说明根据实施例的电子设备的估计单元对预测模型的示例使用的示意图;
图9是用于说明针对线性天线阵列(Uniform Planar Array,ULA)定义的相邻波束集合的示例的示意图;
图10是用于说明针对矩形天线阵列(Uniform Rectangular Array,UPA)定义的相邻波束集合的示例的示意图;
图11是示出了根据本公开的实施例的电子设备的又一配置示例的框图;
图12是用于说明实现在网络侧的电子设备的波束跟踪过程的示例信令交互的流程图;
图13是用于说明实现在终端侧的电子设备的波束跟踪过程的示例信令交互的流程图;
图14和图15是用于说明根据本公开的实施例的电子设备的波束跟踪过程的示例仿真结果的示意图;
图16是示出根据本公开的实施例的用于无线通信的方法的过程示例的流程图;
图17是示出可以应用本公开内容的技术的eNB的示意性配置的第一 示例的框图;
图18是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图;
图19是示出可以应用本公开内容的技术的智能电话的示意性配置的示例的框图;
图20是示出可以应用本公开内容的技术的汽车导航设备的示意性配置的示例的框图。
虽然本公开容易经受各种修改和替换形式,但是其特定实施例已作为例子在附图中示出,并且在此详细描述。然而应当理解的是,在此对特定实施例的描述并不打算将本公开限制到公开的具体形式,而是相反地,本公开目的是要覆盖落在本公开的精神和范围之内的所有修改、等效和替换。要注意的是,贯穿几个附图,相应的标号指示相应的部件。
具体实施方式
现在参考附图来更加充分地描述本公开的例子。以下描述实质上只是示例性的,而不旨在限制本公开、应用或用途。
提供了示例实施例,以便本公开将会变得详尽,并且将会向本领域技术人员充分地传达其范围。阐述了众多的特定细节如特定部件、装置和方法的例子,以提供对本公开的实施例的详尽理解。对于本领域技术人员而言将会明显的是,不需要使用特定的细节,示例实施例可以用许多不同的形式来实施,它们都不应当被解释为限制本公开的范围。在某些示例实施例中,没有详细地描述众所周知的过程、众所周知的结构和众所周知的技术。
将按照以下顺序进行描述:
1.问题的概述
2.电子设备的配置示例
2.1配置示例
2.2预测单元执行的示例处理
2.3选择单元执行的示例处理
2.4发送侧(网络侧)实现的电子设备的示例
2.5接收侧(终端侧)实现的电子设备的示例
2.6电子设备的波束跟踪过程的仿真结果
3.方法实施例
4.应用示例
<1.问题的概述>
在移动通信中,随着用户移动,用户相对于基站的方位或者基站与终端设备之间的直视(Line of Sight,LOS)径的角度变化,导致所采用的波束的信号质量(本文中也称为波束质量)发生变化。图1是用于说明用户移动导致波束质量变化的示意图,其示出了随着用户移动即基站与终端设备之间的LOS径的角度的变化而导致的当前采用的角度为0度的波束的信号质量(RSRP)的变化。在用户方位变化到一定程度时,当前采用波束已经不是最优波束,需用使用重新确定的最优波束。
实验表明,在直视径场景下,最优的基站波束和终端设备波束趋向于连续变化,在非直视(NON Line of Sight,NLOS)径场景下,最优的基站波束和终端设备波束可能会发生离散跳变,其中终端设备波束相较于基站波束更不稳定。为此,需要持续地进行波束跟踪以确定当前使用的最优波束。现有技术中已经提出了相邻波束跟踪的技术,其周期性地针对当前使用的最优波束(本文中也可称为当前采用波束)附近的一定范围内的波束进行测量。
上述波束跟踪存在一些问题。由于在非直视径场景下波束可能发生离散跳变,因此现有技术中使用当前采用波束附近的固定测量范围内的波束进行波束跟踪的方案可能会在测量范围过小时出现波束跟踪失败的情况,而在测量范围过大时造成不必要的开销。
此外,对于基站侧,为确保波束跟踪成功,其波束跟踪的测量范围是针对整个小区内运动速度最快的终端设备(例如车辆)而确定的。作为示例,参照图2所示的用于说明小区内的不同终端设备的波束切换的示意图。如图2所示,对于运动速度较高的终端设备即车辆的终端设备,其最优波束从BM1切换至BM4,切换幅度较大,因此需要较大的测量范围;反之,对于运动速度较低的终端设备即行人的终端设备,其最优波 束从BM2切换至相邻的BM3,波束切换幅度较小,因此仅需要较小的测量范围。针对整个小区确定的基站波束跟踪的测量范围对运动速度较慢的终端设备例如行人可能不是必需的。
鉴于上述问题,发明人提出了针对与当前电子设备通信的另一设备利用先前波束跟踪的结果动态确定下一次波束跟踪的测量范围,从而可以确定波束跟踪的适当的测量范围。
<2.电子设备的配置示例>
[2.1配置示例]
图3是示出根据本公开的实施例的电子设备的配置示例的框图。
如图3所示,电子设备300可以包括估计单元310、选择单元320和可选的通信单元330。
这里,电子设备300的各个单元都可以包括在处理电路中。需要说明的是,电子设备300既可以包括一个处理电路,也可以包括多个处理电路。进一步,处理电路可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。电子设备300可以是网络侧设备也可以是终端设备,这里不做限制。
根据本公开的实施例,电子设备300的估计单元310可以基于先前使用候选波束关于例如经由通信单元330与该电子设备通信的另一设备进行波束跟踪的结果,估计每个候选波束为最优波束的预测概率。电子设备300的选择单元320可以基于所估计的预测概率,在候选波束中选择下一次波束跟踪的测量波束。
作为示例,估计单元310所使用的波束跟踪的结果可以包括通过波束跟踪获得的与候选波束相对应的信号质量(在本文中也可称为候选波束的波束质量,例如RSRP)的时间序列数据。
一方面,在基站和终端设备的通信中,不同波束的波束质量例如不同波束的波束质量之间的比值能够体现终端设备相对于基站的方位或者基站和终端设备之间的LOS径的方位。作为示例,可以参照图4和图5所示出的用于说明不同波束的波束质量以及不同波束的波束质量之间的比值随终端设备的方位的变化的示意图,其中,图4示出了单LOS径情 况下不同波束BM1至BM3的RSRP随LOS径角度的变化,图5示出了单LOS径情况下(在相关波束交叠的区域)波束BM3与BM2的RSRP比值以及波束BM1与BM2的RSRP比值随LOS径角度的变化。另一方面,在基站和终端设备的通信中,每个波束的波束`质量的变化可以体现终端设备相对基站的方位变化,进而体现终端设备的运动特征。例如,如图1所示,对于当前采用的角度为0°的波束,当用户或终端设备相对于基站的方位接近波束角度时,RSRP增大;反之,当终端设备相对于基站的方位远离波束角度时,RSRP减小。
因此,各个候选波束的波束质量的时间序列数据可以体现终端设备相对于基站的方位以及终端设备的运动,而且终端设备在短时间内的运动例如运动速度和方向等具有稳定性,因而可以将上述时间序列数据用于估计每个候选波束为最优波束的预测概率。
电子设备300的选择单元320可以基于估计单元310所估计的预测概率,在候选波束中选择下一次波束跟踪的测量波束。作为示例,选择单元320可以通过在候选波束中选择数目尽可能小的、总的预测概率满足预定条件的候选波束,选择所述测量波束。预定条件例如但不限于总的预测概率大于预定阈值等。
根据实施例的电子设备300可以应用于发送端的发送波束跟踪或接收端的接收波束跟踪的测量范围的确定。在发送端的发送波束跟踪中,对于波束跟踪的测量范围内的每个发送波束(测量波束),例如可以使用接收波束测量其信号质量(例如RSRP),并且可以根据所获得的与各个发送波束对应的信号质量在这些发送波束中确定要在数据传输中使用的波束。在发送波束跟踪过程中,可以针对各个发送波束统一使用当前采用的接收波束,也可以针对每个发送波束使用此前的波束配对过程中与该发送波束对应的接收波束,或者采用其他方式确定的适当的接收波束。在接收端的接收波束跟踪中,对于波束跟踪的测量范围内的每个接收波束(测量波束),可以使用该接收波束测量发送波束的信号质量,并且可以根据利用各个接收波束所获得的信号质量(例如RSRP)在这些接收波束中确定要在数据传输中使用的波束。在接收波束波束跟踪过程中,优选地针对各个接收波束统一使用当前采用的发送波束,或者采用其他方式确定的适当的发送波束。
当电子设备300应用于发送端的发送波束跟踪时,所涉及的候选波 束和测量波束都是指发送波束,而当电子设备300应用于接收端的接收波束跟踪时,所涉及的候选波束和测量波束都是指接收波束。不失一般性,本文中,在无需特意区分时,将统一使用候选波束或测量波束的表述。
可选地,在一个示例中,电子设备300的选择单元320还可以被配置为在关于与电子设备通信的另一设备进行首次波束跟踪之前,基于使用候选波束关于该另一设备进行波束扫描的结果,在候选波束中选择首次波束跟踪的测量波束。作为示例,选择单元可以选择波束扫描中的波束质量最好(例如与最高的RSRP对应)的那个候选波束作为首次波束跟踪的测量波束。
此外,可选地,在一个示例中,电子设备还可以具有波束跟踪的功能。图6示出了根据本公开的实施例的电子设备的另一配置示例的框图。如图6所示,除了与图3的估计单元310、选择单元320和可选的通信单元330对应的单元610、620、630之外,电子设备600还可以包括可选的确定单元640。注意,电子设备600的单元610、620、630可以执行与电子设备300的对应单元类似的功能,因此,这里仅就其区别即确定单元进行描述。确定单元640可以被配置为获得下一次波束跟踪中与每个测量波束相对应的信号质量,并根据所获得的信号质量在测量波束中确定要在数据传输中使用的波束。作为示例,确定单元640可以确定波束跟踪中的信号质量最好(例如与最高的RSRP对应)的那个测量波束作为要在数据传输中使用的波束。
根据本实施例,针对与当前电子设备通信的另一设备利用先前波束跟踪的结果动态确定下一次波束跟踪的测量范围,从而可以确定适当的测量范围。例如,由于基于先前的波束跟踪的结果(例如在先的波束跟踪获得的候选波束的波束质量的时间序列数据)以动态方式确定下一次波束跟踪的测量范围而非设置固定的测量范围(例如为降低波束跟踪的开销而设置较小的测量范围),即使在用户运动导致波束跳变的情况下,也有可能适当确定测量范围。此外,当本实施例的电子设备实现在基站侧时,由于其波束跟踪的测量范围是针对与之通信的另一设备即单个的终端设备而非针对整个小区确定的,因此可以针对运动速度较慢的终端设备避免不必要的波束跟踪开销。
接下来,将进一步描述估计单元和选择单元执行的示例处理。
[2.2估计单元执行的示例处理]
优选地,本公开实施例的电子设备300的估计单元310可以被配置为使用预先获得的预测模型来确定候选波束的预测概率,该预测模型是使用波束跟踪的结果的训练数据通过机器学习获得的。
如前所述,作为波束跟踪的结果而获得的与候选波束相对应的信号质量(在本文中也可称为候选波束的波束质量)的时间序列数据中,不同波束的波束质量之间的比值可以体现终端设备的方位,每个波束的波束质量的变化可以体现终端设备的运动,从而这样的波束跟踪的结果可以用于估计每个候选波束为最优波束的预测概率。在实际应用中,直接使用波束质量的时间序列数据来估计候选波束为最优波束的预测概率可能准确性受限,因为波束质量之间的比值例如RSRP比值受到多径和噪声的干扰,而每个波束的波束质量的变化例如RSRP的变化受到大尺度衰落变化、多径和噪声的干扰,无法准确地体现终端设备的方位和运动。
在本优选实施例中,估计单元310利用预先使用波束跟踪的结果的训练数据通过机器学习获得的预测模型,以有效地分析不同波束的波束质量之间的比值和每个波束的波束质量的变化,从而准确地提取终端设备的方位特征和运动特征。预测模型的输入可以是先前的波束跟踪获得的与候选波束相对应的信号质量即波束质量的时间序列数据[R 1,R 2,…,R t],该序列中每个元素R i,1≤i≤t为第i次波束跟踪的各个候选波束的波束质量即RSRP,t为当前波束跟踪的次数。预测模型的输出可以是例如在下一次波束跟踪中每个候选波束为最优波束的预测概率。
预测模型可以包括能够提取时序特征的各种适当模型。例如,预测模型可以包括长短期记忆(LSTM)模型。LSTM是一种用于提取时序特征的深度学习模型。图7示意性地示出了LSTM模型的示例结构,图中阴影框内的算符表明其进行的点乘(第一行的左侧算符)和相加(第一行的右侧算符)、正切(tanh)、Sigmod函数(σ)等运算,这里不再赘述。如图7所示,LSTM模型在当前t时刻的输入信息包含(1)上一时刻即(t-1)时刻的细胞状态与输出;以及(2)当前t时刻的LSTM模型的输入。因此,这样模型能够提取时序特征,并且每次使用时只需要从LSTM模型外部提供当前t时刻的输入即可,而无需从LSTM外部重复输入此前的输入信息。
作为示例,图8示意性地示出了在一个优选实施例中电子设备的估计单元对预测模型的示例使用。如图8所示,预测模型PM包括CNN、LTSM、全连接层和Softmax层,模型的输入为第t次(也可称为当前时刻t)波束跟踪的结果例如RSRP,输出为针对第(t+1)次(也可称为下一时刻即(t+1)时刻)波束跟踪估计的每个候选波束为最优波束的预测概率。
预测模型PM的输入可以是第t次波束跟踪中的各个候选波束的RSRP,其可以是长度为候选波束数目M的向量的形式,向量中每个元素对应一个候选波束。对于第t次波束跟踪被测量的候选波束即测量波束,在向量的对应索引上为测量得到的RSRP;对于第t次波束跟踪未被测量的波束,在向量的对应索引上为0。
预测模型PM中的CNN用于从第t次波束跟踪的结果即RSRP中提取初步特征。预测模型PM中的LSTM模型一方面输入CNN从第t次波束跟踪的结果提取得到的初步特征,另一方面输入其自身在上一次即第(t-1)次波束跟踪后的LSTM模型的输出和细胞状态。LSTM模型的关于第t次波束跟踪的输出x提供到全连接层。全连接层利用y=Wx+b将LSTM的输出转变为y,其中,y为全连接层输出,其为长度为候选波束数目的向量,W和b分别为全连接层的线性权重和偏置。Softmax层将全连接层的输出转化为候选波束为最优波束的预测概率。Softmax层表示如下:
Figure PCTCN2023070959-appb-000001
预测模型PM的输出是针对第(t+1)次波束跟踪的每个候选波束为最优波束的预测概率{p 1,p 2,…,p M}。
可以利用预先标注好的训练数据,使用各种适当方式通过训练得到上述预测模型。例如,可以采用交叉熵作为损失函数,采用各种优化器优化模型参数,这里不再赘述。
[2.3选择单元执行的示例处理]
本公开实施例的电子设备300的选择单元320可以通过各种示例处理进行测量波束的选择,以在所选择的候选波束的数目尽可能小的情况下,使这些候选波束的总的预测概率满足预定条件。该预定条件例如包 括但不限于总的预测概率大于预定阈值η。为了确保波束跟踪成功,可以设置较大的阈值。例如,可以设置η=0.99。也可以设置0.9或0.95等阈值,这里不进行特别限制。
(第一示例)
在第一示例中,选择单元320可以通过在候选波束中选择总的预测概率满足预定条件的、最小数目的候选波束,选择所述测量波束,即确定测量波束集合。
优选地,预定条件可以是总的预测概率大于预定阈值η。例如,可将通过估计单元获得的M个候选波束的预测概率从高到低排序表示为
Figure PCTCN2023070959-appb-000002
Figure PCTCN2023070959-appb-000003
选择单元320可以基于概率阈值η,以及各个候选波束的预测概率,选择满足下述条件的N个候选波束作为下一次波束跟踪的测量波束:
Figure PCTCN2023070959-appb-000004
替选地,预定条件可以是所选择的候选波束的总的预测概率尽量大而候选波束的数目尽可能小。例如,最小数目N1的候选波束的总预测概率P total1与次小的数目N2的候选波束的总预测概率P total2之间的差值小于预定的概率差阈值的情况下,可以选择最小数目N1的候选波束作为下一次波束跟踪的测量波束;否则,则选择次小数目N2的候选波束作为下一次波束跟踪的测量波束。
在第一示例中,可以以单个候选波束为单位改变测量波束的选择。由于每次波束跟踪的测量波束可以以单个波束为粒度改变,因此测量范围可以灵活变化,从而波束跟踪开销更小。
(第二示例)
在第二示例中,选择单元320可以通过在多个候选波束集合中选择所包括的候选波束的总的预测概率满足预定条件的、最小的候选波束集合,选择所述测量波束。
优选地,预定条件可以是总的预测概率大于预定阈值η。
作为示例,选择单元320所考虑的每个候选波束集合可以包括一个或更多个相邻波束集合,每个相邻波束集合以全部候选波束中预测概率最高的最优预测波束为中心,并且包括距最优预测波束预定的波束距离的候选波束,其中,第L个候选波束集合包括波束距离为最小值的相邻波束集合以及波束距离从该最小值依次增加的(L-1)个相邻波束集合,L为大于或等于1的自然数。
例如,可以定义相邻层层数(相邻波束集合的编号或索引)l,l=0,1,2,3,…以及对应相邻波束集合B l,其中,给定的相邻波束集合内所有候选波束与最优预测波束之间具有相同的波束距离,并且层数低(编号小)的相邻波束集合的上述波束距离小于层数高(编号大)的相邻波束集合的上述波束距离。从第0相邻层开始,定义了与最优预测波束之间的波束距离从小到大的相邻波束集合。第一个候选波束集合
Figure PCTCN2023070959-appb-000005
包括与最优预测波束之间的波束距离最小的相邻波束集合,第二个候选波束集合
Figure PCTCN2023070959-appb-000006
包括与最优预测波束之间的波束距离为最小值的相邻波束集合以及波束距离从该最小值增加的(2-1)=1个相邻波束集合,第三个候选波束集合
Figure PCTCN2023070959-appb-000007
包括与最优预测波束之间的波束距离为最小值的相邻波束集合以及波束距离从该最小值依次增加的(3-1)=2个相邻波束集合,第L个候选波束集合
Figure PCTCN2023070959-appb-000008
包括与最优预测波束之间的波束距离为最小值的相邻波束集合以及波束距离从该最小值依次增加的(L-1)个相邻波束集合,L=1,2,3,…。
例如,选择单元320可以基于概率阈值η以及各个候选波束集合所包括的相邻波束集合B l中第i个候选波束的预测概率p i,选择满足下述条件的第L个候选波束集合
Figure PCTCN2023070959-appb-000009
作为下一次波束跟踪的测量波束:
Figure PCTCN2023070959-appb-000010
替选地,预定条件可以是所选择的候选波束集合的总的预测概率尽量大而候选波束集合尽可能小。例如,最小的第L1个候选波束集合的总预测概率P total1与次小的第L2个的候选波束集合的总预测概率P total2之间的差值小于预定的概率差阈值的情况下,可以选择第L1个候选波束作为下一次波束跟踪的测量波束;否则,则选择第L2个候选波束作为下一次 波束跟踪的测量波束。
在各个相邻波束集合中,最优预测波束可以是例如通过估计单元所估计的预测概率最大的波束,候选波束与最优预测波束之间的波束距离可以是根据候选波束的方向与最优预测波束的方向之间的差异确定的。
例如,对于线性天线阵列(ULA),M个候选波束按照方向顺序排序为1,2,…,M,则索引为i的波束和索引为j的波束之间的波束距离定义为|i-j|,|·|表示绝对值,其中,i,j分别为1到M之间的自然数。图9是用于说明针对线性天线阵列(ULA)定义的相邻波束集合的示例的示意图。如图9所示,图中位于中心的候选波束为最优预测波束,根据与该波束的波束距离定义了l=0,1,2,3一共4个相邻层。
对于矩形天线阵列(UPA),各个候选波束按照水平方向顺序排序为1,2,…,M h,按照垂直方向顺序排序为1,2,…,M v,则水平方向索引为i h、垂直方向索引为i v的波束与水平方向索引为j h、垂直方向索引为j v的波束之间的波束距离定义为
Figure PCTCN2023070959-appb-000011
其中,i h,j h为1到M h之间的自然数,i v、j v为1到M v之间的自然数。图10是用于说明针对矩形天线阵列(UPA)定义的相邻波束集合的示例的示意图。如图10所示,图中位于中心的候选波束为最优预测波束,根据与该波束的波束距离定义了l=0,1,2,3一共4个相邻层。
在第二示例中,可以以候选波束集合为单位改变测量波束的选择。由于候选波束集合可能包括不止一个波束,如果下一次波束跟踪可以沿用上一次波束跟踪的测量波束即候选波束集合,则无需改变波束跟踪的测量范围。因此,可以减少与波束跟踪的测量范围变化相关的信令开销。
以上描述了根据实施例的电子设备以及其组成单元的示例处理。接下来,将针对实施例的电子设备实现在发送侧的情况和实现在接收侧的情况描述其进一步的示例配置或示例处理。在以下示例中,以下行场景为例进行描述。由于波束对称性或波束一致性,针对下行场景在发送侧(基站侧)和接收侧(终端侧)进行波束跟踪获得了最佳波束后,可以相应地获得上行场景的最佳波束。此外,基于本公开的内容,本领域技术人员可以将实施例中给出的针对下行场景的示例和处理适当地(例如经由适当变形后)应用于上行场景,这里不再赘述。
[2.4发送侧实现的电子设备的示例]
在本示例中,例如此前参照图3或图6描述的电子设备实现在发送侧。此时,例如,候选波束可以是下行参考信号(例如信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS))的发送波束,并且电子设备可以是网络侧设备,例如基站或TRP等,与电子设备通信的另一设备可以是终端设备。可选地,该终端设备也可以具有以上参照图3或图6描述的电子设备的功能。
在一个优选实施例中,网络侧的电子设备可以为终端设备配置灵活的下行参考信号集合。图11示出了根据本公开的实施例的电子设备的又一配置示例的框图。如图11所示,除了与图6的估计单元610、选择单元620和可选的通信单元630和可选的确定单元640对应的单元1110、1120、1130、1140之外,电子设备1100还可以包括可选的配置单元1150。电子设备1100的配置单元1150可以被配置为预先生成下行参考信号的资源集合的配置信息,该资源集合中的每个下行参考信号能够被单独发送(该资源集合因此可以称为灵活的资源集合),并且电子设备1100可以经由通信单元1130向终端设备提供该配置信息。可选地,该资源集合中的每个下行参考信号具有与之对应的发送波束,资源集中的全部下行参考信号的发送波束覆盖了电子设备的所有可能发送波束。
作为示例,配置单元1150所配置的灵活的资源集合可以是灵活的CSI-RS资源集。传统CSI-RS资源集包含的CSI-RS资源数目恒定。因此,在使用传统的CSI-RS资源集进行发送波束跟踪时,例如当发送波束跟踪的测量波束数目变化时,可能需要配置新的CSI-RS资源集。但是,NR规定用户CSI-RS资源集数目上限为16个,实施例中的测量波束数目动态变化的波束跟踪可能占用大量的CSI-RS资源集。为此,根据本优选实施例的电子设备可以利用配置单元提供灵活的CSI-RS资源集,从而可以使用该单个CSI-RS资源集支持波束跟踪的测量波束数目发生动态改变的场景。
例如,在使用所配置的灵活的资源集合的情况下,当电子设备1100例如经由选择单元1120针对下一次波束跟踪与针对前一次波束跟踪选择了不同的下行参考信号或者选择了不同数目的下行参考信号时,可以经由通信单元1130向终端设备发送关于针对下一次波束跟踪选择的下行参考信号或选择的下行参考信号的数目的指示。以此方式,电子设备1100不必在波束跟踪的测量波束或测量波束的数目改变时配置新的CSI-RS资 源集,而只需激活或触发灵活的CSI-RS资源集中所选择的CSI-RS以发送这些CSI-RS即可。
接下来,将结合具体示例描述网络侧的电子设备1100进行波束跟踪的示例信令流程。图12是用于说明实现在网络侧的电子设备的波束跟踪过程的示例信令交互的流程图。在图12的示例中,电子设备1100实现为基站BS,与之通信的另一设备为终端设备UE,并且电子设备可以通过此前在“2.3选择单元执行的示例处理”中描述的第一示例的测量波束选择方式(以单个波束为单位的测量波束选择)或第二示例的选择测量波束方式(以候选波束集合为单位的测量波束选择)确定测量波束,即确定测量波束的集合,并且可以使用所确定的测量波束集合进行波束跟踪。
如图12所示,可选地,在步骤S1中,BS配置灵活的下行参考信号资源集合,例如灵活的CSI-RS资源集,其中的每个CSI-RS能够被单独发送并且具有与之对应的发送波束,资源集中的全部CSI-RS的发送波束覆盖了BS的所有可能发送波束。由于本公开的上下文中CSI-RS与发送波束的对应关系,在下文中,在无需特意区分的情况下,有时也简单地用所选择的CSI-RS指代所选择的发送波束,或者用所选择的发送波束指代所选择的CSI-RS。
在步骤S2中,可选地,BS配置概率阈值η TRP和默认的测量波束数目N TRP/测量波束集合编号L TRP,de,并确定初始波束跟踪的测量波束集合。
在后续要进行以单个候选波束为单位的测量波束选择的情况下,BS配置η TRP和N TRP,从而可以确定例如基站端发送波束扫描中的波束质量最好(例如具有最高的RSRP)的N TRP个候选波束(例如对应于N TRP个CSI-RS)作为初始波束跟踪的测量波束集合。
在后续要进行以候选波束集合为单位的测量波束选择的情况下,BS配置η TRP和L TRP,de,从而可以确定例如以基站端发送波束扫描中的波束质量最好(例如具有最高的RSRP)的发送波束为中心(即,将该发送波束作为最优预测波束而构建)的第L TRP,de个候选波束集合(并且例如可以相应地确定编号为L TRP,de的候选CSI-RS的集合)作为初始波束跟踪的测量波束(测量CSI-RS集合)。
在步骤S3中,BS可以发送(基站)波束跟踪通知至UE,以提供关 于波束跟踪选择的测量波束即所选择的CSI-RS的指示。
在步骤S4中,BS周期性发送所选择的CSI-RS至UE,以供UE使用接收波束依次针对每个用作测量波束的CSI-RS测量RSRP。
在步骤S5中,UE反馈用作测量波束的的各个CSI-RS的RSRP至BS,作为本次的波束跟踪的测量结果。
在步骤S6中,BS可以基于所获得的波束跟踪的测量结果,确定采用波束以及下一次波束跟踪的测量波束。这里,在步骤S2中BS配置了概率阈值和默认的测量波束数目的情况下,在步骤S6中以单个候选波束为单位进行测量波束选择;在步骤S2中BS配置了概率阈值和默认的测量波束集合编号的情况下,在步骤S6中以候选波束集合为单位进行测量波束选择,具体选择方式如前所述,不再赘述。
上述步骤S4至步骤S6可以周期性地执行,直到BS在步骤S6中确定的测量波束的数目发送变化为止。
当BS在步骤S6中确定的测量波束的数目发送变化时,在步骤S7中,BS发送新的波束跟踪通知至UE,以提供关于波束跟踪选择的测量波束即所选择的CSI-RS的指示。可选地,当在步骤S6中确定的测量波束的数目不变、但波束变化时,BS也可以在步骤S7中发送新的基站波束跟踪通知至UE,以提供关于波束跟踪选择的测量波束即所选择的CSI-RS的指示。此后,可以继续进行与从步骤S4开始的处理类似的处理,这里不再重复。
这里,在UE侧使用当前接收波束进行每个候选发送波束的信号质量的测量时,步骤S3和S7中发送的关于波束跟踪选择的CSI-RS的指示可以用于指示选择的CSI-RS的数目(并且步骤S7的指示可以仅在测量波束数目变化时发送),以供UE侧了解其需要执行的信号质量的测量的次数。在UE侧使用先前获得的与每个发送波束对应的接收波束进行候选发送波束的信号质量的测量时,步骤S3和S7中发送的关于波束跟踪选择的CSI-RS的指示可以用于指示选择的每个CSI-RS(并且步骤S7的指示可以在测量波束变化时发送),以供UE侧还了解其需要使用哪个接收波束执行测量。
[2.5接收侧实现的电子设备的示例]
在本示例中,例如此前参照图3或图6描述的电子设备实现在接收侧。此时,例如,候选波束可以是针对下行参考信号(例如CSI-RS)的接收波束,并且电子设备可以是终端设备。与电子设备通信的另一设备可以是网络侧设备,例如基站或TRP等。可选地,该网络侧设备也可以具有以上参照图3、图6、或图11描述的电子设备的功能。
在一个优选实施例中,终端侧的电子设备例如可以经由其通信单元从网络侧设备预先获得下行参考信号的资源集合的配置信息,该资源集合中的每个下行参考信号能够被单独发送。该资源集合因此可以称为灵活的资源集合。可选地,该资源集合中的每个下行参考信号具有与之对应的发送波束,资源集中的全部下行参考信号的发送波束覆盖了网络侧设备的所有可能发送波束。
作为示例,这样的灵活的资源集合可以是灵活的CSI-RS资源集。传统CSI-RS资源集包含的CSI-RS资源数目恒定。因此,在使用传统的CSI-RS资源集进行接收波束跟踪时,例如当接收波束跟踪的测量波束数目变化时,网络侧设备需要发送与该数目对应的次数或个数的发送波束,从而有可能需要配置新的CSI-RS资源集。根据本实施例的电子设备可以使用网络侧配置的灵活的CSI-RS资源集,从而可以使用该单个CSI-RS资源集支持接收波束跟踪的测量波束数目发生动态改变的场景。
例如,在使用所配置的灵活的资源集合的情况下,当作为终端设备的电子设备例如经由选择单元针对下一次波束跟踪与针对前一次波束跟踪选择了不同数目的接收波束时,可以经由通信单元向网络侧设备发送下一次波束跟踪对下行参考信号的请求。以此方式,在波束跟踪的测量接收波束的数目改变时,网络侧设备不必配置新的CSI-RS资源集,而只需激活或触发灵活的CSI-RS资源集中所需数目或次数的CSI-RS以进行发送即可。
接下来,将结合具体示例描述终端侧的电子设备选择接收波束跟踪的测量波束的示例信令流程。图13是用于说明实现在终端侧的电子设备的波束跟踪过程的示例信令交互的流程图。在图13的示例中,电子设备实现为终端设备UE,与之通信的另一设备为基站BS,并且电子设备可以通过此前在“2.3选择单元执行的示例处理”中描述的第一示例的测量波束选择方式(以单个波束为单位的测量波束选择)或第二示例的选择测量波束方式(候选波束集合为单位的测量波束选择)确定测量波束, 即确定测量波束的集合,并且可以使用所确定的测量波束集合进行波束跟踪。
如图13所示,可选地,在步骤S1中,BS配置灵活的下行参考信号资源集合,例如灵活的CSI-RS资源集,其中的每个CSI-RS能够被单独发送并且具有与之对应的发送波束,资源集中的全部CSI-RS的发送波束覆盖了BS的所有可能发送波束。
在步骤S2中,可选地,UE配置概率阈值η UE和默认的测量波束数目N UE/测量波束集合编号L UE,de,并确定初始波束跟踪的测量波束。
在后续要进行以单个候选波束为单位的测量波束选择的情况下,UE配置η UE和N UE,从而可以确定例如终端侧接收波束扫描中的波束质量最好(具有最高的RSRP)的N UE个候选波束作为初始波束跟踪的测量波束。
在后续要进行以候选波束集合为单位的测量波束选择的情况下,UE配置η UE和L UE,de,从而可以确定例如以终端侧接收波束扫描中的波束质量最好(具有最高的RSRP)的接收波束为中心(即,将该接收波束作为最优预测波束而构建)的第L UE,de个候选波束集合作为初始波束跟踪的测量波束。
在步骤S3中,UE可以发送(终端)波束跟踪请求至BS,以向基站表明波束跟踪对CSI-RS的请求。UE发送的请求可以包括接收波束跟踪的测量波束的数目或者能够用于确定该数目的相关信息(例如但不限于所设置的测量波束数目N UE/测量波束集合编号L UE,de以及集合编号与测量波束的数目的对应关系等),以供基站侧了解其需要发送的CSI-RS的次数或个数。相应地,BS可以发送与接收波束跟踪的测量波束的数目对应的次数或个数的CSI-RS,以供UE依次利用每个作为测量波束的接收波束针对BS发送的CSI-RS进行测量。
在可选的步骤S4中,BS可以发送终端波束跟踪资源通知至UE,指示要用于波束跟踪的CSI-RS资源。
在步骤S5中,BS周期性发送所需的CSI-RS至UE,以供UE依次利用每个作为测量波束的接收波束测量CSI-RS的RSRP,作为本次的波束跟踪的测量结果。
在步骤S6中,UE可以基于所获得的波束跟踪的测量结果,确定采 用波束以及下一次波束跟踪的测量波束集合。这里,在步骤S2中UE配置了概率阈值和默认的测量波束数目的情况下,在步骤S6中以单个候选波束为单位进行测量波束选择;在步骤S2中UE配置了概率阈值和默认的测量波束集合编号的情况下,在步骤S6中以候选波束集合为单位进行测量波束选择,具体选择方式如前所述,这里不再赘述。
上述步骤S5至步骤S6可以周期性地执行,直到UE在步骤S6中确定的测量波束集合中的波束数目发送变化为止。
当UE在步骤S6中确定的测量波束集合中的波束数目发送变化时,在步骤S7中,UE发送新的终端波束请求通知至BS,以向基站表明波束跟踪对CSI-RS的请求。该请求可以与步骤S3中的请求类似。
在可选的步骤S8中,BS发送新的用户波束跟踪资源通知至UE,指示要用于波束跟踪的CSI-RS资源。此后,可以继续进行与从步骤S5开始的处理类似的处理,这里不再重复。
在本示例的另一个优选实施例中,例如此前参照图6描述的电子设备600实现在接收侧。此时,该电子设备的确定单元640除了例如可以通过各种现有测量方式获得下一次波束跟踪中与每个测量波束相对应的信号质量并根据所获得的信号质量在测量波束中确定要在数据传输中使用的波束(采用波束)以外,还可以进一步被配置为测量采用波束的块误码率(Block Error Ratio,BLER),并且在采用波束BLER大于所设置的阈值(该阈值例如可以预先通过试验或根据系统需求适当设置)时,向基站发送波束跟踪恢复请求。
可选地,在该实施例中,电子设备还可以利用选择单元或确定单元等确定备用波束,以使用所确定的备用波束进行上行随机接入。作为示例,电子设备可以基于选择单元为波束跟踪所选择的测量波束即测量波束集合,确定备用波束,例如,可以将测量波束集合中除了采用波束以外的其他测量波束作为备用波束。
作为示例,在电子设备的选择单元已经针对波束跟踪以单个波束为单位选择了总的预测概率高于预定阈值的、最小数目的测量波束作为波束跟踪的测量波束即测量波束集合的情况下,电子设备可以例如经由确定单元确定该测量波束集合中除了已经被确定为采用波束的那个波束以外、预测概率最大的测量波束作为备用波束。类似地,在电子设备的选 择单元已经针对波束跟踪以候选波束集合为单位选择了总的预测概率高于预定阈值的、最小的候选波束集合作为波束跟踪的测量波束即测量波束集合的情况下,电子设备可以例如经由确定单元确定该测量波束集合中除了已经被确定为采用波束的那个波束以外、预测概率最大的测量波束作为备用波束。替选地,电子设备也可以基于额外的波束测量来确定备用波束。如果使用所确定的备用波束进行上行随机接入失败,则作为终端的电子设备与基站进行链路恢复。
[2.6仿真结果]
接下来,将结合图14和图15描述利用本公开的实施例的电子设备进行波束跟踪的仿真结果,图14和图15是用于说明根据本公开的实施例的电子设备的波束跟踪过程的示例仿真结果的示意图,其分别示出了波束跟踪过程的准确率和测量波束的数目。
在仿真示例中,例如图6所示的电子设备600实现在网络侧例如基站端以关于指定终端设备进行基站发送波束的波束跟踪,其例如利用此前参照图8描述的预测模型进行以候选波束集合为单位的、波束跟踪的测量波束集合的选择,并通过波束跟踪在测量波束集合中确定采用波束。仿真场景考虑LOS环境,小区半径为100m,终端设备仅配置单天线,并且终端设备最大运动速度为30m/s,其运动方向在[0,2π]中随机生成,采用现有的COST 2100无线信道模型产生信道数据。
仿真参数如表1所示。
中心频率 28GHz
基站端的电子设备的天线数目 64(ULA)
基站端的电子设备的波束数目 64
带宽 200MHz
波束跟踪周期 40ms
波束跟踪总时长 500ms
表1仿真参数
在仿真示例中,采用准确率和波束跟踪的(平均)测量波束数目作为波束跟踪过程的评价指标。假设所有用于评估的样本数目为N 1,其中波束跟踪得到的采用波束为最优波束的样本数目为N 2,准确率Accuracy表示为
Figure PCTCN2023070959-appb-000012
不同概率阈值η下波束跟踪准确率如图14所示。可以看到,在所有仿真采用的η下,准确率达到85%以上。η=0.99时,准确率达到99%,几乎实现完美的波束对准。在波束跟踪开始时,准确率随时间有所下降,这是因为波束跟踪仅测量一部分波束,可能会带来跟踪失败。但是,0.2s以后准确率有所上升,这是因为预测模型从一段时间以来的波束跟踪RSRP中已经较为准确地提取用户运动特征。
不同概率阈值η下波束跟踪的(平均)测量波束数目如图15所示,其中初始测量波束数目设置为7。可以看到,随着时间增加,测量波束数目逐渐降低,这是因为预测模型从一段时间以来的波束跟踪RSRP中已经较为准确地提取用户运动特征。在0.2s之后,本公开的实施例的电子设备平均仅需测量三个以下波束。
<3.方法实施例>
与上述装置实施例相对应的,本公开提供了以下方法实施例。
图16是示出根据本公开的实施例的用于无线通信的方法的过程示例的流程图。
如图16所示,在步骤S1601中,基于先前使用候选波束关于与电子设备通信的另一设备进行波束跟踪的结果,估计每个候选波束为最优波束的预测概率。
接下来,在步骤S1602中,基于所估计的预测概率,在候选波束中选择下一次波束跟踪的测量波束。
可选地,步骤S1601中使用的波束跟踪的结果包括通过波束跟踪获得的与候选波束相对应的信号质量的时间序列数据。例如,可选地,在步骤S1601中,可以使用预先获得的预测模型来确定候选波束的预测概率,所述预测模型是使用波束跟踪的结果的训练数据通过机器学习获得 的。
可选地,在步骤S1602中,可以通过在候选波束中选择总的预测概率满足预定条件的、最小数目的候选波束,选择所述测量波束。替选地,也可以通过在多个候选波束集合中选择所包括的候选波束的总的预测概率满足预定条件的、最小的候选波束集合,选择所述测量波束。作为示例,所述预定条件可以包括总的预测概率大于预定阈值。
在基于候选波束集合进行测量波束的选择时,每个候选波束集合可以包括一个或更多个相邻波束集合,每个相邻波束集合以全部候选波束中预测概率最高的最优预测波束为中心,并且包括距最优预测波束预定的波束距离的候选波束,其中,第L个候选波束集合包括所述波束距离为最小值的相邻波束集合以及所述波束距离从该最小值依次增加的(L-1)个相邻波束集合,L为大于或等于1的自然数。作为示例,候选波束与最优预测波束之间的距离可以是根据候选波束的方向与最优预测波束的方向之间的差异确定的。
尽管图中未示出,但该方法还可以包括:获得下一次波束跟踪中与每个测量波束相对应的信号质量,并根据所获得的信号质量在测量波束中确定要在数据传输中使用的波束。
此外,尽管图中未示出,但该方法还可以包括:在关于所述另一设备进行首次波束跟踪之前,基于使用候选波束关于所述另一设备进行波束扫描的结果,在候选波束中选择首次波束跟踪的测量波束。
在一个实施例中,如图16所示的用于无线通信的方法可以应用于下行场景下的发送端即网络侧。
在这种情况下,候选波束可以是下行参考信号的发送波束,并且所述电子设备是可以网络侧设备。
此时,尽管图中未示出,但本实施例中的方法还可以包括:为所述另一设备预先提供下行参考信号的资源集合的配置信息,所述资源集合中的每个下行参考信号能够被单独发送。可选地,该方法还可以包括:当针对下一次波束跟踪与针对前一次波束跟踪选择不同数目的下行参考信号时,向所述另一设备发送关于针对下一次波束跟踪选择的下行参考信号的数目的指示。替选地,该方法还可以包括:当针对下一次波束跟踪与针对前一次波束跟踪选择不同的下行参考信号时,向所述另一设备 发送关于针对下一次波束跟踪选择的下行参考信号的指示。
在另一个实施例中,如图16所示的用于无线通信的方法可以应用于下行场景下的接收端即终端侧。
在这种情况下,候选波束可以是针对下行参考信号的接收波束,并且所述电子设备可以是终端设备。
此时,尽管图中未示出,但本实施例中的方法还可以包括:从网络侧设备预先获得下行参考信号的资源集合的配置信息,所述资源集合中的每个下行参考信号能够被单独发送。可选地,该方法还可以包括:当针对下一次波束跟踪与针对前一次波束跟踪选择不同数目的接收波束时,向网络侧设备发送下一次波束跟踪对下行参考信号的请求。可选地,该方法还可以包括:从网络侧设备接收响应于所述请求而发送的关于下一次波束跟踪要使用的下行参考信号的指示。
根据本公开的实施例,执行上述方法的主体可以是根据本公开的实施例的电子设备300、600或1100,因此前文中关于电子设备300、600、1100的全部实施例均适用于此。
<4.应用示例>
本公开内容的技术能够应用于各种产品。
例如,当电子设备实现在网络侧时,该电子设备可以被实现为任何类型的基站设备,诸如宏eNB和小eNB,还可以被实现为任何类型的gNB(5G系统中的基站)。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。
另外,网络侧的电子设备还可以被实现为任何类型的TRP。该TRP可以具备发送和接收功能,例如可以从用户设备和基站设备接收信息,也可以向用户设备和基站设备发送信息。在典型的示例中,TRP可以为用户设备提供服务,并且受基站设备的控制。进一步,TRP可以具备与基站设备类似的结构,也可以仅具备基站设备中与发送和接收信息相关的结构。
当电子设备实现在终端设备时,该电子设备可以为各种用户设备,其可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述用户设备中的每个用户设备上的无线通信模块(诸如包括单个晶片的集成电路模块)。
[关于基站的应用示例]
(第一应用示例)
图17是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图。eNB 1800包括一个或多个天线1810以及基站设备1820。基站设备1820和每个天线1810可以经由RF线缆彼此连接。
天线1810中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备1820发送和接收无线信号。如图17所示,eNB 1800可以包括多个天线1810。例如,多个天线1810可以与eNB 1800使用的多个频带兼容。虽然图17示出其中eNB 1800包括多个天线1810的示例,但是eNB 1800也可以包括单个天线1810。
基站设备1820包括控制器1821、存储器1822、网络接口1823以及无线通信接口1825。
控制器1821可以为例如CPU或DSP,并且操作基站设备1820的较高层的各种功能。例如,控制器1821根据由无线通信接口1825处理的信号中的数据来生成数据分组,并经由网络接口1823来传递所生成的分组。控制器1821可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器1821可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器1822包括RAM和ROM,并且存储由控制器1821执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1823为用于将基站设备1820连接至核心网1824的通信接口。控制器1821可以经由网络接口1823而与核心网节点或另外的eNB 进行通信。在此情况下,eNB 1800与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口1823还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1823为无线通信接口,则与由无线通信接口1825使用的频带相比,网络接口1823可以使用较高频带用于无线通信。
无线通信接口1825支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线1810来提供到位于eNB 1800的小区中的终端的无线连接。无线通信接口1825通常可以包括例如基带(BB)处理器1826和RF电路1827。BB处理器1826可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器1821,BB处理器1826可以具有上述逻辑功能的一部分或全部。BB处理器1826可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器1826的功能改变。该模块可以为插入到基站设备1820的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1827可以包括例如混频器、滤波器和放大器,并且经由天线1810来传送和接收无线信号。
如图17所示,无线通信接口1825可以包括多个BB处理器1826。例如,多个BB处理器1826可以与eNB 1800使用的多个频带兼容。如图17所示,无线通信接口1825可以包括多个RF电路1827。例如,多个RF电路1827可以与多个天线元件兼容。虽然图17示出其中无线通信接口1825包括多个BB处理器1826和多个RF电路1827的示例,但是无线通信接口1825也可以包括单个BB处理器1826或单个RF电路1827。
在图17所示的eNB 1800中,此前参照图3、图6、图11描述的电子设备300、600、1100中的通信单元可以通过无线通信接口1825以及可选的天线1810实现。电子设备300、600、1100中的估计单元和选择单元、电子设备600和1100中的确定单元、电子设备1100中的配置单元的功能可以通过控制器1821实现。例如,控制器1821可以通过执行存储器1822中存储的指令而实现估计单元、选择单元、确定单元、和/或配置单元的功能。
(第二应用示例)
图18是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图。eNB 1930包括一个或多个天线1940、基站设备1950和RRH 1960。RRH 1960和每个天线1940可以经由RF线缆而彼此连接。基站设备1950和RRH 1960可以经由诸如光纤线缆的高速线路而彼此连接。
天线1940中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 1960发送和接收无线信号。如图18所示,eNB 1930可以包括多个天线1940。例如,多个天线1940可以与eNB 1930使用的多个频带兼容。虽然图18示出其中eNB1930包括多个天线1940的示例,但是eNB 1930也可以包括单个天线1940。
基站设备1950包括控制器1951、存储器1952、网络接口1953、无线通信接口1955以及连接接口1957。控制器1951、存储器1952和网络接口1953与参照图17描述的控制器1821、存储器1822和网络接口1823相同。
无线通信接口1955支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 1960和天线1940来提供到位于与RRH 1960对应的扇区中的终端的无线通信。无线通信接口1955通常可以包括例如BB处理器1956。除了BB处理器1956经由连接接口1957连接到RRH 1960的RF电路1964之外,BB处理器1956与参照图17描述的BB处理器1826相同。如图18所示,无线通信接口1955可以包括多个BB处理器1956。例如,多个BB处理器1956可以与eNB 1930使用的多个频带兼容。虽然图18示出其中无线通信接口1955包括多个BB处理器1956的示例,但是无线通信接口1955也可以包括单个BB处理器1956。
连接接口1957为用于将基站设备1950(无线通信接口1955)连接至RRH 1960的接口。连接接口1957还可以为用于将基站设备1950(无线通信接口1955)连接至RRH 1960的上述高速线路中的通信的通信模块。
RRH 1960包括连接接口1961和无线通信接口1963。
连接接口1961为用于将RRH 1960(无线通信接口1963)连接至基站设备1950的接口。连接接口1961还可以为用于上述高速线路中的通信的通信模块。
无线通信接口1963经由天线1940来传送和接收无线信号。无线通信接口1963通常可以包括例如RF电路1964。RF电路1964可以包括例如混频器、滤波器和放大器,并且经由天线1940来传送和接收无线信号。如图18所示,无线通信接口1963可以包括多个RF电路1964。例如,多个RF电路1964可以支持多个天线元件。虽然图18示出其中无线通信接口1963包括多个RF电路1964的示例,但是无线通信接口1963也可以包括单个RF电路1964。
在图18所示的eNB 1930中,此前参照图3、图6、图11描述的电子设备300、600、1100中的通信单元例如可以通过无线通信接口1963以及可选的天线1940实现。电子设备300、600、1100中的估计单元和选择单元、电子设备600和1100中的确定单元、电子设备1100中的配置单元的功能可以通过控制器1951实现。例如,控制器1951可以通过执行存储器1952中存储的指令而实现估计单元、选择单元、确定单元、和/或配置单元的功能。
[关于用户设备的应用示例]
(第一应用示例)
图19是示出可以应用本公开内容的技术的智能电话2000的示意性配置的示例的框图。智能电话2000包括处理器2001、存储器2002、存储装置2003、外部连接接口2004、摄像装置2006、传感器2007、麦克风2008、输入装置2009、显示装置2010、扬声器2011、无线通信接口2012、一个或多个天线开关2015、一个或多个天线2016、总线2017、电池2018以及辅助控制器2019。
处理器2001可以为例如CPU或片上系统(SoC),并且控制智能电话2000的应用层和另外层的功能。存储器2002包括RAM和ROM,并且存储数据和由处理器2001执行的程序。存储装置2003可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口2004为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话2000的接口。
摄像装置2006包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器2007可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度 传感器。麦克风2008将输入到智能电话2000的声音转换为音频信号。输入装置2009包括例如被配置为检测显示装置2010的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置2010包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话2000的输出图像。扬声器2011将从智能电话2000输出的音频信号转换为声音。
无线通信接口2012支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口2012通常可以包括例如BB处理器2013和RF电路2014。BB处理器2013可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路2014可以包括例如混频器、滤波器和放大器,并且经由天线2016来传送和接收无线信号。无线通信接口2012可以为其上集成有BB处理器2013和RF电路2014的一个芯片模块。如图19所示,无线通信接口2012可以包括多个BB处理器2013和多个RF电路2014。虽然图19示出其中无线通信接口2012包括多个BB处理器2013和多个RF电路2014的示例,但是无线通信接口2012也可以包括单个BB处理器2013或单个RF电路2014。
此外,除了蜂窝通信方案之外,无线通信接口2012可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口2012可以包括针对每种无线通信方案的BB处理器2013和RF电路2014。
天线开关2015中的每一个在包括在无线通信接口2012中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线916的连接目的地。
天线2016中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口2012传送和接收无线信号。如图19所示,智能电话2000可以包括多个天线2016。虽然图19示出其中智能电话2000包括多个天线2016的示例,但是智能电话2000也可以包括单个天线2016。
此外,智能电话2000可以包括针对每种无线通信方案的天线2016。在此情况下,天线开关2015可以从智能电话2000的配置中省略。
总线2017将处理器2001、存储器2002、存储装置2003、外部连接接口2004、摄像装置2006、传感器2007、麦克风2008、输入装置2009、显示装置2010、扬声器2011、无线通信接口2012以及辅助控制器2019彼此连接。电池2018经由馈线向图19所示的智能电话2000的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器2019例如在睡眠模式下操作智能电话2000的最小必需功能。
在图19所示的智能电话2000中,此前参照图3、图6描述的电子设备300、600中的通信单元可以通过无线通信接口2012以及可选的天线2016实现。电子设备300、600中的估计单元和选择单元以及电子设备600中的确定单元的功能可以由处理器2001或辅助控制器2019实现。例如,处理器2001或辅助控制器2019可以通过执行存储器2002或存储装置2003中存储的指令而实现估计单元、选择单元、和/或确定单元的功能。
(第二应用示例)
图20是示出可以应用本公开内容的技术的汽车导航设备2120的示意性配置的示例的框图。汽车导航设备2120包括处理器2121、存储器2122、全球定位系统(GPS)模块2124、传感器2125、数据接口2126、内容播放器2127、存储介质接口2128、输入装置2129、显示装置2130、扬声器2131、无线通信接口2133、一个或多个天线开关2136、一个或多个天线2137以及电池2138。
处理器2121可以为例如CPU或SoC,并且控制汽车导航设备2120的导航功能和另外的功能。存储器2122包括RAM和ROM,并且存储数据和由处理器2121执行的程序。
GPS模块2124使用从GPS卫星接收的GPS信号来测量汽车导航设备2120的位置(诸如纬度、经度和高度)。传感器2125可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口2126经由未示出的终端而连接到例如车载网络2141,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器2127再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口2128中。输入装置2129包括例如被配置为检测显示装置2130的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置2130包括诸如LCD或 OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器2131输出导航功能的声音或再现的内容。
无线通信接口2133支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口2133通常可以包括例如BB处理器2134和RF电路2135。BB处理器2134可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路2135可以包括例如混频器、滤波器和放大器,并且经由天线2137来传送和接收无线信号。无线通信接口2133还可以为其上集成有BB处理器2134和RF电路2135的一个芯片模块。如图20所示,无线通信接口2133可以包括多个BB处理器2134和多个RF电路2135。虽然图20示出其中无线通信接口2133包括多个BB处理器2134和多个RF电路2135的示例,但是无线通信接口2133也可以包括单个BB处理器2134或单个RF电路2135。
此外,除了蜂窝通信方案之外,无线通信接口2133可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口2133可以包括BB处理器2134和RF电路2135。
天线开关2136中的每一个在包括在无线通信接口2133中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线2137的连接目的地。
天线2137中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口2133传送和接收无线信号。如图20所示,汽车导航设备2120可以包括多个天线2137。虽然图20示出其中汽车导航设备2120包括多个天线2137的示例,但是汽车导航设备2120也可以包括单个天线2137。
此外,汽车导航设备2120可以包括针对每种无线通信方案的天线2137。在此情况下,天线开关2136可以从汽车导航设备2120的配置中省略。
电池2138经由馈线向图20所示的汽车导航设备2120的各个块提供电力,馈线在图中被部分地示为虚线。电池2138累积从车辆提供的电力。
在图20示出的汽车导航设备2120中,此前参照图3、图6描述的电 子设备300、600中的通信单元可以通过无线通信接口2133以及可选的天线2137实现。电子设备300、600中的估计单元和选择单元以及电子设备600中的确定单元的功能可以由处理器2121实现。例如,处理器2121可以通过执行存储器2122中存储的指令而实现估计单元、选择单元、和/或确定单元的功能。
本公开内容的技术也可以被实现为包括汽车导航设备2120、车载网络2141以及车辆模块2142中的一个或多个块的车载系统(或车辆)2140。车辆模块2142生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络2141。
以上参照附图描述了本公开的优选实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
例如,附图所示的功能框图中以虚线框示出的单元均表示该功能单元在相应装置中是可选的,并且各个可选的功能单元可以以适当的方式进行组合以实现所需功能。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。
以上虽然结合附图详细描述了本公开的实施例,但是应当明白,上面所描述的实施方式只是用于说明本公开,而并不构成对本公开的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本公开的实质和范围。因此,本公开的范围仅由所附的权利要求及其等效含义来限定。

Claims (20)

  1. 一种电子设备,包括:
    处理电路,所述处理电路被配置为:
    基于先前使用候选波束关于与所述电子设备通信的另一设备进行波束跟踪的结果,估计每个候选波束为最优波束的预测概率;以及
    基于所估计的预测概率,在候选波束中选择下一次波束跟踪的测量波束。
  2. 如权利要求1所述的电子设备,其中,波束跟踪的结果包括通过波束跟踪获得的与候选波束相对应的信号质量的时间序列数据。
  3. 如权利要求2所述的电子设备,其中,所述处理电路还被配置为使用预先获得的预测模型来确定候选波束的预测概率,所述预测模型是使用波束跟踪的结果的训练数据通过机器学习获得的。
  4. 如权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    通过在候选波束中选择总的预测概率满足预定条件的、最小数目的候选波束,选择所述测量波束。
  5. 如权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    通过在多个候选波束集合中选择所包括的候选波束的总的预测概率满足预定条件的、最小的候选波束集合,选择所述测量波束。
  6. 如权利要求4或5所述的电子设备,其中,所述预定条件包括总的预测概率大于预定阈值。
  7. 如权利要求5所述的电子设备,其中,每个候选波束集合包括一个或更多个相邻波束集合,每个相邻波束集合以全部候选波束中预测概率最高的最优预测波束为中心,并且包括距最优预测波束预定的波束距离的候选波束,其中,第L个候选波束集合包括所述波束距离为最小值的相邻波束集合以及所述波束距离从该最小值依次增加的(L-1)个相邻波束集合,L为大于或等于1的自然数。
  8. 如权利要求7所述的电子设备,其中,候选波束与最优预测波束之间的距离是根据候选波束的方向与最优预测波束的方向之间的差异确定的。
  9. 如权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    获得下一次波束跟踪中与每个测量波束相对应的信号质量,并根据所获得的信号质量在测量波束中确定要在数据传输中使用的波束。
  10. 如权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    在关于所述另一设备进行首次波束跟踪之前,基于使用候选波束关于所述另一设备进行波束扫描的结果,在候选波束中选择首次波束跟踪的测量波束。
  11. 如权利要求1所述的电子设备,其中,候选波束是下行参考信号的发送波束,并且所述电子设备是网络侧设备。
  12. 如权利要求11所述的电子设备,其中,所述处理电路还被配置为:
    为所述另一设备预先提供下行参考信号的资源集合的配置信息,所述资源集合中的每个下行参考信号能够被单独发送。
  13. 如权利要求12所述的电子设备,其中,所述处理电路还被配置为:
    当针对下一次波束跟踪与针对前一次波束跟踪选择不同数目的下行参考信号时,向所述另一设备发送关于针对下一次波束跟踪选择的下行参考信号的数目的指示。
  14. 如权利要求12所述的电子设备,其中,所述处理电路还被配置为:
    当针对下一次波束跟踪与针对前一次波束跟踪选择不同的下行参考信号时,向所述另一设备发送关于针对下一次波束跟踪选择的下行参考信号的指示。
  15. 如权利要求1所述的电子设备,其中,候选波束是针对下行参考信号的接收波束,并且所述电子设备是终端设备。
  16. 如权利要求15所述的电子设备,其中,所述处理电路还被配置为:
    从网络侧设备预先获得下行参考信号的资源集合的配置信息,所述资源集合中的每个下行参考信号能够被单独发送。
  17. 如权利要求16所述的电子设备,其中,所述处理电路还被配置为:
    当针对下一次波束跟踪与针对前一次波束跟踪选择不同数目的接收波束时,向网络侧设备发送下一次波束跟踪对下行参考信号的请求。
  18. 如权利要求17所述的电子设备,其中,所述处理电路还被配置为:
    从网络侧设备接收响应于所述请求而发送的关于下一次波束跟踪要 使用的下行参考信号的指示。
  19. 一种用于无线通信的方法,包括:
    基于先前使用候选波束关于与电子设备通信的另一设备进行波束跟踪的结果,估计每个候选波束为最优波束的预测概率;以及
    基于所估计的预测概率,在候选波束中选择下一次波束跟踪的测量波束。
  20. 一种存储有可执行指令的非暂态计算机可读存储介质,所述可执行指令在由处理器执行时,使得所述处理器执行如权利要求19所述的用于无线通信的方法。
PCT/CN2023/070959 2022-01-12 2023-01-06 用于无线通信的电子设备和方法以及计算机可读存储介质 WO2023134571A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380016010.1A CN118591996A (zh) 2022-01-12 2023-01-06 用于无线通信的电子设备和方法以及计算机可读存储介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210031216.9 2022-01-12
CN202210031216.9A CN116470942A (zh) 2022-01-12 2022-01-12 用于无线通信的电子设备和方法以及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2023134571A1 true WO2023134571A1 (zh) 2023-07-20

Family

ID=87175848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/070959 WO2023134571A1 (zh) 2022-01-12 2023-01-06 用于无线通信的电子设备和方法以及计算机可读存储介质

Country Status (2)

Country Link
CN (2) CN116470942A (zh)
WO (1) WO2023134571A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190007122A1 (en) * 2017-06-29 2019-01-03 Telefonaktiebolaget Lm Ericsson (Publ) A Network Node, A Wireless Device, and Methods Therein for Beam Selection
WO2020227859A1 (en) * 2019-05-10 2020-11-19 Telefonaktiebolaget Lm Ericsson (Publ) Methods and devices for radio beam determination
WO2020244748A1 (en) * 2019-06-05 2020-12-10 Telefonaktiebolaget Lm Ericsson (Publ) Determination of candidate set of beams for beam tracking
WO2020244747A1 (en) * 2019-06-05 2020-12-10 Telefonaktiebolaget Lm Ericsson (Publ) Beam tracking measurement control

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190007122A1 (en) * 2017-06-29 2019-01-03 Telefonaktiebolaget Lm Ericsson (Publ) A Network Node, A Wireless Device, and Methods Therein for Beam Selection
WO2020227859A1 (en) * 2019-05-10 2020-11-19 Telefonaktiebolaget Lm Ericsson (Publ) Methods and devices for radio beam determination
WO2020244748A1 (en) * 2019-06-05 2020-12-10 Telefonaktiebolaget Lm Ericsson (Publ) Determination of candidate set of beams for beam tracking
WO2020244747A1 (en) * 2019-06-05 2020-12-10 Telefonaktiebolaget Lm Ericsson (Publ) Beam tracking measurement control

Also Published As

Publication number Publication date
CN118591996A (zh) 2024-09-03
CN116470942A (zh) 2023-07-21

Similar Documents

Publication Publication Date Title
US11991542B2 (en) Electronic device and method for wireless communication, and computer-readable storage medium
US12096265B2 (en) Electronic device and method for wireless communications
US11201651B2 (en) Electronic apparatus and server in wireless communication system, and wireless communication method
JP7230905B2 (ja) 無線通信システムにおける電子機器、方法及びコンピューター読み取り可能な記録媒体
WO2019237998A1 (zh) 电子设备、用户设备、无线通信方法和存储介质
WO2020062444A1 (zh) 网络侧设备、用户设备、无线通信方法和存储介质
WO2021088797A1 (zh) 网络侧设备、终端侧设备、通信方法、通信装置以及介质
WO2021047444A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2021164675A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2023131141A1 (zh) 人工智能模型的管理和分发
US20240267108A1 (en) Electronic device and method for wireless communication, and computer readable storage medium
WO2023134571A1 (zh) 用于无线通信的电子设备和方法以及计算机可读存储介质
CN111886898A (zh) 用于卫星通信的用户设备
US20230362687A1 (en) Electronic device, wireless communication method, and non-transitory computer-readable storage medium
WO2018095210A1 (zh) 用于网络控制端和网络节点的电子设备和方法
WO2023185566A1 (zh) 用于无线通信的方法和电子设备以及计算机可读存储介质
WO2024164969A1 (zh) 电子设备、用于无线通信的方法以及计算机可读存储介质
WO2023138470A1 (zh) 电子设备、用于无线通信的方法以及计算机可读存储介质
WO2024093717A1 (zh) 电子设备、用于无线通信的方法以及计算机可读存储介质
EP4462915A1 (en) Device and method for beam failure recovery, and medium
CN118232968A (zh) 电子设备和通信方法
CN117413470A (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
CN118921743A (zh) 用于无线通信的电子设备和方法及计算机可读存储介质
CN117597991A (zh) 基站、用户设备和越区切换方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23739914

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202380016010.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023739914

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2023739914

Country of ref document: EP

Effective date: 20240812