Nothing Special   »   [go: up one dir, main page]

WO2023132306A1 - Non-oriented film, sealant film, and multilayered sealant film - Google Patents

Non-oriented film, sealant film, and multilayered sealant film Download PDF

Info

Publication number
WO2023132306A1
WO2023132306A1 PCT/JP2022/048281 JP2022048281W WO2023132306A1 WO 2023132306 A1 WO2023132306 A1 WO 2023132306A1 JP 2022048281 W JP2022048281 W JP 2022048281W WO 2023132306 A1 WO2023132306 A1 WO 2023132306A1
Authority
WO
WIPO (PCT)
Prior art keywords
propylene
based polymer
mass
molecular weight
film
Prior art date
Application number
PCT/JP2022/048281
Other languages
French (fr)
Japanese (ja)
Inventor
知也 村上
篤太郎 木村
博貴 志水
淳 尾留川
友章 水川
凪 ▲高▼井
Original Assignee
株式会社プライムポリマー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社プライムポリマー filed Critical 株式会社プライムポリマー
Priority to KR1020247017312A priority Critical patent/KR20240090923A/en
Priority to CN202280086122.XA priority patent/CN118451138A/en
Priority to JP2023572458A priority patent/JPWO2023132306A1/ja
Publication of WO2023132306A1 publication Critical patent/WO2023132306A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/16Ethene-propene or ethene-propene-diene copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • C08J2423/12Polypropene

Definitions

  • the present invention relates to non-stretched films, sealant films and multilayer sealant films.
  • Propylene-based polymers are widely used as materials for various molded articles (see, for example, Patent Documents 1 to 4), and the required properties differ depending on the molding method and application.
  • films made of propylene-based polymers are widely used as packaging films for foods and miscellaneous goods, taking advantage of their excellent mechanical properties such as rigidity and optical properties such as gloss.
  • Unstretched polypropylene films are known to have an excellent balance of rigidity and heat resistance.
  • Patent Document 8 discloses an unstretched polypropylene film using a specific propylene-based polymer and having particularly excellent rigidity.
  • the object of the first aspect of the present invention is to provide an unstretched polypropylene film that is excellent in well-balanced rigidity and low-temperature heat-sealing performance (hereinafter referred to as "first object").
  • a second aspect of the present invention is to provide a non-stretched polypropylene film having excellent rigidity and capable of being heat-sealed at a low temperature (hereinafter referred to as a "second problem"). ).
  • a first aspect of the present invention relates to, for example, the following [1].
  • a propylene-based polymer (A) containing Melt flow rate (230 ° C., 2.16 kg load) is 0.1 to 30 g / 10 minutes, and intrinsic viscosity [ ⁇ ] measured in tetralin solvent at 135 ° C.
  • the content of the propylene-based polymer (A) is 1 to 10 parts by mass with respect to a total of 100 parts by mass of the propylene-based polymer (A) and the propylene/ ⁇ -olefin copolymer (B1)
  • An unstretched film comprising a propylene-based polymer composition (X1) containing 90 to 99 parts by mass of the propylene/ ⁇ -olefin copolymer (B1).
  • a second aspect of the present invention relates to, for example, the following [2].
  • the content of the propylene-based polymer (A) is 1 to 18 parts by mass with respect to a total of 100 parts by mass of the propylene-based polymer (A) and the propylene/ ⁇ -olefin copolymer (B2),
  • An unstretched film comprising a propylene-based polymer composition (X2) containing 82 to 99 parts by mass of the propylene/ ⁇ -olefin copolymer (B2).
  • the first and second aspects of the present invention further relate to [3] to [6] below.
  • the area ratio of the high molecular weight region having a molecular weight of 1,500,000 or more in the total area of the region surrounded by the molecular weight distribution curve measured by gel permeation chromatography (GPC) is 7% or more.
  • the propylene-based polymer (A) has two peaks in the molecular weight distribution curve measured by GPC, and the ratio (MH/ML) of the peak molecular weight MH on the high molecular weight side and the peak molecular weight ML on the low molecular weight side is The unstretched film according to any one of [1] to [4], which is 50 or more.
  • the first aspect of the present invention further relates to [7] below.
  • the second aspect of the present invention further relates to [8] below.
  • the unstretched film of the first aspect of the present invention is excellent in well-balanced rigidity and low-temperature heat-sealing performance (that is, a low seal initiation temperature, which will be described later).
  • the non-stretched film of the second aspect of the present invention has excellent rigidity and excellent sealing performance (that is, it has a low sealing initiation temperature, which will be described later).
  • the unstretched film of the first aspect of the present invention is a propylene-based polymer composition (X1 ).
  • non-stretched film of the second aspect of the present invention is a propylene-based polymer composition containing a propylene-based polymer (A) and a propylene/ ⁇ -olefin copolymer (B2) described below. (X2).
  • propylene/ ⁇ -olefin copolymer (B1) and the propylene/ ⁇ -olefin copolymer (B2) are collectively referred to as "propylene/ ⁇ -olefin copolymer It is also described as “union (B)”.
  • propylene-based polymer composition (X1) when there is no particular need to distinguish between the propylene-based polymer composition (X1) and the propylene-based polymer composition (X2), they may be collectively referred to as "propylene-based polymer composition (X)." Describe.
  • the propylene polymer (A) contains 20 to 50% by mass of the propylene polymer (a1) having a limiting viscosity [ ⁇ ] of 10 to 12 dl/g measured in a tetralin solvent at 135°C, and 135 °C, 50 to 80% by mass of the propylene polymer (a2) having an intrinsic viscosity [ ⁇ ] measured in a tetralin solvent in the range of 0.5 to 1.5 dl/g [however, the propylene polymer (a1 ) and the propylene-based polymer (a2) is 100% by mass. ⁇ include.
  • intrinsic viscosity [ ⁇ ] measured in a tetralin solvent at 135°C is also simply referred to as "intrinsic viscosity [ ⁇ ]".
  • the mass fractions of the propylene-based polymer (a1) and the propylene-based polymer (a2) are based on the total amount of (a1) and (a2).
  • the intrinsic viscosity [ ⁇ ] of the propylene-based polymer (a1) is in the range of 10-12 dl/g, preferably in the range of 10.5-11.5 dl/g.
  • the mass fraction of the propylene-based polymer (a1) in the propylene-based polymer (A) is in the range of 20 to 50% by mass, preferably 20 to 45% by mass, more preferably 20 to 40% by mass, More preferably, it is in the range of 22-40% by mass.
  • propylene-based polymer (a1) examples include propylene homopolymers and copolymers of propylene and ⁇ -olefins having 2 to 8 carbon atoms (excluding propylene).
  • ⁇ -olefins having 2 to 8 carbon atoms include ethylene, 1-butene, 1-hexene, 1-octene and 4-methyl-1-pentene. Ethylene is preferred as these ⁇ -olefins.
  • One or more ⁇ -olefins can be used.
  • the content of structural units derived from propylene is usually 90% by mass or more, preferably 95% by mass or more, more preferably 98% by mass or more. and the content of structural units derived from ⁇ -olefins having 2 to 8 carbon atoms (excluding propylene) is usually 10% by mass or less, preferably 5% by mass or less, more preferably 2% by mass or less. is.
  • the content ratio can be measured by 13 C-NMR.
  • the intrinsic viscosity [ ⁇ ] of the propylene-based polymer (a1) is within the range of 10 to 12 dl/g, it is preferable from the viewpoint of suppressing the number of fish eyes (FE) in the film obtained from the polymer composition.
  • the intrinsic viscosity [ ⁇ ] of the propylene-based polymer (a1) exceeds 12 dl/g, the film formability tends to deteriorate and the film surface appearance tends to deteriorate. Further, when the intrinsic viscosity [ ⁇ ] of the propylene-based polymer (a1) is less than 10 dl/g, the resulting film tends to have insufficient rigidity, heat resistance and gas barrier properties.
  • the mass fraction of the propylene-based polymer (a1) is less than 20% by mass, the resulting polymer composition tends to have insufficient melt tension, and the resulting film tends to have insufficient rigidity, heat resistance and gas barrier properties. If it exceeds 50% by mass, it tends to cause poor appearance during film molding.
  • the propylene-based polymer (a1) can be used alone or in combination of two or more.
  • the intrinsic viscosity [ ⁇ ] of the propylene-based polymer (a2) is in the range of 0.5 to 1.5 dl/g, preferably 0.6 to 1.5 dl/g, more preferably 0.8 to 1.5 dl/g. It is in the range of 5 dl/g.
  • the mass fraction of the propylene-based polymer (a2) in the propylene-based polymer (A) is in the range of 50 to 80% by mass, preferably 55 to 80% by mass, more preferably 60 to 80% by mass, More preferably, it is in the range of 60-78% by mass.
  • propylene-based polymer (a2) examples include propylene homopolymers and copolymers of propylene and ⁇ -olefins having 2 to 8 carbon atoms (excluding propylene).
  • ⁇ -olefins having 2 to 8 carbon atoms include ethylene, 1-butene, 1-hexene, 1-octene and 4-methyl-1-pentene. Ethylene is preferred as these ⁇ -olefins.
  • One or more ⁇ -olefins can be used.
  • the content of structural units derived from propylene is usually 90% by mass or more, preferably 93% by mass or more, more preferably 94% by mass or more. and the content of structural units derived from ⁇ -olefins having 2 to 8 carbon atoms (excluding propylene) is usually 10% by mass or less, preferably 7% by mass or less, more preferably 6% by mass or less. is.
  • the content ratio can be measured by 13 C-NMR.
  • the intrinsic viscosity [ ⁇ ] of the propylene-based polymer (a2) is less than 0.5 dl/g, the melt tension of the resulting polymer composition will be insufficient, and the resulting film will tend to have poor fisheyes. If the intrinsic viscosity [ ⁇ ] exceeds 1.5 dl/g, the viscosity tends to be high and the film formability tends to deteriorate.
  • the mass fraction of the propylene-based polymer (a2) is less than 50% by mass, it tends to cause poor appearance during film molding. In addition, the rigidity, heat resistance and gas barrier properties of the resulting film tend to be insufficient.
  • the propylene-based polymer (a2) can be used alone or in combination of two or more.
  • Additives such as an antioxidant, a neutralizer, a flame retardant, and a crystal nucleating agent can be added to the propylene-based polymer (A), if necessary. Additives can be used alone or in combination of two or more. The proportion of the additive is not particularly limited and can be adjusted as appropriate.
  • the propylene-based polymer (A) preferably has a melt flow rate (MFR) of 0.01 to 5 g/10 minutes, more preferably 0.05 to 4 g/10 minutes, measured at 230°C under a load of 2.16 kg. , more preferably in the range of 0.1 to 3 g/10 minutes.
  • MFR melt flow rate
  • the propylene-based polymer (A) preferably has a melt tension (MT) measured at 230°C in the range of 5 to 30 g, more preferably 7 to 25 g, and even more preferably 10 to 20 g.
  • MT melt tension
  • Melt tension (MT) can be measured with the following equipment and conditions.
  • the area ratio of the high molecular weight region of 10,000 or more (corresponding to the mass ratio of the high molecular weight component having a molecular weight of 1,500,000 or more) is preferably 7% or more, more preferably 10% or more, and still more preferably 12% or more.
  • the upper limit of the area ratio is, for example, 30%, preferably 25%.
  • the area ratio of the high-molecular-weight region occupies a specific ratio or more means that the propylene-based polymer (A) contains a high-molecular-weight component having a molecular weight of 1,500,000 or more. At least part of this high molecular weight component is a high molecular weight component having an intrinsic viscosity [ ⁇ ] of 10 to 12 dl/g. Therefore, if the ratio of the high molecular weight component is within the above range, the melt tension of the polymer composition will be more excellent.
  • the propylene-based polymer (A) preferably has two peaks in the molecular weight distribution curve measured by GPC.
  • the ratio (MH/ML) of the peak molecular weight MH on the high molecular weight side to the peak molecular weight ML on the low molecular weight side is preferably 50 or more, more preferably 70 or more, and even more preferably 90 or more.
  • the upper limit of the ratio (MH/ML) is, for example, 500, preferably 300.
  • the fact that the molecular weight distribution curve has two peaks and MH/ML is a specific value or more indicates that the polymer has a high content of high molecular weight components and a high intrinsic viscosity [ ⁇ ]. Therefore, the propylene-based polymer (A) having such an aspect contributes to improvement of melt tension and improvement of rigidity and heat resistance when formed into a film.
  • the propylene-based polymer (A) preferably has a peak molecular weight ML on the low molecular weight side of the molecular weight distribution curve measured by GPC of 100,000 or less, more preferably 80,000 or less, from the viewpoint of viscosity and film formability. More preferably, it is 50,000 or less.
  • Examples of the method for producing the propylene-based polymer (A) include various known production methods, such as those described in [0038] to [0075] of International Publication No. 2021/025142.
  • the propylene/ ⁇ -olefin copolymer (B1) has a melt flow rate (MFR) of 0.1 to 30 g/10 minutes measured under a load of 2.16 kg at 230°C, and measured in a tetralin solvent at 135°C.
  • MFR melt flow rate
  • the intrinsic viscosity [ ⁇ ] of more than 1.5 dl / g and 5.0 dl / g or less, and a copolymer containing 5.5 mol% or more of structural units derived from ⁇ -olefins (excluding propylene) It is a polymer.
  • the propylene/ ⁇ -olefin copolymer (B2) has a melt flow rate (MFR) of 0.1 to 30 g/10 minutes measured under a load of 2.16 kg at 230°C, and measured in a tetralin solvent at 135°C. has a limiting viscosity [ ⁇ ] of more than 1.5 dl/g and 5.0 dl/g or less, and a structural unit derived from an ⁇ -olefin (excluding propylene) is 1 mol% or more and 5.5 mol% It is a copolymer containing less than
  • the intrinsic viscosity [ ⁇ ] of the propylene/ ⁇ -olefin copolymer (B) is more than 1.5 dl/g and 5.0 dl/g or less, preferably more than 1.5 dl/g and 4.5 dl/g or less. , more preferably more than 1.5 dl/g and less than or equal to 4.0 dl/g, more preferably more than 1.5 dl/g and less than or equal to 2.5 dl/g.
  • the melt flow rate (MFR) of the propylene/ ⁇ -olefin copolymer (B) measured at 230°C under a load of 2.16 kg is 0.1 to 30 g/10 minutes, preferably 0.3 to 10 g. /10 minutes, more preferably 0.5 to 10 g/10 minutes.
  • MFR melt flow rate
  • the melting point (Tm) of the propylene/ ⁇ -olefin copolymer (B1) is , preferably 120 to 170°C, more preferably 125 to 170°C, still more preferably 125 to 135°C.
  • the melting point (Tm) is preferably within the above range from the viewpoint of moldability and heat resistance.
  • the melting point (Tm) of the propylene/ ⁇ -olefin copolymer (B2) is , preferably 120 to 170°C, more preferably 125 to 170°C, even more preferably 130 to 170°C, and particularly preferably 130 to 155°C.
  • the melting point (Tm) is preferably within the above range from the viewpoint of moldability and heat resistance.
  • the molecular weight distribution (Mw/Mn) of the propylene/ ⁇ -olefin copolymer (B) measured by gel permeation chromatography (GPC) is preferably at least 4.0, more preferably from 4.0 to 6.5, more preferably 4.0 to 6.0.
  • Mn is the number average molecular weight
  • Mw is the weight average molecular weight.
  • propylene/ ⁇ -olefin copolymer (B) examples include propylene/ ⁇ -olefin random copolymers, block-type propylene copolymers (propylene homopolymers or propylene/ ⁇ -olefin random copolymers, mixture with amorphous or low-crystalline propylene/ ⁇ -olefin random copolymer) and random block polypropylene.
  • ⁇ -olefins examples include ethylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 4-methyl-1-pentene, 3-methyl-1-pentene and the like. and ⁇ -olefins having 2 to 12 carbon atoms. Among these ⁇ -olefins, ethylene, 1-butene, 1-hexene, 1-octene and 4-methyl-1-pentene are preferred. One or more ⁇ -olefins can be used.
  • the content of structural units derived from ⁇ -olefins is determined by the content of structural units derived from propylene and the structure derived from ⁇ -olefins. Assuming that the total amount of units is 100 mol %, it is 5.5 mol % or more, preferably 5.5 to 9.0 mol %, more preferably 5.5 to 7.0 mol %.
  • the content of structural units derived from ⁇ -olefins (excluding propylene) is 1 mol% in the case of the propylene/ ⁇ -olefin copolymer (B2). 5.5 mol % or more, preferably 1.5 to 4.5 mol %, more preferably 2.0 to 4.0 mol %.
  • the content ratio can be measured by 13 C-NMR.
  • the propylene/ ⁇ -olefin copolymer (B) can be produced by copolymerizing propylene with another ⁇ -olefin using a catalyst, and a commercially available polypropylene resin can be used.
  • a catalyst for example, a solid catalyst component containing magnesium, titanium and halogen as essential components, and an organometallic compound catalyst such as an organoaluminum compound, described in [0050] to [0075] of International Publication No. 2021/025142.
  • the propylene-based polymer (A) and the propylene/ ⁇ -olefin copolymer (B) may each contain structural units derived from at least one biomass-derived monomer (propylene).
  • the same kind of monomers constituting the polymer may be only biomass-derived monomers, may be only fossil fuel-derived monomers, or may be both biomass-derived monomers and fossil fuel-derived monomers.
  • Biomass-derived monomers are monomers derived from any renewable natural raw materials and their residues, such as plant-derived or animal-derived, including fungi, yeast, algae and bacteria, and have 1 C isotope as carbon. It contains about ⁇ 10 ⁇ 12 , and the biomass carbon concentration (pMC) measured according to ASTM D6866 is about 100 (pMC).
  • pMC biomass carbon concentration
  • a biomass-derived monomer (propylene) can be obtained, for example, by a conventionally known method.
  • the propylene-based polymer (A) or the propylene/ ⁇ -olefin copolymer (B) contains structural units derived from biomass-derived monomers from the viewpoint of reducing the environmental load. If the polymer production conditions such as the polymerization catalyst and the polymerization temperature are the same, even if the raw olefin is a propylene-based polymer containing a biomass-derived olefin or a propylene/ ⁇ -olefin copolymer, the 14 C isotope is reduced to 1.
  • the molecular structure other than the ratio of about ⁇ 10 -12 is equivalent to that of a propylene-based polymer or a propylene/ ⁇ -olefin copolymer composed of fossil fuel-derived monomers. Therefore, these performances are said to be unchanged.
  • the propylene-based polymer (A) and the propylene/ ⁇ -olefin copolymer (B) may contain structural units derived from at least one chemically recycled monomer (propylene).
  • the same kind of monomers constituting the polymer may be only chemically recycled monomers, or may include chemically recycled monomers and fossil fuel-derived monomers and/or biomass-derived monomers.
  • a chemically recycled monomer (propylene) can be obtained, for example, by a conventionally known method.
  • the propylene-based polymer (A) and the propylene/ ⁇ -olefin copolymer (B) contain structural units derived from monomers derived from chemical recycling from the viewpoint of reducing the environmental load (mainly reducing waste). Even if the raw material monomer contains a monomer derived from chemical recycling, the monomer derived from chemical recycling is a monomer obtained by depolymerizing or thermally decomposing a polymer such as waste plastic into a monomer unit such as ethylene, or using the monomer as a raw material.
  • the molecular structure is a propylene-based polymer or a propylene/ ⁇ -olefin copolymer consisting of a fossil fuel-derived monomer. is equivalent to Therefore, these performances are said to be unchanged.
  • the propylene-based polymer composition (X) contains a weather stabilizer, a heat stabilizer, an antistatic agent, a slip agent, an antiblocking agent, an antifogging agent, a nucleating agent, Decomposing agent, pigment, dye, plasticizer, hydrochloric acid absorbent, antioxidant, cross-linking agent, cross-linking accelerator, reinforcing agent, filler, softener, processing aid, activator, moisture absorbent, adhesive, flame retardant, Additives such as release agents may be included. Additives can be used alone or in combination of two or more.
  • the propylene-based polymer composition (X) can be produced by adopting any known method.
  • the content of the propylene-based polymer (A) with respect to a total of 100 parts by mass of the propylene-based polymer (A) and the propylene/ ⁇ -olefin copolymer (B1) is 1 to 10 parts by mass, preferably 3 to 10 parts by mass, more preferably 4 to 10 parts by mass, and the content of the propylene/ ⁇ -olefin copolymer (B1) is 90 to 99 parts by mass. , preferably 90 to 97 parts by mass, more preferably 90 to 96 parts by mass.
  • the unstretched film according to the present invention in which the contents of the propylene-based polymer (A) and the propylene/ ⁇ -olefin copolymer (B) are within the above range, has excellent rigidity and heat-sealing performance in a well-balanced manner. It also looks great when sealed.
  • the content of the propylene/ ⁇ -olefin copolymer (B1) is less than 90 parts by mass, the sealing performance of the film tends to deteriorate, that is, the heat sealing temperature tends to increase, and when the film is heat sealed, may deteriorate the appearance of
  • the content of the propylene/ ⁇ -olefin copolymer (B1) exceeds 99 parts by mass, the rigidity of the film tends to deteriorate, that is, the tensile modulus tends to decrease.
  • the content of the propylene-based polymer (A) with respect to a total of 100 parts by mass of the propylene-based polymer (A) and the propylene/ ⁇ -olefin copolymer (B2) is 1 to 18 parts by mass, preferably 3 to 10 parts by mass, more preferably 4 to 10 parts by mass, and the content of the propylene/ ⁇ -olefin copolymer (B2) is 82 to 99 parts by mass. , preferably 90 to 97 parts by mass, more preferably 90 to 96 parts by mass.
  • the content of the propylene/ ⁇ -olefin copolymer (B2) is less than 82 parts by mass, the sealing performance of the film tends to deteriorate, that is, the heat sealing temperature tends to increase.
  • the content of the propylene/ ⁇ -olefin copolymer (B2) exceeds 99 parts by mass, the rigidity of the film tends to deteriorate, that is, the tensile modulus tends to decrease.
  • a propylene-based polymer containing a propylene-based polymer (a1) and a propylene-based polymer (a2) obtained by batchwise multistage polymerization is used. It is preferable to prepare the propylene-based polymer composition (X) by mixing the coalescence (A) and the propylene/ ⁇ -olefin copolymer (B).
  • the molecular weight distribution (Mw/Mn) of the propylene-based polymer composition (X) measured by gel permeation chromatography (GPC) is preferably 5.0 or more, more preferably 5.5 or more, and still more preferably. is 6.0 or more, and the upper limit is not particularly limited, but is 25, for example.
  • the propylene-based polymer (a2), the propylene/ ⁇ -olefin copolymer (B), and the propylene-based polymer (a1) having a higher molecular weight than these are used.
  • the composition (X) has a large molecular weight distribution. Therefore, it is presumed that the degree of orientation in the MD direction of the molding increases during film molding of the propylene-based polymer composition (X), and the orientation increases the crystallization of the propylene-based polymer. And it is thought that a film having excellent gas barrier properties can be obtained.
  • the melt flow rate (MFR) of the propylene-based polymer composition (X) measured at 230° C. under a load of 2.16 kg is usually 1 to 20 g/10 min, preferably 2 to 15 g/10 min, more It is preferably 3 to 10 g/10 minutes.
  • the unstretched film of the present invention is formed from the propylene-based polymer composition (X).
  • the unstretched film of the present invention exhibits higher rigidity, heat resistance and gas barrier properties than conventional unstretched polypropylene films.
  • the unstretched film is used, for example, as a packaging material for foods, beverages, industrial parts, miscellaneous goods, toys, daily necessities, office supplies, medical supplies, and the like.
  • the thickness of the unstretched film of the present invention is usually less than 200 ⁇ m, preferably 10-150 ⁇ m, more preferably 15-100 ⁇ m. Since the unstretched film of the present invention is excellent in rigidity, it can be easily made into a thin film.
  • the degree of axial orientation of the PP (110) plane specified by wide-angle X-ray diffraction measurement is preferably 0.85 or more, more preferably is greater than or equal to 0.88.
  • the upper limit of the degree of axial orientation may be, for example, 0.91.
  • the value of the degree of axial orientation can be increased or decreased by changing the intrinsic viscosity [ ⁇ ] of the propylene-based polymer (a1), for example, by changing the film forming speed.
  • film manufacturing methods include extrusion molding methods such as the T-die method and inflation method, compression molding methods, calendar molding methods, and casting methods.
  • Film molding can be performed, for example, as follows.
  • the above components constituting the propylene-based polymer composition (X) may be directly added to a hopper or the like of a film forming machine, or may be mixed using a ribbon blender, Banbury mixer, Henschel mixer, super mixer or the like. may be mixed in advance, or further melt-kneaded using a kneader such as a single-screw or twin-screw extruder or a roll to obtain the propylene-based polymer composition (X), followed by film forming.
  • a kneader such as a single-screw or twin-screw extruder or a roll
  • T-die method A specific example of film production will be described by the T-die method.
  • the above components are put into an extruder, and usually melt-kneaded at a temperature of 180 to 280 ° C., preferably 200 to 270 ° C., and then T-die.
  • a film is extruded through a die lip, and the molten film is cooled and taken up by a take-up device such as a nip roll to obtain a film.
  • Cooling methods for molten films include, for example, air knife method or air chamber method using rolls and air cooling, polishing roll method, swing roll method, narrow pressure cooling method such as belt casting method, contact with refrigerant such as water cooling method, etc. cooling method.
  • the obtained non-stretched film can be subjected to film treatment methods used for ordinary film molding, such as corona discharge treatment and liquid agent coating treatment.
  • the sealant film of the present invention has the unstretched film of the first aspect of the present invention as a surface layer.
  • the sealant film of the present invention consists of a laminate having a sealant film main body and a surface layer in this order.
  • Methods for producing the sealant film include a coextrusion method and an extrusion coating method.
  • the sealant film main body and surface layer may each be a single layer or multiple layers.
  • the multilayer sealant film of the present invention has the unstretched film of the second aspect of the present invention as an intermediate layer.
  • the multilayer sealant film of the present invention consists of a laminate having an outer layer, an intermediate layer and a sealant layer in this order.
  • Methods for producing the multilayer sealant film include co-extrusion and extrusion coating.
  • the outer layer, intermediate layer and sealant layer may each be a single layer or multiple layers.
  • Examples of materials for the sealant layer include materials used for conventional sealant layers, such as ethylene-based resins.
  • the sealant film main body and the outer layer include a base material layer.
  • the base layer is made of a material with relatively high rigidity and strength.
  • the materials include polyamide resins such as nylon 11 and nylon 12, polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyolefin resins such as polyethylene resin and polypropylene resin, polyvinylidene chloride resin, and ethylene-vinyl acetate copolymer.
  • thermoplastic resin selected from the group consisting of saponified products, polycarbonate resins, polystyrene resins, and acrylic resins (which may be stretched films), metal foils, metal vapor deposition films, inorganic oxide vapor deposition At least one selected from ceramic deposited films such as films, paper, nonwoven fabrics, and laminates thereof may be used.
  • the thickness of the base material layer is usually about 5 to 50 ⁇ m.
  • sealant film main body and the outer layer examples include, in addition to the base layer, a barrier layer for gases such as water vapor and oxygen, a sound absorbing layer, a light shielding layer, an adhesive layer, an adhesive layer, a colored layer, a conductive layer, and a reproduction layer.
  • a resin-containing layer (these layers listed in addition to the base material layer are also collectively referred to as "another layer").
  • examples of materials for forming the other layers include olefin polymer compositions other than the propylene polymer composition (X1) and gas barrier resin compositions. , and adhesive resin compositions.
  • examples of materials for forming the other layers include olefin-based polymer compositions other than the propylene-based polymer composition (X2) and gas-barrier resin compositions. products, and adhesive resin compositions.
  • the sealant film of the present invention has the unstretched film of the first aspect of the present invention as a surface layer, heat sealing at a low temperature, specifically lower than 140 ° C., preferably 135 ° C. or lower, It enables sealing at the sealing initiation temperature described later and has a high tensile modulus. Moreover, the appearance when heat-sealed is also excellent.
  • the multilayer sealant film of the present invention has the unstretched film of the second aspect of the present invention as an intermediate layer. Therefore, the intermediate layer contributes to heat sealing at a lower temperature than when a propylene homopolymer is used for the intermediate layer. Also, the multi-layer sealant film of the present invention has a higher tensile modulus than when a conventional propylene/ ⁇ -olefin copolymer is used.
  • the unstretched film, sealant film and multi-layer sealant film of the present invention are suitable for various food packaging fields such as fresh foods such as vegetables and fish meat, dried foods such as snacks and noodles, water foods such as soups and pickles; It is used as a packaging film in a wide range of packaging fields, such as packaging for various forms of medical products such as powders and liquids, medical peripheral materials, etc.; packaging for various electrical equipment such as cassette tapes and electrical parts. can do.
  • Intrinsic viscosity [ ⁇ ] The intrinsic viscosity [ ⁇ ] (dl/g) was measured at 135°C in a tetralin solvent.
  • the intrinsic viscosity [ ⁇ ] 2 of the propylene-based polymer (corresponding to the propylene-based polymer (a2)) obtained in the second stage is a value calculated from the following formula.
  • [ ⁇ ] 2 ([ ⁇ ] total x 100 - [ ⁇ ] 1 x W 1 )/W 2 [ ⁇ ] total : Intrinsic viscosity of the entire propylene-based polymer [ ⁇ ] 1 : Intrinsic viscosity of the propylene-based polymer obtained in the first stage W 1 : Mass of the propylene-based polymer obtained in the first stage Fraction (%) W 2 : mass fraction (%) of the propylene-based polymer obtained in the second stage
  • Melt flow rate (MFR) (g/10 minutes) was measured according to JIS-K7210 at a temperature of 230°C and a load of 2.16 kgf (21.2 N).
  • the ratio of the high molecular weight region having a molecular weight of 1,500,000 or more is the region surrounded by the molecular weight distribution curve (specifically, the molecular weight distribution curve and the horizontal axis) measured by gel permeation chromatography (GPC) using the following equipment and conditions. It is the area ratio of the high molecular weight region having a molecular weight of 1,500,000 or more to the total area of .
  • the horizontal axis is molecular weight (logarithmic value) and the vertical axis is dw/dLog(M) [w: integrated mass fraction, M: molecular weight].
  • the peak molecular weight MH on the high molecular weight side and the peak molecular weight ML on the low molecular weight side of the molecular weight distribution curve were obtained to calculate MH/ML.
  • the crystalline melting point was determined according to JIS-K7121 using a differential scanning calorimeter (DSC, manufactured by PerkinElmer (Diamond DSC)) under the following measurement conditions.
  • the apex of the endothermic peak in the fourth step was defined as the crystalline melting point (Tm) when the measurement was performed under the following measurement conditions.
  • Tm crystalline melting point
  • Measurement condition Measurement environment: Nitrogen gas atmosphere Sample amount: 5 mg Sample shape: Press film (molded at 230°C, thickness 400 ⁇ m) Sample pan: Aluminum sample pan with a flat bottom First step: The temperature is raised from 30°C to 200°C at 320°C/min and held for 10 minutes.
  • Second step Lower the temperature to 30°C at 20°C/min.
  • Fourth step Raise the temperature to 200°C at 20°C/min.
  • the intrinsic viscosity [ ⁇ ] of the propylene-based polymer (a1-1) polymerized under the same conditions as in the first stage was 11 dl/g.
  • Table 1 summarizes the physical properties of the polymer obtained in Production Example 1.
  • antioxidants Irganox 1010 (manufactured by BASF) 2000 ppm, Irgaphos 168 (manufactured by BASF) 2000 ppm, Sandstab P-EPQ (manufactured by Clariant Japan) ) 1000 ppm and 1000 ppm of calcium stearate as a neutralizing agent were added and melt-kneaded with a twin-screw extruder to obtain pellet-like propylene/ethylene/1-butene random copolymer (B-1).
  • composition analysis value (gas chromatographic analysis) of the gas portion in the polymerization apparatus is ethylene concentration of 2.0 mol%, 1-butene concentration of 0 mol%, and hydrogen concentration of 5.5 mol%.
  • a propylene/ethylene random copolymer (B-2) in the form of pellets was obtained in the same manner as in Production Example 2, except that the amounts of ethylene, 1-butene and hydrogen supplied were adjusted as described above.
  • composition analysis value (gas chromatography analysis) of the gas portion in the polymerization apparatus is ethylene concentration of 1.3 mol%, 1-butene concentration of 0 mol%, and hydrogen concentration of 3.5 mol%.
  • a propylene/ethylene random copolymer (B-5) in the form of pellets was obtained in the same manner as in Production Example 2, except that the amounts of ethylene, 1-butene and hydrogen supplied were adjusted as in the above.
  • Table 2 summarizes the physical properties of the polymers obtained in Production Examples 2 to 7.
  • Example 1-1 5 parts by mass of the propylene-based polymer (A-1) obtained in Production Example 1, and 95 parts by mass of the propylene/ethylene/1-butene random copolymer (B-1) obtained in Production Example 2.
  • a 25 ⁇ m thick non-stretched film was produced under the following molding conditions using a non-stretched film forming machine consisting of an extruder (one unit) with a screw diameter of 75 mm and a single-layer die with a width of 600 mm.
  • Example 1-2 Comparative Examples 1-1 to 1-6
  • a non-stretched film was produced in the same manner as in Example 1-1, except that the formulation was changed as shown in Table 3.
  • Example 2-1 From 5 parts by mass of the propylene-based polymer (A-1) obtained in Production Example 1 and 95 parts by mass of the propylene/ethylene random copolymer (B-3) obtained in Production Example 4, a screw diameter of 75 mm was prepared.
  • Example 2-2 to 2-5 Comparative Examples 2-1 to 2-8
  • a non-stretched film was produced in the same manner as in Example 2-1, except that the formulation was changed as shown in Table 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

[Problem] To provide: a cast polypropylene film that has an excellent balance of stiffness and low-temperature heat sealability; or a cast polypropylene film that has excellent stiffness and can be heat-sealed at a low temperature. [Solution] A non-oriented film comprising a propylene polymer composition that includes a prescribed ratio of a prescribed propylene polymer (A) and a propylene/α-olefin copolymer (B) that has an MFR of 0.1-30 g/10 min and a limiting viscosity [η] of greater than 1.5 dl/g to 5.0 dl/g as measured in a tetralin solvent at 135°C and contains a prescribed quantity of a structural unit derived from an α-olefin (excluding propylene).

Description

無延伸フィルム、シーラントフィルムおよび多層シーラントフィルムUnstretched films, sealant films and multi-layer sealant films
 本発明は、無延伸フィルム、シーラントフィルムおよび多層シーラントフィルムに関する。 The present invention relates to non-stretched films, sealant films and multilayer sealant films.
 プロピレン系重合体は、各種成形体の材料として広く使用されており(例えば、特許文献1~4参照)、成形方法や用途に応じて要求される特性も異なってくる。例えば、プロピレン系重合体からなるフィルムは、優れた剛性などの機械物性や、光沢などの光学的特性を生かして、食品や雑貨の包装用フィルムとして広く利用されている。無延伸ポリプロピレンフィルム(例えば、特許文献5~7参照)は、剛性および耐熱性のバランスに優れていることが知られている。また、特許文献8には、特定のプロピレン系重合体を用いた、剛性に特に優れる無延伸ポリプロピレンフィルムが開示されている。 Propylene-based polymers are widely used as materials for various molded articles (see, for example, Patent Documents 1 to 4), and the required properties differ depending on the molding method and application. For example, films made of propylene-based polymers are widely used as packaging films for foods and miscellaneous goods, taking advantage of their excellent mechanical properties such as rigidity and optical properties such as gloss. Unstretched polypropylene films (see, for example, Patent Documents 5 to 7) are known to have an excellent balance of rigidity and heat resistance. Further, Patent Document 8 discloses an unstretched polypropylene film using a specific propylene-based polymer and having particularly excellent rigidity.
国際公開第1999/007752号WO 1999/007752 国際公開第2005/097842号WO2005/097842 特開2001-302858号公報Japanese Patent Application Laid-Open No. 2001-302858 特開2006-045446号公報JP 2006-045446 A 特開2002-265712号公報Japanese Patent Application Laid-Open No. 2002-265712 特開2005-320359号公報JP 2005-320359 A 特開2011-236357号公報JP 2011-236357 A 国際公開第2021/025142号WO2021/025142
 しかしながら、特許文献8に記載された無延伸ポリプロピレンフィルムをシーラントフィルムに用いようとすると、シール性能が低かった(シール温度が高かった。)。 However, when the unstretched polypropylene film described in Patent Document 8 was used as a sealant film, the sealing performance was low (sealing temperature was high).
 そこで、本発明の第1の態様は、剛性および低温ヒートシール性能にバランスよく優れる無延伸ポリプロピレンフィルムを提供することを課題(以下「第1の課題」と記載する。)とする。 Therefore, the object of the first aspect of the present invention is to provide an unstretched polypropylene film that is excellent in well-balanced rigidity and low-temperature heat-sealing performance (hereinafter referred to as "first object").
 また、本発明の第2の態様は、剛性に優れた無延伸ポリプロピレンフィルムであって、低温でヒートシール可能な無延伸ポリプロピレンフィルムを提供することを課題(以下「第2の課題」と記載する。)とする。 A second aspect of the present invention is to provide a non-stretched polypropylene film having excellent rigidity and capable of being heat-sealed at a low temperature (hereinafter referred to as a "second problem"). ).
 本発明者らは、鋭意検討を重ねた結果、以下に記載のプロピレン系重合体組成物からなる無延伸フィルムが前記第1の課題を解決できることを見出し、本発明の第1の態様を完成させた。本発明の第1の態様は、たとえば以下の[1]に関する。 As a result of extensive studies, the present inventors have found that an unstretched film made of the propylene-based polymer composition described below can solve the first problem, and completed the first aspect of the present invention. rice field. A first aspect of the present invention relates to, for example, the following [1].
 [1]
 135℃、テトラリン溶媒中で測定される極限粘度[η]が10~12dl/gの範囲にあるプロピレン系重合体(a1)を20~50質量%、および135℃、テトラリン溶媒中で測定される極限粘度[η]が0.5~1.5dl/gの範囲にあるプロピレン系重合体(a2)を50~80質量%〔ただし、プロピレン系重合体(a1)とプロピレン系重合体(a2)との合計量を100質量%とする。〕含むプロピレン系重合体(A)と、
 メルトフローレート(230℃、2.16kg荷重)が0.1~30g/10分であり、135℃、テトラリン溶媒中で測定される極限粘度[η]が1.5dl/gを超え5.0dl/g以下であり、α-オレフィン(ただし、プロピレンを除く。)に由来する構成単位を5.5モル%以上含有するプロピレン・α-オレフィン共重合体(B1)とを含有し、
 前記プロピレン系重合体(A)および前記プロピレン・α-オレフィン共重合体(B1)の合計100質量部に対して、前記プロピレン系重合体(A)の含有量が1~10質量部であり、前記プロピレン・α-オレフィン共重合体(B1)の含有量が90~99質量部であるプロピレン系重合体組成物(X1)からなる無延伸フィルム。
[1]
20 to 50% by mass of the propylene-based polymer (a1) having an intrinsic viscosity [η] in the range of 10 to 12 dl/g measured in a tetralin solvent at 135°C, and 135°C in a tetralin solvent 50 to 80% by mass of the propylene-based polymer (a2) having an intrinsic viscosity [η] in the range of 0.5 to 1.5 dl/g [however, the propylene-based polymer (a1) and the propylene-based polymer (a2) and the total amount of 100% by mass. ] A propylene-based polymer (A) containing
Melt flow rate (230 ° C., 2.16 kg load) is 0.1 to 30 g / 10 minutes, and intrinsic viscosity [η] measured in tetralin solvent at 135 ° C. exceeds 1.5 dl / g and 5.0 dl / g or less, and a propylene/α-olefin copolymer (B1) containing 5.5 mol% or more of structural units derived from an α-olefin (excluding propylene),
The content of the propylene-based polymer (A) is 1 to 10 parts by mass with respect to a total of 100 parts by mass of the propylene-based polymer (A) and the propylene/α-olefin copolymer (B1), An unstretched film comprising a propylene-based polymer composition (X1) containing 90 to 99 parts by mass of the propylene/α-olefin copolymer (B1).
 さらに本発明者らは、鋭意検討を重ねた結果、以下に記載のプロピレン系重合体組成物からなる無延伸フィルムが前記第2の課題を解決できることを見出し、本発明の第2の態様を完成させた。本発明の第2の態様は、たとえば以下の[2]に関する。 Furthermore, as a result of extensive studies, the present inventors found that an unstretched film made of the propylene-based polymer composition described below can solve the second problem, and completed the second aspect of the present invention. let me A second aspect of the present invention relates to, for example, the following [2].
 [2]
 135℃、テトラリン溶媒中で測定される極限粘度[η]が10~12dl/gの範囲にあるプロピレン系重合体(a1)を20~50質量%、および135℃、テトラリン溶媒中で測定される極限粘度[η]が0.5~1.5dl/gの範囲にあるプロピレン系重合体(a2)を50~80質量%〔ただし、プロピレン系重合体(a1)とプロピレン系重合体(a2)との合計量を100質量%とする。〕含むプロピレン系重合体(A)と、
 メルトフローレート(230℃、2.16kg荷重)が0.1~30g/10分であり、135℃、テトラリン溶媒中で測定される極限粘度[η]が1.5dl/gを超え5.0dl/g以下であり、α-オレフィン(ただし、プロピレンを除く。)に由来する構成単位を1モル%以上5.5モル%未満含有するプロピレン・α-オレフィン共重合体(B2)とを含有し、
 前記プロピレン系重合体(A)および前記プロピレン・α-オレフィン共重合体(B2)の合計100質量部に対して、前記プロピレン系重合体(A)の含有量が1~18質量部であり、前記プロピレン・α-オレフィン共重合体(B2)の含有量が82~99質量部であるプロピレン系重合体組成物(X2)からなる無延伸フィルム。
[2]
20 to 50% by mass of the propylene-based polymer (a1) having an intrinsic viscosity [η] in the range of 10 to 12 dl/g measured in a tetralin solvent at 135°C, and 135°C in a tetralin solvent 50 to 80% by mass of the propylene-based polymer (a2) having an intrinsic viscosity [η] in the range of 0.5 to 1.5 dl/g [however, the propylene-based polymer (a1) and the propylene-based polymer (a2) and the total amount of 100% by mass. ] A propylene-based polymer (A) containing
Melt flow rate (230 ° C., 2.16 kg load) is 0.1 to 30 g / 10 minutes, and intrinsic viscosity [η] measured in tetralin solvent at 135 ° C. exceeds 1.5 dl / g and 5.0 dl /g or less, and a propylene/α-olefin copolymer (B2) containing 1 mol% or more and less than 5.5 mol% of structural units derived from an α-olefin (excluding propylene). ,
The content of the propylene-based polymer (A) is 1 to 18 parts by mass with respect to a total of 100 parts by mass of the propylene-based polymer (A) and the propylene/α-olefin copolymer (B2), An unstretched film comprising a propylene-based polymer composition (X2) containing 82 to 99 parts by mass of the propylene/α-olefin copolymer (B2).
 本発明の第1の態様および第2の態様は、さらに以下の[3]~[6]に関する。 The first and second aspects of the present invention further relate to [3] to [6] below.
 [3]
 前記プロピレン系重合体(A)の230℃、2.16kg荷重で測定されるメルトフローレート(MFR)が0.01~5g/10分である、前記[1]または[2]の無延伸フィルム。
[3]
The unstretched film of [1] or [2], wherein the propylene-based polymer (A) has a melt flow rate (MFR) of 0.01 to 5 g/10 minutes measured under a load of 2.16 kg at 230°C. .
 [4]
 前記プロピレン系重合体(A)が、ゲルパーミエーションクロマトグラフィー(GPC)により測定された分子量分布曲線で囲まれる領域の全面積に占める、分子量150万以上の高分子量領域の面積割合が7%以上である前記[1]~[3]のいずれかの無延伸フィルム。
[4]
In the propylene-based polymer (A), the area ratio of the high molecular weight region having a molecular weight of 1,500,000 or more in the total area of the region surrounded by the molecular weight distribution curve measured by gel permeation chromatography (GPC) is 7% or more. The unstretched film according to any one of [1] to [3] above.
 [5]
 前記プロピレン系重合体(A)が、GPCにより測定された分子量分布曲線が2つのピークを有し、高分子量側のピーク分子量MHと低分子量側のピーク分子量MLとの比(MH/ML)が50以上である前記[1]~[4]のいずれかの無延伸フィルム。
[5]
The propylene-based polymer (A) has two peaks in the molecular weight distribution curve measured by GPC, and the ratio (MH/ML) of the peak molecular weight MH on the high molecular weight side and the peak molecular weight ML on the low molecular weight side is The unstretched film according to any one of [1] to [4], which is 50 or more.
 [6]
 広角X線回折測定により特定されるPP(110)面の軸配向度が0.85以上である、前記[1]~[5]のいずれかの無延伸フィルム。
[6]
The unstretched film according to any one of [1] to [5], wherein the degree of axial orientation of the PP (110) plane specified by wide-angle X-ray diffraction measurement is 0.85 or more.
 本発明の第1の態様は、さらに以下の[7]に関する。 The first aspect of the present invention further relates to [7] below.
 [7]
 シーラントフィルム本体および表層をこの順序で有する積層体であり、前記表層が前記[1]または[3]~[6](ただし、直接的または間接的に[1]を引用する。)のいずれかの無延伸フィルムであるシーラントフィルム。
[7]
A laminate having a sealant film body and a surface layer in this order, wherein the surface layer is any of the above [1] or [3] to [6] (where [1] is directly or indirectly referred to). A sealant film that is a non-stretched film.
 本発明の第2の態様は、さらに以下の[8]に関する。 The second aspect of the present invention further relates to [8] below.
 [8]
 外層、中間層およびシーラント層をこの順序で有する積層体であり、前記中間層が前記[2]または[3]~[6](ただし、直接的または間接的に[2]を引用する。)のいずれかの無延伸フィルムである多層シーラントフィルム。
[8]
A laminate having an outer layer, an intermediate layer and a sealant layer in this order, wherein the intermediate layer is the above [2] or [3] to [6] (provided that [2] is directly or indirectly referred to). A multilayer sealant film that is an unstretched film of any of
 本発明の第1の態様の無延伸フィルムは、剛性および低温ヒートシール性能(すなわち、後述するシール開始温度が低いこと。)にバランスよく優れている。 The unstretched film of the first aspect of the present invention is excellent in well-balanced rigidity and low-temperature heat-sealing performance (that is, a low seal initiation temperature, which will be described later).
 本発明の第2の態様の無延伸フィルムは、剛性に優れ、かつシール性能にも優れている(すなわち、後述するシール開始温度が低い。)。 The non-stretched film of the second aspect of the present invention has excellent rigidity and excellent sealing performance (that is, it has a low sealing initiation temperature, which will be described later).
 以下、本発明を実施するための形態について説明する。 Hereinafter, a mode for carrying out the present invention will be described.
 〔無延伸フィルム〕
 本発明の第1の態様の無延伸フィルムは、以下に説明する、プロピレン系重合体(A)と、プロピレン・α-オレフィン共重合体(B1)とを含有するプロピレン系重合体組成物(X1)からなる。
[Unstretched film]
The unstretched film of the first aspect of the present invention is a propylene-based polymer composition (X1 ).
 また、本発明の第2の態様の無延伸フィルムは、以下に説明する、プロピレン系重合体(A)と、プロピレン・α-オレフィン共重合体(B2)とを含有するプロピレン系重合体組成物(X2)からなる。 Further, the non-stretched film of the second aspect of the present invention is a propylene-based polymer composition containing a propylene-based polymer (A) and a propylene/α-olefin copolymer (B2) described below. (X2).
 以下、前記プロピレン・α-オレフィン共重合体(B1)と前記プロピレン・α-オレフィン共重合体(B2)とを、特に区別する必要がない場合には、まとめて「プロピレン・α-オレフィン共重合体(B)」とも記載する。 Hereinafter, the propylene/α-olefin copolymer (B1) and the propylene/α-olefin copolymer (B2) are collectively referred to as "propylene/α-olefin copolymer It is also described as “union (B)”.
 また、前記プロピレン系重合体組成物(X1)と前記プロピレン系重合体組成物(X2)とを、特に区別する必要がない場合には、まとめて「プロピレン系重合体組成物(X)」とも記載する。 Further, when there is no particular need to distinguish between the propylene-based polymer composition (X1) and the propylene-based polymer composition (X2), they may be collectively referred to as "propylene-based polymer composition (X)." Describe.
 なお、各要件の測定条件の詳細は、実施例の欄に記載する。 The details of the measurement conditions for each requirement are described in the Examples column.
 [プロピレン系重合体(A)]
 プロピレン系重合体(A)は、135℃、テトラリン溶媒中で測定される極限粘度[η]が10~12dl/gの範囲にあるプロピレン系重合体(a1)を20~50質量%、および135℃、テトラリン溶媒中で測定される極限粘度[η]が0.5~1.5dl/gの範囲にあるプロピレン系重合体(a2)を50~80質量%〔ただし、プロピレン系重合体(a1)とプロピレン系重合体(a2)との合計量を100質量%とする。〕含む。
[Propylene polymer (A)]
The propylene polymer (A) contains 20 to 50% by mass of the propylene polymer (a1) having a limiting viscosity [η] of 10 to 12 dl/g measured in a tetralin solvent at 135°C, and 135 ℃, 50 to 80% by mass of the propylene polymer (a2) having an intrinsic viscosity [η] measured in a tetralin solvent in the range of 0.5 to 1.5 dl/g [however, the propylene polymer (a1 ) and the propylene-based polymer (a2) is 100% by mass. 〕include.
 以下、135℃、テトラリン溶媒中で測定される極限粘度[η]を単に「極限粘度[η]」ともいう。プロピレン系重合体(a1)およびプロピレン系重合体(a2)のそれぞれの質量分率は、(a1)と(a2)との合計量を基準とする。 Hereinafter, the intrinsic viscosity [η] measured in a tetralin solvent at 135°C is also simply referred to as "intrinsic viscosity [η]". The mass fractions of the propylene-based polymer (a1) and the propylene-based polymer (a2) are based on the total amount of (a1) and (a2).
 <プロピレン系重合体(a1)>
 プロピレン系重合体(a1)の極限粘度[η]は、10~12dl/gの範囲にあり、好ましくは10.5~11.5dl/gの範囲にある。また、プロピレン系重合体(A)におけるプロピレン系重合体(a1)の質量分率は、20~50質量%の範囲にあり、好ましくは20~45質量%、より好ましくは20~40質量%、さらに好ましくは22~40質量%の範囲にある。
<Propylene polymer (a1)>
The intrinsic viscosity [η] of the propylene-based polymer (a1) is in the range of 10-12 dl/g, preferably in the range of 10.5-11.5 dl/g. Further, the mass fraction of the propylene-based polymer (a1) in the propylene-based polymer (A) is in the range of 20 to 50% by mass, preferably 20 to 45% by mass, more preferably 20 to 40% by mass, More preferably, it is in the range of 22-40% by mass.
 プロピレン系重合体(a1)としては、例えば、プロピレンの単独重合体、プロピレンと炭素数2~8のα-オレフィン(ただし、プロピレンを除く)との共重合体が挙げられる。炭素数2~8のα-オレフィンとしては、例えば、エチレン、1-ブテン、1-ヘキセン、1-オクテン、4-メチル-1-ペンテンが挙げられる。これらα-オレフィンとしてはエチレンが好ましい。α-オレフィンは1種または2種以上用いることができる。 Examples of the propylene-based polymer (a1) include propylene homopolymers and copolymers of propylene and α-olefins having 2 to 8 carbon atoms (excluding propylene). Examples of α-olefins having 2 to 8 carbon atoms include ethylene, 1-butene, 1-hexene, 1-octene and 4-methyl-1-pentene. Ethylene is preferred as these α-olefins. One or more α-olefins can be used.
 プロピレンと炭素数2~8のα-オレフィンとの共重合体において、プロピレンに由来する構成単位の含有割合は、通常は90質量%以上、好ましくは95質量%以上、より好ましくは98質量%以上であり、炭素数2~8のα-オレフィン(ただし、プロピレンを除く)に由来する構成単位の含有割合は、通常は10質量%以下、好ましくは5質量%以下、より好ましくは2質量%以下である。前記含有割合は、13C-NMRにより測定することができる。 In a copolymer of propylene and an α-olefin having 2 to 8 carbon atoms, the content of structural units derived from propylene is usually 90% by mass or more, preferably 95% by mass or more, more preferably 98% by mass or more. and the content of structural units derived from α-olefins having 2 to 8 carbon atoms (excluding propylene) is usually 10% by mass or less, preferably 5% by mass or less, more preferably 2% by mass or less. is. The content ratio can be measured by 13 C-NMR.
 プロピレン系重合体(a1)の極限粘度[η]が10~12dl/gの範囲内であると、重合体組成物から得られるフィルムのフィッシュアイ(FE)個数を抑えられる観点で好ましい。 When the intrinsic viscosity [η] of the propylene-based polymer (a1) is within the range of 10 to 12 dl/g, it is preferable from the viewpoint of suppressing the number of fish eyes (FE) in the film obtained from the polymer composition.
 一方、プロピレン系重合体(a1)の極限粘度[η]が12dl/gを超えると、フィルム成形性が劣り、フィルム表面外観が悪化する傾向にある。また、プロピレン系重合体(a1)の極限粘度[η]が10dl/g未満であると、得られるフィルムの剛性、耐熱性およびガスバリア性が不十分となる傾向にある。 On the other hand, when the intrinsic viscosity [η] of the propylene-based polymer (a1) exceeds 12 dl/g, the film formability tends to deteriorate and the film surface appearance tends to deteriorate. Further, when the intrinsic viscosity [η] of the propylene-based polymer (a1) is less than 10 dl/g, the resulting film tends to have insufficient rigidity, heat resistance and gas barrier properties.
 プロピレン系重合体(a1)の質量分率が20質量%未満では、得られる重合体組成物の溶融張力が不十分となり、得られるフィルムの剛性、耐熱性およびガスバリア性が不十分となる傾向にあり、50質量%を超えると、フィルム成形時の外観不良の原因となる傾向にある。 When the mass fraction of the propylene-based polymer (a1) is less than 20% by mass, the resulting polymer composition tends to have insufficient melt tension, and the resulting film tends to have insufficient rigidity, heat resistance and gas barrier properties. If it exceeds 50% by mass, it tends to cause poor appearance during film molding.
 プロピレン系重合体(a1)は1種または2種以上用いることができる。 The propylene-based polymer (a1) can be used alone or in combination of two or more.
 <プロピレン系重合体(a2)>
 プロピレン系重合体(a2)の極限粘度[η]は、0.5~1.5dl/gの範囲にあり、好ましくは0.6~1.5dl/g、より好ましくは0.8~1.5dl/gの範囲にある。また、プロピレン系重合体(A)におけるプロピレン系重合体(a2)の質量分率は、50~80質量%の範囲にあり、好ましくは55~80質量%、より好ましくは60~80質量%、さらに好ましくは60~78質量%の範囲にある。
<Propylene polymer (a2)>
The intrinsic viscosity [η] of the propylene-based polymer (a2) is in the range of 0.5 to 1.5 dl/g, preferably 0.6 to 1.5 dl/g, more preferably 0.8 to 1.5 dl/g. It is in the range of 5 dl/g. Further, the mass fraction of the propylene-based polymer (a2) in the propylene-based polymer (A) is in the range of 50 to 80% by mass, preferably 55 to 80% by mass, more preferably 60 to 80% by mass, More preferably, it is in the range of 60-78% by mass.
 プロピレン系重合体(a2)としては、例えば、プロピレンの単独重合体、プロピレンと炭素数2~8のα-オレフィン(ただし、プロピレンを除く)との共重合体が挙げられる。炭素数2~8のα-オレフィンとしては、例えば、エチレン、1-ブテン、1-ヘキセン、1-オクテン、4-メチル-1-ペンテンが挙げられる。これらα-オレフィンとしてはエチレンが好ましい。α-オレフィンは1種または2種以上用いることができる。 Examples of the propylene-based polymer (a2) include propylene homopolymers and copolymers of propylene and α-olefins having 2 to 8 carbon atoms (excluding propylene). Examples of α-olefins having 2 to 8 carbon atoms include ethylene, 1-butene, 1-hexene, 1-octene and 4-methyl-1-pentene. Ethylene is preferred as these α-olefins. One or more α-olefins can be used.
 プロピレンと炭素数2~8のα-オレフィンとの共重合体において、プロピレンに由来する構成単位の含有割合は、通常は90質量%以上、好ましくは93質量%以上、より好ましくは94質量%以上であり、炭素数2~8のα-オレフィン(ただし、プロピレンを除く)に由来する構成単位の含有割合は、通常は10質量%以下、好ましくは7質量%以下、より好ましくは6質量%以下である。前記含有割合は、13C-NMRにより測定することができる。 In a copolymer of propylene and an α-olefin having 2 to 8 carbon atoms, the content of structural units derived from propylene is usually 90% by mass or more, preferably 93% by mass or more, more preferably 94% by mass or more. and the content of structural units derived from α-olefins having 2 to 8 carbon atoms (excluding propylene) is usually 10% by mass or less, preferably 7% by mass or less, more preferably 6% by mass or less. is. The content ratio can be measured by 13 C-NMR.
 プロピレン系重合体(a2)の極限粘度[η]が0.5dl/g未満であると、得られる重合体組成物の溶融張力が不十分となり、また得られるフィルムのフィッシュアイが悪化する傾向にあり、極限粘度[η]が1.5dl/gを超えると、粘度が高く、フィルム成形性が悪化する傾向にある。 If the intrinsic viscosity [η] of the propylene-based polymer (a2) is less than 0.5 dl/g, the melt tension of the resulting polymer composition will be insufficient, and the resulting film will tend to have poor fisheyes. If the intrinsic viscosity [η] exceeds 1.5 dl/g, the viscosity tends to be high and the film formability tends to deteriorate.
 プロピレン系重合体(a2)の質量分率が50質量%未満では、フィルム成形時の外観不良の原因となる傾向にあり、80質量%を超えると、得られる重合体組成物の溶融張力が不十分となり、また得られるフィルムの剛性、耐熱性およびガスバリア性が不十分となる傾向にある。 If the mass fraction of the propylene-based polymer (a2) is less than 50% by mass, it tends to cause poor appearance during film molding. In addition, the rigidity, heat resistance and gas barrier properties of the resulting film tend to be insufficient.
 プロピレン系重合体(a2)は1種または2種以上用いることができる。 The propylene-based polymer (a2) can be used alone or in combination of two or more.
 <添加剤>
 プロピレン系重合体(A)には、必要に応じて、酸化防止剤、中和剤、難燃剤、結晶核剤等の添加剤を配合することができる。添加剤は1種または2種以上用いることができる。添加剤の割合は特に制限されず、適宜調節することが可能である。
<Additive>
Additives such as an antioxidant, a neutralizer, a flame retardant, and a crystal nucleating agent can be added to the propylene-based polymer (A), if necessary. Additives can be used alone or in combination of two or more. The proportion of the additive is not particularly limited and can be adjusted as appropriate.
 <プロピレン系重合体(A)の物性>
 プロピレン系重合体(A)は、230℃、2.16kg荷重で測定されるメルトフローレート(MFR)が、好ましくは0.01~5g/10分、より好ましくは0.05~4g/10分、さらに好ましくは0.1~3g/10分の範囲にある。プロピレン系重合体(A)のMFRが上記範囲にあると、フィルム成形性に優れる。
<Properties of propylene-based polymer (A)>
The propylene-based polymer (A) preferably has a melt flow rate (MFR) of 0.01 to 5 g/10 minutes, more preferably 0.05 to 4 g/10 minutes, measured at 230°C under a load of 2.16 kg. , more preferably in the range of 0.1 to 3 g/10 minutes. When the MFR of the propylene-based polymer (A) is within the above range, the film formability is excellent.
 プロピレン系重合体(A)は、230℃で測定される溶融張力(MT)が、好ましくは5~30g、より好ましくは7~25g、さらに好ましく10~20gの範囲にある。プロピレン系重合体(A)のMTが上記範囲にあると、フィルム成形性に優れる。 The propylene-based polymer (A) preferably has a melt tension (MT) measured at 230°C in the range of 5 to 30 g, more preferably 7 to 25 g, and even more preferably 10 to 20 g. When the MT of the propylene-based polymer (A) is within the above range, the film formability is excellent.
 溶融張力(MT)は、以下の装置および条件で測定することができる。 Melt tension (MT) can be measured with the following equipment and conditions.
  ・装置:東洋精機社製キャピログラフ1C(商品名)
  ・温度:230℃
  ・オリフィス:L=8mm、D=2.095mm
  ・押出速度:15mm/分
  ・引取速度:15m/分
 プロピレン系重合体(A)は、ゲルパーミエーションクロマトグラフィー(GPC)により測定された分子量分布曲線で囲まれる領域の全面積に占める、分子量150万以上の高分子量領域の面積割合(分子量150万以上の高分子量成分の質量割合に相当する)が、好ましくは7%以上、より好ましくは10%以上、さらに好ましくは12%以上である。前記面積割合の上限は、例えば30%、好ましくは25%である。前記高分子量領域の面積割合が特定の割合以上を占めているということは、プロピレン系重合体(A)中に分子量150万以上の高分子量成分が含有されていることを意味している。この高分子量成分の少なくとも一部は極限粘度[η]が10~12dl/gの高分子量成分である。したがって、前記高分子量成分の割合が前記範囲であれば、重合体組成物の溶融張力はより優れたものとなる。
・Apparatus: Capilograph 1C (trade name) manufactured by Toyo Seiki Co., Ltd.
・Temperature: 230℃
・Orifice: L=8mm, D=2.095mm
・Extrusion speed: 15 mm/min ・Take-up speed: 15 m/min The area ratio of the high molecular weight region of 10,000 or more (corresponding to the mass ratio of the high molecular weight component having a molecular weight of 1,500,000 or more) is preferably 7% or more, more preferably 10% or more, and still more preferably 12% or more. The upper limit of the area ratio is, for example, 30%, preferably 25%. The fact that the area ratio of the high-molecular-weight region occupies a specific ratio or more means that the propylene-based polymer (A) contains a high-molecular-weight component having a molecular weight of 1,500,000 or more. At least part of this high molecular weight component is a high molecular weight component having an intrinsic viscosity [η] of 10 to 12 dl/g. Therefore, if the ratio of the high molecular weight component is within the above range, the melt tension of the polymer composition will be more excellent.
 プロピレン系重合体(A)は、GPCにより測定された分子量分布曲線が2つのピークを有することが好ましい。ここで、高分子量側のピーク分子量MHと低分子量側のピーク分子量MLとの比(MH/ML)は、好ましくは50以上、より好ましくは70以上、さらに好ましくは90以上である。比(MH/ML)の上限は、例えば500、好ましくは300である。分子量分布曲線が2つのピークを有し、MH/MLが特定の値以上になるということは、重合体における高分子量成分の含有量が多く、その極限粘度[η]も高いことを示す。したがって、このような態様のプロピレン系重合体(A)は、溶融張力の向上、フィルムとした場合の剛性、耐熱性の向上に寄与する。 The propylene-based polymer (A) preferably has two peaks in the molecular weight distribution curve measured by GPC. Here, the ratio (MH/ML) of the peak molecular weight MH on the high molecular weight side to the peak molecular weight ML on the low molecular weight side is preferably 50 or more, more preferably 70 or more, and even more preferably 90 or more. The upper limit of the ratio (MH/ML) is, for example, 500, preferably 300. The fact that the molecular weight distribution curve has two peaks and MH/ML is a specific value or more indicates that the polymer has a high content of high molecular weight components and a high intrinsic viscosity [η]. Therefore, the propylene-based polymer (A) having such an aspect contributes to improvement of melt tension and improvement of rigidity and heat resistance when formed into a film.
 プロピレン系重合体(A)は、GPCにより測定された分子量分布曲線の前記低分子量側のピーク分子量MLが、粘性、フィルム成形性の観点から、好ましくは10万以下、より好ましくは8万以下、さらに好ましくは5万以下である。 The propylene-based polymer (A) preferably has a peak molecular weight ML on the low molecular weight side of the molecular weight distribution curve measured by GPC of 100,000 or less, more preferably 80,000 or less, from the viewpoint of viscosity and film formability. More preferably, it is 50,000 or less.
 <プロピレン系重合体(A)の製造方法>
 プロピレン系重合体(A)の製造方法としては、種々公知の製造方法が挙げられ、例えば、国際公開第2021/025142号の[0038]~[0075]に記載の方法が挙げられる。
<Method for Producing Propylene Polymer (A)>
Examples of the method for producing the propylene-based polymer (A) include various known production methods, such as those described in [0038] to [0075] of International Publication No. 2021/025142.
 [プロピレン・α-オレフィン共重合体(B)]
 プロピレン・α-オレフィン共重合体(B1)は、230℃、2.16kg荷重で測定されるメルトフローレート(MFR)が0.1~30g/10分であり、135℃、テトラリン溶媒中で測定される極限粘度[η]が1.5dl/gを超え5.0dl/g以下であり、α-オレフィン(ただし、プロピレンを除く。)に由来する構造単位を5.5モル%以上含有する共重合体である。
[Propylene/α-olefin copolymer (B)]
The propylene/α-olefin copolymer (B1) has a melt flow rate (MFR) of 0.1 to 30 g/10 minutes measured under a load of 2.16 kg at 230°C, and measured in a tetralin solvent at 135°C. The intrinsic viscosity [η] of more than 1.5 dl / g and 5.0 dl / g or less, and a copolymer containing 5.5 mol% or more of structural units derived from α-olefins (excluding propylene) It is a polymer.
 プロピレン・α-オレフィン共重合体(B2)は、230℃、2.16kg荷重で測定されるメルトフローレート(MFR)が0.1~30g/10分であり、135℃、テトラリン溶媒中で測定される極限粘度[η]が1.5dl/gを超え5.0dl/g以下であり、α-オレフィン(ただし、プロピレンを除く。)に由来する構造単位を1モル%以上5.5モル%未満含有する共重合体である。 The propylene/α-olefin copolymer (B2) has a melt flow rate (MFR) of 0.1 to 30 g/10 minutes measured under a load of 2.16 kg at 230°C, and measured in a tetralin solvent at 135°C. has a limiting viscosity [η] of more than 1.5 dl/g and 5.0 dl/g or less, and a structural unit derived from an α-olefin (excluding propylene) is 1 mol% or more and 5.5 mol% It is a copolymer containing less than
 プロピレン・α-オレフィン共重合体(B)の極限粘度[η]は、1.5dl/gを超え5.0dl/g以下であり、好ましくは1.5dl/gを超え4.5dl/g以下、より好ましくは1.5dl/gを超え4.0dl/g以下、さらに好ましくは1.5dl/gを超え2.5dl/g以下である。極限粘度[η]が上記範囲にあるプロピレン・α-オレフィン共重合体(B)を用いると、フィルム成形時の生産性がよく、また得られるフィルムの耐衝撃性が良好である。 The intrinsic viscosity [η] of the propylene/α-olefin copolymer (B) is more than 1.5 dl/g and 5.0 dl/g or less, preferably more than 1.5 dl/g and 4.5 dl/g or less. , more preferably more than 1.5 dl/g and less than or equal to 4.0 dl/g, more preferably more than 1.5 dl/g and less than or equal to 2.5 dl/g. When the propylene/α-olefin copolymer (B) having the intrinsic viscosity [η] within the above range is used, the productivity during film formation is good, and the resulting film has good impact resistance.
 プロピレン・α-オレフィン共重合体(B)の、230℃、2.16kg荷重で測定されるメルトフローレート(MFR)は、0.1~30g/10分であり、好ましくは0.3~10g/10分、より好ましくは0.5~10g/10分である。MFRが上記範囲にあるプロピレン・α-オレフィン共重合体(B)を用いると、フィルム成形時の生産性がよく、また得られるフィルムの耐衝撃性が良好である。 The melt flow rate (MFR) of the propylene/α-olefin copolymer (B) measured at 230°C under a load of 2.16 kg is 0.1 to 30 g/10 minutes, preferably 0.3 to 10 g. /10 minutes, more preferably 0.5 to 10 g/10 minutes. When the propylene/α-olefin copolymer (B) having an MFR within the above range is used, productivity during film formation is good, and the resulting film has good impact resistance.
 プロピレン・α-オレフィン共重合体(B1)の融点(Tm)、具体的には示差走査熱量計(DSC)を用いて後述する実施例で採用された条件下で測定される融点(Tm)は、好ましくは120~170℃であり、より好ましくは125~170℃、さらに好ましくは125~135℃である。前記融点(Tm)は、成形性および耐熱性の観点から、前記範囲にあることが好ましい。 The melting point (Tm) of the propylene/α-olefin copolymer (B1), specifically the melting point (Tm) measured using a differential scanning calorimeter (DSC) under the conditions employed in the examples described later, is , preferably 120 to 170°C, more preferably 125 to 170°C, still more preferably 125 to 135°C. The melting point (Tm) is preferably within the above range from the viewpoint of moldability and heat resistance.
 プロピレン・α-オレフィン共重合体(B2)の融点(Tm)、具体的には示差走査熱量計(DSC)を用いて後述する実施例で採用された条件下で測定される融点(Tm)は、好ましくは120~170℃であり、より好ましくは125~170℃、さらに好ましくは130~170℃、特に好ましくは130~155℃である。前記融点(Tm)は、成形性および耐熱性の観点から、前記範囲にあることが好ましい。 The melting point (Tm) of the propylene/α-olefin copolymer (B2), specifically the melting point (Tm) measured using a differential scanning calorimeter (DSC) under the conditions employed in the examples described later, is , preferably 120 to 170°C, more preferably 125 to 170°C, even more preferably 130 to 170°C, and particularly preferably 130 to 155°C. The melting point (Tm) is preferably within the above range from the viewpoint of moldability and heat resistance.
 プロピレン・α-オレフィン共重合体(B)の、ゲルパーミエーションクロマトグラフィー(GPC)により測定された分子量分布(Mw/Mn)は、好ましくは4.0以上であり、より好ましくは4.0~6.5、さらに好ましくは4.0~6.0である。ここでMnは数平均分子量、Mwは重量平均分子量である。 The molecular weight distribution (Mw/Mn) of the propylene/α-olefin copolymer (B) measured by gel permeation chromatography (GPC) is preferably at least 4.0, more preferably from 4.0 to 6.5, more preferably 4.0 to 6.0. Here, Mn is the number average molecular weight and Mw is the weight average molecular weight.
 プロピレン・α-オレフィン共重合体(B)としては、例えば、プロピレン・α-オレフィンランダム共重合体、ブロックタイプのプロピレン共重合体(プロピレン単独重合体またはプロピレン・α-オレフィンランダム共重合体と、非晶性または低結晶性のプロピレン・α-オレフィンランダム共重合体との混合物)、ランダムブロックポリプロピレンが挙げられる。 Examples of the propylene/α-olefin copolymer (B) include propylene/α-olefin random copolymers, block-type propylene copolymers (propylene homopolymers or propylene/α-olefin random copolymers, mixture with amorphous or low-crystalline propylene/α-olefin random copolymer) and random block polypropylene.
 α-オレフィンとしては、例えば、エチレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-デセン、4-メチル-1-ペンテン、3-メチル-1-ペンテン等の炭素数2~12のα-オレフィンが挙げられる。これらα-オレフィンとしてはエチレン、1-ブテン、1-ヘキセン、1-オクテン、4-メチル-1-ペンテンが好ましい。α-オレフィンは1種または2種以上用いることができる。 Examples of α-olefins include ethylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 4-methyl-1-pentene, 3-methyl-1-pentene and the like. and α-olefins having 2 to 12 carbon atoms. Among these α-olefins, ethylene, 1-butene, 1-hexene, 1-octene and 4-methyl-1-pentene are preferred. One or more α-olefins can be used.
 プロピレン・α-オレフィン共重合体(B1)において、α-オレフィン(ただし、プロピレンを除く)に由来する構成単位の含有割合は、プロピレンに由来する構成単位の含有割合とα-オレフィンに由来する構成単位の合計を100モル%とすると、5.5モル%以上、好ましくは5.5~9.0モル%、より好ましくは5.5~7.0モル%である。 In the propylene/α-olefin copolymer (B1), the content of structural units derived from α-olefins (excluding propylene) is determined by the content of structural units derived from propylene and the structure derived from α-olefins. Assuming that the total amount of units is 100 mol %, it is 5.5 mol % or more, preferably 5.5 to 9.0 mol %, more preferably 5.5 to 7.0 mol %.
 プロピレン・α-オレフィン共重合体(B2)において、α-オレフィン(ただし、プロピレンを除く)に由来する構成単位の含有割合は、プロピレン・α-オレフィン共重合体(B2)の場合、1モル%以上5.5モル%未満、好ましくは1.5~4.5モル%、より好ましくは2.0~4.0モル%である。 In the propylene/α-olefin copolymer (B2), the content of structural units derived from α-olefins (excluding propylene) is 1 mol% in the case of the propylene/α-olefin copolymer (B2). 5.5 mol % or more, preferably 1.5 to 4.5 mol %, more preferably 2.0 to 4.0 mol %.
 前記含有割合は、13C-NMRにより測定することができる。 The content ratio can be measured by 13 C-NMR.
 プロピレン・α-オレフィン共重合体(B)は、触媒を用いてプロピレンと他のα-オレフィンとを共重合することにより製造することができ、また、市販されているポリプロピレン系樹脂を用いることができる。触媒としては、例えば、国際公開第2021/025142号の[0050]~[0075]に記載された、マグネシウム、チタンおよびハロゲンを必須成分とする固体触媒成分と、有機アルミニウム化合物等の有機金属化合物触媒成分と、有機ケイ素化合物等の電子供与性化合物触媒成分とから形成される触媒;メタロセン化合物を触媒の一成分として用いたメタロセン触媒が挙げられる。 The propylene/α-olefin copolymer (B) can be produced by copolymerizing propylene with another α-olefin using a catalyst, and a commercially available polypropylene resin can be used. can. As the catalyst, for example, a solid catalyst component containing magnesium, titanium and halogen as essential components, and an organometallic compound catalyst such as an organoaluminum compound, described in [0050] to [0075] of International Publication No. 2021/025142. a catalyst formed from a component and an electron-donating compound catalyst component such as an organosilicon compound; and a metallocene catalyst using a metallocene compound as one component of the catalyst.
 プロピレン系重合体(A)およびプロピレン・α-オレフィン共重合体(B)は、それぞれ、少なくとも1種以上のバイオマス由来モノマー(プロピレン)に由来する構成単位を含んでいてもよい。重合体を構成する同じ種類のモノマーがバイオマス由来モノマーのみであってもよいし、化石燃料由来モノマーのみであってもよいし、バイオマス由来モノマーと化石燃料由来モノマーの両方であってもよい。バイオマス由来モノマーとは、菌類、酵母、藻類および細菌類を含む、植物由来または動物由来などの、あらゆる再生可能な天然原料およびその残渣を原料としてなるモノマーであり、炭素として14C同位体を1×10-12程度の割合で含有し、ASTM D6866に準拠して測定したバイオマス炭素濃度(pMC)が100(pMC)程度である。バイオマス由来モノマー(プロピレン)は、たとえば従来知られている方法により得られる。 The propylene-based polymer (A) and the propylene/α-olefin copolymer (B) may each contain structural units derived from at least one biomass-derived monomer (propylene). The same kind of monomers constituting the polymer may be only biomass-derived monomers, may be only fossil fuel-derived monomers, or may be both biomass-derived monomers and fossil fuel-derived monomers. Biomass-derived monomers are monomers derived from any renewable natural raw materials and their residues, such as plant-derived or animal-derived, including fungi, yeast, algae and bacteria, and have 1 C isotope as carbon. It contains about ×10 −12 , and the biomass carbon concentration (pMC) measured according to ASTM D6866 is about 100 (pMC). A biomass-derived monomer (propylene) can be obtained, for example, by a conventionally known method.
 プロピレン系重合体(A)またはプロピレン・α-オレフィン共重合体(B)がバイオマス由来モノマーに由来する構成単位を含むことは、環境負荷低減の観点から好ましい。重合用触媒、重合温度などの重合体製造条件が同等であれば、原料オレフィンがバイオマス由来オレフィンを含むプロピレン系重合体またはプロピレン・α-オレフィン共重合体であっても、14C同位体を1×10-12程度の割合で含む以外の分子構造は、化石燃料由来モノマーからなるプロピレン系重合体またはプロピレン・α-オレフィン共重合体と同等である。従って、これらの性能も変わらないとされる。 It is preferable that the propylene-based polymer (A) or the propylene/α-olefin copolymer (B) contains structural units derived from biomass-derived monomers from the viewpoint of reducing the environmental load. If the polymer production conditions such as the polymerization catalyst and the polymerization temperature are the same, even if the raw olefin is a propylene-based polymer containing a biomass-derived olefin or a propylene/α-olefin copolymer, the 14 C isotope is reduced to 1. The molecular structure other than the ratio of about ×10 -12 is equivalent to that of a propylene-based polymer or a propylene/α-olefin copolymer composed of fossil fuel-derived monomers. Therefore, these performances are said to be unchanged.
 プロピレン系重合体(A)およびプロピレン・α-オレフィン共重合体(B)は、少なくとも1種以上のケミカルリサイクル由来モノマー(プロピレン)に由来する構成単位を含んでいてもよい。重合体を構成する同じ種類のモノマーがケミカルリサイクル由来モノマーのみでもよいし、ケミカルリサイクル由来モノマーと化石燃料由来モノマーおよび/またはバイオマス由来モノマーを含んでもよい。ケミカルリサイクル由来モノマー(プロピレン)は、たとえば従来知られている方法により得られる。 The propylene-based polymer (A) and the propylene/α-olefin copolymer (B) may contain structural units derived from at least one chemically recycled monomer (propylene). The same kind of monomers constituting the polymer may be only chemically recycled monomers, or may include chemically recycled monomers and fossil fuel-derived monomers and/or biomass-derived monomers. A chemically recycled monomer (propylene) can be obtained, for example, by a conventionally known method.
 プロピレン系重合体(A)およびプロピレン・α-オレフィン共重合体(B)がケミカルリサイクル由来モノマーに由来する構成単位を含むことは環境負荷低減(主に廃棄物削減)の観点から好ましい。原料モノマーがケミカルリサイクル由来モノマーを含んでいても、ケミカルリサイクル由来モノマーは廃プラスチックなどの重合体を解重合、熱分解等でエチレンなどのモノマー単位にまで戻したモノマー、ならびに該モノマーを原料にして製造したモノマーであるので、重合用触媒、重合プロセス、重合温度などの重合体製造条件が同等であれば、分子構造は化石燃料由来モノマーからなるプロピレン系重合体またはプロピレン・α-オレフィン共重合体と同等である。従って、これらの性能も変わらないとされる。 It is preferable that the propylene-based polymer (A) and the propylene/α-olefin copolymer (B) contain structural units derived from monomers derived from chemical recycling from the viewpoint of reducing the environmental load (mainly reducing waste). Even if the raw material monomer contains a monomer derived from chemical recycling, the monomer derived from chemical recycling is a monomer obtained by depolymerizing or thermally decomposing a polymer such as waste plastic into a monomer unit such as ethylene, or using the monomer as a raw material. Since it is a manufactured monomer, if the polymer manufacturing conditions such as the polymerization catalyst, polymerization process, and polymerization temperature are the same, the molecular structure is a propylene-based polymer or a propylene/α-olefin copolymer consisting of a fossil fuel-derived monomer. is equivalent to Therefore, these performances are said to be unchanged.
 [その他の成分(添加剤)]
 前記プロピレン系重合体組成物(X)は、本発明の目的を損なわない範囲で、耐候性安定剤、耐熱安定剤、帯電防止剤、スリップ剤、アンチブロッキング剤、防曇剤、造核剤、分解剤、顔料、染料、可塑剤、塩酸吸収剤、酸化防止剤、架橋剤、架橋促進剤、補強剤、充填剤、軟化剤、加工助剤、活性剤、吸湿剤、粘着剤、難燃剤、離型剤等の添加剤を含有することができる。添加剤は1種または2種以上用いることができる。
[Other components (additives)]
The propylene-based polymer composition (X) contains a weather stabilizer, a heat stabilizer, an antistatic agent, a slip agent, an antiblocking agent, an antifogging agent, a nucleating agent, Decomposing agent, pigment, dye, plasticizer, hydrochloric acid absorbent, antioxidant, cross-linking agent, cross-linking accelerator, reinforcing agent, filler, softener, processing aid, activator, moisture absorbent, adhesive, flame retardant, Additives such as release agents may be included. Additives can be used alone or in combination of two or more.
 [プロピレン系重合体組成物(X)の調製、物性]
 前記プロピレン系重合体組成物(X)は、公知の任意の方法を採用して製造することができ、例えば、プロピレン系重合体(A)およびプロピレン・α-オレフィン共重合体(B)、必要に応じてその他の成分を、ヘンシェルミキサー、V-ブレンダー、リボンブレンダー、タンブラーブレンダー等で混合する方法、または前記混合後、一軸押出機、二軸押出機、ニーダー、バンバリーミキサー、ロール等で溶融混練した後、造粒もしくは粉砕する方法が挙げられる。
[Preparation and physical properties of propylene-based polymer composition (X)]
The propylene-based polymer composition (X) can be produced by adopting any known method. A method of mixing other components with a Henschel mixer, a V-blender, a ribbon blender, a tumbler blender, etc., or after the mixing, a single screw extruder, a twin screw extruder, a kneader, a Banbury mixer, a roll, etc. melt and knead. After that, a method of granulating or pulverizing may be mentioned.
 前記プロピレン系重合体組成物(X1)において、プロピレン系重合体(A)およびプロピレン・α-オレフィン共重合体(B1)の合計100質量部に対して、プロピレン系重合体(A)の含有量は1~10質量部であり、好ましくは3~10質量部、より好ましくは4~10質量部であり、プロピレン・α-オレフィン共重合体(B1)の含有量は90~99質量部であり、好ましくは90~97質量部、より好ましくは90~96質量部である。 In the propylene-based polymer composition (X1), the content of the propylene-based polymer (A) with respect to a total of 100 parts by mass of the propylene-based polymer (A) and the propylene/α-olefin copolymer (B1) is 1 to 10 parts by mass, preferably 3 to 10 parts by mass, more preferably 4 to 10 parts by mass, and the content of the propylene/α-olefin copolymer (B1) is 90 to 99 parts by mass. , preferably 90 to 97 parts by mass, more preferably 90 to 96 parts by mass.
 プロピレン系重合体(A)およびプロピレン・α-オレフィン共重合体(B)の含有量が上記範囲にある本発明に係る無延伸フィルムは、剛性およびヒートシール性能にバランスよく優れており、かつヒートシールされた際の外観にも優れている。 The unstretched film according to the present invention, in which the contents of the propylene-based polymer (A) and the propylene/α-olefin copolymer (B) are within the above range, has excellent rigidity and heat-sealing performance in a well-balanced manner. It also looks great when sealed.
 一方、プロピレン・α-オレフィン共重合体(B1)の含有量が90質量部を下回ると、フィルムのシール性能が悪化、すなわちヒートシール温度が高くなる傾向にあり、かつヒートシールされた際にフィルムの外観が悪化することがある。プロピレン・α-オレフィン共重合体(B1)の含有量が99質量部を超えると、フィルムの剛性が悪化、すなわち引張弾性率が低くなる傾向にある。 On the other hand, when the content of the propylene/α-olefin copolymer (B1) is less than 90 parts by mass, the sealing performance of the film tends to deteriorate, that is, the heat sealing temperature tends to increase, and when the film is heat sealed, may deteriorate the appearance of When the content of the propylene/α-olefin copolymer (B1) exceeds 99 parts by mass, the rigidity of the film tends to deteriorate, that is, the tensile modulus tends to decrease.
 前記プロピレン系重合体組成物(X2)において、プロピレン系重合体(A)およびプロピレン・α-オレフィン共重合体(B2)の合計100質量部に対して、プロピレン系重合体(A)の含有量は1~18質量部であり、好ましくは3~10質量部、より好ましくは4~10質量部であり、プロピレン・α-オレフィン共重合体(B2)の含有量は82~99質量部であり、好ましくは90~97質量部、より好ましくは90~96質量部である。 In the propylene-based polymer composition (X2), the content of the propylene-based polymer (A) with respect to a total of 100 parts by mass of the propylene-based polymer (A) and the propylene/α-olefin copolymer (B2) is 1 to 18 parts by mass, preferably 3 to 10 parts by mass, more preferably 4 to 10 parts by mass, and the content of the propylene/α-olefin copolymer (B2) is 82 to 99 parts by mass. , preferably 90 to 97 parts by mass, more preferably 90 to 96 parts by mass.
 プロピレン・α-オレフィン共重合体(B2)の含有量が82質量部を下回ると、フィルムのシール性能が悪化、すなわちヒートシール温度が高くなる傾向にある。プロピレン・α-オレフィン共重合体(B2)の含有量が99質量部を超えると、フィルムの剛性が悪化、すなわち引張弾性率が低くなる傾向にある。 When the content of the propylene/α-olefin copolymer (B2) is less than 82 parts by mass, the sealing performance of the film tends to deteriorate, that is, the heat sealing temperature tends to increase. When the content of the propylene/α-olefin copolymer (B2) exceeds 99 parts by mass, the rigidity of the film tends to deteriorate, that is, the tensile modulus tends to decrease.
 本発明では、剛性および耐熱性の観点や、フィッシュアイの低減の観点から、バッチ式による多段重合で得られた、プロピレン系重合体(a1)およびプロピレン系重合体(a2)を含むプロピレン系重合体(A)と、プロピレン・α-オレフィン共重合体(B)とを混合してプロピレン系重合体組成物(X)を調製することが好ましい。 In the present invention, from the viewpoint of rigidity and heat resistance, and from the viewpoint of reducing fish eyes, a propylene-based polymer containing a propylene-based polymer (a1) and a propylene-based polymer (a2) obtained by batchwise multistage polymerization is used. It is preferable to prepare the propylene-based polymer composition (X) by mixing the coalescence (A) and the propylene/α-olefin copolymer (B).
 前記プロピレン系重合体組成物(X)の、ゲルパーミエーションクロマトグラフィー(GPC)により測定された分子量分布(Mw/Mn)は、好ましくは5.0以上、より好ましくは5.5以上、さらに好ましくは6.0以上であり、上限は特に限定されないが、例えば25である。 The molecular weight distribution (Mw/Mn) of the propylene-based polymer composition (X) measured by gel permeation chromatography (GPC) is preferably 5.0 or more, more preferably 5.5 or more, and still more preferably. is 6.0 or more, and the upper limit is not particularly limited, but is 25, for example.
 本発明では、プロピレン系重合体(a2)およびプロピレン・α-オレフィン共重合体(B)、ならびにこれらよりも分子量が高いプロピレン系重合体(a1)を用いていることから、前記プロピレン系重合体組成物(X)の分子量分布が大きくなっている。したがって、前記プロピレン系重合体組成物(X)のフィルム成形時に、成形のMD方向への配向度が増大し、配向によりプロピレン系重合体が高結晶化すると推測され、このため、剛性、耐熱性およびガスバリア性に優れたフィルムが得られると考えられる。 In the present invention, the propylene-based polymer (a2), the propylene/α-olefin copolymer (B), and the propylene-based polymer (a1) having a higher molecular weight than these are used. The composition (X) has a large molecular weight distribution. Therefore, it is presumed that the degree of orientation in the MD direction of the molding increases during film molding of the propylene-based polymer composition (X), and the orientation increases the crystallization of the propylene-based polymer. And it is thought that a film having excellent gas barrier properties can be obtained.
 前記プロピレン系重合体組成物(X)の、230℃、2.16kg荷重で測定されるメルトフローレート(MFR)は、通常は1~20g/10分、好ましくは2~15g/10分、より好ましくは3~10g/10分である。 The melt flow rate (MFR) of the propylene-based polymer composition (X) measured at 230° C. under a load of 2.16 kg is usually 1 to 20 g/10 min, preferably 2 to 15 g/10 min, more It is preferably 3 to 10 g/10 minutes.
 〔無延伸フィルム〕
 本発明の無延伸フィルムは、前記プロピレン系重合体組成物(X)から形成される。本発明の無延伸フィルムは、従来の無延伸ポリプロピレンフィルムに対して高い剛性、耐熱性およびガスバリア性を示す。前記無延伸フィルムは、例えば、食品、飲料、工業用部品、雑貨、玩具、日用品、事務用品、医療用品などの包装材として用いられる。
[Unstretched film]
The unstretched film of the present invention is formed from the propylene-based polymer composition (X). The unstretched film of the present invention exhibits higher rigidity, heat resistance and gas barrier properties than conventional unstretched polypropylene films. The unstretched film is used, for example, as a packaging material for foods, beverages, industrial parts, miscellaneous goods, toys, daily necessities, office supplies, medical supplies, and the like.
 本発明の無延伸フィルムの厚さは、通常は200μm未満、好ましくは10~150μm、より好ましくは15~100μmである。本発明の無延伸フィルムは剛性に優れることから、薄膜化も容易である。 The thickness of the unstretched film of the present invention is usually less than 200 μm, preferably 10-150 μm, more preferably 15-100 μm. Since the unstretched film of the present invention is excellent in rigidity, it can be easily made into a thin film.
 また、本発明の無延伸フィルムの、広角X線回折測定により特定されるPP(110)面の軸配向度(測定方法の詳細は後述する。)は、好ましくは0.85以上、より好ましは0.88以上である。前記軸配向度がこの範囲にあると、十分に分子が配向し、フィルムの引張弾性率が上昇する。前記軸配向度の上限は、たとえば0.91であってもよい。前記軸配向度の値は、たとえばフィルムの成形速度を変える、プロピレン系重合体(a1)の極限粘度[η]を変えることにより増減させることができる。 In the unstretched film of the present invention, the degree of axial orientation of the PP (110) plane specified by wide-angle X-ray diffraction measurement (details of the measurement method will be described later) is preferably 0.85 or more, more preferably is greater than or equal to 0.88. When the degree of axial orientation is within this range, the molecules are sufficiently oriented and the tensile modulus of the film increases. The upper limit of the degree of axial orientation may be, for example, 0.91. The value of the degree of axial orientation can be increased or decreased by changing the intrinsic viscosity [η] of the propylene-based polymer (a1), for example, by changing the film forming speed.
 フィルムの製造方法としては、例えば、Tダイ法やインフレーション法等の押出成形法、圧縮成形法、カレンダー成形法、流延法が挙げられる。 Examples of film manufacturing methods include extrusion molding methods such as the T-die method and inflation method, compression molding methods, calendar molding methods, and casting methods.
 フィルム成形は、例えば、以下のように行うことができる。前記プロピレン系重合体組成物(X)を構成する上記各成分をフィルム成形機のホッパー等に直接投入してもよいし、リボンブレンダー、バンバリーミキサー、ヘンシェルミキサー、スーパーミキサー等を用いて上記各成分を予め混合し、あるいはさらに、単軸または二軸押出機、ロールなどの混練機を用いて溶融混練してプロピレン系重合体組成物(X)を得た後、フィルム成形してもよい。 Film molding can be performed, for example, as follows. The above components constituting the propylene-based polymer composition (X) may be directly added to a hopper or the like of a film forming machine, or may be mixed using a ribbon blender, Banbury mixer, Henschel mixer, super mixer or the like. may be mixed in advance, or further melt-kneaded using a kneader such as a single-screw or twin-screw extruder or a roll to obtain the propylene-based polymer composition (X), followed by film forming.
 フィルムの具体的な製造例を、Tダイ法で説明すると、押出機に上記各成分を投入し、通常は180~280℃、好ましくは200~270℃の温度で溶融混練した後、Tダイのダイリップよりフィルム状に押出し、この溶融フィルムを冷却して、ニップロール等による引取機で引き取り、フィルムを得る。 A specific example of film production will be described by the T-die method. The above components are put into an extruder, and usually melt-kneaded at a temperature of 180 to 280 ° C., preferably 200 to 270 ° C., and then T-die. A film is extruded through a die lip, and the molten film is cooled and taken up by a take-up device such as a nip roll to obtain a film.
 溶融フィルムの冷却法としては、例えば、エアーナイフ法やエアーチャンバー法によるロールと空冷による冷却法、ポリシングロール法、スイングロール法、ベルトキャスト法などによる狭圧冷却法、水冷法等による冷媒による接触冷却法が挙げられる。 Cooling methods for molten films include, for example, air knife method or air chamber method using rolls and air cooling, polishing roll method, swing roll method, narrow pressure cooling method such as belt casting method, contact with refrigerant such as water cooling method, etc. cooling method.
 得られた無延伸フィルムには、通常のフィルム成形に用いられるフィルムの処理方法、例えば、コロナ放電処理、液剤塗布処理を行なうことができる。 The obtained non-stretched film can be subjected to film treatment methods used for ordinary film molding, such as corona discharge treatment and liquid agent coating treatment.
 〔シーラントフィルムおよび多層シーラントフィルム〕
 本発明のシーラントフィルムは、表層として本発明の第1の態様の無延伸フィルムを有する。
[Sealant film and multilayer sealant film]
The sealant film of the present invention has the unstretched film of the first aspect of the present invention as a surface layer.
 本発明のシーラントフィルムは、シーラントフィルム本体および表層をこの順序で有する積層体からなる。シーラントフィルムの製造方法としては、共押出法、押出コーティング法が挙げられる。 The sealant film of the present invention consists of a laminate having a sealant film main body and a surface layer in this order. Methods for producing the sealant film include a coextrusion method and an extrusion coating method.
 シーラントフィルム本体および表層は、それぞれ単層であってもよく、多層であってもよい。 The sealant film main body and surface layer may each be a single layer or multiple layers.
 本発明の多層シーラントフィルムは、中間層として本発明の第2の態様の無延伸フィルムを有する。 The multilayer sealant film of the present invention has the unstretched film of the second aspect of the present invention as an intermediate layer.
 本発明の多層シーラントフィルムは、外層、中間層およびシーラント層をこの順序で有する積層体からなる。多層シーラントフィルムの製造方法としては、共押出法、押出コーティング法が挙げられる。 The multilayer sealant film of the present invention consists of a laminate having an outer layer, an intermediate layer and a sealant layer in this order. Methods for producing the multilayer sealant film include co-extrusion and extrusion coating.
 外層、中間層およびシーラント層は、それぞれ単層であってもよく、多層であってもよい。 The outer layer, intermediate layer and sealant layer may each be a single layer or multiple layers.
 前記シーラント層の材料としては、従来のシーラント層に使用されている材料、たとえばエチレン系樹脂が挙げられる。 Examples of materials for the sealant layer include materials used for conventional sealant layers, such as ethylene-based resins.
 前記シーラントフィルム本体および前記外層としては、基材層が挙げられる。 The sealant film main body and the outer layer include a base material layer.
 基材層は、比較的大きな剛性、強度を有する材料からなる。前記材料の例としては、ナイロン11、ナイロン12等のポリアミド樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂等のポリオレフィン樹脂、ポリ塩化ビニリデン樹脂、エチレン-酢酸ビニル共重合体ケン化物、ポリカーボネート樹脂、ポリスチレン樹脂、およびアクリル樹脂からなる群から選ばれる少なくとも1種の熱可塑性樹脂を含むフィルム(延伸フィルムであってもよい。)、金属箔、金属蒸着フィルム、無機酸化物蒸着フィルム等のセラミック蒸着フィルム、紙、不織布、ならびにこれらの積層体から選ばれる少なくとも1種が挙げられる。 The base layer is made of a material with relatively high rigidity and strength. Examples of the materials include polyamide resins such as nylon 11 and nylon 12, polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyolefin resins such as polyethylene resin and polypropylene resin, polyvinylidene chloride resin, and ethylene-vinyl acetate copolymer. Films containing at least one thermoplastic resin selected from the group consisting of saponified products, polycarbonate resins, polystyrene resins, and acrylic resins (which may be stretched films), metal foils, metal vapor deposition films, inorganic oxide vapor deposition At least one selected from ceramic deposited films such as films, paper, nonwoven fabrics, and laminates thereof may be used.
 前記基材層の厚さは、通常、5~50μm程度である。 The thickness of the base material layer is usually about 5 to 50 μm.
 前記シーラントフィルム本体および前記外層の例としては、前記基材層の他に、水蒸気や酸素などの気体のバリア層、吸音層、遮光層、接着層、粘着層、着色層、導電性層、再生樹脂含有層(前記基材層の他に挙げられたこれらの層を、まとめて「他の層」ともいう。)が挙げられる。 Examples of the sealant film main body and the outer layer include, in addition to the base layer, a barrier layer for gases such as water vapor and oxygen, a sound absorbing layer, a light shielding layer, an adhesive layer, an adhesive layer, a colored layer, a conductive layer, and a reproduction layer. A resin-containing layer (these layers listed in addition to the base material layer are also collectively referred to as "another layer").
 前記シーラントフィルムにおいて、前記他の層を形成する素材としては、これらの層の材料の例としては、前記プロピレン系重合体組成物(X1)以外のオレフィン系重合体組成物、ガスバリア性樹脂組成物、接着性樹脂組成物が挙げられる。 In the sealant film, examples of materials for forming the other layers include olefin polymer compositions other than the propylene polymer composition (X1) and gas barrier resin compositions. , and adhesive resin compositions.
 前記多層シーラントフィルムにおいて、前記他の層を形成する素材としては、これらの層の材料の例としては、前記プロピレン系重合体組成物(X2)以外のオレフィン系重合体組成物、ガスバリア性樹脂組成物、接着性樹脂組成物が挙げられる。 In the multi-layer sealant film, examples of materials for forming the other layers include olefin-based polymer compositions other than the propylene-based polymer composition (X2) and gas-barrier resin compositions. products, and adhesive resin compositions.
 本発明のシーラントフィルムは、表層として本発明の第1の態様の無延伸フィルムを有しているため、低温でのヒートシール、具体的には140℃よりも低い、好ましくは135℃以下の、後述するシール開始温度でのシールを可能とし、かつ高い引張弾性率を有している。また、ヒートシールされた際の外観にも優れている。 Since the sealant film of the present invention has the unstretched film of the first aspect of the present invention as a surface layer, heat sealing at a low temperature, specifically lower than 140 ° C., preferably 135 ° C. or lower, It enables sealing at the sealing initiation temperature described later and has a high tensile modulus. Moreover, the appearance when heat-sealed is also excellent.
 本発明の多層シーラントフィルムは、中間層として本発明の第2の態様の無延伸フィルムを有している。このため、中間層は、中間層にプロピレン単独重合体を使用した時よりも低い温度でのヒートシールに寄与する。また、本発明の多層シーラントフィルムは、従来のプロピレン・α-オレフィン共重合体を使用したときよりも高い引張弾性率を有す。 The multilayer sealant film of the present invention has the unstretched film of the second aspect of the present invention as an intermediate layer. Therefore, the intermediate layer contributes to heat sealing at a lower temperature than when a propylene homopolymer is used for the intermediate layer. Also, the multi-layer sealant film of the present invention has a higher tensile modulus than when a conventional propylene/α-olefin copolymer is used.
 本発明の無延伸フィルム、シーラントフィルムおよび多層シーラントフィルムは、例えば、野菜、魚肉などの生鮮食品、スナック、麺類の乾燥食品、スープ、漬物などの水物食品などの各種食品包装用分野;錠剤、粉末、液体などの各種形態の医療品、医療周辺材料などに用いる医療関連品包装用分野;カセットテープ、電気部品などの各種電気機器包装用分野など、広範囲な包装用分野における包装用フィルムとして使用することができる。 The unstretched film, sealant film and multi-layer sealant film of the present invention are suitable for various food packaging fields such as fresh foods such as vegetables and fish meat, dried foods such as snacks and noodles, water foods such as soups and pickles; It is used as a packaging film in a wide range of packaging fields, such as packaging for various forms of medical products such as powders and liquids, medical peripheral materials, etc.; packaging for various electrical equipment such as cassette tapes and electrical parts. can do.
 以下、本発明を実施例に基づいて更に具体的に説明するが、本発明はこれら実施例に限定されない。なお、各例で得られた重合体、重合体組成物および無延伸フィルムの各種特性の測定、評価は、下記の通り行った。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples. Various properties of the polymer, polymer composition and unstretched film obtained in each example were measured and evaluated as follows.
 (1)質量分率
 製造例1において、第1段目で得られたプロピレン系重合体(プロピレン系重合体(a1)に相当)および第2段目で得られたプロピレン系重合体(プロピレン系重合体(a2)に相当)の質量分率は、重合時に生じた反応熱の徐熱量から求めた。
(1) Mass Fraction In Production Example 1, the propylene-based polymer obtained in the first step (corresponding to the propylene-based polymer (a1)) and the propylene-based polymer obtained in the second step (propylene-based The mass fraction of the polymer (a2)) was obtained from the heat release amount of reaction heat generated during polymerization.
 (2)極限粘度[η]
 極限粘度[η](dl/g)は、135℃、テトラリン溶媒中で測定した。なお、第2段目で得られたプロピレン系重合体(プロピレン系重合体(a2)に相当)の極限粘度[η]2は、下記式より計算した値である。
(2) Intrinsic viscosity [η]
The intrinsic viscosity [η] (dl/g) was measured at 135°C in a tetralin solvent. The intrinsic viscosity [η] 2 of the propylene-based polymer (corresponding to the propylene-based polymer (a2)) obtained in the second stage is a value calculated from the following formula.
 [η]2=([η]total×100-[η]1×W1)/W2
 [η]total:プロピレン系重合体全体の極限粘度
 [η]1:第1段目で得られたプロピレン系重合体の極限粘度
 W1:第1段目で得られたプロピレン系重合体の質量分率(%)
 W2:第2段目で得られたプロピレン系重合体の質量分率(%)
[η] 2 = ([η] total x 100 - [η] 1 x W 1 )/W 2
[η] total : Intrinsic viscosity of the entire propylene-based polymer [η] 1 : Intrinsic viscosity of the propylene-based polymer obtained in the first stage W 1 : Mass of the propylene-based polymer obtained in the first stage Fraction (%)
W 2 : mass fraction (%) of the propylene-based polymer obtained in the second stage
 (3)コモノマー含有量
 o-ジクロロベンゼン-d4を測定溶媒とし、測定温度120℃、スペクトル幅20ppm、パルス繰り返し時間7.0秒、パルス幅6.15μ秒((450パルス)の測定条件下(400MHz、日本電子ECX400P)にて1H-NMRスペクトルを測定し、コモノマー含量を算出した。
(3) Comonomer content Using o-dichlorobenzene-d4 as a measurement solvent, measurement temperature 120 ° C., spectrum width 20 ppm, pulse repetition time 7.0 seconds, pulse width 6.15 μ seconds ((450 pulses) measurement conditions ( A 1 H-NMR spectrum was measured at 400 MHz with a JEOL ECX400P) to calculate the comonomer content.
 (4)メルトフローレート(MFR)
 メルトフローレート(MFR)(g/10分)は、JIS-K7210に準拠し、測定温度230℃、荷重2.16kgf(21.2N)にて測定した。
(4) Melt flow rate (MFR)
Melt flow rate (MFR) (g/10 minutes) was measured according to JIS-K7210 at a temperature of 230°C and a load of 2.16 kgf (21.2 N).
 (5)分子量150万以上の高分子量領域の割合、ML、MH/ML
 分子量150万以上の高分子量領域の割合は、下記の装置および条件のゲルパーミエーションクロマトグラフィー(GPC)により測定された分子量分布曲線(具体的には、分子量分布曲線および横軸)で囲まれる領域の全面積に占める、分子量150万以上の高分子量領域の面積割合である。ここで、横軸:分子量(対数値)、縦軸:dw/dLog(M)[w:積算質量分率、M:分子量]とする。前記分子量分布曲線の高分子量側のピーク分子量MHと低分子量側のピーク分子量MLとを得て、MH/MLを算出した。
(5) Proportion of high molecular weight region with molecular weight of 1,500,000 or more, ML, MH/ML
The ratio of the high molecular weight region having a molecular weight of 1,500,000 or more is the region surrounded by the molecular weight distribution curve (specifically, the molecular weight distribution curve and the horizontal axis) measured by gel permeation chromatography (GPC) using the following equipment and conditions. It is the area ratio of the high molecular weight region having a molecular weight of 1,500,000 or more to the total area of . Here, the horizontal axis is molecular weight (logarithmic value) and the vertical axis is dw/dLog(M) [w: integrated mass fraction, M: molecular weight]. The peak molecular weight MH on the high molecular weight side and the peak molecular weight ML on the low molecular weight side of the molecular weight distribution curve were obtained to calculate MH/ML.
 GPC測定装置
 ゲル浸透クロマトグラフ HLC-8321 GPC/HT型 (東ソー社製)解析装置
 データ処理ソフトEmpower 3(Waters社製)測定条件
 カラム:TSKgel GMH6-HT×2 + TSKgel GMH6-HTL×2
 (いずれも7.5mmI.D.x30cm, 東ソー社製)
 カラム温度:140℃
 移動相:o-ジクロロベンゼン(0.025%BHT含有)
 検出器:示差屈折計
 流量:1.0mL/min
 試料濃度:0.1 %(w/v)
 注入量:0.4mL
 サンプリング時間間隔:1s
 カラム校正:単分散ポリスチレン(東ソー社製)
 分子量換算:PP換算/汎用校正法(PS(ポリスチレン)の粘度換算係数KPS=0.000138dl/g、
αPS=0.700、PP(ポリプロピレン)の粘度換算係数KPP=0.000242dl/g、αPP=0.707)
GPC measurement device Gel permeation chromatograph HLC-8321 GPC/HT type (manufactured by Tosoh Corporation) Analysis device Data processing software Empower 3 (manufactured by Waters) Measurement conditions Column: TSKgel GMH6-HT×2 + TSKgel GMH6-HTL×2
(Both are 7.5mmI.D.x30cm, manufactured by Tosoh Corporation)
Column temperature: 140℃
Mobile phase: o-dichlorobenzene (containing 0.025% BHT)
Detector: Differential refractometer Flow rate: 1.0mL/min
Sample concentration: 0.1% (w/v)
Injection Volume: 0.4mL
Sampling time interval: 1s
Column calibration: Monodisperse polystyrene (manufactured by Tosoh Corporation)
Molecular weight conversion: PP conversion/general-purpose calibration method (PS (polystyrene) viscosity conversion coefficient K PS = 0.000138dl/g,
α PS =0.700, PP (polypropylene) viscosity conversion coefficient K PP =0.000242dl/g, α PP =0.707)
 (6)融点
 結晶融点はJIS-K7121に従って、示差走査熱量計(DSC、パーキンエルマー社製(Diamond DSC))を用いて下記測定条件にて測定を行うことにより求めた。なお、下記測定条件で測定を行った際の、第4ステップにおける吸熱ピークの頂点を結晶融点(Tm)と定義した。吸熱ピークが複数ある場合はピークの高さが最大となる吸熱ピーク頂点を結晶融点(Tm)と定義する。
(6) Melting Point The crystalline melting point was determined according to JIS-K7121 using a differential scanning calorimeter (DSC, manufactured by PerkinElmer (Diamond DSC)) under the following measurement conditions. The apex of the endothermic peak in the fourth step was defined as the crystalline melting point (Tm) when the measurement was performed under the following measurement conditions. When there are multiple endothermic peaks, the endothermic peak apex at which the height of the peak is maximum is defined as the crystalline melting point (Tm).
 (測定条件)
 測定環境:窒素ガス雰囲気
 サンプル量 : 5mg
 サンプル形状: プレスフィルム(230℃成形、厚み400μm)
 サンプルパン: 底が平面のアルミ製サンプルパン
 第1ステップ: 30℃より320℃/分で200℃まで昇温し、10分間保持する。
(Measurement condition)
Measurement environment: Nitrogen gas atmosphere Sample amount: 5 mg
Sample shape: Press film (molded at 230°C, thickness 400 µm)
Sample pan: Aluminum sample pan with a flat bottom First step: The temperature is raised from 30°C to 200°C at 320°C/min and held for 10 minutes.
 第2ステップ: 20℃/分で30℃まで降温する。 Second step: Lower the temperature to 30°C at 20°C/min.
 第3ステップ: 30℃で10分間保持する。 Third step: Hold at 30°C for 10 minutes.
 第4ステップ: 20℃/分で200℃まで昇温する。 Fourth step: Raise the temperature to 200°C at 20°C/min.
 (7)フィルム弾性率
 引張弾性率(MPa)は、JIS K7161の方法に従い測定した。なお、測定は成形の押出方向(MD)に対して、23℃の条件で行った。引張弾性率が高いほど、剛性が高いといえる。
(7) Film elastic modulus Tensile elastic modulus (MPa) was measured according to the method of JIS K7161. The measurement was performed at 23° C. in the extrusion direction (MD) of molding. It can be said that the higher the tensile modulus, the higher the rigidity.
 (8)シール開始温度
 東洋精機製ヒートシールテスターを使用し、実施例等で製造されたフィルムから100mm幅、150mm長さの試験片を切り出し、半分に折って、所定のヒーター温度で、圧力0.2MPa、シール時間1.0秒の条件で、ヒートシールを行った後、シールした試験片を幅15mmの試験片に切り出し、オリエンテック製テンシロンRT1225型を使用し、試験速度300mm/分で剥離強度(N/15mm)を測定した。ヒーター温度を1℃刻みで変更して測定を繰り返し、剥離強度を2.94N/15mm以上とするためのヒーター温度の最小値(以下「シール開始温度」という。)を特定した。
(8) Sealing start temperature Using a heat seal tester manufactured by Toyo Seiki, cut out a test piece of 100 mm width and 150 mm length from the film manufactured in Examples etc., fold it in half, and set the heater temperature to zero pressure. After heat sealing under conditions of 2 MPa and a sealing time of 1.0 second, the sealed test piece was cut into a test piece with a width of 15 mm, and peeled at a test speed of 300 mm / min using Orientec's Tensilon RT1225 type. Strength (N/15mm) was measured. The measurement was repeated by changing the heater temperature in increments of 1° C., and the minimum value of the heater temperature (hereinafter referred to as “seal initiation temperature”) for making the peel strength 2.94 N/15 mm or more was specified.
 (9)軸配向度
 広角X線回折装置(リガク社製 RINT2550、付属装置:回転試料台、X線源:CuKα、出力:40kV、370mA、検出器:シンチレーションカウンター)を用いて、MD方向を基準軸として重ねて試料ホルダーに固定し、結晶面ピーク(110)面の方位角分布強度を測定した。得られた方位角分布曲線(X線干渉図)において、結晶化度、及びピークの半値幅(α)から下記の式より配向度F(軸配向度)を算出して評価した。
(9) Degree of axial orientation Using a wide-angle X-ray diffractometer (RINT2550 manufactured by Rigaku Corporation, accessory: rotating sample stage, X-ray source: CuKα, output: 40 kV, 370 mA, detector: scintillation counter), the MD direction is used as a reference. The azimuth angle distribution intensity of the crystal plane peak (110) plane was measured by stacking them as an axis and fixing them to a sample holder. In the resulting azimuth angle distribution curve (X-ray interferogram), the degree of orientation F (degree of axial orientation) was calculated from the following formula from the degree of crystallinity and the half width (α) of the peak and evaluated.
   配向度(F)=(180°-α)/180°
   (αは配向由来のピークの半値幅)
Orientation (F) = (180°-α)/180°
(α is the half width of the peak derived from the orientation)
 〔製造例1〕
 (1)マグネシウム化合物の調製
 攪拌機付き反応槽(内容積500リットル)を窒素ガスで充分に置換し、エタノール97.2kg、ヨウ素640g、および金属マグネシウム6.4kgを投入し、攪拌しながら還流条件下で系内から水素ガスの発生が無くなるまで反応させ、固体状反応生成物を得た。この固体状反応生成物を含む反応液を減圧乾燥させることにより目的のマグネシウム化合物(固体触媒の担体)を得た。
[Production Example 1]
(1) Preparation of magnesium compound A reactor with a stirrer (inner volume: 500 liters) was sufficiently purged with nitrogen gas, and 97.2 kg of ethanol, 640 g of iodine, and 6.4 kg of metallic magnesium were added and stirred under reflux conditions. The reaction was continued until hydrogen gas was no longer generated from the system, and a solid reaction product was obtained. The target magnesium compound (solid catalyst carrier) was obtained by drying the reaction solution containing the solid reaction product under reduced pressure.
 (2)固体状チタン触媒成分の調製
 窒素ガスで充分に置換した撹拌機付き反応槽(内容積500リットル)に、前記マグネシウム化合物(粉砕していないもの)30kg、精製ヘプタン(n-ヘプタン)150リットル、四塩化ケイ素4.5リットル、およびフタル酸ジ-n-ブチル5.4リットルを加えた。系内を90℃に保ち、攪拌しながら四塩化チタン144リットルを投入して110℃で2時間反応させた後、固体成分を分離して80℃の精製ヘプタンで洗浄した。さらに、四塩化チタン228リットルを加え、110℃で2時間反応させた後、精製ヘプタンで充分に洗浄し、固体状チタン触媒成分を得た。
(2) Preparation of solid titanium catalyst component 30 kg of the magnesium compound (not pulverized) and 150 purified heptane (n-heptane) were placed in a reaction tank (with internal volume of 500 liters) equipped with a stirrer that was sufficiently purged with nitrogen gas. liters, 4.5 liters of silicon tetrachloride, and 5.4 liters of di-n-butyl phthalate were added. The inside of the system was kept at 90°C, and 144 liters of titanium tetrachloride was added while stirring. After reacting at 110°C for 2 hours, the solid component was separated and washed with purified heptane at 80°C. Further, 228 liters of titanium tetrachloride was added, reacted at 110° C. for 2 hours, and thoroughly washed with purified heptane to obtain a solid titanium catalyst component.
 (3)前重合触媒の製造
 ヘプタン200mL中にトリエチルアルミニウム10mmol、ジシクロペンチルジメトキシシラン2mmol、および前記(2)で得られた固体状チタン触媒成分をチタン原子換算で1mmol添加した。内温を20℃に保持し、攪拌しながらプロピレンを連続的に導入した。60分後、攪拌を停止し、結果的に固体状チタン触媒成分1gあたり4.0gのプロピレンが重合した前重合触媒スラリーを得た。
(3) Preparation of prepolymerization catalyst To 200 mL of heptane, 10 mmol of triethylaluminum, 2 mmol of dicyclopentyldimethoxysilane, and 1 mmol of the solid titanium catalyst component obtained in (2) were added in terms of titanium atoms. The internal temperature was kept at 20° C., and propylene was continuously introduced while stirring. After 60 minutes, the stirring was stopped, and as a result, a prepolymerized catalyst slurry was obtained in which 4.0 g of propylene was polymerized per 1 g of the solid titanium catalyst component.
 (4)本重合
 600リットルのオートクレーブ中にプロピレン336リットルを装入し、60℃に昇温した。その後、トリエチルアルミニウム8.7mL、ジシクロペンチルジメトキシシラン11.4mL、前記(3)で得られた前重合触媒スラリーを固体状チタン触媒成分として2.9gを装入して重合を開始した。重合開始より75分後に、10分間かけて50℃まで降温した(第1段目の重合終了)。
(4) Polymerization 336 liters of propylene was introduced into a 600 liter autoclave and heated to 60°C. Thereafter, 8.7 mL of triethylaluminum, 11.4 mL of dicyclopentyldimethoxysilane, and 2.9 g of the prepolymerization catalyst slurry obtained in (3) above as a solid titanium catalyst component were charged to initiate polymerization. After 75 minutes from the initiation of polymerization, the temperature was lowered to 50° C. over 10 minutes (completion of the first-stage polymerization).
 第1段目と同様の条件にて重合したプロピレン系重合体(a1-1)の極限粘度[η]は11dl/gであった。 The intrinsic viscosity [η] of the propylene-based polymer (a1-1) polymerized under the same conditions as in the first stage was 11 dl/g.
 降温後、圧力が3.3MPaGで一定となるよう水素を連続的に投入し、151分間重合を行った。次いでベントバルブを開け、未反応のプロピレンを、積算流量計を経由させてパージした(第2段目の重合終了)。 After the temperature was lowered, hydrogen was continuously introduced so that the pressure remained constant at 3.3 MPaG, and polymerization was carried out for 151 minutes. Then, the vent valve was opened, and unreacted propylene was purged through an integrating flow meter (completion of second-stage polymerization).
 こうして、51.8kgのパウダー状のプロピレン系重合体を得た。それぞれ物質収支から算出した、前記プロピレン系重合体に占める第1段目の重合で生成したプロピレン系重合体(a1-1)の割合は25質量%、第2段目の重合で生成したプロピレン系重合体(a2-1)の割合は75質量%、極限粘度[η]は0.99dl/gであった。 Thus, 51.8 kg of powdery propylene-based polymer was obtained. The ratio of the propylene-based polymer (a1-1) produced in the first-stage polymerization to the propylene-based polymer, calculated from the mass balance, was 25% by mass, and the propylene-based polymer produced in the second-stage polymerization The proportion of polymer (a2-1) was 75% by mass, and the intrinsic viscosity [η] was 0.99 dl/g.
 このプロピレン系重合体に、酸化防止剤として、イルガノックス1010(BASF社製)2000ppm、イルガホス168(BASF社製)2000ppm、サンドスタブP-EPQ(クラリアントジャパン社製)1000ppm、中和剤として、ステアリン酸カルシウム1000ppmを添加し、二軸押出機で溶融混練し、ペレット状のプロピレン系重合体(A-1)を得た。このようにして最終的に得られたプロピレン系重合体(A-1)のMFRは1.2g/10分であった。 To this propylene-based polymer, as antioxidants, Irganox 1010 (manufactured by BASF) 2000 ppm, Irgaphos 168 (manufactured by BASF) 2000 ppm, Sandstab P-EPQ (manufactured by Clariant Japan) 1000 ppm, and a neutralizer, Stair 1000 ppm of calcium phosphate was added and melt-kneaded with a twin-screw extruder to obtain a propylene-based polymer (A-1) in the form of pellets. The MFR of the propylene polymer (A-1) thus finally obtained was 1.2 g/10 minutes.
 製造例1で得られた重合体の物性を表1にまとめた。 Table 1 summarizes the physical properties of the polymer obtained in Production Example 1.
Figure JPOXMLDOC01-appb-T000001
 〔製造例2〕
 (1)マグネシウム化合物の調製
 攪拌機付き反応槽(内容積500リットル)を窒素ガスで充分に置換し、エタノール97.2kg、ヨウ素640g、および金属マグネシウム6.4kgを投入し、攪拌しながら還流条件下で系内から水素ガスの発生が無くなるまで反応させ、固体状反応生成物を得た。この固体状反応生成物を含む反応液を減圧乾燥させることにより目的のマグネシウム化合物(固体触媒の担体)を得た。
Figure JPOXMLDOC01-appb-T000001
[Production Example 2]
(1) Preparation of magnesium compound A reactor with a stirrer (inner volume: 500 liters) was sufficiently purged with nitrogen gas, and 97.2 kg of ethanol, 640 g of iodine, and 6.4 kg of metallic magnesium were added and stirred under reflux conditions. The reaction was continued until hydrogen gas was no longer generated from the system, and a solid reaction product was obtained. The target magnesium compound (solid catalyst carrier) was obtained by drying the reaction solution containing the solid reaction product under reduced pressure.
 (2)固体チタン触媒成分の調製
 窒素ガスで充分に置換した攪拌機付き反応槽(内容積500リットル)に、前記マグネシウム化合物(粉砕していないもの)30kg、精製ヘプタン(n-ヘプタン)150リットル、四塩化ケイ素4.5リットル、およびフタル酸ジ-n-ブチル5.4リットルを加えた。系内を90℃に保ち、攪拌しながら四塩化チタン144リットルを投入して110℃で2時間反応させた後、固体成分を分離して80℃の精製ヘプタンで洗浄した。さらに、四塩化チタン228リットルを加え、110℃で2時間反応させた後、精製ヘプタンで充分に洗浄し、固体チタン触媒成分を得た。
(2) Preparation of solid titanium catalyst component Into a reactor with a stirrer (inner volume: 500 liters) sufficiently purged with nitrogen gas, 30 kg of the magnesium compound (not pulverized), 150 liters of purified heptane (n-heptane), 4.5 liters of silicon tetrachloride and 5.4 liters of di-n-butyl phthalate were added. The inside of the system was kept at 90°C, and 144 liters of titanium tetrachloride was added while stirring. After reacting at 110°C for 2 hours, the solid component was separated and washed with purified heptane at 80°C. Further, 228 liters of titanium tetrachloride was added, reacted at 110° C. for 2 hours, and thoroughly washed with purified heptane to obtain a solid titanium catalyst component.
 (3)前処理
 内容積500リットルの攪拌機付き反応槽に精製ヘプタン230リットルを投入し、前記固体触媒成分を25kg、トリエチルアルミニウムを固体触媒成分中のチタン原子に対して1.0mol/mol、ジシクロペンチルジメトキシシランを固体触媒成分中のチタン原子に対して1.8mol/molの割で供給した。その後、プロピレンをプロピレン分圧で0.3kgf/cm2Gになるまで導入し、25℃で4時間反応させた。反応終了後、固体触媒成分を精製ヘプタンで数回洗浄し、更に二酸化炭素を供給し24時間攪拌した。
(3) Pretreatment 230 liters of purified heptane was charged into a reactor with a stirrer and having an internal volume of 500 liters, 25 kg of the solid catalyst component, triethylaluminum at 1.0 mol/mol per titanium atom in the solid catalyst component, and diethylaluminum. Cyclopentyldimethoxysilane was supplied at a ratio of 1.8 mol/mol to titanium atoms in the solid catalyst component. Thereafter, propylene was introduced until the propylene partial pressure reached 0.3 kgf/cm 2 G, and the reaction was carried out at 25°C for 4 hours. After completion of the reaction, the solid catalyst component was washed several times with purified heptane, carbon dioxide was supplied, and the mixture was stirred for 24 hours.
 (4)重合
 内容積200リットルの攪拌機付き重合装置に前記処理済の固体触媒成分を成分中のチタン原子換算で3mmol/hrで、トリエチルアルミニウムを4mmol/kg-PPで、ジシクロペンチルジメトキシシランを1mmol/kg-PPでそれぞれ供給し、重合温度80℃、重合圧力(全圧)28kgf/cm2Gでプロピレンとエチレンと1-ブテンと水素とを反応させた。この時、所望のエチレン、1-ブテンの含有量及びMFRとなるようにエチレン、1-ブテンの供給量、及び水素供給量をそれぞれ調節した。重合装置内ガス部の組成分析値(ガス・クロマト分析)のエチレン濃度が3.5mol%、1-ブテンの濃度が4.9mol%、水素濃度が2.5mol%であった。
(4) Polymerization In a polymerization apparatus equipped with a stirrer having an internal volume of 200 liters, the treated solid catalyst component was charged at 3 mmol/hr in terms of titanium atoms in the component, triethylaluminum at 4 mmol/kg-PP, and dicyclopentyldimethoxysilane at 1 mmol. Propylene, ethylene, 1-butene and hydrogen were reacted at a polymerization temperature of 80°C and a polymerization pressure (total pressure) of 28 kgf/cm 2 G. At this time, the amounts of ethylene and 1-butene supplied and the amount of hydrogen supplied were adjusted so as to obtain desired ethylene and 1-butene contents and MFR. The composition analysis values (gas chromatography analysis) of the gas portion in the polymerization apparatus showed an ethylene concentration of 3.5 mol %, a 1-butene concentration of 4.9 mol %, and a hydrogen concentration of 2.5 mol %.
 こうして得られたプロピレン・エチレン・1-ブテン共重合体に、酸化防止剤として、イルガノックス1010(BASF社製)2000ppm、イルガホス168(BASF社製)2000ppm、サンドスタブP-EPQ(クラリアントジャパン社製)1000ppm、中和剤として、ステアリン酸カルシウム1000ppmを添加し、二軸押出機で溶融混練し、ペレット状のプロピレン・エチレン・1-ブテンランダム共重合体(B-1)を得た。 To the propylene/ethylene/1-butene copolymer thus obtained, as antioxidants, Irganox 1010 (manufactured by BASF) 2000 ppm, Irgaphos 168 (manufactured by BASF) 2000 ppm, Sandstab P-EPQ (manufactured by Clariant Japan) ) 1000 ppm and 1000 ppm of calcium stearate as a neutralizing agent were added and melt-kneaded with a twin-screw extruder to obtain pellet-like propylene/ethylene/1-butene random copolymer (B-1).
 〔製造例3〕
 「(4)重合」において重合装置内ガス部の組成分析値(ガス・クロマト分析)のエチレン濃度が、2.0mol%、1-ブテンの濃度が0mol%、水素濃度が5.5mol%となるようにエチレン供給量、1-ブテン供給量および水素供給量を調節した他は製造例2と同様にして、ペレット状のプロピレン・エチレンランダム共重合体(B-2)を得た。
[Production Example 3]
In "(4) Polymerization", the composition analysis value (gas chromatographic analysis) of the gas portion in the polymerization apparatus is ethylene concentration of 2.0 mol%, 1-butene concentration of 0 mol%, and hydrogen concentration of 5.5 mol%. A propylene/ethylene random copolymer (B-2) in the form of pellets was obtained in the same manner as in Production Example 2, except that the amounts of ethylene, 1-butene and hydrogen supplied were adjusted as described above.
 〔製造例4〕
 「(4)重合」において重合装置内ガス部の組成分析値(ガス・クロマト分析)のエチレン濃度が、1.6mol%、1-ブテンの濃度が0mol%、水素濃度が4.2mol%となるようにエチレン供給量、1-ブテン供給量および水素供給量を調節した他は製造例2と同様にして、ペレット状のプロピレン・エチレンランダム共重合体(B-3)を得た。
[Production Example 4]
In "(4) Polymerization", the compositional analysis values (gas chromatography analysis) of the gas section in the polymerization apparatus show an ethylene concentration of 1.6 mol%, a 1-butene concentration of 0 mol%, and a hydrogen concentration of 4.2 mol%. A propylene/ethylene random copolymer (B-3) in the form of pellets was obtained in the same manner as in Production Example 2, except that the amounts of ethylene, 1-butene and hydrogen supplied were adjusted as described above.
 〔製造例5〕
 「(4)重合」において重合装置内ガス部の組成分析値(ガス・クロマト分析)のエチレン濃度が、1.7mol%、1-ブテンの濃度が4.0mol%、水素濃度が2.3mol%となるようにエチレン供給量、1-ブテン供給量および水素供給量を調節した他は製造例2と同様にして、ペレット状のプロピレン・エチレン・1-ブテンランダム共重合体(B-4)を得た。
[Production Example 5]
In "(4) Polymerization", the composition analysis value (gas chromatography analysis) of the gas portion in the polymerization apparatus was ethylene concentration of 1.7 mol%, 1-butene concentration of 4.0 mol%, and hydrogen concentration of 2.3 mol%. Pellet-like propylene/ethylene/1-butene random copolymer (B-4) was prepared in the same manner as in Production Example 2, except that the ethylene supply amount, 1-butene supply amount, and hydrogen supply amount were adjusted so that Obtained.
 〔製造例6〕
 「(4)重合」において重合装置内ガス部の組成分析値(ガス・クロマト分析)のエチレン濃度が、1.3mol%、1-ブテンの濃度が0mol%、水素濃度が3.5mol%となるようにエチレン供給量、1-ブテン供給量および水素供給量を調節した他は製造例2と同様にして、ペレット状のプロピレン・エチレンランダム共重合体(B-5)を得た。
[Production Example 6]
In "(4) Polymerization", the composition analysis value (gas chromatography analysis) of the gas portion in the polymerization apparatus is ethylene concentration of 1.3 mol%, 1-butene concentration of 0 mol%, and hydrogen concentration of 3.5 mol%. A propylene/ethylene random copolymer (B-5) in the form of pellets was obtained in the same manner as in Production Example 2, except that the amounts of ethylene, 1-butene and hydrogen supplied were adjusted as in the above.
 〔製造例7:F-704NP〕
 プライムポリマー社製:商品名「プライムポリプロF-704NP」を用いた。便宜上、製造例と記載した。
[Production Example 7: F-704NP]
A trade name “Prime Polypro F-704NP” manufactured by Prime Polymer Co., Ltd. was used. For the sake of convenience, it is described as a production example.
 製造例2~7で得られた重合体の物性を表2にまとめた。 Table 2 summarizes the physical properties of the polymers obtained in Production Examples 2 to 7.
Figure JPOXMLDOC01-appb-T000002
 〔本発明の第1の態様に係る実施例およびその比較例〕
 [実施例1-1]
 製造例1で得られたプロピレン系重合体(A-1)を5質量部、および製造例2で得られたプロピレン・エチレン・1-ブテンランダム共重合体(B-1)を95質量部から、スクリュー径75mmの押出機(1台)に幅600mmの単層ダイスを接続した無延伸フィルム成形機を使用して、下記成形条件にて、厚さ25μmの無延伸フィルムを作製した。
Figure JPOXMLDOC01-appb-T000002
[Examples of the first aspect of the present invention and comparative examples thereof]
[Example 1-1]
5 parts by mass of the propylene-based polymer (A-1) obtained in Production Example 1, and 95 parts by mass of the propylene/ethylene/1-butene random copolymer (B-1) obtained in Production Example 2. A 25 μm thick non-stretched film was produced under the following molding conditions using a non-stretched film forming machine consisting of an extruder (one unit) with a screw diameter of 75 mm and a single-layer die with a width of 600 mm.
  ・樹脂温度   :248℃
  ・チルロール温度:30℃
  ・成形速度   :150m/分
 フィルムの物性を表3に示す。
・Resin temperature: 248°C
・Chill roll temperature: 30°C
- Forming speed: 150 m/min Table 3 shows the physical properties of the film.
 [実施例1-2、比較例1-1~1-6]
 配合組成を表3に記載したとおりに変更したこと以外は実施例1-1と同様にして、無延伸フィルムを作製した。
[Example 1-2, Comparative Examples 1-1 to 1-6]
A non-stretched film was produced in the same manner as in Example 1-1, except that the formulation was changed as shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
 〔本発明の第2の態様に係る実施例およびその比較例〕
 [実施例2-1]
 製造例1で得られたプロピレン系重合体(A-1)を5質量部、および製造例4で得られたプロピレン・エチレンランダム共重合体(B-3)を95質量部から、スクリュー径75mmの押出機(1台)に幅600mmの単層ダイスを接続した無延伸フィルム成形機を使用して、下記成形条件にて、厚さ25μmの無延伸フィルムを作製した。
Figure JPOXMLDOC01-appb-T000003
[Examples and comparative examples according to the second aspect of the present invention]
[Example 2-1]
From 5 parts by mass of the propylene-based polymer (A-1) obtained in Production Example 1 and 95 parts by mass of the propylene/ethylene random copolymer (B-3) obtained in Production Example 4, a screw diameter of 75 mm was prepared. A non-stretched film forming machine having a monolayer die with a width of 600 mm connected to the extruder (one unit) was used to prepare a non-stretched film having a thickness of 25 μm under the following molding conditions.
  ・樹脂温度   :248℃
  ・チルロール温度:30℃
  ・成形速度   :150m/分
 フィルムの物性を表4に示す。
・Resin temperature: 248°C
・Chill roll temperature: 30°C
- Forming speed: 150 m/min Table 4 shows the physical properties of the film.
 [実施例2-2~2-5、比較例2-1~2-8]
 配合組成を表4に記載したとおりに変更したこと以外は実施例2-1と同様にして、無延伸フィルムを作製した。
[Examples 2-2 to 2-5, Comparative Examples 2-1 to 2-8]
A non-stretched film was produced in the same manner as in Example 2-1, except that the formulation was changed as shown in Table 4.
 上記結果を表4にまとめた。 The above results are summarized in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

Claims (8)

  1.  135℃、テトラリン溶媒中で測定される極限粘度[η]が10~12dl/gの範囲にあるプロピレン系重合体(a1)を20~50質量%、および135℃、テトラリン溶媒中で測定される極限粘度[η]が0.5~1.5dl/gの範囲にあるプロピレン系重合体(a2)を50~80質量%〔ただし、プロピレン系重合体(a1)とプロピレン系重合体(a2)との合計量を100質量%とする。〕含むプロピレン系重合体(A)と、
     メルトフローレート(230℃、2.16kg荷重)が0.1~30g/10分であり、135℃、テトラリン溶媒中で測定される極限粘度[η]が1.5dl/gを超え5.0dl/g以下であり、α-オレフィン(ただし、プロピレンを除く。)に由来する構成単位を5.5モル%以上含有するプロピレン・α-オレフィン共重合体(B1)とを含有し、
     前記プロピレン系重合体(A)および前記プロピレン・α-オレフィン共重合体(B1)の合計100質量部に対して、前記プロピレン系重合体(A)の含有量が1~10質量部であり、前記プロピレン・α-オレフィン共重合体(B1)の含有量が90~99質量部であるプロピレン系重合体組成物(X1)からなる無延伸フィルム。
    20 to 50% by mass of the propylene-based polymer (a1) having an intrinsic viscosity [η] in the range of 10 to 12 dl/g measured in a tetralin solvent at 135°C, and 135°C in a tetralin solvent 50 to 80% by mass of the propylene-based polymer (a2) having an intrinsic viscosity [η] in the range of 0.5 to 1.5 dl/g [however, the propylene-based polymer (a1) and the propylene-based polymer (a2) and the total amount of 100% by mass. ] A propylene-based polymer (A) containing
    Melt flow rate (230 ° C., 2.16 kg load) is 0.1 to 30 g / 10 minutes, and intrinsic viscosity [η] measured in tetralin solvent at 135 ° C. exceeds 1.5 dl / g and 5.0 dl / g or less, and a propylene/α-olefin copolymer (B1) containing 5.5 mol% or more of structural units derived from an α-olefin (excluding propylene),
    The content of the propylene-based polymer (A) is 1 to 10 parts by mass with respect to a total of 100 parts by mass of the propylene-based polymer (A) and the propylene/α-olefin copolymer (B1), An unstretched film comprising a propylene-based polymer composition (X1) containing 90 to 99 parts by mass of the propylene/α-olefin copolymer (B1).
  2.  135℃、テトラリン溶媒中で測定される極限粘度[η]が10~12dl/gの範囲にあるプロピレン系重合体(a1)を20~50質量%、および135℃、テトラリン溶媒中で測定される極限粘度[η]が0.5~1.5dl/gの範囲にあるプロピレン系重合体(a2)を50~80質量%〔ただし、プロピレン系重合体(a1)とプロピレン系重合体(a2)との合計量を100質量%とする。〕含むプロピレン系重合体(A)と、
     メルトフローレート(230℃、2.16kg荷重)が0.1~30g/10分であり、135℃、テトラリン溶媒中で測定される極限粘度[η]が1.5dl/gを超え5.0dl/g以下であり、α-オレフィン(ただし、プロピレンを除く。)に由来する構成単位を1モル%以上5.5モル%未満含有するプロピレン・α-オレフィン共重合体(B2)とを含有し、
     前記プロピレン系重合体(A)および前記プロピレン・α-オレフィン共重合体(B2)の合計100質量部に対して、前記プロピレン系重合体(A)の含有量が1~18質量部であり、前記プロピレン・α-オレフィン共重合体(B2)の含有量が82~99質量部であるプロピレン系重合体組成物(X2)からなる無延伸フィルム。
    20 to 50% by mass of the propylene-based polymer (a1) having an intrinsic viscosity [η] in the range of 10 to 12 dl/g measured in a tetralin solvent at 135°C, and 135°C in a tetralin solvent 50 to 80% by mass of the propylene-based polymer (a2) having an intrinsic viscosity [η] in the range of 0.5 to 1.5 dl/g [however, the propylene-based polymer (a1) and the propylene-based polymer (a2) The total amount of and is 100% by mass. ] A propylene-based polymer (A) containing
    Melt flow rate (230 ° C., 2.16 kg load) is 0.1 to 30 g / 10 minutes, and intrinsic viscosity [η] measured in tetralin solvent at 135 ° C. exceeds 1.5 dl / g and 5.0 dl /g or less, and a propylene/α-olefin copolymer (B2) containing 1 mol% or more and less than 5.5 mol% of structural units derived from an α-olefin (excluding propylene). ,
    The content of the propylene-based polymer (A) is 1 to 18 parts by mass with respect to a total of 100 parts by mass of the propylene-based polymer (A) and the propylene/α-olefin copolymer (B2), An unstretched film comprising a propylene-based polymer composition (X2) containing 82 to 99 parts by mass of the propylene/α-olefin copolymer (B2).
  3.  前記プロピレン系重合体(A)の230℃、2.16kg荷重で測定されるメルトフローレート(MFR)が0.01~5g/10分である、請求項1または2に記載の無延伸フィルム。 The unstretched film according to claim 1 or 2, wherein the propylene-based polymer (A) has a melt flow rate (MFR) of 0.01 to 5 g/10 minutes measured at 230°C under a load of 2.16 kg.
  4.  前記プロピレン系重合体(A)が、ゲルパーミエーションクロマトグラフィー(GPC)により測定された分子量分布曲線で囲まれる領域の全面積に占める、分子量150万以上の高分子量領域の面積割合が7%以上である請求項1または2に記載の無延伸フィルム。 In the propylene-based polymer (A), the area ratio of the high molecular weight region having a molecular weight of 1,500,000 or more in the total area of the region surrounded by the molecular weight distribution curve measured by gel permeation chromatography (GPC) is 7% or more. The unstretched film according to claim 1 or 2.
  5.  前記プロピレン系重合体(A)が、GPCにより測定された分子量分布曲線が2つのピークを有し、高分子量側のピーク分子量MHと低分子量側のピーク分子量MLとの比(MH/ML)が50以上である請求項1または2に記載の無延伸フィルム。 The propylene-based polymer (A) has two peaks in the molecular weight distribution curve measured by GPC, and the ratio (MH/ML) of the peak molecular weight MH on the high molecular weight side and the peak molecular weight ML on the low molecular weight side is The unstretched film according to claim 1 or 2, which is 50 or more.
  6.  広角X線回折測定により特定されるPP(110)面の軸配向度が0.85以上である、請求項1または2に記載の無延伸フィルム。 The unstretched film according to claim 1 or 2, wherein the degree of axial orientation of the PP (110) plane specified by wide-angle X-ray diffraction measurement is 0.85 or more.
  7.  シーラントフィルム本体および表層をこの順序で有する積層体であり、前記表層が請求項1に記載の無延伸フィルムであるシーラントフィルム。 A sealant film which is a laminate having a sealant film main body and a surface layer in this order, wherein the surface layer is the unstretched film according to claim 1.
  8.  外層、中間層およびシーラント層をこの順序で有する積層体であり、前記中間層が請求項2に記載の無延伸フィルムである多層シーラントフィルム。 A multilayer sealant film which is a laminate having an outer layer, an intermediate layer and a sealant layer in this order, wherein the intermediate layer is the non-stretched film according to claim 2.
PCT/JP2022/048281 2022-01-06 2022-12-27 Non-oriented film, sealant film, and multilayered sealant film WO2023132306A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020247017312A KR20240090923A (en) 2022-01-06 2022-12-27 Unstretched film, sealant film and multilayer sealant film
CN202280086122.XA CN118451138A (en) 2022-01-06 2022-12-27 Non-stretch film, sealing film and multilayer sealing film
JP2023572458A JPWO2023132306A1 (en) 2022-01-06 2022-12-27

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-001081 2022-01-06
JP2022001081 2022-01-06
JP2022001080 2022-01-06
JP2022-001080 2022-01-06

Publications (1)

Publication Number Publication Date
WO2023132306A1 true WO2023132306A1 (en) 2023-07-13

Family

ID=87073650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/048281 WO2023132306A1 (en) 2022-01-06 2022-12-27 Non-oriented film, sealant film, and multilayered sealant film

Country Status (3)

Country Link
JP (1) JPWO2023132306A1 (en)
KR (1) KR20240090923A (en)
WO (1) WO2023132306A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019137847A (en) * 2018-02-09 2019-08-22 株式会社プライムポリマー Propylene-based polymer composition and foamed molded product thereof
JP2019167499A (en) * 2018-03-26 2019-10-03 株式会社プライムポリマー Propylene-based polymer, propylene-based resin composition and compact
WO2021025142A1 (en) * 2019-08-08 2021-02-11 株式会社プライムポリマー Propylene-based polymer composition, non-stretched film, and laminate
JP2021024641A (en) * 2019-08-08 2021-02-22 三井化学株式会社 Drawn container

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1105120C (en) 1997-08-05 2003-04-09 株式会社宏大化纤 Polypropylene resin composition and use thereof
JP3721936B2 (en) 2000-04-21 2005-11-30 住友化学株式会社 Polypropylene resin composition and molded article comprising the same
JP2002265712A (en) 2001-03-14 2002-09-18 Sumitomo Chem Co Ltd Easily tearable film
WO2005097842A1 (en) 2004-03-31 2005-10-20 Prime Polymer Co., Ltd. Multi-stage propylene polymer, process for producing the same, and propylene resin composition
JP4815755B2 (en) 2004-05-06 2011-11-16 住友化学株式会社 Film molding resin composition and film comprising the same
JP5010802B2 (en) 2004-08-09 2012-08-29 日本ポリプロ株式会社 Highly rigid polypropylene-based composition and production method
JP5742113B2 (en) 2010-05-12 2015-07-01 住友化学株式会社 Polypropylene unstretched film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019137847A (en) * 2018-02-09 2019-08-22 株式会社プライムポリマー Propylene-based polymer composition and foamed molded product thereof
JP2019167499A (en) * 2018-03-26 2019-10-03 株式会社プライムポリマー Propylene-based polymer, propylene-based resin composition and compact
WO2021025142A1 (en) * 2019-08-08 2021-02-11 株式会社プライムポリマー Propylene-based polymer composition, non-stretched film, and laminate
JP2021024641A (en) * 2019-08-08 2021-02-22 三井化学株式会社 Drawn container

Also Published As

Publication number Publication date
KR20240090923A (en) 2024-06-21
JPWO2023132306A1 (en) 2023-07-13

Similar Documents

Publication Publication Date Title
US9511567B2 (en) Multilayered polyolefin-based films
JP2002052669A (en) Laminate and pouch using the same
JP2008208362A (en) Propylenic copolymer material, film made therefrom, and method for producing propylenic copolymer material
WO2019176403A1 (en) Resin composition and monolayer and multilayer films
JP4163112B2 (en) POLYOLEFIN RESIN MATERIAL, LAMINATE USING SAME, METHOD FOR PRODUCING THE SAME, AND MOLDED ARTICLES
JP5328670B2 (en) LAMINATED RESIN COMPOSITION AND LAMINATE
JP7549684B2 (en) Propylene-based polymer compositions and their uses
JP4844091B2 (en) Propylene resin composition and film thereof
JP5227031B2 (en) Polypropylene single layer film and its use
JP7308954B2 (en) Propylene-based polymer composition, unstretched film and laminate
WO2023132306A1 (en) Non-oriented film, sealant film, and multilayered sealant film
JP7257522B2 (en) Non-foamed sheets and containers
JP7397642B2 (en) Polypropylene multilayer stretched film and its manufacturing method
WO2022196239A1 (en) Stretched polyethylene film for lamination
JP2017105174A (en) Multilayer film
JP5786608B2 (en) Laminated film
WO2024210116A1 (en) Propylene-based polymer composition, film, and multilayer film
WO2024070720A1 (en) Multilayer film
JPH11245351A (en) Polyolefin laminated film
CN118451138A (en) Non-stretch film, sealing film and multilayer sealing film
JP3440798B2 (en) Retort food packaging film
JP2002052668A (en) Pouch
JP2004009354A (en) Propylene resin laminate
JP5919768B2 (en) Film with excellent blocking resistance
WO2023090201A1 (en) Non-stretched film comprising propylene polymer composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918889

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247017312

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023572458

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280086122.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE