WO2023129141A1 - Compositions of biologically active menaquinol derivatives and methods of treatment - Google Patents
Compositions of biologically active menaquinol derivatives and methods of treatment Download PDFInfo
- Publication number
- WO2023129141A1 WO2023129141A1 PCT/US2021/065401 US2021065401W WO2023129141A1 WO 2023129141 A1 WO2023129141 A1 WO 2023129141A1 US 2021065401 W US2021065401 W US 2021065401W WO 2023129141 A1 WO2023129141 A1 WO 2023129141A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mammal
- menaquinol
- administration
- vitamin
- mixture
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 127
- CZHYZLLLSCZMRL-NTCAYCPXSA-N menaquinol Chemical class C1=CC=CC2=C(O)C(C/C=C(C)/CCC=C(C)C)=C(C)C(O)=C21 CZHYZLLLSCZMRL-NTCAYCPXSA-N 0.000 title claims abstract description 53
- 238000011282 treatment Methods 0.000 title claims abstract description 47
- 239000000203 mixture Substances 0.000 title claims description 86
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 20
- 201000010099 disease Diseases 0.000 claims abstract description 19
- 150000001875 compounds Chemical class 0.000 claims description 149
- 241000124008 Mammalia Species 0.000 claims description 89
- SHUZOJHMOBOZST-UHFFFAOYSA-N phylloquinone Natural products CC(C)CCCCC(C)CCC(C)CCCC(=CCC1=C(C)C(=O)c2ccccc2C1=O)C SHUZOJHMOBOZST-UHFFFAOYSA-N 0.000 claims description 63
- 208000020832 chronic kidney disease Diseases 0.000 claims description 57
- 235000019168 vitamin K Nutrition 0.000 claims description 54
- 239000011712 vitamin K Substances 0.000 claims description 54
- 229940046010 vitamin k Drugs 0.000 claims description 54
- 229930003448 Vitamin K Natural products 0.000 claims description 53
- 206010051714 Calciphylaxis Diseases 0.000 claims description 48
- 150000003721 vitamin K derivatives Chemical class 0.000 claims description 47
- 208000004434 Calcinosis Diseases 0.000 claims description 41
- 230000002308 calcification Effects 0.000 claims description 35
- 238000001631 haemodialysis Methods 0.000 claims description 30
- 230000000322 hemodialysis Effects 0.000 claims description 30
- 201000000523 end stage renal failure Diseases 0.000 claims description 29
- 238000002560 therapeutic procedure Methods 0.000 claims description 27
- WCRXHNIUHQUASO-UHFFFAOYSA-N MK-9 Natural products C1=CC=C2C(=O)C(CC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)C)=C(C)C(=O)C2=C1 WCRXHNIUHQUASO-UHFFFAOYSA-N 0.000 claims description 25
- WCRXHNIUHQUASO-UVZVDVBNSA-N menaquinone-9 Chemical compound C1=CC=C2C(=O)C(C/C=C(C)/CC/C=C(C)/CC/C=C(C)/CC/C=C(C)/CC/C=C(C)/CC/C=C(C)/CC/C=C(C)/CC/C=C(C)/CCC=C(C)C)=C(C)C(=O)C2=C1 WCRXHNIUHQUASO-UVZVDVBNSA-N 0.000 claims description 25
- 208000028208 end stage renal disease Diseases 0.000 claims description 24
- 208000001132 Osteoporosis Diseases 0.000 claims description 22
- 108091005605 Vitamin K-dependent proteins Proteins 0.000 claims description 18
- 230000000694 effects Effects 0.000 claims description 18
- 230000009469 supplementation Effects 0.000 claims description 16
- 210000002966 serum Anatomy 0.000 claims description 15
- 206010012601 diabetes mellitus Diseases 0.000 claims description 14
- 230000002500 effect on skin Effects 0.000 claims description 14
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 13
- 230000003902 lesion Effects 0.000 claims description 13
- 239000008194 pharmaceutical composition Substances 0.000 claims description 13
- 239000003146 anticoagulant agent Substances 0.000 claims description 12
- 229940127219 anticoagulant drug Drugs 0.000 claims description 12
- 230000010100 anticoagulation Effects 0.000 claims description 12
- 229960005080 warfarin Drugs 0.000 claims description 12
- PJVWKTKQMONHTI-UHFFFAOYSA-N warfarin Chemical compound OC=1C2=CC=CC=C2OC(=O)C=1C(CC(=O)C)C1=CC=CC=C1 PJVWKTKQMONHTI-UHFFFAOYSA-N 0.000 claims description 12
- 230000002265 prevention Effects 0.000 claims description 9
- 230000002441 reversible effect Effects 0.000 claims description 9
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 8
- 208000024172 Cardiovascular disease Diseases 0.000 claims description 7
- 230000021523 carboxylation Effects 0.000 claims description 7
- 238000006473 carboxylation reaction Methods 0.000 claims description 7
- GEHAEMCVKDPMKO-HXUWFJFHSA-N 1-[1-[(2s)-3-(6-chloronaphthalen-2-yl)sulfonyl-2-hydroxypropanoyl]piperidin-4-yl]-1,3-diazinan-2-one Chemical compound O=C([C@@H](CS(=O)(=O)C=1C=C2C=CC(Cl)=CC2=CC=1)O)N(CC1)CCC1N1CCCNC1=O GEHAEMCVKDPMKO-HXUWFJFHSA-N 0.000 claims description 6
- QNZCBYKSOIHPEH-UHFFFAOYSA-N Apixaban Chemical compound C1=CC(OC)=CC=C1N1C(C(=O)N(CC2)C=3C=CC(=CC=3)N3C(CCCC3)=O)=C2C(C(N)=O)=N1 QNZCBYKSOIHPEH-UHFFFAOYSA-N 0.000 claims description 6
- HGVDHZBSSITLCT-JLJPHGGASA-N Edoxaban Chemical compound N([C@H]1CC[C@@H](C[C@H]1NC(=O)C=1SC=2CN(C)CCC=2N=1)C(=O)N(C)C)C(=O)C(=O)NC1=CC=C(Cl)C=N1 HGVDHZBSSITLCT-JLJPHGGASA-N 0.000 claims description 6
- 108010029144 Factor IIa Proteins 0.000 claims description 6
- 108010074860 Factor Xa Proteins 0.000 claims description 6
- 206010018429 Glucose tolerance impaired Diseases 0.000 claims description 6
- 229960003886 apixaban Drugs 0.000 claims description 6
- KXNPVXPOPUZYGB-XYVMCAHJSA-N argatroban Chemical compound OC(=O)[C@H]1C[C@H](C)CCN1C(=O)[C@H](CCCN=C(N)N)NS(=O)(=O)C1=CC=CC2=C1NC[C@H](C)C2 KXNPVXPOPUZYGB-XYVMCAHJSA-N 0.000 claims description 6
- 229960003856 argatroban Drugs 0.000 claims description 6
- 229950011103 betrixaban Drugs 0.000 claims description 6
- XHOLNRLADUSQLD-UHFFFAOYSA-N betrixaban Chemical compound C=1C=C(Cl)C=NC=1NC(=O)C1=CC(OC)=CC=C1NC(=O)C1=CC=C(C(=N)N(C)C)C=C1 XHOLNRLADUSQLD-UHFFFAOYSA-N 0.000 claims description 6
- 229960000622 edoxaban Drugs 0.000 claims description 6
- 229950007830 eribaxaban Drugs 0.000 claims description 6
- QQBKAVAGLMGMHI-WIYYLYMNSA-N eribaxaban Chemical compound N1([C@H](C[C@H](C1)OC)C(=O)NC=1C(=CC(=CC=1)N1C(C=CC=C1)=O)F)C(=O)NC1=CC=C(Cl)C=C1 QQBKAVAGLMGMHI-WIYYLYMNSA-N 0.000 claims description 6
- 229960001318 fondaparinux Drugs 0.000 claims description 6
- KANJSNBRCNMZMV-ABRZTLGGSA-N fondaparinux Chemical compound O[C@@H]1[C@@H](NS(O)(=O)=O)[C@@H](OC)O[C@H](COS(O)(=O)=O)[C@H]1O[C@H]1[C@H](OS(O)(=O)=O)[C@@H](O)[C@H](O[C@@H]2[C@@H]([C@@H](OS(O)(=O)=O)[C@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O[C@@H]4[C@@H]([C@@H](O)[C@H](O)[C@@H](COS(O)(=O)=O)O4)NS(O)(=O)=O)[C@H](O3)C(O)=O)O)[C@@H](COS(O)(=O)=O)O2)NS(O)(=O)=O)[C@H](C(O)=O)O1 KANJSNBRCNMZMV-ABRZTLGGSA-N 0.000 claims description 6
- 239000003112 inhibitor Substances 0.000 claims description 6
- 229950001775 letaxaban Drugs 0.000 claims description 6
- KNWZIPKBOGOFFC-UVZVDVBNSA-N menaquinol-9 Chemical compound C1=CC=CC2=C(O)C(C/C=C(C)/CC/C=C(C)/CC/C=C(C)/CC/C=C(C)/CC/C=C(C)/CC/C=C(C)/CC/C=C(C)/CC/C=C(C)/CCC=C(C)C)=C(C)C(O)=C21 KNWZIPKBOGOFFC-UVZVDVBNSA-N 0.000 claims description 6
- 229950009478 otamixaban Drugs 0.000 claims description 6
- PFGVNLZDWRZPJW-OPAMFIHVSA-N otamixaban Chemical compound C([C@@H](C(=O)OC)[C@@H](C)NC(=O)C=1C=CC(=CC=1)C=1C=C[N+]([O-])=CC=1)C1=CC=CC(C(N)=N)=C1 PFGVNLZDWRZPJW-OPAMFIHVSA-N 0.000 claims description 6
- 230000007170 pathology Effects 0.000 claims description 6
- 230000002062 proliferating effect Effects 0.000 claims description 6
- 229960001148 rivaroxaban Drugs 0.000 claims description 6
- KGFYHTZWPPHNLQ-AWEZNQCLSA-N rivaroxaban Chemical compound S1C(Cl)=CC=C1C(=O)NC[C@@H]1OC(=O)N(C=2C=CC(=CC=2)N2C(COCC2)=O)C1 KGFYHTZWPPHNLQ-AWEZNQCLSA-N 0.000 claims description 6
- 206010003210 Arteriosclerosis Diseases 0.000 claims description 5
- 208000029725 Metabolic bone disease Diseases 0.000 claims description 5
- 206010049088 Osteopenia Diseases 0.000 claims description 5
- 208000011775 arteriosclerosis disease Diseases 0.000 claims description 5
- 208000002720 Malnutrition Diseases 0.000 claims description 4
- 206010028980 Neoplasm Diseases 0.000 claims description 4
- 201000000839 Vitamin K Deficiency Bleeding Diseases 0.000 claims description 4
- 206010047634 Vitamin K deficiency Diseases 0.000 claims description 4
- 201000011510 cancer Diseases 0.000 claims description 4
- 208000016794 vitamin K deficiency hemorrhagic disease Diseases 0.000 claims description 4
- 201000001320 Atherosclerosis Diseases 0.000 claims description 3
- 201000006474 Brain Ischemia Diseases 0.000 claims description 3
- 206010006895 Cachexia Diseases 0.000 claims description 3
- 208000002177 Cataract Diseases 0.000 claims description 3
- 206010008120 Cerebral ischaemia Diseases 0.000 claims description 3
- 208000006545 Chronic Obstructive Pulmonary Disease Diseases 0.000 claims description 3
- 206010036030 Polyarthritis Diseases 0.000 claims description 3
- 208000017442 Retinal disease Diseases 0.000 claims description 3
- 206010038923 Retinopathy Diseases 0.000 claims description 3
- 230000032683 aging Effects 0.000 claims description 3
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 claims description 3
- 206010003246 arthritis Diseases 0.000 claims description 3
- 206010008118 cerebral infarction Diseases 0.000 claims description 3
- 108010013113 glutamyl carboxylase Proteins 0.000 claims description 3
- 208000015181 infectious disease Diseases 0.000 claims description 3
- 208000027866 inflammatory disease Diseases 0.000 claims description 3
- 208000032839 leukemia Diseases 0.000 claims description 3
- 230000004065 mitochondrial dysfunction Effects 0.000 claims description 3
- 230000004770 neurodegeneration Effects 0.000 claims description 3
- 208000015122 neurodegenerative disease Diseases 0.000 claims description 3
- 208000030428 polyarticular arthritis Diseases 0.000 claims description 3
- 230000009758 senescence Effects 0.000 claims description 3
- 230000009885 systemic effect Effects 0.000 claims description 3
- 208000001072 type 2 diabetes mellitus Diseases 0.000 claims description 3
- 235000000112 undernutrition Nutrition 0.000 claims description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 105
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 86
- 210000001519 tissue Anatomy 0.000 description 40
- 238000002360 preparation method Methods 0.000 description 30
- PFRQBZFETXBLTP-UHFFFAOYSA-N Vitamin K2 Natural products C1=CC=C2C(=O)C(CC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)C)=C(C)C(=O)C2=C1 PFRQBZFETXBLTP-UHFFFAOYSA-N 0.000 description 26
- 238000006243 chemical reaction Methods 0.000 description 25
- 239000000243 solution Substances 0.000 description 25
- DKHGMERMDICWDU-GHDNBGIDSA-N menaquinone-4 Chemical compound C1=CC=C2C(=O)C(C/C=C(C)/CC/C=C(C)/CC/C=C(C)/CCC=C(C)C)=C(C)C(=O)C2=C1 DKHGMERMDICWDU-GHDNBGIDSA-N 0.000 description 22
- 239000011541 reaction mixture Substances 0.000 description 21
- RAKQPZMEYJZGPI-LJWNYQGCSA-N menaquinone-7 Chemical compound C1=CC=C2C(=O)C(C/C=C(C)/CC/C=C(C)/CC/C=C(C)/CC/C=C(C)/CC/C=C(C)/CC/C=C(C)/CCC=C(C)C)=C(C)C(=O)C2=C1 RAKQPZMEYJZGPI-LJWNYQGCSA-N 0.000 description 19
- 108090000623 proteins and genes Proteins 0.000 description 19
- 230000002829 reductive effect Effects 0.000 description 19
- 235000009464 menaquinone-7 Nutrition 0.000 description 18
- 239000011700 menaquinone-7 Substances 0.000 description 18
- 239000011728 vitamin K2 Substances 0.000 description 18
- -1 MK-4 Chemical compound 0.000 description 17
- 230000015572 biosynthetic process Effects 0.000 description 17
- 230000001590 oxidative effect Effects 0.000 description 17
- 235000018102 proteins Nutrition 0.000 description 17
- 102000004169 proteins and genes Human genes 0.000 description 17
- 238000003756 stirring Methods 0.000 description 17
- 235000019143 vitamin K2 Nutrition 0.000 description 17
- 208000005475 Vascular calcification Diseases 0.000 description 16
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 15
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 15
- 239000000090 biomarker Substances 0.000 description 15
- 210000000988 bone and bone Anatomy 0.000 description 14
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 14
- 230000003647 oxidation Effects 0.000 description 14
- 238000007254 oxidation reaction Methods 0.000 description 14
- 230000009467 reduction Effects 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 230000008859 change Effects 0.000 description 13
- 239000000047 product Substances 0.000 description 13
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 12
- 102000004067 Osteocalcin Human genes 0.000 description 12
- 108090000573 Osteocalcin Proteins 0.000 description 12
- 238000004440 column chromatography Methods 0.000 description 12
- 238000011161 development Methods 0.000 description 12
- 230000018109 developmental process Effects 0.000 description 12
- 238000000502 dialysis Methods 0.000 description 12
- 235000009491 menaquinone-4 Nutrition 0.000 description 12
- 239000011676 menaquinone-4 Substances 0.000 description 12
- 239000007787 solid Substances 0.000 description 12
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 11
- 239000011575 calcium Substances 0.000 description 11
- 229960005069 calcium Drugs 0.000 description 11
- 229910052791 calcium Inorganic materials 0.000 description 11
- 235000001465 calcium Nutrition 0.000 description 11
- 239000012043 crude product Substances 0.000 description 11
- 102000043253 matrix Gla protein Human genes 0.000 description 11
- 108010057546 matrix Gla protein Proteins 0.000 description 11
- 239000012044 organic layer Substances 0.000 description 11
- 235000002639 sodium chloride Nutrition 0.000 description 11
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 10
- ABSPRNADVQNDOU-UHFFFAOYSA-N Menaquinone 1 Natural products C1=CC=C2C(=O)C(CC=C(C)C)=C(C)C(=O)C2=C1 ABSPRNADVQNDOU-UHFFFAOYSA-N 0.000 description 10
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 10
- 239000012267 brine Substances 0.000 description 10
- 230000007423 decrease Effects 0.000 description 10
- MBWXNTAXLNYFJB-NKFFZRIASA-N phylloquinone Chemical compound C1=CC=C2C(=O)C(C/C=C(C)/CCC[C@H](C)CCC[C@H](C)CCCC(C)C)=C(C)C(=O)C2=C1 MBWXNTAXLNYFJB-NKFFZRIASA-N 0.000 description 10
- 235000019175 phylloquinone Nutrition 0.000 description 10
- 239000011772 phylloquinone Substances 0.000 description 10
- 229960001898 phytomenadione Drugs 0.000 description 10
- 229910052938 sodium sulfate Inorganic materials 0.000 description 10
- 235000011152 sodium sulphate Nutrition 0.000 description 10
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 10
- 101100216047 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) gla-1 gene Proteins 0.000 description 9
- 239000011159 matrix material Substances 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 150000003839 salts Chemical class 0.000 description 9
- MJVAVZPDRWSRRC-UHFFFAOYSA-N Menadione Chemical compound C1=CC=C2C(=O)C(C)=CC(=O)C2=C1 MJVAVZPDRWSRRC-UHFFFAOYSA-N 0.000 description 8
- 241001465754 Metazoa Species 0.000 description 8
- 229940088594 vitamin Drugs 0.000 description 8
- 229930003231 vitamin Natural products 0.000 description 8
- 235000013343 vitamin Nutrition 0.000 description 8
- 239000011782 vitamin Substances 0.000 description 8
- 101800004937 Protein C Proteins 0.000 description 7
- 102000017975 Protein C Human genes 0.000 description 7
- 241000700159 Rattus Species 0.000 description 7
- 101800001700 Saposin-D Proteins 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 108010063628 acarboxyprothrombin Proteins 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 7
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 7
- 239000003814 drug Substances 0.000 description 7
- 238000009472 formulation Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 238000004128 high performance liquid chromatography Methods 0.000 description 7
- 229910052500 inorganic mineral Inorganic materials 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 239000011707 mineral Substances 0.000 description 7
- 229960000856 protein c Drugs 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- JPUZRBGFEWQQEW-UHFFFAOYSA-N (4-hydroxy-2-methylnaphthalen-1-yl) acetate Chemical compound C1=CC=C2C(OC(=O)C)=C(C)C=C(O)C2=C1 JPUZRBGFEWQQEW-UHFFFAOYSA-N 0.000 description 6
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 102000012005 alpha-2-HS-Glycoprotein Human genes 0.000 description 6
- 108010075843 alpha-2-HS-Glycoprotein Proteins 0.000 description 6
- 210000004369 blood Anatomy 0.000 description 6
- 239000008280 blood Substances 0.000 description 6
- 239000002775 capsule Substances 0.000 description 6
- 239000012530 fluid Substances 0.000 description 6
- 239000007800 oxidant agent Substances 0.000 description 6
- 150000003722 vitamin derivatives Chemical class 0.000 description 6
- 229960000549 4-dimethylaminophenol Drugs 0.000 description 5
- 208000006386 Bone Resorption Diseases 0.000 description 5
- 229910016860 FaSSIF Inorganic materials 0.000 description 5
- 229910005429 FeSSIF Inorganic materials 0.000 description 5
- 238000007792 addition Methods 0.000 description 5
- 230000024279 bone resorption Effects 0.000 description 5
- 229940079593 drug Drugs 0.000 description 5
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 125000000695 menaquinone group Chemical group 0.000 description 5
- 230000036470 plasma concentration Effects 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 230000002792 vascular Effects 0.000 description 5
- 229940041603 vitamin k 3 Drugs 0.000 description 5
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 4
- 208000037157 Azotemia Diseases 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 4
- 108010035042 Osteoprotegerin Proteins 0.000 description 4
- 102000008108 Osteoprotegerin Human genes 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- 238000006742 Retro-Diels-Alder reaction Methods 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 208000027418 Wounds and injury Diseases 0.000 description 4
- 238000001574 biopsy Methods 0.000 description 4
- 210000004204 blood vessel Anatomy 0.000 description 4
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 4
- 239000001506 calcium phosphate Substances 0.000 description 4
- 229960001714 calcium phosphate Drugs 0.000 description 4
- 229910000389 calcium phosphate Inorganic materials 0.000 description 4
- 235000011010 calcium phosphates Nutrition 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 210000004207 dermis Anatomy 0.000 description 4
- 230000002255 enzymatic effect Effects 0.000 description 4
- 229940088598 enzyme Drugs 0.000 description 4
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 4
- 230000000968 intestinal effect Effects 0.000 description 4
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 4
- 125000004491 isohexyl group Chemical group C(CCC(C)C)* 0.000 description 4
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 4
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 4
- 210000003734 kidney Anatomy 0.000 description 4
- XXUPLYBCNPLTIW-UHFFFAOYSA-N octadec-7-ynoic acid Chemical compound CCCCCCCCCCC#CCCCCCC(O)=O XXUPLYBCNPLTIW-UHFFFAOYSA-N 0.000 description 4
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 4
- BUFJIHPUGZHTHL-NKFFZRIASA-N phyllohydroquinone Chemical compound C1=CC=CC2=C(O)C(C/C=C(C)/CCC[C@H](C)CCC[C@H](C)CCCC(C)C)=C(C)C(O)=C21 BUFJIHPUGZHTHL-NKFFZRIASA-N 0.000 description 4
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 4
- 230000008929 regeneration Effects 0.000 description 4
- 238000011069 regeneration method Methods 0.000 description 4
- 206010040882 skin lesion Diseases 0.000 description 4
- 231100000444 skin lesion Toxicity 0.000 description 4
- MFRIHAYPQRLWNB-UHFFFAOYSA-N sodium tert-butoxide Chemical compound [Na+].CC(C)(C)[O-] MFRIHAYPQRLWNB-UHFFFAOYSA-N 0.000 description 4
- 230000002037 soft tissue calcification Effects 0.000 description 4
- 208000024891 symptom Diseases 0.000 description 4
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 4
- 208000009852 uremia Diseases 0.000 description 4
- GPLIMIJPIZGPIF-UHFFFAOYSA-N 2-hydroxy-1,4-benzoquinone Chemical compound OC1=CC(=O)C=CC1=O GPLIMIJPIZGPIF-UHFFFAOYSA-N 0.000 description 3
- HYPYXGZDOYTYDR-HAJWAVTHSA-N 2-methyl-3-[(2e,6e,10e,14e)-3,7,11,15,19-pentamethylicosa-2,6,10,14,18-pentaenyl]naphthalene-1,4-dione Chemical compound C1=CC=C2C(=O)C(C/C=C(C)/CC/C=C(C)/CC/C=C(C)/CC/C=C(C)/CCC=C(C)C)=C(C)C(=O)C2=C1 HYPYXGZDOYTYDR-HAJWAVTHSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 208000010392 Bone Fractures Diseases 0.000 description 3
- 101710185445 Cytochrome c peroxidase, mitochondrial Proteins 0.000 description 3
- 101000621945 Homo sapiens Vitamin K epoxide reductase complex subunit 1 Proteins 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 102100023485 Vitamin K epoxide reductase complex subunit 1 Human genes 0.000 description 3
- XJLXINKUBYWONI-DQQFMEOOSA-N [[(2r,3r,4r,5r)-5-(6-aminopurin-9-yl)-3-hydroxy-4-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2s,3r,4s,5s)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphate Chemical compound NC(=O)C1=CC=C[N+]([C@@H]2[C@H]([C@@H](O)[C@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-DQQFMEOOSA-N 0.000 description 3
- 238000005937 allylation reaction Methods 0.000 description 3
- 235000001014 amino acid Nutrition 0.000 description 3
- 239000012491 analyte Substances 0.000 description 3
- 210000004556 brain Anatomy 0.000 description 3
- 125000005587 carbonate group Chemical group 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 230000007812 deficiency Effects 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 3
- 235000005911 diet Nutrition 0.000 description 3
- 239000002552 dosage form Substances 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 125000005456 glyceride group Chemical group 0.000 description 3
- 235000011187 glycerol Nutrition 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 3
- 150000002924 oxiranes Chemical class 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 125000006239 protecting group Chemical group 0.000 description 3
- 238000007390 skin biopsy Methods 0.000 description 3
- 210000004872 soft tissue Anatomy 0.000 description 3
- 238000010186 staining Methods 0.000 description 3
- 239000006188 syrup Substances 0.000 description 3
- 235000020357 syrup Nutrition 0.000 description 3
- YBRBMKDOPFTVDT-UHFFFAOYSA-N tert-butylamine Chemical compound CC(C)(C)N YBRBMKDOPFTVDT-UHFFFAOYSA-N 0.000 description 3
- 150000003573 thiols Chemical class 0.000 description 3
- 235000019166 vitamin D Nutrition 0.000 description 3
- 239000011710 vitamin D Substances 0.000 description 3
- 235000012711 vitamin K3 Nutrition 0.000 description 3
- 239000011652 vitamin K3 Substances 0.000 description 3
- 230000029663 wound healing Effects 0.000 description 3
- 150000005208 1,4-dihydroxybenzenes Chemical class 0.000 description 2
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide Substances CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 2
- IZHVBANLECCAGF-UHFFFAOYSA-N 2-hydroxy-3-(octadecanoyloxy)propyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)COC(=O)CCCCCCCCCCCCCCCCC IZHVBANLECCAGF-UHFFFAOYSA-N 0.000 description 2
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 2
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 108010039209 Blood Coagulation Factors Proteins 0.000 description 2
- 102000015081 Blood Coagulation Factors Human genes 0.000 description 2
- 102000004506 Blood Proteins Human genes 0.000 description 2
- 108010017384 Blood Proteins Proteins 0.000 description 2
- 208000020084 Bone disease Diseases 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- 239000003154 D dimer Substances 0.000 description 2
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 2
- 206010017076 Fracture Diseases 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical group CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 2
- 240000007472 Leucaena leucocephala Species 0.000 description 2
- LXKDFTDVRVLXFY-UHFFFAOYSA-N MK-8 Natural products C1=CC=C2C(=O)C(CC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)C)=C(C)C(=O)C2=C1 LXKDFTDVRVLXFY-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 2
- AIJULSRZWUXGPQ-UHFFFAOYSA-N Methylglyoxal Chemical compound CC(=O)C=O AIJULSRZWUXGPQ-UHFFFAOYSA-N 0.000 description 2
- 108020000284 NAD(P)H dehydrogenase (quinone) Proteins 0.000 description 2
- 102000004316 Oxidoreductases Human genes 0.000 description 2
- 108090000854 Oxidoreductases Proteins 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 108090000445 Parathyroid hormone Proteins 0.000 description 2
- 102100036893 Parathyroid hormone Human genes 0.000 description 2
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229920002675 Polyoxyl Polymers 0.000 description 2
- 108010029485 Protein Isoforms Proteins 0.000 description 2
- 102000001708 Protein Isoforms Human genes 0.000 description 2
- 108010066124 Protein S Proteins 0.000 description 2
- 229940096437 Protein S Drugs 0.000 description 2
- 102000029301 Protein S Human genes 0.000 description 2
- 108010094028 Prothrombin Proteins 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 208000007536 Thrombosis Diseases 0.000 description 2
- 229930003316 Vitamin D Natural products 0.000 description 2
- QYSXJUFSXHHAJI-XFEUOLMDSA-N Vitamin D3 Natural products C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C/C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-XFEUOLMDSA-N 0.000 description 2
- 102000004210 Vitamin K Epoxide Reductases Human genes 0.000 description 2
- 108090000779 Vitamin K Epoxide Reductases Proteins 0.000 description 2
- 206010052428 Wound Diseases 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 2
- 229940092714 benzenesulfonic acid Drugs 0.000 description 2
- 229960004853 betadex Drugs 0.000 description 2
- 239000003114 blood coagulation factor Substances 0.000 description 2
- 230000037180 bone health Effects 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000004359 castor oil Substances 0.000 description 2
- 235000019438 castor oil Nutrition 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical compound C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 229960003964 deoxycholic acid Drugs 0.000 description 2
- KXGVEGMKQFWNSR-LLQZFEROSA-N deoxycholic acid Chemical compound C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 KXGVEGMKQFWNSR-LLQZFEROSA-N 0.000 description 2
- 230000037213 diet Effects 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 239000000539 dimer Substances 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 229940011871 estrogen Drugs 0.000 description 2
- 239000000262 estrogen Substances 0.000 description 2
- 108010052295 fibrin fragment D Proteins 0.000 description 2
- 238000003818 flash chromatography Methods 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 230000006251 gamma-carboxylation Effects 0.000 description 2
- 230000002496 gastric effect Effects 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 239000007903 gelatin capsule Substances 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 2
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N glyoxal Chemical compound O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 230000003054 hormonal effect Effects 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 239000013067 intermediate product Substances 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 2
- 238000001294 liquid chromatography-tandem mass spectrometry Methods 0.000 description 2
- 239000012669 liquid formulation Substances 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000002483 medication Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- VFGNPJRRTKMYKN-LJWNYQGCSA-N menaquinol-7 Chemical compound C1=CC=CC2=C(O)C(C/C=C(C)/CC/C=C(C)/CC/C=C(C)/CC/C=C(C)/CC/C=C(C)/CC/C=C(C)/CCC=C(C)C)=C(C)C(O)=C21 VFGNPJRRTKMYKN-LJWNYQGCSA-N 0.000 description 2
- LXKDFTDVRVLXFY-WQWYCSGDSA-N menaquinone-8 Chemical compound C1=CC=C2C(=O)C(C/C=C(C)/CC/C=C(C)/CC/C=C(C)/CC/C=C(C)/CC/C=C(C)/CC/C=C(C)/CC/C=C(C)/CCC=C(C)C)=C(C)C(=O)C2=C1 LXKDFTDVRVLXFY-WQWYCSGDSA-N 0.000 description 2
- 230000009245 menopause Effects 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000001788 mono and diglycerides of fatty acids Substances 0.000 description 2
- 235000016709 nutrition Nutrition 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920001983 poloxamer Polymers 0.000 description 2
- 230000003449 preventive effect Effects 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 210000003491 skin Anatomy 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 2
- 229940014800 succinic anhydride Drugs 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 150000003505 terpenes Chemical group 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000000844 transformation Methods 0.000 description 2
- 150000003710 vitamin D derivatives Chemical class 0.000 description 2
- 229940046008 vitamin d Drugs 0.000 description 2
- KUTXFBIHPWIDJQ-BTPXSFBUSA-N (1ar,7as)-7a-methyl-1a-[(e,7r,11r)-3,7,11,15-tetramethylhexadec-2-enyl]naphtho[2,3-b]oxirene-2,7-dione Chemical compound O=C1C2=CC=CC=C2C(=O)[C@@]2(C/C=C(C)/CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@]1(C)O2 KUTXFBIHPWIDJQ-BTPXSFBUSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- WECGLUPZRHILCT-GSNKCQISSA-N 1-linoleoyl-sn-glycerol Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(=O)OC[C@@H](O)CO WECGLUPZRHILCT-GSNKCQISSA-N 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- 239000000263 2,3-dihydroxypropyl (Z)-octadec-9-enoate Substances 0.000 description 1
- FFRBMBIXVSCUFS-UHFFFAOYSA-N 2,4-dinitro-1-naphthol Chemical compound C1=CC=C2C(O)=C([N+]([O-])=O)C=C([N+]([O-])=O)C2=C1 FFRBMBIXVSCUFS-UHFFFAOYSA-N 0.000 description 1
- HORQAOAYAYGIBM-UHFFFAOYSA-N 2,4-dinitrophenylhydrazine Chemical compound NNC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O HORQAOAYAYGIBM-UHFFFAOYSA-N 0.000 description 1
- OIQOAYVCKAHSEJ-UHFFFAOYSA-N 2-[2,3-bis(2-hydroxyethoxy)propoxy]ethanol;hexadecanoic acid;octadecanoic acid Chemical compound OCCOCC(OCCO)COCCO.CCCCCCCCCCCCCCCC(O)=O.CCCCCCCCCCCCCCCCCC(O)=O OIQOAYVCKAHSEJ-UHFFFAOYSA-N 0.000 description 1
- BHIZVZJETFVJMJ-UHFFFAOYSA-N 2-hydroxypropyl dodecanoate Chemical compound CCCCCCCCCCCC(=O)OCC(C)O BHIZVZJETFVJMJ-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- RZRNAYUHWVFMIP-GDCKJWNLSA-N 3-oleoyl-sn-glycerol Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](O)CO RZRNAYUHWVFMIP-GDCKJWNLSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 1
- 239000005695 Ammonium acetate Substances 0.000 description 1
- AFPLNGZPBSKHHQ-UHFFFAOYSA-N Betulaprenol 9 Natural products CC(C)=CCCC(C)=CCCC(C)=CCCC(C)=CCCC(C)=CCCC(C)=CCCC(C)=CCCC(C)=CCCC(C)=CCO AFPLNGZPBSKHHQ-UHFFFAOYSA-N 0.000 description 1
- 229940122361 Bisphosphonate Drugs 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- 102000055006 Calcitonin Human genes 0.000 description 1
- 108060001064 Calcitonin Proteins 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-N Caprylic acid Natural products CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 1
- 208000017667 Chronic Disease Diseases 0.000 description 1
- 102100022641 Coagulation factor IX Human genes 0.000 description 1
- 102100023804 Coagulation factor VII Human genes 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- RGHNJXZEOKUKBD-SQOUGZDYSA-M D-gluconate Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O RGHNJXZEOKUKBD-SQOUGZDYSA-M 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- 206010052273 Dystrophic calcification Diseases 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- DBVJJBKOTRCVKF-UHFFFAOYSA-N Etidronic acid Chemical compound OP(=O)(O)C(O)(C)P(O)(O)=O DBVJJBKOTRCVKF-UHFFFAOYSA-N 0.000 description 1
- 239000001116 FEMA 4028 Substances 0.000 description 1
- 108010076282 Factor IX Proteins 0.000 description 1
- 108010023321 Factor VII Proteins 0.000 description 1
- 108010014173 Factor X Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- 102000006587 Glutathione peroxidase Human genes 0.000 description 1
- 108700016172 Glutathione peroxidases Proteins 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N Glycolaldehyde Chemical compound OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 108060003393 Granulin Proteins 0.000 description 1
- 102100031487 Growth arrest-specific protein 6 Human genes 0.000 description 1
- 206010019280 Heart failures Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 206010021036 Hyponatraemia Diseases 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 102000006386 Myelin Proteins Human genes 0.000 description 1
- 108010083674 Myelin Proteins Proteins 0.000 description 1
- 102000004722 NADPH Oxidases Human genes 0.000 description 1
- 108010002998 NADPH Oxidases Proteins 0.000 description 1
- 208000008589 Obesity Diseases 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920002685 Polyoxyl 35CastorOil Polymers 0.000 description 1
- 102100027378 Prothrombin Human genes 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 108010049264 Teriparatide Proteins 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- AOBORMOPSGHCAX-UHFFFAOYSA-N Tocophersolan Chemical compound OCCOC(=O)CCC(=O)OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C AOBORMOPSGHCAX-UHFFFAOYSA-N 0.000 description 1
- 201000004810 Vascular dementia Diseases 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- WETWJCDKMRHUPV-UHFFFAOYSA-N acetyl chloride Chemical compound CC(Cl)=O WETWJCDKMRHUPV-UHFFFAOYSA-N 0.000 description 1
- 239000012346 acetyl chloride Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- BHELZAPQIKSEDF-UHFFFAOYSA-N allyl bromide Chemical compound BrCC=C BHELZAPQIKSEDF-UHFFFAOYSA-N 0.000 description 1
- AEMOLEFTQBMNLQ-BKBMJHBISA-N alpha-D-galacturonic acid Chemical compound O[C@H]1O[C@H](C(O)=O)[C@H](O)[C@H](O)[C@H]1O AEMOLEFTQBMNLQ-BKBMJHBISA-N 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229940043376 ammonium acetate Drugs 0.000 description 1
- 235000019257 ammonium acetate Nutrition 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 210000002565 arteriole Anatomy 0.000 description 1
- GONOPSZTUGRENK-UHFFFAOYSA-N benzyl(trichloro)silane Chemical compound Cl[Si](Cl)(Cl)CC1=CC=CC=C1 GONOPSZTUGRENK-UHFFFAOYSA-N 0.000 description 1
- WHGYBXFWUBPSRW-FOUAGVGXSA-N beta-cyclodextrin Chemical compound OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO WHGYBXFWUBPSRW-FOUAGVGXSA-N 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 150000004663 bisphosphonates Chemical class 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 230000023555 blood coagulation Effects 0.000 description 1
- 238000010241 blood sampling Methods 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 230000037182 bone density Effects 0.000 description 1
- 230000010256 bone deposition Effects 0.000 description 1
- 230000018678 bone mineralization Effects 0.000 description 1
- 230000037118 bone strength Effects 0.000 description 1
- 230000008416 bone turnover Effects 0.000 description 1
- 230000036995 brain health Effects 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- BBBFJLBPOGFECG-VJVYQDLKSA-N calcitonin Chemical compound N([C@H](C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(N)=O)C(C)C)C(=O)[C@@H]1CSSC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1 BBBFJLBPOGFECG-VJVYQDLKSA-N 0.000 description 1
- 229960004015 calcitonin Drugs 0.000 description 1
- 230000003913 calcium metabolism Effects 0.000 description 1
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 1
- PASHVRUKOFIRIK-UHFFFAOYSA-L calcium sulfate dihydrate Chemical compound O.O.[Ca+2].[O-]S([O-])(=O)=O PASHVRUKOFIRIK-UHFFFAOYSA-L 0.000 description 1
- 150000001722 carbon compounds Chemical class 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000001728 carbonyl compounds Chemical class 0.000 description 1
- 108091006003 carbonylated proteins Proteins 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 235000013351 cheese Nutrition 0.000 description 1
- NEHMKBQYUWJMIP-UHFFFAOYSA-N chloromethane Chemical compound ClC NEHMKBQYUWJMIP-UHFFFAOYSA-N 0.000 description 1
- 210000003763 chloroplast Anatomy 0.000 description 1
- 208000022831 chronic renal failure syndrome Diseases 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 238000003759 clinical diagnosis Methods 0.000 description 1
- AGVAZMGAQJOSFJ-WZHZPDAFSA-M cobalt(2+);[(2r,3s,4r,5s)-5-(5,6-dimethylbenzimidazol-1-yl)-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl] [(2r)-1-[3-[(1r,2r,3r,4z,7s,9z,12s,13s,14z,17s,18s,19r)-2,13,18-tris(2-amino-2-oxoethyl)-7,12,17-tris(3-amino-3-oxopropyl)-3,5,8,8,13,15,18,19-octamethyl-2 Chemical compound [Co+2].N#[C-].[N-]([C@@H]1[C@H](CC(N)=O)[C@@]2(C)CCC(=O)NC[C@@H](C)OP(O)(=O)O[C@H]3[C@H]([C@H](O[C@@H]3CO)N3C4=CC(C)=C(C)C=C4N=C3)O)\C2=C(C)/C([C@H](C\2(C)C)CCC(N)=O)=N/C/2=C\C([C@H]([C@@]/2(CC(N)=O)C)CCC(N)=O)=N\C\2=C(C)/C2=N[C@]1(C)[C@@](C)(CC(N)=O)[C@@H]2CCC(N)=O AGVAZMGAQJOSFJ-WZHZPDAFSA-M 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- GVJHHUAWPYXKBD-UHFFFAOYSA-N d-alpha-tocopherol Natural products OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- KXGVEGMKQFWNSR-UHFFFAOYSA-N deoxycholic acid Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)C(O)C2 KXGVEGMKQFWNSR-UHFFFAOYSA-N 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 230000000378 dietary effect Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 235000015872 dietary supplement Nutrition 0.000 description 1
- 229940057307 dihydrate calcium sulfate Drugs 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 235000013601 eggs Nutrition 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- 229940009626 etidronate Drugs 0.000 description 1
- 229960004222 factor ix Drugs 0.000 description 1
- 229940012413 factor vii Drugs 0.000 description 1
- 229940012426 factor x Drugs 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 235000021107 fermented food Nutrition 0.000 description 1
- 102000013361 fetuin Human genes 0.000 description 1
- 108060002885 fetuin Proteins 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000020509 fortified beverage Nutrition 0.000 description 1
- 235000014106 fortified food Nutrition 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 125000002350 geranyl group Chemical group [H]C([*])([H])/C([H])=C(C([H])([H])[H])/C([H])([H])C([H])([H])C([H])=C(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 239000003862 glucocorticoid Substances 0.000 description 1
- 201000003617 glucocorticoid-induced osteoporosis Diseases 0.000 description 1
- 229940050410 gluconate Drugs 0.000 description 1
- 239000000174 gluconic acid Substances 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-L glutamate group Chemical group N[C@@H](CCC(=O)[O-])C(=O)[O-] WHUUTDBJXJRKMK-VKHMYHEASA-L 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- RZRNAYUHWVFMIP-HXUWFJFHSA-N glycerol monolinoleate Natural products CCCCCCCCC=CCCCCCCCC(=O)OC[C@H](O)CO RZRNAYUHWVFMIP-HXUWFJFHSA-N 0.000 description 1
- 229940074045 glyceryl distearate Drugs 0.000 description 1
- 229940075507 glyceryl monostearate Drugs 0.000 description 1
- 229940015043 glyoxal Drugs 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 235000021384 green leafy vegetables Nutrition 0.000 description 1
- 108010004351 growth arrest-specific protein 6 Proteins 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000003118 histopathologic effect Effects 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 230000037041 intracellular level Effects 0.000 description 1
- 208000028867 ischemia Diseases 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 150000002535 isoprostanes Chemical class 0.000 description 1
- 230000003907 kidney function Effects 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 125000000400 lauroyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002669 linoleoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])/C([H])=C([H])\C([H])([H])/C([H])=C([H])\C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000003859 lipid peroxidation Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000008176 lyophilized powder Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 229960005481 menatetrenone Drugs 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 208000030159 metabolic disease Diseases 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 125000001360 methionine group Chemical group N[C@@H](CCSC)C(=O)* 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 210000004115 mitral valve Anatomy 0.000 description 1
- RZRNAYUHWVFMIP-UHFFFAOYSA-N monoelaidin Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC(O)CO RZRNAYUHWVFMIP-UHFFFAOYSA-N 0.000 description 1
- 210000005012 myelin Anatomy 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N n-hexanoic acid Natural products CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 150000002791 naphthoquinones Chemical class 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 235000018343 nutrient deficiency Nutrition 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 235000020824 obesity Nutrition 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 238000003305 oral gavage Methods 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 238000006053 organic reaction Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000011164 ossification Effects 0.000 description 1
- 230000004792 oxidative damage Effects 0.000 description 1
- QUANRIQJNFHVEU-UHFFFAOYSA-N oxirane;propane-1,2,3-triol Chemical compound C1CO1.OCC(O)CO QUANRIQJNFHVEU-UHFFFAOYSA-N 0.000 description 1
- 239000003346 palm kernel oil Substances 0.000 description 1
- 235000019865 palm kernel oil Nutrition 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 210000002990 parathyroid gland Anatomy 0.000 description 1
- 229960001319 parathyroid hormone Drugs 0.000 description 1
- 239000000199 parathyroid hormone Substances 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- DTUQWGWMVIHBKE-UHFFFAOYSA-N phenylacetaldehyde Chemical compound O=CCC1=CC=CC=C1 DTUQWGWMVIHBKE-UHFFFAOYSA-N 0.000 description 1
- 125000001189 phytyl group Chemical group [H]C([*])([H])/C([H])=C(C([H])([H])[H])/C([H])([H])C([H])([H])C([H])([H])[C@@](C([H])([H])[H])([H])C([H])([H])C([H])([H])C([H])([H])[C@@](C([H])([H])[H])([H])C([H])([H])C([H])([H])C([H])([H])C(C([H])([H])[H])([H])C([H])([H])[H] 0.000 description 1
- 229940068196 placebo Drugs 0.000 description 1
- 239000000902 placebo Substances 0.000 description 1
- 239000008389 polyethoxylated castor oil Substances 0.000 description 1
- 229920002523 polyethylene Glycol 1000 Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229940113116 polyethylene glycol 1000 Drugs 0.000 description 1
- 229940104257 polyglyceryl-6-dioleate Drugs 0.000 description 1
- 108010082974 polysarcosine Proteins 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 208000001685 postmenopausal osteoporosis Diseases 0.000 description 1
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- ZSBJCQGJFPHZRC-UHFFFAOYSA-N prop-2-enyl 4-methylbenzenesulfonate Chemical compound CC1=CC=C(S(=O)(=O)OCC=C)C=C1 ZSBJCQGJFPHZRC-UHFFFAOYSA-N 0.000 description 1
- SUDMKGNNRMLBMF-UHFFFAOYSA-N prop-2-enyl methanesulfonate Chemical class CS(=O)(=O)OCC=C SUDMKGNNRMLBMF-UHFFFAOYSA-N 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 229940026235 propylene glycol monolaurate Drugs 0.000 description 1
- 229940039716 prothrombin Drugs 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 235000021108 sauerkraut Nutrition 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 239000000333 selective estrogen receptor modulator Substances 0.000 description 1
- 229940095743 selective estrogen receptor modulator Drugs 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 210000000813 small intestine Anatomy 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 239000008137 solubility enhancer Substances 0.000 description 1
- 150000003408 sphingolipids Chemical class 0.000 description 1
- 206010041569 spinal fracture Diseases 0.000 description 1
- 238000013222 sprague-dawley male rat Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229940079488 strontium ranelate Drugs 0.000 description 1
- KVJIIORUFXGTFN-UHFFFAOYSA-L strontium;5-[bis(carboxymethyl)amino]-3-(carboxymethyl)-4-cyanothiophene-2-carboxylate Chemical compound [Sr+2].OC(=O)CN(CC(O)=O)C=1SC(C([O-])=O)=C(CC(O)=O)C=1C#N.OC(=O)CN(CC(O)=O)C=1SC(C([O-])=O)=C(CC(O)=O)C=1C#N KVJIIORUFXGTFN-UHFFFAOYSA-L 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 229940037128 systemic glucocorticoids Drugs 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 238000004885 tandem mass spectrometry Methods 0.000 description 1
- 229960005460 teriparatide Drugs 0.000 description 1
- OGBMKVWORPGQRR-UMXFMPSGSA-N teriparatide Chemical compound C([C@H](NC(=O)[C@H](CCSC)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@@H](N)CO)C(C)C)[C@@H](C)CC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1N=CNC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1N=CNC=1)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)C1=CNC=N1 OGBMKVWORPGQRR-UMXFMPSGSA-N 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- 210000001042 thoracic artery Anatomy 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 229960000984 tocofersolan Drugs 0.000 description 1
- AOBORMOPSGHCAX-DGHZZKTQSA-N tocofersolan Chemical compound OCCOC(=O)CCC(=O)OC1=C(C)C(C)=C2O[C@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C AOBORMOPSGHCAX-DGHZZKTQSA-N 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- ODLHGICHYURWBS-LKONHMLTSA-N trappsol cyclo Chemical compound CC(O)COC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](COCC(C)O)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](COCC(C)O)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](COCC(C)O)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](COCC(C)O)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)COCC(O)C)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1COCC(C)O ODLHGICHYURWBS-LKONHMLTSA-N 0.000 description 1
- 125000001493 tyrosinyl group Chemical group [H]OC1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 210000005166 vasculature Anatomy 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 239000002076 α-tocopherol Substances 0.000 description 1
- 235000004835 α-tocopherol Nutrition 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/96—Esters of carbonic or haloformic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/21—Esters, e.g. nitroglycerine, selenocyanates
- A61K31/215—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
- A61K31/22—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
- A61K31/222—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin with compounds having aromatic groups, e.g. dipivefrine, ibopamine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/08—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
- A61P19/10—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/08—Antiepileptics; Anticonvulsants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
- A61P27/12—Ophthalmic agents for cataracts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/34—Esters of acyclic saturated polycarboxylic acids having an esterified carboxyl group bound to an acyclic carbon atom
- C07C69/40—Succinic acid esters
Definitions
- the present invention relates to biologically active menaquinol derivatives, compositions and formulations, and combinations thereof, for the treatment of diseases associated with vitamin K, its reduced and bioactive form menaquinol and salts thereof, including osteoporosis and osteopenia.
- Vitamin K is known as a group of structurally similar, fat-soluble vitamins.
- Vitamin K 2 or menaquinone has nine related compounds that can be subdivided into the short-chain menaquinones (such as menaquinone-4 or MK-4) and the long-chain menaquinones, such as MK-7, MK-8 and MK-9 to MK-12.
- the vitamins include phylloquinone (K1), menaquinones (K2) and menadione (K3). Plants synthesize vitamin K1 while bacteria can produce a range of vitamin K2 forms, including the conversion of K1 to K2 by bacteria in the small intestines. Vitamin K3 is a synthetic version of the vitamin, and due to its toxicity, has been banned in by the US Food and Drug Administration for human uses.
- Vitamin K1 is preferentially used by the liver as a clotting factor.
- Vitamin K2 is used preferentially in the brain, vasculature, breasts and kidneys. Vitamin K2 contributes to production of myelin and sphingolipids (fats essential for brain health) and protects against oxidative damage in the brain. Vitamin K2, such as MK-4, promotes bone health by stimulating connective tissue production in bone.
- Vitamin K2 which is the main storage form in animals, has several subtypes, which differ in chain length of the isoprenoid group or residue in the side chains. These vitamin K2 homologues are called menaquinones, and are characterized by the number of isoprenoid residues in their side chains.
- MK-4 has four isoprene residues in its side chain, and is the most common type of vitamin K2 in animal products.
- MK-4 is normally synthesized from vitamin K1 in certain animal tissues (arterial walls, pancreas and testes) by replacement of the phytyl group with an unsaturated geranyl group containing four isoprene units. Unlike MK-4, MK-7 is not produced by human tissue.
- MK-7 may be converted from phylloquinone (K 1 ) in the colon by E. coli bacteria.
- MK-4 and MK-7 are sold in the U.S. in dietary supplements for bone health.
- MK-4 has been shown to decrease the incidence of fractures.
- MK-4, at a dose of 45 mg daily, has been approved by the Ministry of Health in Japan since 1995 for the prevention and treatment of osteoporosis.
- Osteoporosis is a disease of bone that leads to an increased risk of fracture. In osteoporosis the bone mineral density (BMD) is reduced, bone micro architecture is disrupted, and the amount and variety of non-collagenous proteins in bone is altered.
- BMD bone mineral density
- osteoporosis in women as a bone mineral density 2.5 standard deviations below peak bone mass, that is, for an average 30-year-old healthy female. Osteoporosis is most common in women after menopause (referred to as postmenopausal osteoporosis). Osteoporosis may also develop in men, and may occur in anyone in the presence of particular hormonal disorders and other chronic diseases or as a result of medications, specifically glucocorticoids, when the disease is called steroid- or glucocorticoid-induced osteoporosis and as a result of nutritional deficiency states or other metabolic disorders, for example, hyponatremia or as a secondary consequence of cancer.
- Osteopenia is a condition where bone mineral density is lower than normal, and is considered by many doctors to be a precursor to osteoporosis.
- the underlying mechanism in most cases of osteoporosis is an imbalance between bone resorption and bone formation.
- the three main mechanisms by which osteoporosis develops include an inadequate peak bone mass (the skeleton develops insufficient mass and strength during growth), excessive bone resorption and inadequate formation of new bone during remodelling.
- Hormonal factors strongly determine the rate of bone resorption; lack of estrogen (e.g., as a result of menopause) increases bone resorption as well as decreasing the deposition of new bone that normally takes place in weight-bearing bones.
- CVD cardiovascular disease
- Vitamin K including MK-7, are present in low concentrations in a typical diet. It has also been established that there exists a direct correlation between the level of vitamin K in a patient's blood and the incidence of vascular calcification, bone density and bone strength.
- vitamin K such as MK-7 and its also fat-soluble hydroquinone (menaquinol) derivatives as disclosed herein, may provide significant clinical benefit for reducing vascular calcification noted, in part, by arterial stiffness, and increase bone mineralization or increase in bone mineral density, that will help treat or prevent CVD, and treat or prevent bone diseases in patients with CKD.
- menaquinol fat-soluble hydroquinone
- MK-7 Long chain menaquinones such as MK-7, MK-8 and MK-9, are found in fermented foods such as cheese, curd and sauerkraut. It has also been established that the effects of long chain MK-n such as MK-7 on normal blood coagulation is greater and longer lasting than vitamin K1 and MK-4. MK-7 has also been shown to have a long half-life in serum when compared to MK-4, providing a better carboxylation-grade of osteocalcin compared to Vitamin K1. See Sato et al., Nutrition Journal, 2012, 11:93. [0010] Nutritional doses of MK-7 can be established to be well absorbed in humans, and as a consequence, provide a significant increase in the serum for MK-7 levels.
- the present application discloses novel and biologically effective menaquinol derivatives, including salts, and their method of use for the treatment of various diseases.
- menaquinol derivatives including salts, and their method of use for the treatment of various diseases.
- the present application discloses an isolated, stable and biologically active menaquinol derivative that is a carbonate dimer of the formula VIIIa.
- the preparation of VIIIa, wherein n is 9, is shown below:
- the application discloses a menaquinol derivative that is a carbonate dimer of the formula VIIIb, wherein n is 9.
- the preparation of VIIIb is shown below: [0016]
- the mono-acetate starting material in Step 1, above, for the preparation of IXc and then the preparation of VIIIb may be prepared as shown below: [0017]
- the naphthaquinone may be reduced to the corresponding hydraquinone, which may be acylated, such as using acetic anhydride and acetyl chloride, to provide the di- acetate in high yield.
- the diacetate may be selectively de-acetylated selectively to the corresponding mono-acetate in high yield and with high selectivity, providing >99% of the desired mono-acetate.
- the application discloses a menaquinol derivative that is a carbonate dimer of the formula VIIIc, wherein n is 9.
- the application discloses a compound of the formulae VIIIa.1, VIIIb.1 and VIIIc.1, wherein each R1 and R2 is independently C 1 -C 6 alkyl, or independently methyl, ethyl, propyl, isopropyl, butyl, iso-butyl, pentyl, iso-pentyl, hexyl and iso-hexyl; and n is 9.
- R1 and R2 are both methyl.
- R1 and R2 are both ethyl.
- the application discloses a menaquinol derivative of the formulae IX, IX.01 and IX.0a, where n is 9. [0021] In one variation, the application discloses a process for the preparation of the compound of the formulae IXa, IXb, IXc, IXd and IX: wherein n is 9.
- the application discloses the compound of the formulae IX.0, X.0, X.0a, IX.1, IX.2, X.0b, X.1, X.2, and X.2a: wherein for compounds IX.0, X.0 and X.0a each R 1 and R 2 is independently C 1 -C 6 alkyl, or independently methyl, ethyl, propyl, isopropyl, butyl, iso-butyl, pentyl, iso-pentyl, hexyl and iso-hexyl, and n is 9.
- R 1 and R 2 are both -CH3.
- R 1 is C 1 -C 6 alkyl.
- R 2 is C 1 -C 6 alkyl.
- R 1 is -CH 3 (methyl).
- R 2 is -CH 3 .
- n is 9.
- each R 1 and R 2 is independently C 1 -C 6 alkyl, or independently selected from the group consisting of methyl, ethyl, propyl, isopropyl, butyl, iso-butyl, pentyl, iso-pentyl, hexyl and iso-hexyl, and n is 9.
- R 1 and R 2 are both -CH 3 .
- R 1 is C 1 -C 6 alkyl.
- R 2 is C 1 -C 6 alkyl.
- R 1 is - CH3 (methyl).
- R 2 is -CH3.
- m is 1, 2, 3, 4 or 5, and n is 9.
- m is 1; or m is 2.
- n is 9. [0024] In another variation of the above menaquinol derivatives, n is 9.
- R 1 is C 1 -C 6 alkyl.
- R 2 where present, is C 1 -C 6 alkyl.
- each of R 1 and R 2 where present in a single molecule is independently C 1 -C 6 alkyl.
- C 1 -C 6 alkyl include methyl, ethyl, propyl, isopropyl, butyl, iso-butyl, pentyl, iso-pentyl, hexyl and iso- hexyl.
- R 1 is methyl
- R 2 is methyl.
- MK-9 via an Allylation Reaction and Retro-Diels-Alder Reaction: [0025]
- the preparation of MK-9 may be performed in the general scheme as shown below.
- the synthesis or reaction process may be performed neat, or in the absence of any organic solvents.
- the ketone-cyclopendiene adduct may be alkylated with an excess of a selected allyl derivative, such as the allyl halide, such as an allyl bromide, or an allyl tosylate derivate or an allyl mesylate derivative, in at least about 1.2 equivalent, or at least 1.5, 2.0 or 2.5 quivalent.
- a selected allyl derivative such as the allyl halide, such as an allyl bromide, or an allyl tosylate derivate or an allyl mesylate derivative
- the reaction may be conducted in the presence of a base sufficient to deprotonate the bridge hydrogen, such as a metal alkoxide, such as sodium tert-butoxide or potassium tert-butoxide. While the reaction may be conducted in a solvent, such as THF or diethyl ether, the reaction may be performed neat, or in the absence of any solvent to provide the desired product in about 1 hour. Optionally, the desired product may be diluted with a solvent, such as THF, diethyl ether, hexanes or mixtures thereof, and then filtered and isolated from residual salts and by-products. Filtration of the crude product may be conducted with a short column or plug of silica gel. Removal of the solvent in vacuo provides the desired product.
- a base sufficient to deprotonate the bridge hydrogen
- a base such as a metal alkoxide, such as sodium tert-butoxide or potassium tert-butoxide.
- a solvent such as THF or diethyl
- the desired intermediate product may be used as is, or further purified, if desired.
- the intermediate product may be placed under vacuum, such as 15 torr or less, and then heated to about 85 oC, optionally in the absence of stirring.
- the reaction is determined to be complete over at least 5 hours or about 12 hours, using TLC or HPLC, the resulting product was purified, such as using flash column chromatography, in a solvent, such as 4%-10% diethyl ether in hexanes, and then the solvents are removed under vacuo to provide the desired MK-9 product in about 80% yield over the two reaction steps.
- the application discloses a pharmaceutical composition
- a pharmaceutical composition comprising a therapeutically effective amount of a menaquinol derivative of any one of the above embodiments and aspects, or a mixture thereof; and a pharmaceutically acceptable excipient, wherein the composition is effective for the treatment of a condition associated with vitamin K selected for the treatment of osteoporosis, arteriosclerosis, calciphylaxis or tissue calcification.
- the application discloses a method for increasing the tissue concentration of menaquinol as a co-factor for gamma glutamate carboxylase (GGCX) for catalyzing the carboxylation of vitamin K dependent proteins that is associated with the treatment or prevention of osteoporosis, arteriosclerosis, calciphylaxis or tissue calcification in a patient in need thereof, the method comprising an administration of a therapeutically effective amount of a menaquinol derivative or a pharmaceutical composition comprising an effective amount of a menaquinol derivative as disclosed above, or a mixture thereof.
- GGCX gamma glutamate carboxylase
- the administration of the menaquinol derivative overcomes the oxidative block in patients with CKD and in patients receiving hemodialysis and provides maximal levels of menaquinol and maximal benefits at the tissue level.
- the tissue is the skin or dermis tissue.
- the tissue is at least of of the patient’s mitral valve, the patient’s artic valve and blood vessels.
- the menaquinol is menaquinol-9.
- the method increases the tissue concentration of menaquinol by at least 20%, 30%, 40%, 50%, 100%, 150%, 200%, 250%, 300%, 400% or 500% or more when compared to the administration of menaquinone.
- the application discloses a method for the treatment of a disease in a mammal selected from the group consisting of neurodegenerative diseases, retinopathy, rheumatoid polyarthritis, atherosclerosis, amyotrophic lateral sclerosis, cerebral ischemia, cataracts, systemic infections, pathologies associated with cutaneous aging and with senescence in tissues, pathologies associated with mitochondrial dysfunction, cachexia associated with under nutrition, wherein the treatment is associated with the increase in the longevity of mammals, the method comprises the administration of a therapeutically effective amount of a compound or composition comprising a menaquinol derivative of the formulae formulae VIII to XI, inclusive of all disclosed compounds herein, or a mixture thereof.
- the application discloses a method for treating a mammal with a disease selected from the group consisting of vitamin K deficiency, osteoporosis, a proliferative disease, and a cardiovascular disease, comprising administering to the mammal a therapeutically effective amount of a menaquinol derivative as disclosed above, or a mixture thereof.
- the proliferative disease is selected from the group consisting of cancer, leukemia and an inflammatory disease.
- the application discloses a method for the treatment or prevention of osteoporosis and/or osteopenia, the method comprising administering to a patient in need of treatment, a therapeutically effective amount of a composition comprising a menaquinol derivative of the formulae VIII to XI, inclusive of all disclosed compounds herein, or a mixture thereof.
- the application disloses a method of treating, preventing, slowing the progression of, arresting, and/or reversing calciphylaxis in a mammal in need thereof, the method comprising administering to the mammal a therapeutically effective amount of a composition comprising substantially pure menaquinol derivative of the formulae VIII to XI, inclusive of all disclosed compounds herein, or a mixture thereof, and a pharmaceutically acceptable excipient, to prevent, slow the progression of, arrest, or reverse calciphylaxis.
- the mammal has distal calciphylaxis and/or central calciphylaxis.
- the mammal has diabetes, chronic kidney disease or end stage renal disease. In another aspect of the method, the mammal has stage 3, stage 4 or stage 5 chronic kidney disease. In another aspect of the methods, the mammal is undergoing hemodialysis. In yet another aspect of the method, the mammal is receiving non-warfarin-based anti-coagulant therapy. In another aspcet of the method, the anti-coagulant therapy is oral anti-coagulation therapy.
- the anti-coagulation therapy comprises an inhibitor of Factor Xa activity selected from apixaban, rivaroxaban, betrixaban, edoxaban, otamixaban, letaxaban, eribaxaban or fondaparinux; or Factor IIa activity selected from dabigratran or argatroban.
- the mammal has chronic obstructive pulmonary disease (COPD).
- COPD chronic obstructive pulmonary disease
- the mammal has a calciphylaxis-related dermal lesion.
- the administration of the composition reduces the total surface area of the dermal lesion by at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 100%.
- the administration of the compound of the formulae VIII to XI, inclusive of all disclosed compounds herein, or a mixture thereof, to the mammal increases the mammal’s serum T50 value by at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 100% relative to the mammal’s serum T50 value prior to administration of the above compound, or a mixture thereof.
- the administration of the compound of the formulae VIII to XI, inclusive of all disclosed compounds herein, or a mixture thereof increases a ratio of a carboxylated to a non-carboxylated of a Vitamin K dependent protein in plasma of the mammal after administration of the composition is greater than prior to administration of the composition.
- a method of treating, preventing, slowing the progression of, arresting and/or reversing tissue calcification in a pre-diabetic mammal (or subject) with diabetes, chronic kidney disease or a combination thereof, and in need thereof comprising administering to the mammal at least 50 mg of a compound of the formulae VIII to XI, inclusive of all disclosed compounds herein, or a mixture thereof per day, to prevent, slow the progression of, and/or arrest tissue calcification, wherein the above compound, or a mixture thereof, is administered in a pharmaceutical composition.
- the specification also discloses the recited compounds or compositions thereof, for use as a medicament in the treatment of the recited medical conditions or diseases; and the specification discloses the use of the recited compounds in the manufacture of a formulation or medicament for the treatment of the disclosed medical conditions or diseases.
- the menaquinol derivative is administered at a dose of at least 10 mg, 20 mg, 30 mg, 40 mg or 50 mg.
- the menaquinol derivative is administered at a dose of at least 100 mg, 150 mg, 200 mg, 25 mg, 300 mg, 350 mg, 400 mg 450 mg or 500 mg.
- the menaquinol derivative is administered at a dose of at least 500 mg, 600 mg, 700 mg, 800 mg, 900 mg or 1,000 mg or more.
- the mammal has diabetes.
- the mammal has type II diabetes.
- the mammal has been diagnosed as pre-diabetic.
- the mammal has chronic kidney disease.
- the mammal has stage 4 or 5 chronic kidney disease/end stage renal disease.
- the mammal is undergoing hemodialysis.
- the mammal is receiving non-warfarin based anti-coagulant therapy.
- the anti-coagulant therapy is oral anti-coagulation therapy.
- anti-coagulation therapy comprises an inhibitor of Factor Xa activity selected from apixaban, rivaroxaban, betrixaban, edoxaban, otamixaban, letaxaban, eribaxaban or fondaparinux; or Factor IIa activity selected from dabigratran or argatroban.
- the application discloses a method of treating, preventing, slowing the progression of, arresting, and/or reversing tissue calcification in a mammal undergoing hemodialysis, and in need thereof, the method comprising administering to the mammal at least 10 mg of the compound of the formulae VIII to XI, inclusive of all disclosed compounds herein, or a mixture thereof, per day, thereby to prevent, slow the progression, arrest, and/or reverse tissue calcification, wherein the above compound, or a mixture thereof is administered in a pharmaceutical composition.
- the menaquinol derivative is administered at a dose of at least 10 mg, 20 mg, 30 mg, 40 mg or 50 mg.
- the menaquinol derivative is administered at a dose of at least 100 mg, 150 mg, 200 mg, 25 mg, 300 mg, 350 mg, 400 mg 450 mg or 500 mg. In another variation, the menaquinol derivative is administered at a dose of at least 500 mg, 600 mg, 700 mg, 800 mg, 900 mg or 1,000 mg or more. In another aspect of the above method, the mammal has diabetes.
- the application discloses a pharmaceutical composition
- a pharmaceutical composition comprising a therapeutically effective amount of a menaquinol derivative (or also referred to as “a compound” or “disclosed compound(s)”) as disclosed above, or a mixture thereof, and a pharmaceutically acceptable excipient, wherein the composition is effective for the treatment of a condition associated with vitamin K selected from for the treatment of osteoporosis and arteriosclerosis.
- the present application discloses a method for the treatment of a disease in a mammal selected from the group consisting of neurodegenerative diseases, retinopathy, rheumatoid polyarthritis, atherosclerosis, amyotrophic lateral sclerosis, cerebral ischemia, cataracts, systemic infections, pathologies associated with cutaneous aging and with senescence in tissues, pathologies associated with mitochondrial dysfunction, cachexia associated with under nutrition, wherein the treatment is associated with the increase in the longevity of mammals, the method comprises the administration of a therapeutically effective amount of a compound or composition comprising a menaquinol compound as disclosed above, or a mixture thereof.
- a method for treating a mammal with a disease selected from the group consisting of vitamin K deficiency, osteoporosis, a proliferative disease, and a cardiovascular disease comprising administering to the mammal a therapeutically effective amount of a compound as disclosed herein, or a mixture thereof.
- the proliferative disease is selected from the group consisting of cancer, leukemia and an inflammatory disease.
- a method for the treatment or prevention of osteoporosis and/or osteopenia comprising administering to a patient in need of treatment, a therapeutically effective amount of a composition comprising a compound as disclosed above, or a mixture thereof.
- the disclosed method for the administration of MK-7 and its fat-soluble hydroquinone derivatives, or combinations thereof may be used in the treatment or reduction of vascular calcification, increase in bone mineral density and for the treatment, reduction or prevention of bone diseases, such as in patients with CKD.
- a method of treating, preventing, slowing the progression of, arresting, and/or reversing calciphylaxis in a mammal in need thereof comprising administering to the mammal a therapeutically effective amount of a composition comprising substantially pure menaquinol compound as disclosed herein, and a pharmaceutically acceptable excipient, to prevent, slow the progression of, arrest, or reverse calciphylaxis.
- the mammal has distal calciphylaxis and/or central calciphylaxis.
- the mammal has diabetes, chronic kidney disease or end stage renal disease.
- the mammal has stage 3, stage 4 or stage 5 chronic kidney disease.
- the mammal is undergoing hemodialysis. In yet another aspect, the mammal is receiving non-warfarin-based anti-coagulant therapy.
- the anti-coagulant therapy is oral anti- coagulation therapy.
- the anti-coagulation therapy comprises an inhibitor of Factor Xa activity selected from apixaban, rivaroxaban, betrixaban, edoxaban, otamixaban, letaxaban, eribaxaban or fondaparinux; or Factor IIa activity selected from dabigratran or argatroban.
- the mammal has chronic obstructive pulmonary disease (COPD).
- COPD chronic obstructive pulmonary disease
- the mammal has a calciphylaxis-related dermal lesion.
- administration of the composition reduces the total surface area of the dermal lesion by at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 100%.
- administration of the substantially pure compound as disclosed herein, to the mammal increases the mammal’s serum T50 value by at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 100%) relative to the mammal’s serum T50 value prior to administration of the disclosed compound.
- administration of the disclosed compound increases a ratio of a carboxylated to a non-carboxylated of a Vitamin K dependent protein in plasma of the mammal after administration of the composition is greater than prior to administration of the composition.
- the increase of the ratio of a carboxylated to a non-carboxylated of a Vitamin K dependent protein in plasma of the mammal after administration of the composition is by at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45% 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% relative to the ratio prior to administration.
- the administration of the disclosed compounds decreases the amount of a non-carboxylated Vitamin K-dependent protein in the subject’s plasma, for example, by at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45% 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% or 100% relative to the amount prior to administration of the compounds.
- the Vitamin K-dependent protein is selected from Matrix Gla Protein (MGP), Growth Arrest Specific Gene 6 (Gas-6) protein, PIVKA-II protein, osteocalcin, activated Protein C, activated Protein S, factor II, factor VII, factor IX and factor X.
- the administration of the compounds increases the plasma level of osteoprotegerin or Fetuin A, for example, by at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45% 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% relative to the plasma concentration of osteoprotegerin or Fetuin A prior to administration of the compounds.
- the administration of the compounds decreases the plasma level of D-Dimer or Highly Sensitive C Reactive Peptide (hs-CRP), for example, by at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45% 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% or 100% relative to the plasma concentration of D-Dimer or Highly Sensitive C Reactive Peptide (hs-CRP) prior to administration of the compounds.
- the method may include administering from about 20 mg to about 750 mg of the compound to the subject per day. In other variations, the method may include administering from about 50 mg to about 750 mg of the compound to the subject per day.
- the method may include administering from about 20 mg to about 500 mg of the compound to the subject per day. In other variations, the method may include administering from about 50 mg to about 500 mg of the compound to the subject per day. In certain variations, the method can include administering from about 20 mg to about 250 mg of the compound to the subject per day. In other variations, the method may include administering from about 10 mg to about 250 mg of the compound to the subject per day. In other variations, the method may include administering from about 20 mg to about 100 mg of the compound to the subject per day. In other variations, the method may include administering from about 50 mg to about 100 mg of the compound to the subject per day.
- the method may include administering from about 10 mg to about 75 mg of the compound to the subject per day, for example, administering 10, 25, 50, 75, 100, 200, 300, 400 or 500 mg of the compound to the subject per day.
- the compound is administered to the subject for at least 2 weeks, 4 weeks, 6 weeks, 8 weeks, 3 months, 6 months, 1 year, or indefinitely as needed. If the subject is undergoing hemodialysis, the compound may be administered to the subject for a period that includes at least the duration of hemodialysis.
- a biopsy may be taken of the relevant lesions using von Kassa Staining to determine tissue levels of PTH and evidence of change in calcium and phosphate deposition in dermal arterioles.
- the presence of a uremic oxidative blockade is determined by measuring increased plasma lipid peroxidation, e.g., by detection of increased F2 isoprostanes, increased isolevuglandin-plasma protein adducts; increased protein and amino acid oxidation, e.g., by detection of tyrosine residue oxidation, cysteine or methionine residue oxidation, lysine oxidation and threonine oxidation, thiol oxidation and carbonyl formation in plasma proteins; reactive aldehyde formation, e.g., by detecting glyoxal, methylglyoxal, acrolein, glycoaldehyde, and parahydroxy phenacetaldehyde; increased reactive carbonyl compounds, e.g., by measuring hydrazine formation after reaction with 2,4- dinitrophenylhydrazine; diminished plasma glutathione levels and glutathione peroxid
- the mammal has diabetes.
- the mammal has type II diabetes; or the mammal has been diagnosed as pre-diabetic.
- the mammal has chronic kidney disease.
- the mammal has stage 4 or 5 chronic kidney disease/end stage renal disease.
- the mammal is undergoing hemodialysis.
- the mammal is receiving non-warfarin based anti-coagulant therapy.
- the anti-coagulant therapy is oral anti-coagulation therapy.
- the anti-coagulation therapy comprises an inhibitor of Factor Xa activity selected from apixaban, rivaroxaban, betrixaban, edoxaban, otamixaban, letaxaban, eribaxaban or fondaparinux; or Factor IIa activity selected from dabigratran or argatroban.
- a method of treating, preventing, slowing the progression of, arresting, and/or reversing tissue calcification in a mammal undergoing hemodialysis, and in need thereof comprising administering to the mammal at least 2 mg of substantially pure compound as disclosed herein per day, thereby to prevent, slow the progression, arrest, and/or reverse tissue calcification, wherein the disclosed compound is administered in a pharmaceutical composition.
- the mammal has diabetes.
- Vitamin K Metabolism Development of vascular and soft tissue calcification following the failure to regenerate reduced forms of vitamin K: Vitamin K is an essential enzymatic co-factor that is required for posttranslational modifications of vitamin K dependent (VKD) proteins.
- VKD proteins While there are numerous VKD proteins many are clinically relevant to ESRD patients. They include central coagulation factors such as factors II, VII, IX and X as well as intercellular matrix proteins including Matrix GLA-1 and Osteocalcin.
- central coagulation factors such as factors II, VII, IX and X
- intercellular matrix proteins including Matrix GLA-1 and Osteocalcin.
- vitamin K is reduced to vitamin K hydroquinone (KH2) by the enzyme NADPH oxidase. It is only the reduced form of vitamin K that is able to function as a co-factor for gamma glutamate carboxylase (GGCX) which catalyzes the carboxylation of vitamin K dependent proteins. Warfarin blocks the generation of vitamin K hydroquinone by acting as a reductive sink.
- GGCX gamma glutamate carboxylase
- the enzymatic carboxylation of glutamate residues results in further oxidation of vitamin KH2 to 2-3 epoxide vitamin K ( Figure 2).
- the final step of the vitamin k cycle requires the enzymatic oxidation of vitamin K 2-3 epoxide back to its native structure. This step is catalyzed by vitamin K oxidative reductase (VKOR) and is a component of the vitamin K cycle that is also blocked by the oxidative effects of Warfarin.
- VKOR vitamin K oxidative reductase
- Warfarin blocks both the generation of vitamin K hydroxyquinone (KH2) as well as the regeneration of Vitamin K22-3 epoxide helps to explains why the incidence of calciphylaxis and other forms of dystrophic calcification is higher among patients receiving Warfarin therapy.
- the administration or supplementation of the disclosed compounds and compositions reduces the risk for vascular and soft tissue calcification by increasing the formation of primary calciprotein particles (CPP) composed of Fetuin A and Carboxylated Matrix GLA-1 Proteins.
- CPP primary calciprotein particles
- plasma calcium and phosphate concentrations are near supersaturation and thus would be expected to precipitate in blood vessels and soft tissue as crystalline hydroxyapatite.
- This process does not occur suggests the presence of potent chemical and biologic means for blocking pathologic calcification.
- Recent studies have shown that circulating calcium phosphate crystals are complexed with two calcification inhibiting proteins to form primary calciprotein particles (CPPs).
- Matrix Gla-1 is a vitamin K dependent protein and early work by Price et. al and others have shown that formation of the Fetuin-Matrix Gla-1 mineral nanoparticles (primary calciproteins CPP) is dependent upon the gamma carboxylation of Matrix Gla-1.
- primary calciproteins CPP primary calciproteins
- the “absorption” of calcium- phosphate crystals by primary CCPs occurs in a coordinated and time-dependent process.
- the time to 50% saturation (T 50 ) of primary CCPs is an accurate and highly sensitive means for determining the capacity of plasma to “sink” or “absorb” excess calcium phosphate crystals. Patients with a short T 50 times suggests a reduced capacity to absorb calcium phosphate crystals whereas patients with prolonged T 50 times are consistent with high capacities. Recent clinical studies have validated the T 50 test and confirmed that low T 50 times are associated with increased myocardial infarctions, heart failure and all-cause mortality. Thus, any clinical intervention that can increases the synthesis of circulating primary CCPs will improve the capacity to prevent pathologic calcification.
- Vitamin K The regeneration of Vitamin K involves two key enzymes: vitamin K 2-3 epoxide oxidative reductase (VKOR) and NAD(P)H: quinone oxidoreductase (NQO1).
- VKOR reduces 2-3 Vitamin K epoxide to vitamin K quinone while NADPH reduces Vitamin K quinone to its hydroxyquinone form (KH2).
- VKORC-1 and VKORC 1 -Like-1 [VKORC1-L1] that differ in both enzymatic properties and tissue distribution. For example, Westhofen et.
- VKOR-L1 is a specialized isoform that protects against oxidant injury through the regeneration of vitamin K.
- H 2 O 2 When cultured HEK 293T cells were incubated with H 2 O 2 , VKOR-L1 expression was increased and evidence of membrane oxidant injury was reduced.
- Casper et. al determined mRNA expression of key enzymes involved in regeneration of vitamin K.
- the administration or supplementation or administration of the disclosed compounds and compositions will reverse hemodialysis induced inhibition of vitamin K dependent proteins through normalization of functional reduced forms of vitamin K.
- oxidant conditions can disrupt the vitamin K cycle suggests that the oxidant load generated during hemodialysis could contribute to the high rates of vascular and soft tissue calcification observed within the ESRD population.
- Work by Himmelfarb et al. and others have confirmed that the simply delivery of hemodialysis can lead to the oxidation of numerous tissue proteins. For example, hydroxyl amino acid side chains be oxidized to oxidized to carbonyl groups.
- the oxidation of KH2 by hemodialysis block its ability to function as a co-factor for GGCX which down-stream leads to reduced gamma carboxylation of vitamin K dependent proteins.
- the ratio of vitamin K quinone to 2-3 epoxide vitamin K and vitamin K hydroxyquinone (KH2) may be determined in patients with normal renal function, CKD (Stage IV & V) and ESRD patients.
- CKD Serial IV & V
- ESRD ESRD
- Vitamin K are Vitamin K2.
- the administration or supplementation with the disclosed compounds and compositions in ESRD patients with Calcific Uremic Arteriolopathy will reduce the time of wound healing by preventing calcification of new blood vessels and restoring blood flow: Skin Biopsies: To confirm that supplementation of the disclosed compounds and compositions prevents the development of small vessel calcification and dermal ischemia, we may identify patients with calciphylaxis confirmed by dermal skin biopsy and randomize patients to treatment with menaquinone-7 or placebo. Clinical Endpoints may include the following: 1) Time to Wound Vacuum therapy withdrawal and 2) time for wound healing defined as the time needed for a 50% reduction in collective the surface area of all calciphylaxis wounds.
- the administration or supplementation with the disclosed compounds and compositions provides a significant increase in the bioavailability of the compounds, including menaquinone-9/menaquinol-9, and their mixtures, when compared to administration or supplementation.
- the bioavailability increases by at least 5%, 10%, 15%, 20%, 30%, 40%, 50% or more, when compared to the administration or supplementation using menaquinone-9.
- the administration or supplementation with the disclosed compounds and compositions provides a significant increase in the serum half life of the compounds, including menaquinone-9/menaquinol-9, and their mixtures, when compared to administration or supplementation.
- the serum half life increases by at least 5%, 10%, 15%, 20%, 30%, 40%, 50% or more, when compared to the administration or supplementation using menaquinone-9.
- Histopathologic Endpoints Comparison of Diagnostic dermal biopsy with Protocol repeat dermal biopsy after 12 weeks of Menaquinone-7 or Menaquinone-9 therapy. Change in the level of interstitial calcium deposition defined as the change in Von Kossa staining, which may be quantified by digital image color analysis. We may use dermal biopsies to validate the biomarkers at the tissue level. This process allows confirmation of the preventive properties of the disclosed menaquinol derivatives on early vascular calcification.
- the supplementation of the disclosed compounds and compositions in ESRD patients with Calcific Uremic Arteriolopathy will reduce the time of wound healing by normalizing carboxy Protein C levels in the dermis and preventing primary thrombosis of dermal blood vessels. Accordingly, in one variation, the supplementation or administration of the disclosed compounds or compositions in diabetic patients will prevent the development of vascular dementia by preventing calcification and development of small vessel vasculopathy.
- a fortified food or drink formulation comprising adding to the food or drink a composition comprising a compound of any one of the above compounds, or a mixture thereof.
- compositions of the compounds of this invention may be formulated as solutions or lyophilized powders for parenteral administration. Powders may be reconstituted by addition of a suitable diluent or other pharmaceutically acceptable carrier prior to use.
- the liquid formulation is generally a buffered, isotonic, aqueous solution.
- suitable diluents are normal isotonic saline solution, 5% dextrose in water or buffered sodium or ammonium acetate solution.
- Such formulations are especially suitable for parenteral administration but may also be used for oral administration.
- Excipients such as polyvinylpyrrolidinone, gelatin, hydroxycellulose, acacia, polyethylene glycol, mannitol, sodium chloride, or sodium citrate, may also be added. Alternatively, these compounds may be encapsulated, tableted, or prepared in an emulsion or syrup for oral administration.
- Solid or liquid carriers may be added to enhance or stabilize the composition, or to facilitate preparation of the composition.
- Liquid carriers include syrup, peanut oil, olive oil, glycerin, saline, alcohols, or water.
- Solid carriers include starch, lactose, calcium sulfate, dihydrate, terra alba, magnesium stearate or stearic acid, talc, pectin, acacia, agar, or gelatin.
- the carrier may also include a sustained release material such as glyceryl monostearate or glyceryl distearate, alone or with a wax.
- the amount of solid carrier varies but, preferably, will be between about 20 mg to about 1 g per dosage unit.
- the pharmaceutical preparations are made following the conventional techniques of pharmacy involving milling, mixing, granulation, and compressing, when necessary, for tablet forms; or milling, mixing, and filling for hard gelatin capsule forms.
- a liquid carrier When a liquid carrier is used, the preparation will be in the form of a syrup, elixir, emulsion, or an aqueous or non-aqueous suspension.
- Such a liquid formulation may be administered directly p.o. or filled into a soft gelatin capsule.
- Suitable formulations for each of these methods of administration may be found in, for example, Remington: The Science and Practice of Pharmacy, A. Gennaro, ed., 20th edition, Lippincott, Williams & Wilkins, Philadelphia, Pa.
- the disclosed compounds and compositions may include a solubility enhancer or solubilizer selected from oleic acid, Kolliphor® EL (polyoxyl castor oil or Cremophor EL), Vitamin E TPGS (D- ⁇ -tocopherol polyethylene glycol-1000 succinate), PEPI (a polysarcosine-derived emulsifying agent), Maisine® CC (glyceryl monolinoleate), Gelucire® 44/14 (lauroyl polyoxyl-32 glycerides), Miglyol® 812N (esters of saturated coconut and palm kernel oil-derived caprylic fatty acids and glycerin), Plurol® Oleique (Polyglyceryl-6 Dioleate), LauroglycolTM 90 (propylene glycol monolaurate (type II), Labrasol® (Caprylocaproyl polyoxyl-8 glycerides), Kolliphor® EL (polyoxyl castor oil), Captisol® (SBE-be
- “Pharmaceutically acceptable salts” means salt compositions that is generally considered to have the desired pharmacological activity, is considered to be safe, non-toxic and is acceptable for veterinary and human pharmaceutical applications.
- Such salts include acid addition salts formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, and the like; or with organic acids such as acetic acid, propionic acid, hexanoic acid, malonic acid, succinic acid, malic acid, citric acid, gluconic acid, salicylic acid and the like.
- "Therapeutically effective amount” means an amount of a compound or drug that elicits any of the biological effects listed in the specification.
- Figure 1 is a representation of a chromatogram of menaquinone-7 and its regioisomer shown with a ratio of 3:1, as determined by 1 H NMR.
- Figure 2 is a scheme showing the uremia and dialysis induced oxidation of KH2 functional carboxylation of vitamin K dependent proteins.
- Figure 3 is graph showing the VKORC1 in arbitrary units and specific tissues.
- Figure 4 is a graph showing the NADPH in arbitrary units and specific tissues.
- Figure 5 is a graph showing CKD and ESRD patients exhibit a higher percentage of carbonyl proteins compared to normal controls.
- EXPERIMENTAL [0081] The following procedures may be employed for the preparation of the compounds of the present invention.
- the starting materials and reagents used in preparing these compounds are either available from commercial suppliers such as the Aldrich Chemical Company (Milwaukee, Wis.), Bachem (Torrance, Calif.), Sigma (St. Louis, Mo.), or are prepared by methods well known to a person of ordinary skill in the art, following procedures described in such references as Fieser and Fieser's Reagents for Organic Synthesis, vols.1-17, John Wiley and Sons, New York, N.Y., 1991; Rodd's Chemistry of Carbon Compounds, vols.1-5 and supps., Elsevier Science Publishers, 1989; Organic Reactions, vols.1-40, John Wiley and Sons, New York, N.Y., 1991; March J.: Advanced Organic Chemistry, 4th ed., John Wiley and Sons, New York, N.Y.; and Larock: Comprehensive Organic Transformations, VCH Publishers, New York, 1989.
- protective groups may be introduced and finally removed. Suitable protective groups for amino, hydroxy, and carboxy groups are described in Greene et al., Protective Groups in Organic Synthesis, Second Edition, John Wiley and Sons, New York, 1991. Standard organic chemical reactions can be achieved by using a number of different reagents, for examples, as described in Larock: Comprehensive Organic Transformations, VCH Publishers, New York, 1989. Preparation of Menaquinol Derivatives: [0121] The menaquinol derivatives, such as the menaquinol-9 derivatives, may be prepared according to the general methods as described below.
- Such acylated linked compounds may be symmetrical, wherein both hydroxyl groups of the menaquinol are acylated and linked to another menaquinol molecule, or only one of the two hydroxyl groups, either the 5-position or the 8-position, are acylated and linked to another menaquinol molecule, and the other remaining as the free hydroxyl group of the menaquinol.
- reaction mixture was filtered through celite and washed with ethyl acetate (10 mL), filtrate was diluted with ethyl acetate (250 mL) and washed with water (2X100 mL), separated organic layer was concentrated and crude obtained was purified by column chromatography (3-4% ethyl acetate/hexane) to yield the compound IXa as a pale yellow liquid (75%).
- the H 1 nmr obtained was consistent with the product.
- the mono-acetate in step 1, 4-hydroxy-2-methylnaphthalen-1-yl acetate may be prepared by the reduction and subsequent di-acylation of 2-methyl-1,4-naphthoquinone using Pd/C, acetic anhydride, ethyl acetate and DMAP to form the diacylated quinol, which is then selectively de-acylated in methanol and ter-butylamine to provide the desired product, 4- hydroxy-2-methylnaphthalen-1-yl acetate.
- reaction completion was monitored by TLC (15% ethyl acetate/hexane).
- the reaction mixture was diluted with ethyl acetate (200 mL) and washed with water (2X100 mL). The organic layer was separated and washed with brine solution (50 mL) then dried over sodium sulfate and concentrated.
- step 1 is in common with the preparation of the carbonate, as described above.
- succinic anhydride 0.054 g, 0.54 mmol
- DMAP 0.023 g, 0.18 mmol
- the crude reaction was then loaded onto a packed silica column (25 mm x 152 mm) and filtered through the silica using two column volumes of hexanes, 1 column volume of 3.5% Et 2 O/hexanes, and four column volumes of 7% Et 2 O/hexanes, the latter of which was collected.
- the organics were then evaporated into a 20 mL scintillation vial resulting in 869 mg of the ⁇ -allylated product, as a golden yellow oil which was carried over directly to the retro-Diels-Alder reaction.
- Stability of the Compounds in SGF, FaSSIF and FeSSIF may be determined in Simulated gastric fluid (SGF, pH-1.2), Fasted state simulated intestinal fluid (FaSSIF, pH-6.5) and Fed state simulated intestinal fluid (FeSSIF, pH-5) at 0, 30, 60, 120 and 240 minutes. The % of compound disappearing over time may be calculated by comparing to peak areas of analyte at ‘0’ minute by HPLC/ LCMS analysis. Formation of the menaquinone, such as menaquinone-9 from the compounds tested, as disclosed herein, was observed.
- a Table 3 noting the stability of the disclosed compounds as tested is determined in Simulated gastric fluid (SGF, pH-1.20), Fasted state simulated intestinal fluid (FaSSIF, pH-6.5) and Fed state simulated intestinal fluid (FeSSIF, pH-5) at 0, 30, 60, 120 and 240 minutes. The % of the compound disappearing over time was calculated by comparing to peak areas of analyte at ‘0’ minute by HPLC/ LCMS analysis. Formation of menaquinone-9 from the tested was observed. Stability in Human and Rat Plasma: [0146] A Table 4 noting the stability of the disclosed compounds as tested is determined in Human and Rat plasma (K 2 EDTA) at 0, 15, 30, 60 and 120 minutes.
- K 2 EDTA Human and Rat plasma
- Blood samples were collected at various time points during the next 48 hours post dose. [0152] Blood samples were collected and transferred to tubes containing K 2 EDTA and immediately placed on ice for plasma preparations.
- Plasma was prepared by centrifugation at 3500 g for 10 min, aliquots were frozen at -80°C until analysis. Quantification of analyte in plasma was determined by LC-MS-MS analysis. Plasma PK parameters were calculated using WinNonlin software.
- Administration of the Compounds in Subjects at Risk for Development of Calciphylaxis [0153] This example describes the administration of the compounds of the present application to subjects at risk for development of calciphylaxis, but who have not yet developed the characteristic skin lesions of calciphylaxis. Risk factors to be considered include, but are not limited to, diabetes mellitus, obesity, hemodialysis, and prior treatment with warfarin (Nigwekar et al.
- the dosage form is a 10 mg, 20 mg, 50 mg or 100 mg soft-gel capsule.
- Two 50 mg capsules are be administered once daily to the 100 mg dosage cohort. It should be noted that not all subjects with elevated risk factors for calciphylaxis will develop the characteristic skin lesions of calciphylaxis.
- the intent of treating with the compound of the present application proactively (prior to a clinical diagnosis of calciphylaxis) is the prevention of lesion appearance. Thus, a drop in frequency of, or elimination of lesion appearances is contemplated to be a successful treatment.
- biomarkers can be assessed to determine the efficacy of the compound to be administered at the three dose levels.
- biomarkers include PIVKA-II; uncarboxylated and total Matrix Gla Protein (MGP); uncarboxylated, carboxylated and total osteocalcin protein; uncarboxylated, carboxylated and total Protein C, osteoprotegerin, Fetuin A and hs-CRP.
- Blood samples are obtained to measure the biomarkers according to the following schedule. Blood sampling can occur during treatment on a weekly or monthly basis.
- administering will result in (i) an increase in PIVKA-II, which is indicative of slowing the progression of, arresting, or reversing, calciphylaxis, (ii) a decrease in uncarboxylated MGP, uncarboxylated osteocalcin, and/or uncarboxylated Protein C, which is indicative of slowing the progression of, arresting, or reversing calciphylaxis.
- pulse wave velocity PWV
- Improved vascular compliance will be indicative of slowing the progression of, arresting, or reversing calciphylaxis.
- the dosage form is a 5 mg, 10 mg, 25 mg, 50 mg or 100 mg soft-gel capsule. Two 50 mg capsules are administered once daily to the 100 mg dosage cohort.
- the arrest of, or decreases in lesion size and frequency is contemplated to be an indication of successful treatment. The administration of the disclosed compounds according to the foregoing will result in the arrest of, or decrease in lesion size and frequency.
- ESRD End Stage Renal Disease
- This example describes the administration of the disclosed compounds to a subject with ESRD and on stable hemodialysis.
- the administration of the disclosed compounds will result in a change in aortic compliance (via plethysmography), vascular calcification and certain biomarker levels indicative of slowing the progression of, arresting, or reversing tissue calcification.
- ESRD subjects on stable hemodialysis orally receive the disclosed compounds at 5 mg, 10 mg, 25 mg, 50 mg, 100 mg, 200 mg, 300, mg, 400 mg or 500 mg once daily for least 2 weeks, 4 weeks, 6 weeks, 8 weeks, 3 months, 6 months, 1 year, or indefinitely.
- the dosage form is a 5 mg, 10 mg, 25 mg, 50 mg, 75 mg or 100 mg soft-gel capsule. Two 50 mg capsules are administered once daily to the 100 mg dosage cohort.
- a 50 y.o., 65 kg male patient diagnosed with the typical symptoms associated with moderate calciphylaxis is treated with 100 mg of the compound of the formula VIIIb for a period of 8 weeks. After the treatment period, the patient is admitted and evaluated.
- a 65 y.o., 45 kg female patient diagnosed with the typical symptoms associated with moderate calciphylaxis is treated with 20 mg of the compound of the formula VIIIb, for a period of 10 weeks. After the treatment period, the patient is admitted and evaluated. The patient is found to have a significant change in the examined biomarker levels suggesting about a 20% reduction in vascular calcification, and is also shown to have a 15% reduction in tissue calcification.
- a 55 y.o., 70 kg male patient diagnosed with the typical symptoms associated with moderate calciphylaxis is treated with 50 mg of the compound of the formula VIIIb, for a period of 3 months. After the treatment period, the patient is admitted and evaluated. The patient is found to have a significant change in the examined biomarker levels suggesting about a 25% reduction in vascular calcification, and is also shown to have a 20% reduction in tissue calcification.
- Coronary arterial calcium scores are used to estimate the extent of calcification of thoracic arteries. A high CAC score is indicative of calcification, and treatment has the aim of arresting the long-term increase in CAC score, or reversing it, or slowing the rate of increase.
- Aortic plethysmography also is used to measure arterial compliance, which decreases as calcification increases.
- Pulse wave velocity (PWV) also is measured to assess arterial compliance. The foregoing measures are useful in estimating the utility of treatments intended to prevent, slow the progression of, arrest or reverse vascular calcification. These measurements are used pre- and post-treatment with the disclosed compounds to assess treatment value.
- biomarkers are assessed to determine the efficacy of the disclosed compounds at the three dose levels.
- biomarkers include PIVKA-II; uncarboxylated and total Matrix Gla Protein (MGP); uncarboxylated, carboxylated and total osteocalcin protein; uncarboxylated, carboxylated and total Protein C, and hs-CRP. Blood samples are obtained to measure the biomarkers, most conveniently during patient visits for hemodialysis.
- MGP Matrix Gla Protein
- osteocalcin protein uncarboxylated, carboxylated and total osteocalcin protein
- hs-CRP hs-CRP.
- the administration of the disclosed compounds can result in (i) an increase in PIVKA-II, which is indicative of slowing the progression of, arresting or reversing tissue calcification, (ii) a decrease in uncarboxylated MGP, uncarboxylated osteocalcin, and/or uncarboxylated Protein C, which is indicative of slowing the progression of, arresting or reversing tissue calcification, and/or (iii) a decrease in hs-CRP, which is indicative of slowing the progression of, arresting or reversing tissue calcification and/or reduced inflammation.
- VKORC1L1 Human vitamin K 2,3-epoxide reductase complex subunit 1-like 1 (VKORC1L1) mediates vitamin K-dependent intracellular antioxidant function. J Biol Chem 2011;286: 15085–94.4) Caspers, M. et al., Two enzymes catalyze vitamin K 2,3-epoxide reductase activity in mouse: VKORC1 is highly expressed in exocrine tissues while VKORC1L1 is highly expressed in brain. Thrombosis Research 135:977–983, 2015.5) Himmelfarb, J. et al., Plasma protein thiol oxidation and carbonyl formation in chronic renal failure. Kidney International, Vol.58: 2571–25782000.6) Price, P.A.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Physical Education & Sports Medicine (AREA)
- Ophthalmology & Optometry (AREA)
- Rheumatology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Epidemiology (AREA)
- Emergency Medicine (AREA)
- Vascular Medicine (AREA)
- Hematology (AREA)
- Oncology (AREA)
- Dermatology (AREA)
- Immunology (AREA)
- Pain & Pain Management (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Urology & Nephrology (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
The present application discloses, in part, isolated, stable and biologically active menaquinol derivatives and their methods of use for the treatment of various diseases.
Description
COMPOSITIONS OF BIOLOGICALLY ACTIVE MENAQUINOL DERIVATIVES AND METHODS OF TREATMENT FIELD OF INVENTION [0001] The present invention relates to biologically active menaquinol derivatives, compositions and formulations, and combinations thereof, for the treatment of diseases associated with vitamin K, its reduced and bioactive form menaquinol and salts thereof, including osteoporosis and osteopenia. BACKGROUND OF THE INVENTION [0002] Vitamin K is known as a group of structurally similar, fat-soluble vitamins. Vitamin K2 or menaquinone has nine related compounds that can be subdivided into the short-chain menaquinones (such as menaquinone-4 or MK-4) and the long-chain menaquinones, such as MK-7, MK-8 and MK-9 to MK-12. The vitamins include phylloquinone (K1), menaquinones (K2) and menadione (K3). Plants synthesize vitamin K1 while bacteria can produce a range of vitamin K2 forms, including the conversion of K1 to K2 by bacteria in the small intestines. Vitamin K3 is a synthetic version of the vitamin, and due to its toxicity, has been banned in by the US Food and Drug Administration for human uses. [0003] It has been established that taking broad-spectrum antibiotics can reduce vitamin K production in the gut by nearly 74% in people compared to those not taking these antibiotics. Diets that are low in vitamin K also decrease the body's vitamin K concentration. Vitamin K1 is preferentially used by the liver as a clotting factor. Vitamin K2 is used preferentially in the brain, vasculature, breasts and kidneys. Vitamin K2 contributes to production of myelin and sphingolipids (fats essential for brain health) and protects against oxidative damage in the brain. Vitamin K2, such as MK-4, promotes bone health by stimulating connective tissue production in bone. [0004] Vitamin K2, which is the main storage form in animals, has several subtypes, which differ in chain length of the isoprenoid group or residue in the side chains. These vitamin K2 homologues are called menaquinones, and are characterized by the number of isoprenoid residues in their side chains. For example, MK-4 has four isoprene residues in its side chain, and is the most common type of vitamin K2 in animal products. MK-4 is normally synthesized from vitamin K1 in certain animal tissues (arterial walls, pancreas and testes) by replacement of the phytyl group with an unsaturated geranyl group containing four isoprene units. Unlike MK-4, MK-7 is not produced by human tissue. MK-7 may be converted from
phylloquinone (K1) in the colon by E. coli bacteria. MK-4 and MK-7 are sold in the U.S. in dietary supplements for bone health. MK-4 has been shown to decrease the incidence of fractures. MK-4, at a dose of 45 mg daily, has been approved by the Ministry of Health in Japan since 1995 for the prevention and treatment of osteoporosis. [0005] Osteoporosis is a disease of bone that leads to an increased risk of fracture. In osteoporosis the bone mineral density (BMD) is reduced, bone micro architecture is disrupted, and the amount and variety of non-collagenous proteins in bone is altered. The World Health Organization define osteoporosis (in women) as a bone mineral density 2.5 standard deviations below peak bone mass, that is, for an average 30-year-old healthy female. Osteoporosis is most common in women after menopause (referred to as postmenopausal osteoporosis). Osteoporosis may also develop in men, and may occur in anyone in the presence of particular hormonal disorders and other chronic diseases or as a result of medications, specifically glucocorticoids, when the disease is called steroid- or glucocorticoid-induced osteoporosis and as a result of nutritional deficiency states or other metabolic disorders, for example, hyponatremia or as a secondary consequence of cancer. Osteopenia is a condition where bone mineral density is lower than normal, and is considered by many doctors to be a precursor to osteoporosis. [0006] The underlying mechanism in most cases of osteoporosis is an imbalance between bone resorption and bone formation. The three main mechanisms by which osteoporosis develops include an inadequate peak bone mass (the skeleton develops insufficient mass and strength during growth), excessive bone resorption and inadequate formation of new bone during remodelling. Hormonal factors strongly determine the rate of bone resorption; lack of estrogen (e.g., as a result of menopause) increases bone resorption as well as decreasing the deposition of new bone that normally takes place in weight-bearing bones. In addition to estrogen, calcium metabolism plays a significant role in bone turnover, and deficiency of calcium and vitamin D leads to impaired bone deposition; in addition, the parathyroid glands react to low calcium levels by secreting parathyroid hormone, which increases bone resorption to ensure sufficient calcium in the blood. Medications used for the treatment of osteoporosis includes calcium, vitamin D, vitamin K, bisphosphonates, Calcitonin, Teriparatide, strontium ranelate, hormone replacement and selective estrogen receptor modulators. [0007] It has been established that cardiovascular disease (CVD) is the most frequent cause of death in patients with chronic kidney disease (CKD). When compared to the general population, the cause of death attributed to CVD is about 10-20 times higher in CKD patients
when they are being treated with hemodialysis. In addition, it has been demonstrated that vascular calcification and the correlated arterial stiffness is prevalent in the incidence of CVD. In addition, patient with CKD undergoing dialysis treatment have a 3 times higher risk of bone fractures, such as vertebral fractures and other type of bone fractures. [0008] Vitamin K, including MK-7, are present in low concentrations in a typical diet. It has also been established that there exists a direct correlation between the level of vitamin K in a patient's blood and the incidence of vascular calcification, bone density and bone strength. Accordingly, the supplemental use of vitamin K, such as MK-7 and its also fat-soluble hydroquinone (menaquinol) derivatives as disclosed herein, may provide significant clinical benefit for reducing vascular calcification noted, in part, by arterial stiffness, and increase bone mineralization or increase in bone mineral density, that will help treat or prevent CVD, and treat or prevent bone diseases in patients with CKD. [0009] It has also been established that in food products, vitamin K1 is bound to the chloroplast membrane of leafy green vegetables. MK-4, which is derived from the conversion of menadione, a synthetic analog of vitamin K, is found in animal products such as eggs and meats. Long chain menaquinones such as MK-7, MK-8 and MK-9, are found in fermented foods such as cheese, curd and sauerkraut. It has also been established that the effects of long chain MK-n such as MK-7 on normal blood coagulation is greater and longer lasting than vitamin K1 and MK-4. MK-7 has also been shown to have a long half-life in serum when compared to MK-4, providing a better carboxylation-grade of osteocalcin compared to Vitamin K1. See Sato et al., Nutrition Journal, 2012, 11:93. [0010] Nutritional doses of MK-7 can be established to be well absorbed in humans, and as a consequence, provide a significant increase in the serum for MK-7 levels. However, very little information is known of MK-7, and menaquinol-7, primarily because MK-7 and menaquinol-7, are not readily available nor commercially accessible via standard synthetic methods.
[0011] In one embodiment, the present application discloses novel and biologically effective menaquinol derivatives, including salts, and their method of use for the treatment of various diseases.
[0012] The foregoing examples of the related art and limitations are intended to be illustrative and not exclusive. Other limitations of the related art will become apparent to those of skill in the art upon a reading of the specification and a study of the drawings or figures as provided herein. SUMMARY OF THE INVENTION [0013] The inventors recognize a continuing need for designing novel compounds and their formulations that are effective for these indications. The following embodiments, aspects and variations thereof are exemplary and illustrative are not intended to be limiting in scope. [0014] In one embodiment, the present application discloses an isolated, stable and biologically active menaquinol derivative that is a carbonate dimer of the formula VIIIa. The preparation of VIIIa, wherein n is 9, is shown below:
[0015] In another aspect, the application discloses a menaquinol derivative that is a carbonate dimer of the formula VIIIb, wherein n is 9. The preparation of VIIIb is shown below:
[0016] The mono-acetate starting material in Step 1, above, for the preparation of IXc and then the preparation of VIIIb may be prepared as shown below:
[0017] The naphthaquinone may be reduced to the corresponding hydraquinone, which may be acylated, such as using acetic anhydride and acetyl chloride, to provide the di- acetate in high yield. The diacetate may be selectively de-acetylated selectively to the corresponding mono-acetate in high yield and with high selectivity, providing >99% of the desired mono-acetate. [0018] In another aspect, the application discloses a menaquinol derivative that is a carbonate dimer of the formula VIIIc, wherein n is 9.
[0019] In another aspect, the application discloses a compound of the formulae VIIIa.1, VIIIb.1 and VIIIc.1, wherein each R1 and R2 is independently C1-C6alkyl, or independently methyl, ethyl, propyl, isopropyl, butyl, iso-butyl, pentyl, iso-pentyl, hexyl and iso-hexyl; and n is 9. In another variation, R1 and R2 are both methyl. In another variation, R1 and R2 are both ethyl.
[0020] In another aspect, the application discloses a menaquinol derivative of the formulae IX, IX.01 and IX.0a, where n is 9.
[0021] In one variation, the application discloses a process for the preparation of the compound of the formulae IXa, IXb, IXc, IXd and IX:
wherein n is 9. [0022] In another variation, the application discloses the compound of the formulae IX.0, X.0, X.0a, IX.1, IX.2, X.0b, X.1, X.2, and X.2a:
wherein for compounds IX.0, X.0 and X.0a each R1 and R2 is independently C1-C6alkyl, or independently methyl, ethyl, propyl, isopropyl, butyl, iso-butyl, pentyl, iso-pentyl, hexyl and iso-hexyl, and n is 9. In one variation of the compounds IX.0, X.0 and X.0a, R1 and R2 are both -CH3. In one variation of the compounds IX.1, X.1 and X.2a, R1 is C1-C6alkyl. In one variation of the compounds IX.2, X.0b and X.2, R2 is C1-C6alkyl. In another variation of the compounds IX.1, X.1 and X.2a, R1 is -CH3 (methyl). In another variation of the compounds IX.2, X.0b and X.2, R2 is -CH3. In one aspect of each of the above compounds, n is 9. [0023] In another variation, the application discloses the compound of the formulae XI.0 to XI.8:
wherein for compounds XI.0, XI.1 and XI.2, each R1 and R2 is independently C1-C6alkyl, or independently selected from the group consisting of methyl, ethyl, propyl, isopropyl, butyl, iso-butyl, pentyl, iso-pentyl, hexyl and iso-hexyl, and n is 9. In one variation of the compounds XI.0, XI.1 and XI.2, R1 and R2 are both -CH3. In one variation of the compounds XI.3, XI.5 and XI.6, R1 is C1-C6alkyl. In one variation of the compounds XI.4, XI.7 and XI.8, R2 is C1-C6alkyl. In another variation of the compounds XI.3, XI.5 and XI.6, R1 is - CH3 (methyl). In another variation of the compounds XI.4, XI.7 and XI.8, R2 is -CH3. In one aspect of the above compounds, m is 1, 2, 3, 4 or 5, and n is 9. In one variation, m is 1; or m is 2. In another variation of each of the above menaquinol derivatives, n is 9. [0024] In another variation of the above menaquinol derivatives, n is 9. In another variation of the above, R1, where present, is C1-C6 alkyl. In another variation of the above, R2, where present, is C1-C6 alkyl. In another variation, each of R1 and R2 where present in a single molecule, is independently C1-C6 alkyl. As used herein, for example, C1-C6 alkyl
include methyl, ethyl, propyl, isopropyl, butyl, iso-butyl, pentyl, iso-pentyl, hexyl and iso- hexyl. In another variation of the above, R1 is methyl, and R2 is methyl. Preparation of MK-9 via an Allylation Reaction and Retro-Diels-Alder Reaction: [0025] The preparation of MK-9 may be performed in the general scheme as shown below. Depending on the desired process and optimized processing parameters, the synthesis or reaction process may be performed neat, or in the absence of any organic solvents. Accordingly, the ketone-cyclopendiene adduct may be alkylated with an excess of a selected allyl derivative, such as the allyl halide, such as an allyl bromide, or an allyl tosylate derivate or an allyl mesylate derivative, in at least about 1.2 equivalent, or at least 1.5, 2.0 or 2.5 quivalent. The reaction may be conducted in the presence of a base sufficient to deprotonate the bridge hydrogen, such as a metal alkoxide, such as sodium tert-butoxide or potassium tert-butoxide. While the reaction may be conducted in a solvent, such as THF or diethyl ether, the reaction may be performed neat, or in the absence of any solvent to provide the desired product in about 1 hour. Optionally, the desired product may be diluted with a solvent, such as THF, diethyl ether, hexanes or mixtures thereof, and then filtered and isolated from residual salts and by-products. Filtration of the crude product may be conducted with a short column or plug of silica gel. Removal of the solvent in vacuo provides the desired product. The desired intermediate product may be used as is, or further purified, if desired. The intermediate product may be placed under vacuum, such as 15 torr or less, and then heated to about 85 ºC, optionally in the absence of stirring. Once the reaction is determined to be complete over at least 5 hours or about 12 hours, using TLC or HPLC, the resulting product was purified, such as using flash column chromatography, in a solvent, such as 4%-10% diethyl ether in hexanes, and then the solvents are removed under vacuo to provide the desired MK-9 product in about 80% yield over the two reaction steps.
[0026] In another embodiment, the application discloses a pharmaceutical composition comprising a therapeutically effective amount of a menaquinol derivative of any one of the above embodiments and aspects, or a mixture thereof; and a pharmaceutically
acceptable excipient, wherein the composition is effective for the treatment of a condition associated with vitamin K selected for the treatment of osteoporosis, arteriosclerosis, calciphylaxis or tissue calcification. [0027] In another embodiment, the application discloses a method for increasing the tissue concentration of menaquinol as a co-factor for gamma glutamate carboxylase (GGCX) for catalyzing the carboxylation of vitamin K dependent proteins that is associated with the treatment or prevention of osteoporosis, arteriosclerosis, calciphylaxis or tissue calcification in a patient in need thereof, the method comprising an administration of a therapeutically effective amount of a menaquinol derivative or a pharmaceutical composition comprising an effective amount of a menaquinol derivative as disclosed above, or a mixture thereof. [0028] In one variation of the method, the administration of the menaquinol derivative overcomes the oxidative block in patients with CKD and in patients receiving hemodialysis and provides maximal levels of menaquinol and maximal benefits at the tissue level. In one variation, the tissue is the skin or dermis tissue. In another variation, the tissue is at least of of the patient’s mitral valve, the patient’s artic valve and blood vessels. In another variation of the method, the menaquinol is menaquinol-9. In another variation, the method increases the tissue concentration of menaquinol by at least 20%, 30%, 40%, 50%, 100%, 150%, 200%, 250%, 300%, 400% or 500% or more when compared to the administration of menaquinone. [0029] In another embodiment, the application discloses a method for the treatment of a disease in a mammal selected from the group consisting of neurodegenerative diseases, retinopathy, rheumatoid polyarthritis, atherosclerosis, amyotrophic lateral sclerosis, cerebral ischemia, cataracts, systemic infections, pathologies associated with cutaneous aging and with senescence in tissues, pathologies associated with mitochondrial dysfunction, cachexia associated with under nutrition, wherein the treatment is associated with the increase in the longevity of mammals, the method comprises the administration of a therapeutically effective amount of a compound or composition comprising a menaquinol derivative of the formulae formulae VIII to XI, inclusive of all disclosed compounds herein, or a mixture thereof. [0030] In another aspect, the application discloses a method for treating a mammal with a disease selected from the group consisting of vitamin K deficiency, osteoporosis, a proliferative disease, and a cardiovascular disease, comprising administering to the mammal a therapeutically effective amount of a menaquinol derivative as disclosed above, or a mixture thereof. In another aspect of the method, the proliferative disease is selected from the group consisting of cancer, leukemia and an inflammatory disease. In another aspect, the
application discloses a method for the treatment or prevention of osteoporosis and/or osteopenia, the method comprising administering to a patient in need of treatment, a therapeutically effective amount of a composition comprising a menaquinol derivative of the formulae VIII to XI, inclusive of all disclosed compounds herein, or a mixture thereof. [0031] In another aspect, the application disloses a method of treating, preventing, slowing the progression of, arresting, and/or reversing calciphylaxis in a mammal in need thereof, the method comprising administering to the mammal a therapeutically effective amount of a composition comprising substantially pure menaquinol derivative of the formulae VIII to XI, inclusive of all disclosed compounds herein, or a mixture thereof, and a pharmaceutically acceptable excipient, to prevent, slow the progression of, arrest, or reverse calciphylaxis. In another aspect of the method, the mammal has distal calciphylaxis and/or central calciphylaxis. In another aspect of the emthod, the mammal has diabetes, chronic kidney disease or end stage renal disease. In another aspect of the method, the mammal has stage 3, stage 4 or stage 5 chronic kidney disease. In another aspect of the methods, the mammal is undergoing hemodialysis. In yet another aspect of the method, the mammal is receiving non-warfarin-based anti-coagulant therapy. In another aspcet of the method, the anti-coagulant therapy is oral anti-coagulation therapy. In yet another aspcet of the method, the anti-coagulation therapy comprises an inhibitor of Factor Xa activity selected from apixaban, rivaroxaban, betrixaban, edoxaban, otamixaban, letaxaban, eribaxaban or fondaparinux; or Factor IIa activity selected from dabigratran or argatroban. [0032] In another aspect of the above methods, the mammal has chronic obstructive pulmonary disease (COPD). In another aspect of the methods, the mammal has a calciphylaxis-related dermal lesion. In another aspect, the administration of the composition reduces the total surface area of the dermal lesion by at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 100%. In another aspect of the method, the administration of the compound of the formulae VIII to XI, inclusive of all disclosed compounds herein, or a mixture thereof, to the mammal increases the mammal’s serum T50 value by at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 100% relative to the mammal’s serum T50 value prior to administration of the above compound, or a mixture thereof. In yet another aspect of the method, the administration of the compound of the formulae VIII to XI, inclusive of all disclosed compounds herein, or a mixture thereof, increases a ratio of a carboxylated to a non-carboxylated of a Vitamin K dependent protein in plasma of the mammal after administration of the composition is greater than prior to administration of the composition.
[0033] In another embodiment, there is provided a method of treating, preventing, slowing the progression of, arresting and/or reversing tissue calcification in a pre-diabetic mammal (or subject) with diabetes, chronic kidney disease or a combination thereof, and in need thereof, the method comprising administering to the mammal at least 50 mg of a compound of the formulae VIII to XI, inclusive of all disclosed compounds herein, or a mixture thereof per day, to prevent, slow the progression of, and/or arrest tissue calcification, wherein the above compound, or a mixture thereof, is administered in a pharmaceutical composition. [0034] In each of the above recited methods, the specification also discloses the recited compounds or compositions thereof, for use as a medicament in the treatment of the recited medical conditions or diseases; and the specification discloses the use of the recited compounds in the manufacture of a formulation or medicament for the treatment of the disclosed medical conditions or diseases. [0035] In one variation, the menaquinol derivative is administered at a dose of at least 10 mg, 20 mg, 30 mg, 40 mg or 50 mg. In another variation, the menaquinol derivative is administered at a dose of at least 100 mg, 150 mg, 200 mg, 25 mg, 300 mg, 350 mg, 400 mg 450 mg or 500 mg. In another variation, the menaquinol derivative is administered at a dose of at least 500 mg, 600 mg, 700 mg, 800 mg, 900 mg or 1,000 mg or more. [0036] In one aspect of the above method, the mammal has diabetes. In another aspect, the mammal has type II diabetes. In another aspect, the mammal has been diagnosed as pre-diabetic. In another aspect of the above method, the mammal has chronic kidney disease. In yet another aspect of the method, the mammal has stage 4 or 5 chronic kidney disease/end stage renal disease. In another aspect of the method, the mammal is undergoing hemodialysis. In another aspect of the method, the mammal is receiving non-warfarin based anti-coagulant therapy. In another aspect of the method, the anti-coagulant therapy is oral anti-coagulation therapy. In yet another aspect of the method, anti-coagulation therapy comprises an inhibitor of Factor Xa activity selected from apixaban, rivaroxaban, betrixaban, edoxaban, otamixaban, letaxaban, eribaxaban or fondaparinux; or Factor IIa activity selected from dabigratran or argatroban. [0037] In another embodiment, the application discloses a method of treating, preventing, slowing the progression of, arresting, and/or reversing tissue calcification in a mammal undergoing hemodialysis, and in need thereof, the method comprising administering to the mammal at least 10 mg of the compound of the formulae VIII to XI, inclusive of all disclosed compounds herein, or a mixture thereof, per day, thereby to prevent, slow the
progression, arrest, and/or reverse tissue calcification, wherein the above compound, or a mixture thereof is administered in a pharmaceutical composition. [0038] In one variation, the menaquinol derivative is administered at a dose of at least 10 mg, 20 mg, 30 mg, 40 mg or 50 mg. In another variation, the menaquinol derivative is administered at a dose of at least 100 mg, 150 mg, 200 mg, 25 mg, 300 mg, 350 mg, 400 mg 450 mg or 500 mg. In another variation, the menaquinol derivative is administered at a dose of at least 500 mg, 600 mg, 700 mg, 800 mg, 900 mg or 1,000 mg or more. In another aspect of the above method, the mammal has diabetes. [0039] In another aspect, the application discloses a pharmaceutical composition comprising a therapeutically effective amount of a menaquinol derivative (or also referred to as “a compound” or “disclosed compound(s)”) as disclosed above, or a mixture thereof, and a pharmaceutically acceptable excipient, wherein the composition is effective for the treatment of a condition associated with vitamin K selected from for the treatment of osteoporosis and arteriosclerosis. [0040] In another aspect, the present application discloses a method for the treatment of a disease in a mammal selected from the group consisting of neurodegenerative diseases, retinopathy, rheumatoid polyarthritis, atherosclerosis, amyotrophic lateral sclerosis, cerebral ischemia, cataracts, systemic infections, pathologies associated with cutaneous aging and with senescence in tissues, pathologies associated with mitochondrial dysfunction, cachexia associated with under nutrition, wherein the treatment is associated with the increase in the longevity of mammals, the method comprises the administration of a therapeutically effective amount of a compound or composition comprising a menaquinol compound as disclosed above, or a mixture thereof. [0041] In another embodiment, there is provided a method for treating a mammal with a disease selected from the group consisting of vitamin K deficiency, osteoporosis, a proliferative disease, and a cardiovascular disease, comprising administering to the mammal a therapeutically effective amount of a compound as disclosed herein, or a mixture thereof. In another aspect of the method, the proliferative disease is selected from the group consisting of cancer, leukemia and an inflammatory disease. [0042] In another embodiment, there is provided a method for the treatment or prevention of osteoporosis and/or osteopenia, the method comprising administering to a patient in need of treatment, a therapeutically effective amount of a composition comprising a compound as disclosed above, or a mixture thereof. The disclosed method for the administration of MK-7 and its fat-soluble hydroquinone derivatives, or combinations
thereof, may be used in the treatment or reduction of vascular calcification, increase in bone mineral density and for the treatment, reduction or prevention of bone diseases, such as in patients with CKD. [0043] In another embodiment, there is provided a method of treating, preventing, slowing the progression of, arresting, and/or reversing calciphylaxis in a mammal in need thereof, the method comprising administering to the mammal a therapeutically effective amount of a composition comprising substantially pure menaquinol compound as disclosed herein, and a pharmaceutically acceptable excipient, to prevent, slow the progression of, arrest, or reverse calciphylaxis. In one aspect of the method, the mammal has distal calciphylaxis and/or central calciphylaxis. In another aspect, the mammal has diabetes, chronic kidney disease or end stage renal disease. In another aspect, the mammal has stage 3, stage 4 or stage 5 chronic kidney disease. In another aspect of the method, the mammal is undergoing hemodialysis. In yet another aspect, the mammal is receiving non-warfarin-based anti-coagulant therapy. [0044] In another aspect of the above method, the anti-coagulant therapy is oral anti- coagulation therapy. In another aspect, the anti-coagulation therapy comprises an inhibitor of Factor Xa activity selected from apixaban, rivaroxaban, betrixaban, edoxaban, otamixaban, letaxaban, eribaxaban or fondaparinux; or Factor IIa activity selected from dabigratran or argatroban. In another aspect, the mammal has chronic obstructive pulmonary disease (COPD). In another aspect, the mammal has a calciphylaxis-related dermal lesion. In another aspect of the method, administration of the composition reduces the total surface area of the dermal lesion by at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 100%. In another aspect of the method, administration of the substantially pure compound as disclosed herein, to the mammal increases the mammal’s serum T50 value by at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 100%) relative to the mammal’s serum T50 value prior to administration of the disclosed compound. In another aspect, administration of the disclosed compound increases a ratio of a carboxylated to a non-carboxylated of a Vitamin K dependent protein in plasma of the mammal after administration of the composition is greater than prior to administration of the composition. In one aspect of the method, the increase of the ratio of a carboxylated to a non-carboxylated of a Vitamin K dependent protein in plasma of the mammal after administration of the composition is by at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45% 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% relative to the ratio prior to administration.
[0045] In certain embodiments of the above, the administration of the disclosed compounds decreases the amount of a non-carboxylated Vitamin K-dependent protein in the subject’s plasma, for example, by at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45% 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% or 100% relative to the amount prior to administration of the compounds. In certain variations, the Vitamin K-dependent protein is selected from Matrix Gla Protein (MGP), Growth Arrest Specific Gene 6 (Gas-6) protein, PIVKA-II protein, osteocalcin, activated Protein C, activated Protein S, factor II, factor VII, factor IX and factor X. [0046] In certain variation of the above methods, the administration of the compounds increases the plasma level of osteoprotegerin or Fetuin A, for example, by at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45% 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% relative to the plasma concentration of osteoprotegerin or Fetuin A prior to administration of the compounds. In other variations, the administration of the compounds decreases the plasma level of D-Dimer or Highly Sensitive C Reactive Peptide (hs-CRP), for example, by at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45% 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% or 100% relative to the plasma concentration of D-Dimer or Highly Sensitive C Reactive Peptide (hs-CRP) prior to administration of the compounds. [0047] In certain variations, the method may include administering from about 20 mg to about 750 mg of the compound to the subject per day. In other variations, the method may include administering from about 50 mg to about 750 mg of the compound to the subject per day. In other variations, the method may include administering from about 20 mg to about 500 mg of the compound to the subject per day. In other variations, the method may include administering from about 50 mg to about 500 mg of the compound to the subject per day. In certain variations, the method can include administering from about 20 mg to about 250 mg of the compound to the subject per day. In other variations, the method may include administering from about 10 mg to about 250 mg of the compound to the subject per day. In other variations, the method may include administering from about 20 mg to about 100 mg of the compound to the subject per day. In other variations, the method may include administering from about 50 mg to about 100 mg of the compound to the subject per day. In other variations, the method may include administering from about 10 mg to about 75 mg of the compound to the subject per day, for example, administering 10, 25, 50, 75, 100, 200, 300, 400 or 500 mg of the compound to the subject per day. [0048] In certain variations, the compound is administered to the subject for at least 2 weeks, 4 weeks, 6 weeks, 8 weeks, 3 months, 6 months, 1 year, or indefinitely as needed. If
the subject is undergoing hemodialysis, the compound may be administered to the subject for a period that includes at least the duration of hemodialysis. [0049] In another variation of the method for treatment of calciphylaxis, in addition to measuring the change and/or reduction in lesion size following administration of the disclosed compounds, pre- and post-drug dosing administration, a biopsy may be taken of the relevant lesions using von Kassa Staining to determine tissue levels of PTH and evidence of change in calcium and phosphate deposition in dermal arterioles. [0050] As disclosed herein, the presence of a uremic oxidative blockade is determined by measuring increased plasma lipid peroxidation, e.g., by detection of increased F2 isoprostanes, increased isolevuglandin-plasma protein adducts; increased protein and amino acid oxidation, e.g., by detection of tyrosine residue oxidation, cysteine or methionine residue oxidation, lysine oxidation and threonine oxidation, thiol oxidation and carbonyl formation in plasma proteins; reactive aldehyde formation, e.g., by detecting glyoxal, methylglyoxal, acrolein, glycoaldehyde, and parahydroxy phenacetaldehyde; increased reactive carbonyl compounds, e.g., by measuring hydrazine formation after reaction with 2,4- dinitrophenylhydrazine; diminished plasma glutathione levels and glutathione peroxidase function; and increased ratio of oxidized to reduced thiols. [0051] In another embodiment, there is provided a method of treating, preventing, slowing the progression of, arresting and/or reversing tissue calcification in a pre-diabetic mammal (or subject) with diabetes, chronic kidney disease or a combination thereof, and in need thereof, the method comprising administering to the mammal at least 2 mg of substantially pure compound as disclosed herein per day, to prevent, slow the progression of, and/or arrest tissue calcification, wherein the compound is administered in a pharmaceutical composition. In another aspect of the method, the mammal has diabetes. In yet another aspect, the mammal has type II diabetes; or the mammal has been diagnosed as pre-diabetic. In another aspect, the mammal has chronic kidney disease. In another aspect of the above method, the mammal has stage 4 or 5 chronic kidney disease/end stage renal disease. In yet another aspect, the mammal is undergoing hemodialysis. In another aspect, the mammal is receiving non-warfarin based anti-coagulant therapy. In another aspect, the anti-coagulant therapy is oral anti-coagulation therapy. In another aspect of the method, the anti-coagulation therapy comprises an inhibitor of Factor Xa activity selected from apixaban, rivaroxaban, betrixaban, edoxaban, otamixaban, letaxaban, eribaxaban or fondaparinux; or Factor IIa activity selected from dabigratran or argatroban.
[0052] In another embodiment, there is provided a method of treating, preventing, slowing the progression of, arresting, and/or reversing tissue calcification in a mammal undergoing hemodialysis, and in need thereof, the method comprising administering to the mammal at least 2 mg of substantially pure compound as disclosed herein per day, thereby to prevent, slow the progression, arrest, and/or reverse tissue calcification, wherein the disclosed compound is administered in a pharmaceutical composition. In another aspect, the mammal has diabetes. [0053] Vitamin K Metabolism: Development of vascular and soft tissue calcification following the failure to regenerate reduced forms of vitamin K: Vitamin K is an essential enzymatic co-factor that is required for posttranslational modifications of vitamin K dependent (VKD) proteins. While there are numerous VKD proteins many are clinically relevant to ESRD patients. They include central coagulation factors such as factors II, VII, IX and X as well as intercellular matrix proteins including Matrix GLA-1 and Osteocalcin. Under normal conditions, vitamin K is reduced to vitamin K hydroquinone (KH2) by the enzyme NADPH oxidase. It is only the reduced form of vitamin K that is able to function as a co-factor for gamma glutamate carboxylase (GGCX) which catalyzes the carboxylation of vitamin K dependent proteins. Warfarin blocks the generation of vitamin K hydroquinone by acting as a reductive sink. The enzymatic carboxylation of glutamate residues results in further oxidation of vitamin KH2 to 2-3 epoxide vitamin K (Figure 2). The final step of the vitamin k cycle requires the enzymatic oxidation of vitamin K 2-3 epoxide back to its native structure. This step is catalyzed by vitamin K oxidative reductase (VKOR) and is a component of the vitamin K cycle that is also blocked by the oxidative effects of Warfarin. The observation that Warfarin blocks both the generation of vitamin K hydroxyquinone (KH2) as well as the regeneration of Vitamin K22-3 epoxide helps to explains why the incidence of calciphylaxis and other forms of dystrophic calcification is higher among patients receiving Warfarin therapy. [0054] In one variation, the administration or supplementation of the disclosed compounds and compositions reduces the risk for vascular and soft tissue calcification by increasing the formation of primary calciprotein particles (CPP) composed of Fetuin A and Carboxylated Matrix GLA-1 Proteins. Under normal physiologic conditions plasma calcium and phosphate concentrations are near supersaturation and thus would be expected to precipitate in blood vessels and soft tissue as crystalline hydroxyapatite. The observation that this process does not occur suggests the presence of potent chemical and biologic means for blocking pathologic calcification. Recent studies have shown that circulating calcium
phosphate crystals are complexed with two calcification inhibiting proteins to form primary calciprotein particles (CPPs). These protein-mineral complexes are composed of primarily of Fetuin A; a liver derived protein that has been shown to prevent vascular calcification. A second protein in lower quantities is Matrix Gla-1 protein that also functions to prevent pathologic calcification. Matrix Gla-1 is a vitamin K dependent protein and early work by Price et. al and others have shown that formation of the Fetuin-Matrix Gla-1 mineral nanoparticles (primary calciproteins CPP) is dependent upon the gamma carboxylation of Matrix Gla-1. Pre-clinical studies suggest that the calciprotein system functions as an alternative means for preventing pathologic calcification when humoral lines of defense such as pyrophosphate, magnesium and albumin are overwhelmed. The “absorption” of calcium- phosphate crystals by primary CCPs occurs in a coordinated and time-dependent process. [0055] The time to 50% saturation (T50) of primary CCPs is an accurate and highly sensitive means for determining the capacity of plasma to “sink” or “absorb” excess calcium phosphate crystals. Patients with a short T50 times suggests a reduced capacity to absorb calcium phosphate crystals whereas patients with prolonged T50 times are consistent with high capacities. Recent clinical studies have validated the T50 test and confirmed that low T50 times are associated with increased myocardial infarctions, heart failure and all-cause mortality. Thus, any clinical intervention that can increases the synthesis of circulating primary CCPs will improve the capacity to prevent pathologic calcification. It is noted that because patients with CKD and ESRD exhibits reduced levels of carboxylated Matrix Gla-1 protein and that this process is essential for the formation of primary CPP. Accordingly, supplementation or administration of the disclosed compounds and compositions in CKD or ESRD patients will reduce the risk for pathologic calcification and prevent the development of vascular and soft tissue calcification. [0056] Supplementation or administration of the disclosed compounds or compositions may prevent or slow the development of soft tissue and vascular calcification in dermal tissues by restoring production of Carboxylated Matrix Gla-1 and GAS-6. [0057] The regeneration of Vitamin K involves two key enzymes: vitamin K 2-3 epoxide oxidative reductase (VKOR) and NAD(P)H: quinone oxidoreductase (NQO1). As shown in the figure, VKOR reduces 2-3 Vitamin K epoxide to vitamin K quinone while NADPH reduces Vitamin K quinone to its hydroxyquinone form (KH2). Recent studies have shown that VKOR has two distinct isoforms exist (VKORC-1 and VKORC1-Like-1 [VKORC1-L1]) that differ in both enzymatic properties and tissue distribution. For example, Westhofen et. al has shown that compared to VKORC1, VKOCR-L1 has a 3-fold lower
affinity for 2-3 epoxide vitamin K. Subsequent work supported the hypothesis that VKOR-L1 is a specialized isoform that protects against oxidant injury through the regeneration of vitamin K. When cultured HEK 293T cells were incubated with H2O2, VKOR-L1 expression was increased and evidence of membrane oxidant injury was reduced. The clinical observation that calciphylaxis and vitamin K-dependent vascular calcification are more common in the dermis raises the question of whether there is differential expression of VKOR enzymes in the skin. Casper et. al determined mRNA expression of key enzymes involved in regeneration of vitamin K. Moreover, expression of NADPH in the dermis was below the level of detection. These observations suggest that any condition or procedure (i.e., hemodialysis) that blocks re-constitution of vitamin K predisposes that tissue to pathologic calcification. [0058] The oxidative properties of uremic plasma as well as the oxidative effects of dialysis itself results in a “metabolic block” and an accumulation of 2-3 epoxide vitamin K and a reduction in the intracellular levels of vitamin K2. The “down-stream” effects of this blockade include the inability to gamma carboxylate key proteins involved in preventing soft tissue and vascular calcification. The oxidative effects of hemodialysis exacerbate this effect which may explain in part the predilection of ESRD patients to develop calciphylaxis and vascular calcification. [0059] The relationship between vitamin K and circulating vitamin K dependent proteins in CKD-ESRD Patients: It is widely recognized that despite dietary deficiencies, vitamin K levels among ESRD patients may not be reduced. For example, Holder et.al studied 172 stable dialysis patients and found that only 6% of patients exhibited a clinically significant deficiency in vitamin K. However, when patients were examined for the level of carboxylated osteocalcin, a full 60% of patients has reduced levels. To confirm that was a general effect of reduced vitamin K activity, the authors also measured PIVKA-II; another vitamin K dependent protein. Indeed, a full 90% of both CKD and ESRD patients were found to have reduced levels of carboxylated prothrombin. In a similar study, Pilkey et. al measured the vitamin K1 levels in 142 ESRD patients and found that the majority of patients had adequate vitamin K stores but 93% of patients had uncarboxylated osteocalcin levels that were greater than 20% of total levels. There was no correlation between total vitamin K1 and the levels of circulating of uncarboxylated osteocalcin. This unexpected finding is consistent with the hypothesis that in uremic patients, total vitamin K levels can be normal while generation of reduced forms are blocked by the oxidative properties of uremia.
[0060] In one variation, the administration or supplementation or administration of the disclosed compounds and compositions will reverse hemodialysis induced inhibition of vitamin K dependent proteins through normalization of functional reduced forms of vitamin K. The observation that oxidant conditions can disrupt the vitamin K cycle suggests that the oxidant load generated during hemodialysis could contribute to the high rates of vascular and soft tissue calcification observed within the ESRD population. Work by Himmelfarb et al. and others have confirmed that the simply delivery of hemodialysis can lead to the oxidation of numerous tissue proteins. For example, hydroxyl amino acid side chains be oxidized to oxidized to carbonyl groups. In a study of CKD and ESRD patients, Himmelfarb et al. demonstrated using carbonyl side chain oxidation as a measure of global oxidant burden, Himmelfarb et al. demonstrated that both CKD and ESRD patients exhibit a higher percentage (15-fold) (See Figure 5) of carbonyl proteins compared to normal controls. The percentage of carbonyl proteins was even higher among patients receiving dialysis demonstrating that not only does dialysis reduce oxidant burden, it appears to contribute to it. As shown in Figure 5, patients with uremia were found to have up to 15-fold higher levels of carbonylated proteins. Accordingly, the oxidative load generated by the delivery of hemodialysis leads to oxidation of the function vitamin K hydroquinone (KH2) to the non- functional native vitamin. The oxidation of KH2 by hemodialysis block its ability to function as a co-factor for GGCX which down-stream leads to reduced gamma carboxylation of vitamin K dependent proteins. [0061] To confirm that uremia and hemodialysis disrupts the vitamin K cycle, the ratio of vitamin K quinone to 2-3 epoxide vitamin K and vitamin K hydroxyquinone (KH2) may be determined in patients with normal renal function, CKD (Stage IV & V) and ESRD patients. To determine whether the very process of hemodialysis further disrupts the vitamin K cycle, we can measure the levels of oxidized vitamin K in immediately prior to hemodialysis, then at mid-dialysis (2 hrs) and 30 minutes post dialysis. Previous studies examining the interactions between Warfarin and vitamin K metabolism have shown that 2-3 Epoxide Vitamin K are readily measured. Compared to controls, patients with CKD and ESRD will have higher levels of 2-3 epoxide vitamin K and lower levels of vitamin hydroquinone (KH2). To determine whether a loss of reduced forms of Vitamin K (KH2) leads to a reduction in the carboxylation of vitamin K dependent proteins, we can measure the levels of the following biomarkers in control, CKD (Stage IV and V) and ESRD (Pre-Post hemodialysis). Matrix GLA-1 protein; Growth Arrest Specific Gene 6 (Gas-6) proteins; PIVAK-II protein; Osteocalcin; Protein C; Protein S; Fetuin A; and Osteoprotegerin (Dialysis
Plasma Levels: 6.7+ 2.2 pmole/L. We extend these studies by including patients receiving stable 3X/week hemodialysis. The levels of carboxylated and uncarboxylated vitamin K dependent proteins in pre-dialysis serum may be compared to levels obtained at hour 2 and the end of a dialysis session. The oxidative effects of dialysis itself will lead to a reduction in the level of carboxylated Vitamin K dependent proteins. As referred to herein, the Vitamin K are Vitamin K2. [0062] In one variation, the administration or supplementation with the disclosed compounds and compositions in ESRD patients with Calcific Uremic Arteriolopathy (Calciphylaxis) will reduce the time of wound healing by preventing calcification of new blood vessels and restoring blood flow: Skin Biopsies: To confirm that supplementation of the disclosed compounds and compositions prevents the development of small vessel calcification and dermal ischemia, we may identify patients with calciphylaxis confirmed by dermal skin biopsy and randomize patients to treatment with menaquinone-7 or placebo. Clinical Endpoints may include the following: 1) Time to Wound Vacuum therapy withdrawal and 2) time for wound healing defined as the time needed for a 50% reduction in collective the surface area of all calciphylaxis wounds. [0063] In another variation, the administration or supplementation with the disclosed compounds and compositions provides a significant increase in the bioavailability of the compounds, including menaquinone-9/menaquinol-9, and their mixtures, when compared to administration or supplementation. In one variation, the bioavailability increases by at least 5%, 10%, 15%, 20%, 30%, 40%, 50% or more, when compared to the administration or supplementation using menaquinone-9. [0064] In another variation, the administration or supplementation with the disclosed compounds and compositions provides a significant increase in the serum half life of the compounds, including menaquinone-9/menaquinol-9, and their mixtures, when compared to administration or supplementation. In one variation, the serum half life increases by at least 5%, 10%, 15%, 20%, 30%, 40%, 50% or more, when compared to the administration or supplementation using menaquinone-9. [0065] Histopathologic Endpoints: Comparison of Diagnostic dermal biopsy with Protocol repeat dermal biopsy after 12 weeks of Menaquinone-7 or Menaquinone-9 therapy. Change in the level of interstitial calcium deposition defined as the change in Von Kossa staining, which may be quantified by digital image color analysis. We may use dermal biopsies to validate the biomarkers at the tissue level. This process allows confirmation of the preventive properties of the disclosed menaquinol derivatives on early vascular calcification.
The validation of these biomarkers at the tissue will also enable clinicians to utilize the biomarkers as means to track clinical responsiveness. Calcification of microvasculature precedes development of CUA lesions. The level of calcification will be quantified by Von Kossa calcium staining in the peripheral tissue and normalized as calcium content per unit area. We may use the Von Kossa as a means of confirming the preventive properties of the disclosed menaquinol derivatives on the development of vascular calcification. [0066] In one variation, the supplementation of the disclosed compounds and compositions in ESRD patients with Calcific Uremic Arteriolopathy (Calciphylaxis; CUA) will reduce the time of wound healing by normalizing carboxy Protein C levels in the dermis and preventing primary thrombosis of dermal blood vessels. Accordingly, in one variation, the supplementation or administration of the disclosed compounds or compositions in diabetic patients will prevent the development of vascular dementia by preventing calcification and development of small vessel vasculopathy. [0067] In yet another embodiment, there is provided a fortified food or drink formulation comprising adding to the food or drink a composition comprising a compound of any one of the above compounds, or a mixture thereof. [0068] Also included in the above embodiments, aspects and variations are salts of amino acids such as arginate and the like, gluconate, and galacturonate. Certain of the compounds of the present invention can exist in unsolvated forms as well as solvated forms, including hydrated forms, and are intended to be within the scope of the present invention. Also provided are pharmaceutical compositions comprising pharmaceutically acceptable excipients and a therapeutically effective amount of at least one compound of this invention. [0069] Pharmaceutical compositions of the compounds of this invention, or derivatives thereof, may be formulated as solutions or lyophilized powders for parenteral administration. Powders may be reconstituted by addition of a suitable diluent or other pharmaceutically acceptable carrier prior to use. The liquid formulation is generally a buffered, isotonic, aqueous solution. Examples of suitable diluents are normal isotonic saline solution, 5% dextrose in water or buffered sodium or ammonium acetate solution. Such formulations are especially suitable for parenteral administration but may also be used for oral administration. Excipients, such as polyvinylpyrrolidinone, gelatin, hydroxycellulose, acacia, polyethylene glycol, mannitol, sodium chloride, or sodium citrate, may also be added. Alternatively, these compounds may be encapsulated, tableted, or prepared in an emulsion or syrup for oral administration. Pharmaceutically acceptable solid or liquid carriers may be added to enhance or stabilize the composition, or to facilitate preparation of the composition.
Liquid carriers include syrup, peanut oil, olive oil, glycerin, saline, alcohols, or water. Solid carriers include starch, lactose, calcium sulfate, dihydrate, terra alba, magnesium stearate or stearic acid, talc, pectin, acacia, agar, or gelatin. The carrier may also include a sustained release material such as glyceryl monostearate or glyceryl distearate, alone or with a wax. The amount of solid carrier varies but, preferably, will be between about 20 mg to about 1 g per dosage unit. The pharmaceutical preparations are made following the conventional techniques of pharmacy involving milling, mixing, granulation, and compressing, when necessary, for tablet forms; or milling, mixing, and filling for hard gelatin capsule forms. When a liquid carrier is used, the preparation will be in the form of a syrup, elixir, emulsion, or an aqueous or non-aqueous suspension. Such a liquid formulation may be administered directly p.o. or filled into a soft gelatin capsule. Suitable formulations for each of these methods of administration may be found in, for example, Remington: The Science and Practice of Pharmacy, A. Gennaro, ed., 20th edition, Lippincott, Williams & Wilkins, Philadelphia, Pa. [0070] The disclosed compounds and compositions may include a solubility enhancer or solubilizer selected from oleic acid, Kolliphor® EL (polyoxyl castor oil or Cremophor EL), Vitamin E TPGS (D-α-tocopherol polyethylene glycol-1000 succinate), PEPI (a polysarcosine-derived emulsifying agent), Maisine® CC (glyceryl monolinoleate), Gelucire® 44/14 (lauroyl polyoxyl-32 glycerides), Miglyol® 812N (esters of saturated coconut and palm kernel oil-derived caprylic fatty acids and glycerin), Plurol® Oleique (Polyglyceryl-6 Dioleate), Lauroglycol™ 90 (propylene glycol monolaurate (type II), Labrasol® (Caprylocaproyl polyoxyl-8 glycerides), Kolliphor® EL (polyoxyl castor oil), Captisol® (SBE-beta-cyclodextrin), Encapsin™ HPB (hydroxypropylbeta-cyclodextrin), Peceol™ (glycerol/glyceryl monooleate (type 40)), sodium deoxycholate, deoxycholic acid, Labrafil® M2125CS (linoleoyl Polyoxyl-6 glycerides) and medium-chain mono- and diglycerides. [0071] In one variation, there is provided the compounds disclosed herein, or a pharmaceutically acceptable salt thereof, optionally in the form of a single stereoisomer or mixture of stereoisomers thereof; and compositions comprising the compounds. [0072] In addition to the exemplary embodiments, aspects and variations described above, further embodiments, aspects and variations will become apparent by reference to the drawings and figures and by examination of the following descriptions.
DETAILED DESCRIPTION OF THE INVENTION DEFINITIONS: [0073] Unless specifically noted otherwise herein, the definitions of the terms used are standard definitions used in the art of organic synthesis and pharmaceutical sciences. Exemplary embodiments, aspects and variations are illustratived in the figures and drawings, and it is intended that the embodiments, aspects and variations, and the figures and drawings disclosed herein are to be considered illustrative and not limiting. [0074] "Pharmaceutically acceptable salts" means salt compositions that is generally considered to have the desired pharmacological activity, is considered to be safe, non-toxic and is acceptable for veterinary and human pharmaceutical applications. Such salts include acid addition salts formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, and the like; or with organic acids such as acetic acid, propionic acid, hexanoic acid, malonic acid, succinic acid, malic acid, citric acid, gluconic acid, salicylic acid and the like. [0075] "Therapeutically effective amount" means an amount of a compound or drug that elicits any of the biological effects listed in the specification. BRIEF DESCRIPTION OF THE FIGURE: [0076] Figure 1 is a representation of a chromatogram of menaquinone-7 and its regioisomer shown with a ratio of 3:1, as determined by 1H NMR. [0077] Figure 2 is a scheme showing the uremia and dialysis induced oxidation of KH2 functional carboxylation of vitamin K dependent proteins. [0078] Figure 3 is graph showing the VKORC1 in arbitrary units and specific tissues. [0079] Figure 4 is a graph showing the NADPH in arbitrary units and specific tissues. [0080] Figure 5 is a graph showing CKD and ESRD patients exhibit a higher percentage of carbonyl proteins compared to normal controls. EXPERIMENTAL: [0081] The following procedures may be employed for the preparation of the compounds of the present invention. The starting materials and reagents used in preparing these compounds are either available from commercial suppliers such as the Aldrich Chemical Company (Milwaukee, Wis.), Bachem (Torrance, Calif.), Sigma (St. Louis, Mo.), or are prepared by methods well known to a person of ordinary skill in the art, following procedures described in such references as Fieser and Fieser's Reagents for Organic Synthesis, vols.1-17, John Wiley and Sons, New York, N.Y., 1991; Rodd's Chemistry of
Carbon Compounds, vols.1-5 and supps., Elsevier Science Publishers, 1989; Organic Reactions, vols.1-40, John Wiley and Sons, New York, N.Y., 1991; March J.: Advanced Organic Chemistry, 4th ed., John Wiley and Sons, New York, N.Y.; and Larock: Comprehensive Organic Transformations, VCH Publishers, New York, 1989. [0082] In some cases, protective groups may be introduced and finally removed. Suitable protective groups for amino, hydroxy, and carboxy groups are described in Greene et al., Protective Groups in Organic Synthesis, Second Edition, John Wiley and Sons, New York, 1991. Standard organic chemical reactions can be achieved by using a number of different reagents, for examples, as described in Larock: Comprehensive Organic Transformations, VCH Publishers, New York, 1989. Preparation of Menaquinol Derivatives: [0121] The menaquinol derivatives, such as the menaquinol-9 derivatives, may be prepared according to the general methods as described below. Such acylated linked compounds may be symmetrical, wherein both hydroxyl groups of the menaquinol are acylated and linked to another menaquinol molecule, or only one of the two hydroxyl groups, either the 5-position or the 8-position, are acylated and linked to another menaquinol molecule, and the other remaining as the free hydroxyl group of the menaquinol.
Preparation of Carbonate Dimer VIIIa (n=9): [0122] Step-1: Preparation of IXa, where n = 9:
[0123] To a stirring solution of MK-9 (5.0 g, 7.7 mmol) in pyridine (10 mL, 2V) were added acetic anhydride (75 mL, 15V) and Zn dust (3.2 g, 50 mmol) at room temperature (25- 30 °C). The reaction mixture was stirred at RT for 2h. The reaction completion was monitored by TLC (15% ethyl acetate/hexane). The reaction mixture was filtered through celite and washed with ethyl acetate (10 mL), filtrate was diluted with ethyl acetate (250 mL) and washed with water (2X100 mL), separated organic layer was concentrated and crude obtained was purified by column chromatography (3-4% ethyl acetate/hexane) to yield the compound IXa as a pale yellow liquid (75%). The H1 nmr obtained was consistent with the product. Step-2: Preparation of IXb (n = 9) from IXa (n = 9):
[0124] To a stirring solution of compound IXa (2.2 g, 3.0 mmol) in methanol (22 mL, 10V) and MTBE (11 mL, 5V) was added tert-butylamine (1.29 mL, 12 mmol) at room temperature (25-30 °C) and stirred for 12-16 at same temperature. The reaction completion was monitored by TLC (10% ethyl acetate/hexane). The reaction mixture was concentrated (to remove methanol), diluted with ethyl acetate (200 mL) and washed with water (2X100 mL). The organic layer was separated and washed with brine solution (50 mL) then dried over sodium sulfate and concentrated. Crude product obtained was purified by column chromatography (3-4% ethyl acetate/hexane) to yield compound IXb, n = 9, as a pale brown thick liquid (20%). The H1 nmr obtained was consistent with the product. [0125] Step-3: Preparation of VIIIa (n = 9), from IXb (n = 9):
[0126] To a stirring solution of compound IXb, (n=9, 1.0 g, 14.4 mol) in DCM (10 mL, 10 V) was added TEA (0.4 mL, 28.8 mmol) and phosgene (0.42 mL, 8.6 mmol, 0.6 eq.) at room temperature and stirred for 30 min. The reaction completion was monitored by TLC (15% ethyl acetate/hexane). The reaction mixture was diluted with ethyl acetate (200 mL) and washed with water (2X100 mL). The organic layer was separated and washed with brine solution (50 mL) then dried over sodium sulfate and concentrated. Crude product obtained was purified by column chromatography (10% ethyl acetate/hexane) to yield MK-9-carbonate dimer VIIIa (n=9), as a waxy solid (40%). The H1 nmr obtained was consistent with the product. Preparation of Carbonate VIIIb (n=9):
[0127] Preparation IXc, (n=9), from 4-hydroxy-2-methylnaphthalen-1-yl acetate:
[0128] The overall process provides chemo- or regioselective alkylation of the prenoidal side chain (n=9) to the desired position in >99% selectivity and provides a single
isomer. The mono-acetate in step 1, 4-hydroxy-2-methylnaphthalen-1-yl acetate, may be prepared by the reduction and subsequent di-acylation of 2-methyl-1,4-naphthoquinone using Pd/C, acetic anhydride, ethyl acetate and DMAP to form the diacylated quinol, which is then selectively de-acylated in methanol and ter-butylamine to provide the desired product, 4- hydroxy-2-methylnaphthalen-1-yl acetate. [0129] To a stirring solution of 4-hydroxy-2-methylnaphthalen-1-yl acetate (10.0 g, 46.3 mmol) in toluene (100 mL, 10V) were added heptaprenol (37.0 mmol, 0.8 eq.) and benzene sulfonic acid (0.64 g, 4.63 mmol) at room temperature (25-30 °C). The reaction mixture was stirred at RT for 16-24h. The reaction completion was monitored by TLC (15% ethyl acetate/hexane). The reaction mixture was diluted with ethyl acetate (500 mL) and washed with water (2X250 mL). The organic layer was separated and washed with brine solution (200 mL) then dried over sodium sulfate and concentrated. Crude product obtained was purified by column chromatography (2-3% ethyl acetate/hexane) and crystallized from ethanol to yield IXc (n=9) as an off white solid (13%). [0130] Step-2: Preparation of VIIIb (n=9):
[0131] To a stirring solution of IXc (n=9), (14.4 mol) in DCM (10 mL, 10 V) was added TEA (0.4 mL, 28.8 mmol) and phosgene (0.42 mL, 8.6 mmol, 0.6 eq.) at room temperature and stirred for 30 min. The reaction completion was monitored by TLC (15% ethyl acetate/hexane). The reaction mixture was diluted with ethyl acetate (200 mL) and washed with water (2X100 mL). The organic layer was separated and washed with brine solution (50 mL) then dried over sodium sulfate and concentrated. Crude product obtained was purified by column chromatography (10% ethyl acetate/hexane) to yield MK-9- carbonate-2 dimer VIIIb (n = 9), as a sticky solid (50%).
Preparation of Succinate IX (n=9):
[0132] Step-1: Preparation of IXa (n=9): To a stirring solution of MK-9 (7.7 mmol) in pyridine (10 mL, 2V) were added acetic anhydride (75 mL, 15V) and Zn dust (50 mmol) at room temperature (25-30 °C). The reaction mixture was stirred at RT for 2h. The reaction completion was monitored by TLC (15% ethyl acetate/hexane). The reaction mixture was concentrated and crude obtained was purified by column chromatography (3-4% ethyl acetate/hexane) to yield IXa (n=9) as a pale yellow liquid (75%).
[0133] Step 2: Preparation of IXa, (n=9): To a stirring solution of IXa (3.0 mmol) in methanol (22 mL, 10V) and MTBE (11 mL, 5V) was added tert-butylamine (1.29 mL, 12 mmol) at room temperature (25-30 °C) and stirred for 12-16 at same temperature. The reaction completion was monitored by TLC (10% ethyl acetate/hexane). The reaction mixture was concentrated (to remove methanol), diluted with ethyl acetate (200 mL) and washed with water (2X100 mL). The organic layer was separated and washed with brine solution (50 mL) then dried over sodium sulfate and concentrated. Crude product obtained was purified by column chromatography (3-4% ethyl acetate/hexane) to yield IXb (n=9) as a brown liquid (22%).
[0134] Step 3: Preparation of IXc (n=9) from IXb (n=9): To a stirring solution of IXb (0.36 mmol) in DCM (2.5 mL, 10V) were added succinic anhydride (0.054 g, 0.54 mmol) and DMAP (0.023 g, 0.18 mmol) at 25-30 °C and stirred for 1-2 at same temperature. The reaction completion was monitored by TLC (80% ethyl acetate/hexane). The reaction mixture was diluted with DCM (100 mL) and washed with water (2X50 mL). The organic layer was separated and washed with brine solution (30 mL) then dried over sodium sulfate and concentrated. Crude product obtained was purified by column chromatography (40% ethyl acetate/hexane) to yield IXc as an off white low melting solid (70%).
[0135] Step 4: Preparation of IX, n=9, from IXc, n=9: To a stirring solution of IXc (n=9), (0.78 mmol) in DCM (6.2 mL, 10V) was added EDCI (0.176 g, 1.17 mmol) and DMAP (0.09 g, 0.78 mmol) at 0-5 °C and stirred for 10 min at same temperature. To the above reaction mixture IXd (n=9), (0.78 mmol) in DCM (4.0 mL) was added at 0-5 °C and
stirred for 1-2 at 25-30 °C. Reaction completion was monitored by TLC (15% ethyl acetate/hexane). The reaction mixture was diluted with ethyl acetate (200 mL) and washed with water (2X100 mL). The organic layer was separated and washed with brine solution (50 mL) then dried over sodium sulfate and concentrated. Crude product obtained was purified by column chromatography (10% ethyl acetate/hexane) to yield MK-9-succinate-1 dimer IX (n=9), as an off white sticky solid (38%). Preparation of MK-9 Succinate Dimer X, n=9:
[0136] NOTE: For the above process, step 1 is in common with the preparation of the carbonate, as described above.
[0137] Step 1: Preparation IXc, n=9, from 4-hydroxy-2-methylnaphthalen-1-yl acetate: To a stirring solution of 4-hydroxy-2-methylnaphthalen-1-yl acetate (10.0 g, 46.3 mmol) in toluene (100 mL, 10V) were added nonaprenol (37.0 mmol, 0.8 eq.) and benzene sulfonic acid (0.64 g, 4.63 mmol) at room temperature (25-30 °C). The reaction mixture was stirred at RT for 16-24h. The reaction completion was monitored by TLC (15% ethyl acetate/hexane). The reaction mixture was diluted with ethyl acetate (500 mL) and washed with water (2X250 mL). The organic layer was separated and washed with brine solution (200 mL) then dried over sodium sulfate and concentrated. Crude product obtained was
purified by column chromatography (2-3% ethyl acetate/hexane) and crystallized from ethanol to yield IXc (n=9) as an off white solid (13%).
[0138] Step 2: Preparation of Xa (n=9), from IXc (n=9): To a stirring solution of IXc (0.36 mmol) in DCM (2.5 mL, 10V) were added succinic anhydride (0.054 g, 0.54 mmol) and DMAP (0.023 g, 0.18 mmol) at 25-30 °C and stirred for 1-2 at same temperature. The reaction completion was monitored by TLC (80% ethyl acetate/hexane). The reaction mixture was diluted with DCM (100 mL) and washed with water (2X50 mL). The organic layer was separated and washed with brine solution (30 mL) then dried over sodium sulfate and concentrated. Crude product obtained was purified by column chromatography (40% ethyl acetate/hexane) to yield Xa as an off white low melting solid (70%).
[0139] Step 3: Preparation of X from Xa (n=9): To a stirring solution of Xa, n=9, (0.78 mmol) in DCM (6.2 mL, 10V) was added EDCI (0.176 g, 1.17 mmol) and DMAP (0.09 g, 0.78 mmol) at 0-5 °C and stirred for 10 min at same temperature. To the above reaction mixture Xb, n=9, (0.78 mmol) in DCM (4.0 mL) was added at 0-5 °C and stirred for 1-2 at 25-30 °C. Reaction completion was monitored by TLC (15% ethyl acetate/hexane). The reaction mixture was diluted with ethyl acetate (200 mL) and washed with water (2X100 mL). The organic layer was separated and washed with brine solution (50 mL) then dried over sodium sulfate and concentrated. Crude product obtained was purified by column chromatography (10% ethyl acetate/hexane) to yield MK-9-succinate dimer X, n=9, as a waxy solid (38%).
Preparation of MK-9 via α-Allylation and Retro-Diels-Alder Reaction:
[0140] α-Allylation. To a 20 mL oven-dried scintillation vial was added freshly prepared octaprenyl bromide (1.7 g, 3.05 mmol, 2.44 equiv) and a stir bar. The di-ketone (298 mg, 1.25 mmol, 1.00 equiv) was then added and allowed to disperse with gentle stirring. Sodium t-butoxide (300 mg, 3.13 mmol, 2.50 equiv) was removed from a glove box in a 1- dram vial and added in one addition to the stirring reaction mixture at RT resulting in a red reaction mixture. The vial was then sealed and stirred rapidly (900 RPM) at RT. After 1 h, the reaction was deemed complete by TLC. The entire reaction mixture was then taken up in Et2O and dried onto Celite. The crude reaction was then loaded onto a packed silica column (25 mm x 152 mm) and filtered through the silica using two column volumes of hexanes, 1 column volume of 3.5% Et2O/hexanes, and four column volumes of 7% Et2O/hexanes, the latter of which was collected. The organics were then evaporated into a 20 mL scintillation vial resulting in 869 mg of the α-allylated product, as a golden yellow oil which was carried over directly to the retro-Diels-Alder reaction. [0141] Retro-Diels-Alder Reaction: The vial containing the α-allylated product was then placed under high vacuum (<15 torr pressure) and heated in a 20 mL scintillation aluminum heating block to 85 °C internal temperature neat with no stirring. The reaction was allowed to heat until a constant mass was observed from loss of cyclopentadiene, as well as completion by TLC. The resulting golden oil was then purified by flash chromatography (4% Et2O/hexanes) and dried under high vacuum resulting in a yellow solid (648 mg, 80% yield over two steps). Rf = 0.60 (1:9 Et2O/hexanes). Stability of the Compounds in SGF, FaSSIF and FeSSIF: [0142] Stability of the disclosed compounds, such as the disclosed compounds as tested may be determined in Simulated gastric fluid (SGF, pH-1.2), Fasted state simulated intestinal fluid (FaSSIF, pH-6.5) and Fed state simulated intestinal fluid (FeSSIF, pH-5) at 0, 30, 60, 120 and 240 minutes. The % of compound disappearing over time may be calculated
by comparing to peak areas of analyte at ‘0’ minute by HPLC/ LCMS analysis. Formation of the menaquinone, such as menaquinone-9 from the compounds tested, as disclosed herein, was observed. [0143] A Table 1 is prepared to summarize the stability of the disclosed compounds as tested, noting SGF (pH 1.2); FaSSIF (pH 6.5) and FeSSIF (pH 5.0) noting the % compounds remaining as compared to 0 min, at time intervals of t=0, 30 mins, 60 mins, 120 mins and 240 mins. [0144] A Table 2 is prepared to summarize the stability of the disclosed compounds as tested, noting SGF (pH 1.2); FaSSIF (pH 6.5) and FeSSIF (pH 5.0) noting the formation of menaquinone-9, in terms of Fold change compared to 0 min, at time intervals of t=0, 30 mins, 60 mins, 120 mins and 240 mins. [0145] A Table 3 noting the stability of the disclosed compounds as tested is determined in Simulated gastric fluid (SGF, pH-1.20), Fasted state simulated intestinal fluid (FaSSIF, pH-6.5) and Fed state simulated intestinal fluid (FeSSIF, pH-5) at 0, 30, 60, 120 and 240 minutes. The % of the compound disappearing over time was calculated by comparing to peak areas of analyte at ‘0’ minute by HPLC/ LCMS analysis. Formation of menaquinone-9 from the tested was observed. Stability in Human and Rat Plasma: [0146] A Table 4 noting the stability of the disclosed compounds as tested is determined in Human and Rat plasma (K2EDTA) at 0, 15, 30, 60 and 120 minutes. The % of compound disappearing over time is calculated by comparing to 0 minute by HPLC/ LC-MS- MS analysis. Formation of menaquinone-9 from the tested compounds was observed at time intervals of t=0, 30 mins, 60 mins and 120 mins. [0147] A Table 5 noting the stability of the disclosed compounds as tested is determined in Human and Rat plasma (K2EDTA) at 0, 15, 30, 60 and 120 minutes. The formation of menaquinone-9, based on Fold change compared to 0 mins, is calculated by comparing to 0 minute by HPLC/ LC-MS-MS analysis. The % of the tested compound remaining is observed at time intervals of t=0, 30 mins, 60 mins and 120 mins. [0148] A Table 6 noting the stability of the disclosed compounds as tested is determined in Human and Rat plasma (K2EDTA) at 0, 15, 30, 60 and 120 minutes. The stability of the tested compounds, based on the formation of menaquinone-9 and based on Fold change compared to 0 mins, is calculated by comparing to 0 minute by HPLC/ LC-MS- MS analysis, and is observed at time intervals of t=0, 30 mins, 60 mins and 120 mins.
[0149] A Table 7 noting the stability of the disclosed compounds as tested, was determined in Human and Rat plasma ( K2EDTA) at 0, 15, 30, 60 and 120 minutes. The % of compound disappearing over time was calculated by comparing to 0 minute by HPLC/ LC- MS-MS analysis. Formation of menaquinone-9 from the tested compounds was observed. In vivo testing: [0150] Brief procedure: [0151] Male Sprague Dawley rats aged 8-10 weeks and weighing around 202 - 223 grams are used for in vivo testing. Animals are fasted overnight with free access to water. Animals are split into 4 groups G1 to G4, each group containing 3 rats. To determine the bioavailability, the test items Are separately dissolved in corn oil to obtain homogenous formulations. Animals are administered with test items by oral gavage, animals of G1 received 1088 µg, G2 received 1073 µg, G3 and G4 received 1000 µg per kg body weight dose of VIIIb (n=7) (G1), of VIIIb (n=9) (G2), menaquinone-7 (G3) and menaquinone-9 (G4) respectively. The doses of VIIIb (n=7) (G1), of VIIIb (n=9) were adjusted for the menaquinol content. Blood samples were collected at various time points during the next 48 hours post dose. [0152] Blood samples were collected and transferred to tubes containing K2EDTA and immediately placed on ice for plasma preparations. Plasma was prepared by centrifugation at 3500 g for 10 min, aliquots were frozen at -80°C until analysis. Quantification of analyte in plasma was determined by LC-MS-MS analysis. Plasma PK parameters were calculated using WinNonlin software. Administration of the Compounds in Subjects at Risk for Development of Calciphylaxis: [0153] This example describes the administration of the compounds of the present application to subjects at risk for development of calciphylaxis, but who have not yet developed the characteristic skin lesions of calciphylaxis. Risk factors to be considered include, but are not limited to, diabetes mellitus, obesity, hemodialysis, and prior treatment with warfarin (Nigwekar et al. (2016) “A Nationally Representative Study of Calcific Uremic Arteriolopathy Risk Factors,” J. Am. Soc. Nephrol.27(11):3421-9). The administration of these compounds can result in protection of the subjects from skin lesions and a change in certain biomarker levels indicative of the prevention of the development of calciphylaxis. [0154] Subjects at risk of development of calciphylaxis orally receive a selected compound of the present application at 10 mg, 20 mg, 30 mg, 50 mg or 100 mg once daily for at least 2 weeks, 4 weeks, 6 weeks, 8 weeks, 3 months, 6 months, 1 year, or indefinitely. The dosage form is a 10 mg, 20 mg, 50 mg or 100 mg soft-gel capsule. Two 50 mg capsules are
be administered once daily to the 100 mg dosage cohort. It should be noted that not all subjects with elevated risk factors for calciphylaxis will develop the characteristic skin lesions of calciphylaxis. The intent of treating with the compound of the present application proactively (prior to a clinical diagnosis of calciphylaxis) is the prevention of lesion appearance. Thus, a drop in frequency of, or elimination of lesion appearances is contemplated to be a successful treatment. [0155] Several biomarkers can be assessed to determine the efficacy of the compound to be administered at the three dose levels. Exemplary biomarkers include PIVKA-II; uncarboxylated and total Matrix Gla Protein (MGP); uncarboxylated, carboxylated and total osteocalcin protein; uncarboxylated, carboxylated and total Protein C, osteoprotegerin, Fetuin A and hs-CRP. Blood samples are obtained to measure the biomarkers according to the following schedule. Blood sampling can occur during treatment on a weekly or monthly basis. It is contemplated that administration of the disclosed compounds will result in (i) an increase in PIVKA-II, which is indicative of slowing the progression of, arresting, or reversing, calciphylaxis, (ii) a decrease in uncarboxylated MGP, uncarboxylated osteocalcin, and/or uncarboxylated Protein C, which is indicative of slowing the progression of, arresting, or reversing calciphylaxis. Further, pulse wave velocity (PWV) can be measured to assess arterial compliance. Improved vascular compliance will be indicative of slowing the progression of, arresting, or reversing calciphylaxis. Administration of the Disclosed Compounds of the Application in Subjects Diagnosed with Calciphylaxis: [0156] This example describes the administration of the disclosed compounds to subjects diagnosed with calciphylaxis. Typical symptoms include presentation of characteristic painful skin lesions (Nigwekar et al. (2015) Calciphylaxis: Risk Factors, Diagnosis, and Treatment. Am. J. Kidney Dis.66:133-46). Definitive diagnosis of calciphylaxis is achieved via skin biopsy. Further conditions need to be considered for correct diagnosis. [0157] Subjects diagnosed with calciphylaxis orally receive the disclosed compound at 5 mg, 10 mg, 25 mg, 50 mg or 100 mg once daily for at least 2 weeks, 4 weeks, 6 weeks, 8 weeks, 3 months, 6 months, 1 year, or indefinitely. The dosage form is a 5 mg, 10 mg, 25 mg, 50 mg or 100 mg soft-gel capsule. Two 50 mg capsules are administered once daily to the 100 mg dosage cohort. [0158] The arrest of, or decreases in lesion size and frequency is contemplated to be an indication of successful treatment. The administration of the disclosed compounds
according to the foregoing will result in the arrest of, or decrease in lesion size and frequency. Additionally, because calciphylaxis has a considerable mortality risk, increased overall survival time of diagnosed subjects will be an indication of treatment success. Furthermore, the administration of the disclosed compounds according to the foregoing will result in an increased overall survival time of diagnosed subjects. Administration of the Disclosed Compounds in Subjects with End Stage Renal Disease (ESRD) to Reverse or Slow the Progression of Tissue Calcification: [0159] This example describes the administration of the disclosed compounds to a subject with ESRD and on stable hemodialysis. The administration of the disclosed compounds will result in a change in aortic compliance (via plethysmography), vascular calcification and certain biomarker levels indicative of slowing the progression of, arresting, or reversing tissue calcification. [0160] ESRD subjects on stable hemodialysis orally receive the disclosed compounds at 5 mg, 10 mg, 25 mg, 50 mg, 100 mg, 200 mg, 300, mg, 400 mg or 500 mg once daily for least 2 weeks, 4 weeks, 6 weeks, 8 weeks, 3 months, 6 months, 1 year, or indefinitely. The dosage form is a 5 mg, 10 mg, 25 mg, 50 mg, 75 mg or 100 mg soft-gel capsule. Two 50 mg capsules are administered once daily to the 100 mg dosage cohort. [0161] A 50 y.o., 65 kg male patient diagnosed with the typical symptoms associated with moderate calciphylaxis is treated with 100 mg of the compound of the formula VIIIb for a period of 8 weeks. After the treatment period, the patient is admitted and evaluated. The patient is found to have a significant change in the examined biomarker levels suggesting about a 10% reduction in vascular calcification, and is also shown to have a 10% reduction in tissue calcification. [0162] A 65 y.o., 45 kg female patient diagnosed with the typical symptoms associated with moderate calciphylaxis is treated with 20 mg of the compound of the formula VIIIb, for a period of 10 weeks. After the treatment period, the patient is admitted and evaluated. The patient is found to have a significant change in the examined biomarker levels suggesting about a 20% reduction in vascular calcification, and is also shown to have a 15% reduction in tissue calcification. [0163] A 55 y.o., 70 kg male patient diagnosed with the typical symptoms associated with moderate calciphylaxis is treated with 50 mg of the compound of the formula VIIIb, for a period of 3 months. After the treatment period, the patient is admitted and evaluated. The patient is found to have a significant change in the examined biomarker levels suggesting
about a 25% reduction in vascular calcification, and is also shown to have a 20% reduction in tissue calcification. [0164] Coronary arterial calcium scores (CAC) are used to estimate the extent of calcification of thoracic arteries. A high CAC score is indicative of calcification, and treatment has the aim of arresting the long-term increase in CAC score, or reversing it, or slowing the rate of increase. [0165] Aortic plethysmography also is used to measure arterial compliance, which decreases as calcification increases. Pulse wave velocity (PWV) also is measured to assess arterial compliance. The foregoing measures are useful in estimating the utility of treatments intended to prevent, slow the progression of, arrest or reverse vascular calcification. These measurements are used pre- and post-treatment with the disclosed compounds to assess treatment value. [0166] Several biomarkers are assessed to determine the efficacy of the disclosed compounds at the three dose levels. Exemplary biomarkers include PIVKA-II; uncarboxylated and total Matrix Gla Protein (MGP); uncarboxylated, carboxylated and total osteocalcin protein; uncarboxylated, carboxylated and total Protein C, and hs-CRP. Blood samples are obtained to measure the biomarkers, most conveniently during patient visits for hemodialysis. [0167] The administration of the disclosed compounds can result in (i) an increase in PIVKA-II, which is indicative of slowing the progression of, arresting or reversing tissue calcification, (ii) a decrease in uncarboxylated MGP, uncarboxylated osteocalcin, and/or uncarboxylated Protein C, which is indicative of slowing the progression of, arresting or reversing tissue calcification, and/or (iii) a decrease in hs-CRP, which is indicative of slowing the progression of, arresting or reversing tissue calcification and/or reduced inflammation. Following the daily administration of 5 mg, 10 mg, 25 mg, 50 mg, 75 mg, 100 mg, 150 mg, 200 mg, 300 mg, 400 mg or 500 mg or more, of the disclosed compounds and compositions, at least one of PIVKA-II, under-carboxylated Matrix Gla Protein (MGP), under-carboxylated osteocalcin protein, will show a change indicative of slowing the progression of, arresting or reversing tissue calcification. [0168] While a number of exemplary embodiments, aspects and variations have been provided herein, those of skill in the art will recognize certain modifications, permutations, additions and combinations and certain sub-combinations of the embodiments, aspects and variations. It is intended that the following claims are interpreted to include all such
modifications, permutations, additions and combinations and certain sub-combinations of the embodiments, aspects and variations are within their scope. [0169] The entire disclosures of all documents cited throughout this application are incorporated herein by reference. [0170] References: 1) Rachel M. Holden et al. Vitamins K and D Status in Stages 3–5 Chronic Kidney Disease; Clin J Am Soc Nephrol 5: 590–597, 2010.2) Pilkey, R.M. MD et al. Subclinical Vitamin K Deficiency in Hemodialysis Patients Am J Kidney Dis 49:432-439, 2007.3) Westhofen P et al. Human vitamin K 2,3-epoxide reductase complex subunit 1-like 1 (VKORC1L1) mediates vitamin K-dependent intracellular antioxidant function. J Biol Chem 2011;286: 15085–94.4) Caspers, M. et al., Two enzymes catalyze vitamin K 2,3-epoxide reductase activity in mouse: VKORC1 is highly expressed in exocrine tissues while VKORC1L1 is highly expressed in brain. Thrombosis Research 135:977–983, 2015.5) Himmelfarb, J. et al., Plasma protein thiol oxidation and carbonyl formation in chronic renal failure. Kidney International, Vol.58: 2571–25782000.6) Price, P.A. et al., Discovery of a High Molecular Weight Complex of Calcium, Phosphate, Fetuin, and Matrix- Carboxyglutamic Acid Protein in the Serum of Etidronate-treated Rats. J Biol Chem. 277 (6): 3926–3934, 2002.7) Pasch, A. et al. Nanoparticle-Based Test Measures Overall Propensity for Calcification in Serum J Am Soc Nephrol 23: 1744–1752, 2012.8) Nigwekar, S.U. et al. Vitamin K–Dependent Carboxylation of Matrix Gla Protein Influences the Risk of Calciphylaxis. J Am Soc Nephrol 28: 1717–1722, 2017.
Claims
CLAIMS What is claimed is: 1. A biologically active menaquinol derivative of the formulae:
wherein: each n is 9; and each R1 and R2 is independently C1-C6alkyl. 2. The menaquinol derivative of Claim 1 selected from the group consisting of:
3. A biologically active menaquinol derivative of the formulae:
2,
3, 4 or 5; each n is 9; and each R1 and R2 is independently C1-C6alkyl.
5. A pharmaceutical composition comprising a therapeutically effective amount of a menaquinol derivative of any one of Claims 1 to 4, or a mixture thereof; and a pharmaceutically acceptable excipient, wherein the composition is effective for the treatment of a condition associated with vitamin K selected for the treatment of osteoporosis, arteriosclerosis, calciphylaxis or tissue calcification.
6. A method for increasing the tissue concentration of menaquinol as a co-factor for gamma glutamate carboxylase (GGCX) for catalyzing the carboxylation of vitamin K dependent proteins that is associated with the treatment or prevention of osteoporosis, arteriosclerosis, calciphylaxis or tissue calcification in a patient in need thereof, the method comprising an administration of a therapeutically effective amount of a menaquinol derivative or a pharmaceutical composition comprising an effective amount of a menaquinol derivative of any one of Claims 1 to 4, or a mixture thereof.
7. A method for the treatment of a disease in a mammal selected from the group consisting of neurodegenerative diseases, retinopathy, rheumatoid polyarthritis, atherosclerosis, amyotrophic lateral sclerosis, cerebral ischemia, cataracts, systemic infections, pathologies associated with cutaneous aging and with senescence in tissues, pathologies associated with mitochondrial dysfunction, cachexia associated with under nutrition, wherein the treatment is associated with the increase in the longevity of mammals, the method comprises the administration of a therapeutically effective amount of a compound or composition comprising a menaquinol derivative of the formulae VIII to XI of any one of Claims 1 to 4 or a mixture thereof.
8. A method for treating a mammal with a disease selected from the group consisting of vitamin K deficiency, osteoporosis, a proliferative disease, and a cardiovascular disease, comprising administering to the mammal a therapeutically effective amount of a menaquinol derivative of any one of Claims 1 to 4, or a mixture thereof.
9. The method of Claim 8, wherein the proliferative disease is selected from the group consisting of cancer, leukemia and an inflammatory disease.
10. A method for the treatment or prevention of osteoporosis and/or osteopenia, the method comprising administering to a patient in need of treatment, a therapeutically effective amount of a composition comprising a menaquinol derivative of the formulae VIII to XI of any one of Claims 1 to 4, or a mixture thereof.
11. A method of treating, preventing, slowing the progression of, arresting, and/or reversing calciphylaxis in a mammal in need thereof, the method comprising administering to the mammal a therapeutically effective amount of a composition comprising substantially pure menaquinol derivative of the formulae VIII to XI of any one of Claims 1 to 4, or a mixture thereof, and a pharmaceutically acceptable excipient, to prevent, slow the progression of, arrest, or reverse calciphylaxis.
12. The method of Claim 11, wherein the mammal has distal calciphylaxis and/or central calciphylaxis.
13. The method of Claim 11 or 12, wherein the mammal has diabetes, chronic kidney disease or end stage renal disease.
14. The method of Claim 13, wherein the mammal has stage 3, stage 4 or stage 5 chronic kidney disease.
15. The method of any one of Claims 11 to 14, wherein the mammal is undergoing hemodialysis.
16. The method of any one of Claims 11 to 15, wherein the mammal is receiving non- warfarin-based anti-coagulant therapy.
17. The method of Claim 16, wherein the anti-coagulant therapy is oral anti-coagulation therapy.
18. The method of Claim 16, wherein the anti-coagulation therapy comprises an inhibitor of Factor Xa activity selected from apixaban, rivaroxaban, betrixaban, edoxaban, otamixaban, letaxaban, eribaxaban or fondaparinux; or Factor IIa activity selected from dabigratran or argatroban.
19. The method of any one of Claims 11 to 18, wherein the mammal has chronic obstructive pulmonary disease (COPD).
20. The method of any one of Claims 11 to 19, wherein the mammal has a calciphylaxis- related dermal lesion.
21. The method of Claim 20, wherein administration of the composition reduces the total surface area of the dermal lesion by at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 100%.
22. The method of any one of Claim 11 to 21, whereupon administration of the compound of the formulae VIII to XI of any one of Claims 1 to 4, or a mixture thereof, to the mammal increases the mammal’s serum T50 value by at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 100% relative to the mammal’s serum T50 value prior to administration of the compound of any one of Claims 1 to 9, or a mixture thereof.
23. The method of any one of Claims 11 to 21, wherein administration of the compound of the formulae VIII to XI of any one of Claims 1 to 4, or a mixture thereof, increases a ratio of a carboxylated to a non-carboxylated of a Vitamin K dependent protein in plasma of the mammal after administration of the composition is greater than prior to administration of the composition.
24. A method of treating, preventing, slowing the progression of, arresting and/or reversing tissue calcification in a pre-diabetic mammal (or subject) with diabetes, chronic kidney disease or a combination thereof, and in need thereof, the method comprising
administering to the mammal at least 50 mg of a compound of the formulae VIII to XI of any one of Claims 1 to 4, or a mixture thereof per day, to prevent, slow the progression of, and/or arrest tissue calcification, wherein the compound of any one of Claims 1 to 4, or a mixture thereof, is administered in a pharmaceutical composition.
25. The method of Claim 24, wherein the mammal has diabetes.
26. The method of Claim 25, wherein the mammal has type II diabetes.
27. The method of Claim 24, wherein the mammal has been diagnosed as pre-diabetic.
28. The method of any one of Claims 24 to 27, wherein the mammal has chronic kidney disease.
29. The method of any one of Claims 24 to 28, wherein the mammal has stage 4 or 5 chronic kidney disease/end stage renal disease.
30. The method of any one of Claims 24 to 29, wherein the mammal is undergoing hemodialysis.
31. The method of any one of Claims 24 to 29, wherein the mammal is receiving non- warfarin based anti-coagulant therapy.
32. The method of Claim 31, wherein the anti-coagulant therapy is oral anti-coagulation therapy.
33. The method of Claim 32, wherein the anti-coagulation therapy comprises an inhibitor of Factor Xa activity selected from apixaban, rivaroxaban, betrixaban, edoxaban, otamixaban, letaxaban, eribaxaban or fondaparinux; or Factor IIa activity selected from dabigratran or argatroban.
34. A method of treating, preventing, slowing the progression of, arresting, and/or reversing tissue calcification in a mammal undergoing hemodialysis, and in need thereof, the method comprising administering to the mammal at least 10 mg of the compound of the formulae VIII to XI of any one of Claims 1 to 4, or a mixture thereof, per day, thereby to prevent, slow the progression, arrest, and/or reverse tissue calcification, wherein the compound of any one of Claims 1 to 4, or a mixture thereof, is administered in a pharmaceutical composition.
35. The method of Claim 34, wherein the mammal has diabetes.
36. A method for increasing at least one of the bioavailability and serum half life of menaquinone-9/menaquinol-9, the method comprising the administration or supplementation of the compounds of the formulae VIII to XI of any one of Claims 1 to 4, or compositions thereof, to a mammal in need thereof, wherein the method increases the at least one of the
bioavailability and serum half life of menaquinone-9/menaquinol-9, by at least 5%, when compared to the administration or supplementation using menaquinone-9.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2021/065401 WO2023129141A1 (en) | 2021-12-28 | 2021-12-28 | Compositions of biologically active menaquinol derivatives and methods of treatment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2021/065401 WO2023129141A1 (en) | 2021-12-28 | 2021-12-28 | Compositions of biologically active menaquinol derivatives and methods of treatment |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023129141A1 true WO2023129141A1 (en) | 2023-07-06 |
Family
ID=80050588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2021/065401 WO2023129141A1 (en) | 2021-12-28 | 2021-12-28 | Compositions of biologically active menaquinol derivatives and methods of treatment |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023129141A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2819982B1 (en) * | 2012-03-02 | 2016-09-14 | Kappa Bioscience AS | Prodrugs of vitamine k |
US20200079718A1 (en) * | 2018-09-12 | 2020-03-12 | Epizon Pharma, Inc. | Menaquinol Compositions and Methods of Treatment |
-
2021
- 2021-12-28 WO PCT/US2021/065401 patent/WO2023129141A1/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2819982B1 (en) * | 2012-03-02 | 2016-09-14 | Kappa Bioscience AS | Prodrugs of vitamine k |
US20200079718A1 (en) * | 2018-09-12 | 2020-03-12 | Epizon Pharma, Inc. | Menaquinol Compositions and Methods of Treatment |
Non-Patent Citations (13)
Title |
---|
CASPERS, M. ET AL.: "Two enzymes catalyze vitamin K 2,3-epoxide reductase activity in mouse: VKORC1 is highly expressed in exocrine tissues while VKORC1L1 is highly expressed in brain", THROMBOSIS RESEARCH, vol. 135, 2015, pages 977 - 983 |
GREENE ET AL.: "Fieser and Fieser's Reagents for Organic Synthesis", vol. 1-17, 1991, LIPPINCOTT, WILLIAMS & WILKINS |
HIMMELFARB, J. ET AL.: "Plasma protein thiol oxidation and carbonyl formation in chronic renal failure", KIDNEY INTERNATIONAL, vol. 58, 2000, pages 2571 - 2578 |
LAROCK: "Comprehensive Organic Transformations", vol. 1-5, 1989, ELSEVIER SCIENCE PUBLISHERS |
NIGWEKAR ET AL.: "A Nationally Representative Study of Calcific Uremic Arteriolopathy Risk Factors", J. AM. SOC. NEPHROL., vol. 27, no. 11, 2016, pages 3421 - 9 |
NIGWEKAR ET AL.: "Calciphylaxis: Risk Factors, Diagnosis, and Treatment", AM. J. KIDNEY DIS., vol. 66, 2015, pages 133 - 46, XP029179617, DOI: 10.1053/j.ajkd.2015.01.034 |
NIGWEKAR, S.U. ET AL.: "Vitamin K-Dependent Carboxylation of Matrix Gla Protein Influences the Risk of Calciphylaxis", J AM SOC NEPHROL, vol. 28, 2017, pages 1717 - 1722 |
PASCH, A. ET AL.: "Nanoparticle-Based Test Measures Overall Propensity for Calcification in Serum", J AM SOC NEPHROL, vol. 23, 2012, pages 1744 - 1752, XP002688938, DOI: 10.1681/ASN.2012030240 |
PILKEY, R.M. MD ET AL.: "Subclinical Vitamin K Deficiency in Hemodialysis Patients", AM J KIDNEY DIS, vol. 49, 2007, pages 432 - 439 |
PRICE, P.A. ET AL.: "Discovery of a High Molecular Weight Complex of Calcium, Phosphate, Fetuin, and Matrix-Carboxyglutamic Acid Protein in the Serum of Etidronate-treated Rats", J BIOL CHEM., vol. 277, no. 6, 2002, pages 3926 - 3934, XP055021518, DOI: 10.1074/jbc.M106366200 |
RACHEL M. HOLDEN ET AL.: "Vitamins K and D Status in Stages 3-5 Chronic Kidney Disease", CLIN JAM SOC NEPHROL, vol. 5, 2010, pages 590 - 597 |
SATO ET AL., NUTRITION JOURNAL, vol. 11, 2012, pages 93 |
WESTHOFEN P ET AL.: "Human vitamin K 2,3-epoxide reductase complex subunit 1-like 1 (VKORC1L1) mediates vitamin K-dependent intracellular antioxidant function", J BIOL CHEM, vol. 286, 2011, pages 15085 - 94 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11603345B2 (en) | Menaquinol compositions and methods of treatment | |
US11723882B2 (en) | Methods and compositions for preventing or treating tissue calcification | |
US11793773B2 (en) | Methods and compositions for preventing or treating calciphylaxis | |
US12103914B2 (en) | Compositions of biologically active menaquinol derivatives and methods of treatment | |
WO2023129141A1 (en) | Compositions of biologically active menaquinol derivatives and methods of treatment | |
US20230381220A1 (en) | Pegylated menaquinol compositions and methods of treatment | |
US20240299298A1 (en) | Nano-particles of menaquinone-9 and methods of treatment | |
US20240307321A1 (en) | Nano-particles of menaquinone and methods of treatment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21848435 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |