WO2023176362A1 - Display system, display method, display body, and method for manufacturing display body - Google Patents
Display system, display method, display body, and method for manufacturing display body Download PDFInfo
- Publication number
- WO2023176362A1 WO2023176362A1 PCT/JP2023/006730 JP2023006730W WO2023176362A1 WO 2023176362 A1 WO2023176362 A1 WO 2023176362A1 JP 2023006730 W JP2023006730 W JP 2023006730W WO 2023176362 A1 WO2023176362 A1 WO 2023176362A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- display
- display element
- reflection
- display system
- light
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/02—Viewing or reading apparatus
Definitions
- the present invention relates to a display system, a display method, a display body, and a method for manufacturing a display body.
- Image display devices represented by liquid crystal display devices and electroluminescence (EL) display devices are rapidly becoming popular.
- EL electroluminescence
- optical members such as polarizing members and retardation members are generally used to realize image display and improve image display performance (see, for example, Patent Document 1).
- VR goggles with a display for realizing Virtual Reality (VR) are beginning to be commercialized. Since VR goggles are being considered for use in a variety of situations, it is desired that they be lighter and have higher definition. Weight reduction can be achieved, for example, by making the lenses used in VR goggles thinner. On the other hand, there is also a desire for the development of optical members suitable for display systems using thin lenses.
- the main purpose of the present invention is to provide a display system that can reduce the weight and increase the definition of VR goggles.
- a display system that displays images to a user, a display element having a display surface that emits light representing an image forward through a polarizing member; a reflecting section disposed in front of the display element, including a reflective polarizing member, and reflecting light emitted from the display element; a first lens section disposed on an optical path between the display element and the reflection section; a half mirror disposed between the display element and the first lens part, which transmits the light emitted from the display element and reflects the light reflected by the reflection part toward the reflection part; a first ⁇ /4 member disposed on an optical path between the display element and the half mirror; a second ⁇ /4 member disposed on the optical path between the half mirror and the reflecting section; Equipped with A display system, wherein the slow axis of the first ⁇ /4 member and the slow axis of the second ⁇ /4 member are arranged to be substantially orthogonal to each other.
- the following display methods [8] to [9] are provided.
- [8] Passing the light representing the image emitted through the polarizing member through the first ⁇ /4 member; a step of causing the light that has passed through the first ⁇ /4 member to pass through a half mirror and a first lens portion; passing the light that has passed through the half mirror and the first lens section through a second ⁇ /4 member; a step of reflecting the light that has passed through the second ⁇ /4 member toward the half mirror by a reflecting section including a reflective polarizing member; a step of allowing the light reflected by the reflection part and the half mirror to be transmitted through the reflection part by the second ⁇ /4 member;
- the slow axis of the first ⁇ /4 member and the slow axis of the second ⁇ /4 member are arranged to be substantially perpendicular to each other; Display method. [9] The display method according to [8], wherein the polarization direction of the light emitted through the polarizing member and the reflection axis of the reflective
- a display body comprising the display system according to any one of [1] to [7] above.
- a method for manufacturing a display body comprising the display system according to any one of [1] to [7] above.
- FIG. 1 is a schematic diagram showing a general configuration of a display system according to one embodiment of the present invention.
- FIG. 2 is a schematic diagram illustrating the progression and polarization state of light in a display system according to an embodiment of the present invention.
- Refractive index (nx, ny, nz) "nx" is the refractive index in the direction in which the in-plane refractive index is maximum (i.e., slow axis direction), and "ny” is the direction perpendicular to the slow axis in the plane (i.e., fast axis direction) "nz” is the refractive index in the thickness direction.
- Refractive index (nx, ny, nz) "nx" is the refractive index in the direction in which the in-plane refractive index is maximum (i.e., slow axis direction), and "ny” is the direction perpendicular to the slow axis in the plane (i.e., fast axis direction) "nz” is the refractive index in the thickness direction.
- In-plane phase difference (Re) "Re( ⁇ )” is an in-plane retardation measured with light having a wavelength of ⁇ nm at 23°C.
- Re(550) is an in-plane retardation measured with light having a wavelength of 550 nm at 23°C.
- Phase difference in thickness direction (Rth) is a retardation in the thickness direction measured with light having a wavelength of ⁇ nm at 23°C.
- Rth (550) is the retardation in the thickness direction measured with light having a wavelength of 550 nm at 23°C.
- FIG. 1 is a schematic diagram showing the general configuration of a display system according to one embodiment of the present invention.
- FIG. 1 schematically shows the arrangement, shape, etc. of each component of the display system 2.
- the display system 2 includes a display element 12, a reflection section 14 including a reflective polarizing member, a first lens section 16, a half mirror 18, a first retardation member 20, a second retardation member 22, and a second retardation member 22. It is equipped with two lens parts 24.
- the reflecting section 14 is disposed at the front of the display element 12 on the display surface 12a side, and can reflect light emitted from the display element 12.
- the first lens section 16 is arranged on the optical path between the display element 12 and the reflection section 14, and the half mirror 18 is arranged between the display element 12 and the first lens section 16.
- the first retardation member 20 is arranged on the optical path between the display element 12 and the half mirror 18, and the second retardation member 22 is arranged on the optical path between the half mirror 18 and the reflection section 14.
- lens section The components disposed in front of the half mirror (in the illustrated example, the half mirror 18, the first lens section 16, the second retardation member 22, the reflection section 14, and the second lens section 24) are collectively called a lens section (lens section). 4).
- the display element 12 is, for example, a liquid crystal display or an organic EL display, and has a display surface 12a for displaying images.
- the light emitted from the display surface 12a passes through a polarizing member (typically, a polarizing film) that may be included in the display element 12, and is emitted as first linearly polarized light.
- a polarizing member typically, a polarizing film
- the first retardation member 20 is a ⁇ /4 member that can convert the first linearly polarized light incident on the first retardation member 20 into first circularly polarized light (hereinafter, the first retardation member is referred to as the first (sometimes referred to as a ⁇ /4 member). Note that the first retardation member 20 may be provided integrally with the display element 12.
- the in-plane retardation Re (550) of the first retardation member 20 is, for example, 100 nm to 190 nm, may be 110 nm to 180 nm, may be 130 nm to 160 nm, or may be 135 nm to 155 nm. .
- the first retardation member 20 preferably exhibits inverse dispersion wavelength characteristics in which the retardation value increases depending on the wavelength of the measurement light.
- Re(450)/Re(550) of the first retardation member 20 is, for example, less than 1 and may be 0.95 or less, further less than 0.90, and even 0.85 or less. good.
- Re(450)/Re(550) of the first retardation member 20 is, for example, 0.75 or more.
- the first retardation member 20 has Re(400)/Re(550) ⁇ 0.85, Re(650)/Re(550)>1.03, and Re(750)/Re( 550)>1.05.
- the first retardation member 20 has 0.65 ⁇ Re(400)/Re(550) ⁇ 0.80 (preferably 0.7 ⁇ Re(400)/Re(550) ⁇ 0.75), 1. 0 ⁇ Re(650)/Re(550) ⁇ 1.25 (preferably 1.05 ⁇ Re(650)/Re(550) ⁇ 1.20) and 1.05 ⁇ Re(750)/Re( 550) ⁇ 1.40 (preferably 1.08 ⁇ Re(750)/Re(550) ⁇ 1.36), more preferably at least two. More preferably, all of them are satisfied.
- the first retardation member 20 preferably exhibits a refractive index characteristic of nx>ny ⁇ nz.
- the Nz coefficient of the first retardation member 20 is preferably 0.9 to 3, more preferably 0.9 to 2.5, even more preferably 0.9 to 1.5, particularly preferably 0.9 to 1. It is 3.
- the first retardation member 20 is formed of any suitable material that can satisfy the above characteristics.
- the first retardation member 20 may be, for example, a stretched resin film or an oriented solidified layer of a liquid crystal compound.
- the resins contained in the above resin film include polycarbonate resin, polyester carbonate resin, polyester resin, polyvinyl acetal resin, polyarylate resin, cyclic olefin resin, cellulose resin, polyvinyl alcohol resin, and polyamide resin. , polyimide resin, polyether resin, polystyrene resin, acrylic resin, and the like. These resins may be used alone or in combination (for example, blended or copolymerized).
- a resin film containing a polycarbonate resin or a polyester carbonate resin hereinafter sometimes simply referred to as a polycarbonate resin
- polycarbonate resins contain structural units derived from fluorene-based dihydroxy compounds, structural units derived from isosorbide-based dihydroxy compounds, alicyclic diols, alicyclic dimethanols, di-, tri-, or polyethylene glycols, and alkylene-based dihydroxy compounds. a structural unit derived from at least one dihydroxy compound selected from the group consisting of glycol or spiroglycol.
- the polycarbonate resin contains a structural unit derived from a fluorene dihydroxy compound, a structural unit derived from an isosorbide dihydroxy compound, a structural unit derived from an alicyclic dimethanol, and/or a di, tri, or polyethylene glycol. More preferably, it contains a structural unit derived from a fluorene dihydroxy compound, a structural unit derived from an isosorbide dihydroxy compound, and a structural unit derived from di, tri or polyethylene glycol. .
- the polycarbonate resin may contain structural units derived from other dihydroxy compounds as necessary.
- the thickness of the first retardation member 20 made of a stretched resin film is, for example, 10 ⁇ m to 100 ⁇ m, preferably 10 ⁇ m to 70 ⁇ m, more preferably 10 ⁇ m to 40 ⁇ m, and still more preferably 20 ⁇ m to 30 ⁇ m.
- the liquid crystal compound alignment and solidification layer is a layer in which the liquid crystal compound is aligned in a predetermined direction within the layer, and the alignment state is fixed.
- the "alignment hardened layer” is a concept that includes an orientation hardened layer obtained by curing a liquid crystal monomer as described below.
- rod-shaped liquid crystal compounds are typically aligned in the slow axis direction of the first retardation member (homogeneous alignment). Examples of rod-shaped liquid crystal compounds include liquid crystal polymers and liquid crystal monomers.
- the liquid crystal compound is preferably polymerizable. If the liquid crystal compound is polymerizable, the alignment state of the liquid crystal compound can be fixed by aligning the liquid crystal compound and then polymerizing it.
- the liquid crystal compound alignment and solidification layer is produced by subjecting the surface of a predetermined base material to an alignment treatment, applying a coating liquid containing the liquid crystal compound to the surface, and subjecting the liquid crystal compound to the alignment treatment. It can be formed by orienting it in a corresponding direction and fixing the orientation state. Any suitable orientation treatment may be employed as the orientation treatment. Specifically, mechanical alignment treatment, physical alignment treatment, and chemical alignment treatment can be mentioned. Specific examples of mechanical alignment treatment include rubbing treatment and stretching treatment. Specific examples of physical alignment treatment include magnetic field alignment treatment and electric field alignment treatment. Specific examples of chemical alignment treatment include oblique vapor deposition and photo alignment treatment. As the treatment conditions for various orientation treatments, any appropriate conditions may be adopted depending on the purpose.
- the alignment of the liquid crystal compound is carried out by treatment at a temperature that exhibits a liquid crystal phase depending on the type of liquid crystal compound.
- the liquid crystal compound assumes a liquid crystal state, and the liquid crystal compound is oriented in accordance with the orientation treatment direction of the substrate surface.
- the alignment state is fixed by cooling the liquid crystal compound aligned as described above.
- the alignment state is fixed by subjecting the liquid crystal compound aligned as described above to polymerization treatment or crosslinking treatment.
- liquid crystal compound any suitable liquid crystal polymer and/or liquid crystal monomer can be used as the liquid crystal compound.
- the liquid crystal polymer and the liquid crystal monomer may be used alone or in combination.
- Specific examples of liquid crystal compounds and methods for producing liquid crystal alignment solidified layers are described in, for example, JP 2006-163343A, JP 2006-178389A, and WO 2018/123551A. The descriptions of these publications are incorporated herein by reference.
- the thickness of the first retardation member 20 composed of the liquid crystal alignment solidified layer is, for example, 1 ⁇ m to 10 ⁇ m, preferably 1 ⁇ m to 8 ⁇ m, more preferably 1 ⁇ m to 6 ⁇ m, and still more preferably 1 ⁇ m to 4 ⁇ m.
- the half mirror 18 transmits the light emitted from the display element 12 and reflects the light reflected by the reflection section 14 toward the reflection section 14 .
- the half mirror 18 is provided integrally with the first lens section 16.
- the second retardation member 22 is a ⁇ /4 member that can transmit the light reflected by the reflection part 14 and the half mirror 18 through the reflection part 14 including a reflective polarizing member (hereinafter referred to as the second retardation member). (sometimes referred to as the second ⁇ /4 member). Note that the second retardation member 22 may be provided integrally with the first lens portion 16.
- the in-plane retardation Re (550) of the second retardation member 22 is, for example, 100 nm to 190 nm, may be 110 nm to 180 nm, may be 130 nm to 160 nm, or may be 135 nm to 155 nm. .
- the second retardation member 22 preferably exhibits inverse dispersion wavelength characteristics in which the retardation value increases depending on the wavelength of the measurement light.
- Re(450)/Re(550) of the second retardation member 22 is, for example, less than 1 and may be 0.95 or less, further less than 0.90, and even 0.85 or less. good.
- Re(450)/Re(550) of the second retardation member 22 is, for example, 0.75 or more.
- the second retardation member 22 has Re(400)/Re(550) ⁇ 0.85, Re(650)/Re(550)>1.03, and Re(750)/Re( 550)>1.05.
- the second retardation member 22 has 0.65 ⁇ Re(400)/Re(550) ⁇ 0.80 (preferably 0.7 ⁇ Re(400)/Re(550) ⁇ 0.75), 1. 0 ⁇ Re(650)/Re(550) ⁇ 1.25 (preferably 1.05 ⁇ Re(650)/Re(550) ⁇ 1.20) and 1.05 ⁇ Re(750)/Re( 550) ⁇ 1.40 (preferably 1.08 ⁇ Re(750)/Re(550) ⁇ 1.36), more preferably at least two. More preferably, all of them are satisfied.
- the second retardation member 22 preferably exhibits a refractive index characteristic of nx>ny ⁇ nz.
- the Nz coefficient of the second retardation member 22 is preferably 0.9 to 3, more preferably 0.9 to 2.5, even more preferably 0.9 to 1.5, particularly preferably 0.9 to 1. It is 3.
- the second retardation member 22 is formed of any suitable material that can satisfy the above characteristics.
- the second retardation member 22 may be, for example, a stretched resin film or an oriented solidified layer of a liquid crystal compound.
- the same explanation as for the first retardation member 20 can be applied to the second retardation member 22 made of a stretched resin film or an oriented solidified layer of a liquid crystal compound.
- the first retardation member 20 and the second retardation member 22 may have the same configuration (forming material, thickness, optical properties, etc.), or may have different configurations.
- the reflecting section 14 may include an absorption type polarizing member (typically, an absorption type polarizing film).
- the absorptive polarizing member may be placed in front of the reflective polarizing member (on the side closer to the eyes).
- the reflection axis of the reflective polarizing member and the absorption axis of the absorptive polarizing member may be arranged substantially parallel to each other.
- the reflective polarizing member and the absorptive polarizing member may be laminated with an adhesive layer interposed therebetween, and the reflective section 14 may include a laminate having the reflective polarizing member and the absorbing polarizing member.
- the reflective polarizing member can transmit polarized light parallel to its transmission axis (typically, linearly polarized light) while maintaining its polarized state, and can reflect light in other polarized states.
- the cross transmittance (Tc) of the reflective polarizing member may be, for example, 0.01% to 3%.
- the single transmittance (Ts) of the reflective polarizing member may be, for example, 43% to 49%, preferably 45 to 47%.
- the degree of polarization (P) of the reflective polarizing member may be, for example, 92% to 99.99%.
- the reflective polarizing member is typically composed of a film having a multilayer structure (sometimes referred to as a reflective polarizing film).
- the absorption type polarizing member is typically composed of a resin film (sometimes referred to as an absorption type polarizing film) containing a dichroic substance.
- the slow axis of the first phase difference member 20 and the slow axis of the second phase difference member 22 are arranged substantially perpendicular to each other.
- the absorption axis of the polarizing member included in the display element 12 and the reflection axis of the reflective polarizing member included in the reflecting section 14 may be arranged substantially perpendicular to each other (in other words, the polarizing member included in the display element 12 (The polarization direction of the light emitted through the reflection part 14 and the reflection axis of the reflective polarization member included in the reflection part 14 may be substantially parallel to each other.)
- the angle between the absorption axis of the polarizing member included in the display element 12 and the slow axis of the first retardation member 20 is, for example, 40° to 50°, may be 42° to 48°, and is about 45°.
- the angle between the absorption axis of the polarizing member included in the display element 12 and the slow axis of the second retardation member 22 is, for example, 40° to 50°, may be 42° to 48°, and is about 45°. It may be °.
- FIG. 2(a) is a schematic diagram illustrating the progression of light in the display system
- FIG. 2(b) is a diagram illustrating the progress of light in the display system as it passes through each member or is reflected by each member.
- FIG. 3 is a schematic diagram illustrating changes in polarization state.
- the solid arrows attached to the display element 12 indicate the absorption axis direction of the polarizing member included in the display element 12
- the arrows attached to the first retardation member 20 and the second retardation member 22 indicate the direction of the absorption axis of the polarizing member included in the display element 12.
- the solid-line arrows attached to the reflective polarizing member 14a included in the reflecting section 14 indicate the phase axis direction
- the dotted-line arrows indicate the transmission axis direction of each polarizing member.
- the light L emitted from the display element 12 as first linearly polarized light via the polarizing member is converted into first circularly polarized light by the first ⁇ /4 member 20.
- the first circularly polarized light passes through the half mirror 18 and the first lens section 16 (not shown in FIG. 2), and is passed through the second ⁇ /4 member 22 to form the first circularly polarized light whose polarization direction is parallel to that of the first linearly polarized light. It is converted into linearly polarized light of 2.
- the polarization direction of the second linearly polarized light is in the same direction (substantially parallel) as the reflection axis of the reflective polarizing member 14a included in the reflection section 14. Therefore, the second linearly polarized light incident on the reflection section 14 is reflected toward the half mirror 18 by the reflective polarizing member 14a.
- the second linearly polarized light reflected by the reflecting section 14 is converted into second circularly polarized light by the second ⁇ /4 member 22.
- the rotation direction of the second circularly polarized light is the same as the rotation direction of the first circularly polarized light.
- the second circularly polarized light emitted from the second ⁇ /4 member 22 passes through the first lens section 16 and is reflected by the half mirror 18, forming a third circle that rotates in the opposite direction to the second circularly polarized light. converted into polarized light.
- the third circularly polarized light reflected by the half mirror 18 passes through the first lens section 16 and is converted into third linearly polarized light by the second ⁇ /4 member 22.
- the polarization direction of the third linearly polarized light is orthogonal to the polarization direction of the second linearly polarized light, and is in the same direction (substantially parallel) as the transmission axis of the reflective polarizing member 14a. Therefore, the third linearly polarized light can be transmitted through the reflective polarizing member 14a. Further, although not shown, when the reflective section includes an absorption type polarizing member, the absorption axis thereof is arranged to be approximately parallel to the reflection axis of the reflective polarizing member 14a, so that the light transmitted through the reflective polarizing member 14a is The third linearly polarized light can pass through the absorptive polarizing member as it is.
- the light that has passed through the reflection section 14 passes through the second lens section 24 and enters the user's eyes 26 .
- the slow axes of the first retardation member 20 and the second retardation member 22 are counterclockwise with respect to the absorption axis of the polarizing member included in the display element 12. are arranged at an angle of 45° clockwise and 45° clockwise, but they are also arranged at an angle of 45° clockwise and 45° counterclockwise. Similar explanations as above apply.
- test and evaluation methods in Examples and the like are as follows.
- parts when it is written as “parts”, it means “parts by weight” unless there are special notes, and when it is written as “%”, it means “wt%” unless there are special notes.
- Thickness The thickness of 10 ⁇ m or less was measured using a scanning electron microscope (manufactured by JEOL Ltd., product name “JSM-7100F”). Thickness exceeding 10 ⁇ m was measured using a digital micrometer (manufactured by Anritsu Corporation, product name “KC-351C”).
- In-plane phase difference Re( ⁇ ) A sample was prepared by cutting out the central part and both ends of the ⁇ /4 member in the width direction into a square having a width of 50 mm and a length of 50 mm, with one side parallel to the width direction of the member. The in-plane retardation of this sample at each wavelength at 23° C.
- polyester carbonate resin was vacuum-dried at 80°C for 5 hours, and then put into a single-screw extruder (manufactured by Toshiba Machine Co., Ltd., cylinder temperature setting: 250°C) and a T-die (width 200mm, setting temperature: 250°C).
- a long resin film with a thickness of 130 ⁇ m was produced using a film forming apparatus equipped with a chill roll (set temperature: 120 to 130° C.), a winder, and a winder.
- the obtained long resin film was stretched in the width direction at a stretching temperature of 140° C. and a stretching ratio of 2.7 times.
- a retardation film ( ⁇ /4 member) having a thickness of 47 ⁇ m, a Re(590) of 143 nm, and an Nz coefficient of 1.2 was obtained.
- Re(450)/Re(550) of the ⁇ /4 member was 0.856.
- Example 1 Two rectangular film pieces were cut out from the long retardation film obtained in Production Example 1 to form ⁇ /4 member 1 and ⁇ /4 member 2.
- ⁇ /4 member 1 and ⁇ /4 member 2 are pasted together via an acrylic adhesive layer (manufactured by Nitto Denko Corporation, thickness 5 ⁇ m) so that the slow axis directions are perpendicular to each other, and the ⁇ /4 member 2 side is A reflective surface of a reflective polarizing film (manufactured by Nitto Denko, product name "APCFG4") was bonded to the film through an acrylic adhesive layer (manufactured by Nitto Denko, thickness 5 ⁇ m).
- an acrylic adhesive layer manufactured by Nitto Denko, product name "APCFG4"
- a laminate 1 having a configuration of [ ⁇ /4 member 1/ ⁇ /4 member 2/reflective polarizing film] was obtained.
- the axial relationship of each member when the laminate 1 is viewed from the ⁇ /4 member 1 side is such that the slow axis direction of the ⁇ /4 member 1 is counterclockwise with the reflection axis direction of the reflective polarizing film being 0°.
- the direction was 45 degrees, and the slow axis direction of the ⁇ /4 member 2 was 45 degrees clockwise.
- Incident light that is linearly polarized light is converted into circularly polarized light by passing through ⁇ /4 member 1, and then converted into a straight line whose polarization direction is the same as the polarization direction of the incident light by passing through ⁇ /4 member 2.
- the reflection axis of the reflective polarizing film As a result of being converted into polarized light, it is reflected by the reflection axis of the reflective polarizing film.
- the light reflected by the reflection axis of the reflective polarizing film passes through the transmission axis of the reflective polarizing film after being re-reflected by a half mirror and is visually recognized by the user.
- Light transmitted through the reflection axis of the reflective polarizing film due to reflection leakage may be visually recognized by the user as an afterimage (ghost).
- the transmittance measurement of the laminate 1 is an evaluation model for reflection leakage of the reflective polarizing film in the display system according to the embodiment of the present invention, and it is evaluated that the smaller the transmittance is, the more afterimages (ghosts) can be suppressed. be able to.
- Example 1 A laminate C1 having a configuration of [ ⁇ /4 member 1/ ⁇ /4 member 2/reflective polarizing film] was obtained in the same manner as in Example 1 except that the axial relationship of each member was changed. Specifically, when the laminate C1 is viewed from the ⁇ /4 member 1 side, the axial relationship of each member is the same as that of the ⁇ /4 member 1, with the direction orthogonal to the reflection axis direction of the reflective polarizing film being 0°. The slow axis direction and the slow axis direction of the ⁇ /4 member 2 were both 45 degrees counterclockwise, and the reflection axis direction of the reflective polarizing film was 90 degrees.
- Incident light which is linearly polarized light, is converted into circularly polarized light by passing through ⁇ /4 member 1, and then converted into linearly polarized light whose polarization direction is orthogonal to the polarization direction of the incident light by passing through ⁇ /4 member 2.
- the transmittance measurement of the laminate C1 is performed according to the embodiment of the present invention in that the first ⁇ /4 member and the second ⁇ /4 member are arranged such that their slow axes are parallel to each other.
- Table 1 shows the axis angles of each member in the laminate when the polarization direction of the incident light is set to 0° when measuring the reflection axis transmittance.
- Table 2 shows the single transmittance Ts and reflective axis transmittance k2 of the laminate obtained in Example 1 or Comparative Example 1 and the reflective polarizing film (manufactured by Nitto Denko Corporation, product name "APCFG4") as Reference Example 1. .
- the first ⁇ /4 member and the second ⁇ /4 member are arranged such that their slow axes are orthogonal to each other. By doing so, it is possible to suppress reflection leakage at the reflection axis of the reflective polarizing film, compared to a configuration in which the slow axes are arranged parallel to each other.
- the present invention is not limited to the above embodiments, and various modifications are possible.
- it can be replaced with a configuration that is substantially the same as the configuration shown in the above embodiment, a configuration that has the same effect, or a configuration that can achieve the same objective.
- the display system according to the embodiment of the present invention can be used for a display body such as VR goggles, for example.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Polarising Elements (AREA)
Abstract
The present invention provides a display system that can achieve a lighter weight and greater definition in VR goggles, the display system comprising: a display element that has a display surface which emits, in the forward direction, light representing an image through a polarization member; a reflection unit that is disposed in front of the display element, includes a reflection-type polarization member, and reflects the light emitted from the display element; a first lens unit that is disposed on the optical path between the display element and the reflection unit; a half-mirror that is disposed between the display element and the first lens unit, allows the transmission of the light emitted from the display element, and reflects the light reflected by the reflection unit towards the reflection unit; a first λ/4 member that is disposed on the optical path between the display element and the half-mirror; and a second λ/4 member that is disposed on the optical path between the half-mirror and the reflection unit, wherein the slow axis of the first λ/4 number and the slow axis of the second λ/4 member are arranged so as to be substantially orthogonal to each other.
Description
本発明は、表示システム、表示方法、表示体および表示体の製造方法に関する。
The present invention relates to a display system, a display method, a display body, and a method for manufacturing a display body.
液晶表示装置およびエレクトロルミネセンス(EL)表示装置(例えば、有機EL表示装置)に代表される画像表示装置が急速に普及している。画像表示装置においては、画像表示を実現し、画像表示の性能を高めるために、一般的に、偏光部材、位相差部材等の光学部材が用いられている(例えば、特許文献1を参照)。
Image display devices represented by liquid crystal display devices and electroluminescence (EL) display devices (eg, organic EL display devices) are rapidly becoming popular. In image display devices, optical members such as polarizing members and retardation members are generally used to realize image display and improve image display performance (see, for example, Patent Document 1).
近年、画像表示装置の新たな用途が開発されている。例えば、Virtual Reality(VR)を実現するためのディスプレイ付きゴーグル(VRゴーグル)が製品化され始めている。VRゴーグルは様々な場面での利用が検討されていることから、その軽量化、高精細化等が望まれている。軽量化は、例えば、VRゴーグルに用いられるレンズを薄型化することで達成され得る。一方で、薄型レンズを用いた表示システムに適した光学部材の開発も望まれている。
In recent years, new uses for image display devices have been developed. For example, goggles with a display (VR goggles) for realizing Virtual Reality (VR) are beginning to be commercialized. Since VR goggles are being considered for use in a variety of situations, it is desired that they be lighter and have higher definition. Weight reduction can be achieved, for example, by making the lenses used in VR goggles thinner. On the other hand, there is also a desire for the development of optical members suitable for display systems using thin lenses.
上記に鑑み、本発明はVRゴーグルの軽量化、高精細化を実現し得る表示システムの提供を主たる目的とする。
In view of the above, the main purpose of the present invention is to provide a display system that can reduce the weight and increase the definition of VR goggles.
本発明の1つの局面によれば、以下の[1]~[7]の表示システムが提供される。
[1]ユーザに対して画像を表示する表示システムであって、
偏光部材を介して画像を表す光を前方に出射する表示面を有する表示素子と、
上記表示素子の前方に配置され、反射型偏光部材を含み、上記表示素子から出射された光を反射する反射部と、
上記表示素子と上記反射部との間の光路上に配置される第一レンズ部と、
上記表示素子と上記第一レンズ部との間に配置され、上記表示素子から出射された光を透過させ、上記反射部で反射された光を上記反射部に向けて反射させるハーフミラーと、
上記表示素子と上記ハーフミラーとの間の光路上に配置される第1のλ/4部材と、
上記ハーフミラーと上記反射部との間の光路上に配置される第2のλ/4部材と、
を備え、
上記第1のλ/4部材の遅相軸と上記第2のλ/4部材の遅相軸とが互いに略直交となるように配置されている、表示システム。
[2]上記偏光部材を介して出射された光の偏光方向と上記反射型偏光部材の反射軸とが互いに略平行である、[1]に記載の表示システム。
[3]上記表示素子に含まれる上記偏光部材の吸収軸と上記第1のλ/4部材の遅相軸とのなす角度は40°~50°であり、
上記表示素子に含まれる上記偏光部材の吸収軸と上記第2のλ/4部材の遅相軸とのなす角度は40°~50°である、[1]または[2]に記載の表示システム。
[4]上記第一レンズ部と上記ハーフミラーとが一体である、[1]~[3]のいずれかに記載の表示システム。
[5]上記反射部の前方に配置される第二レンズ部を備える、[1]~[4]のいずれかに記載の表示システム。
[6]上記反射部は、上記反射型偏光部材の前方に配置される吸収型偏光部材を含む、[1]~[5]のいずれかに記載の表示システム。
[7]上記反射型偏光部材の反射軸と上記吸収型偏光部材の吸収軸とは互いに略平行に配置される、[6]に記載の表示システム。 According to one aspect of the present invention, the following display systems [1] to [7] are provided.
[1] A display system that displays images to a user,
a display element having a display surface that emits light representing an image forward through a polarizing member;
a reflecting section disposed in front of the display element, including a reflective polarizing member, and reflecting light emitted from the display element;
a first lens section disposed on an optical path between the display element and the reflection section;
a half mirror disposed between the display element and the first lens part, which transmits the light emitted from the display element and reflects the light reflected by the reflection part toward the reflection part;
a first λ/4 member disposed on an optical path between the display element and the half mirror;
a second λ/4 member disposed on the optical path between the half mirror and the reflecting section;
Equipped with
A display system, wherein the slow axis of the first λ/4 member and the slow axis of the second λ/4 member are arranged to be substantially orthogonal to each other.
[2] The display system according to [1], wherein the polarization direction of the light emitted through the polarizing member and the reflection axis of the reflective polarizing member are substantially parallel to each other.
[3] The angle between the absorption axis of the polarizing member included in the display element and the slow axis of the first λ/4 member is 40° to 50°,
The display system according to [1] or [2], wherein the angle between the absorption axis of the polarizing member and the slow axis of the second λ/4 member included in the display element is 40° to 50°. .
[4] The display system according to any one of [1] to [3], wherein the first lens portion and the half mirror are integrated.
[5] The display system according to any one of [1] to [4], including a second lens section disposed in front of the reflecting section.
[6] The display system according to any one of [1] to [5], wherein the reflecting section includes an absorbing polarizing member disposed in front of the reflective polarizing member.
[7] The display system according to [6], wherein the reflection axis of the reflective polarizing member and the absorption axis of the absorptive polarizing member are arranged substantially parallel to each other.
[1]ユーザに対して画像を表示する表示システムであって、
偏光部材を介して画像を表す光を前方に出射する表示面を有する表示素子と、
上記表示素子の前方に配置され、反射型偏光部材を含み、上記表示素子から出射された光を反射する反射部と、
上記表示素子と上記反射部との間の光路上に配置される第一レンズ部と、
上記表示素子と上記第一レンズ部との間に配置され、上記表示素子から出射された光を透過させ、上記反射部で反射された光を上記反射部に向けて反射させるハーフミラーと、
上記表示素子と上記ハーフミラーとの間の光路上に配置される第1のλ/4部材と、
上記ハーフミラーと上記反射部との間の光路上に配置される第2のλ/4部材と、
を備え、
上記第1のλ/4部材の遅相軸と上記第2のλ/4部材の遅相軸とが互いに略直交となるように配置されている、表示システム。
[2]上記偏光部材を介して出射された光の偏光方向と上記反射型偏光部材の反射軸とが互いに略平行である、[1]に記載の表示システム。
[3]上記表示素子に含まれる上記偏光部材の吸収軸と上記第1のλ/4部材の遅相軸とのなす角度は40°~50°であり、
上記表示素子に含まれる上記偏光部材の吸収軸と上記第2のλ/4部材の遅相軸とのなす角度は40°~50°である、[1]または[2]に記載の表示システム。
[4]上記第一レンズ部と上記ハーフミラーとが一体である、[1]~[3]のいずれかに記載の表示システム。
[5]上記反射部の前方に配置される第二レンズ部を備える、[1]~[4]のいずれかに記載の表示システム。
[6]上記反射部は、上記反射型偏光部材の前方に配置される吸収型偏光部材を含む、[1]~[5]のいずれかに記載の表示システム。
[7]上記反射型偏光部材の反射軸と上記吸収型偏光部材の吸収軸とは互いに略平行に配置される、[6]に記載の表示システム。 According to one aspect of the present invention, the following display systems [1] to [7] are provided.
[1] A display system that displays images to a user,
a display element having a display surface that emits light representing an image forward through a polarizing member;
a reflecting section disposed in front of the display element, including a reflective polarizing member, and reflecting light emitted from the display element;
a first lens section disposed on an optical path between the display element and the reflection section;
a half mirror disposed between the display element and the first lens part, which transmits the light emitted from the display element and reflects the light reflected by the reflection part toward the reflection part;
a first λ/4 member disposed on an optical path between the display element and the half mirror;
a second λ/4 member disposed on the optical path between the half mirror and the reflecting section;
Equipped with
A display system, wherein the slow axis of the first λ/4 member and the slow axis of the second λ/4 member are arranged to be substantially orthogonal to each other.
[2] The display system according to [1], wherein the polarization direction of the light emitted through the polarizing member and the reflection axis of the reflective polarizing member are substantially parallel to each other.
[3] The angle between the absorption axis of the polarizing member included in the display element and the slow axis of the first λ/4 member is 40° to 50°,
The display system according to [1] or [2], wherein the angle between the absorption axis of the polarizing member and the slow axis of the second λ/4 member included in the display element is 40° to 50°. .
[4] The display system according to any one of [1] to [3], wherein the first lens portion and the half mirror are integrated.
[5] The display system according to any one of [1] to [4], including a second lens section disposed in front of the reflecting section.
[6] The display system according to any one of [1] to [5], wherein the reflecting section includes an absorbing polarizing member disposed in front of the reflective polarizing member.
[7] The display system according to [6], wherein the reflection axis of the reflective polarizing member and the absorption axis of the absorptive polarizing member are arranged substantially parallel to each other.
本発明の別の局面によれば、以下の[8]~[9]の表示方法が提供される。
[8]偏光部材を介して出射された画像を表す光を、第1のλ/4部材を通過させるステップと、
上記第1のλ/4部材を通過した光を、ハーフミラーおよび第一レンズ部を通過させるステップと、
上記ハーフミラーおよび上記第一レンズ部を通過した光を、第2のλ/4部材を通過させるステップと、
上記第2のλ/4部材を通過した光を、反射型偏光部材を含む反射部で上記ハーフミラーに向けて反射させるステップと、
上記反射部および上記ハーフミラーで反射させた光を、上記第2のλ/4部材により上記反射部を透過可能にするステップと、を有し、
上記第1のλ/4部材の遅相軸と上記第2のλ/4部材の遅相軸とが互いに略直交となるように配置されている、
表示方法。
[9]上記偏光部材を介して出射された光の偏光方向と上記反射型偏光部材の反射軸とが互いに略平行である、[8]に記載の表示方法。 According to another aspect of the present invention, the following display methods [8] to [9] are provided.
[8] Passing the light representing the image emitted through the polarizing member through the first λ/4 member;
a step of causing the light that has passed through the first λ/4 member to pass through a half mirror and a first lens portion;
passing the light that has passed through the half mirror and the first lens section through a second λ/4 member;
a step of reflecting the light that has passed through the second λ/4 member toward the half mirror by a reflecting section including a reflective polarizing member;
a step of allowing the light reflected by the reflection part and the half mirror to be transmitted through the reflection part by the second λ/4 member;
The slow axis of the first λ/4 member and the slow axis of the second λ/4 member are arranged to be substantially perpendicular to each other;
Display method.
[9] The display method according to [8], wherein the polarization direction of the light emitted through the polarizing member and the reflection axis of the reflective polarizing member are substantially parallel to each other.
[8]偏光部材を介して出射された画像を表す光を、第1のλ/4部材を通過させるステップと、
上記第1のλ/4部材を通過した光を、ハーフミラーおよび第一レンズ部を通過させるステップと、
上記ハーフミラーおよび上記第一レンズ部を通過した光を、第2のλ/4部材を通過させるステップと、
上記第2のλ/4部材を通過した光を、反射型偏光部材を含む反射部で上記ハーフミラーに向けて反射させるステップと、
上記反射部および上記ハーフミラーで反射させた光を、上記第2のλ/4部材により上記反射部を透過可能にするステップと、を有し、
上記第1のλ/4部材の遅相軸と上記第2のλ/4部材の遅相軸とが互いに略直交となるように配置されている、
表示方法。
[9]上記偏光部材を介して出射された光の偏光方向と上記反射型偏光部材の反射軸とが互いに略平行である、[8]に記載の表示方法。 According to another aspect of the present invention, the following display methods [8] to [9] are provided.
[8] Passing the light representing the image emitted through the polarizing member through the first λ/4 member;
a step of causing the light that has passed through the first λ/4 member to pass through a half mirror and a first lens portion;
passing the light that has passed through the half mirror and the first lens section through a second λ/4 member;
a step of reflecting the light that has passed through the second λ/4 member toward the half mirror by a reflecting section including a reflective polarizing member;
a step of allowing the light reflected by the reflection part and the half mirror to be transmitted through the reflection part by the second λ/4 member;
The slow axis of the first λ/4 member and the slow axis of the second λ/4 member are arranged to be substantially perpendicular to each other;
Display method.
[9] The display method according to [8], wherein the polarization direction of the light emitted through the polarizing member and the reflection axis of the reflective polarizing member are substantially parallel to each other.
本発明の別の局面によれば、上記[1]~[7]のいずれかに記載の表示システムを具備する表示体が提供される。
本発明のさらに別の局面によれば、上記[1]~[7]のいずれかに記載の表示システムを具備する表示体の製造方法が提供される。 According to another aspect of the present invention, there is provided a display body comprising the display system according to any one of [1] to [7] above.
According to yet another aspect of the present invention, there is provided a method for manufacturing a display body comprising the display system according to any one of [1] to [7] above.
本発明のさらに別の局面によれば、上記[1]~[7]のいずれかに記載の表示システムを具備する表示体の製造方法が提供される。 According to another aspect of the present invention, there is provided a display body comprising the display system according to any one of [1] to [7] above.
According to yet another aspect of the present invention, there is provided a method for manufacturing a display body comprising the display system according to any one of [1] to [7] above.
本発明の実施形態による表示システムによれば、VRゴーグルの軽量化、高精細化を実現し得る。
According to the display system according to the embodiment of the present invention, it is possible to realize a lighter weight and higher definition of VR goggles.
以下、図面を参照して本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。また、図面は説明をより明確にするため、実施の形態に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to these embodiments. Further, in order to make the explanation more clear, the drawings may schematically represent the width, thickness, shape, etc. of each part compared to the embodiment, but this is just an example, and the interpretation of the present invention is It is not limited.
(用語および記号の定義)
本明細書における用語および記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
「Re(λ)」は、23℃における波長λnmの光で測定した面内位相差である。例えば、「Re(550)」は、23℃における波長550nmの光で測定した面内位相差である。Re(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Re(λ)=(nx-ny)×dによって求められる。
(3)厚み方向の位相差(Rth)
「Rth(λ)」は、23℃における波長λnmの光で測定した厚み方向の位相差である。例えば、「Rth(550)」は、23℃における波長550nmの光で測定した厚み方向の位相差である。Rth(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Rth(λ)=(nx-nz)×dによって求められる。
(4)Nz係数
Nz係数は、Nz=Rth/Reによって求められる。
(5)角度
本明細書において角度に言及するときは、特段の言及がない限り、当該角度は基準方向に対して時計回りおよび反時計回りの両方を包含する。したがって、例えば「45°」は±45°を意味する。また、本明細書において、「略直交」は、90°±5°である場合を包含し、好ましくは90°±3°、より好ましくは90°±1°、さらに好ましくは90°±0.5°であり、「略平行」は、0°±5°である場合を包含し、好ましくは0°±3°、より好ましくは0°±1°、さらに好ましくは0°±0.5°である。 (Definition of terms and symbols)
Definitions of terms and symbols used herein are as follows.
(1) Refractive index (nx, ny, nz)
"nx" is the refractive index in the direction in which the in-plane refractive index is maximum (i.e., slow axis direction), and "ny" is the direction perpendicular to the slow axis in the plane (i.e., fast axis direction) "nz" is the refractive index in the thickness direction.
(2) In-plane phase difference (Re)
"Re(λ)" is an in-plane retardation measured with light having a wavelength of λnm at 23°C. For example, "Re(550)" is an in-plane retardation measured with light having a wavelength of 550 nm at 23°C. Re(λ) is determined by the formula: Re(λ)=(nx−ny)×d, where d (nm) is the thickness of the layer (film).
(3) Phase difference in thickness direction (Rth)
"Rth (λ)" is a retardation in the thickness direction measured with light having a wavelength of λ nm at 23°C. For example, "Rth (550)" is the retardation in the thickness direction measured with light having a wavelength of 550 nm at 23°C. Rth(λ) is determined by the formula: Rth(λ)=(nx−nz)×d, where d (nm) is the thickness of the layer (film).
(4) Nz coefficient The Nz coefficient is determined by Nz=Rth/Re.
(5) Angle When an angle is referred to in this specification, unless otherwise specified, the angle includes both clockwise and counterclockwise directions with respect to the reference direction. Therefore, for example, "45°" means ±45°. In addition, in this specification, "substantially orthogonal" includes cases where the angle is 90°±5°, preferably 90°±3°, more preferably 90°±1°, and still more preferably 90°±0. 5°, and "substantially parallel" includes the case of 0°±5°, preferably 0°±3°, more preferably 0°±1°, and even more preferably 0°±0.5°. It is.
本明細書における用語および記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
「Re(λ)」は、23℃における波長λnmの光で測定した面内位相差である。例えば、「Re(550)」は、23℃における波長550nmの光で測定した面内位相差である。Re(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Re(λ)=(nx-ny)×dによって求められる。
(3)厚み方向の位相差(Rth)
「Rth(λ)」は、23℃における波長λnmの光で測定した厚み方向の位相差である。例えば、「Rth(550)」は、23℃における波長550nmの光で測定した厚み方向の位相差である。Rth(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Rth(λ)=(nx-nz)×dによって求められる。
(4)Nz係数
Nz係数は、Nz=Rth/Reによって求められる。
(5)角度
本明細書において角度に言及するときは、特段の言及がない限り、当該角度は基準方向に対して時計回りおよび反時計回りの両方を包含する。したがって、例えば「45°」は±45°を意味する。また、本明細書において、「略直交」は、90°±5°である場合を包含し、好ましくは90°±3°、より好ましくは90°±1°、さらに好ましくは90°±0.5°であり、「略平行」は、0°±5°である場合を包含し、好ましくは0°±3°、より好ましくは0°±1°、さらに好ましくは0°±0.5°である。 (Definition of terms and symbols)
Definitions of terms and symbols used herein are as follows.
(1) Refractive index (nx, ny, nz)
"nx" is the refractive index in the direction in which the in-plane refractive index is maximum (i.e., slow axis direction), and "ny" is the direction perpendicular to the slow axis in the plane (i.e., fast axis direction) "nz" is the refractive index in the thickness direction.
(2) In-plane phase difference (Re)
"Re(λ)" is an in-plane retardation measured with light having a wavelength of λnm at 23°C. For example, "Re(550)" is an in-plane retardation measured with light having a wavelength of 550 nm at 23°C. Re(λ) is determined by the formula: Re(λ)=(nx−ny)×d, where d (nm) is the thickness of the layer (film).
(3) Phase difference in thickness direction (Rth)
"Rth (λ)" is a retardation in the thickness direction measured with light having a wavelength of λ nm at 23°C. For example, "Rth (550)" is the retardation in the thickness direction measured with light having a wavelength of 550 nm at 23°C. Rth(λ) is determined by the formula: Rth(λ)=(nx−nz)×d, where d (nm) is the thickness of the layer (film).
(4) Nz coefficient The Nz coefficient is determined by Nz=Rth/Re.
(5) Angle When an angle is referred to in this specification, unless otherwise specified, the angle includes both clockwise and counterclockwise directions with respect to the reference direction. Therefore, for example, "45°" means ±45°. In addition, in this specification, "substantially orthogonal" includes cases where the angle is 90°±5°, preferably 90°±3°, more preferably 90°±1°, and still more preferably 90°±0. 5°, and "substantially parallel" includes the case of 0°±5°, preferably 0°±3°, more preferably 0°±1°, and even more preferably 0°±0.5°. It is.
図1は本発明の1つの実施形態に係る表示システムの概略の構成を示す模式図である。図1では、表示システム2の各構成要素の配置および形状等を模式的に図示している。表示システム2は、表示素子12と、反射型偏光部材を含む反射部14と、第一レンズ部16と、ハーフミラー18と、第一位相差部材20と、第二位相差部材22と、第二レンズ部24とを備えている。反射部14は、表示素子12の表示面12a側である前方に配置されて、表示素子12から出射された光を反射し得る。第一レンズ部16は表示素子12と反射部14との間の光路上に配置され、ハーフミラー18は表示素子12と第一レンズ部16との間に配置されている。第一位相差部材20は表示素子12とハーフミラー18との間の光路上に配置され、第二位相差部材22はハーフミラー18と反射部14との間の光路上に配置されている。
FIG. 1 is a schematic diagram showing the general configuration of a display system according to one embodiment of the present invention. FIG. 1 schematically shows the arrangement, shape, etc. of each component of the display system 2. As shown in FIG. The display system 2 includes a display element 12, a reflection section 14 including a reflective polarizing member, a first lens section 16, a half mirror 18, a first retardation member 20, a second retardation member 22, and a second retardation member 22. It is equipped with two lens parts 24. The reflecting section 14 is disposed at the front of the display element 12 on the display surface 12a side, and can reflect light emitted from the display element 12. The first lens section 16 is arranged on the optical path between the display element 12 and the reflection section 14, and the half mirror 18 is arranged between the display element 12 and the first lens section 16. The first retardation member 20 is arranged on the optical path between the display element 12 and the half mirror 18, and the second retardation member 22 is arranged on the optical path between the half mirror 18 and the reflection section 14.
ハーフミラーから前方に配置される構成要素(図示例では、ハーフミラー18、第一レンズ部16、第二位相差部材22、反射部14および第二レンズ部24)をまとめてレンズ部(レンズ部4)と称する場合がある。
The components disposed in front of the half mirror (in the illustrated example, the half mirror 18, the first lens section 16, the second retardation member 22, the reflection section 14, and the second lens section 24) are collectively called a lens section (lens section). 4).
表示素子12は、例えば、液晶ディスプレイまたは有機ELディスプレイであり、画像を表示するための表示面12aを有している。表示面12aから出射される光は、例えば、表示素子12に含まれ得る偏光部材(代表的には、偏光フィルム)を通過して出射され、第1の直線偏光とされている。
The display element 12 is, for example, a liquid crystal display or an organic EL display, and has a display surface 12a for displaying images. The light emitted from the display surface 12a passes through a polarizing member (typically, a polarizing film) that may be included in the display element 12, and is emitted as first linearly polarized light.
第一位相差部材20は、第一位相差部材20に入射した第1の直線偏光を第1の円偏光に変換し得るλ/4部材である(以下、第一位相差部材を第1のλ/4部材と称する場合がある)。なお、第一位相差部材20は、表示素子12に一体に設けられてもよい。
The first retardation member 20 is a λ/4 member that can convert the first linearly polarized light incident on the first retardation member 20 into first circularly polarized light (hereinafter, the first retardation member is referred to as the first (sometimes referred to as a λ/4 member). Note that the first retardation member 20 may be provided integrally with the display element 12.
第一位相差部材20の面内位相差Re(550)は、例えば100nm~190nmであり、110nm~180nmであってもよく、130nm~160nmであってもよく、135nm~155nmであってもよい。
The in-plane retardation Re (550) of the first retardation member 20 is, for example, 100 nm to 190 nm, may be 110 nm to 180 nm, may be 130 nm to 160 nm, or may be 135 nm to 155 nm. .
第一位相差部材20は、好ましくは、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示す。第一位相差部材20のRe(450)/Re(550)は、例えば1未満であり、0.95以下であってよく、さらには0.90未満、さらには0.85以下であってもよい。第一位相差部材20のRe(450)/Re(550)は、例えば0.75以上である。
The first retardation member 20 preferably exhibits inverse dispersion wavelength characteristics in which the retardation value increases depending on the wavelength of the measurement light. Re(450)/Re(550) of the first retardation member 20 is, for example, less than 1 and may be 0.95 or less, further less than 0.90, and even 0.85 or less. good. Re(450)/Re(550) of the first retardation member 20 is, for example, 0.75 or more.
1つの実施形態において、第一位相差部材20は、Re(400)/Re(550)<0.85、Re(650)/Re(550)>1.03、およびRe(750)/Re(550)>1.05を全て満たす。第一位相差部材20は、0.65<Re(400)/Re(550)<0.80(好ましくは、0.7<Re(400)/Re(550)<0.75)、1.0<Re(650)/Re(550)<1.25(好ましくは、1.05<Re(650)/Re(550)<1.20)、および1.05<Re(750)/Re(550)<1.40(好ましくは、1.08<Re(750)/Re(550)<1.36)から選択される少なくとも1つを満たすことが好ましく、より好ましくは少なくとも2つを満たし、さらに好ましくは全てを満たす。
In one embodiment, the first retardation member 20 has Re(400)/Re(550)<0.85, Re(650)/Re(550)>1.03, and Re(750)/Re( 550)>1.05. The first retardation member 20 has 0.65<Re(400)/Re(550)<0.80 (preferably 0.7<Re(400)/Re(550)<0.75), 1. 0<Re(650)/Re(550)<1.25 (preferably 1.05<Re(650)/Re(550)<1.20) and 1.05<Re(750)/Re( 550)<1.40 (preferably 1.08<Re(750)/Re(550)<1.36), more preferably at least two. More preferably, all of them are satisfied.
第一位相差部材20は、好ましくは屈折率特性がnx>ny≧nzの関係を示す。ここで「ny=nz」はnyとnzが完全に等しい場合だけではなく、実質的に等しい場合を包含する。したがって、本発明の効果を損なわない範囲で、ny<nzとなる場合があり得る。第一位相差部材20のNz係数は、好ましくは0.9~3、より好ましくは0.9~2.5、さらに好ましくは0.9~1.5、特に好ましくは0.9~1.3である。
The first retardation member 20 preferably exhibits a refractive index characteristic of nx>ny≧nz. Here, "ny=nz" includes not only the case where ny and nz are completely equal, but also the case where ny and nz are substantially equal. Therefore, there may be a case where ny<nz within a range that does not impair the effects of the present invention. The Nz coefficient of the first retardation member 20 is preferably 0.9 to 3, more preferably 0.9 to 2.5, even more preferably 0.9 to 1.5, particularly preferably 0.9 to 1. It is 3.
第一位相差部材20は、上記特性を満足し得る任意の適切な材料で形成される。第一位相差部材20は、例えば、樹脂フィルムの延伸フィルムまたは液晶化合物の配向固化層であり得る。
The first retardation member 20 is formed of any suitable material that can satisfy the above characteristics. The first retardation member 20 may be, for example, a stretched resin film or an oriented solidified layer of a liquid crystal compound.
上記樹脂フィルムに含まれる樹脂としては、ポリカーボネート系樹脂、ポリエステルカーボネート系樹脂、ポリエステル系樹脂、ポリビニルアセタール系樹脂、ポリアリレート系樹脂、環状オレフィン系樹脂、セルロース系樹脂、ポリビニルアルコール系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリエーテル系樹脂、ポリスチレン系樹脂、アクリル系樹脂等が挙げられる。これらの樹脂は、単独で用いてもよく、組み合わせて(例えば、ブレンド、共重合)用いてもよい。第一位相差部材20が逆分散波長特性を示す場合、ポリカーボネート系樹脂またはポリエステルカーボネート系樹脂(以下、単にポリカーボネート系樹脂と称する場合がある)を含む樹脂フィルムが好適に用いられ得る。
The resins contained in the above resin film include polycarbonate resin, polyester carbonate resin, polyester resin, polyvinyl acetal resin, polyarylate resin, cyclic olefin resin, cellulose resin, polyvinyl alcohol resin, and polyamide resin. , polyimide resin, polyether resin, polystyrene resin, acrylic resin, and the like. These resins may be used alone or in combination (for example, blended or copolymerized). When the first retardation member 20 exhibits reverse dispersion wavelength characteristics, a resin film containing a polycarbonate resin or a polyester carbonate resin (hereinafter sometimes simply referred to as a polycarbonate resin) may be suitably used.
上記ポリカーボネート系樹脂としては、本発明の効果が得られる限りにおいて、任意の適切なポリカーボネート系樹脂を用いることができる。例えば、ポリカーボネート系樹脂は、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、脂環式ジオール、脂環式ジメタノール、ジ、トリまたはポリエチレングリコール、ならびに、アルキレングリコールまたはスピログリコールからなる群から選択される少なくとも1つのジヒドロキシ化合物に由来する構造単位と、を含む。好ましくは、ポリカーボネート系樹脂は、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、脂環式ジメタノールに由来する構造単位ならびに/あるいはジ、トリまたはポリエチレングリコールに由来する構造単位と、を含み;さらに好ましくは、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、ジ、トリまたはポリエチレングリコールに由来する構造単位と、を含む。ポリカーボネート系樹脂は、必要に応じてその他のジヒドロキシ化合物に由来する構造単位を含んでいてもよい。なお、第一位相差部材に好適に用いられ得るポリカーボネート系樹脂および第一位相差部材の形成方法の詳細は、例えば、特開2014-10291号公報、特開2014-26266号公報、特開2015-212816号公報、特開2015-212817号公報、特開2015-212818号公報に記載されており、これらの公報の記載は本明細書に参考として援用される。
Any suitable polycarbonate resin can be used as the polycarbonate resin as long as the effects of the present invention can be obtained. For example, polycarbonate resins contain structural units derived from fluorene-based dihydroxy compounds, structural units derived from isosorbide-based dihydroxy compounds, alicyclic diols, alicyclic dimethanols, di-, tri-, or polyethylene glycols, and alkylene-based dihydroxy compounds. a structural unit derived from at least one dihydroxy compound selected from the group consisting of glycol or spiroglycol. Preferably, the polycarbonate resin contains a structural unit derived from a fluorene dihydroxy compound, a structural unit derived from an isosorbide dihydroxy compound, a structural unit derived from an alicyclic dimethanol, and/or a di, tri, or polyethylene glycol. More preferably, it contains a structural unit derived from a fluorene dihydroxy compound, a structural unit derived from an isosorbide dihydroxy compound, and a structural unit derived from di, tri or polyethylene glycol. . The polycarbonate resin may contain structural units derived from other dihydroxy compounds as necessary. Note that details of the polycarbonate-based resin that can be suitably used for the first retardation member and the method for forming the first retardation member can be found, for example, in JP-A No. 2014-10291, JP-A No. 2014-26266, and JP-A No. 2015-2015. It is described in JP-A-212816, JP-A-2015-212817, and JP-A-2015-212818, and the descriptions of these publications are incorporated herein by reference.
樹脂フィルムの延伸フィルムで構成される第一位相差部材20の厚みは、例えば10μm~100μmであり、好ましくは10μm~70μm、より好ましくは10μm~40μm、さらに好ましくは20μm~30μmである。
The thickness of the first retardation member 20 made of a stretched resin film is, for example, 10 μm to 100 μm, preferably 10 μm to 70 μm, more preferably 10 μm to 40 μm, and still more preferably 20 μm to 30 μm.
上記液晶化合物の配向固化層は、液晶化合物が層内で所定の方向に配向し、その配向状態が固定されている層である。なお、「配向固化層」は、後述のように液晶モノマーを硬化させて得られる配向硬化層を包含する概念である。第一位相差部材においては、代表的には、棒状の液晶化合物が第一位相差部材の遅相軸方向に並んだ状態で配向している(ホモジニアス配向)。棒状の液晶化合物として、例えば、液晶ポリマーおよび液晶モノマーが挙げられる。液晶化合物は、好ましくは、重合可能である。液晶化合物が重合可能であると、液晶化合物を配向させた後に重合させることで、液晶化合物の配向状態を固定できる。
The liquid crystal compound alignment and solidification layer is a layer in which the liquid crystal compound is aligned in a predetermined direction within the layer, and the alignment state is fixed. In addition, the "alignment hardened layer" is a concept that includes an orientation hardened layer obtained by curing a liquid crystal monomer as described below. In the first retardation member, rod-shaped liquid crystal compounds are typically aligned in the slow axis direction of the first retardation member (homogeneous alignment). Examples of rod-shaped liquid crystal compounds include liquid crystal polymers and liquid crystal monomers. The liquid crystal compound is preferably polymerizable. If the liquid crystal compound is polymerizable, the alignment state of the liquid crystal compound can be fixed by aligning the liquid crystal compound and then polymerizing it.
上記液晶化合物の配向固化層(液晶配向固化層)は、所定の基材の表面に配向処理を施し、当該表面に液晶化合物を含む塗工液を塗工して当該液晶化合物を上記配向処理に対応する方向に配向させ、当該配向状態を固定することにより形成され得る。配向処理としては、任意の適切な配向処理が採用され得る。具体的には、機械的な配向処理、物理的な配向処理、化学的な配向処理が挙げられる。機械的な配向処理の具体例としては、ラビング処理、延伸処理が挙げられる。物理的な配向処理の具体例としては、磁場配向処理、電場配向処理が挙げられる。化学的な配向処理の具体例としては、斜方蒸着法、光配向処理が挙げられる。各種配向処理の処理条件は、目的に応じて任意の適切な条件が採用され得る。
The liquid crystal compound alignment and solidification layer (liquid crystal alignment solidification layer) is produced by subjecting the surface of a predetermined base material to an alignment treatment, applying a coating liquid containing the liquid crystal compound to the surface, and subjecting the liquid crystal compound to the alignment treatment. It can be formed by orienting it in a corresponding direction and fixing the orientation state. Any suitable orientation treatment may be employed as the orientation treatment. Specifically, mechanical alignment treatment, physical alignment treatment, and chemical alignment treatment can be mentioned. Specific examples of mechanical alignment treatment include rubbing treatment and stretching treatment. Specific examples of physical alignment treatment include magnetic field alignment treatment and electric field alignment treatment. Specific examples of chemical alignment treatment include oblique vapor deposition and photo alignment treatment. As the treatment conditions for various orientation treatments, any appropriate conditions may be adopted depending on the purpose.
液晶化合物の配向は、液晶化合物の種類に応じて液晶相を示す温度で処理することにより行われる。このような温度処理を行うことにより、液晶化合物が液晶状態をとり、基材表面の配向処理方向に応じて当該液晶化合物が配向する。
The alignment of the liquid crystal compound is carried out by treatment at a temperature that exhibits a liquid crystal phase depending on the type of liquid crystal compound. By performing such temperature treatment, the liquid crystal compound assumes a liquid crystal state, and the liquid crystal compound is oriented in accordance with the orientation treatment direction of the substrate surface.
配向状態の固定は、1つの実施形態においては、上記のように配向した液晶化合物を冷却することにより行われる。液晶化合物が重合性または架橋性である場合には、配向状態の固定は、上記のように配向した液晶化合物に重合処理または架橋処理を施すことにより行われる。
In one embodiment, the alignment state is fixed by cooling the liquid crystal compound aligned as described above. When the liquid crystal compound is polymerizable or crosslinkable, the alignment state is fixed by subjecting the liquid crystal compound aligned as described above to polymerization treatment or crosslinking treatment.
上記液晶化合物としては、任意の適切な液晶ポリマーおよび/または液晶モノマーが用いられる。液晶ポリマーおよび液晶モノマーは、それぞれ単独で用いてもよく、組み合わせてもよい。液晶化合物の具体例および液晶配向固化層の作製方法は、例えば、特開2006-163343号公報、特開2006-178389号公報、国際公開第2018/123551号公報に記載されている。これらの公報の記載は本明細書に参考として援用される。
Any suitable liquid crystal polymer and/or liquid crystal monomer can be used as the liquid crystal compound. The liquid crystal polymer and the liquid crystal monomer may be used alone or in combination. Specific examples of liquid crystal compounds and methods for producing liquid crystal alignment solidified layers are described in, for example, JP 2006-163343A, JP 2006-178389A, and WO 2018/123551A. The descriptions of these publications are incorporated herein by reference.
液晶配向固化層で構成される第一位相差部材20の厚みは、例えば1μm~10μmであり、好ましくは1μm~8μm、より好ましくは1μm~6μm、さらに好ましくは1μm~4μmである。
The thickness of the first retardation member 20 composed of the liquid crystal alignment solidified layer is, for example, 1 μm to 10 μm, preferably 1 μm to 8 μm, more preferably 1 μm to 6 μm, and still more preferably 1 μm to 4 μm.
ハーフミラー18は、表示素子12から出射された光を透過させ、反射部14で反射された光を反射部14に向けて反射させる。ハーフミラー18は、第一レンズ部16に一体に設けられている。
The half mirror 18 transmits the light emitted from the display element 12 and reflects the light reflected by the reflection section 14 toward the reflection section 14 . The half mirror 18 is provided integrally with the first lens section 16.
第二位相差部材22は、反射部14およびハーフミラー18で反射させた光を、反射型偏光部材を含む反射部14を透過させ得るλ/4部材である(以下、第二位相差部材を第2のλ/4部材と称する場合がある)。なお、第二位相差部材22は、第一レンズ部16に一体に設けられてもよい。
The second retardation member 22 is a λ/4 member that can transmit the light reflected by the reflection part 14 and the half mirror 18 through the reflection part 14 including a reflective polarizing member (hereinafter referred to as the second retardation member). (sometimes referred to as the second λ/4 member). Note that the second retardation member 22 may be provided integrally with the first lens portion 16.
第二位相差部材22の面内位相差Re(550)は、例えば100nm~190nmであり、110nm~180nmであってもよく、130nm~160nmであってもよく、135nm~155nmであってもよい。
The in-plane retardation Re (550) of the second retardation member 22 is, for example, 100 nm to 190 nm, may be 110 nm to 180 nm, may be 130 nm to 160 nm, or may be 135 nm to 155 nm. .
第二位相差部材22は、好ましくは、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示す。第二位相差部材22のRe(450)/Re(550)は、例えば1未満であり、0.95以下であってよく、さらには0.90未満、さらには0.85以下であってもよい。第二位相差部材22のRe(450)/Re(550)は、例えば0.75以上である。
The second retardation member 22 preferably exhibits inverse dispersion wavelength characteristics in which the retardation value increases depending on the wavelength of the measurement light. Re(450)/Re(550) of the second retardation member 22 is, for example, less than 1 and may be 0.95 or less, further less than 0.90, and even 0.85 or less. good. Re(450)/Re(550) of the second retardation member 22 is, for example, 0.75 or more.
1つの実施形態において、第二位相差部材22は、Re(400)/Re(550)<0.85、Re(650)/Re(550)>1.03、およびRe(750)/Re(550)>1.05を全て満たす。第二位相差部材22は、0.65<Re(400)/Re(550)<0.80(好ましくは、0.7<Re(400)/Re(550)<0.75)、1.0<Re(650)/Re(550)<1.25(好ましくは、1.05<Re(650)/Re(550)<1.20)、および1.05<Re(750)/Re(550)<1.40(好ましくは、1.08<Re(750)/Re(550)<1.36)から選択される少なくとも1つを満たすことが好ましく、より好ましくは少なくとも2つを満たし、さらに好ましくは全てを満たす。
In one embodiment, the second retardation member 22 has Re(400)/Re(550)<0.85, Re(650)/Re(550)>1.03, and Re(750)/Re( 550)>1.05. The second retardation member 22 has 0.65<Re(400)/Re(550)<0.80 (preferably 0.7<Re(400)/Re(550)<0.75), 1. 0<Re(650)/Re(550)<1.25 (preferably 1.05<Re(650)/Re(550)<1.20) and 1.05<Re(750)/Re( 550)<1.40 (preferably 1.08<Re(750)/Re(550)<1.36), more preferably at least two. More preferably, all of them are satisfied.
第二位相差部材22は、好ましくは屈折率特性がnx>ny≧nzの関係を示す。ここで「ny=nz」はnyとnzが完全に等しい場合だけではなく、実質的に等しい場合を包含する。したがって、本発明の効果を損なわない範囲で、ny<nzとなる場合があり得る。第二位相差部材22のNz係数は、好ましくは0.9~3、より好ましくは0.9~2.5、さらに好ましくは0.9~1.5、特に好ましくは0.9~1.3である。
The second retardation member 22 preferably exhibits a refractive index characteristic of nx>ny≧nz. Here, "ny=nz" includes not only the case where ny and nz are completely equal, but also the case where ny and nz are substantially equal. Therefore, there may be a case where ny<nz within a range that does not impair the effects of the present invention. The Nz coefficient of the second retardation member 22 is preferably 0.9 to 3, more preferably 0.9 to 2.5, even more preferably 0.9 to 1.5, particularly preferably 0.9 to 1. It is 3.
第二位相差部材22は、上記特性を満足し得る任意の適切な材料で形成される。第二位相差部材22は、例えば、樹脂フィルムの延伸フィルムまたは液晶化合物の配向固化層であり得る。樹脂フィルムの延伸フィルムまたは液晶化合物の配向固化層で構成される第二位相差部材22については、第一位相差部材20と同様の説明を適用することができる。第一位相差部材20と第二位相差部材22とは、同じ構成(形成材料、厚み、光学特性等)の部材であってもよく、異なる構成の部材であってもよい。
The second retardation member 22 is formed of any suitable material that can satisfy the above characteristics. The second retardation member 22 may be, for example, a stretched resin film or an oriented solidified layer of a liquid crystal compound. The same explanation as for the first retardation member 20 can be applied to the second retardation member 22 made of a stretched resin film or an oriented solidified layer of a liquid crystal compound. The first retardation member 20 and the second retardation member 22 may have the same configuration (forming material, thickness, optical properties, etc.), or may have different configurations.
反射部14は、吸収型偏光部材(代表的には、吸収型偏光フィルム)を含んでいてもよい。この場合、吸収型偏光部材は、反射型偏光部材の前方(目に近い側)に配置され得る。反射型偏光部材の反射軸と吸収型偏光部材の吸収軸とは互いに略平行に配置され得る。例えば、反射型偏光部材と吸収型偏光部材とは接着層を介して積層され、反射部14は反射型偏光部材と吸収型偏光部材とを有する積層体を含んでいてもよい。
The reflecting section 14 may include an absorption type polarizing member (typically, an absorption type polarizing film). In this case, the absorptive polarizing member may be placed in front of the reflective polarizing member (on the side closer to the eyes). The reflection axis of the reflective polarizing member and the absorption axis of the absorptive polarizing member may be arranged substantially parallel to each other. For example, the reflective polarizing member and the absorptive polarizing member may be laminated with an adhesive layer interposed therebetween, and the reflective section 14 may include a laminate having the reflective polarizing member and the absorbing polarizing member.
上記反射型偏光部材は、その透過軸に平行な偏光(代表的には、直線偏光)をその偏光状態を維持したまま透過させ、それ以外の偏光状態の光を反射し得る。反射型偏光部材の直交透過率(Tc)は、例えば0.01%~3%であり得る。反射型偏光部材の単体透過率(Ts)は、例えば43%~49%、好ましくは45~47%であり得る。反射型偏光部材の偏光度(P)は、例えば92%~99.99%であり得る。反射型偏光部材としては、代表的には、多層構造を有するフィルム(反射型偏光フィルムと称する場合がある)で構成される。反射型偏光フィルムの市販品として、例えば、3M社製の商品名「DBEF」、「APF」、日東電工社製の商品名「APCF」が挙げられる。上記吸収型偏光部材は、代表的には、二色性物質を含む樹脂フィルム(吸収型偏光膜と称する場合がある)で構成される。
The reflective polarizing member can transmit polarized light parallel to its transmission axis (typically, linearly polarized light) while maintaining its polarized state, and can reflect light in other polarized states. The cross transmittance (Tc) of the reflective polarizing member may be, for example, 0.01% to 3%. The single transmittance (Ts) of the reflective polarizing member may be, for example, 43% to 49%, preferably 45 to 47%. The degree of polarization (P) of the reflective polarizing member may be, for example, 92% to 99.99%. The reflective polarizing member is typically composed of a film having a multilayer structure (sometimes referred to as a reflective polarizing film). Commercially available reflective polarizing films include, for example, 3M's product names "DBEF" and "APF" and Nitto Denko's product name "APCF". The absorption type polarizing member is typically composed of a resin film (sometimes referred to as an absorption type polarizing film) containing a dichroic substance.
代表的には、第一位相差部材20の遅相軸と第二位相差部材22の遅相軸とは、互いに略直交に配置される。また、表示素子12に含まれる偏光部材の吸収軸と反射部14に含まれる反射型偏光部材の反射軸とは互いに略直交に配置され得る(換言すれば、表示素子12に含まれる偏光部材を介して出射された光の偏光方向と反射部14に含まれる反射型偏光部材の反射軸とは互いに略平行であり得る)。表示素子12に含まれる偏光部材の吸収軸と第一位相差部材20の遅相軸とのなす角度は、例えば40°~50°であり、42°~48°であってもよく、約45°であってもよい。表示素子12に含まれる偏光部材の吸収軸と第二位相差部材22の遅相軸とのなす角度は、例えば40°~50°であり、42°~48°であってもよく、約45°であってもよい。各部材の軸関係をこのような状態に調整することにより、反射型偏光部材で反射されるべき光が反射軸を透過して、残像(ゴースト)としてユーザに視認されることを抑制することができる。
Typically, the slow axis of the first phase difference member 20 and the slow axis of the second phase difference member 22 are arranged substantially perpendicular to each other. Further, the absorption axis of the polarizing member included in the display element 12 and the reflection axis of the reflective polarizing member included in the reflecting section 14 may be arranged substantially perpendicular to each other (in other words, the polarizing member included in the display element 12 (The polarization direction of the light emitted through the reflection part 14 and the reflection axis of the reflective polarization member included in the reflection part 14 may be substantially parallel to each other.) The angle between the absorption axis of the polarizing member included in the display element 12 and the slow axis of the first retardation member 20 is, for example, 40° to 50°, may be 42° to 48°, and is about 45°. It may be °. The angle between the absorption axis of the polarizing member included in the display element 12 and the slow axis of the second retardation member 22 is, for example, 40° to 50°, may be 42° to 48°, and is about 45°. It may be °. By adjusting the axial relationship of each member to such a state, it is possible to suppress light that should be reflected by the reflective polarizing member from transmitting through the reflective axis and being visually recognized by the user as an afterimage (ghost). can.
以下、図1および図2を参照しながら、本発明の1つの実施形態における表示システムについて説明する。図2(a)は、当該表示システムにおける光の進行を説明する概略図であり、図2(b)は、当該表示システムにおいて各部材を透過することまたは各部材に反射されることによる光の偏光状態の変化を説明する概略図である。図2中、表示素子12に付された実線の矢印は表示素子12に含まれる偏光部材の吸収軸方向を示し、第一位相差部材20および第二位相差部材22に付された矢印は遅相軸方向を示し、反射部14に含まれる反射型偏光部材14aに付された実線の矢印は反射軸方向を示し、点線の矢印は各偏光部材の透過軸方向を示す。
Hereinafter, a display system in one embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. 2(a) is a schematic diagram illustrating the progression of light in the display system, and FIG. 2(b) is a diagram illustrating the progress of light in the display system as it passes through each member or is reflected by each member. FIG. 3 is a schematic diagram illustrating changes in polarization state. In FIG. 2, the solid arrows attached to the display element 12 indicate the absorption axis direction of the polarizing member included in the display element 12, and the arrows attached to the first retardation member 20 and the second retardation member 22 indicate the direction of the absorption axis of the polarizing member included in the display element 12. The solid-line arrows attached to the reflective polarizing member 14a included in the reflecting section 14 indicate the phase axis direction, and the dotted-line arrows indicate the transmission axis direction of each polarizing member.
表示素子12から偏光部材を介して第1の直線偏光として出射される光Lは、第1のλ/4部材20によって第1の円偏光に変換される。第1の円偏光は、ハーフミラー18および第一レンズ部16(図2では図示せず)を通過し、第2のλ/4部材22により第1の直線偏光と偏光方向が平行である第2の直線偏光に変換される。第2の直線偏光は、その偏光方向が反射部14に含まれる反射型偏光部材14aの反射軸と同方向(略平行)である。よって、反射部14に入射した第2の直線偏光は、反射型偏光部材14aによってハーフミラー18に向けて反射される。
The light L emitted from the display element 12 as first linearly polarized light via the polarizing member is converted into first circularly polarized light by the first λ/4 member 20. The first circularly polarized light passes through the half mirror 18 and the first lens section 16 (not shown in FIG. 2), and is passed through the second λ/4 member 22 to form the first circularly polarized light whose polarization direction is parallel to that of the first linearly polarized light. It is converted into linearly polarized light of 2. The polarization direction of the second linearly polarized light is in the same direction (substantially parallel) as the reflection axis of the reflective polarizing member 14a included in the reflection section 14. Therefore, the second linearly polarized light incident on the reflection section 14 is reflected toward the half mirror 18 by the reflective polarizing member 14a.
反射部14で反射された第2の直線偏光は第2のλ/4部材22により第2の円偏光に変換される。第2の円偏光の回転方向は、第1の円偏光の回転方向と同方向である。第2のλ/4部材22から出射された第2の円偏光は第一レンズ部16を通過してハーフミラー18で反射されて、第2の円偏光と逆方向に回転する第3の円偏光に変換される。ハーフミラー18で反射された第3の円偏光は、第一レンズ部16を通過し、第2のλ/4部材22により第3の直線偏光に変換される。第3の直線偏光の偏光方向は、第2の直線偏光との偏光方向と直交しており、反射型偏光部材14aの透過軸と同方向(略平行)である。よって、第3の直線偏光は、反射型偏光部材14aを透過することができる。また、図示しないが、反射部が吸収型偏光部材を含む場合、その吸収軸が反射型偏光部材14aの反射軸と略平行になるように配置されることから、反射型偏光部材14aを透過した第3の直線偏光は、そのまま吸収型偏光部材を透過することができる。
The second linearly polarized light reflected by the reflecting section 14 is converted into second circularly polarized light by the second λ/4 member 22. The rotation direction of the second circularly polarized light is the same as the rotation direction of the first circularly polarized light. The second circularly polarized light emitted from the second λ/4 member 22 passes through the first lens section 16 and is reflected by the half mirror 18, forming a third circle that rotates in the opposite direction to the second circularly polarized light. converted into polarized light. The third circularly polarized light reflected by the half mirror 18 passes through the first lens section 16 and is converted into third linearly polarized light by the second λ/4 member 22. The polarization direction of the third linearly polarized light is orthogonal to the polarization direction of the second linearly polarized light, and is in the same direction (substantially parallel) as the transmission axis of the reflective polarizing member 14a. Therefore, the third linearly polarized light can be transmitted through the reflective polarizing member 14a. Further, although not shown, when the reflective section includes an absorption type polarizing member, the absorption axis thereof is arranged to be approximately parallel to the reflection axis of the reflective polarizing member 14a, so that the light transmitted through the reflective polarizing member 14a is The third linearly polarized light can pass through the absorptive polarizing member as it is.
反射部14を透過した光は、第二レンズ部24を通過して、ユーザの目26に入射する。
The light that has passed through the reflection section 14 passes through the second lens section 24 and enters the user's eyes 26 .
図2では、表示素子12側から見た場合に、第一位相差部材20および第二位相差部材22の遅相軸がそれぞれ、表示素子12に含まれる偏光部材の吸収軸に対して反時計回りに45°および時計回りに45°の角度をなすように配置されているが、これらが時計回りに45°および反時計回りに45°の角度をなすように配置されている場合にも、上記と同様の説明が適用できる。
In FIG. 2, when viewed from the display element 12 side, the slow axes of the first retardation member 20 and the second retardation member 22 are counterclockwise with respect to the absorption axis of the polarizing member included in the display element 12. are arranged at an angle of 45° clockwise and 45° clockwise, but they are also arranged at an angle of 45° clockwise and 45° counterclockwise. Similar explanations as above apply.
以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例になんら限定されるものではない。なお、実施例等における、試験および評価方法は以下のとおりである。なお、「部」と記載されている場合は、特記事項がない限り「重量部」を意味し、「%」と記載されている場合は、特記事項がない限り「重量%」を意味する。
Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples in any way. In addition, the test and evaluation methods in Examples and the like are as follows. In addition, when it is written as "parts", it means "parts by weight" unless there are special notes, and when it is written as "%", it means "wt%" unless there are special notes.
(1)厚み
10μm以下の厚みは、走査型電子顕微鏡(日本電子社製、製品名「JSM-7100F」)を用いて測定した。10μmを超える厚みは、デジタルマイクロメーター(アンリツ社製、製品名「KC-351C」)を用いて測定した。
(2)面内位相差Re(λ)
λ/4部材の幅方向中央部および両端部を、一辺が当該部材の幅方向と平行となるようにして幅50mm、長さ50mmの正方形状に切り出して試料を作成した。この試料を、ミュラーマトリクス・ポラリメーター(Axometrics社製 製品名「Axoscan」)を用いて、23℃における各波長での面内位相差を測定した。
(3)単体透過率および偏光度
分光光度計(大塚電子社製、「LPF-200」)を用いて、積層体の単体透過率Ts、平行透過率Tp、直交透過率Tcを測定した。これらのTs、TpおよびTcは、JIS Z8701の2度視野(C光源)により測定して視感度補正を行なったY値である。得られたTpおよびTcから、下記式を用いて偏光度Pを求めた。
偏光度(%)={(Tp-Tc)/(Tp+Tc)}1/2×100 (1) Thickness The thickness of 10 μm or less was measured using a scanning electron microscope (manufactured by JEOL Ltd., product name “JSM-7100F”). Thickness exceeding 10 μm was measured using a digital micrometer (manufactured by Anritsu Corporation, product name “KC-351C”).
(2) In-plane phase difference Re(λ)
A sample was prepared by cutting out the central part and both ends of the λ/4 member in the width direction into a square having a width of 50 mm and a length of 50 mm, with one side parallel to the width direction of the member. The in-plane retardation of this sample at each wavelength at 23° C. was measured using a Mueller matrix polarimeter (manufactured by Axometrics, product name “Axoscan”).
(3) Single transmittance and polarization degree Using a spectrophotometer (manufactured by Otsuka Electronics Co., Ltd., "LPF-200"), the single transmittance Ts, parallel transmittance Tp, and cross transmittance Tc of the laminate were measured. These Ts, Tp, and Tc are Y values measured using a 2-degree visual field (C light source) according to JIS Z8701 and subjected to visibility correction. From the obtained Tp and Tc, the degree of polarization P was determined using the following formula.
Degree of polarization (%) = {(Tp-Tc)/(Tp+Tc)} 1/2 ×100
10μm以下の厚みは、走査型電子顕微鏡(日本電子社製、製品名「JSM-7100F」)を用いて測定した。10μmを超える厚みは、デジタルマイクロメーター(アンリツ社製、製品名「KC-351C」)を用いて測定した。
(2)面内位相差Re(λ)
λ/4部材の幅方向中央部および両端部を、一辺が当該部材の幅方向と平行となるようにして幅50mm、長さ50mmの正方形状に切り出して試料を作成した。この試料を、ミュラーマトリクス・ポラリメーター(Axometrics社製 製品名「Axoscan」)を用いて、23℃における各波長での面内位相差を測定した。
(3)単体透過率および偏光度
分光光度計(大塚電子社製、「LPF-200」)を用いて、積層体の単体透過率Ts、平行透過率Tp、直交透過率Tcを測定した。これらのTs、TpおよびTcは、JIS Z8701の2度視野(C光源)により測定して視感度補正を行なったY値である。得られたTpおよびTcから、下記式を用いて偏光度Pを求めた。
偏光度(%)={(Tp-Tc)/(Tp+Tc)}1/2×100 (1) Thickness The thickness of 10 μm or less was measured using a scanning electron microscope (manufactured by JEOL Ltd., product name “JSM-7100F”). Thickness exceeding 10 μm was measured using a digital micrometer (manufactured by Anritsu Corporation, product name “KC-351C”).
(2) In-plane phase difference Re(λ)
A sample was prepared by cutting out the central part and both ends of the λ/4 member in the width direction into a square having a width of 50 mm and a length of 50 mm, with one side parallel to the width direction of the member. The in-plane retardation of this sample at each wavelength at 23° C. was measured using a Mueller matrix polarimeter (manufactured by Axometrics, product name “Axoscan”).
(3) Single transmittance and polarization degree Using a spectrophotometer (manufactured by Otsuka Electronics Co., Ltd., "LPF-200"), the single transmittance Ts, parallel transmittance Tp, and cross transmittance Tc of the laminate were measured. These Ts, Tp, and Tc are Y values measured using a 2-degree visual field (C light source) according to JIS Z8701 and subjected to visibility correction. From the obtained Tp and Tc, the degree of polarization P was determined using the following formula.
Degree of polarization (%) = {(Tp-Tc)/(Tp+Tc)} 1/2 ×100
[製造例1:λ/4部材の作製]
撹拌翼および100℃に制御された還流冷却器を具備した縦型反応器2器からなるバッチ重合装置に、ビス[9-(2-フェノキシカルボニルエチル)フルオレン-9-イル]メタン29.60重量部(0.046mol)、イソソルビド(ISB)29.21重量部(0.200mol)、スピログリコール(SPG)42.28重量部(0.139mol)、ジフェニルカーボネート(DPC)63.77重量部(0.298mol)、および、触媒として酢酸カルシウム1水和物1.19×10-2重量部(6.78×10-5mol)を仕込んだ。反応器内を減圧窒素置換した後、熱媒で加温を行い、内温が100℃になった時点で撹拌を開始した。昇温開始40分後に内温を220℃に到達させ、この温度を保持するように制御すると同時に減圧を開始し、220℃に到達してから90分で13.3kPaにした。重合反応とともに副生するフェノール蒸気を100℃の還流冷却器に導き、フェノール蒸気中に若干量含まれるモノマー成分を反応器に戻し、凝縮しないフェノール蒸気は45℃の凝縮器に導いて回収した。第1反応器に窒素を導入して一旦大気圧まで復圧させた後、第1反応器内のオリゴマー化された反応液を第2反応器に移した。次いで、第2反応器内の昇温および減圧を開始して、50分で内温240℃、圧力0.2kPaにした。その後、所定の攪拌動力となるまで重合を進行させた。所定動力に到達した時点で反応器に窒素を導入して復圧し、生成したポリエステルカーボネート系樹脂を水中に押し出し、ストランドをカッティングしてペレットを得た。
得られたポリエステルカーボネート系樹脂(ペレット)を80℃で5時間真空乾燥をした後、単軸押出機(東芝機械社製、シリンダー設定温度:250℃)、Tダイ(幅200mm、設定温度:250℃)、チルロール(設定温度:120~130℃)および巻取機を備えたフィルム製膜装置を用いて、厚み130μmの長尺状の樹脂フィルムを作製した。得られた長尺状の樹脂フィルムを、幅方向に、延伸温度140℃、延伸倍率2.7倍で延伸した。これにより、厚みが47μmであり、Re(590)が143nmであり、Nz係数が1.2である位相差フィルム(λ/4部材)を得た。また、当該λ/4部材のRe(450)/Re(550)は0.856であった。 [Manufacturing Example 1: Fabrication of λ/4 member]
29.60 weight of bis[9-(2-phenoxycarbonylethyl)fluoren-9-yl]methane was added to a batch polymerization apparatus consisting of two vertical reactors equipped with a stirring blade and a reflux condenser controlled at 100°C. part (0.046 mol), isosorbide (ISB) 29.21 parts by weight (0.200 mol), spiroglycol (SPG) 42.28 parts by weight (0.139 mol), diphenyl carbonate (DPC) 63.77 parts by weight (0 .298 mol) and 1.19×10 −2 parts by weight (6.78×10 −5 mol) of calcium acetate monohydrate as a catalyst were charged. After the inside of the reactor was replaced with nitrogen under reduced pressure, it was heated with a heating medium, and when the internal temperature reached 100°C, stirring was started. 40 minutes after the start of temperature rise, the internal temperature was controlled to reach 220°C, and at the same time, pressure reduction was started to maintain this temperature, and the pressure was reduced to 13.3 kPa in 90 minutes after reaching 220°C. Phenol vapor produced as a by-product during the polymerization reaction was led to a reflux condenser at 100°C, a small amount of monomer component contained in the phenol vapor was returned to the reactor, and uncondensed phenol vapor was led to a condenser at 45°C for recovery. After nitrogen was introduced into the first reactor and the pressure was once restored to atmospheric pressure, the oligomerized reaction liquid in the first reactor was transferred to the second reactor. Next, temperature increase and pressure reduction in the second reactor were started, and the internal temperature was 240° C. and the pressure was 0.2 kPa in 50 minutes. Thereafter, polymerization was allowed to proceed until a predetermined stirring power was reached. When a predetermined power was reached, nitrogen was introduced into the reactor to restore the pressure, the produced polyester carbonate resin was extruded into water, and the strands were cut to obtain pellets.
The obtained polyester carbonate resin (pellet) was vacuum-dried at 80°C for 5 hours, and then put into a single-screw extruder (manufactured by Toshiba Machine Co., Ltd., cylinder temperature setting: 250°C) and a T-die (width 200mm, setting temperature: 250°C). A long resin film with a thickness of 130 μm was produced using a film forming apparatus equipped with a chill roll (set temperature: 120 to 130° C.), a winder, and a winder. The obtained long resin film was stretched in the width direction at a stretching temperature of 140° C. and a stretching ratio of 2.7 times. As a result, a retardation film (λ/4 member) having a thickness of 47 μm, a Re(590) of 143 nm, and an Nz coefficient of 1.2 was obtained. Moreover, Re(450)/Re(550) of the λ/4 member was 0.856.
撹拌翼および100℃に制御された還流冷却器を具備した縦型反応器2器からなるバッチ重合装置に、ビス[9-(2-フェノキシカルボニルエチル)フルオレン-9-イル]メタン29.60重量部(0.046mol)、イソソルビド(ISB)29.21重量部(0.200mol)、スピログリコール(SPG)42.28重量部(0.139mol)、ジフェニルカーボネート(DPC)63.77重量部(0.298mol)、および、触媒として酢酸カルシウム1水和物1.19×10-2重量部(6.78×10-5mol)を仕込んだ。反応器内を減圧窒素置換した後、熱媒で加温を行い、内温が100℃になった時点で撹拌を開始した。昇温開始40分後に内温を220℃に到達させ、この温度を保持するように制御すると同時に減圧を開始し、220℃に到達してから90分で13.3kPaにした。重合反応とともに副生するフェノール蒸気を100℃の還流冷却器に導き、フェノール蒸気中に若干量含まれるモノマー成分を反応器に戻し、凝縮しないフェノール蒸気は45℃の凝縮器に導いて回収した。第1反応器に窒素を導入して一旦大気圧まで復圧させた後、第1反応器内のオリゴマー化された反応液を第2反応器に移した。次いで、第2反応器内の昇温および減圧を開始して、50分で内温240℃、圧力0.2kPaにした。その後、所定の攪拌動力となるまで重合を進行させた。所定動力に到達した時点で反応器に窒素を導入して復圧し、生成したポリエステルカーボネート系樹脂を水中に押し出し、ストランドをカッティングしてペレットを得た。
得られたポリエステルカーボネート系樹脂(ペレット)を80℃で5時間真空乾燥をした後、単軸押出機(東芝機械社製、シリンダー設定温度:250℃)、Tダイ(幅200mm、設定温度:250℃)、チルロール(設定温度:120~130℃)および巻取機を備えたフィルム製膜装置を用いて、厚み130μmの長尺状の樹脂フィルムを作製した。得られた長尺状の樹脂フィルムを、幅方向に、延伸温度140℃、延伸倍率2.7倍で延伸した。これにより、厚みが47μmであり、Re(590)が143nmであり、Nz係数が1.2である位相差フィルム(λ/4部材)を得た。また、当該λ/4部材のRe(450)/Re(550)は0.856であった。 [Manufacturing Example 1: Fabrication of λ/4 member]
29.60 weight of bis[9-(2-phenoxycarbonylethyl)fluoren-9-yl]methane was added to a batch polymerization apparatus consisting of two vertical reactors equipped with a stirring blade and a reflux condenser controlled at 100°C. part (0.046 mol), isosorbide (ISB) 29.21 parts by weight (0.200 mol), spiroglycol (SPG) 42.28 parts by weight (0.139 mol), diphenyl carbonate (DPC) 63.77 parts by weight (0 .298 mol) and 1.19×10 −2 parts by weight (6.78×10 −5 mol) of calcium acetate monohydrate as a catalyst were charged. After the inside of the reactor was replaced with nitrogen under reduced pressure, it was heated with a heating medium, and when the internal temperature reached 100°C, stirring was started. 40 minutes after the start of temperature rise, the internal temperature was controlled to reach 220°C, and at the same time, pressure reduction was started to maintain this temperature, and the pressure was reduced to 13.3 kPa in 90 minutes after reaching 220°C. Phenol vapor produced as a by-product during the polymerization reaction was led to a reflux condenser at 100°C, a small amount of monomer component contained in the phenol vapor was returned to the reactor, and uncondensed phenol vapor was led to a condenser at 45°C for recovery. After nitrogen was introduced into the first reactor and the pressure was once restored to atmospheric pressure, the oligomerized reaction liquid in the first reactor was transferred to the second reactor. Next, temperature increase and pressure reduction in the second reactor were started, and the internal temperature was 240° C. and the pressure was 0.2 kPa in 50 minutes. Thereafter, polymerization was allowed to proceed until a predetermined stirring power was reached. When a predetermined power was reached, nitrogen was introduced into the reactor to restore the pressure, the produced polyester carbonate resin was extruded into water, and the strands were cut to obtain pellets.
The obtained polyester carbonate resin (pellet) was vacuum-dried at 80°C for 5 hours, and then put into a single-screw extruder (manufactured by Toshiba Machine Co., Ltd., cylinder temperature setting: 250°C) and a T-die (width 200mm, setting temperature: 250°C). A long resin film with a thickness of 130 μm was produced using a film forming apparatus equipped with a chill roll (set temperature: 120 to 130° C.), a winder, and a winder. The obtained long resin film was stretched in the width direction at a stretching temperature of 140° C. and a stretching ratio of 2.7 times. As a result, a retardation film (λ/4 member) having a thickness of 47 μm, a Re(590) of 143 nm, and an Nz coefficient of 1.2 was obtained. Moreover, Re(450)/Re(550) of the λ/4 member was 0.856.
[実施例1]
製造例1で得られた長尺状の位相差フィルムから矩形状のフィルム片を2枚切り出してλ/4部材1およびλ/4部材2とした。λ/4部材1およびλ/4部材2を遅相軸方向が互いに直交となるようにアクリル系粘着剤層(日東電工社製、厚み5μm)を介して貼り合わせ、そのλ/4部材2側に、アクリル系粘着剤層(日東電工社製、厚み5μm)を介して、反射型偏光フィルム(日東電工社製、製品名「APCFG4」)の反射面を貼り合わせた。これにより、[λ/4部材1/λ/4部材2/反射型偏光フィルム]の構成を有する積層体1を得た。積層体1をλ/4部材1側から見たときの各部材の軸関係は、反射型偏光フィルムの反射軸方向を0°として、λ/4部材1の遅相軸方向が反時計回りに45°の方向であり、λ/4部材2の遅相軸方向が時計回りに45°の方向であった。 [Example 1]
Two rectangular film pieces were cut out from the long retardation film obtained in Production Example 1 to form λ/4 member 1 and λ/4member 2. λ/4 member 1 and λ/4 member 2 are pasted together via an acrylic adhesive layer (manufactured by Nitto Denko Corporation, thickness 5 μm) so that the slow axis directions are perpendicular to each other, and the λ/4 member 2 side is A reflective surface of a reflective polarizing film (manufactured by Nitto Denko, product name "APCFG4") was bonded to the film through an acrylic adhesive layer (manufactured by Nitto Denko, thickness 5 μm). As a result, a laminate 1 having a configuration of [λ/4 member 1/λ/4 member 2/reflective polarizing film] was obtained. The axial relationship of each member when the laminate 1 is viewed from the λ/4 member 1 side is such that the slow axis direction of the λ/4 member 1 is counterclockwise with the reflection axis direction of the reflective polarizing film being 0°. The direction was 45 degrees, and the slow axis direction of the λ/4 member 2 was 45 degrees clockwise.
製造例1で得られた長尺状の位相差フィルムから矩形状のフィルム片を2枚切り出してλ/4部材1およびλ/4部材2とした。λ/4部材1およびλ/4部材2を遅相軸方向が互いに直交となるようにアクリル系粘着剤層(日東電工社製、厚み5μm)を介して貼り合わせ、そのλ/4部材2側に、アクリル系粘着剤層(日東電工社製、厚み5μm)を介して、反射型偏光フィルム(日東電工社製、製品名「APCFG4」)の反射面を貼り合わせた。これにより、[λ/4部材1/λ/4部材2/反射型偏光フィルム]の構成を有する積層体1を得た。積層体1をλ/4部材1側から見たときの各部材の軸関係は、反射型偏光フィルムの反射軸方向を0°として、λ/4部材1の遅相軸方向が反時計回りに45°の方向であり、λ/4部材2の遅相軸方向が時計回りに45°の方向であった。 [Example 1]
Two rectangular film pieces were cut out from the long retardation film obtained in Production Example 1 to form λ/4 member 1 and λ/4
(反射軸透過率(k2透過率)の測定)
積層体1に対して、λ/4部材1側から、偏光方向が積層体1中の反射型偏光フィルムの反射軸と平行である直線偏光光を入射させたときの透過率(反射軸透過率(k2透過率))を、紫外可視分光光度計(大塚電子社製、「LPF-200」)を用いて測定した。直線偏光である入射光は、λ/4部材1を透過することにより円偏光に変換され、次いで、λ/4部材2を透過することにより偏光方向が入射光の偏光方向と同方向である直線偏光に変換される結果、反射型偏光フィルムの反射軸で反射される。本発明の実施形態による表示システムでは、反射型偏光フィルムの反射軸で反射された光がハーフミラーによる再反射等を経た後に反射型偏光フィルムの透過軸を透過してユーザに視認されるが、反射漏れにより反射型偏光フィルムの反射軸を透過した光は残像(ゴースト)としてユーザに視認され得る。よって、上記積層体1の透過率測定は、本発明の実施形態による表示システムにおける反射型偏光フィルムの反射漏れの評価モデルであり、透過率が小さいほど残像(ゴースト)が抑制され得ると評価することができる。 (Measurement of reflection axis transmittance (k2 transmittance))
Transmittance (reflection axis transmittance) when linearly polarized light whose polarization direction is parallel to the reflection axis of the reflective polarizing film in the laminate 1 is incident on the laminate 1 from the λ/4 member 1 side (k2 transmittance)) was measured using an ultraviolet-visible spectrophotometer (manufactured by Otsuka Electronics Co., Ltd., "LPF-200"). Incident light that is linearly polarized light is converted into circularly polarized light by passing through λ/4 member 1, and then converted into a straight line whose polarization direction is the same as the polarization direction of the incident light by passing through λ/4member 2. As a result of being converted into polarized light, it is reflected by the reflection axis of the reflective polarizing film. In the display system according to the embodiment of the present invention, the light reflected by the reflection axis of the reflective polarizing film passes through the transmission axis of the reflective polarizing film after being re-reflected by a half mirror and is visually recognized by the user. Light transmitted through the reflection axis of the reflective polarizing film due to reflection leakage may be visually recognized by the user as an afterimage (ghost). Therefore, the transmittance measurement of the laminate 1 is an evaluation model for reflection leakage of the reflective polarizing film in the display system according to the embodiment of the present invention, and it is evaluated that the smaller the transmittance is, the more afterimages (ghosts) can be suppressed. be able to.
積層体1に対して、λ/4部材1側から、偏光方向が積層体1中の反射型偏光フィルムの反射軸と平行である直線偏光光を入射させたときの透過率(反射軸透過率(k2透過率))を、紫外可視分光光度計(大塚電子社製、「LPF-200」)を用いて測定した。直線偏光である入射光は、λ/4部材1を透過することにより円偏光に変換され、次いで、λ/4部材2を透過することにより偏光方向が入射光の偏光方向と同方向である直線偏光に変換される結果、反射型偏光フィルムの反射軸で反射される。本発明の実施形態による表示システムでは、反射型偏光フィルムの反射軸で反射された光がハーフミラーによる再反射等を経た後に反射型偏光フィルムの透過軸を透過してユーザに視認されるが、反射漏れにより反射型偏光フィルムの反射軸を透過した光は残像(ゴースト)としてユーザに視認され得る。よって、上記積層体1の透過率測定は、本発明の実施形態による表示システムにおける反射型偏光フィルムの反射漏れの評価モデルであり、透過率が小さいほど残像(ゴースト)が抑制され得ると評価することができる。 (Measurement of reflection axis transmittance (k2 transmittance))
Transmittance (reflection axis transmittance) when linearly polarized light whose polarization direction is parallel to the reflection axis of the reflective polarizing film in the laminate 1 is incident on the laminate 1 from the λ/4 member 1 side (k2 transmittance)) was measured using an ultraviolet-visible spectrophotometer (manufactured by Otsuka Electronics Co., Ltd., "LPF-200"). Incident light that is linearly polarized light is converted into circularly polarized light by passing through λ/4 member 1, and then converted into a straight line whose polarization direction is the same as the polarization direction of the incident light by passing through λ/4
[比較例1]
各部材の軸関係を変更したこと以外は実施例1と同様にして、[λ/4部材1/λ/4部材2/反射型偏光フィルム]の構成を有する積層体C1を得た。具体的には、積層体C1をλ/4部材1側から見たときの各部材の軸関係は、反射型偏光フィルムの反射軸方向と直交する方向を0°として、λ/4部材1の遅相軸方向およびλ/4部材2の遅相軸方向はいずれも、反時計回りに45°の方向であり、反射型偏光フィルムの反射軸方向は90°であった。 [Comparative example 1]
A laminate C1 having a configuration of [λ/4 member 1/λ/4member 2/reflective polarizing film] was obtained in the same manner as in Example 1 except that the axial relationship of each member was changed. Specifically, when the laminate C1 is viewed from the λ/4 member 1 side, the axial relationship of each member is the same as that of the λ/4 member 1, with the direction orthogonal to the reflection axis direction of the reflective polarizing film being 0°. The slow axis direction and the slow axis direction of the λ/4 member 2 were both 45 degrees counterclockwise, and the reflection axis direction of the reflective polarizing film was 90 degrees.
各部材の軸関係を変更したこと以外は実施例1と同様にして、[λ/4部材1/λ/4部材2/反射型偏光フィルム]の構成を有する積層体C1を得た。具体的には、積層体C1をλ/4部材1側から見たときの各部材の軸関係は、反射型偏光フィルムの反射軸方向と直交する方向を0°として、λ/4部材1の遅相軸方向およびλ/4部材2の遅相軸方向はいずれも、反時計回りに45°の方向であり、反射型偏光フィルムの反射軸方向は90°であった。 [Comparative example 1]
A laminate C1 having a configuration of [λ/4 member 1/λ/4
(反射軸透過率(k2)の測定)
積層体C1に対して、λ/4部材1側から、偏光方向が積層体C1中の反射型偏光フィルムの反射軸と直交である直線偏光光を入射させたときの透過率(反射軸透過率)を、紫外可視分光光度計(大塚電子社製、「LPF-200」)を用いて測定した。直線偏光である入射光は、λ/4部材1を透過することにより円偏光に変換され、次いで、λ/4部材2を透過することにより偏光方向が入射光の偏光方向と直交する直線偏光に変換される結果、反射型偏光フィルムの反射軸で反射される。よって、上記積層体C1の透過率測定は、第1のλ/4部材と第2のλ/4部材とが遅相軸が互いに平行となるように配置されている点で本発明の実施形態とは異なる表示システムにおける反射型偏光フィルムの反射漏れの評価モデルであり、透過率が小さいほど残像(ゴースト)が抑制され得ると評価することができる。 (Measurement of reflection axis transmittance (k2))
Transmittance (reflection axis transmittance) when linearly polarized light whose polarization direction is perpendicular to the reflection axis of the reflective polarizing film in the laminate C1 is incident on the laminate C1 from the λ/4 member 1 side ) was measured using an ultraviolet-visible spectrophotometer (manufactured by Otsuka Electronics Co., Ltd., "LPF-200"). Incident light, which is linearly polarized light, is converted into circularly polarized light by passing through λ/4 member 1, and then converted into linearly polarized light whose polarization direction is orthogonal to the polarization direction of the incident light by passing through λ/4member 2. As a result of the conversion, the light is reflected by the reflection axis of the reflective polarizing film. Therefore, the transmittance measurement of the laminate C1 is performed according to the embodiment of the present invention in that the first λ/4 member and the second λ/4 member are arranged such that their slow axes are parallel to each other. This is an evaluation model for reflection leakage of a reflective polarizing film in a display system different from the above, and it can be evaluated that the smaller the transmittance, the more afterimages (ghosts) can be suppressed.
積層体C1に対して、λ/4部材1側から、偏光方向が積層体C1中の反射型偏光フィルムの反射軸と直交である直線偏光光を入射させたときの透過率(反射軸透過率)を、紫外可視分光光度計(大塚電子社製、「LPF-200」)を用いて測定した。直線偏光である入射光は、λ/4部材1を透過することにより円偏光に変換され、次いで、λ/4部材2を透過することにより偏光方向が入射光の偏光方向と直交する直線偏光に変換される結果、反射型偏光フィルムの反射軸で反射される。よって、上記積層体C1の透過率測定は、第1のλ/4部材と第2のλ/4部材とが遅相軸が互いに平行となるように配置されている点で本発明の実施形態とは異なる表示システムにおける反射型偏光フィルムの反射漏れの評価モデルであり、透過率が小さいほど残像(ゴースト)が抑制され得ると評価することができる。 (Measurement of reflection axis transmittance (k2))
Transmittance (reflection axis transmittance) when linearly polarized light whose polarization direction is perpendicular to the reflection axis of the reflective polarizing film in the laminate C1 is incident on the laminate C1 from the λ/4 member 1 side ) was measured using an ultraviolet-visible spectrophotometer (manufactured by Otsuka Electronics Co., Ltd., "LPF-200"). Incident light, which is linearly polarized light, is converted into circularly polarized light by passing through λ/4 member 1, and then converted into linearly polarized light whose polarization direction is orthogonal to the polarization direction of the incident light by passing through λ/4
反射軸透過率測定の際の入射光の偏光方向を0°とした場合における積層体中の各部材の軸角度を表1に示す。
Table 1 shows the axis angles of each member in the laminate when the polarization direction of the incident light is set to 0° when measuring the reflection axis transmittance.
実施例1または比較例1で得られた積層体および参考例1として反射型偏光フィルム(日東電工社製、製品名「APCFG4」)の単体透過率Tsおよび反射軸透過率k2を表2に示す。
Table 2 shows the single transmittance Ts and reflective axis transmittance k2 of the laminate obtained in Example 1 or Comparative Example 1 and the reflective polarizing film (manufactured by Nitto Denko Corporation, product name "APCFG4") as Reference Example 1. .
表2に示されるとおり、本発明の実施形態による表示システムによれば、第1のλ/4部材および第2のλ/4部材がその遅相軸が互いに直交となるように配置された構成とすることにより、遅相軸が互いに平行となるように配置された構成よりも、反射型偏光フィルムの反射軸における反射漏れを抑制することができる。
As shown in Table 2, according to the display system according to the embodiment of the present invention, the first λ/4 member and the second λ/4 member are arranged such that their slow axes are orthogonal to each other. By doing so, it is possible to suppress reflection leakage at the reflection axis of the reflective polarizing film, compared to a configuration in which the slow axes are arranged parallel to each other.
本発明は、上記実施形態に限定されるものではなく、種々の変形が可能である。例えば、上記実施形態で示した構成と実質的に同一の構成、同一の作用効果を奏する構成または同一の目的を達成することができる構成で置き換えることができる。
The present invention is not limited to the above embodiments, and various modifications are possible. For example, it can be replaced with a configuration that is substantially the same as the configuration shown in the above embodiment, a configuration that has the same effect, or a configuration that can achieve the same objective.
本発明の実施形態に係る表示システムは、例えば、VRゴーグル等の表示体に用いられ得る。
The display system according to the embodiment of the present invention can be used for a display body such as VR goggles, for example.
2 表示システム
4 レンズ部
12 表示素子
14 反射部
16 第一レンズ部
18 ハーフミラー
20 第一位相差部材
22 第二位相差部材
24 第二レンズ部 2Display system 4 Lens section 12 Display element 14 Reflection section 16 First lens section 18 Half mirror 20 First retardation member 22 Second retardation member 24 Second lens section
4 レンズ部
12 表示素子
14 反射部
16 第一レンズ部
18 ハーフミラー
20 第一位相差部材
22 第二位相差部材
24 第二レンズ部 2
Claims (11)
- ユーザに対して画像を表示する表示システムであって、
偏光部材を介して画像を表す光を前方に出射する表示面を有する表示素子と、
前記表示素子の前方に配置され、反射型偏光部材を含み、前記表示素子から出射された光を反射する反射部と、
前記表示素子と前記反射部との間の光路上に配置される第一レンズ部と、
前記表示素子と前記第一レンズ部との間に配置され、前記表示素子から出射された光を透過させ、前記反射部で反射された光を前記反射部に向けて反射させるハーフミラーと、
前記表示素子と前記ハーフミラーとの間の光路上に配置される第1のλ/4部材と、
前記ハーフミラーと前記反射部との間の光路上に配置される第2のλ/4部材と、
を備え、
前記第1のλ/4部材の遅相軸と前記第2のλ/4部材の遅相軸とが互いに略直交となるように配置されている、表示システム。 A display system for displaying images to a user, the display system comprising:
a display element having a display surface that emits light representing an image forward through a polarizing member;
a reflecting section disposed in front of the display element, including a reflective polarizing member, and reflecting light emitted from the display element;
a first lens section disposed on an optical path between the display element and the reflection section;
a half mirror disposed between the display element and the first lens part, which transmits the light emitted from the display element and reflects the light reflected by the reflection part toward the reflection part;
a first λ/4 member disposed on an optical path between the display element and the half mirror;
a second λ/4 member disposed on the optical path between the half mirror and the reflection section;
Equipped with
A display system, wherein the slow axis of the first λ/4 member and the slow axis of the second λ/4 member are arranged to be substantially orthogonal to each other. - 前記偏光部材を介して出射された光の偏光方向と前記反射型偏光部材の反射軸とが互いに略平行である、請求項1に記載の表示システム。 The display system according to claim 1, wherein the polarization direction of the light emitted through the polarizing member and the reflection axis of the reflective polarizing member are substantially parallel to each other.
- 前記表示素子に含まれる前記偏光部材の吸収軸と前記第1のλ/4部材の遅相軸とのなす角度は40°~50°であり、
前記表示素子に含まれる前記偏光部材の吸収軸と前記第2のλ/4部材の遅相軸とのなす角度は40°~50°である、請求項1に記載の表示システム。 The angle between the absorption axis of the polarizing member included in the display element and the slow axis of the first λ/4 member is 40° to 50°,
The display system according to claim 1, wherein the angle between the absorption axis of the polarizing member and the slow axis of the second λ/4 member included in the display element is 40° to 50°. - 前記第一レンズ部と前記ハーフミラーとが一体である、請求項1に記載の表示システム。 The display system according to claim 1, wherein the first lens portion and the half mirror are integrated.
- 前記反射部の前方に配置される第二レンズ部を備える、請求項1に記載の表示システム。 The display system according to claim 1, further comprising a second lens section disposed in front of the reflecting section.
- 前記反射部は、前記反射型偏光部材の前方に配置される吸収型偏光部材を含む、請求項1に記載の表示システム。 The display system according to claim 1, wherein the reflective section includes an absorbing polarizing member disposed in front of the reflective polarizing member.
- 前記反射型偏光部材の反射軸と前記吸収型偏光部材の吸収軸とは互いに略平行に配置される、請求項6に記載の表示システム。 The display system according to claim 6, wherein the reflection axis of the reflective polarizing member and the absorption axis of the absorptive polarizing member are arranged substantially parallel to each other.
- 偏光部材を介して出射された画像を表す光を、第1のλ/4部材を通過させるステップと、
前記第1のλ/4部材を通過した光を、ハーフミラーおよび第一レンズ部を通過させるステップと、
前記ハーフミラーおよび前記第一レンズ部を通過した光を、第2のλ/4部材を通過させるステップと、
前記第2のλ/4部材を通過した光を、反射型偏光部材を含む反射部で前記ハーフミラーに向けて反射させるステップと、
前記反射部および前記ハーフミラーで反射させた光を、前記第2のλ/4部材により前記反射部を透過可能にするステップと、を有し、
前記第1のλ/4部材の遅相軸と前記第2のλ/4部材の遅相軸とが互いに略直交となるように配置されている、
表示方法。 passing the light representing the image emitted through the polarizing member through the first λ/4 member;
a step of causing the light that has passed through the first λ/4 member to pass through a half mirror and a first lens portion;
passing the light that has passed through the half mirror and the first lens section through a second λ/4 member;
reflecting the light that has passed through the second λ/4 member toward the half mirror by a reflecting section including a reflective polarizing member;
a step of allowing the light reflected by the reflection part and the half mirror to pass through the reflection part by the second λ/4 member;
The slow axis of the first λ/4 member and the slow axis of the second λ/4 member are arranged to be substantially perpendicular to each other,
Display method. - 前記偏光部材を介して出射された光の偏光方向と前記反射型偏光部材の反射軸とが互いに略平行である、請求項8に記載の表示方法。 The display method according to claim 8, wherein the polarization direction of the light emitted through the polarizing member and the reflection axis of the reflective polarizing member are substantially parallel to each other.
- 請求項1から7のいずれか一項に記載の表示システムを具備する表示体。 A display body comprising the display system according to any one of claims 1 to 7.
- 請求項1から7のいずれか一項に記載の表示システムを具備する表示体の製造方法。 A method for manufacturing a display body comprising the display system according to any one of claims 1 to 7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202380024326.5A CN118805118A (en) | 2022-03-14 | 2023-02-24 | Display system, display method, display body, and method for manufacturing display body |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022039286 | 2022-03-14 | ||
JP2022039285 | 2022-03-14 | ||
JP2022-039286 | 2022-03-14 | ||
JP2022-039285 | 2022-03-14 | ||
JP2022-077658 | 2022-05-10 | ||
JP2022077658A JP2023166840A (en) | 2022-05-10 | 2022-05-10 | Display system, display method, display body, and method for manufacturing display body |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023176362A1 true WO2023176362A1 (en) | 2023-09-21 |
Family
ID=88023425
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/006730 WO2023176362A1 (en) | 2022-03-14 | 2023-02-24 | Display system, display method, display body, and method for manufacturing display body |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202345431A (en) |
WO (1) | WO2023176362A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010526321A (en) * | 2007-06-01 | 2010-07-29 | シャープ株式会社 | Optical system and display |
JP2019505854A (en) * | 2016-01-28 | 2019-02-28 | 深▲セン▼多▲ドゥオ▼新技術有限責任公司Shenzhen Dlodlo New Technology Co., Ltd. | Short distance light expansion module, short distance light expansion method and short distance light expansion system |
CN113448101A (en) * | 2021-06-28 | 2021-09-28 | 歌尔股份有限公司 | Optical module and head-mounted display device |
-
2023
- 2023-02-24 WO PCT/JP2023/006730 patent/WO2023176362A1/en unknown
- 2023-03-03 TW TW112107897A patent/TW202345431A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010526321A (en) * | 2007-06-01 | 2010-07-29 | シャープ株式会社 | Optical system and display |
JP2019505854A (en) * | 2016-01-28 | 2019-02-28 | 深▲セン▼多▲ドゥオ▼新技術有限責任公司Shenzhen Dlodlo New Technology Co., Ltd. | Short distance light expansion module, short distance light expansion method and short distance light expansion system |
CN113448101A (en) * | 2021-06-28 | 2021-09-28 | 歌尔股份有限公司 | Optical module and head-mounted display device |
Also Published As
Publication number | Publication date |
---|---|
TW202345431A (en) | 2023-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023176362A1 (en) | Display system, display method, display body, and method for manufacturing display body | |
WO2023176363A1 (en) | Display system, display method, display body, and display body manufacturing method | |
JP2023166840A (en) | Display system, display method, display body, and method for manufacturing display body | |
WO2023176361A1 (en) | Display system, display method, display body, and method for manufacturing display body | |
WO2023176692A1 (en) | Display system, display method, display body, and method for manufacturing display body | |
WO2023176627A1 (en) | Display system, display method, display body, and method for manufacturing display body | |
WO2023176365A1 (en) | Lens unit, laminate, display body, method for manufacturing display body, and display method | |
WO2023176691A1 (en) | Display system, display method, display body, and method for manufacturing display body | |
WO2023176693A1 (en) | Display system, display method, display body, and method for manufacturing display body | |
WO2023176626A1 (en) | Display system, display method, display body, and method for manufacturing display body | |
WO2023176368A1 (en) | Lens part, laminate, display body, and manufacturing method and display method for display body | |
WO2023176625A1 (en) | Lens part, display body, and display method | |
WO2023176367A1 (en) | Lens part, laminated body, display body, display body production method, and display method | |
WO2023176366A1 (en) | Lens unit, layered body, display body, display body manufacturing method, and display method | |
WO2023176624A1 (en) | Lens part, display body, and display method | |
JP7516458B2 (en) | Lens portion, laminate, display, manufacturing method of display, and display method | |
JP2023166841A (en) | Display system, display method, display body, and method for manufacturing display body | |
WO2024190467A1 (en) | Lens part, display body, and display method | |
WO2023176690A1 (en) | Display system, optical layered body, and display system manufacturing method | |
WO2024190468A1 (en) | Lens part, display body, and display method | |
JP7547456B2 (en) | Lens portion, display body and display method | |
WO2023176585A1 (en) | Optical film assessment method | |
JP2023134317A (en) | Display system, display method, display body, and display body production method | |
KR20240156375A (en) | Indication system, indication method, indication body and method for manufacturing indication body | |
JP2023166851A (en) | Lens portion, laminate, display body, method for manufacturing display body, and display method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23770321 Country of ref document: EP Kind code of ref document: A1 |