Nothing Special   »   [go: up one dir, main page]

WO2023145944A1 - Method for producing resin composition - Google Patents

Method for producing resin composition Download PDF

Info

Publication number
WO2023145944A1
WO2023145944A1 PCT/JP2023/002912 JP2023002912W WO2023145944A1 WO 2023145944 A1 WO2023145944 A1 WO 2023145944A1 JP 2023002912 W JP2023002912 W JP 2023002912W WO 2023145944 A1 WO2023145944 A1 WO 2023145944A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
resin composition
acidic functional
producing
functional group
Prior art date
Application number
PCT/JP2023/002912
Other languages
French (fr)
Japanese (ja)
Inventor
竜也 十河
隼人 秋田
喜直 山田
Original Assignee
東亞合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東亞合成株式会社 filed Critical 東亞合成株式会社
Priority to CN202380019520.4A priority Critical patent/CN118679213A/en
Priority to KR1020247026398A priority patent/KR20240145994A/en
Priority to JP2023577075A priority patent/JPWO2023145944A1/ja
Publication of WO2023145944A1 publication Critical patent/WO2023145944A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/02Chemical treatment or coating of shaped articles made of macromolecular substances with solvents, e.g. swelling agents

Definitions

  • the present invention relates to a method for producing a resin composition, preferably belonging to the technical field of adsorbents, the technical field of deodorants, and the technical field of resins and fibers.
  • a deodorizing product in which an inorganic solid acid such as zirconium phosphate is used as a basic gas adsorbent, and this is supported or kneaded into a resin composition such as a film.
  • Patent Literature 1 discloses a method of increasing the deodorizing performance of ammonia by acid-treating a fabric made of a mixture of cellulose fibers and polyurethane fibers by dyeing the cellulose fibers with a reactive dye using an alkali agent.
  • Patent Document 2 discloses a method of restoring the adsorption performance of ammonia gas by washing a deodorizing filter that has been used once (after adsorbing ammonia gas) with a weakly acidic aqueous solution.
  • JP 2013-133562 A JP-A-2003-47824
  • cationic materials originally retained in the base material itself, and cationic additives contained in additives used in advanced processing processes such as refining, dyeing, and softening.
  • the material is adsorbed by the adsorbent in the deodorant product, and when it becomes the final product, the adsorbent's inherent adsorption performance is not fully demonstrated, so the targeted deodorant performance is achieved.
  • I can't In order to achieve the desired deodorant performance, it is necessary to add an excessive amount of the adsorbent in consideration of the performance deterioration of the adsorbent due to the adsorption of these cationic materials.
  • Patent Document 2 discloses a method of completely restoring the adsorption capacity by washing the filter after adsorbing the odorous gas with an acidic aqueous solution. This technique is very limited in its applicability as it can cause color fading due to detachment of the dye when treated with this technique.
  • the problem to be solved by the present invention is to provide a method for producing a resin composition from which a resin having excellent basic gas adsorption performance can be obtained.
  • Means for solving the above problems include the following aspects.
  • a method for producing a resin composition comprising ⁇ 2> The method for producing a resin composition according to ⁇ 1>, wherein the compound having an acidic functional group contains a resin having an acidic functional group.
  • ⁇ 3> The method for producing a resin composition according to ⁇ 1> or ⁇ 2>, wherein the compound having an acidic functional group contains an inorganic solid acid.
  • ⁇ 4> The method for producing a resin composition according to any one of ⁇ 1> to ⁇ 3>, wherein the resin composition as a whole contains two or more kinds of acidic functional groups.
  • ⁇ 5> The method for producing a resin composition according to any one of ⁇ 1> to ⁇ 4>, wherein the compound having an acidic functional group comprises a resin having an acidic functional group and an inorganic solid acid.
  • ⁇ 6> The method for producing a resin composition according to any one of ⁇ 1> to ⁇ 5>, wherein the resin composition contains a resin having an inorganic solid acid fixed on its surface.
  • ⁇ 7> The method for producing a resin composition according to any one of ⁇ 1> to ⁇ 6>, wherein the acid used in the acid treatment step is a water-soluble acid.
  • ⁇ 8> The method for producing a resin composition according to any one of ⁇ 1> to ⁇ 7>, wherein an aqueous solution containing the acid and having a pH of 5 or less is used in the acid treatment step.
  • ⁇ 9> The method for producing a resin composition according to ⁇ 4>, wherein the acid used in the acid treatment step satisfies the following inequality.
  • ⁇ 12> The method for producing a resin composition according to ⁇ 3>, ⁇ 6> or ⁇ 11>, wherein the inorganic solid acid is an inorganic oxide.
  • ⁇ 13> The method for producing a resin composition according to any one of ⁇ 1> to ⁇ 12>, wherein the resin composition contains fibers as the resin.
  • ⁇ 14> The method for producing a resin composition according to any one of ⁇ 1> to ⁇ 13>, wherein the resulting resin composition is a coating agent.
  • the description of the constituent elements described below is based on representative embodiments of the present invention, but the present invention is not limited to such embodiments.
  • the term " ⁇ " is used to mean that the numerical values before and after it are included as the lower limit and the upper limit.
  • the upper limit or lower limit described in one numerical range may be replaced with the upper limit or lower limit of the numerical range described in other steps. good.
  • the upper and lower limits of the numerical ranges may be replaced with the values shown in the examples.
  • “% by mass” and “% by weight” are synonymous, and “parts by mass” and “parts by weight” are synonymous. Represents "ppm by volume”.
  • a combination of two or more preferred aspects is a more preferred aspect. The contents of the present invention will be described in detail below.
  • a resin composition containing a compound having an acidic functional group, at least a portion of which is a salt is treated with an acid to restore at least a portion of the acidic functional group to the original state. It includes an acid treatment step to restore the acid state.
  • the method for producing the resin composition of the present invention can be suitably used as a method for producing a deodorant, and can also be suitably used as a method for producing a deodorant fiber.
  • a resin composition containing a compound having an acidic functional group, at least a part of which is a salt has a pKa lower than the acid dissociation index (pKa) of the acidic functional group. It includes an acid treatment step of returning at least a portion of the acidic functional groups to their original acid state by treatment with an acid.
  • the resin composition in the method for producing a resin composition of the present invention may be a mixture of two or more compounds, or may be one kind of resin itself.
  • the acidic functional group examples include a sulfo group (sulfonic acid group), a phosphoric acid group, a phosphonic acid group, a carboxy group (carboxylic acid group), and the like.
  • the acidic functional group includes at least a sulfo group, a phosphoric acid group, or a phosphonic acid group. More preferably, it contains at least an acid group or a phosphonic acid group.
  • the resin compound preferably contains two or more of the acidic functional groups in the resin composition as a whole. It is more preferable that the resin composition as a whole contains two types of acidic functional groups.
  • the acidic functional groups are, from the viewpoint of versatility and adsorption performance, a carboxy group, a phosphoric acid group, a phosphonic acid group, and a sulfo group.
  • It preferably contains at least two groups selected from the group consisting of, more preferably contains a carboxy group, a phosphoric acid group or a phosphonic acid group and a sulfo group, a phosphoric acid group or a phosphonic acid group and a sulfo It is particularly preferred to contain the group
  • the salt that the acidic functional group may form is not particularly limited as long as it is a known countercation salt.
  • counter cations include primary to quaternary ammonium ions, metal ions (eg, alkali metal ions, alkaline earth metal ions, transition metal ions, complexes thereof, etc.), cations having a dye structure, and the like.
  • the coloring matter include pigments and dyes, and dyes are preferred. Among them, at least one selected from the group consisting of alkali metal ions, alkaline earth metal ions, and cations having a dye structure is preferred.
  • the ratio of the acidic functional groups at least partially salted in the resin composition in the acid treatment step is not particularly limited, but is 20 mol% or more with respect to the total acidic functional groups contained in the resin composition. is preferably 50 mol % or more, more preferably 80 mol % or more, and particularly preferably 90 mol % or more and 100 mol % or less.
  • any acid may be used in the acid treatment step as long as at least part of the acidic functional groups can be returned to the original acid state by treatment with an acid.
  • the acid may have a pKa smaller than the acid dissociation index (pKa) of at least one of the acidic functional groups.
  • acids include sulfonic acid compounds, sulfuric acid, hydrochloric acid, phosphoric acid, phosphonic acid compounds, nitric acid, and carboxylic acid compounds.
  • nitric acid is preferred from the viewpoint of acid removal.
  • the acid is preferably a water-soluble acid from the viewpoint of processability.
  • the concentration of the acid in the acid treatment step is not particularly limited as long as at least part of the acidic functional groups can be returned to the original acid state, but it is preferably 0.001 mol/L to 2 mol/L. It is preferably from 0.01 mol/L to 0.5 mol/L.
  • the treatment temperature in the acid treatment step is not particularly limited, but is preferably 10°C to 100°C, more preferably 40°C to 80°C.
  • the treatment time in the acid treatment step is not particularly limited, but is preferably 0.01 hour to 60 hours, more preferably 0.1 hour to 24 hours.
  • the acid used in the acid treatment step should satisfy the following inequality from the viewpoint of adsorption performance and selective treatment properties. is preferred.
  • acids that satisfy the above inequality include, for example, nitric acid, trifluoroacetic acid, trichloroacetic acid, and the like.
  • the pKa of the acidic functional group in the present invention is the pKa of the compound having the acidic functional group, and the pKa may be measured or calculated from the compound having the acidic functional group.
  • the acid dissociation constant (pKa) means the first acid dissociation constant (pKa1).
  • the acidic functional group to be returned to the acid state and the acidic functional group to maintain the salt structure are each preferably a single acidic functional group, more preferably different acidic functional groups.
  • the resin composition After acid treatment, when the resin composition is subjected to the deodorizing test method described in the Examples, the resin composition preferably has an ammonia reduction rate of 50% or more, more preferably an ammonia reduction rate of 60 after 24 hours. % or more, particularly preferably 80% or more.
  • the resin composition When the resin composition is subjected to the deodorizing test method described in the Examples before acid treatment, the resin composition preferably has an ammonia reduction rate of less than 50%, more preferably an ammonia reduction rate of 40 after 24 hours. % or less, particularly preferably 35% or less.
  • the compound having an acidic functional group in the acid treatment step may be a low-molecular-weight compound or a high-molecular-weight compound, and may be an inorganic substance or an organic substance, but has an acidic functional group.
  • a resin or an inorganic solid acid is preferred.
  • the resin having an acidic functional group is preferably a resin in which an acidic functional group and a resin are covalently bonded.
  • Other resins having acidic functional groups include resins kneaded with acidic compounds such as inorganic solid acids and organic carboxylic compounds, resins coated with acidic compounds on the surface, and resins having acidic functional groups on the surface by surface treatment. is mentioned.
  • the resin that may have an acidic functional group contained in the resin composition is not particularly limited, but examples thereof include polyester, polyurethane, polyamide, acrylic resin, polyolefin, polyvinyl alcohol, triacetyl cellulose and diacetyl cellulose.
  • These resins may be homopolymers or copolymers. In the case of a copolymer, there is no particular restriction on the polymerization ratio of each copolymer component.
  • polyurethane, polyester, polyamide, acrylic resin or polyethylene is preferable, polyester or acrylic resin is more preferable, and acrylic resin is particularly preferable.
  • an active-energy-ray-curable vinyl compound is mentioned preferably.
  • active energy ray-curable vinyl compounds include acrylate compounds, methacrylate compounds, styrene compounds, acrylamide compounds, methacrylamide compounds, vinyl ester compounds, and allyl compounds.
  • acrylate compounds are particularly preferred because of their excellent curability.
  • a vinyl compound other than the acrylate compound may be used in combination for physical property adjustment.
  • an ethylenically unsaturated compound having a sulfo group an ethylenically unsaturated compound having a phosphoric acid group, an ethylenically unsaturated compound having a phosphonic acid group, and the like are preferably mentioned.
  • the resin having an acidic functional group contained in the resin composition is preferably a fiber.
  • fibers any known chemical fibers can be used.
  • Preferable examples include polyester, polyurethane, nylon, rayon, acrylic resin, aramid, vinylon, polyethylene, and polypropylene.
  • polyurethane, polyester, nylon, acrylic resin and polyethylene are preferable.
  • These resins may be homopolymers or copolymers. In the case of a copolymer, there is no particular restriction on the polymerization ratio of each copolymer component.
  • the compound having an acidic functional group in the acid treatment step preferably contains an inorganic solid acid.
  • Inorganic solid acids include zeolite, Al2O3 , SiO2 , MgO, CaO, SrO, BaO, ZrO2 , TiO2 , WO2 , CeO2 , Li2O , Na2O , and K2O . and amorphous composite oxides such as From the viewpoint of adsorption performance, an inorganic solid acid having a phosphonic acid structure, a phosphoric acid structure or a sulfonic acid structure is preferable, and an inorganic solid acid having a phosphoric acid structure is more preferable.
  • the shape of the inorganic solid acid is not particularly limited, but from the viewpoint of dispersibility in the resin, it is preferably particulate.
  • the median diameter D50 of the inorganic solid acid particles measured by a laser diffraction method is 0 from the viewpoint of exhibiting more functional effects such as the ability to suppress thread breakage and the deodorizing effect. It is preferably 0.1 ⁇ m to 20 ⁇ m, more preferably 0.2 ⁇ m to 10 ⁇ m, and particularly preferably 0.5 ⁇ m to 5 ⁇ m.
  • the median diameter of the inorganic solid acid particles measured by the laser diffraction method is measured with a laser diffraction particle size distribution analyzer "Mastersizer 2000" manufactured by Malvern Panalytical, and calculated on a volume basis.
  • the inorganic solid acid is not particularly limited, but from the viewpoint of adsorption performance, it is preferably a metal phosphate, more preferably zirconium phosphate or titanium phosphate, and zirconium phosphate. is particularly preferred.
  • the method of adding the inorganic solid acid to the resin is not particularly limited.
  • the polymerized resin may be used and kneaded by an extruder.
  • a specific method for producing fibers kneaded with an inorganic solid acid there is a method of kneading inorganic solid acid particles into a molten liquid fiber resin or a dissolved fiber resin solution and spinning this. be done.
  • the content of the inorganic solid acid in the fiber is not particularly limited. In general, if the content is increased, the deodorizing effect can be strongly exerted and maintained for a long period of time.
  • the content of the inorganic solid acid in the fiber is preferably 0.1 to 4.0 parts by weight, preferably 0.5 to 3.0 parts by weight, with respect to 100 parts by weight of the resin. more preferred.
  • a compound having an acidic functional group may be used alone or in combination of two or more.
  • the content of the compound having an acidic functional group in the resin composition is not particularly limited, and can be appropriately selected according to the application, the form of the compound having an acidic functional group, and the like.
  • the resin composition may contain a medium such as a solvent or a dispersion medium.
  • a medium such as a solvent or a dispersion medium.
  • the medium is not particularly limited, for example, water alone or a mixed liquid of water and a water-soluble organic solvent can be mentioned, and water alone is preferable.
  • the resin composition may contain known additives used in applications such as fibers, resin moldings, and coating agents.
  • additives include binders, dispersants, oils, ultraviolet absorbers, thickeners, and other well-known deodorants such as acid gas deodorants, sulfur gas deodorants, and aldehyde gas deodorants. agents, ketone-based gas deodorants, antibacterial agents, antifungal agents, antiviral processing agents, antiallergen agents, antifoaming agents, coloring agents, preservatives, viscosity modifiers, and fragrances.
  • the binder is not particularly limited, and known binders can be used.
  • binders include resins and polysaccharides, preferably resins.
  • the binder that can be contained in the composition for basic gas deodorant processing of the present disclosure can be one or two or more.
  • the above resin may be either a water-soluble resin or a water-insoluble resin, and may be an ethylene/vinyl acetate copolymer or a modified product thereof (e.g., an acid-modified product, etc.), an ethylene/vinyl chloride copolymer, a vinyl chloride/vinyl acetate copolymer.
  • Polymer polyvinyl acetate, polyvinyl chloride, modified olefin resin (e.g., chlorinated polyolefin, etc.), polyvinyl alcohol, alkyl cellulose, carboxyalkyl cellulose, carboxyalkyl hydroxyalkyl cellulose, polyacrylic acid, polyacrylate, acrylic resin , polyester resin, urethane resin, styrene-butadiene copolymer, styrene-isoprene copolymer, styrene-butadiene-styrene block copolymer, styrene-ethylene-butylene-styrene block copolymer, styrene-ethylene-propylene-styrene Block copolymers, hydrogenated styrene/butadiene/styrene block copolymers, hydrogenated styrene/ethylene/butylene/styrene block copolymers, hydrogenated
  • the dispersant is not particularly limited, and known ones can be used.
  • any one of anionic surfactants, cationic surfactants, amphoteric surfactants and nonionic surfactants can be used. may be used, or two or more types may be combined.
  • anionic surfactants and nonionic surfactants are particularly preferred.
  • Preferred surfactants that can be contained in the basic gas deodorant processing composition of the present disclosure may be either an anionic surfactant or a nonionic surfactant, or both.
  • the thickener is not particularly limited, and known ones can be used. Examples include polysaccharides, and specific examples include xanthan gum, alginate, gum arabic, starch, tamarind seed gum, guar gum, carboxymethyl cellulose, and the like. mentioned.
  • the other deodorant can be blended in a type and ratio that does not impair the basic gas deodorant performance of the resulting deodorant product.
  • Compounds that cause offensive odors include basic gases such as ammonia gas and trimethylamine; acidic gases such as acetic acid and isovaleric acid; aldehyde-based gases such as formaldehyde, acetaldehyde and nonenal; and sulfur such as hydrogen sulfide and methyl mercaptan. system gases, etc., and other deodorants having deodorant performance against these can be contained.
  • deodorants for acid gases include zirconium hydroxide, zirconium oxide, and hydrotalcite compounds such as magnesium-aluminum hydrotalcite.
  • Deodorants for aldehyde gases include hydrazine compounds such as adipic acid dihydrazide, carbohydrazide, succinic acid dihydrazide and oxalic acid dihydrazide; aminoguanidines such as aminoguanidine hydrochloride, aminoguanidine sulfate and aminoguanidine bicarbonate; Salt etc. are mentioned.
  • deodorants for sulfur-based gases include copper silicate, copper zirconium phosphate hydrate, zinc oxide, zinc aluminum oxide, zinc silicate, zinc aluminum silicate and layered zinc aluminosilicate.
  • the method for producing the resin composition of the present invention may include steps other than the acid treatment step.
  • Other steps include, for example, a preparatory step of preparing a resin composition containing a compound having an acidic functional group, at least a portion of which is a salt, and a resin composition having an acidic functional group obtained by the acid treatment step.
  • the method for producing a resin composition of the present invention can be applied to the production process of general resin processed products to which a basic gas adsorption function is added by an acidic functional group.
  • Basic gases include ammonia, alkylamines such as trimethylamine and dimethylamine, nitrogen-containing heteroaromatic compounds such as pyridine, heterocyclic amines such as piperidine, and aromatics such as aniline, which cause offensive odors. group amines and hydrazines.
  • the material of the test bag used to determine the reduction rate of basic gases such as ammonia gas in the present invention is not particularly limited, and known materials can be used. Examples thereof include polyvinyl alcohol, polyvinylidene fluoride, polyvinyl fluoride, ethylene tetrafluoride/propylene hexafluoride copolymer and polyester.
  • a well-known method can be applied to the method for detecting the concentration of a basic gas such as ammonia in the present invention, and there is no particular limitation.
  • a gas sampler and detector tube can be used to measure the concentration of ammonia gas.
  • a gas sampler is attached to a gas sampler with a syringe needle for ammonia gas detection. can be measured by reading the density value from the color change.
  • the resin composition or resin obtained by the method for producing the resin composition of the present invention can be used in various fields that require deodorizing properties.
  • electrical appliances such as air purifier filters, air conditioner filters, wallpaper, toilet bowls, toilet seats, kitchen counters, ventilation fan filters, housing building materials such as paints, textile products such as clothing, bedding, curtains, mats, shoes, stockings, socks, etc. It can be used for many resin products such as pet products and care products.
  • Examples 1 to 4 ⁇ Method for preparing coating film> Coating liquids of Examples 1 to 4 were prepared according to the formulations shown in Table 1 or Table 2, respectively.
  • the coating liquid was dripped onto a PET film (Cosmoshine (registered trademark) A4360 (thickness: 100 ⁇ m) manufactured by Toyobo Co., Ltd.), and the coating liquid was uniformly applied using a bar coater.
  • the conveyor was adjusted to have an irradiation energy of 200 mJ/cm 2 per pass at an intensity of 250 mW/cm 2 in the ultraviolet region (UV-A) centered at 365 nm. Then, it was transported in an air atmosphere and irradiated with ultraviolet rays in 5 passes.
  • a working fluid was prepared by mixing water, NW-7090 and ⁇ -zirconium phosphate in a predetermined ratio.
  • the cationic dyeable polyester fibers (A.H.Y.) were dipped in the working liquid, dehydrated under pressure to remove excess working liquid, and then dried in a high-temperature dryer at 130°C.
  • ⁇ -zirconium phosphate particles > A 2 L round-bottom flask was charged with 1,345 mL of deionized water and 135 g of 35% hydrochloric acid, and 225 g of a 20% aqueous solution of zirconium oxychloride octahydrate containing 0.18% by weight of hafnium was added, followed by oxalic acid dihydrate. 93 g of material was added and dissolved. 101 g of 75% phosphoric acid was added while stirring the solution well. After raising the temperature to 98° C. over 2 hours, the mixture was refluxed with stirring for 12 hours.
  • the resulting precipitate was collected by filtration, thoroughly washed with water, and dried at 105° C. under normal pressure to obtain zirconium phosphate. This was pulverized with a rotor speed mill (16,000 rpm (revolutions per minute), mesh size 80 ⁇ m) to obtain ⁇ -zirconium phosphate particles.
  • the coating film or fiber was immersed in a 20% aqueous sodium sulfate solution preheated to 60°C. Keep at 60° C. for 1 hour with stirring. After that, the coating film or fiber was taken out and rinsed well with pure water. The rinsed coating film was allowed to stand in a dryer at 60° C. for 15 minutes to dry (Condition 1 in Table 4). Also, the rinsed fibers were dried by standing in a drier at 130° C. for 3 minutes (item 3 in Table 4).
  • ⁇ Acid treatment step> The coating film or fiber after exposure to the cationic component was immersed in an aqueous nitric acid solution adjusted to pH 1 and 60°C. Keep at 60° C. for 1 hour with stirring. The coating film or fiber was removed and rinsed thoroughly with pure water. The rinsed coating film was allowed to stand in a dryer at 60° C. for 15 minutes to dry (Condition 2 in Table 4). After rinsing, the fibers were allowed to stand in a drier at 130° C. for 3 minutes to dry (Condition 4 in Table 4).
  • the pKa of nitric acid is ⁇ 1.3
  • the pKa of the sulfo group is ⁇ 2.6
  • the pKa of the phosphate group is 2.12.
  • ⁇ Deodorizing test method> As a deodorizing test, the deodorizing property evaluation of the malodorous component was performed by the following equipment test. First, a coating film cut to 55 mm ⁇ 30 mm is put into a test bag (Tedlar bag), ammonia gas and dry air are injected therein, and the ammonia gas concentration in the test bag is 100 ppm and the gas volume is 1 L. The ammonia gas reduction rate (X; unit %) in the test bag after being left at normal pressure for 2 hours and after being left for 24 hours was calculated by the following formula (1). In addition, in order to calculate the ammonia gas reduction rate, a test bag containing no coating film was also prepared, and the ammonia gas concentration was measured after 2 hours and 24 hours.
  • X ammonia gas reduction rate
  • A0 means the ammonia gas concentration in the test bag without the coating film
  • A1 means the ammonia gas concentration in the test bag with the coating film.
  • the blank test is a test in which the ammonia concentration was measured in the same manner as in conditions 1 and 2 without inserting a coating film or fiber, and the ammonia concentration value is A 0 in formula (1) in each example. is.
  • samples after the acid treatment process are found to have excellent basic gas adsorption performance.
  • samples not subjected to the acid treatment step are inferior in basic gas adsorption performance.
  • the method for producing the resin composition of the present invention can be applied to the production process of general resin processed products to which the basic gas adsorption function by the acidic functional group is added.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)

Abstract

The present invention provides a method for producing a resin composition, the method comprising an acid treatment step in which a resin composition containing a compound that has acidic functional groups, at least some of which are formed into a salt, is treated with an acid, thereby having the at least some of the acidic functional groups returned to the original acid state. It is preferable that the resin composition as a whole contains two or more kinds of acidic functional groups; and it is more preferable that the acid used in the acid treatment step satisfies the relationship of the inequality expression shown below. (pKa of acidic functional groups desired to be returned to acid state) > (pKa of acid to be used in acid treatment step) > (pKa of acidic functional groups desired to be maintained in salt structure)

Description

樹脂組成物の製造方法Method for producing resin composition
 本発明は、樹脂組成物の製造方法に関し、好ましくは吸着剤の技術分野、消臭剤の技術分野、樹脂及び繊維の技術分野に属する。 The present invention relates to a method for producing a resin composition, preferably belonging to the technical field of adsorbents, the technical field of deodorants, and the technical field of resins and fibers.
 例えばリン酸ジルコニウムなどの無機固体酸を塩基性ガス吸着剤とし、これをフィルムなどの樹脂組成物に担持したり練りこんだりした消臭性製品が知られている。 For example, a deodorizing product is known in which an inorganic solid acid such as zirconium phosphate is used as a basic gas adsorbent, and this is supported or kneaded into a resin composition such as a film.
 特許文献1では、セルロース繊維とポリウレタン繊維とを混用した布帛において、セルロース繊維をアルカリ剤を用いて反応染料で染色した後に、酸処理をすることでアンモニアの消臭性能を高める方法が開示されている。 Patent Literature 1 discloses a method of increasing the deodorizing performance of ammonia by acid-treating a fabric made of a mixture of cellulose fibers and polyurethane fibers by dyeing the cellulose fibers with a reactive dye using an alkali agent. there is
 特許文献2では、一度使用した脱臭フィルター(アンモニアガスを吸着した後)を、弱酸性水溶液で洗浄することでアンモニアガスの吸着性能を復活させる方法が開示されている。 Patent Document 2 discloses a method of restoring the adsorption performance of ammonia gas by washing a deodorizing filter that has been used once (after adsorbing ammonia gas) with a weakly acidic aqueous solution.
特開2013-133562号公報JP 2013-133562 A 特開2003-47824号公報JP-A-2003-47824
 消臭性製品の製造においては、基材となる素材自体がもともと保持しているカチオン系材料や、精錬、染色、柔軟性付与などの高次加工工程で使用される添加剤に含まれるカチオン系材料を、消臭製品中の吸着材が吸着してしまうことにより、最終製品となった際に、吸着剤の本来持っている吸着性能が十分に発揮されないために、狙った消臭性能が達成できないことがある。
 目的の消臭性能を達成するためには、これらのカチオン系材料の吸着による吸着剤の性能低下を考慮した過剰な量の添加が必要となるため、吸着剤の加工による色調や風合いといったデザイン性の変化、および製品の強度低下などの物性面への悪影響やコスト増加、消臭製品の加工自体ができないという問題があった。
 例えば、悪臭の原因の一つである塩基性ガスを吸着する目的で、酸性官能基を含有させたポリエチレンテレフタレート(PET)繊維においては、その繊維を精練及び染色などの工程を経たのちに布帛へと加工されるが、その工程において、繊維自体がカチオン系材料を含む溶液中に浸漬される。その際に、繊維中に含有させた酸性官能基はカチオン系材料と反応してしまうため、できあがった布帛において、含有する酸性官能基の総数に対して、十分な消臭性能を発揮できないことがあり、この問題の解決手段として、酸性官能基の含有比率を増加させるといった手法がとられることがある。しかしながら、酸性官能基の比率増加は、紡糸時の糸切れや繊維の強度低下による加工機上での糸切れによる製造難度の上昇といった新たな問題を生み出してしまう。
In the production of deodorant products, cationic materials originally retained in the base material itself, and cationic additives contained in additives used in advanced processing processes such as refining, dyeing, and softening. The material is adsorbed by the adsorbent in the deodorant product, and when it becomes the final product, the adsorbent's inherent adsorption performance is not fully demonstrated, so the targeted deodorant performance is achieved. Sometimes I can't.
In order to achieve the desired deodorant performance, it is necessary to add an excessive amount of the adsorbent in consideration of the performance deterioration of the adsorbent due to the adsorption of these cationic materials. There were problems such as a change in the strength of the product, an adverse effect on physical properties such as a decrease in product strength, an increase in cost, and the inability to process the deodorant product itself.
For example, in the case of polyethylene terephthalate (PET) fibers containing acidic functional groups for the purpose of adsorbing basic gases, which are one of the causes of bad odors, the fibers are subjected to processes such as scouring and dyeing before being applied to fabrics. In the process, the fiber itself is immersed in a solution containing a cationic material. At that time, since the acidic functional groups contained in the fiber react with the cationic material, the finished fabric may not exhibit sufficient deodorant performance with respect to the total number of acidic functional groups contained. As a means of solving this problem, a method of increasing the content ratio of the acidic functional group is sometimes taken. However, an increase in the proportion of acidic functional groups creates new problems such as yarn breakage during spinning and increased difficulty in production due to yarn breakage on a processing machine due to a decrease in fiber strength.
 また、特許文献1に開示された酸処理による消臭性能を高める方法では、染色操作によりカチオン材料を吸着してしまった酸性感応基のうちの、一部を酸処理や繰り返し洗濯によって酸の状態に戻しているが、繊維自体のpHでできあがりを管理することから、製造ロットごとにできあがった製品の色合いや風合いのばらつき、染料の色落ち、肝心の消臭性能もばらつくことが懸念される。
 また、特許文献2では、臭気ガスを吸着した後のフィルターを酸性水溶液で洗浄することによって吸着能力を完全に復活させる方法が開示されているが、意匠性が求められる衣服やカーペットなどの染色加工を施された製品を本手法で処理すると、染料の脱落に起因する色落ちが起こる可能性があり、本手法の適用範囲は非常に限定的である。
In addition, in the method of enhancing deodorant performance by acid treatment disclosed in Patent Document 1, some of the acid-sensitive groups that have adsorbed cationic materials due to the dyeing operation are acidified by acid treatment or repeated washing. However, since the finished product is controlled by the pH of the fiber itself, there are concerns about variations in the color and texture of the finished product, color fading of the dye, and variations in the deodorant performance, which is important for each production lot.
In addition, Patent Document 2 discloses a method of completely restoring the adsorption capacity by washing the filter after adsorbing the odorous gas with an acidic aqueous solution. This technique is very limited in its applicability as it can cause color fading due to detachment of the dye when treated with this technique.
 本発明が解決しようとする課題は、塩基性ガスの吸着性能に優れる樹脂が得られる樹脂組成物の製造方法を提供することである。 The problem to be solved by the present invention is to provide a method for producing a resin composition from which a resin having excellent basic gas adsorption performance can be obtained.
 前記課題を解決するための手段には、以下の態様が含まれる。
<1> 少なくとも一部が塩となっている酸性官能基を有する化合物を含む樹脂組成物に対し、酸で処理することで酸性官能基の少なくとも一部を元の酸の状態に戻す酸処理工程を含む樹脂組成物の製造方法。
<2> 前記酸性官能基を有する化合物が、酸性官能基を有する樹脂を含む<1>に記載の樹脂組成物の製造方法。
<3> 前記酸性官能基を有する化合物が、無機固体酸を含む<1>又は<2>に記載の樹脂組成物の製造方法。
<4> 前記樹脂組成物全体として、前記酸性官能基を2種以上含む<1>~<3>のいずれか1つに記載の樹脂組成物の製造方法。
<5> 前記酸性官能基を有する化合物が、酸性官能基を有する樹脂、及び、無機固体酸を含む<1>~<4>のいずれか1つに記載の樹脂組成物の製造方法。
<6> 前記樹脂組成物が、表面に無機固体酸が固定された樹脂を含む<1>~<5>のいずれか1つに記載の樹脂組成物の製造方法。
<7> 前記酸処理工程において使用する酸が、水溶性の酸である<1>~<6>のいずれか1つに記載の樹脂組成物の製造方法。
<8> 前記酸処理工程において、前記酸を含むpH5以下の水溶液を用いる<1>~<7>のいずれか1つに記載の樹脂組成物の製造方法。
<9> 前記酸処理工程に使用する酸が、下記の不等式の関係を満たす<4>に記載の樹脂組成物の製造方法。
  (酸の状態に戻したい酸性官能基のpKa)>(前記酸処理工程に使用する酸のpKa)>(塩構造を維持したい酸性官能基のpKa)
<10> 前記酸性官能基が、カルボキシ基、リン酸基、ホスホン酸基、及び、スルホ基よりなる群から選ばれた少なくとも2種の基を含む<4>又は<9>に記載の樹脂組成物の製造方法。
<11> 前記無機固体酸のメジアン径が、0.1μm~20μmである<3>又は<6>に記載の樹脂組成物の製造方法。
<12> 前記無機固体酸が、無機酸化物である<3>、<6>又は<11>に記載の樹脂組成物の製造方法。
<13> 前記樹脂組成物が、樹脂として、繊維を含む<1>~<12>のいずれか1つに記載の樹脂組成物の製造方法。
<14> 得られる樹脂組成物が、コーティング剤である<1>~<13>のいずれか1つに記載の樹脂組成物の製造方法。
Means for solving the above problems include the following aspects.
<1> An acid treatment step in which a resin composition containing a compound having an acidic functional group, at least a portion of which is a salt, is treated with an acid to restore at least a portion of the acidic functional group to its original acid state. A method for producing a resin composition comprising
<2> The method for producing a resin composition according to <1>, wherein the compound having an acidic functional group contains a resin having an acidic functional group.
<3> The method for producing a resin composition according to <1> or <2>, wherein the compound having an acidic functional group contains an inorganic solid acid.
<4> The method for producing a resin composition according to any one of <1> to <3>, wherein the resin composition as a whole contains two or more kinds of acidic functional groups.
<5> The method for producing a resin composition according to any one of <1> to <4>, wherein the compound having an acidic functional group comprises a resin having an acidic functional group and an inorganic solid acid.
<6> The method for producing a resin composition according to any one of <1> to <5>, wherein the resin composition contains a resin having an inorganic solid acid fixed on its surface.
<7> The method for producing a resin composition according to any one of <1> to <6>, wherein the acid used in the acid treatment step is a water-soluble acid.
<8> The method for producing a resin composition according to any one of <1> to <7>, wherein an aqueous solution containing the acid and having a pH of 5 or less is used in the acid treatment step.
<9> The method for producing a resin composition according to <4>, wherein the acid used in the acid treatment step satisfies the following inequality.
(pKa of the acidic functional group to be returned to the acid state)>(pKa of the acid used in the acid treatment step)>(pKa of the acidic functional group to maintain the salt structure)
<10> The resin composition according to <4> or <9>, wherein the acidic functional group contains at least two groups selected from the group consisting of a carboxy group, a phosphoric acid group, a phosphonic acid group, and a sulfo group. A method of making things.
<11> The method for producing a resin composition according to <3> or <6>, wherein the inorganic solid acid has a median diameter of 0.1 μm to 20 μm.
<12> The method for producing a resin composition according to <3>, <6> or <11>, wherein the inorganic solid acid is an inorganic oxide.
<13> The method for producing a resin composition according to any one of <1> to <12>, wherein the resin composition contains fibers as the resin.
<14> The method for producing a resin composition according to any one of <1> to <13>, wherein the resulting resin composition is a coating agent.
 本発明によれば、塩基性ガスの吸着性能に優れる樹脂が得られる樹脂組成物の製造方法を提供することができる。 According to the present invention, it is possible to provide a method for producing a resin composition from which a resin having excellent basic gas adsorption performance can be obtained.
 以下に記載する構成要件の説明は、本発明の代表的な実施形態に基づいてなされることであるが、本発明はそのような実施態様に限定されるものではない。なお、本願明細書において「~」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。
 本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本発明において、「質量%」と「重量%」とは同義であり、「質量部」と「重量部」とは同義であり、また、「ppm」と記載した場合、特に断りがなければ、「体積ppm」を表す。
 また、本発明において、2つ以上の好ましい態様の組み合わせは、より好ましい態様である。
 以下において、本発明の内容について詳細に説明する。
The description of the constituent elements described below is based on representative embodiments of the present invention, but the present invention is not limited to such embodiments. In the specification of the present application, the term "~" is used to mean that the numerical values before and after it are included as the lower limit and the upper limit.
In the numerical ranges described stepwise in this specification, the upper limit or lower limit described in one numerical range may be replaced with the upper limit or lower limit of the numerical range described in other steps. good. Moreover, in the numerical ranges described in this specification, the upper and lower limits of the numerical ranges may be replaced with the values shown in the examples.
In the present invention, "% by mass" and "% by weight" are synonymous, and "parts by mass" and "parts by weight" are synonymous. Represents "ppm by volume".
Moreover, in the present invention, a combination of two or more preferred aspects is a more preferred aspect.
The contents of the present invention will be described in detail below.
(樹脂組成物の製造方法)
 本発明の樹脂組成物の製造方法は、少なくとも一部が塩となっている酸性官能基を有する化合物を含む樹脂組成物に対し、酸で処理することで酸性官能基の少なくとも一部を元の酸の状態に戻す酸処理工程を含む。
 また、本発明の樹脂組成物の製造方法は、消臭剤の製造方法として好適に用いることができ、消臭繊維の製造方法としても好適に用いることができる。
(Method for producing resin composition)
In the method for producing a resin composition of the present invention, a resin composition containing a compound having an acidic functional group, at least a portion of which is a salt, is treated with an acid to restore at least a portion of the acidic functional group to the original state. It includes an acid treatment step to restore the acid state.
Moreover, the method for producing the resin composition of the present invention can be suitably used as a method for producing a deodorant, and can also be suitably used as a method for producing a deodorant fiber.
 従来の樹脂組成物の製造工程の中においては、カチオン系材料にさらされる工程、例えば、染色工程、中和工程、精錬工程、潤滑油塗布工程などを経て製造されるため、樹脂組成物中に存在する酸性官能基の多くが塩構造となり、吸着性能が失われている場合が多くみられた。
 本発明者らが鋭意検討した結果、前記構成をとることにより、塩基性ガスの吸着性能に優れる樹脂が得られる樹脂組成物の製造方法を提供できることを見出した。
 これによる優れた効果の作用機構は明確ではないが、以下のように推定している。
 少なくとも一部が塩となっている酸性官能基を有する化合物を含む樹脂組成物に対し、酸で処理することで酸性官能基の少なくとも一部を元の酸の状態に戻すことにより、樹脂組成物が有する消臭性能を、他の物性への悪影響を及ぼさずに、回復することができると推定される。
 また、前記樹脂組成物全体として、pKaが異なる少なくとも2種以上の酸性官能基を有する場合、本発明の樹脂組成物の製造方法であれば、少なくとも1種の酸性官能基を高選択的に酸の状態に回復することもできる。
In the manufacturing process of a conventional resin composition, since it is manufactured through a process exposed to a cationic material, such as a dyeing process, a neutralization process, a refining process, a lubricating oil application process, etc., Many of the existing acidic functional groups became salt structures, and in many cases the adsorption performance was lost.
As a result of intensive studies by the present inventors, it was found that by adopting the configuration described above, it is possible to provide a method for producing a resin composition from which a resin having excellent basic gas adsorption performance can be obtained.
Although the action mechanism of this excellent effect is not clear, it is presumed as follows.
A resin composition containing a compound having an acidic functional group, at least a portion of which is a salt, is treated with an acid to return at least a portion of the acidic functional group to its original acid state, thereby producing a resin composition. It is presumed that the deodorant performance of the product can be recovered without adversely affecting other physical properties.
Further, when the resin composition as a whole has at least two kinds of acidic functional groups with different pKa, if the method for producing a resin composition of the present invention, at least one kind of acidic functional group is highly selectively converted into acid state can be restored.
 以下、本発明の樹脂組成物の製造方法について、詳細に説明する。 The method for producing the resin composition of the present invention will be described in detail below.
<酸処理工程>
 本発明の樹脂組成物の製造方法は、少なくとも一部が塩となっている酸性官能基を有する化合物を含む樹脂組成物に対し、前記酸性官能基の酸解離指数(pKa)よりも小さいpKaの酸で処理することで酸性官能基の少なくとも一部を元の酸の状態に戻す酸処理工程を含む。
 なお、本発明の樹脂組成物の製造方法における樹脂組成物は、2種以上の化合物の混合物であってもよいし、1種の樹脂自体であってもよい。
<Acid treatment step>
In the method for producing a resin composition of the present invention, a resin composition containing a compound having an acidic functional group, at least a part of which is a salt, has a pKa lower than the acid dissociation index (pKa) of the acidic functional group. It includes an acid treatment step of returning at least a portion of the acidic functional groups to their original acid state by treatment with an acid.
In addition, the resin composition in the method for producing a resin composition of the present invention may be a mixture of two or more compounds, or may be one kind of resin itself.
 前記酸性官能基としては、スルホ基(スルホン酸基)、リン酸基、ホスホン酸基、カルボキシ基(カルボン酸基)等が挙げられる。中でも、塩基性ガスの吸着性能(以下、単に「吸着性能」ともいう。)の観点から、前記酸性官能基として、スルホ基、リン酸基、又は、ホスホン酸基を少なくとも含むことが好ましく、リン酸基、又は、ホスホン酸基を少なくとも含むことがより好ましい。 Examples of the acidic functional group include a sulfo group (sulfonic acid group), a phosphoric acid group, a phosphonic acid group, a carboxy group (carboxylic acid group), and the like. Among them, from the viewpoint of basic gas adsorption performance (hereinafter also simply referred to as “adsorption performance”), it is preferable that the acidic functional group includes at least a sulfo group, a phosphoric acid group, or a phosphonic acid group. More preferably, it contains at least an acid group or a phosphonic acid group.
 また、前記樹脂化合物は、吸着性能の観点から、前記樹脂組成物全体として、前記酸性官能基を2種以上含むことが好ましく、前記樹脂組成物全体として、前記酸性官能基を2種又は3種含むことがより好ましく、前記樹脂組成物全体として、前記酸性官能基を2種含むことが特に好ましい。
 前記樹脂組成物全体として、前記酸性官能基を2種以上含む場合、前記酸性官能基は、汎用性、及び、吸着性能の観点から、カルボキシ基、リン酸基、ホスホン酸基、及び、スルホ基よりなる群から選ばれた少なくとも2種の基を含むことが好ましく、カルボキシ基、リン酸基又はホスホン酸基と、スルホ基とを含むことがより好ましく、リン酸基又はホスホン酸基と、スルホ基とを含むことが特に好ましい。
In addition, from the viewpoint of adsorption performance, the resin compound preferably contains two or more of the acidic functional groups in the resin composition as a whole. It is more preferable that the resin composition as a whole contains two types of acidic functional groups.
When the resin composition as a whole contains two or more kinds of acidic functional groups, the acidic functional groups are, from the viewpoint of versatility and adsorption performance, a carboxy group, a phosphoric acid group, a phosphonic acid group, and a sulfo group. It preferably contains at least two groups selected from the group consisting of, more preferably contains a carboxy group, a phosphoric acid group or a phosphonic acid group and a sulfo group, a phosphoric acid group or a phosphonic acid group and a sulfo It is particularly preferred to contain the group
 前記酸性官能基が形成していてもよい塩としては、特に制限はなく、公知の対カチオンの塩であればよい。
 対カチオンとしては、例えば、第一級~第四級アンモニウムイオン、金属イオン(例えば、アルカリ金属イオン、アルカリ土類金属イオン、遷移金属イオン、その錯体等)、色素構造を有するカチオン等が挙げられる。前記色素としては、顔料及び染料が挙げられ、染料が好ましく挙げられる。
 中でも、アルカリ金属イオン、アルカリ土類金属イオン、及び、色素構造を有するカチオンよりなる群から選ばれる少なくとも1種が好ましく挙げられる。
The salt that the acidic functional group may form is not particularly limited as long as it is a known countercation salt.
Examples of counter cations include primary to quaternary ammonium ions, metal ions (eg, alkali metal ions, alkaline earth metal ions, transition metal ions, complexes thereof, etc.), cations having a dye structure, and the like. . Examples of the coloring matter include pigments and dyes, and dyes are preferred.
Among them, at least one selected from the group consisting of alkali metal ions, alkaline earth metal ions, and cations having a dye structure is preferred.
 前記酸処理工程の前記樹脂組成物における少なくとも一部が塩となっている酸性官能基の割合は、特に制限はないが、前記樹脂組成物に含まれる酸性官能基全体に対し、20モル%以上であることが好ましく、50モル%以上であることがより好ましく、80モル%以上であることが更に好ましく、90モル%以上100モル%以下であることが特に好ましい。 The ratio of the acidic functional groups at least partially salted in the resin composition in the acid treatment step is not particularly limited, but is 20 mol% or more with respect to the total acidic functional groups contained in the resin composition. is preferably 50 mol % or more, more preferably 80 mol % or more, and particularly preferably 90 mol % or more and 100 mol % or less.
 前記酸処理工程に用いる酸は、酸で処理することで酸性官能基の少なくとも一部を元の酸の状態に戻すことができるものであればよい。
 具体的には、前記酸は、少なくとも1種の前記酸性官能基の酸解離指数(pKa)よりも小さいpKaの酸であればよい。
 酸としては、スルホン酸化合物、硫酸、塩酸、リン酸、ホスホン酸化合物、硝酸、カルボン酸化合物等が挙げられる。中でも、酸の除去性の観点から、硝酸が好ましく挙げられる。
 また、前記酸としては、処理性の観点から、水溶性の酸であることが好ましい。
 更に、前記酸処理工程における前記酸の濃度は、酸性官能基の少なくとも一部を元の酸の状態に戻すことができれば特に制限はないが、0.001mol/L~2mol/Lであることが好ましく、0.01mol/L~0.5mol/Lであることがより好ましい。
 前記酸処理工程において、処理性の観点から、前記酸を含むpH5以下の水溶液を用いることが好ましく、前記酸を含むpH0~pH3である水溶液を用いることがより好ましく、前記酸を含むpH0~pH2である水溶液を用いることが特に好ましい。
 前記酸処理工程における処理温度は、特に制限はないが、10℃~100℃であることが好ましく、40℃~80℃であることがより好ましい。
 前記酸処理工程における処理時間は、特に制限はないが、0.01時間~60時間であることが好ましく、0.1時間~24時間であることが好ましい。
Any acid may be used in the acid treatment step as long as at least part of the acidic functional groups can be returned to the original acid state by treatment with an acid.
Specifically, the acid may have a pKa smaller than the acid dissociation index (pKa) of at least one of the acidic functional groups.
Examples of acids include sulfonic acid compounds, sulfuric acid, hydrochloric acid, phosphoric acid, phosphonic acid compounds, nitric acid, and carboxylic acid compounds. Among them, nitric acid is preferred from the viewpoint of acid removal.
Moreover, the acid is preferably a water-soluble acid from the viewpoint of processability.
Furthermore, the concentration of the acid in the acid treatment step is not particularly limited as long as at least part of the acidic functional groups can be returned to the original acid state, but it is preferably 0.001 mol/L to 2 mol/L. It is preferably from 0.01 mol/L to 0.5 mol/L.
In the acid treatment step, from the viewpoint of treatability, it is preferable to use an aqueous solution of pH 5 or less containing the acid, more preferably an aqueous solution of pH 0 to pH 3 containing the acid, and pH 0 to pH 2 containing the acid. It is particularly preferred to use an aqueous solution of
The treatment temperature in the acid treatment step is not particularly limited, but is preferably 10°C to 100°C, more preferably 40°C to 80°C.
The treatment time in the acid treatment step is not particularly limited, but is preferably 0.01 hour to 60 hours, more preferably 0.1 hour to 24 hours.
 前記樹脂組成物全体として、前記酸性官能基を2種以上含む場合、吸着性能、及び、選択的な処理性の観点から、前記酸処理工程に使用する酸が、下記の不等式の関係を満たすことが好ましい。
  (酸の状態(遊離型)に戻したい酸性官能基のpKa)>(前記酸処理工程に使用する酸のpKa)>(塩構造を維持したい酸性官能基のpKa)
 酸性官能基が、スルホ基、及び、リン酸基又はホスホン酸基を含む場合、上記不等式を満たす酸としては、例えば、硝酸、トリフルオロ酢酸、トリクロロ酢酸等が挙げられる。中でも、吸着性能、反応性、及び、酸の除去性の観点から、硝酸が好ましく挙げられる。
 なお、本発明における酸性官能基のpKaは、酸性官能基を有する化合物のpKaであり、酸性官能基を有する化合物からpKaを実測してもよいし、計算してもよい。
 また、リン酸基を有する化合物のように、2以上のpKaを有する場合、前記酸解離定数(pKa)は、第一の酸解離定数(pKa1)のことを意味する。
 一実施形態において、酸の状態に戻したい酸性官能基及び塩構造を維持したい酸性官能基は、それぞれ単一の酸性官能基であることが好ましく、互いに異なる酸性官能基であることがより好ましい。
 酸処理された後において、樹脂組成物を実施例に記載の消臭試験方法にかけた場合に、樹脂組成物は24時間後において、好ましくはアンモニア低減率50%以上、より好ましくはアンモニア低減率60%以上、特に好ましくは80%以上を有する。
 酸処理される前において、樹脂組成物を実施例に記載の消臭試験方法にかけた場合に、樹脂組成物は24時間後において、好ましくはアンモニア低減率50%未満、より好ましくはアンモニア低減率40%以下、特に好ましくは35%以下を有する。
When the resin composition as a whole contains two or more kinds of acidic functional groups, the acid used in the acid treatment step should satisfy the following inequality from the viewpoint of adsorption performance and selective treatment properties. is preferred.
(pKa of the acidic functional group to be returned to the acid state (free form))>(pKa of the acid used in the acid treatment step)>(pKa of the acidic functional group to maintain the salt structure)
When the acidic functional group contains a sulfo group and a phosphoric acid group or a phosphonic acid group, acids that satisfy the above inequality include, for example, nitric acid, trifluoroacetic acid, trichloroacetic acid, and the like. Among them, nitric acid is preferred from the viewpoint of adsorption performance, reactivity, and acid removal properties.
The pKa of the acidic functional group in the present invention is the pKa of the compound having the acidic functional group, and the pKa may be measured or calculated from the compound having the acidic functional group.
When the compound has a pKa of 2 or more, such as a compound having a phosphate group, the acid dissociation constant (pKa) means the first acid dissociation constant (pKa1).
In one embodiment, the acidic functional group to be returned to the acid state and the acidic functional group to maintain the salt structure are each preferably a single acidic functional group, more preferably different acidic functional groups.
After acid treatment, when the resin composition is subjected to the deodorizing test method described in the Examples, the resin composition preferably has an ammonia reduction rate of 50% or more, more preferably an ammonia reduction rate of 60 after 24 hours. % or more, particularly preferably 80% or more.
When the resin composition is subjected to the deodorizing test method described in the Examples before acid treatment, the resin composition preferably has an ammonia reduction rate of less than 50%, more preferably an ammonia reduction rate of 40 after 24 hours. % or less, particularly preferably 35% or less.
 前記酸処理工程における酸性官能基を有する化合物は、低分子化合物であっても、高分子化合物あってもよく、また、無機物であっても、有機物であってもよいが、酸性官能基を有する樹脂、又は、無機固体酸であることが好ましい。 The compound having an acidic functional group in the acid treatment step may be a low-molecular-weight compound or a high-molecular-weight compound, and may be an inorganic substance or an organic substance, but has an acidic functional group. A resin or an inorganic solid acid is preferred.
 酸性官能基を有する樹脂としては、酸性官能基と樹脂とが共有結合にて結合している樹脂であることが好ましい。
 他の酸性官能基を有する樹脂としては、無機固体酸、有機カルボン酸化合物等の酸性化合物を練りこんだ樹脂、酸性化合物を表面にコートした樹脂、表面処理により酸性官能基を表面に有する樹脂などが挙げられる。
The resin having an acidic functional group is preferably a resin in which an acidic functional group and a resin are covalently bonded.
Other resins having acidic functional groups include resins kneaded with acidic compounds such as inorganic solid acids and organic carboxylic compounds, resins coated with acidic compounds on the surface, and resins having acidic functional groups on the surface by surface treatment. is mentioned.
 前記樹脂組成物に含まれる酸性官能基を有していてもよい樹脂としては、特に制限はないが、例えば、ポリエステル、ポリウレタン、ポリアミド、アクリル樹脂、ポリオレフィン、ポリビニルアルコール、トリアセチルセルロース及びジアセチルセルロース等のセルロースアセテート樹脂、ポリカーボネート、ポリアリレート、ポリエーテルサルホン、ノルボルネン等の環状オレフィンをモノマーとする環状ポリオレフィン樹脂、ポリ塩化ビニル、エポキシ樹脂等が挙げられるが、これらの樹脂に限定されるものではない。
 これらの樹脂は、単独重合体であってもよいし、共重合体であってもよい。共重合体の場合、各共重合成分の重合割合に特に制限はない。
 中でも、ポリウレタン、ポリエステル、ポリアミド、アクリル樹脂又はポリエチレンであることが好ましく、ポリエステル又はアクリル樹脂であることがより好ましく、アクリル樹脂であることが特に好ましい。
The resin that may have an acidic functional group contained in the resin composition is not particularly limited, but examples thereof include polyester, polyurethane, polyamide, acrylic resin, polyolefin, polyvinyl alcohol, triacetyl cellulose and diacetyl cellulose. Cellulose acetate resin, polycarbonate, polyarylate, polyether sulfone, cyclic polyolefin resin with cyclic olefins such as norbornene as a monomer, polyvinyl chloride, epoxy resin, etc., but not limited to these resins. .
These resins may be homopolymers or copolymers. In the case of a copolymer, there is no particular restriction on the polymerization ratio of each copolymer component.
Among them, polyurethane, polyester, polyamide, acrylic resin or polyethylene is preferable, polyester or acrylic resin is more preferable, and acrylic resin is particularly preferable.
 また、前記樹脂をモノマーより合成する場合は、活性エネルギー線硬化型ビニル化合物が好ましく挙げられる。活性エネルギー線硬化型ビニル化合物としては、アクリレート化合物、メタクリレート化合物、スチレン化合物、アクリルアミド化合物、メタクリルアミド化合物、ビニルエステル化合物、アリル化合物などが挙げられる。これらの中では特にアクリレート化合物が硬化性に優れるため、より好ましい。物性調整のために、アクリレート化合物以外のビニル化合物を併用してもよい。
 また、酸性官能基を有するモノマーとして、スルホ基を有するエチレン性不飽和化合物、リン酸基を有するエチレン性不飽和化合物、ホスホン酸基を有するエチレン性不飽和化合物等が好ましく挙げられる。
Moreover, when the said resin is synthesize|combined from a monomer, an active-energy-ray-curable vinyl compound is mentioned preferably. Examples of active energy ray-curable vinyl compounds include acrylate compounds, methacrylate compounds, styrene compounds, acrylamide compounds, methacrylamide compounds, vinyl ester compounds, and allyl compounds. Among these, acrylate compounds are particularly preferred because of their excellent curability. A vinyl compound other than the acrylate compound may be used in combination for physical property adjustment.
Moreover, as a monomer having an acidic functional group, an ethylenically unsaturated compound having a sulfo group, an ethylenically unsaturated compound having a phosphoric acid group, an ethylenically unsaturated compound having a phosphonic acid group, and the like are preferably mentioned.
 前記樹脂組成物に含まれる酸性官能基を有する樹脂は、繊維であることが好ましい。
 繊維であれば、公知の化学繊維はいずれも使用することができる。この好ましい具体例としては、例えばポリエステル、ポリウレタン、ナイロン、レーヨン、アクリル樹脂、アラミド、ビニロン、ポリエチレン、及びポリプロピレン等が挙げられる。中でも、ポリウレタン、ポリエステル、ナイロン、アクリル樹脂及びポリエチレンであることが好ましい。これらの樹脂は、単独重合体であってもよいし、共重合体であってもよい。共重合体の場合、各共重合成分の重合割合に特に制限はない。
The resin having an acidic functional group contained in the resin composition is preferably a fiber.
As for fibers, any known chemical fibers can be used. Preferable examples include polyester, polyurethane, nylon, rayon, acrylic resin, aramid, vinylon, polyethylene, and polypropylene. Among them, polyurethane, polyester, nylon, acrylic resin and polyethylene are preferable. These resins may be homopolymers or copolymers. In the case of a copolymer, there is no particular restriction on the polymerization ratio of each copolymer component.
 前記酸処理工程における酸性官能基を有する化合物は、無機固体酸を含むことが好ましい。
 また、無機固体酸としては、ゼオライト、Al、SiO、MgO、CaO、SrO、BaO、ZrO、TiO、WO、CeO、LiO、NaO、及びKO等の非晶質複合酸化物が挙げられる。吸着性能の観点から、ホスホン酸構造、リン酸構造又はスルホン酸構造を有する無機固体酸であることが好ましく、リン酸構造を有する無機固体酸であることがより好ましい。
 更に、無機固体酸の形状は、特に制限はないが、樹脂への分散性の観点から、粒子状であることが好ましい。
 無機固体酸が粒子状である場合、無機固体酸粒子のレーザー回折法により測定されるメジアン径D50は、糸切れ抑制性、及び、消臭効果等の機能効果をより発揮する観点から、0.1μm~20μmであることが好ましく、0.2μm~10μmであることがより好ましく、0.5μm~5μmであることが特に好ましい。
 無機固体酸粒子のレーザー回折法により測定されるメジアン径は、マルバーン・パナリティカル社製レーザー回折式粒度分布測定装置「マスターサイザー2000」で測定し、体積基準で算出する。
The compound having an acidic functional group in the acid treatment step preferably contains an inorganic solid acid.
Inorganic solid acids include zeolite, Al2O3 , SiO2 , MgO, CaO, SrO, BaO, ZrO2 , TiO2 , WO2 , CeO2 , Li2O , Na2O , and K2O . and amorphous composite oxides such as From the viewpoint of adsorption performance, an inorganic solid acid having a phosphonic acid structure, a phosphoric acid structure or a sulfonic acid structure is preferable, and an inorganic solid acid having a phosphoric acid structure is more preferable.
Furthermore, the shape of the inorganic solid acid is not particularly limited, but from the viewpoint of dispersibility in the resin, it is preferably particulate.
When the inorganic solid acid is in the form of particles, the median diameter D50 of the inorganic solid acid particles measured by a laser diffraction method is 0 from the viewpoint of exhibiting more functional effects such as the ability to suppress thread breakage and the deodorizing effect. It is preferably 0.1 μm to 20 μm, more preferably 0.2 μm to 10 μm, and particularly preferably 0.5 μm to 5 μm.
The median diameter of the inorganic solid acid particles measured by the laser diffraction method is measured with a laser diffraction particle size distribution analyzer "Mastersizer 2000" manufactured by Malvern Panalytical, and calculated on a volume basis.
 無機固体酸としては、特に制限はないが、吸着性能の観点から、リン酸金属塩であることが好ましく、リン酸ジルコニウム、又は、リン酸チタンであることがより好ましく、リン酸ジルコニウムであることが特に好ましい。 The inorganic solid acid is not particularly limited, but from the viewpoint of adsorption performance, it is preferably a metal phosphate, more preferably zirconium phosphate or titanium phosphate, and zirconium phosphate. is particularly preferred.
 また、樹脂への無機固体酸の添加方法は、特に制限はなく、例えば、樹脂の重合工程での添加であっても、重合後の樹脂を用い、押出機で練り込んでもよい。
 更に、無機固体酸が練り込まれた繊維の具体的な製造方法としては、溶融した液状繊維用樹脂又は溶解した繊維用樹脂溶液に無機固体酸粒子を練り込み、これを紡糸する方法等が挙げられる。
The method of adding the inorganic solid acid to the resin is not particularly limited. For example, even if it is added in the polymerization process of the resin, the polymerized resin may be used and kneaded by an extruder.
Further, as a specific method for producing fibers kneaded with an inorganic solid acid, there is a method of kneading inorganic solid acid particles into a molten liquid fiber resin or a dissolved fiber resin solution and spinning this. be done.
 前記繊維における無機固体酸の含有量は、特に限定はされない。
 一般に含有量を増やせば消臭性を強力に発揮させ、長期間持続させることができるが、ある程度以上に含有させても消臭効果に大きな差が生じないこと、及び、樹脂の強度の観点から、繊維における無機固体酸の含有量は、樹脂100重量部に対し、0.1重量部~4.0重量部であることが好ましく、0.5重量部~3.0重量部であることがより好ましい。
The content of the inorganic solid acid in the fiber is not particularly limited.
In general, if the content is increased, the deodorizing effect can be strongly exerted and maintained for a long period of time. , The content of the inorganic solid acid in the fiber is preferably 0.1 to 4.0 parts by weight, preferably 0.5 to 3.0 parts by weight, with respect to 100 parts by weight of the resin. more preferred.
 酸性官能基を有する化合物は、1種単独で使用しても、2種以上を併用してもよい。
 前記樹脂組成物における酸性官能基を有する化合物の含有量は、特に制限はなく、その用途、及び、酸性官能基を有する化合物の形態等に応じ、適宜選択することができる。
A compound having an acidic functional group may be used alone or in combination of two or more.
The content of the compound having an acidic functional group in the resin composition is not particularly limited, and can be appropriately selected according to the application, the form of the compound having an acidic functional group, and the like.
 前記樹脂組成物は、溶媒又は分散媒等の媒体を含有していてもよい。媒体としては特に限定はないが、例えば、水のみ、又は、水と水溶性を有する有機溶剤との混合液が挙げられ、水のみが好ましい。 The resin composition may contain a medium such as a solvent or a dispersion medium. Although the medium is not particularly limited, for example, water alone or a mixed liquid of water and a water-soluble organic solvent can be mentioned, and water alone is preferable.
 また、前記樹脂組成物は、繊維、樹脂成型物、コーティング剤等に使用する用途に用いる公知の添加剤を含んでいてもよい。
 添加剤としては、例えば、バインダー、分散剤、油剤、紫外線吸収剤、増粘剤、周知のその他の消臭剤、例えば、酸性ガス消臭剤、硫黄系ガス消臭剤、アルデヒド系ガス消臭剤、ケトン系ガス消臭剤、抗菌剤、防カビ剤、抗ウイルス加工剤、抗アレルゲン剤、消泡剤、着色剤、防腐剤、粘度調整剤、及び芳香剤等が挙げられる。
In addition, the resin composition may contain known additives used in applications such as fibers, resin moldings, and coating agents.
Examples of additives include binders, dispersants, oils, ultraviolet absorbers, thickeners, and other well-known deodorants such as acid gas deodorants, sulfur gas deodorants, and aldehyde gas deodorants. agents, ketone-based gas deodorants, antibacterial agents, antifungal agents, antiviral processing agents, antiallergen agents, antifoaming agents, coloring agents, preservatives, viscosity modifiers, and fragrances.
 バインダーとしては、特に制限はなく、周知のものが使用できる。
 バインダーとしては、樹脂及び多糖類等が挙げられ、好ましくは樹脂である。尚、本開示の塩基性ガス消臭加工用組成物に含まれ得るバインダーは、1種又は2種以上とすることができる。上記樹脂は、水溶性樹脂及び水不溶性樹脂のいずれでもよく、エチレン・酢酸ビニル共重合体又はその変性物(例えば、酸変性物等)、エチレン・塩化ビニル共重合体、塩化ビニル・酢酸ビニル共重合体、ポリ酢酸ビニル、ポリ塩化ビニル、変性オレフィン樹脂(例えば、塩素化ポリオレフィン等)、ポリビニルアルコール、アルキルセルロース、カルボキシアルキルセルロース、カルボキシアルキルヒドロキシアルキルセルロース、ポリアクリル酸、ポリアクリル酸塩、アクリル樹脂、ポリエステル樹脂、ウレタン樹脂、スチレン・ブタジエン共重合体、スチレン・イソプレン共重合体、スチレン・ブタジエン・スチレンブロック共重合体、スチレン・エチレン・ブチレン・スチレンブロック共重合体、スチレン・エチレン・プロピレン・スチレンブロック共重合体、水素添加スチレン・ブタジエン・スチレンブロック共重合体、水素添加スチレン・エチレン・ブチレン・スチレンブロック共重合体、水素添加スチレン・エチレン・プロピレン・スチレンブロック共重合体、及びスチレン・無水マレイン酸共重合体等が挙げられる。
The binder is not particularly limited, and known binders can be used.
Examples of binders include resins and polysaccharides, preferably resins. The binder that can be contained in the composition for basic gas deodorant processing of the present disclosure can be one or two or more. The above resin may be either a water-soluble resin or a water-insoluble resin, and may be an ethylene/vinyl acetate copolymer or a modified product thereof (e.g., an acid-modified product, etc.), an ethylene/vinyl chloride copolymer, a vinyl chloride/vinyl acetate copolymer. Polymer, polyvinyl acetate, polyvinyl chloride, modified olefin resin (e.g., chlorinated polyolefin, etc.), polyvinyl alcohol, alkyl cellulose, carboxyalkyl cellulose, carboxyalkyl hydroxyalkyl cellulose, polyacrylic acid, polyacrylate, acrylic resin , polyester resin, urethane resin, styrene-butadiene copolymer, styrene-isoprene copolymer, styrene-butadiene-styrene block copolymer, styrene-ethylene-butylene-styrene block copolymer, styrene-ethylene-propylene-styrene Block copolymers, hydrogenated styrene/butadiene/styrene block copolymers, hydrogenated styrene/ethylene/butylene/styrene block copolymers, hydrogenated styrene/ethylene/propylene/styrene block copolymers, and styrene/maleic anhydride acid copolymers, and the like.
 分散剤としては特に制限はなく、周知のものが使用でき、例えば、アニオン性界面活性剤、カチオン性界面活性剤、両イオン性界面活性剤及びノニオン性界面活性剤のいずれか1種を用いてもよいし、2種類以上を組み合わせてもよい。これらのうち、リン酸ジルコニウム粒子の分散性の観点から、アニオン性界面活性剤及びノニオン性界面活性剤が特に好ましい。本開示の塩基性ガス消臭加工用組成物に含有され得る好ましい界面活性剤は、アニオン性界面活性剤及びノニオン性界面活性剤のいずれか一方でもよいし、両方でもよい。 The dispersant is not particularly limited, and known ones can be used. For example, any one of anionic surfactants, cationic surfactants, amphoteric surfactants and nonionic surfactants can be used. may be used, or two or more types may be combined. Among these, from the viewpoint of dispersibility of zirconium phosphate particles, anionic surfactants and nonionic surfactants are particularly preferred. Preferred surfactants that can be contained in the basic gas deodorant processing composition of the present disclosure may be either an anionic surfactant or a nonionic surfactant, or both.
 増粘剤としては特に制限はなく、公知のものが使用でき、例えば、多糖類等が挙げられ、具体例としては、キサンタンガム、アルギネート、アラビアガム、デンプン、タマリンドシードガム、グァーガム及びカルボキシメチルセルロース等が挙げられる。 The thickener is not particularly limited, and known ones can be used. Examples include polysaccharides, and specific examples include xanthan gum, alginate, gum arabic, starch, tamarind seed gum, guar gum, carboxymethyl cellulose, and the like. mentioned.
 その他の消臭剤は、得られる消臭性製品の塩基性ガスの消臭性能を低下させない種類のもの、及び割合で配合することができる。
 悪臭等の原因となる化合物としては、アンモニアガス及びトリメチルアミン等の塩基性ガス;酢酸及びイソ吉草酸等の酸性ガス;ホルムアルデヒド、アセトアルデヒド及びノネナール等のアルデヒド系ガス;並びに硫化水素及びメチルメルカプタン等の硫黄系ガス等が挙げられ、これらに対する消臭性能を有する他の消臭剤を含有することができる。
 酸性ガス用の消臭剤としては、水酸化ジルコニウム、酸化ジルコニウム及びマグネシウム-アルミニウムハイドロタルサイト等のハイドロタルサイト系化合物等が挙げられる。
 アルデヒド系ガス用の消臭剤としては、アジピン酸ジヒドラジド、カルボヒドラジド、コハク酸ジヒドラジド及びシュウ酸ジヒドラジド等のヒドラジン系化合物、アミノグアニジン塩酸塩、アミノグアニジン硫酸塩及びアミノグアニジン重炭酸塩等のアミノグアニジン塩等が挙げられる。
 硫黄系ガス用の消臭剤としては、ケイ酸銅、銅リン酸ジルコニウム水和物、酸化亜鉛、酸化アルミニウム亜鉛、ケイ酸亜鉛、ケイ酸アルミニウム亜鉛及び層状アルミノケイ酸亜鉛等が挙げられる。
The other deodorant can be blended in a type and ratio that does not impair the basic gas deodorant performance of the resulting deodorant product.
Compounds that cause offensive odors include basic gases such as ammonia gas and trimethylamine; acidic gases such as acetic acid and isovaleric acid; aldehyde-based gases such as formaldehyde, acetaldehyde and nonenal; and sulfur such as hydrogen sulfide and methyl mercaptan. system gases, etc., and other deodorants having deodorant performance against these can be contained.
Examples of deodorants for acid gases include zirconium hydroxide, zirconium oxide, and hydrotalcite compounds such as magnesium-aluminum hydrotalcite.
Deodorants for aldehyde gases include hydrazine compounds such as adipic acid dihydrazide, carbohydrazide, succinic acid dihydrazide and oxalic acid dihydrazide; aminoguanidines such as aminoguanidine hydrochloride, aminoguanidine sulfate and aminoguanidine bicarbonate; Salt etc. are mentioned.
Examples of deodorants for sulfur-based gases include copper silicate, copper zirconium phosphate hydrate, zinc oxide, zinc aluminum oxide, zinc silicate, zinc aluminum silicate and layered zinc aluminosilicate.
<その他の工程>
 本発明の樹脂組成物の製造方法は、酸処理工程以外のその他の工程を含んでいてもよい。
 その他の工程としては、例えば、少なくとも一部が塩となっている酸性官能基を有する化合物を含む樹脂組成物を準備する準備工程、酸処理工程により得られた樹脂組成物より酸性官能基を有する樹脂組成物(無機固体酸を含有する繊維、添加剤を含む樹脂成型体、コーティング剤など)又は酸性官能基を有する樹脂(酸性官能基を有する繊維など)を単離する工程、酸性官能基を有する樹脂組成物のpHを調整する工程、酸性官能基を有する樹脂組成物又は酸性官能基を有する樹脂を洗浄する工程、得られた樹脂組成物を成型する工程、酸性官能基を有する樹脂組成物の表面への油剤塗布工程、酸性官能基を有する樹脂組成物の表面を荒らす工程、得られた樹脂組成物を延伸する工程などが挙げられる。
<Other processes>
The method for producing the resin composition of the present invention may include steps other than the acid treatment step.
Other steps include, for example, a preparatory step of preparing a resin composition containing a compound having an acidic functional group, at least a portion of which is a salt, and a resin composition having an acidic functional group obtained by the acid treatment step. A step of isolating a resin composition (fiber containing an inorganic solid acid, a resin molding containing an additive, a coating agent, etc.) or a resin having an acidic functional group (fiber having an acidic functional group, etc.), A step of adjusting the pH of the resin composition having an acidic functional group, a step of washing the resin composition having an acidic functional group or a resin having an acidic functional group, a step of molding the obtained resin composition, and a resin composition having an acidic functional group , a step of roughening the surface of a resin composition having an acidic functional group, and a step of stretching the obtained resin composition.
 本発明の樹脂組成物の製造方法は、酸性官能基による塩基性ガスの吸着機能を付加された樹脂加工製品全般の製造工程に適用することができる。
 塩基性ガスとしては、悪臭等の原因となる、アンモニア、トリメチルアミン、及びジメチルアミン等のアルキルアミン類、ピリジン等の含窒素複素芳香族化合物類、ピペリジン等の複素環式アミン類、アニリン等の芳香族アミン類及びヒドラジン類等が挙げられる。
The method for producing a resin composition of the present invention can be applied to the production process of general resin processed products to which a basic gas adsorption function is added by an acidic functional group.
Basic gases include ammonia, alkylamines such as trimethylamine and dimethylamine, nitrogen-containing heteroaromatic compounds such as pyridine, heterocyclic amines such as piperidine, and aromatics such as aniline, which cause offensive odors. group amines and hydrazines.
 本発明におけるアンモニアガス等の塩基性ガスの低減率を求めるために用いる試験袋の材質は、特に制限はなく、周知のものが使用できる。例えば、ポリビニルアルコール、ポリフッ化ビニリデン、ポリフッ化ビニル、四フッ化エチレン・六フッ化プロピレン共重合体及びポリエステル等が挙げられる。 The material of the test bag used to determine the reduction rate of basic gases such as ammonia gas in the present invention is not particularly limited, and known materials can be used. Examples thereof include polyvinyl alcohol, polyvinylidene fluoride, polyvinyl fluoride, ethylene tetrafluoride/propylene hexafluoride copolymer and polyester.
 本発明におけるアンモニア等の塩基性ガスの濃度の検出方法は、周知の方法が適用でき、特に制限はない。例えば気体採取器と検知管を用いて、アンモニアガスの濃度を測定することができる。具体的には、気体採取器にシリンジ針をセットしたアンモニアガス検知用の検知管を取り付け、試験袋に差し込み、気体採取器の吸引力によりアンモニアガスを吸引して検知管に吸着させ、検知管の色の変化から濃度の値を読み取ることで測定することができる。 A well-known method can be applied to the method for detecting the concentration of a basic gas such as ammonia in the present invention, and there is no particular limitation. For example, a gas sampler and detector tube can be used to measure the concentration of ammonia gas. Specifically, a gas sampler is attached to a gas sampler with a syringe needle for ammonia gas detection. can be measured by reading the density value from the color change.
 本発明の樹脂組成物の製造方法により得られる樹脂組成物又は樹脂は、消臭性を必要とする各種の分野で利用可能であり、例えば、ゴミ箱、三角コーナー、ラップ、スポンジ等の日用品、冷蔵庫、空気清浄機フィルター、エアコンフィルター等の電化製品、壁紙、便器、便座、キッチンカウンター、換気扇フィルター、塗料等の住宅建材製品、衣類、寝具、カーテン、マット、靴、ストッキング、靴下等の繊維製品、ペット製品、及び介護製品等、多くの樹脂製品に使用できる。 The resin composition or resin obtained by the method for producing the resin composition of the present invention can be used in various fields that require deodorizing properties. , electrical appliances such as air purifier filters, air conditioner filters, wallpaper, toilet bowls, toilet seats, kitchen counters, ventilation fan filters, housing building materials such as paints, textile products such as clothing, bedding, curtains, mats, shoes, stockings, socks, etc. It can be used for many resin products such as pet products and care products.
 以下、実施例により本発明を詳細に説明するが、本発明はこれらに限定されるものではない。なお、本実施例において、「%」、「部」とは、特に断りのない限り、それぞれ「重量%」、「重量部」を意味する。 The present invention will be described in detail below with reference to examples, but the present invention is not limited to these. In the present examples, "%" and "parts" mean "% by weight" and "parts by weight", respectively, unless otherwise specified.
(実施例1~4)
<コーティングフィルムの作製方法>
 表1又は表2に記載の配合にて、実施例1~4のコーティング液をそれぞれ作製した。
 PETフィルム(東洋紡(株)製コスモシャイン(登録商標)A4360(厚み100μm))の上に、コーティング液をたらし、バーコーターを使ってコーティング液を均一に塗工した。
 アイグラフィックス(株)製高圧水銀ランプを用い、365nmを中心とする紫外線領域(UV-A)強度250mW/cmにて、1パスあたり200mJ/cmの照射エネルギーとなるよう調整したコンベアにて、空気雰囲気下で搬送を行い、5パス紫外線照射を行った。
(Examples 1 to 4)
<Method for preparing coating film>
Coating liquids of Examples 1 to 4 were prepared according to the formulations shown in Table 1 or Table 2, respectively.
The coating liquid was dripped onto a PET film (Cosmoshine (registered trademark) A4360 (thickness: 100 μm) manufactured by Toyobo Co., Ltd.), and the coating liquid was uniformly applied using a bar coater.
Using a high-pressure mercury lamp manufactured by iGraphics Co., Ltd., the conveyor was adjusted to have an irradiation energy of 200 mJ/cm 2 per pass at an intensity of 250 mW/cm 2 in the ultraviolet region (UV-A) centered at 365 nm. Then, it was transported in an air atmosphere and irradiated with ultraviolet rays in 5 passes.
(実施例5~6)
<α―リン酸ジルコニウム展着繊維の作製方法>
 水、NW-7090及びα―リン酸ジルコニウムを所定の比率で混合した加工液を作成した。加工液にカチオン可染ポリエステル繊維(A.H.Y)をディッピングし、加圧脱水にて余分な加工液を除去した後、130℃の高温乾燥機内にて乾燥させた。
(Examples 5-6)
<Method for Producing α-Zirconium Phosphate Welded Fiber>
A working fluid was prepared by mixing water, NW-7090 and α-zirconium phosphate in a predetermined ratio. The cationic dyeable polyester fibers (A.H.Y.) were dipped in the working liquid, dehydrated under pressure to remove excess working liquid, and then dried in a high-temperature dryer at 130°C.
  表1、表2及び表3に記載の略称は、以下の通りである。
 アデカリアソープSR-10:エーテルサルフェート型アンモニウム塩
 M-460:ジグリセリンエチレンオキサイド(EO)変性アクリレート
 UA-306H:ペンタエリスリトールトリアクリレートとヘキサメチレンジイソシアネートとの反応物であるウレタンアクリレート
 ライトエステルP-2M:2-メタクリイロキシエチルアシッドホスフェート(2個の2-ヒドロキシエチルメタクリレートとリン酸とのエステル化反応物)
 PGM:プロピレングリコールメチルエーテル
 HCPK(Omnirad184):1-ヒドロキシシクロヘキシルフェニルケトン
 SB-UVA6928:紫外線吸収剤
 α-ZrP:下記製造方法にて製造したα-リン酸ジルコニウム粒子(メジアン径1μm)
 M-402:ジペンタエリスリトールペンタ及びヘキサアクリレート混合物
 A.H.Y:カチオン可染ポリエステル繊維
 NW-7090:アクリル樹脂系エマルション
The abbreviations in Tables 1, 2 and 3 are as follows.
Adekari Soap SR-10: Ether sulfate type ammonium salt M-460: Diglycerin ethylene oxide (EO)-modified acrylate UA-306H: Urethane acrylate light ester P-2M which is a reaction product of pentaerythritol triacrylate and hexamethylene diisocyanate : 2-methacryloxyethyl acid phosphate (esterification reaction product of two 2-hydroxyethyl methacrylates and phosphoric acid)
PGM: propylene glycol methyl ether HCPK (Omnirad 184): 1-hydroxycyclohexylphenyl ketone SB-UVA6928: UV absorber α-ZrP: α-zirconium phosphate particles (median diameter 1 μm) produced by the following production method
M-402: Dipentaerythritol penta and hexaacrylate mixtureA. H. Y: cationic dyeable polyester fiber NW-7090: acrylic resin emulsion
<α-リン酸ジルコニウム粒子(α-ZrP)の製造>
 2L丸底フラスコに脱イオン水1,345mL及び35%塩酸135gを入れ、ハフニウム0.18重量%を含有するオキシ塩化ジルコニウム8水和物の20%水溶液225gを加えた後、シュウ酸2水和物93gを加えて溶解させた。この溶液をよく撹拌しながら、75%リン酸101gを加えた。これを2時間かけて98℃に昇温した後、12時間撹拌しながら還流させた。反応系を冷却後、得られた沈殿物を濾取し、よく水洗浄した後、常圧下、105℃で乾燥することにより、リン酸ジルコニウムを得た。これをロータースピードミル(16,000rpm(revolutions per minute)、篩い目80μm)で解砕し、α-リン酸ジルコニウム粒子を得た。
<Production of α-zirconium phosphate particles (α-ZrP)>
A 2 L round-bottom flask was charged with 1,345 mL of deionized water and 135 g of 35% hydrochloric acid, and 225 g of a 20% aqueous solution of zirconium oxychloride octahydrate containing 0.18% by weight of hafnium was added, followed by oxalic acid dihydrate. 93 g of material was added and dissolved. 101 g of 75% phosphoric acid was added while stirring the solution well. After raising the temperature to 98° C. over 2 hours, the mixture was refluxed with stirring for 12 hours. After cooling the reaction system, the resulting precipitate was collected by filtration, thoroughly washed with water, and dried at 105° C. under normal pressure to obtain zirconium phosphate. This was pulverized with a rotor speed mill (16,000 rpm (revolutions per minute), mesh size 80 μm) to obtain α-zirconium phosphate particles.
<カチオン系成分への暴露操作>
 60℃に予熱した硫酸ナトリウム20%水溶液にコーティングフィルム又は繊維を浸漬した。
 撹拌しながら1時間60℃でキープした。
 その後、コーティングフィルム又は繊維を取り出して、純水でよくすすいだ。
 すすぎ終わったコーティングフィルムを60℃の乾燥機内に15分間静置して乾燥させた(表4に記載の条件1)。
 また、すすぎ終わった繊維は130℃の乾燥機内に3分間静置して乾燥させた(表4に記載の条3)。
<Exposure to cationic components>
The coating film or fiber was immersed in a 20% aqueous sodium sulfate solution preheated to 60°C.
Keep at 60° C. for 1 hour with stirring.
After that, the coating film or fiber was taken out and rinsed well with pure water.
The rinsed coating film was allowed to stand in a dryer at 60° C. for 15 minutes to dry (Condition 1 in Table 4).
Also, the rinsed fibers were dried by standing in a drier at 130° C. for 3 minutes (item 3 in Table 4).
<酸処理工程>
 カチオン成分への暴露を経た後のコーティングフィルム又は繊維を、pH1、60℃に調整した硝酸水溶液に浸漬した。
 撹拌しながら1時間60℃でキープした。
 コーティングフィルム又は繊維を取り出して、純水でよくすすいだ。
 すすぎ終わったコーティングフィルムを60℃の乾燥機内に15分間静置して乾燥させた(表4に記載の条件2)。
 また、すすぎ終わった繊維は130℃の乾燥機内に3分間静置して乾燥させた(表4に記載の条件4)。
 なお、硝酸のpKaは-1.3であり、スルホ基のpKaは-2.6であり、リン酸基のpKaは2.12である。
<Acid treatment step>
The coating film or fiber after exposure to the cationic component was immersed in an aqueous nitric acid solution adjusted to pH 1 and 60°C.
Keep at 60° C. for 1 hour with stirring.
The coating film or fiber was removed and rinsed thoroughly with pure water.
The rinsed coating film was allowed to stand in a dryer at 60° C. for 15 minutes to dry (Condition 2 in Table 4).
After rinsing, the fibers were allowed to stand in a drier at 130° C. for 3 minutes to dry (Condition 4 in Table 4).
The pKa of nitric acid is −1.3, the pKa of the sulfo group is −2.6, and the pKa of the phosphate group is 2.12.
<消臭試験方法>
 消臭試験として、以下のように機器試験により臭気成分の消臭性評価を行った。
 まず、55mm×30mmにカットしたコーティングフィルムを試験袋(テドラーバッグ)へ入れ、そこへアンモニアガス及び乾燥空気を注入し、試験袋内のアンモニアガス濃度を100ppm及びガス容積を1Lとした後、常温、常圧で2時間放置した後及び24時間放置した後の試験袋内のアンモニアガス低減率(X;単位%)を、下記式(1)により算出した。また、アンモニアガス低減率を算出するために、コーティングフィルムを入れない試験袋も用意し、2時間後及び24時間後のアンモニアガス濃度を測定した。
  X={(A-A)/A)}×100   (1)
(式(1)において、Aは、コーティングフィルムを入れない試験袋のアンモニアガス濃度を意味し、Aは、コーティングフィルムを入れた試験袋のアンモニアガス濃度を意味する。)
<Deodorizing test method>
As a deodorizing test, the deodorizing property evaluation of the malodorous component was performed by the following equipment test.
First, a coating film cut to 55 mm × 30 mm is put into a test bag (Tedlar bag), ammonia gas and dry air are injected therein, and the ammonia gas concentration in the test bag is 100 ppm and the gas volume is 1 L. The ammonia gas reduction rate (X; unit %) in the test bag after being left at normal pressure for 2 hours and after being left for 24 hours was calculated by the following formula (1). In addition, in order to calculate the ammonia gas reduction rate, a test bag containing no coating film was also prepared, and the ammonia gas concentration was measured after 2 hours and 24 hours.
X={(A 0 −A 1 )/A 0 )}×100 (1)
(In formula (1), A0 means the ammonia gas concentration in the test bag without the coating film, and A1 means the ammonia gas concentration in the test bag with the coating film.)
<ナトリウムイオンの吸脱着の確認>
 日本電子(株)製サーマル電界放射走査電子顕微鏡JSM-7900Fに装着したオックスフォードインスツルメンツ分散X線マイクロアナライザー(略称:EDS)を用いて、XPP補正計算法でNa及びP、又は、Sの原子量の比率(モル比)を定量した。
<Confirmation of adsorption and desorption of sodium ions>
Using an Oxford Instruments dispersive X-ray microanalyzer (abbreviation: EDS) attached to a thermal field emission scanning electron microscope JSM-7900F manufactured by JEOL Ltd., the atomic weight ratio of Na and P or S by the XPP correction calculation method (molar ratio) was quantified.
 表4中、空試験はコーティングフィルムも繊維も入れずに、条件1及び条件2と同様にアンモニア濃度を測定した試験であり、アンモニア濃度の値は各実施例での式(1)のAである。 In Table 4, the blank test is a test in which the ammonia concentration was measured in the same manner as in conditions 1 and 2 without inserting a coating film or fiber, and the ammonia concentration value is A 0 in formula (1) in each example. is.
 表4に示すように、各実施例において、酸処理工程後の試料(条件2又は4の試料)は、塩基性ガスの吸着性能に優れることがわかる。一方、酸処理工程を行わない試料(条件1又は3の試料)は、塩基性ガスの吸着性能に劣ることがわかる。 As shown in Table 4, in each example, the samples after the acid treatment process (samples under conditions 2 or 4) are found to have excellent basic gas adsorption performance. On the other hand, it can be seen that the samples not subjected to the acid treatment step (samples of condition 1 or 3) are inferior in basic gas adsorption performance.
 2022年1月31日に出願された日本国特許出願第2022-013255号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び、技術規格は、個々の文献、特許出願、及び、技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2022-013255 filed on January 31, 2022 is incorporated herein by reference in its entirety.
All publications, patent applications and technical standards mentioned herein are to the same extent as if each individual publication, patent application or technical standard were specifically and individually noted to be incorporated by reference. , incorporated herein by reference.
 本発明の樹脂組成物の製造方法は、酸性官能基による塩基性ガスの吸着機能を付加された樹脂加工製品全般の製造工程に適用することができる。 The method for producing the resin composition of the present invention can be applied to the production process of general resin processed products to which the basic gas adsorption function by the acidic functional group is added.

Claims (14)

  1.  少なくとも一部が塩となっている酸性官能基を有する化合物を含む樹脂組成物に対し、酸で処理することで酸性官能基の少なくとも一部を元の酸の状態に戻す酸処理工程を含む
     樹脂組成物の製造方法。
    A resin comprising an acid treatment step of treating a resin composition containing a compound having an acidic functional group, at least a portion of which is a salt, with an acid to return at least a portion of the acidic functional group to its original acid state. A method of making the composition.
  2.  前記酸性官能基を有する化合物が、酸性官能基を有する樹脂を含む請求項1に記載の樹脂組成物の製造方法。 The method for producing a resin composition according to claim 1, wherein the compound having an acidic functional group contains a resin having an acidic functional group.
  3.  前記酸性官能基を有する化合物が、無機固体酸を含む請求項1又は請求項2に記載の樹脂組成物の製造方法。 The method for producing a resin composition according to claim 1 or 2, wherein the compound having an acidic functional group contains an inorganic solid acid.
  4.  前記樹脂組成物全体として、前記酸性官能基を2種以上含む請求項1~請求項3のいずれか1項に記載の樹脂組成物の製造方法。 The method for producing the resin composition according to any one of claims 1 to 3, wherein the resin composition as a whole contains two or more of the acidic functional groups.
  5.  前記酸性官能基を有する化合物が、酸性官能基を有する樹脂、及び、無機固体酸を含む請求項1~請求項4のいずれか1項に記載の樹脂組成物の製造方法。 The method for producing a resin composition according to any one of claims 1 to 4, wherein the compound having an acidic functional group contains a resin having an acidic functional group and an inorganic solid acid.
  6.  前記樹脂組成物が、表面に無機固体酸が固定された樹脂を含む請求項1~請求項5のいずれか1項に記載の樹脂組成物の製造方法。 The method for producing a resin composition according to any one of claims 1 to 5, wherein the resin composition contains a resin having an inorganic solid acid fixed on its surface.
  7.  前記酸処理工程において使用する酸が、水溶性の酸である請求項1~請求項6のいずれか1項に記載の樹脂組成物の製造方法。 The method for producing a resin composition according to any one of claims 1 to 6, wherein the acid used in the acid treatment step is a water-soluble acid.
  8.  前記酸処理工程において、前記酸を含むpH5以下の水溶液を用いる請求項1~請求項7のいずれか1項に記載の樹脂組成物の製造方法。 The method for producing a resin composition according to any one of claims 1 to 7, wherein an aqueous solution containing the acid and having a pH of 5 or less is used in the acid treatment step.
  9.  前記酸処理工程に使用する酸が、下記の不等式の関係を満たす請求項4に記載の樹脂組成物の製造方法。
      (酸の状態に戻したい酸性官能基のpKa)>(前記酸処理工程に使用する酸のpKa)>(塩構造を維持したい酸性官能基のpKa)
    5. The method for producing a resin composition according to claim 4, wherein the acid used in the acid treatment step satisfies the following inequality.
    (pKa of the acidic functional group to be returned to the acid state)>(pKa of the acid used in the acid treatment step)>(pKa of the acidic functional group to maintain the salt structure)
  10.  前記酸性官能基が、カルボキシ基、リン酸基、ホスホン酸基、及び、スルホ基よりなる群から選ばれた少なくとも2種の基を含む請求項4又は請求項9に記載の樹脂組成物の製造方法。 10. Production of the resin composition according to claim 4 or claim 9, wherein the acidic functional group contains at least two groups selected from the group consisting of a carboxy group, a phosphoric acid group, a phosphonic acid group, and a sulfo group. Method.
  11.  前記無機固体酸のメジアン径が、0.1μm~20μmである請求項3又は請求項6に記載の樹脂組成物の製造方法。 The method for producing a resin composition according to claim 3 or claim 6, wherein the inorganic solid acid has a median diameter of 0.1 µm to 20 µm.
  12.  前記無機固体酸が、無機酸化物である請求項3、請求項6又は請求項11に記載の樹脂組成物の製造方法。 The method for producing a resin composition according to claim 3, claim 6, or claim 11, wherein the inorganic solid acid is an inorganic oxide.
  13.  前記樹脂組成物が、樹脂として、繊維を含む請求項1~請求項12のいずれか1項に記載の樹脂組成物の製造方法。 The method for producing a resin composition according to any one of claims 1 to 12, wherein the resin composition contains fibers as the resin.
  14.  得られる樹脂組成物が、コーティング剤である請求項1~請求項13のいずれか1項に記載の樹脂組成物の製造方法。 The method for producing a resin composition according to any one of claims 1 to 13, wherein the resulting resin composition is a coating agent.
PCT/JP2023/002912 2022-01-31 2023-01-30 Method for producing resin composition WO2023145944A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202380019520.4A CN118679213A (en) 2022-01-31 2023-01-30 Method for producing resin composition
KR1020247026398A KR20240145994A (en) 2022-01-31 2023-01-30 Method for producing a resin composition
JP2023577075A JPWO2023145944A1 (en) 2022-01-31 2023-01-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022013255 2022-01-31
JP2022-013255 2022-01-31

Publications (1)

Publication Number Publication Date
WO2023145944A1 true WO2023145944A1 (en) 2023-08-03

Family

ID=87471751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002912 WO2023145944A1 (en) 2022-01-31 2023-01-30 Method for producing resin composition

Country Status (5)

Country Link
JP (1) JPWO2023145944A1 (en)
KR (1) KR20240145994A (en)
CN (1) CN118679213A (en)
TW (1) TW202340356A (en)
WO (1) WO2023145944A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62237924A (en) * 1986-04-09 1987-10-17 Maezawa Kasei Kogyo Kk Deodorizing treatment by ion exchange fiber
JPH10165489A (en) * 1996-12-12 1998-06-23 Toagosei Co Ltd Deodorant and deodorant fiber
JP2002058926A (en) * 2000-08-14 2002-02-26 Bridgestone Corp Deodorizing filter medium
JP2004052187A (en) * 2002-07-24 2004-02-19 Japan Exlan Co Ltd Hygroscopic underwear
JP2009242523A (en) * 2008-03-31 2009-10-22 Asahi Kasei Corp Ion exchange nonwoven fabric
JP2014084350A (en) * 2012-10-22 2014-05-12 Nitto Denko Corp Ion exchange resin-containing liquid and ion exchange membrane, and methods for producing them
WO2016199756A1 (en) * 2015-06-12 2016-12-15 東亞合成株式会社 Ketone-based gas adsorbent, gas adsorbent composition, and deodorant processed goods

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4661000B2 (en) 2001-08-02 2011-03-30 三菱電機株式会社 Regenerative deodorizing filter
JP2013133562A (en) 2011-12-27 2013-07-08 Asahi Kasei Fibers Corp Fabric superior in deodorant performance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62237924A (en) * 1986-04-09 1987-10-17 Maezawa Kasei Kogyo Kk Deodorizing treatment by ion exchange fiber
JPH10165489A (en) * 1996-12-12 1998-06-23 Toagosei Co Ltd Deodorant and deodorant fiber
JP2002058926A (en) * 2000-08-14 2002-02-26 Bridgestone Corp Deodorizing filter medium
JP2004052187A (en) * 2002-07-24 2004-02-19 Japan Exlan Co Ltd Hygroscopic underwear
JP2009242523A (en) * 2008-03-31 2009-10-22 Asahi Kasei Corp Ion exchange nonwoven fabric
JP2014084350A (en) * 2012-10-22 2014-05-12 Nitto Denko Corp Ion exchange resin-containing liquid and ion exchange membrane, and methods for producing them
WO2016199756A1 (en) * 2015-06-12 2016-12-15 東亞合成株式会社 Ketone-based gas adsorbent, gas adsorbent composition, and deodorant processed goods

Also Published As

Publication number Publication date
JPWO2023145944A1 (en) 2023-08-03
KR20240145994A (en) 2024-10-07
CN118679213A (en) 2024-09-20
TW202340356A (en) 2023-10-16

Similar Documents

Publication Publication Date Title
US20190045793A1 (en) Antiviral agent, coating composition, resin composition and antiviral product
JP3956973B2 (en) Deodorant with excellent water resistance
JP2022553760A (en) Preparation method of antibacterial deodorant spandex
TWI725946B (en) Deodorant, deodorant composition and deodorant processed products
JP2017193793A (en) Composition for processing fiber products, fiber product and method for producing the same
JPH10165489A (en) Deodorant and deodorant fiber
JPH0384066A (en) Resin composition having antibacterial activity and its preparation
WO2023145944A1 (en) Method for producing resin composition
JP4534454B2 (en) Deodorant suitable for deodorization of sulfurous malodor
KR20220154144A (en) Zirconium phosphate particles, basic gas deodorant using the same, and manufacturing method thereof
TW201834743A (en) Adsorbent for acidic gas, deodorant, and deodorizing product
JP2005054086A (en) Catalyst substance-containing functional material and method for producing the same
JP2010075898A (en) Photocatalyst, method of manufacturing the same, and composition having photocatalytic function
JP4869635B2 (en) Deodorant fiber product and manufacturing method thereof
JPH03121145A (en) Cellulosic composition with ion exchange capability
JP3338604B2 (en) Method for producing deodorant / antibacterial acrylic synthetic fiber
TW202132221A (en) Compound oxide particle, deodorizer, cleaning composition, detergent composition, textile, and resin molded article
JPS6312723A (en) Deodorizing acrylic synthetic fiber and production thereof
JPH0343457A (en) Antibacterial resin composition
CN114753062B (en) Recyclable hand towel and preparation method thereof
JP2003342871A (en) Deodorizing antibacterial fiber material
JP4121230B2 (en) Deodorant comprising a metal sulfosalicylate derivative
JP2003313728A (en) Deodorant fiber, method for producing the same and woven or knitted fabric
JPWO2018074509A1 (en) Adsorbents and deodorized processed products
WO2017212724A1 (en) Deodorant dispersion, deodorant-containing processing solution, and method for producing deodorant product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23747154

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023577075

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202380019520.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE