Nothing Special   »   [go: up one dir, main page]

WO2023027177A1 - Cd116およびcd131に結合するバイスペシフィック抗体 - Google Patents

Cd116およびcd131に結合するバイスペシフィック抗体 Download PDF

Info

Publication number
WO2023027177A1
WO2023027177A1 PCT/JP2022/032233 JP2022032233W WO2023027177A1 WO 2023027177 A1 WO2023027177 A1 WO 2023027177A1 JP 2022032233 W JP2022032233 W JP 2022032233W WO 2023027177 A1 WO2023027177 A1 WO 2023027177A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
amino acid
acid sequence
sequence represented
represented
Prior art date
Application number
PCT/JP2022/032233
Other languages
English (en)
French (fr)
Inventor
明文 加藤
春江 西谷
了輔 中野
Original Assignee
協和キリン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 協和キリン株式会社 filed Critical 協和キリン株式会社
Priority to AU2022332728A priority Critical patent/AU2022332728A1/en
Priority to CA3229748A priority patent/CA3229748A1/en
Priority to JP2023544004A priority patent/JPWO2023027177A1/ja
Priority to EP22861465.7A priority patent/EP4393952A1/en
Priority to MX2024002349A priority patent/MX2024002349A/es
Priority to KR1020247006195A priority patent/KR20240049285A/ko
Priority to CN202280057635.8A priority patent/CN117836326A/zh
Publication of WO2023027177A1 publication Critical patent/WO2023027177A1/ja
Priority to US18/587,502 priority patent/US20240190980A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2866Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for cytokines, lymphokines, interferons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2863Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2896Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against molecules with a "CD"-designation, not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/51Complete heavy chain or Fd fragment, i.e. VH + CH1
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/515Complete light chain, i.e. VL + CL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/53Hinge
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/55Fab or Fab'
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/75Agonist effect on antigen
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli

Definitions

  • the present invention provides a bispecific antibody comprising an antigen-binding domain that binds to CD116 and CD131, the bispecific antibody fragment, a DNA encoding the bispecific antibody or the bispecific antibody fragment, a vector comprising the DNA, and the bispecific antibody. or a hybridoma and transformant that produces the bispecific antibody fragment, a method for producing the bispecific antibody or the bispecific antibody fragment, a therapeutic and diagnostic agent containing the bispecific antibody or the bispecific antibody fragment, the bispecific antibody or
  • the present invention relates to therapeutic and diagnostic methods using bispecific antibody fragments, and detection or measurement reagents comprising said bispecific antibodies or said bispecific antibody fragments.
  • Granulocyte-macrophage colony-stimulating factor is a glycoprotein of approximately 22 kDa consisting of 127 amino acid residues, and acts on myeloid progenitor cells to promote their differentiation and proliferation. is. It is not required for homeostatic hematopoiesis, but is essential for alveolar macrophage differentiation.
  • Non-Patent Document 1 In fact, in analyzes using GM-CSF knockout animals, blood cells such as neutrophils, monocytes, and eosinophils were normal, but maturation failure of alveolar macrophages was observed, resulting in abnormal lung surfactant treatment. It has been reported (Non-Patent Document 1).
  • GM-CSF exerts its physiological action by specifically binding to the GM-CSF receptor expressed on the cell membrane.
  • GM-CSF receptors are expressed on neutrophils, eosinophils, monocytes, macrophages, and their progenitor cells.
  • the GM-CSF receptor is a heteromultimer composed of two types of subunits, an ⁇ chain (CD116) and a ⁇ c chain (common ⁇ chain, CD131).
  • Both CD116 and CD131 are single transmembrane proteins and belong to the cytokine receptor superfamily. CD116 is responsible for specific binding to GM-CSF, and CD131 is a component molecule common to IL-3 receptor and IL-5 receptor, and is mainly responsible for signal transduction.
  • JAK2 a signaling molecule, binds to the intracellular domain of CD131, and phosphorylation of JAK2 and CD131 intracellular domain tyrosine residues activates the JAK2/STAT5, Ras/MAP kinase, and PI-3 kinase pathways. It acts on the survival, proliferation, differentiation, and activation of cells.
  • CD116 and CD131 exist separately on the cell membrane.
  • CD116 and CD131 act as GM-CSF receptors, GM-CSF first specifically binds to CD116.
  • CD116 alone has low affinity for GM-CSF, but the addition of CD131 has been shown to bind with high affinity, form a complex, and signal through a specialized activation mechanism.
  • Fig. 1 schematically shows the mechanism.
  • CD131 forms a dimer in a steady state, and each CD131 molecule forms a hexamer through binding to GM-CSF and CD116.
  • the distance between the transmembrane regions of CD131 in the hexamer state is about 120 ⁇ , and the distance between JAK2 is long, so the signal does not flow.
  • the distance between the transmembrane regions of CD131 in the 12-mer is about 10 ⁇ , and the distance between JAK2 is close to prevent mutual phosphorylation.
  • JAK2 and CD131 intracellular domain tyrosine residues are phosphorylated and signals are transduced (Non-Patent Documents 2 and 3).
  • Non-Patent Documents 4 and 5 Alveolar proteinosis is a disease in which pulmonary surfactant abnormally accumulates in the alveolar space and causes dyspnea. It is believed that there is an abnormality in the processing of the surfactant. Anti-GM-CSF autoantibodies are also found in Crohn's disease, and have been reported to contribute to pathogenesis (Non-Patent Documents 6 and 7).
  • Non-Patent Document 8 Treatment of alveolar proteinosis and Crohn's disease has been attempted using these preparations, and therapeutic effects have been reported particularly for alveolar proteinosis (Non-Patent Documents 9 and 10).
  • Non-Patent Document 11 Although there have been reports of mitigation of neutralization by autoantibodies by amino acid modification of the GM-CSF molecule, the effect was only slight (Non-Patent Document 11). In addition, as a GM-CSF mimetics that is completely different from GM-CSF as a molecule, while having the property of inputting signals through GM-CSF receptors like GM-CSF, research has been conducted to connect receptor-binding peptides with a linker. has been reported (Patent Document 1).
  • GM-CSF receptor-binding peptides that have been studied in the past have a problem of insufficient efficacy. may be neutralized by Considering that autoantibodies against GM-CSF are produced against various epitopes of GM-CSF (Non-Patent Document 12), neutralization of the GM-CSF receptor peptide by patient autoantibodies may It is considered difficult to solve by molecular modification of
  • the present invention has been made in view of such circumstances, and includes a bispecific antibody having agonistic activity against the GM-CSF receptor, the bispecific antibody fragment, a DNA encoding the bispecific antibody or the bispecific antibody fragment, the Vectors containing DNA, hybridomas and transformants producing said bispecific antibody or bispecific antibody fragment, methods for producing said bispecific antibody or bispecific antibody fragment, therapy and diagnosis comprising said bispecific antibody or bispecific antibody fragment. It is an object of the present invention to provide drugs, therapeutic and diagnostic methods using said bispecific antibodies or bispecific antibody fragments, and detection or measurement reagents comprising said bispecific antibodies or bispecific antibody fragments.
  • the present inventors found that by producing a bispecific antibody having an antigen-binding domain that binds to CD116 and CD131, which are constituent molecules of the GM-CSF receptor, The inventors have found that a bispecific antibody having agonistic activity to the GM-CSF receptor can be produced, and have completed the present invention.
  • the present invention relates to the following.
  • 1. comprising a first antigen-binding domain and a second antigen-binding domain; A bispecific antibody or the bispecific antibody, wherein one of the first antigen-binding domain and the second antigen-binding domain is an antigen-binding domain that binds to CD116, and the other is an antigen-binding domain that binds to CD131 antibody fragment.
  • 2. The bispecific antibody or the bispecific antibody fragment according to 1 above, which has agonistic activity to a granulocyte macrophage-colonizing factor (hereinafter abbreviated as GM-CSF) receptor. 3.
  • GM-CSF granulocyte macrophage-colonizing factor
  • first antigen-binding domain and the second antigen-binding domain each comprise a heavy chain variable region (hereinafter abbreviated as VH) and a light chain variable region (hereinafter abbreviated as VL) or a bispecific antibody fragment according to . 4.
  • VH heavy chain variable region
  • VL light chain variable region
  • the bispecific antibody or bispecific antibody fragment according to any one of 1 to 4 above, wherein the antigen-binding domain that binds to CD131 is any one selected from (1a) to (1e) below.
  • VH comprising complementarity determining regions (hereinafter abbreviated as CDRs) 1 to 3 containing amino acid sequences represented by SEQ ID NOs: 61 to 63, respectively, and amino acid sequences represented by SEQ ID NOs: 64 to 66, respectively
  • CDRs complementarity determining regions 1 to 3 containing amino acid sequences represented by SEQ ID NOs: 61 to 63, respectively, and amino acid sequences represented by SEQ ID NOs: 64 to 66, respectively
  • 1c VH comprising CDR1-3 comprising amino acid sequences represented by SEQ ID NOs: 73-75, and CDR1- comprising amino acid sequences represented by SEQ ID NOs: 76-78, respectively
  • the antigen-binding domain that binds to CD116 is any one selected from the following (2a) to (2q) and (2r-1) to (2r-12): A bispecific antibody or fragment thereof.
  • (2r-3) CDR1 comprising the amino acid sequence represented by SEQ ID NO: 137, including the VL containing ⁇ 3, a modification was introduced to replace arginine at position 9 with threonine in the amino acid sequence represented by SEQ ID NO: 138 a VH comprising a CDR2 comprising an amino acid sequence and a CDR3 comprising an amino acid sequence represented by SEQ ID NO: 139; (2r-4) CDR1 containing the amino acid sequence represented by SEQ ID NO: 137, including VL containing CDRs 1 to 3 containing the amino acid sequences represented by sequence numbers 88 to 90, in the amino acid sequence represented by SEQ ID NO: 138 A VH comprising a CDR3 comprising an amino acid sequence represented by CDR2 and SEQ ID NO: 139 containing an amino acid sequence in which a modification was introduced to replace phenylalanine at position 2 with leucine and arginine at position 9 with threonine, and SEQ ID NO: 88, respectively (2r-
  • VL comprising CDR1-3 comprising amino acid sequences represented by SEQ ID NOS: 88-90, respectively CDR1 comprising the amino acid sequence represented by SEQ ID NO: 137, represented by SEQ ID NO: 138
  • CDR2 containing an amino acid sequence and an amino acid sequence in which modifications have been introduced to replace the second leucine of the amino acid sequence represented by SEQ ID NO: 139 with glutamic acid, the fifth tyrosine with tryptophan, and the sixth tyrosine with methionine.
  • the second leucine in the amino acid sequence represented by SEQ ID NO:137 is replaced by phenylalanine , CDR1 containing an amino acid sequence in which a modification was introduced to replace the 3rd serine with alanine and the 4th methionine with leucine, CDR2 containing the amino acid sequence represented by SEQ ID NO: 138 and SEQ ID NO: 139 8.
  • any one of 1 to 7 above, wherein the antigen-binding domain that binds to CD116 is any one selected from the following (2A) to (2Y) and (2Z-1) to (2Z-20) A bispecific antibody or fragment thereof.
  • (2J) an amino acid sequence represented by SEQ ID NO:96 comprising a VL containing an amino acid sequence represented by SEQ ID NO:30 and VL comprising the amino acid sequence represented by SEQ ID NO: 30
  • (2M) a VH comprising the amino acid sequence represented by SEQ ID NO: 99 comprising a VL comprising the amino acid sequence represented by SEQ ID NO: 30, and (2N) a VH containing the amino acid sequence represented by SEQ ID NO: 100, and a VL containing the amino acid sequence represented by SEQ ID NO: 30
  • bispecific antibody according to any one of 1 to 8 above, wherein the first antigen-binding domain is an antigen-binding domain that binds to CD131, and the second antigen-binding domain is an antigen-binding domain that binds to CD116. Or said bispecific antibody fragment. 10.
  • the first antigen-binding domain and the second antigen-binding domain are each Fab (hereinafter abbreviated as first Fab and second Fab, respectively), said first Fab comprises a heavy chain (VH 1 -CH1) comprising VH and CH1 domains and a light chain (VL-CL); said second Fab comprises a heavy chain (VH 2 -CH1′) comprising VH and CH1 domains and a light chain (VL-CL);
  • the bispecific antibody or bispecific antibody fragment according to any one of 1 to 9 above. 11. one each of said first Fab and said second Fab, and a hinge region; 11.
  • the bispecific antibody according to 10 above wherein the C-terminus of the heavy chain in the first Fab and the C-terminus of the heavy chain in the second Fab are each bound to the N-terminus of the hinge region. Or said bispecific antibody fragment.
  • 12. The first polypeptide below, the second polypeptide below, and a hinge region, wherein the C-terminus of the first polypeptide and the C-terminus of the second polypeptide are at the N-terminus of the hinge region 11.
  • the bispecific antibody or the bispecific antibody fragment according to 10 above which bind to each other.
  • First polypeptide A polypeptide comprising at least the first Fab (VH 1 -CH1, VL-CL) at the N-terminus.
  • Second polypeptide A polypeptide comprising at least the second Fab (VH 2 -CH1′, VL-CL) at the C-terminus. 13. A polypeptide chain (VH 1 -CH1-VH 2 - CH1′), and the hinge region, 11. The bispecific antibody or bispecific antibody fragment according to 10 above, wherein the C-termini of the two polypeptide chains are each linked to the N-terminus of the hinge region. 14. 14. The bispecific antibody or bispecific antibody fragment according to any one of 11 to 13 above, further comprising an Fc region, wherein the N-terminus of the Fc region is linked to the C-terminus of the hinge region. 15.
  • the bispecific antibody according to any one of 1 to 14 above, wherein the bispecific antibody is any one selected from the following (x1) to (x12) and (x13-1) to (x13-12) or the Bispecific antibody fragment.
  • (x1) VH comprising CDR1-3 wherein the first antigen-binding domain comprises amino acid sequences represented by SEQ ID NOs: 85-87, respectively, and CDR1 ⁇ comprising amino acid sequences represented by SEQ ID NOs: 88-90, respectively
  • the second antigen-binding domain comprises a VH comprising CDRs 1-3 comprising amino acid sequences represented by SEQ ID NOs: 104-106, respectively, and amino acids represented by SEQ ID NOs: 88-90, respectively.
  • a bispecific antibody (x2) comprising a VL comprising CDRs 1-3 comprising a sequence, a VH comprising CDRs 1-3 wherein said first antigen-binding domain comprises the amino acid sequences represented by SEQ ID NOS: 85-87, respectively, and each VL comprising CDRs 1-3 comprising amino acid sequences represented by SEQ ID NOs: 88-90, and CDRs 1-3 comprising amino acid sequences wherein the second antigen-binding domains are represented by SEQ ID NOs: 107-109, respectively
  • a bispecific antibody (x3) comprising a VH and a VL comprising CDRs 1-3 comprising amino acid sequences represented by SEQ ID NOs: 88-90, respectively, wherein said first antigen-binding domains are represented by SEQ ID NOs: 85-87, respectively and a VH comprising CDR1-3 comprising an amino acid sequence represented by SEQ ID NO: 88-90, respectively, and a VL comprising CDR1-3 comprising an amino acid
  • VH comprising CDR1-3 wherein the second antigen-binding domain comprises amino acid sequences represented by SEQ ID NOs: 113-115, respectively, and CDR1-3, each comprising amino acid sequences represented by SEQ ID NOs: 88-90 a bispecific antibody (x5) comprising a VL comprising 3, a VH comprising CDRs 1-3 wherein said first antigen-binding domain comprises the amino acid sequences represented by SEQ ID NOs: 85-87, respectively, and SEQ ID NOs: 88-90, respectively and a VL comprising CDRs 1-3 comprising an amino acid sequence represented by, and wherein the second antigen-binding domains are SEQ ID NOS: 116-1, respectively
  • VH comprising CDR1-3 comprising the amino acid sequences represented by SEQ ID NOS: 85-87, respectively, and VL comprising CDR1-3 comprising the amino acid sequences represented by SEQ ID NOS: 88-90, respectively and a VH comprising CDRs 1 to 3 in which the second antigen-binding domain comprises the amino acid sequences represented by SEQ ID NOs: 119 to 121, respectively, and CDRs 1 to 3 comprising the amino acid sequences represented by SEQ ID NOs: 88 to 90, respectively.
  • a bispecific antibody (x9) comprising a VH comprising CDRs 1-3 comprising amino acid sequences and a VL comprising CDRs 1-3 comprising amino acid sequences represented by SEQ ID NOs: 88-90, respectively, wherein the first antigen-binding domain is A VH comprising CDR1-3 comprising amino acid sequences represented by SEQ ID NOs:85-87, respectively, and a VL comprising CDR1-3 comprising amino acid sequences represented by SEQ ID NOs:88-90, respectively, and the second VH comprising CDR1-3, each of which has an antigen-binding domain comprising amino acid sequences represented by SEQ ID NOs: 128-130, and VL comprising CDR1-3, each comprising amino acid sequences represented by SEQ ID NOs: 88-90 , a bispecific antibody (x10) wherein the first antigen-binding domain comprises an amino acid sequence represented by SEQ ID NOs: 85-87, respectively VH comprising DR1-3, and VL comprising CDR1-3 comprising amino
  • a bispecific antibody (x11) comprising a VH comprising CDRs 1 to 3 comprising an amino acid sequence represented by SEQ ID NOS: 88 to 90, and a VL comprising CDRs 1 to 3 comprising amino acid sequences represented by SEQ ID NOS: 88 to 90, respectively, the first antigen-binding domain VH comprising CDR1-3 comprising amino acid sequences represented by SEQ ID NOS: 85-87, respectively, and VL comprising CDR1-3 comprising amino acid sequences represented by SEQ ID NOS: 88-90, respectively, and A VH comprising CDRs 1 to 3 in which two antigen-binding domains each comprise the amino acid sequences represented by SEQ ID NOs: 134 to 136, and a VL comprising CDRs 1 to 3 each comprising the amino acid sequences represented by SEQ ID NOs: 88 to 90.
  • a bispecific antibody wherein the first antigen-binding domain comprises CDRs 1-3 comprising amino acid sequences represented by SEQ ID NOs: 85-87, respectively, and amino acids represented by SEQ ID NOs: 88-90, respectively a VH comprising CDR1-3 comprising a VL comprising CDR1-3 comprising a sequence, and said second antigen-binding domain comprising an amino acid sequence represented by SEQ ID NOS: 137-139, respectively; and SEQ ID NOS: 88-90, respectively
  • a bispecific antibody (x13-1) comprising a VL comprising CDRs 1 to 3 comprising an amino acid sequence represented by CDRs 1 to 3 wherein the first antigen-binding domain comprises an amino acid sequence represented by SEQ ID NOS: 85 to 87, respectively and a VL comprising CDR1-3 comprising amino acid sequences represented by SEQ ID NOS: 88-90, respectively, and wherein the second antigen-binding domain comprises an amino acid sequence represented by SEQ ID NO: 137 CDR
  • a bispecific antibody comprising a VL comprising CDRs 1-3, a VH comprising CDRs 1-3 wherein said first antigen-binding domain comprises the amino acid sequences represented by SEQ ID NOs: 85-87, respectively, and sequences, respectively
  • a CDR1 comprising a VL comprising CDRs 1-3 comprising the amino acid sequences represented by numbers 88-90
  • the second antigen-binding domain comprises the amino acid sequence represented by SEQ ID NO: 137, represented by SEQ ID NO: 138
  • a VH comprising a CDR3 comprising an amino acid sequence represented by CDR2 and SEQ ID NO: 139 which contains an amino acid sequence in which the second phenylalanine in the amino acid sequence is replaced with leucine and the ninth arginine is replaced with threonine
  • a bispecific antibody (x13-5) comprising a VL comprising CDRs 1-3 comprising amino acid sequences represented by SEQ ID NOs: 88-90, respectively, amino
  • CDR1 containing the introduced amino acid sequence, the amino acid sequence represented by SEQ ID NO: 138 A bispecific antibody (x13- 9) VH comprising CDR1-3, wherein the first antigen-binding domain comprises amino acid sequences represented by SEQ ID NOs: 85-87, respectively, and CDR1-3 comprising amino acid sequences represented by SEQ ID NOs: 88-90, respectively and the second antigen-binding domain is an amino acid sequence in which a modification was introduced to replace the second leucine with tyrosine and the third serine with alanine in the amino acid sequence represented by SEQ ID NO: 137 VH comprising CDR1 comprising the amino acid sequence represented by SEQ ID NO: 138, CDR2 comprising the amino acid sequence represented by SEQ ID NO: 139 and CDR3 comprising the amino acid sequence represented by SEQ ID NO: 139, and CDR1 ⁇ comprising the amino acid sequences represented by SEQ ID NOS: 88 to 90, respectively a bispecific antibody (x13-10) comprising
  • the bispecific antibody according to any one of 1 to 15 above, wherein the bispecific antibody is any one selected from the following (y1) to (y12) and (y13-1) to (y13-20) or the Bispecific antibody fragment.
  • the first antigen-binding domain comprises a VH comprising the amino acid sequence represented by SEQ ID NO: 29, and a VL comprising the amino acid sequence represented by SEQ ID NO: 30, and the second antigen-binding domain comprises A bispecific antibody (y2) comprising a VH comprising the amino acid sequence represented by SEQ ID NO: 175 and a VL comprising the amino acid sequence represented by SEQ ID NO: 30, wherein the first antigen-binding domain is represented by SEQ ID NO: 29 and a VH comprising a VL comprising the amino acid sequence represented by SEQ ID NO: 30, and wherein the second antigen-binding domain comprises the amino acid sequence represented by SEQ ID NO: 176, and SEQ ID NO: a bispecific antibody (y3) comprising a VL comprising an amino acid
  • the first antigen-binding domain comprises VH comprising the amino acid sequence represented by SEQ ID NO: 29, and the VL comprising the amino acid sequence represented by SEQ ID NO: 30, and the second antigen-binding domain comprises SEQ ID NO: 194.
  • a bispecific antibody (y13-6) comprising a VH comprising the amino acid sequence represented by SEQ ID NO:30 and a VL comprising the amino acid sequence represented by SEQ ID NO:30, wherein the first antigen-binding domain is represented by SEQ ID NO:29 VH comprising the sequence, and VL comprising the amino acid sequence represented by SEQ ID NO: 30, and wherein the second antigen-binding domain comprises the amino acid sequence represented by SEQ ID NO: 195, and SEQ ID NO: 30
  • a bispecific antibody (y13-7) comprising a VL comprising the amino acid sequence represented by VH wherein the first antigen-binding domain comprises the amino acid sequence represented by SEQ ID NO: 29, and an amino acid represented by SEQ ID NO: 30
  • the C-terminus of the heavy chain (VH 1 -CH1) in the first Fab and the N-terminus of the heavy chain (VH 2 -CH1′) in the second Fab are connected directly or via a linker.
  • (VH 1 -CH1-VH 2 ) in the polypeptide chain is selected from the following (v1) to (v12) and (v13-1) to (v13-20) 15.
  • VH 1 containing the amino acid sequence represented by 29, CH1 containing the amino acid sequence represented by SEQ ID NO: 144, and VH 2 containing the amino acid sequence represented by SEQ ID NO: 209.
  • the C-terminus of the heavy chain (VH 1 -CH1) in the first Fab and the N-terminus of the heavy chain (VH 2 -CH1′) in the second Fab are linked directly or via a linker heavy chain 2 comprising the polypeptide chain having the polypeptide chain, the hinge region having the N-terminus bound to the C-terminus of the polypeptide chain, and the Fc region (CH2-CH3) having the N-terminus bound to the C-terminus of the hinge region and 4 light chains (VL-CL), wherein said CH1' and said Fc regions (CH2-CH3) comprise an amino acid sequence represented by any one of SEQ ID NOS: 145-172; 18.
  • the C-terminus of the heavy chain of the first antigen-binding domain in the two first Fabs is respectively bound to the N-terminus of the hinge region, the C-terminus of the hinge region is bound to the N-terminus of the Fc region; Any one of 10, 15, 16 and A1 above, wherein the C-terminus of the Fc region is bound to the N-termini of the heavy chains of the second antigen-binding domains of the two second Fabs, respectively. or a bispecific antibody fragment thereof.
  • said Fc region is of the IgG1 subclass and comprises amino acid residue substitutions of L234A, L235A and G237A with EU index; or said Fc region is of IgG4 subclass and of S228P, L235E and R409K with EU index.
  • A5. The bispecific antibody or bispecific antibody fragment of any one of 14 to 18 and A1 to A4, wherein the Fc region further comprises an H435F amino acid residue substitution represented by the EU index. 19.
  • the transformant strain described in 21 above is cultured in a medium, the bispecific antibody or the bispecific antibody fragment according to any one of 1 to 18 and A1 to A5 is produced and accumulated in the culture, and the culture is The method for producing the bispecific antibody or the bispecific antibody fragment according to any one of 1 to 17 and A1 to A5 above, wherein the bispecific antibody or the bispecific antibody fragment is collected from a strain.
  • A7. 23. The therapeutic and/or diagnostic agent according to 22 above, wherein the disease associated with GM-CSF is a disease associated with an autoantibody against GM-CSF. A8.
  • A11 The bispecific antibody or bispecific antibody fragment of A10 above, wherein the disease associated with GM-CSF is a disease associated with an autoantibody to GM-CSF.
  • bispecific antibody or bispecific antibody fragment for the treatment and/or manufacture of a diagnostic agent for diseases associated with GM-CSF.
  • A13. The use according to A12 above, wherein the disease associated with GM-CSF is a disease associated with an autoantibody to GM-CSF.
  • A14. A reagent for detecting or measuring at least one of CD116 and CD131, comprising the bispecific antibody or bispecific antibody fragment of any one of 1 to 18 and A1 to A5 above.
  • a method for purifying a composition containing an antibody comprising purifying an antibody containing an Fc region by protein A column chromatography, wherein the antibody has a H435F mutation in the Fc region.
  • purification method. 24 binds to an epitope comprising W at position 163, R at position 221 of CD131 (SEQ ID NO: 211) and an epitope comprising N at position 156, K at position 158, T at position 187 of CD116 (SEQ ID NO: 210); 19.
  • the bispecific antibody or the bispecific antibody fragment according to any one of 1 to 18 above.
  • a novel bispecific antibody that binds to CD116 and CD131 a novel bispecific antibody that has agonistic activity against the GM-CSF receptor, said bispecific antibody fragment, said bispecific antibody or bispecific antibody fragment encoding DNA, vector containing said DNA, hybridoma and transformant producing said bispecific antibody or bispecific antibody fragment, method for producing said bispecific antibody or bispecific antibody fragment, said bispecific antibody or bispecific antibody fragment Therapeutic and diagnostic agents, therapeutic and diagnostic methods using the bispecific antibody or bispecific antibody fragment, and detection or measurement reagents comprising the bispecific antibody or bispecific antibody fragment can be provided.
  • FIG. 1 shows a schematic representation of the GM-CSF receptor.
  • FIG. 2 shows a schematic diagram of an IgG-type CD131-CD116 bispecific antibody.
  • (A) and (B) of FIG. 3 show the GM-CSF receptor agonist activity of the IgG-type CD131-CD116 bispecific antibody on TF-1 cells.
  • Agonist activity is shown as the proliferation rate of TF-1 cells when the activity when 200 pM of recombinant human GM-CSF (rhGM-CSF) is added is defined as 100%.
  • FIG. 4A shows the structure of an N-terminal CD131-CD116 bispecific antibody or an N-terminal CD116-CD131 bispecific antibody.
  • FIG. 4B shows the structure of a C-terminal CD131-CD116 bispecific antibody or a C-terminal CD116-CD131 bispecific antibody.
  • FIG. 5 shows the GM-CSF receptor agonist activity of the CD131-CD116 bispecific antibody on TF-1 cells.
  • Agonist activity is shown as the proliferation rate of TF-1 cells when the activity when 200 pM of recombinant human GM-CSF (rhGM-CSF) is added is defined as 100%. All constant regions used IgG4PE R409K. The horizontal axis indicates the antibody concentration.
  • FIG. 6 shows the GM-CSF receptor agonist activity against TF-1 cells of CD131-CD116 bispecific antibodies with mutations inserted in the Fc region.
  • the horizontal axis indicates the antibody concentration.
  • FIG. 7 shows the GM-CSF receptor agonist activity against TF-1 cells of CD131-CD116 bispecific antibodies with mutations inserted in the Fc region.
  • Agonist activity is shown as the proliferation rate of TF-1 cells when the activity when 200 pM of recombinant human GM-CSF (rhGM-CSF) is added is defined as 100%.
  • the horizontal axis indicates the antibody concentration.
  • FIG. 8 shows the agonist activity of CD131-CD116 bispecific antibodies against human CD14-positive monocytes.
  • (A) to (C) of FIG. 9 show the specificity of the agonist activity exerted by the CD131-CD116 bispecific antibody to the GM-CSF receptor.
  • FIG. 11 shows the GM-CSF receptor agonist activity on TF-1 cells of the CD131-CD116 bispecific antibody produced from the anti-CD116 antibody obtained using the next-generation sequencing system.
  • the horizontal axis indicates the antibody concentration.
  • FIG. 12 shows the GM-CSF receptor agonist activity on TF-1 cells of the CD131-CD116 bispecific antibody generated from the anti-CD116 antibody obtained by affinity maturation.
  • FIG. 13 shows the GM-CSF receptor agonist activity of the CD116-CD131 bispecific antibody on TF-1 cells.
  • FIG. 14 shows the GM-CSF receptor agonist activity of the C-terminal CD131-CD116 bispecific antibody on TF-1 cells.
  • FIG. 14(B) shows the GM-CSF receptor agonist activity of the C-terminal CD116-CD131 bispecific antibody on TF-1 cells.
  • the horizontal axis indicates the antibody concentration.
  • FIG. 15 shows the GM-CSF receptor agonist activity on TF-1 cells of the CD131-CD116 bispecific antibody converted to IgG-type bispecific antibody.
  • FIG. 16 shows the structure of a CD131-CD116 bispecific antibody with controlled valency. 116-408 D31A_Y98 VH is 116-408 VH that has lost its binding activity due to amino acid mutation. (valence of anti-CD116 antibody ⁇ valence of anti-CD131 antibody) is shown in parentheses.
  • 17A and 17B show the GM-CSF receptor agonist activity of the valency-controlled CD131-CD116 bispecific antibody shown in FIG. 16 on TF-1 cells.
  • (A) to (C) of FIG. 18 show the results of human FcRn-binding activity analysis of the CD131-CD116 bispecific antibody in which an amino acid mutation abolishing FcRn binding was inserted in the Fc region.
  • FIG. 18 is a sensorgram showing binding to human FcRn when IgG4PE R409K wild type (WT) is used as the Fc region, and (B) of FIG. 18 is the IgG4PE R409 I253A mutant used as the Fc region. In this case, (C) of FIG. 18 shows a sensorgram when IgG4PE R409 H435F was used as the Fc region. No binding to human FcRn was observed when the I253A or H435F mutants were used.
  • the vertical axis indicates resonance units (RU), and the horizontal axis indicates time (sec).
  • FIG. 19 shows equilibrium plots for the binding of each CD131-CD116 bispecific antibody variant using the IgG4PE R409K variant in the Fc region to human FcRn.
  • the vertical axis indicates the resonance unit (RU), and the horizontal axis indicates the bispecific antibody concentration (M, mol/L).
  • FIG. 20 shows equilibrium value plots for the binding of each CD131-CD116 bispecific antibody variant using the IgG1 LALAGA variant in the Fc region to human FcRn.
  • the vertical axis indicates the resonance unit (RU), and the horizontal axis indicates the bispecific antibody concentration (M, mol/L).
  • the present invention relates to a novel bispecific antibody that binds to CD116 and CD131, a novel bispecific antibody that has agonistic activity against the GM-CSF receptor, and the bispecific antibody fragment.
  • CD116 in the present invention is used synonymously with CSF2RA, GM-CSFR ⁇ , GM-CSF-R-alpha, CDw116, CSF2RAX, CSF2RAY, CSF2RX, CSF2RY, GMCSFR, GMR, MGC3848 and MGC4838.
  • CD116 for example, GenBank Accession No. 1 at NCBI (https://www.ncbi.nlm.nih.gov/) monkey CD116 containing the amino acid sequence shown in human CD116 containing the amino acid sequence shown in P15509; Also, for example, GenBank accession No. Examples thereof include polypeptides consisting of an amino acid sequence in which one or more amino acids are deleted, substituted or added in the amino acid sequence shown in P15509 and having the function of CD116.
  • GenBank Accession No. A polypeptide comprising an amino acid sequence having usually 70% or more, preferably 80% or more, more preferably 90% or more homology with the amino acid sequence shown in P15509, most preferably 95% or more, 96% or more, 97% or more , 98% or more, and 99% or more homology, and having the functions of CD116 are also included in the CD116 of the present invention.
  • GenBank Accession No. A polypeptide having an amino acid sequence in which one or more amino acid residues are deleted, substituted, or added to the amino acid sequence shown in P15509 can be obtained by site-directed mutagenesis [Molecular Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1989), Current Protocols in Molecular Biology, John Wiley & Sons (1987-1997), Nucleic Acids Research, 10, 6487 (1982), Proc. Natl. Acad. Sci. USA, 79, 6409 (1982) , Gene, 34, 315 (1985), Nucleic Acids Research, 13, 4431 (1985), Proceeding of the National Academy of Sciences in USA, 82, 488 (1985)], for example, GenBank Accession No.
  • the number of amino acids to be deleted, substituted or added is not particularly limited, but preferably 1 to several tens, for example 1 to 20, more preferably 1 to several, for example 1 to 5 amino acids. is.
  • CD116 for example, SEQ ID NO: 6 or GenBank Accession No. Examples thereof include the human CD116 base sequence shown in X17648 and the monkey CD116 base sequence shown in SEQ ID NO:7.
  • DNAs that hybridize under stringent conditions include, for example, SEQ ID NO: 6, GenBank Accession No. Hybridizable obtained by a colony hybridization method, a plaque hybridization method, a Southern blot hybridization method, a DNA microarray method, or the like using a DNA having the nucleotide sequence shown in X17648 or SEQ ID NO: 7 as a probe means DNA.
  • hybridizable DNA examples include SEQ ID NO: 6, GenBank Accession No. A DNA having preferably 60% or more homology, more preferably 80% or more homology, and still more preferably 95% or more homology with the nucleotide sequence shown in X17648 or SEQ ID NO: 7. be able to.
  • Gene polymorphisms are often found in the nucleotide sequences of genes that encode eukaryotic proteins. Genes used in the present invention that have minor mutations in their base sequences due to such polymorphisms are also included in the CD116-encoding gene of the present invention.
  • Homology values in the present invention may be values calculated using a homology search program known to those skilled in the art, unless otherwise specified. ., 215, 403 (1990)], for amino acid sequences, BLAST 2 [Nucleic Acids Research, 25, 3389 (1997), Genome Research, 7, 649 (1997)]. numerical values calculated using the default parameters in .
  • a polypeptide consisting of a partial sequence of the amino acid sequence of CD116 can be produced by a method known to those skilled in the art.
  • a polypeptide consisting of a partial sequence of CD116 can be obtained from GenBank Accession No. It can be produced by culturing a transformant into which a part of the DNA encoding the amino acid sequence shown in P15509 has been deleted and an expression vector containing this has been introduced.
  • polypeptide having an amino acid sequence in which one or more amino acids are deleted, substituted or added in a partial sequence of the amino acid sequence shown in P15509 can be obtained.
  • a polypeptide consisting of a partial sequence of the amino acid sequence of CD116 or a polypeptide having an amino acid sequence in which one or more amino acids are deleted, substituted or added in the partial sequence of the amino acid sequence of CD116 is fluorenylmethyloxycarbonyl It can also be produced by chemical synthesis methods such as the (Fmoc) method and the t-butyloxycarbonyl (tBoc) method.
  • the extracellular region of CD116 in the present invention for example, GenBank Accession No.
  • the amino acid sequence of human CD116 shown in P15509 was analyzed using a known transmembrane region prediction program SOSUI, TMHMM ver. 2 (https://services.healthtech.dtu.dk/service.php?TMHMM-2.0) or regions predicted using ExPASy Proteomics Server (http://Ca.expasy.org/) .
  • the extracellular region of CD116 is GenBank Accession No. Examples include the amino acid sequence shown at positions 23-320 of P15509.
  • CD116 Functions of CD116 include binding of the ligand GM-CSF [Cytokine Growth Factor Rev., 12, 19 (2001)].
  • Cells expressing CD116 include, for example, monocytes, granulocytes, their progenitor cells, endothelial cells, fibroblasts, and Langerhans cells.
  • CD131 in the present invention is used synonymously with CSF2RB, IL3RB, IL5RB, SMDP5, common ⁇ receptor, and ⁇ c.
  • CD131 for example, UniProt Entry. No. Human CD131 comprising the amino acid sequence shown in P32927, and GenBank Accession No. XP_015312724_1 and monkey CD131 comprising the amino acid sequence shown.
  • UniProt Entry. No. P32927 or GenBank Accession No. Examples thereof include polypeptides having an amino acid sequence in which one or more amino acids are deleted, substituted or added in the amino acid sequence shown in XP_015312724_1 and having the function of CD131.
  • a polypeptide comprising an amino acid sequence having usually 70% or more, preferably 80% or more, more preferably 90% or more homology with the amino acid sequence shown in XP_015312724_1, most preferably 95% or more, 96% or more, 97% or more , 98% or more and 99% or more homology with amino acid sequences and having the functions of CD131 are also included in CD131 in the present invention.
  • a polypeptide having an amino acid sequence in which one or more amino acid residues are deleted, substituted, or added in XP_015312724_1 can be obtained using the above-described site-directed mutagenesis method, for example, UniProt Entry. No. P32927 or GenBank Accession No. It can be obtained by introducing site-directed mutation into DNA encoding the amino acid sequence shown in XP_015312724_1.
  • the number of amino acids to be deleted, substituted or added is not particularly limited, but preferably 1 to several tens, for example 1 to 20, more preferably 1 to several, for example 1 to 5 amino acids. is.
  • CD131 for example, SEQ ID NO: 1 or GenBank Accession No. Examples thereof include the human CD131 base sequence shown in M59941 and the monkey CD131 base sequence shown in SEQ ID NO:2.
  • SEQ ID NO: 1, GenBank accession No. M59941 or a gene comprising a nucleotide sequence in which one or more bases are deleted, substituted or added in the nucleotide sequence shown in SEQ ID NO: 2 and encoding a polypeptide having the function of CD131 SEQ ID NO: 1, GenBank Accession No.
  • DNAs that hybridize under stringent conditions include, for example, SEQ ID NO: 1 or GenBank Accession No. 1, as described above.
  • Hybridizable obtained by a colony hybridization method, a plaque hybridization method, a Southern blot hybridization method, a DNA microarray method, or the like using a DNA having the nucleotide sequence shown in M59941 or SEQ ID NO: 2 as a probe means DNA.
  • Examples of hybridizable DNA include SEQ ID NO: 1, GenBank Accession No. A DNA having preferably 60% or more homology, more preferably 80% or more homology, and still more preferably 95% or more homology with the nucleotide sequence shown in M59941 or SEQ ID NO: 2. be able to.
  • Gene polymorphisms are often found in the nucleotide sequences of genes that encode eukaryotic proteins. Genes used in the present invention that have minor mutations in their base sequences due to such polymorphisms are also included in the CD131-encoding genes of the present invention.
  • a polypeptide consisting of a partial sequence of the amino acid sequence of CD131 is UniProt Entry. No. P32927 or GenBank Accession No. Using a DNA encoding the amino acid sequence shown in XP_015312724_1, it can be produced by methods known to those skilled in the art in the same manner as described above.
  • the extracellular domain of CD131 in the present invention includes, for example, UniProt Entry. No. Examples include the region predicted by the same method as described above using the amino acid sequence of human CD131 shown in P32927. Specifically, the extracellular region of CD131 includes UniProt Entry. No. The amino acid sequence shown at positions 17 to 443 of P32927 is exemplified.
  • CD131 The function of CD131 is to associate with CD116 (GM-CSFR ⁇ ), CD123 (IL-3R ⁇ ), and CD125 (IL-5R ⁇ ), and transduce GM-CSF, IL-3, and IL-5 signals into cells, respectively. [Cytokine Growth Factor Rev., 12, 19 (2001)].
  • Cells that express CD131 include, for example, monocytes, granulocytes and early B cells.
  • An antibody is a gene (referred to as an "antibody gene") encoding all or part of a heavy chain variable region and a heavy chain constant region, and a light chain variable region and a light chain constant region, which constitute an immunoglobulin.
  • an antibody gene a gene encoding all or part of a heavy chain variable region and a heavy chain constant region, and a light chain variable region and a light chain constant region, which constitute an immunoglobulin.
  • is a protein derived from Antibodies of the present invention include antibodies or antibody fragments of any immunoglobulin class and subclass.
  • a heavy chain refers to the polypeptide with the larger molecular weight of the two types of polypeptides that constitute an immunoglobulin molecule. Heavy chains determine the class and subclass of an antibody. IgA, IgD, IgE, IgG and IgM have ⁇ , ⁇ , ⁇ , ⁇ and ⁇ chains as heavy chains, respectively, and the constant regions of the heavy chains are characterized by different amino acid sequences.
  • a light chain refers to a polypeptide having a smaller molecular weight among two types of polypeptides that constitute an immunoglobulin molecule. In the case of human antibodies, there are two types of light chains, the ⁇ chain and the ⁇ chain.
  • variable region usually refers to a highly diverse region present in the N-terminal amino acid sequence of an immunoglobulin.
  • the portion other than the variable region is called a constant region (C region) because it has a structure with less diversity.
  • the variable regions of the heavy and light chains associate to form the antigen-binding site and determine the binding characteristics of the antibody to antigen.
  • variable region corresponds to the amino acid sequence from 1 to 117 in the EU index of Kabat et al. (Kabat et al., Sequences of proteins of immunological interest, 1991 Fifth edition), and the constant region is It corresponds to the 118th and subsequent amino acid sequences.
  • amino acid sequence from 1st to 107th in Kabat numbering corresponds to the variable region, and the amino acid sequence after 108th corresponds to the constant region.
  • VH or VL the heavy chain variable region or light chain variable region.
  • the antigen-binding site is the site of an antibody that recognizes and binds to an antigen, and refers to the site that forms a three-dimensional structure complementary to the antigenic determinant (epitope). Antigen-binding sites generate strong intermolecular interactions with antigenic determinants.
  • the antigen-binding site is composed of VH and VL, which contain at least three complementarity determining regions (CDRs). For human antibodies, VH and VL each have three CDRs. These CDRs are called CDR1, CDR2 and CDR3 in order from the N-terminal side.
  • CH heavy chain constant region or light chain constant region
  • CHs are classified by the heavy chain subclasses alpha, delta, epsilon, gamma and mu chains.
  • CH consists of a CH1 domain, a hinge domain, a CH2 domain and a CH3 domain arranged in order from the N-terminal side, and the CH2 domain and the CH3 domain are collectively referred to as the Fc region.
  • CL is classified into two subclasses called C ⁇ chains and C ⁇ chains.
  • Monoclonal antibodies are antibodies that are secreted by antibody-producing cells that retain their monoclonality, and recognize a single epitope (also called antigenic determinant). Monoclonal antibody molecules have the same amino acid sequence (primary structure) and have a single structure.
  • a polyclonal antibody refers to a population of antibody molecules secreted by different clones of antibody-producing cells.
  • An oligoclonal antibody refers to a population of antibody molecules in which multiple different monoclonal antibodies are mixed.
  • An epitope refers to the structural site of an antigen that is recognized and bound by an antibody.
  • Epitopes include, for example, a single amino acid sequence recognized and bound by a monoclonal antibody, a three-dimensional structure consisting of an amino acid sequence, an amino acid sequence bound with a sugar chain, and a three-dimensional structure consisting of an amino acid sequence bound with a sugar chain. .
  • Monoclonal antibodies in the present invention include antibodies produced by hybridomas and genetically recombinant antibodies produced by transformants transformed with expression vectors containing antibody genes.
  • Hybridomas can be prepared, for example, by preparing an antigen, obtaining antibody-producing cells having antigen specificity from an animal immunized with the antigen, and fusing the antibody-producing cells with myeloma cells.
  • the desired monoclonal antibody can be obtained by culturing the hybridoma or administering the hybridoma to an animal to induce ascites carcinoma in the hybridoma, and separating and purifying the culture medium or ascites.
  • Any animal can be used as an animal to be immunized with an antigen as long as a hybridoma can be produced, and mice, rats, hamsters, rabbits and the like are preferably used.
  • cells capable of producing antibodies can be obtained from such immunized animals, immunized in vitro, and then fused with myeloma cells to produce hybridomas.
  • genetically modified antibodies in the present invention include recombinant mouse antibodies, recombinant rat antibodies, recombinant hamster antibodies, recombinant rabbit antibodies, human chimeric antibodies (also referred to as chimeric antibodies), humanized antibodies (CDR-grafted antibodies Also referred to as ) and antibodies produced by genetic recombination techniques, such as human antibodies.
  • genetically engineered antibodies it is possible to determine the heavy and light chain variable regions and constant regions derived from which animal species to be applied, depending on the target animal species and purpose. For example, when the target animal species is human, the variable region can be human-derived or non-human animal-derived such as mouse, and the constant region and linker can be human-derived.
  • a chimeric antibody refers to an antibody consisting of non-human animal (non-human animal) antibody VH and VL and human antibody CH and CL. Any non-human animals such as mice, rats, hamsters and rabbits can be used as long as hybridomas can be produced.
  • Chimeric antibodies are obtained by obtaining cDNAs encoding VH and VL from hybridomas derived from non-human animals that produce monoclonal antibodies, and inserting them into expression vectors for animal cells having DNAs encoding CH and CL of human antibodies, respectively. It can be produced by constructing a chimeric antibody expression vector and introducing it into animal cells for expression.
  • a humanized antibody refers to an antibody in which the CDRs of the VH and VL of a non-human animal antibody have been grafted into the corresponding CDRs of the VH and VL of a human antibody. Regions other than the CDRs of VH and VL are called framework regions (hereinafter referred to as FRs).
  • a humanized antibody comprises a cDNA encoding a VH amino acid sequence consisting of a non-human animal antibody VH CDR amino acid sequence and an arbitrary human antibody VH FR amino acid sequence, and a non-human animal antibody VL CDR amino acid sequence.
  • a cDNA encoding the VL amino acid sequence consisting of the sequence and the FR amino acid sequence of the VL of any human antibody is constructed and inserted into an expression vector for animal cells having DNA encoding the CH and CL of a human antibody, respectively. It can be produced by constructing a modified antibody expression vector and introducing it into animal cells for expression.
  • Human antibodies originally refer to antibodies that naturally exist in the human body. Antibodies obtained from genetic animals are also included.
  • Antibodies that naturally exist in the human body are, for example, immortalized by infecting human peripheral blood lymphocytes with EB virus or the like, cloned, culturing lymphocytes that produce the antibodies, and extracting the antibodies from the culture supernatant. It can be obtained by purifying the antibody.
  • a human antibody phage library is a library in which antibody fragments such as Fab and scFv (single chain Fv) are expressed on the phage surface by inserting antibody genes prepared from human B cells into the phage genes. Using the binding activity to the antigen-immobilized substrate as an index, phage expressing on the surface an antibody fragment having desired antigen-binding activity can be recovered from the library. The antibody fragment can be further converted into a human antibody molecule consisting of two complete H chains and two complete L chains by genetic engineering techniques.
  • Human antibody-producing transgenic animals mean animals in which human antibody genes have been integrated into cells.
  • a human antibody-producing transgenic mouse can be produced by introducing a human antibody gene into a mouse ES cell, transplanting the ES cell into an early embryo of a mouse, and developing an individual.
  • Human antibodies derived from human antibody-producing transgenic animals are produced and accumulated in the culture supernatant by obtaining and culturing hybridomas using a hybridoma production method that is commonly used in non-human animals. can be prepared.
  • Any CH of the recombinant antibody may be used as long as it belongs to human immunoglobulin, but the human immunoglobulin G (hIgG) class is preferable. Furthermore, any of the subclasses of hIgG1, hIgG2, hIgG3 and hIgG4 belonging to the hIgG class can be used. As the CL of the recombinant antibody, any one belonging to human immunoglobulin may be used, and those of the ⁇ class or the ⁇ class can be used.
  • a bispecific antibody refers to a polypeptide or protein having an antigen-binding domain that specifically binds to each of two different epitopes.
  • a bispecific antibody may bind to different epitopes of a single antigen or may bind to different antigens. Moreover, when binding to different antigens, those antigens may be present in the same cell or in different cells.
  • the bispecific antibody of the present invention contains two different epitopes, a first antigen-binding domain and a second antigen-binding domain that specifically bind to CD131 or CD116, respectively. Either one of the first antigen-binding domain and the second antigen-binding domain is an antigen-binding domain that binds to CD116, and the other is an antigen-binding domain that binds to CD131.
  • the epitopes of the bispecific antibody of the present invention include an epitope containing tryptophan (W) at position 163 of CD131 (SEQ ID NO: 211) and arginine (R) at position 221, and asparagine at position 156 of CD116 (SEQ ID NO: 210) ( N), lysine at position 158 (K) and threonine at position 187 (T).
  • Epitopes comprising tryptophan (W) at position 163 and arginine (R) at position 221 of CD131 (SEQ ID NO: 211) and asparagine (N) at position 156, lysine (K) at position 158 of CD116 (SEQ ID NO: 210) and All epitopes containing the 187th threonine (T) are conformational epitopes.
  • binding of the polypeptide, antibody or antibody fragment or bispecific antibody or bispecific antibody fragment to CD116 and/or CD131 can be detected by, for example, a known immunological detection method, preferably fluorescent cell staining. It can be confirmed by a method for confirming the binding between the cells expressing CD131 or CD116 to be evaluated and the antibody using a method or the like.
  • known immunological detection methods [Monoclonal Antibodies - Principles and Practice, Third Edition, Academic Press (1996), Antibodies - A Laboratory Manual, Cold Spring Harbor Laboratory (1988), Monoclonal Antibody Experiment Manual, Kodansha Scientific (1987)] can also be used in combination.
  • the number of amino acids to be deleted, substituted, inserted and/or added is one or more, and the number is not particularly limited. Molecular Cloning, The Second Edition, Cold Spring Harbor Laboratory Press (1989), Current Protocols in Molecular Biology Sci., USA, 79, 6409 (1982), Gene, 34, 315 (1985), Nucleic Acids Research, 13, 4431 (1985), Proc. Natl. Acad. Sci USA, 82, 488 (1985), etc., by known techniques such as site-directed mutagenesis, etc. as many as possible. For example, it is usually 1 to several tens, preferably 1 to 20, more preferably 1 to 10, still more preferably 1 to 5.
  • deletion, substitution, insertion or addition of one or more amino acid residues in the amino acid sequence of the bispecific antibody of the present invention above indicates the following. Deletion, substitution, insertion or addition of one or more amino acid residues in any of the same sequences and in one or more amino acid sequences. Moreover, deletion, substitution, insertion or addition may occur simultaneously, and the substituted, inserted or added amino acid residue may be either natural or non-natural.
  • Natural amino acid residues include, for example, L-alanine, L-asparagine, L-aspartic acid, L-glutamine, L-glutamic acid, glycine, L-histidine, L-isoleucine, L-leucine, L-lysine, L -arginine, L-methionine, L-phenylalanine, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-valine and L-cysteine.
  • Group A leucine, isoleucine, norleucine, valine, norvaline, alanine, 2-aminobutanoic acid, methionine, O-methylserine, t-butylglycine, t-butylalanine, cyclohexylalanine
  • Group B aspartic acid, glutamic acid, isoaspartic acid, Isoglutamic acid, 2-aminoadipic acid, 2-aminosuberic acid
  • Group C asparagine, glutamine
  • D lysine, arginine, ornithine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid
  • Group E proline, 3 -Hydroxyproline, 4-hydroxyproline
  • Group F serine, threonine, homoserine
  • Group G phenylalanine, tyrosine
  • the bispecific antibodies or antibody fragments of the present invention may contain unnatural amino acids, such as the Z lysine derivative disclosed in WO 2017/030156 (N6-((benzyloxy)carbonyl) -L-lysine derivative), TCO*-Lys (N6-(((trans-cyclooct-2-en-1-yl)oxy)carbonyl)-L-lysine) or BCN-Lys (N6-((bicyclo[6 .1.0]non-4-yn-9-ylmethoxy)carbonyl)-L-lysine).
  • Z lysine derivative disclosed in WO 2017/030156
  • TCO*-Lys N6-(((trans-cyclooct-2-en-1-yl)oxy)carbonyl)-L-lysine)
  • BCN-Lys N6-((bicyclo[6 .1.0]non-4-yn-9-ylmethoxy)carbonyl)-L-ly
  • the bispecific antibody or bispecific antibody fragment of the present invention includes antibodies containing any post-translationally modified amino acid residues.
  • Post-translational modifications include, for example, deletion of lysine residues at the C-terminus of H chains (lysine clipping) and substitution of glutamine residues with pyroglutamine (pyroGlu) at the N-terminus of polypeptides. [Beck et al, Analytical Chemistry, 85, 715-736 (2013)].
  • the bispecific antibody or bispecific antibody fragment of the present invention includes, for example, a bispecific antibody or bispecific antibody fragment having GM-CSF receptor agonist activity.
  • the bispecific antibody or bispecific antibody fragment of the present invention does not exhibit GM-CSF receptor agonist activity on cells that do not express CD116 and CD131, and does not exhibit GM-CSF receptor agonist activity only on cells that express CD116 and CD131.
  • the bispecific antibody or the bispecific antibody fragment of the present invention has CD131 as a common constituent molecule with GM-CSF receptor, and does not put signals into IL-3 receptor or IL-5 receptor. is preferred.
  • the bispecific antibody or bispecific antibody fragment of the invention may bind to CD116 and CD131 expressed on the same cell or may bind to CD116 and CD131 expressed on different cells. preferably binds to CD116 and CD131 expressed on the same cell.
  • Agonist activity refers to activity that binds to a receptor and performs intracellular signal transduction similar to that of the original ligand for that receptor.
  • the bispecific antibody of the present invention preferably has agonistic activity against the GM-CSF receptor.
  • the bispecific antibody of the present invention can act on the GM-CSF receptor in the same manner as GM-CSF and exhibit agonistic activity.
  • the agonist activity to the GM-CSF receptor is, for example, GM-CSF binds to both CD116 and CD131 on the cell, resulting in signal transduction from the GM-CSF receptor into the cell.
  • GM-CSF binds to both CD116 and CD131 on the cell, resulting in signal transduction from the GM-CSF receptor into the cell.
  • signal transduction from the GM-CSF receptor results in the activity of inducing differentiation into macrophages.
  • the bispecific antibody or bispecific antibody fragment of the present invention preferably has agonistic activity against the GM-CSF receptor and transduces a signal into cells after binding to the GM-CSF receptor.
  • the bispecific antibody or bispecific antibody fragment of the present invention preferably binds to GM-CSF receptors on monocytes and has the ability to induce differentiation into macrophages.
  • the bispecific antibody or the bispecific antibody fragment of the present invention binds to CD116 and CD131 expressed on the same cell, and then induces the formation of a GM-CSF receptor complex to transmit a signal into the cell. is preferred.
  • the bispecific antibody or bispecific antibody fragment of the present invention preferably binds to CD116 and CD131 on monocytes and has the ability to induce differentiation into macrophages.
  • Agonist activity against the GM-CSF receptor can be measured using cells that express the GM-CSF receptor, such as the human erythroblast cell line TF-1 (CRL-2003), and proliferate in a GM-CSF dependent manner. It can be confirmed by evaluating the proliferation rate, survival rate, or viable cell count.
  • bispecific antibodies or bispecific antibody fragments of the present invention specifically those that act as GM-CSF receptor agonists when bound to both CD116 and CD131, and/or bispecific antibodies or bispecific antibody fragments having the ability to induce differentiation of macrophages.
  • the number of antigen-binding domains that a single molecule of bispecific antibody has for an antigen is called the binding valency.
  • a molecule of bispecific antibody has one antigen-binding domain that binds to CD116 and one antigen-binding domain that binds to CD131, such bispecific antibody monovalently binds to CD116 and CD131, respectively. Join.
  • the bispecific antibody of the present invention preferably binds monovalently or bivalently to CD116 and CD131, and more preferably binds bivalently from the viewpoint of improving agonist activity.
  • the first antigen-binding domain and the second antigen-binding domain may be any domain that specifically recognizes and binds to CD131 or CD116, respectively.
  • antibodies, ligands, receptors, and naturally occurring interacting molecules, polypeptides, protein molecules and fragments thereof that can be produced by genetic recombination techniques, and conjugates of such protein molecules with small molecules or natural products It may be in any form.
  • the first antigen-binding domain and the second antigen-binding domain may be recombinant binding proteins using binding domains of known binding molecules such as antibodies (hereinafter also referred to as immunoglobulins), ligands and receptors. More specifically, recombinant proteins containing CDRs of antibodies that bind to each antigen, antibody variable regions (VH and VL) containing CDRs, antibody fragments such as antibody variable regions, and binding domains of ligands that bind to each antigen. Examples include recombinant proteins containing
  • an immunoglobulin domain is a peptide consisting of about 100 amino acid residues having at least two cysteine residues and having an amino acid sequence similar to that of immunoglobulins.
  • the immunoglobulin domain also includes polypeptides containing multiple immunoglobulin domains as the above minimum units. Immunoglobulin domains include, for example, VH, CH1, CH2 and CH3 of immunoglobulin heavy chains, and VL and CL of immunoglobulin light chains.
  • the animal species for immunoglobulins is not particularly limited, but humans are preferred.
  • the subclass of the constant region of the immunoglobulin heavy chain may be any of IgD, IgM, IgG1, IgG2, IgG3, IgG4, IgA1, IgA2 and IgE, preferably IgG-derived and IgM-derived.
  • the constant region subclass of immunoglobulin light chains may be either ⁇ or ⁇ .
  • Immunoglobulin domains are also present in proteins other than immunoglobulins, including proteins belonging to the immunoglobulin superfamily such as major histocompatibility antigen (MHC), CD1, B7 and T cell receptor (TCR). is mentioned. Any immunoglobulin domain can be applied as the immunoglobulin domain used for the bispecific antibody of the present invention.
  • MHC major histocompatibility antigen
  • CD1, B7 CD1, B7 and T cell receptor (TCR).
  • CH1 refers to the region having the 118th to 215th amino acid sequence indicated by the EU index.
  • CH2 refers to the region having the 231st to 340th amino acid sequence indicated by the EU index of Kabat et al.
  • CH3 refers to the region having the 341st to 447th amino acid sequence indicated by the EU index of Kabat et al.
  • a highly flexible amino acid region called a hinge region (hereinafter also referred to as hinge) exists between CH1 and CH2.
  • Hinge region refers to the region having amino acid sequence 216 to 230 as indicated by the EU index of Kabat et al.
  • CL is a region having an amino acid sequence from 108th to 214th indicated by Kabat numbering in the case of a human antibody ⁇ chain, and a region having an amino acid sequence from 108th to 215th in the case of a ⁇ chain. respectively.
  • the antigen-binding domain that binds to CD131 contained in the bispecific antibody of the present invention refers to an antigen-binding domain that specifically recognizes and binds to the extracellular region of CD131.
  • the antigen-binding domain that binds to CD116 contained in the bispecific antibody of the present invention refers to an antigen-binding domain that specifically recognizes and binds to the extracellular region of CD116.
  • the bispecific antibody of the present invention may have an antibody Fc region in addition to the antigen-binding domain that binds to CD116 and the antigen-binding domain that binds to CD131.
  • the Fc region is preferably of the IgG1 or IgG4 subclass, and more preferably contains the amino acid residue substitutions shown below.
  • the Fc region When the Fc region is an IgG1 subclass, it preferably contains amino acid residue substitutions of L234A, L235A and G237A represented by the EU index, and H435F represented by the EU index in addition to these amino acid residue substitutions It is more preferred to include amino acid residue substitutions of (2) When the Fc region is of the IgG4 subclass, it preferably contains amino acid residue substitutions of S228P, L235E and R409K represented by the EU index, and in addition to these amino acid residue substitutions H435F represented by the EU index It is more preferred to include amino acid residue substitutions of
  • the antigen-binding domain may be a single chain or a multimer consisting of multiple polypeptide chains, as long as it has antigen-binding ability to CD131 or CD116.
  • Antigen-binding domains include, for example, antibodies, antibody fragments, or partial fragments of GM-CSF that bind to CD131 or CD116.
  • antigen-binding domains preferably include VH and VL, which contain the CDRs of antibodies that bind to each antigen (CD131 or CD116).
  • Antigen-binding domains that bind to CD131 in the present invention include antigen-binding domains that are any one selected from (1a) to (1e) below.
  • Antigen-binding domains that bind to CD131 in the present invention more specifically include any one selected from the following (1A) to (1E).
  • (1E) VH containing the amino acid sequence represented by SEQ ID NO: 29 and SEQ ID NO: 30 contains a VL containing the amino acid sequence represented
  • the antigen-binding domain that binds to CD116 in the present invention is, for example, any one antigen-binding domain selected from (2a) to (2q) and (2r-1) to (2r-12) below. are mentioned.
  • 2b VH comprising CDRs 1-3 comprising amino acid sequences represented by SEQ ID NOs: 37-39, respectively, and VL comprising CDRs 1-3 comprising amino acid sequences represented by SEQ ID NOs: 40-42, respectively
  • (2r-3) CDR1 comprising the amino acid sequence represented by SEQ ID NO: 137, including the VL containing ⁇ 3, a modification was introduced to replace arginine at position 9 with threonine in the amino acid sequence represented by SEQ ID NO: 138 a VH comprising a CDR2 comprising an amino acid sequence and a CDR3 comprising an amino acid sequence represented by SEQ ID NO: 139; (2r-4) CDR1 containing the amino acid sequence represented by SEQ ID NO: 137, including VL containing CDRs 1 to 3 containing the amino acid sequences represented by sequence numbers 88 to 90, in the amino acid sequence represented by SEQ ID NO: 138 A VH comprising a CDR3 comprising an amino acid sequence represented by CDR2 and SEQ ID NO: 139 containing an amino acid sequence in which a modification was introduced to replace phenylalanine at position 2 with leucine and arginine at position 9 with threonine, and SEQ ID NO: 88, respectively (2r-
  • VL comprising CDR1-3 comprising amino acid sequences represented by SEQ ID NOS: 88-90, respectively CDR1 comprising the amino acid sequence represented by SEQ ID NO: 137, represented by SEQ ID NO: 138
  • CDR2 containing an amino acid sequence and an amino acid sequence in which modifications have been introduced to replace the second leucine of the amino acid sequence represented by SEQ ID NO: 139 with glutamic acid, the fifth tyrosine with tryptophan, and the sixth tyrosine with methionine.
  • the second leucine in the amino acid sequence represented by SEQ ID NO:137 is replaced by phenylalanine , CDR1 containing an amino acid sequence in which a modification was introduced to replace the 3rd serine with alanine and the 4th methionine with leucine, CDR2 containing the amino acid sequence represented by SEQ ID NO: 138 and SEQ ID NO: 139
  • the antigen-binding domain that binds to CD116 in the present invention is any one selected from the following (2A) to (2Y) and (2Z-1) to (2Z-20): are mentioned.
  • (2J) an amino acid sequence represented by SEQ ID NO:96 comprising a VL containing an amino acid sequence represented by SEQ ID NO:30 and VL comprising the amino acid sequence represented by SEQ ID NO: 30
  • (2M) a VH comprising the amino acid sequence represented by SEQ ID NO: 99 comprising a VL comprising the amino acid sequence represented by SEQ ID NO: 30, and (2N) a VH containing the amino acid sequence represented by SEQ ID NO: 100, and a VL containing the amino acid sequence represented by SEQ ID NO: 30
  • the structure of the bispecific antibody of the present invention is not particularly limited as long as it contains a first antigen-binding domain and a second antigen-binding domain. is preferably
  • first antigen-binding domain when the first antigen-binding domain is Fab, it is referred to as first Fab, and when the second antigen-binding domain is Fab, it is referred to as second Fab.
  • the first Fab preferably comprises a heavy chain of the first antigen-binding domain comprising VH and CH1 domains (hereinafter abbreviated as the heavy chain of the first Fab) and a light chain comprising VL and CL
  • second Fab preferably comprises a second binding domain heavy chain comprising VH and CH1 domains (hereinafter abbreviated as second Fab heavy chain) and a light chain comprising VL and CL.
  • Examples of the structure of the bispecific antibody of the present invention include structures shown in (1) to (3) below.
  • a structure in which the C-terminus of the chain and the C-terminus of the heavy chain in the second Fab are respectively linked to the N-terminus of the hinge region hereinafter also abbreviated as IgG type.
  • the IgG-type bispecific antibody preferably further comprises an Fc region and has a structure in which the N-terminus of the Fc region is bound to the C-terminus of the hinge region.
  • FIG. (2) A schematic diagram of such an IgG-type bispecific antibody is shown in FIG. (2) comprising the following first polypeptide, the following second polypeptide, and a hinge region, wherein the C-terminus of the first polypeptide and the C-terminus of the second polypeptide are each at the N-terminus of the hinge region structure that binds.
  • First polypeptide A polypeptide comprising at least a first Fab (VH 1 -CH1, VL-CL) at the N-terminus.
  • Second polypeptide A polypeptide comprising at least a second Fab (VH 2 -CH1′, VL-CL) at the C-terminus.
  • the antigen-binding properties of the first Fab in the first polypeptide and the antigen-binding properties of the second Fab in the second polypeptide are retained.
  • first polypeptide comprising the first Fab and the second Fab in order from the N-terminus
  • second polypeptide comprising the first Fab and the second Fab in order from the N-terminus
  • a structure containing a hinge region the first and second polypeptides are respectively the C-terminus of the heavy chain (VH 1 -CH1) in the first Fab and the heavy chain (VH 2 -CH1' ) to the N-terminus of the hinge region directly or via a linker (VH 1 -CH1-VH 2 -CH1′), and the C-terminus of the polypeptide chain is connected to the N-terminus of the hinge region, respectively.
  • the N-terminal bispecific antibody preferably further comprises an Fc region and has a structure in which the N-terminus of the Fc region is bound to the C-terminus of the hinge region.
  • a schematic diagram of such an N-terminal bispecific antibody is shown in FIG. 4(A).
  • One specific embodiment includes, for example, the GM408WT (2 ⁇ 2) shown in FIG. (2-2) A structure comprising a first polypeptide comprising a first Fab and a second Fab in order from the N-terminus, a second polypeptide comprising the second Fab, and a hinge region.
  • the first polypeptide is directly connected to the C-terminus of the heavy chain (VH 1 -CH1) in the first Fab and the N-terminus of the heavy chain (VH 2 -CH1′) in the second Fab. or comprising polypeptide chains (VH 1 -CH1-VH 2 -CH1′) linked via linkers.
  • One specific embodiment is, for example, the GM408v8 (2 ⁇ 1) shown in FIG.
  • (2-3) a first polypeptide comprising the first Fab and the second Fab in order from the N-terminus, a second polypeptide comprising the second Fab and the second Fab in order from the N-terminus, and A structure containing a hinge region and having a mutation introduced into VH2 that deactivates the second antigen-binding activity of the second Fab on the N-terminal side of the second polypeptide.
  • the first polypeptide is directly connected to the C-terminus of the heavy chain (VH 1 -CH1) in the first Fab and the N-terminus of the heavy chain (VH 2 -CH1′) in the second Fab.
  • the second polypeptide is such that the C-terminus of the heavy chain (VH 2 -CH1) in the second Fab and the N-terminus of the heavy chain (VH 2 -CH1′) in the second Fab are directly connected or via a linker. It includes polypeptide chains (VH 2 -CH1-VH 2 -CH1′) linked via. In such an embodiment, it is preferable to further include an Fc region and a structure in which the N-terminus of the Fc region is bound to the C-terminus of the hinge region.
  • (2-4) The structure of (2-1) above, in which a mutation is introduced into VH 1 that inactivates the binding activity to the second antigen of the second Fab in the second polypeptide.
  • One specific embodiment includes, for example, GM408v2 (1 ⁇ 2) shown in FIG. (2-5)
  • a mutation that deactivates the binding activity to the second antigen of the second Fab in the first polypeptide was introduced into VH 2 of the heavy chain.
  • One specific embodiment includes, for example, GM408v3 (1 ⁇ 1) shown in FIG.
  • the mutations introduced into VH 2 of the heavy chain for inactivating the binding activity to the second antigen of the second Fab include, for example, D31A and Y98A. mentioned.
  • the N-terminal bispecific antibody (2) is preferable from the viewpoint of improving the agonist activity against the GM-CSF receptor.
  • the linker used for chemically linking the antigen-binding domains is not particularly limited as long as it has a functional group necessary for chemically linking the antigen-binding domains.
  • Linkers having CH 2 CH 2 O)n- are preferred.
  • the repeating number n is preferably an integer of 1-100, more preferably an integer of 1-25.
  • the linker used preferably contains an alkynyl group.
  • Huisgen [3+2] cycloaddition reaction can be used as a reaction to chemically link the antigen-binding domain and the linker.
  • the peptide linker of the bispecific antibody which is expressed as a recombinant protein by connecting antigen-binding domains with an appropriate peptide linker amino acid sequence, is not particularly limited. Examples include so-called GS linkers, linkers containing immunoglobulin domains or fragments thereof, etc., but linkers consisting of any amino acid sequence can be used as long as they can be expressed as a recombinant protein.
  • the first antigen-binding domain is an antigen-binding domain that binds to CD131
  • the second antigen-binding domain is preferably an antigen-binding domain that binds to CD116.
  • the first antigen-binding domain and the second antigen-binding domain are each Fab
  • the first Fab is an antigen-binding domain that binds to CD131
  • the second Fab is an antigen-binding domain that binds to CD116 is preferred.
  • the first Fab is one selected from the group consisting of the following (1a) to (1e)
  • the second Fab is the following (2a) Bispecific antibodies that are one selected from the group consisting of ⁇ (2q) and (2r-1) ⁇ (2r-12).
  • VH containing CDR3 and VL containing CDR1-3 containing amino acid sequences represented by SEQ ID NOS: 88-90, respectively (2r-7)
  • the second leucine in the amino acid sequence represented by SEQ ID NO: 137 is replaced with phenylalanine VH comprising CDR1 containing an amino acid sequence in which a modification was introduced to replace the third serine with alanine, CDR2 containing the amino acid sequence represented by SEQ ID NO: 138, and CDR3 containing the amino acid sequence represented by SEQ ID NO: 139 , and (2r-8) containing a VL containing CDRs 1 to 3 containing the amino acid sequences represented by SEQ ID NOS: 88 to 90, respectively.
  • VH comprising CDR1 comprising an amino acid sequence in which a modification was introduced to replace methionine with leucine
  • CDR2 comprising the amino acid sequence represented by SEQ ID NO: 138
  • CDR3 comprising the amino acid sequence represented by SEQ ID NO: 139
  • SEQ ID NO: 137 the 2nd leucine in the amino acid sequence represented by SEQ ID NO: 137 is replaced with tyrosine
  • the 3rd serine is replaced with alanine.
  • VH comprising CDR1 comprising an amino acid sequence introduced with a modification to replace with, CDR2 comprising an amino acid sequence represented by SEQ ID NO: 138 and CDR3 comprising an amino acid sequence represented by SEQ ID NO: 139, and SEQ ID NO: 88 to (2r-10) CDR1 comprising the amino acid sequence represented by SEQ ID NO: 137, CDR2 comprising the amino acid sequence represented by SEQ ID NO: 138 and SEQ ID NO: VH comprising CDR3 comprising an amino acid sequence in which the second leucine in the amino acid sequence represented by 139 is replaced with glutamic acid, and CDR1 to 3 comprising the amino acid sequences represented by SEQ ID NOs: 88 to 90, respectively (2r-11) CDR1 comprising the amino acid sequence represented by SEQ ID NO: 137, CDR2 comprising the amino acid sequence represented by SEQ ID NO: 138 and the second leucine of the amino acid sequence represented by SEQ ID NO: 139 to glutamic acid, the 5th tyros
  • the first Fab is one selected from the group consisting of (1A) to (1E) below
  • the second Fab is Examples include bispecific antibodies selected from the group consisting of (2A) to (2Y) and (2Z-1) to (2Z-20) below.
  • Tables 1 to 3 to be described later show the clone names of Fabs that bind to CD131 or CD116, and the sequence numbers of the VH, VL, and CDR amino acid sequences contained therein. Henceforth, when clone names are used, they refer to Fabs or antibodies containing these VH and VL amino acid sequences.
  • bispecific antibody or bispecific antibody fragment of the present invention for example, a first Fab and 116-08, 116-09, 116-18, 116-21, 116-22, 116-398, 116-412, 116-412a, 116-413, 116-413a, 116-421, 116-421a , 116-433, 116-433a, 116-435, 116-439, 116-463, 116-463a, 116-464, 116-464a, 116-465, 116-465a, 116-466, 116-466a or 116 and a second Fab comprising the VH and VL of -408, and a bispecific antibody or fragment thereof.
  • These bispecific antibodies or said bispecific antibody fragments are preferably N-terminal.
  • the bispecific antibody of the present invention is not limited to the following, for example, any one selected from the group consisting of the following (x1) ⁇ (x12) and (x13-1) ⁇ (x13-12) be done.
  • the first antigen-binding domain and the second antigen-binding domain are the first Fab and the second Fab, respectively. is preferred.
  • a bispecific antibody (x2) comprising a VL comprising CDRs 1-3 comprising a sequence, a VH comprising CDRs 1-3 wherein said first antigen-binding domain comprises the amino acid sequences represented by SEQ ID NOS: 85-87, respectively, and each VL comprising CDRs 1-3 comprising amino acid sequences represented by SEQ ID NOs: 88-90, and CDRs 1-3 comprising amino acid sequences wherein the second antigen-binding domains are represented by SEQ ID NOs: 107-109, respectively
  • a bispecific antibody (x3) comprising a VH and a VL comprising CDRs 1-3 comprising amino acid sequences represented by SEQ ID NOs: 88-90, respectively, wherein said first antigen-binding domains are represented by SEQ ID NOs: 85-87, respectively and a VH comprising CDR1-3 comprising an amino acid sequence represented by SEQ ID NO: 88-90, respectively, and a VL comprising CDR1-3 comprising an amino acid
  • VH comprising CDR1-3 wherein the second antigen-binding domain comprises amino acid sequences represented by SEQ ID NOs: 113-115, respectively, and CDR1-3, each comprising amino acid sequences represented by SEQ ID NOs: 88-90 a bispecific antibody (x5) comprising a VL comprising 3, a VH comprising CDRs 1-3 wherein said first antigen-binding domain comprises the amino acid sequences represented by SEQ ID NOs: 85-87, respectively, and SEQ ID NOs: 88-90, respectively and a VL comprising CDRs 1-3 comprising an amino acid sequence represented by, and wherein the second antigen-binding domains are SEQ ID NOS: 116-1, respectively
  • VH comprising CDR1-3 comprising the amino acid sequences represented by SEQ ID NOS: 85-87, respectively, and VL comprising CDR1-3 comprising the amino acid sequences represented by SEQ ID NOS: 88-90, respectively and a VH comprising CDRs 1 to 3 in which the second antigen-binding domain comprises the amino acid sequences represented by SEQ ID NOs: 119 to 121, respectively, and CDRs 1 to 3 comprising the amino acid sequences represented by SEQ ID NOs: 88 to 90, respectively.
  • a bispecific antibody (x9) comprising a VH comprising CDRs 1-3 comprising amino acid sequences and a VL comprising CDRs 1-3 comprising amino acid sequences represented by SEQ ID NOs: 88-90, respectively, wherein the first antigen-binding domain is A VH comprising CDR1-3 comprising amino acid sequences represented by SEQ ID NOs:85-87, respectively, and a VL comprising CDR1-3 comprising amino acid sequences represented by SEQ ID NOs:88-90, respectively, and the second VH comprising CDR1-3, each of which has an antigen-binding domain comprising amino acid sequences represented by SEQ ID NOs: 128-130, and VL comprising CDR1-3, each comprising amino acid sequences represented by SEQ ID NOs: 88-90 , a bispecific antibody (x10) wherein the first antigen-binding domain comprises an amino acid sequence represented by SEQ ID NOs: 85-87, respectively VH comprising DR1-3, and VL comprising CDR1-3 comprising amino
  • a bispecific antibody (x11) comprising a VH comprising CDRs 1 to 3 comprising an amino acid sequence represented by SEQ ID NOS: 88 to 90, and a VL comprising CDRs 1 to 3 comprising amino acid sequences represented by SEQ ID NOS: 88 to 90, respectively, the first antigen-binding domain VH comprising CDR1-3 comprising amino acid sequences represented by SEQ ID NOS: 85-87, respectively, and VL comprising CDR1-3 comprising amino acid sequences represented by SEQ ID NOS: 88-90, respectively, and A VH comprising CDRs 1 to 3 in which two antigen-binding domains each comprise the amino acid sequences represented by SEQ ID NOs: 134 to 136, and a VL comprising CDRs 1 to 3 each comprising the amino acid sequences represented by SEQ ID NOs: 88 to 90.
  • a bispecific antibody wherein the first antigen-binding domain comprises CDRs 1-3 comprising amino acid sequences represented by SEQ ID NOs: 85-87, respectively, and amino acids represented by SEQ ID NOs: 88-90, respectively a VH comprising CDR1-3 comprising a VL comprising CDR1-3 comprising a sequence, and said second antigen-binding domain comprising an amino acid sequence represented by SEQ ID NOS: 137-139, respectively; and SEQ ID NOS: 88-90, respectively
  • a bispecific antibody (x13-1) comprising a VL comprising CDRs 1 to 3 comprising an amino acid sequence represented by CDRs 1 to 3 wherein the first antigen-binding domain comprises an amino acid sequence represented by SEQ ID NOS: 85 to 87, respectively and a VL comprising CDR1-3 comprising amino acid sequences represented by SEQ ID NOS: 88-90, respectively, and wherein the second antigen-binding domain comprises an amino acid sequence represented by SEQ ID NO: 137 CDR
  • a bispecific antibody comprising a VL comprising CDRs 1-3, a VH comprising CDRs 1-3 wherein said first antigen-binding domain comprises the amino acid sequences represented by SEQ ID NOs: 85-87, respectively, and sequences, respectively
  • a CDR1 comprising a VL comprising CDRs 1-3 comprising the amino acid sequences represented by numbers 88-90
  • the second antigen-binding domain comprises the amino acid sequence represented by SEQ ID NO: 137, represented by SEQ ID NO: 138
  • a VH comprising a CDR3 comprising an amino acid sequence represented by CDR2 and SEQ ID NO: 139 which contains an amino acid sequence in which the second phenylalanine in the amino acid sequence is replaced with leucine and the ninth arginine is replaced with threonine
  • a bispecific antibody (x13-5) comprising a VL comprising CDRs 1-3 comprising amino acid sequences represented by SEQ ID NOs: 88-90, respectively, amino
  • CDR1 containing the introduced amino acid sequence, the amino acid sequence represented by SEQ ID NO: 138 A bispecific antibody (x13- 9) VH comprising CDR1-3, wherein the first antigen-binding domain comprises amino acid sequences represented by SEQ ID NOs: 85-87, respectively, and CDR1-3 comprising amino acid sequences represented by SEQ ID NOs: 88-90, respectively and the second antigen-binding domain is an amino acid sequence in which a modification was introduced to replace the second leucine with tyrosine and the third serine with alanine in the amino acid sequence represented by SEQ ID NO: 137 VH comprising CDR1 comprising the amino acid sequence represented by SEQ ID NO: 138, CDR2 comprising the amino acid sequence represented by SEQ ID NO: 139 and CDR3 comprising the amino acid sequence represented by SEQ ID NO: 139, and CDR1 ⁇ comprising the amino acid sequences represented by SEQ ID NOS: 88 to 90, respectively a bispecific antibody (x13-10) comprising
  • the bispecific antibody of the present invention include any one selected from the following (y1) to (y12) and (y13-1) to (y13-20).
  • the first antigen-binding domain and the second antigen-binding domain are the first Fab and the second Fab, respectively. is preferred.
  • the first antigen-binding domain comprises a VH comprising the amino acid sequence represented by SEQ ID NO: 29, and a VL comprising the amino acid sequence represented by SEQ ID NO: 30, and the second antigen-binding domain comprises A bispecific antibody (y2) comprising a VH comprising the amino acid sequence represented by SEQ ID NO: 175 and a VL comprising the amino acid sequence represented by SEQ ID NO: 30, wherein the first antigen-binding domain is represented by SEQ ID NO: 29 and a VH comprising a VL comprising the amino acid sequence represented by SEQ ID NO: 30, and wherein the second antigen-binding domain comprises the amino acid sequence represented by SEQ ID NO: 176, and SEQ ID NO: a bispecific antibody (y3) comprising a VL comprising an amino acid sequence represented by 30, a VH comprising an amino acid sequence wherein the first antigen-binding domain is represented by SEQ ID NO: 29, and an amino acid represented by SEQ ID NO: 30
  • a bispecific antibody ( y4) the
  • the first antigen-binding domain comprises VH comprising the amino acid sequence represented by SEQ ID NO: 29, and the VL comprising the amino acid sequence represented by SEQ ID NO: 30, and the second antigen-binding domain comprises SEQ ID NO: 194.
  • a bispecific antibody (y13-6) comprising a VH comprising the amino acid sequence represented by SEQ ID NO:30 and a VL comprising the amino acid sequence represented by SEQ ID NO:30, wherein the first antigen-binding domain is represented by SEQ ID NO:29 VH comprising the sequence, and VL comprising the amino acid sequence represented by SEQ ID NO: 30, and wherein the second antigen-binding domain comprises the amino acid sequence represented by SEQ ID NO: 195, and SEQ ID NO: 30
  • a bispecific antibody (y13-7) comprising a VL comprising the amino acid sequence represented by VH wherein the first antigen-binding domain comprises the amino acid sequence represented by SEQ ID NO: 29, and an amino acid represented by SEQ ID NO: 30
  • the bispecific antibody or the bispecific antibody fragment of the present invention preferably the first Fab containing 131-B2, 116-398, 116-412a, 116-413a, 116-421a, 116-433a, 116- and a second Fab comprising 435, 116-439, 116-463a, 116-464a, 116-465a, 116-466a or 116-408, or a bispecific antibody fragment thereof.
  • the C-terminus of the heavy chain in the first Fab and the N-terminus of the heavy chain in the second Fab are linked directly or via a linker. and a hinge region, wherein the C-termini of the two polypeptide chains are each linked to the N-terminus of the hinge region, or a bispecific antibody fragment thereof
  • Examples include bispecific antibodies or bispecific antibody fragments in which the first Fab and the second Fab are any one of (z1) to (z12) below.
  • bispecific antibody or the bispecific antibody fragment of the present invention specifically, for example, as shown in FIG . CH1) and the N-terminus of the heavy chain (VH 2 -CH1′) in the second Fab are linked directly or via a linker to the polypeptide chain (VH 1 -CH1-VH 2 -CH1′ ), wherein the C-terminus of the polypeptide chain is bound to the N-terminus of the hinge region, and the N-terminus of the Fc region (CH2-CH3) is bound to the C-terminus of the hinge region (VH 1 -CH1 -VH 2 -CH1′-CH2-CH3) and 4 light chains (VL-CL), in which VH 1 is preferably SEQ ID NO: 21, 23, 25, 27 and 29, more preferably the amino acid sequence represented by SEQ ID NO: 29, and VH 2 comprises the amino acid sequence represented by any one of SEQ ID NOS: 175-186 is preferred.
  • VH 1 is preferably SEQ ID NO: 21, 23, 25, 27 and 29, more
  • (VH 1 -CH1-VH 2 ) in the heavy chain (VH 1 -CH1-VH 2 -CH1′-CH2- CH3 ) is the following (v1) to (v12) and (v13-1) to Any one selected from (v13-20) is preferable.
  • (CH1'-CH2-CH3) in the heavy chain preferably contains the amino acid sequence represented by any one of SEQ ID NOS: 145-172.
  • VL in the light chain (VL-CL) contains the amino acid sequence represented by SEQ ID NO:30.
  • the bispecific antibodies of the present invention also include bispecific antibodies that compete with any of the above bispecific antibodies in binding to CD116 and/or CD131.
  • the bispecific antibody of the present invention includes a bispecific antibody that recognizes the same epitope as the CD116 and / or CD131 epitope recognized by any of the above bispecific antibodies, CD116 that any of the above bispecific antibodies recognizes, and / or a bispecific antibody that recognizes part of the epitope of CD131, Also included are bispecific antibodies that recognize epitopes that include epitopes of CD116 and/or CD131 that any of the above bispecific antibodies recognize.
  • the bispecific antibody of the present invention may or may not have effector activity attributed to the antibody constant region, but preferably does not have effector activity.
  • Effector activity refers to antibody-dependent cytotoxicity activity induced via the Fc region of an antibody, for example, antibody-dependent cellular cytotoxicity activity (ADCC activity), complement-dependent cytotoxicity Activity (Complement-Dependent Cytotoxicity; CDC activity), Antibody-dependent cellular phagocytosis activity (ADCP activity) by phagocytic cells such as macrophages and dendritic cells, and opsonic effects.
  • ADCC activity antibody-dependent cellular cytotoxicity activity
  • CDC activity complement-dependent cytotoxicity Activity
  • ADCP activity Antibody-dependent cellular phagocytosis activity
  • ADCP activity Antibody-dependent cellular phagocytosis activity
  • ADCC activity and CDC activity in the present invention can be measured using a known measurement method [Cancer Immunol. Immunother., 36, 373 (1993)].
  • ADCC activity means that the antibody bound to the antigen on the target cell activates immune cells (such as natural killer cells) by binding to the Fc receptor of immune cells via the Fc region of the antibody, and damages the target cells. refers to the activity to
  • FcR Fc receptor
  • Each FcR corresponds to a subclass of antibodies, with IgG, IgE, IgA and IgM specifically binding to Fc ⁇ R, Fc ⁇ R, Fc ⁇ R and Fc ⁇ R, respectively.
  • Fc ⁇ R has subtypes of Fc ⁇ RI (CD64), Fc ⁇ RII (CD32) and Fc ⁇ RIII (CD16), each of which has an isoform of Fc ⁇ RIA, Fc ⁇ RIB, Fc ⁇ RIC, Fc ⁇ RIIA, Fc ⁇ RIIB, Fc ⁇ RIIC, Fc ⁇ RIIIA and Fc ⁇ RIIIB. exists.
  • Fc ⁇ RIIIB is specifically expressed on neutrophils and Fc ⁇ RIIIA is expressed on monocytes, natural killer cells (NK cells), macrophages and some T cells.
  • NK cell-dependent ADCC activity is induced through antibody binding to Fc ⁇ RIIIA.
  • CDC activity refers to the activity in which antibodies that bind to antigens on target cells activate a series of cascades (complement activation pathway) consisting of complement-related proteins in the blood and damage target cells. In addition, protein fragments generated by complement activation induce migration and activation of immune cells.
  • the cascade of CDC activity is initiated by first binding of C1q to the Fc region and then to two serine proteases, C1r and C1s, forming the C1 complex.
  • the CDC activity or ADCC activity of the bispecific antibody or antibody fragment of the present invention against antigen-expressing cells can be evaluated by a known measurement method [Cancer Immunol. Immunother., 36, 373 (1993)].
  • the ADCC activity of the antibody can be increased or decreased.
  • a bispecific antibody is expressed using host cells lacking the ⁇ 1,6-fucosyltransferase gene. By doing so, a bispecific antibody with high ADCC can be obtained.
  • the antibody is expressed using host cells into which the ⁇ 1,6-fucosyltransferase gene has been introduced. A bispecific antibody with low ADCC activity can be obtained by allowing the
  • ADCC activity and CDC activity can be increased or decreased by modifying amino acid residues in the Fc region of the bispecific antibody.
  • the Fc region amino acid sequences described in US Patent Application Publication No. 2007/0148165 can be used to increase the CDC activity of a bispecific antibody.
  • CDC activity can be increased or decreased.
  • the stability of the bispecific antibody of the present invention can be evaluated by measuring the amount of aggregates (oligomers) formed in the purification process or in samples stored under certain conditions. That is, when the amount of aggregates decreases under the same conditions, the stability of the antibody is evaluated as improved.
  • the amount of aggregates can be measured by separating aggregated and non-aggregated antibodies using suitable chromatography, including gel filtration chromatography.
  • the productivity of the bispecific antibody of the present invention can be evaluated by measuring the amount of antibody produced in the culture medium from antibody-producing cells. More specifically, it can be evaluated by measuring the amount of antibody contained in the culture supernatant obtained by removing the producing cells from the culture medium by an appropriate method such as HPLC method or ELISA method.
  • an antibody fragment is a protein that contains an antigen-binding site and has antigen-binding activity against the antigen.
  • Examples include Fab, Fab', F(ab') 2 , scFv, Diabody, dsFv, VHH, or peptides containing CDRs.
  • Fab is a fragment obtained by treating an IgG antibody with a proteolytic enzyme papain (cleaved at the 224th amino acid residue of the H chain), about half of the N-terminal side of the H chain and the entire L chain are disulfides It is an antibody fragment having antigen-binding activity and having a molecular weight of about 50,000, bound by a bond (SS bond).
  • F(ab′) 2 is a fragment obtained by treating IgG with the protease pepsin (cleaved at the 234th amino acid residue of the H chain). It is an antibody fragment having antigen-binding activity with a molecular weight of about 100,000, which is slightly larger than that conjugated with a protein.
  • Fab' is an antibody fragment having a molecular weight of about 50,000 and having antigen-binding activity, which is obtained by cleaving the S—S bond of the hinge region of F(ab') 2 described above.
  • scFv is a VH-P-VL or VL-P-VH polypeptide in which one VH and one VL are linked using an appropriate peptide linker (P) of 12 residues or more, and antigen binding It is an active antibody fragment.
  • P peptide linker
  • Diabody is an antibody fragment in which scFv having the same or different antigen-binding specificities form a dimer, and is an antibody fragment having bivalent antigen-binding activity against the same antigen or specific antigen-binding activity against different antigens. is.
  • a dsFv is a polypeptide in which one amino acid residue in each of VH and VL is substituted with a cysteine residue and bound via an S—S bond between the cysteine residues.
  • VHH also called nanobody
  • VHH refers to the heavy chain variable region in VHH antibodies, which can bind to antigens in the absence of other polypeptides.
  • a VHH antibody is an antibody that exists in camelid animals such as alpacas and cartilaginous fish such as sharks, and consists only of heavy chains without light chains and CH1.
  • a CDR-containing peptide comprises at least one region of a VH or VL CDR.
  • Peptides containing multiple CDRs can be produced by linking the CDRs directly or via an appropriate peptide linker.
  • Peptides containing CDRs construct DNAs encoding the VH and VL CDRs of the bispecific antibody of the present invention, insert the DNAs into a prokaryotic expression vector or a eukaryotic expression vector, and convert the expression vector into a prokaryotic expression vector. It can be expressed and produced by introduction into an organism or eukaryote.
  • Peptides containing CDRs can also be produced by chemical synthesis methods such as the Fmoc method or the tBoc method.
  • a bispecific antibody fragment essentially consists of a partial structure of a bispecific antibody, and may be a fragment of any bispecific antibody as long as it has antigen-binding activity for two types of antigens. .
  • a protein in which Fc is fused to the bispecific antibody or bispecific antibody fragment of the present invention, a fusion protein in which an antibody fragment is further bound thereto, an Fc fusion protein in which the Fc is bound to a naturally occurring ligand or receptor (immuno Adhesin), Fc fusion proteins in which multiple Fc regions are fused, etc. are also included in the bispecific antibodies of the present invention.
  • an Fc region to which techniques for enhancing or deficient antibody effector activity, stabilizing antibodies, and controlling half-life in blood have been applied can also be used in the bispecific antibodies of the present invention.
  • Techniques for controlling the blood half-life described above include, for example, a method of inhibiting antibody recycling by cleaving the binding to FcRn at pH 6.0.
  • Methods for cleaving the binding to FcRn at pH 6.0 to inhibit antibody recycling include, for example, Ile at position 253, His at position 310, His at position 435 and His at position 436 represented by the EU index. It is preferable to introduce an amino acid residue modification into at least one selected from Tyr. Such modification specifically includes, for example, H435F.
  • FcRn does not bind to the Fc region outside the cell (pH 7.0-7.5), but binds to the IgG taken into the cell in the early endosome (pH 6.0) and recycles the IgG outside the cell.
  • the bispecific antibody or the bispecific antibody fragment of the present invention may be chemically treated with a radioactive isotope, a low-molecular-weight drug, a high-molecular-weight drug, a protein or an antibody drug, or the like. or genetically engineered derivative of the antibody.
  • bispecific antibodies of the present invention include the N-terminal side or C-terminal side of the bispecific antibody or bispecific antibody fragment of the present invention, suitable substituents or side chains in the bispecific antibody or bispecific antibody fragment thereof.
  • the sugar chains in the bispecific antibody or the bispecific antibody fragment thereof may be chemically treated with radioactive isotopes, low-molecular-weight drugs, high-molecular-weight drugs, immunostimulants, proteins or antibody drugs, etc. [antibody engineering] Introduction, Jijin Shokan (1994)].
  • the bispecific antibody derivative of the present invention is obtained by linking the DNA encoding the bispecific antibody or the bispecific antibody fragment of the present invention with the DNA encoding the desired protein or antibody drug and inserting it into an expression vector. Then, the expression vector can be introduced into a suitable host cell and expressed by a genetic engineering technique.
  • Radioisotopes include, for example, 111 In, 131 I, 125 I, 90 Y, 64 Cu, 99 Tc, 77 Lu or 211 At. Radioisotopes can be directly conjugated to antibodies, such as by the chloramine T method. Alternatively, a substance that chelates the radioisotope may be bound to the antibody. Chelating agents include, for example, 1-isothiocyanatobenzyl-3-methyldiethylenetriaminepentaacetic acid (MX-DTPA).
  • low-molecular drugs examples include alkylating agents, nitrosourea agents, antimetabolites, antibiotics, plant alkaloids, topoisomerase inhibitors, hormone therapy agents, hormone antagonists, aromatase inhibitors, P-glycoprotein inhibitors, and platinum.
  • anticancer agents such as M-phase inhibitors or kinase inhibitors [Clinical Oncology, Cancer and Chemotherapy (1996)]
  • steroidal agents such as hydrocortisone or prednisone
  • non-steroidal agents such as aspirin or indomethacin
  • gold thiomalate gold thiomalate
  • Immunomodulators such as penicillamine
  • immunosuppressants such as cyclophosphamide or azathioprine
  • anti-inflammatory agents such as antihistamines such as chlorpheniramine maleate or clemacitin [Inflammation and anti-inflammatory therapy, Ishiyaku Shuppan Co., Ltd. (1982) )] and the like.
  • Anticancer agents include, for example, amifostine (ethol), cisplatin, dacarbazine (DTIC), dactinomycin, mechlorethamine (nitrogen mustard), streptozocin, cyclophosphamide, ifosfamide, carmustine (BCNU), lomustine (CCNU), doxorubicin.
  • Methods for binding a low-molecular-weight drug to the bispecific antibody or bispecific antibody fragment of the present invention include, for example, binding between the amino groups of the drug and the antibody via glutaraldehyde, or water-soluble carbodiimide. and binding the amino group of the drug to the carboxyl group of the antibody via .
  • Polymer drugs include polyethylene glycol (PEG), albumin, dextran, polyoxyethylene, styrene-maleic acid copolymer, polyvinylpyrrolidone, pyran copolymer, or hydroxypropylmethacrylamide.
  • methods for binding PEG to the bispecific antibody of the present invention include a method of reacting with a PEG modification reagent [Bioconjugate Pharmaceuticals, Hirokawa Shoten (1993)].
  • PEGylation modification reagents include modifiers for the ⁇ -amino group of lysine (Japanese Patent Laid-Open No. 61-178926), modifiers for the carboxyl groups of aspartic acid and glutamic acid (Japanese Patent Laid-Open No. 56-23587 Japanese Patent Application Laid-Open No. 2-117920), or modifiers for the guanidino group of arginine (Japanese Patent Application Laid-Open No. 2-117920).
  • the immunostimulant may be a natural product known as an immunoadjuvant, and as a specific example, the immune-enhancing agent is ⁇ (1 ⁇ 3) glucan (e.g., lentinan or schizophyllan), or ⁇ -galactosylceramide ( KRN7000) and the like.
  • the immune-enhancing agent is ⁇ (1 ⁇ 3) glucan (e.g., lentinan or schizophyllan), or ⁇ -galactosylceramide ( KRN7000) and the like.
  • proteins include cytokines or growth factors that activate immunocompetent cells such as NK cells, macrophages or neutrophils, or toxin proteins.
  • cytokines or growth factors examples include interferon (hereinafter referred to as IFN)- ⁇ , IFN- ⁇ , IFN- ⁇ , interleukin (hereinafter referred to as IL)-2, IL-12, IL-15, IL- 18, IL-21, IL-23, granulocyte colony stimulating factor (G-CSF), granulocyte/macrophage colony stimulating factor (GM-CSF) or macrophage colony stimulating factor (M-CSF).
  • IFN interferon
  • IFN- ⁇ interleukin-2
  • IL-12 interleukin
  • IL-15 interleukin
  • IL-12 interleukin
  • IL-15 interleukin- 18, IL-21
  • IL-23 granulocyte colony stimulating factor
  • G-CSF granulocyte colony stimulating factor
  • GM-CSF granulocyte/macrophage colony stimulating factor
  • M-CSF macrophage colony stimulating factor
  • Toxin proteins include, for example, ricin, diphtheria toxin, and ONTAK, and also include protein toxins in which mutations are introduced into proteins to regulate toxicity.
  • a fusion antibody with a protein or antibody drug is produced by linking the cDNA encoding the protein to the cDNA encoding the bispecific antibody or antibody fragment of the present invention, constructing the DNA encoding the fusion antibody, and transferring the DNA to prokaryotes or eukaryotes. It can be produced by inserting it into an expression vector for karyotes and introducing the expression vector into prokaryotes or eukaryotes.
  • the agent that binds to the bispecific antibody of the present invention or an antibody fragment thereof may be a conventional immunological detection method.
  • labels used in methods or assays.
  • labels include enzymes such as alkaline phosphatase, peroxidase, or luciferase, luminescent substances such as acridinium esters or lofins, fluorescein isothiocyanate (FITC) or tetramethylrhodamine isothiocyanate (RITC), and Alexa (registered trademark).
  • fluorescent substances such as Fluor 488 and R-phycoerythrin (R-PE).
  • the present invention includes bispecific antibodies and bispecific antibody fragments having cytotoxic activity such as CDC activity or ADCC activity.
  • cytotoxic activity such as CDC activity or ADCC activity.
  • the CDC activity or ADCC activity of the bispecific antibody or the bispecific antibody fragment of the present invention against antigen-expressing cells can be evaluated by a known measurement method [Cancer Immunol. Immunother., 36, 373 (1993)].
  • the present invention also provides a composition comprising a bispecific antibody or bispecific antibody fragment that specifically recognizes and binds CD116 and CD131, or a composition containing the bispecific antibody or the bispecific antibody fragment as an active ingredient, CD116 and CD131-related diseases, preferably diseases involving CD116- and CD131-expressing cells.
  • the disease in which at least one of CD116 and CD131 is involved may be any disease in which at least one of CD116 and CD131 is involved. , various infectious diseases, Alzheimer's disease, diseases associated with neutralizing antibodies to GM-CSF, and the like.
  • diseases associated with GM-CSF or diseases associated with neutralizing antibodies to GM-CSF include, for example, melanoma, head and neck cancer, breast cancer, gastrointestinal cancer, pancreatic cancer, hepatocellular carcinoma, and prostate cancer.
  • Cancer colorectal cancer, lung cancer, renal cell cancer, ovarian cancer, chemotherapy-induced leukopenia, bone marrow transplant-induced leukopenia, aplastic anemia-induced leukopenia, myelodysplastic syndrome-induced leukopenia , recovery of bone marrow function in bone marrow transplantation, acute myelogenous leukemia, chronic myelomonocytic leukemia, sepsis, mycosis, HIV infection, influenza virus infection, non-tuberculous mycobacterial infection, acute respiratory distress syndrome, alveoli Examples include proteinosis and Crohn's disease.
  • the therapeutic agent containing the bispecific antibody, the bispecific antibody fragment, or the derivative thereof of the present invention contains only the bispecific antibody, the bispecific antibody fragment, or the derivative thereof as an active ingredient. However, it is usually preferable to provide it as a pharmaceutical formulation prepared by any method known in the technical field of pharmaceutical science, mixed with one or more pharmacologically acceptable carriers.
  • administration route that is most effective for treatment. mentioned. Among them, intravenous or transpulmonary administration is preferred.
  • Dosage forms include, for example, inhalants, sprays, capsules, tablets, powders, granules, syrups, emulsions, suppositories, injections, ointments, and tapes.
  • the dosage or frequency of administration varies depending on the desired therapeutic effect, administration method, treatment period, age and body weight, but it is usually 10 ⁇ g/kg to 10 mg/kg per day for adults.
  • the present invention provides an immunological detection or measurement reagent for at least one of CD116 and CD131, or a disease associated with at least one of CD116 and CD131, which contains the bispecific antibody or bispecific antibody fragment of the present invention.
  • it relates to diagnostic agents for diseases involving cells expressing CD116 and CD131.
  • the present invention also provides a method for immunological detection or measurement of at least one of CD116 and CD131 using the bispecific antibody or the bispecific antibody fragment of the present invention, a disease associated with at least one of CD116 and CD131, Preferably, the present invention relates to a method for treating diseases involving CD116- and CD131-expressing cells, or a diagnostic method for diseases involving at least one of CD116 and CD131, preferably involving CD116- and CD131-expressing cells.
  • Any known method can be used as a method for detecting or measuring the amount of at least one of CD116 and CD131 in the present invention. Examples thereof include immunological detection or measurement methods.
  • An immunological detection or measurement method is a method of detecting or measuring the amount of antibody or antigen using a labeled antigen or antibody.
  • Immunological detection or measurement methods include, for example, radioimmunoassay (RIA), enzyme immunoassay (EIA or ELISA), fluorescence immunoassay (FIA), luminescence immunoassay, Western blotting. Alternatively, a physicochemical method or the like may be used.
  • disease associated with at least one of CD116 and CD131 preferably CD116 and CD131 Diseases involving expressing cells can be diagnosed.
  • Suitable immunological detection methods can be used to detect cells expressing at least one of CD116 and CD131, such as immunoprecipitation, immunocytostaining, immunohistochemical staining or fluorescent antibody staining. law, etc.
  • a fluorescent antibody staining method such as FMAT8100HTS system (manufactured by Applied Biosystems) can be used.
  • Biological samples for which at least one of CD116 and CD131 is to be detected or measured in the present invention include, for example, tissue cells, blood, plasma, serum, pancreatic juice, urine, feces, tissue fluid, culture fluid, etc. There is no particular limitation as long as one of them may contain cells expressing the expression.
  • the diagnostic agent containing the bispecific antibody, the bispecific antibody fragment, or the derivative thereof of the present invention includes a reagent for antigen-antibody reaction and a reagent for detecting the reaction, depending on the intended diagnostic method. It's okay.
  • reagents for antigen-antibody reaction include buffers, salts and the like.
  • Detection reagents include, for example, the bispecific antibody, the bispecific antibody fragment, or a labeled secondary antibody that binds to a derivative thereof, or a conventional immunological detection or measurement method such as a substrate corresponding to the label. reagents used for
  • the method for producing the bispecific antibody of the present invention the method for evaluating the activity of the bispecific antibody or the bispecific antibody fragment, and the method for treating and diagnosing diseases using the bispecific antibody or the bispecific antibody fragment are specifically described. described as
  • the method for producing a monoclonal antibody in the present invention includes the following working steps. Specifically, (1) at least one of purification of an antigen to be used as an immunogen and production of cells overexpressing the antigen on the cell surface, and (2) after immunizing an animal with the antigen, blood is collected and its antibody titer is assayed.
  • myeloma myeloma
  • cell fusion between antibody-producing cells and myeloma Selection of a group of hybridomas producing antibodies, (6) Separation (cloning) of monoclonal cells from the group of hybridomas, (7) In some cases, cultivation of hybridomas for large-scale production of monoclonal antibodies, or hybridomas (8) examination of the physiological activity and antigen-binding specificity of the monoclonal antibody thus produced, or testing of its properties as a labeling reagent;
  • the method for producing the monoclonal antibody that binds to CD116 and the monoclonal antibody that binds to CD131, which is used to produce the bispecific antibody that binds to CD116 and CD131 in the present invention, will be described below in detail along the above steps.
  • the method for producing the antibody is not limited to this, and for example, antibody-producing cells other than spleen cells and myeloma can be used.
  • Antigen purification Cells expressing CD116 or CD131 can be obtained by introducing an expression vector containing cDNA encoding the full-length or partial length of CD116 or CD131 into Escherichia coli, yeast, insect cells, animal cells, or the like.
  • at least one of CD116 and CD131 can be purified from various human tumor culture cells or human tissues expressing at least one of CD116 and CD131 in large amounts and used as an antigen.
  • the cultured tumor cells, tissue, or the like can be used directly as an antigen.
  • a synthetic peptide having a partial sequence of CD116 or CD131 can be prepared by a chemical synthesis method such as the Fmoc method or the tBoc method and used as an antigen.
  • CD116 or CD131 used in the present invention can be obtained by methods described in Molecular Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1989), Current Protocols In Molecular Biology, John Wiley & Sons (1987-1997), etc. etc., for example, by the following method, by expressing the DNA encoding the CD116 or CD131 in host cells.
  • a recombinant vector is constructed by inserting a full-length cDNA containing a portion encoding CD116 or CD131 downstream of the promoter of an appropriate expression vector.
  • a DNA fragment of appropriate length containing a portion encoding a polypeptide prepared based on full-length cDNA may be used.
  • a transformant strain that produces CD116 or CD131 can be obtained.
  • Any expression vector can be used as long as it is capable of autonomous replication or integration into the chromosome in the host cell used and contains an appropriate promoter at a position where the DNA encoding CD116 or CD131 can be transcribed. can be used.
  • Any host cell that can express the gene of interest can be used, for example, microorganisms belonging to the genus Escherichia such as Escherichia coli, yeast, insect cells, or animal cells.
  • the recombinant vector When a prokaryote such as E. coli is used as a host cell, the recombinant vector is capable of autonomous replication in the prokaryote and contains a promoter, a ribosome binding sequence, a DNA containing a portion encoding CD116 or CD131, and a transcription terminator.
  • a vector containing the sequence is preferred.
  • the recombinant vector does not necessarily have a transcription termination sequence, it is preferable to place a transcription termination sequence immediately below the structural gene.
  • the recombinant vector may contain a gene controlling a promoter.
  • the recombinant vector it is preferable to use a plasmid in which the distance between the Shine-Dalgarno sequence, which is the ribosome binding sequence, and the initiation codon is adjusted to an appropriate distance (eg, 6 to 18 bases).
  • nucleotide sequence of the DNA encoding CD116 or CD131 nucleotides can be substituted so that the codons are optimal for expression in the host, thereby improving the production rate of the desired CD116 or CD131.
  • Any expression vector can be used as long as it can exhibit its function in the host cell to be used.
  • Pharmacia pSE280 (Invitrogen), pGEMEX-1 (Promega), pQE-8 (Qiagen), pKYP10 (Japanese Patent Laid-Open No. 58-110600), pKYP200 [Agricultural Biological Chemistry, 48, 669 (1984)], pLSA1 [Agric. Biol. Chem., 53, 277 (1989)], pGEL1 [Proc. Natl. Acad. ) (manufactured by Stratagene), pTrs30 [prepared from E.
  • Any promoter can be used as long as it functions in the host cell used.
  • promoters derived from E. coli or phage such as trp promoter (Ptrp), lac promoter, PL promoter, PR promoter or T7 promoter.
  • Terp trp promoter
  • lac promoter lac promoter
  • PL promoter PL promoter
  • PR promoter PR promoter
  • T7 promoter T7 promoter
  • artificially designed and modified promoters such as a tandem promoter in which two Ptrps are arranged in series, a tac promoter, a lacT7 promoter, or a let I promoter.
  • E. coli XL1-Blue E. coli XL2-Blue
  • E. coli DH1 E. coli MC1000
  • E. coli KY3276 E. coli W1485, E. coli JM109, E. coli HB101
  • E. coli No. 49 E. coli W3110, E. coli NY49, or E. coli DH5 ⁇ .
  • any method for introducing a recombinant vector into a host cell any method can be used as long as it introduces DNA into the host cell to be used.
  • a method using calcium ions Proc. Natl. Acad. Sci. USA, 69, 2110 (1972), Gene, 17, 107 (1982), Molecular & General Genetics, 168, 111 (1979)].
  • any expression vector can be used as long as it functions in animal cells.
  • Any promoter can be used as long as it can exhibit its function in animal cells.
  • CMV cytomegalovirus
  • IE immediate early gene promoter
  • SV40 early promoter SV40 early promoter
  • retrovirus promoter SV40 early promoter
  • metallothionein promoter the metallothionein promoter
  • the heat shock promoter the SR ⁇ promoter
  • Moloney murine leukemia virus promoter or enhancer the enhancer of the IE gene of human CMV may be used together with the promoter.
  • host cells examples include human Burkitt's lymphoma cells Namalwa, African green monkey kidney-derived cells COS, Chinese hamster ovary-derived cells CHO, and human leukemia cells HBT5637 (Japanese Patent Laid-Open No. 63-000299).
  • Any method for introducing DNA into animal cells can be used as a method for introducing a recombinant vector into host cells.
  • Japanese Patent Laid-Open No. 2-227075 Japanese Patent Laid-Open No. 2-227075
  • the lipofection method Japanese Patent Laid-Open No. 2-227075
  • Microorganisms carrying a recombinant vector containing a DNA encoding CD116 or CD131 obtained as described above, or transformants derived from animal cells or the like are cultured in a medium, and the CD116 and CD116 /or CD116 or CD131 can be produced by producing and accumulating CD131 and harvesting from the culture.
  • a method for culturing the transformant in a medium can be carried out according to a conventional method used for culturing a host.
  • CD116 or CD131 When expressed in eukaryotic cells, it is possible to obtain CD116 or CD131 with added sugars or sugar chains.
  • an inducer may be added to the medium as necessary.
  • an inducer may be added to the medium as necessary.
  • culturing a microorganism transformed with a recombinant vector using a lac promoter, isopropyl- ⁇ -D-thiogalactopyranoside, etc. is transformed with a recombinant vector using a trp promoter.
  • indole acrylic acid or the like may be added to each medium.
  • Examples of media for culturing transformants obtained using animal cells as hosts include the commonly used RPMI1640 medium [The Journal of the American Medical Association, 199, 519 (1967)], Eagle's MEM medium [Science , 122, 501 (1952)], Dulbecco's modified MEM medium [Virology, 8, 396 (1959)], 199 medium [Proc. Soc. Exp. Biol. Med., 73, 1 (1950)], Iscove's Modified Examples thereof include Dulbecco's Medium (IMDM) medium, or a medium obtained by adding fetal bovine serum (FBS) or the like to these medium. Cultivation is usually carried out for 1-7 days under conditions such as pH 6-8, 30-40° C. in the presence of 5% CO 2 . In addition, antibiotics such as kanamycin and penicillin may be added to the medium during the culture, if necessary.
  • RPMI1640 medium The Journal of the American Medical Association, 199, 519 (1967)]
  • Methods for producing CD116 or CD131 include, for example, a method of producing it in the host cell, a method of secreting it outside the host cell, or a method of producing it on the extracellular membrane of the host cell. Alternatively, an appropriate method can be selected by changing the structure of CD131.
  • DNA encoding the amino acid sequence of the extracellular region DNA encoding the Fc region of an antibody, DNA encoding glutathione S-transferase (GST), DNA encoding a FLAG tag, DNA encoding a Histidine tag, etc.
  • GST glutathione S-transferase
  • An antigen fusion protein can be produced by preparing a DNA that ligates the .
  • Specific examples include Fc fusion proteins in which the extracellular domain of CD116 or CD131 is bound to the Fc region of human IgG, and fusion proteins between the extracellular domain of CD116 or CD131 and glutathione S-transferase (GST).
  • CD116 or CD131 When CD116 or CD131 is produced in the host cell or on the host cell extracellular membrane, the method of Paulson et al. [J. Biol. Chem., 264, 17619 (1989)], the method of Row et al. [Proc. Sci., USA, 86, 8227 (1989), Genes Develop., 4, 1288 (1990)], Japanese Patent Laid-Open No. 05-336963, or International Publication No. 1994/23021. CD116 or CD131 can be actively secreted outside the host cell. In addition, a gene amplification system using a dihydrofolate reductase gene or the like (Japanese Patent Laid-Open No. 2-227075) can be used to increase the production of CD116 or CD131.
  • the produced CD116 or CD131 can be isolated and purified, for example, as follows.
  • CD116 or CD131 When CD116 or CD131 is expressed in a dissolved state in cells, the cells are collected by centrifugation after completion of the culture, suspended in an aqueous buffer, and treated with an ultrasonicator, French press, Mantongaurin homogenizer, Dynomill, or the like. to disrupt the cells using to obtain a cell-free extract.
  • CD116 or CD131 forms an insoluble form in cells and is expressed
  • the cells are collected and crushed in the same manner as described above, and centrifuged to collect the insoluble form of CD116 or CD131 as a precipitate fraction.
  • the collected insoluble form of CD116 or CD131 is solubilized with a protein denaturant.
  • the purified protein of the polypeptide can be obtained by the same isolation and purification method as described above.
  • CD116 or CD131 or a derivative such as a sugar modification thereof When CD116 or CD131 or a derivative such as a sugar modification thereof is extracellularly secreted, the CD116 or CD131 or a derivative such as a sugar modification thereof can be recovered from the culture supernatant.
  • a soluble fraction is obtained by treating the culture supernatant using a technique such as centrifugation in the same manner as described above, and a purified protein is obtained from the soluble fraction by using the same isolation and purification method as described above. be able to.
  • CD116 or CD131 used in the present invention can also be produced by a chemical synthesis method such as the Fmoc method or the tBoc method.
  • a chemical synthesis method such as the Fmoc method or the tBoc method.
  • a peptide synthesizer manufactured by Advanced Chemtech, Perkin-Elmer, Pharmacia, Protein Technology Instrument, Synthecel-Vega, Perceptive, or Shimadzu Corporation. can be chemically synthesized using
  • Animals such as mice, rats, hamsters, rabbits, cows, or alpacas are immunized with the antigen obtained in (1), and the spleen, lymph nodes, or peripheral blood of the animals Collect antibody-producing cells.
  • animals include transgenic mice producing human-derived antibodies described in Tomizuka et al. [Tomizuka et al., Proc Natl Acad Sci USA., 97, 722 (2000)], immunogens
  • a conditional knockout mouse of CD116 or CD131 is exemplified as an animal to be immunized.
  • Immunization is performed by administering the antigen together with an appropriate adjuvant such as complete Freund's adjuvant or aluminum hydroxide gel and pertussis vaccine.
  • Immunogen administration method for mouse immunization may be subcutaneous injection, intraperitoneal injection, intravenous injection, intradermal injection, intramuscular injection or footpad injection. is preferred.
  • a conjugate with a carrier protein such as BSA (bovine serum albumin) or KLH (Keyhole Limpet Hemocyanin) is prepared and used as an immunogen.
  • BSA bovine serum albumin
  • KLH Keyhole Limpet Hemocyanin
  • the antigen is administered 5-10 times at intervals of 1-2 weeks after the first administration.
  • Blood is collected from the fundus venous plexus 3 to 7 days after each administration, and the antibody titer of the serum is measured using an enzyme immunoassay [Antibodies-A Laboratory Manual, Cold Spring Harbor Laboratory (1988)] or the like.
  • an enzyme immunoassay Antibodies-A Laboratory Manual, Cold Spring Harbor Laboratory (1988)] or the like.
  • tissue containing antibody-producing cells such as spleen is excised from the immunized animal, and antibody-producing cells are collected.
  • Antibody-producing cells are plasma cells and their progenitor cells, lymphocytes, which may be obtained from any part of an individual, generally spleen, lymph nodes, bone marrow, tonsils, peripheral blood, or an appropriate combination thereof.
  • lymphocytes which may be obtained from any part of an individual, generally spleen, lymph nodes, bone marrow, tonsils, peripheral blood, or an appropriate combination thereof.
  • Spleen cells are most commonly used, although they can be obtained from other sources such as spleen cells.
  • fusion antibody-producing cells are obtained by mincing the spleen, loosening it, centrifuging it, and removing red blood cells.
  • Myeloma preparation process As myeloma, cells incapable of producing autoantibodies derived from mammals such as mice, rats, guinea pigs, hamsters, rabbits, and humans can be used. 8-azaguanine-resistant mouse (BALB/c-derived) myeloma cell line P3-X63Ag8-U1 (P3-U1) [Current Topics in Microbiology and Immunology, 18, 1 (1978)], P3- NS1/1-Ag41 (NS-1) [European J. Immunology, 6, 511 (1976)], SP2/0-Ag14 (SP-2) [Nature, 276, 269 (1978)], P3-X63-Ag8653 (653) [J.
  • BALB/c-derived myeloma cell line P3-X63Ag8-U1 (P3-U1) [Current Topics in Microbiology and Immunology, 18, 1 (1978)], P3- NS1/1-Ag41 (NS-
  • the cell line is grown in a suitable medium, such as 8-azaguanine medium [RPMI-1640 medium supplemented with glutamine, 2-mercaptoethanol, gentamicin, FCS and 8-azaguanine], Iscove's Modified Dulbecco's Medium (Iscove's Modified Dulbecco's Medium). Medium; hereinafter referred to as "IMDM”) or a medium such as Dulbecco's Modified Eagle Medium (hereinafter referred to as "DMEM").
  • IMDM Iscove's Modified Dulbecco's Medium
  • DMEM Dulbecco's Modified Eagle Medium
  • the fusion antibody-producing cells obtained in (2) and the myeloma cells obtained in (3) were mixed in Minimum Essential Medium (MEM) medium or PBS (disodium phosphate 1.83 g, monopotassium phosphate 0 21 g, 7.65 g of sodium chloride, 1 liter of distilled water, pH 7.2), mixed with fusion antibody-producing cells: myeloma cells at a ratio of 5:1 to 10:1, and centrifuged. Remove the supernatant. After loosening the precipitated cell clumps, a mixture of polyethylene glycol-1000 (PEG-1000), MEM medium and dimethylsulfoxide is added at 37° C. with stirring.
  • MEM Minimum Essential Medium
  • PBS disodium phosphate 1.83 g, monopotassium phosphate 0 21 g, 7.65 g of sodium chloride, 1 liter of distilled water, pH 7.2
  • MEM medium is added to bring the total volume to 50 mL. After centrifugation, the supernatant is removed, the precipitated cell clumps are loosened, and the cells are gently suspended in HAT medium [normal medium supplemented with hypoxanthine, thymidine and aminopterin]. This suspension is cultured for 7-14 days at 37° C. in a 5% CO 2 incubator.
  • Cell fusion can also be performed by the following method. Spleen cells and myeloma cells were washed well with a serum-free medium (e.g., DMEM) or phosphate-buffered saline (hereinafter referred to as "phosphate buffer") so that the cell number ratio of spleen cells and myeloma cells was 5: Mix at a ratio of about 1 to 10:1 and centrifuge. After removing the supernatant and loosening the precipitated cell clumps well, 1 mL of serum-free medium containing 50% (w/v) polyethylene glycol (molecular weight 1000-4000) is added dropwise while stirring.
  • a serum-free medium e.g., DMEM
  • phosphate buffer phosphate-buffered saline
  • HAT medium hypoxanthine-aminopterin-thymidine
  • IL-2 human interleukin-2
  • the medium is changed from HAT medium to medium without aminopterin (hereinafter referred to as HT medium). Thereafter, a portion of the culture supernatant can be collected, and antibody-producing hybridomas can be selected using the antibody titer measurement method described below.
  • methods for measuring antibody titer include various known techniques such as radioisotope immunoassay (RIA method), enzyme-linked immunosorbent assay (ELISA method), fluorescent antibody method and passive hemagglutination method.
  • RIA method radioisotope immunoassay
  • ELISA method enzyme-linked immunosorbent assay
  • fluorescent antibody method and passive hemagglutination method.
  • the RIA method or the ELISA method is preferable from the viewpoints of detection sensitivity, rapidity, accuracy, possibility of automation of operation, and the like.
  • hybridomas that are found to produce the desired antibody are transferred to another plate and cloned.
  • this cloning method include a limiting dilution method in which one cell is diluted in one well of a plate and cultured, a soft agar method in which culture is performed in a soft agar medium and colonies are collected, and a micromanipulator. Examples include a method of isolating individual cells, a method of isolating a single cell by a cell sorter, and the like.
  • cloning by limiting dilution is repeated 2 to 4 times, and those with stable antibody titers are selected as hybridoma strains that produce monoclonal antibodies against CD116 or CD131.
  • large amounts of monoclonal antibodies that bind to CD116 or CD131 can be obtained by growing the hybridoma intraperitoneally in syngeneic mice (e.g., BALB/c) or Nu/Nu mice, rats, guinea pigs, hamsters, rabbits, or the like. Ascites containing fluid can be obtained.
  • syngeneic mice e.g., BALB/c
  • Nu/Nu mice rats, guinea pigs, hamsters, rabbits, or the like.
  • Ascites containing fluid can be obtained.
  • the monoclonal antibody-producing hybridoma obtained in (5) in RPMI1640 medium supplemented with 10% FBS After culturing the monoclonal antibody-producing hybridoma obtained in (5) in RPMI1640 medium supplemented with 10% FBS, the supernatant was removed by centrifugation, and GIT medium or Hybridoma-SFM supplemented with 5% Daigo GF21 was obtained. It is suspended in a medium or the like, and cultured for 3 to 7 days by flask culture, spinner culture, bag culture, or the like. The obtained cell suspension is centrifuged, the supernatant obtained is purified by a protein A column or a protein G column, and the IgG fraction is collected to obtain a purified monoclonal antibody.
  • a commercially available monoclonal antibody purification kit eg, MAbTrap GII kit; manufactured by Amersham Pharmacia Biotech
  • MAbTrap GII kit manufactured by Amersham Pharmacia Biotech
  • Antibody subclass determination is performed by enzyme immunoassay using a subclass typing kit.
  • Binding activity of monoclonal antibodies to CD116 or CD131 is determined by Ouchterlony method, ELISA method, RIA method, flow cytometry method (FCM) or surface plasmon resonance method (SPR). It can be measured by a binding assay system such as.
  • the Ouchterlony method is simple, but if the antibody concentration is low, a concentration operation is required.
  • the culture supernatant is allowed to react with the antigen-adsorbed solid phase as it is, and furthermore, antibodies corresponding to various immunoglobulin isotypes and subclasses are used as secondary antibodies to determine antibody isotypes and subclasses. As well as identifying the subclass, it is possible to measure the binding activity of the antibody.
  • purified or partially purified recombinant CD116 or CD131 is adsorbed to a solid surface such as a 96-well plate for ELISA, and the solid surface to which no antigen is adsorbed is subjected to antigen-unrelated proteins such as Blocking is done with bovine serum albumin (BSA).
  • BSA bovine serum albumin
  • a serially diluted first antibody e.g., mouse serum, culture supernatant, etc.
  • Antibodies are allowed to bind to the immobilized antigen.
  • biotin an enzyme (horse radish peroxidase; HRP, alkaline phosphatase; ALP, etc.), an anti-immunoglobulin antibody labeled with a chemiluminescent substance, a radioactive compound, or the like is dispensed and bound to the plate.
  • the antibody is reacted with the second antibody.
  • Tween-PBS After thorough washing with Tween-PBS, a reaction is performed according to the labeled substance of the second antibody to select a monoclonal antibody that specifically reacts with the target antigen.
  • the FCM method can measure the binding activity of antibodies to antigen-expressing cells [Cancer Immunol. Immunother., 36, 373 (1993)]. Binding of an antibody to a membrane protein antigen expressed on the cell membrane means that the antibody recognizes and binds to the three-dimensional structure of the naturally occurring antigen.
  • the SPR method includes kinetics analysis by Biacore.
  • Biacore T100 the kinetics of the binding between the antigen and the test substance is measured, and the results are analyzed with the analysis software attached to the instrument.
  • a test substance such as a hybridoma culture supernatant or purified monoclonal antibody is flowed to bind an appropriate amount, and further, the concentration is known. Multiple concentrations of antigen are run and binding and dissociation are measured.
  • the obtained data is subjected to kinetics analysis using a 1:1 binding model using the software attached to the device, and various parameters are obtained.
  • a 1:1 binding model using the software attached to the device After immobilizing CD116 or CD131 on a sensor chip by, for example, an amine coupling method, multiple concentrations of purified monoclonal antibodies with known concentrations are run to measure binding and dissociation.
  • the obtained data is subjected to kinetics analysis by a bivalent binding model using software attached to the device, and various parameters are obtained.
  • antibodies that bind to CD116 or CD131 in competition with antibodies against CD116 or CD131 can be selected by allowing the test antibody to coexist in the binding assay system described above to react.
  • antibodies that compete with the above-obtained antibody for binding to CD116 or CD131 can be obtained by screening for antibodies that inhibit binding to the antigen when the test antibody is added.
  • the epitope recognized and bound by the antibody can be identified as follows.
  • antigen partial deletions and mutants can be obtained as secreted proteins using suitable host cells such as E. coli, yeast, plant cells or mammalian cells, or can be obtained on the cell membrane of host cells. It may be expressed and prepared as antigen-expressing cells.
  • suitable host cells such as E. coli, yeast, plant cells or mammalian cells, or can be obtained on the cell membrane of host cells. It may be expressed and prepared as antigen-expressing cells.
  • Membrane-type antigens are preferably expressed on the membrane of the host cell in order to express the antigen while maintaining its three-dimensional structure.
  • Synthetic peptides include methods for producing various partial peptides of the molecule using known peptide synthesis techniques.
  • a chimeric protein is prepared by appropriately combining the domains that constitute each region, and the antibody epitope is identified by confirming the reactivity of the antibody to the protein. be able to. Then, more precisely, various oligopeptides corresponding to the corresponding portions or mutants of the peptides are synthesized using oligopeptide synthesis techniques well known to those skilled in the art, and the reactivity of the antibody to the peptides is confirmed to confirm the epitope. can be specified.
  • kits for example, SPOTs kit (manufactured by Genesis Biotechnologies), a series of multi-pin peptide synthesis kits (manufactured by Chiron) using multi-pin synthesis method, etc. ] can also be used.
  • Antibody fragments that bind to CD116 or CD131, such as Fab can be isolated and obtained by techniques such as the Phage Display method and the Yeast display method, in addition to the method using the hybridoma described above [Emmanuelle Laffy et. ., Human Antibodies 14, 33-55, (2005)].
  • An antibody that binds to the same epitope as that bound by an antibody that binds to CD116 or CD131 identifies the epitope of the antibody obtained in the binding assay system described above, a partial synthetic peptide of the epitope, and the three-dimensional structure of the epitope. It can be obtained by preparing a mimetic synthetic peptide or a recombinant of the epitope and immunizing it.
  • the epitope is a membrane protein
  • a suitable tag such as a FLAG tag, a Histidine tag, a GST protein or an antibody Fc region.
  • mRNA is extracted from hybridomas that produce monoclonal antibodies, and cDNA is synthesized.
  • the synthesized cDNA is then cloned into a vector such as a phage or plasmid to create a cDNA library.
  • Recombinant phages or recombinant plasmids having cDNAs encoding VH or VL are isolated from the library using DNAs encoding the antibody C region portion or V region portion as probes.
  • the entire VH or VL nucleotide sequence in the isolated recombinant phage or recombinant plasmid is determined, and the entire VH or VL amino acid sequence is deduced from the nucleotide sequence.
  • mice, rats, hamsters, rabbits, etc. are used as non-human animals for hybridoma production, but any animal can be used as long as it is possible to produce hybridomas.
  • RNA easy kit manufactured by Qiagen
  • oligo(dT) immobilized cellulose column method [Molecular Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1989)], or Oligo-dT30 ⁇ Super> mRNA Purification Kit (manufactured by Takara Bio Inc.) or the like is used.
  • mRNA can also be prepared using a kit such as Fast Track mRNA Isolation Kit (manufactured by Invitrogen) or QuickPrep mRNA Purification Kit (manufactured by Pharmacia).
  • Synthesis of cDNA and construction of cDNA libraries can be carried out by known methods [Molecular Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1989), Current Protocols in Molecular Biology, Supplement 1, John Wiley & Sons (1987 -1997)], or a kit such as Superscript Plasmid System for cDNA Synthesis and Plasmid Cloning (manufactured by Invitrogen) or ZAP-cDNA Synthesis Kit (manufactured by Stratagene).
  • Any vector into which the cDNA can be incorporated can be used as a vector into which the cDNA synthesized using the mRNA extracted from the hybridoma as a template when constructing the cDNA library.
  • E. coli into which a cDNA library constructed by a phage or plasmid vector can be introduced can be used as long as the cDNA library can be introduced, expressed and maintained.
  • XL1-Blue MRF' [Strategies, 5, 81 (1992)], C600 [Genetics, 39, 440 (1954)], Y1088, Y1090 [Science, 222, 778 (1983)], NM522 [J. Mol. Biol., 166, 1 (1983)], K802 [J. Mol. Biol., 16, 118 (1966)], or JM105 [Gene, 38, 275 (1985)].
  • primers were prepared and cDNA synthesized from mRNA or a cDNA library was used as a template in the Polymerase Chain Reaction method [hereinafter referred to as the PCR method, Molecular Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1989 ), Current Protocols in Molecular Biology, Supplement 1, John Wiley & Sons (1987-1997)].
  • a plasmid such as pBluescript SK(-) (manufactured by Stratagene), and the nucleotide sequence of the cDNA is determined by a commonly used nucleotide sequence analysis method. do. For example, after performing a reaction such as the dideoxy method [Proc. Natl. Acad. Sci. USA, 74, 5463 (1977)], A. L. F. Analysis is performed using a base sequence automatic analyzer such as a DNA sequencer (manufactured by Pharmacia).
  • a base sequence automatic analyzer such as a DNA sequencer (manufactured by Pharmacia).
  • amino acid sequence of each CDR of VH and VL can be estimated by comparing with the amino acid sequences of VH and VL of known antibodies [Sequences of Proteins of Immunological Interest, US Dept. Health and Human Services (1991)]. can be done.
  • the complete amino acid sequences of the obtained VH and VL for example, BLAST method [J. Mol. Biol., 215, 403 (1990)] using any database such as SWISS-PROT or PIR-Protein It is possible to confirm whether or not the complete amino acid sequences of the VH and VL are novel by performing a homology search with .
  • a genetically modified antibody expression vector can be constructed by cloning DNA encoding at least one of human antibody CH and CL into an animal cell expression vector.
  • CH and CL of any human antibody can be used, for example, ⁇ 1 subclass CH and ⁇ class CL of a human antibody can be used.
  • cDNAs are used as DNAs encoding CH and CL of human antibodies, but chromosomal DNAs consisting of exons and introns can also be used.
  • any vector can be used as long as it can incorporate and express a gene encoding the C region of a human antibody.
  • pAGE103 J. Biochem., 101, 1307 (1987)]
  • pHSG274 [Gene, 27, 223 (1984)]
  • pKCR Proc. Natl. Acad. Sci. USA, 78, 1527 (1981)]
  • pSG1bd2-4 [Cytotechnol., 4, 173 (1990)]
  • pSE1UK1Sed1-3 [Cytotechnol., 13, 79 (1993)]
  • INPEP4 manufactured by Biogen-IDEC
  • N5KG1val US Pat. No.
  • N5KG4PE R409K described in International Publication No. 2006/033386
  • N5KG2 vector described in International Publication No. 2003/033538
  • transposon vector International Publication No. 2010/143698
  • Promoters and enhancers for expression vectors for animal cells include SV40 early promoter [J. )], CMV promoter (U.S. Pat. No. 5,168,062) or immunoglobulin H chain promoter [Cell, 41, 479 (1985)] and enhancer [Cell, 33, 717 (1983)], etc. be able to.
  • antibody H chains and L chains For the expression of recombinant antibodies, from the viewpoint of ease of vector construction, ease of introduction into animal cells, balance of expression levels of antibody H chains and L chains in cells, etc., antibody H chains and L chains Although a vector (tandem vector) carrying both antibody chain genes (tandem vector) [J. Immunol. Methods, 167, 271 (1994)] is used, multiple vectors carrying each antibody H chain and L chain gene separately (separate type vectors) can also be used in combination.
  • Tandem-type recombinant antibody expression vectors include pKANTEX93 (International Publication No. 97/10354), pEE18 [Hybridoma, 17, 559 (1998)], N5KG1val (US Pat. No. 6,001,358), N5KG4PE R409K (described in International Publication No. 2006/033386), N5KG2 vector (described in International Publication No. 2003/033538), Tol2 transposon vector (International Publication No. 2010/143698), etc. are used.
  • a chimeric antibody expression vector can be constructed by cloning each of the VL-encoding cDNAs.
  • the base sequence of the linking portion encodes an appropriate amino acid. , and designed to have appropriate restriction enzyme recognition sequences.
  • the prepared VH and VL cDNAs are expressed in an appropriate form upstream of each gene encoding CH or CL of the human antibody in the recombinant antibody expression vector obtained in (2). Each is cloned in the same manner to construct a chimeric antibody expression vector.
  • the cDNA encoding the non-human antibody VH or VL is amplified by PCR using synthetic DNA having appropriate restriction enzyme recognition sequences at both ends, and the recombinant antibody expression vector obtained in (2).
  • a chimeric antibody expression vector can also be constructed by cloning into .
  • a cDNA encoding VH or VL of a humanized antibody can be prepared as follows. First, the amino acid sequence of the human antibody VH or VL framework region (hereinafter referred to as FR) to which the non-human antibody VH or VL CDR amino acid sequence obtained in (1) is to be grafted is selected.
  • FR human antibody VH or VL framework region
  • Any FR amino acid sequence can be used as long as it is derived from a human antibody.
  • amino acid sequences of FRs of human antibodies registered in databases such as the Protein Data Bank, or common amino acid sequences of each subgroup of FRs of human antibodies [Sequences of Proteins of Immunological Interest, US Dept. Health and Human Services ( 1991)], etc.
  • a human FR amino acid sequence having as high a homology (60% or more) as possible with the VH or VL FR amino acid sequence of the original non-human antibody is selected.
  • the amino acid sequences of the CDRs of the original non-human antibody are grafted into the FR amino acid sequences of the selected human antibody VH or VL, respectively, to design the VH or VL amino acid sequences of the humanized antibody, respectively.
  • the designed amino acid sequence into a DNA sequence considering the frequency of codon usage [Sequences of Proteins of Immunological Interest, US Dept. Health and Human Services (1991)] found in the base sequence of the antibody gene, human The VH or VL cDNA sequences of the modified antibody are designed, respectively.
  • the humanized antibody VH or VL can be easily inserted into the recombinant antibody expression vector obtained in (2).
  • the encoding cDNA can be cloned.
  • each amplified product is cloned into a plasmid such as pBluescript SK(-) (manufactured by Stratagene), the nucleotide sequence is determined by the same method as described in (1), and the desired humanized antibody is obtained.
  • a plasmid is obtained that has a DNA sequence that encodes the VH or VL amino acid sequence.
  • a humanized antibody retains its antigen-binding activity only by grafting only the VH and VL CDRs of a non-human antibody to the VH and VL FRs of a human antibody. of non-human antibodies [BIO/TECHNOLOGY, 9, 266 (1991)]. Therefore, among the amino acid sequences of the VH and VL FRs of the human antibody, the amino acid residues involved in direct binding to the antigen, the amino acid residues interacting with the CDR amino acid residues, and the three-dimensional structure of the antibody are maintained. By identifying amino acid residues that are indirectly involved in binding to an antigen and substituting those amino acid residues with the amino acid residues of the original non-human antibody, the reduced antigen-binding activity of the humanized antibody can be raised.
  • X-ray crystallography [J. Mol. Biol., 112, 535 (1977)] or computer modeling [Protein Engineering, 7, 1501 (1994)], etc. to identify amino acid residues of FR involved in antigen-binding activity can be used to construct and analyze the three-dimensional structure of an antibody.
  • X-ray crystallography [J. Mol. Biol., 112, 535 (1977)] or computer modeling [Protein Engineering, 7, 1501 (1994)], etc. to identify amino acid residues of FR involved in antigen-binding activity
  • a modified humanized antibody having the necessary antigen-binding activity can be obtained. .
  • the FR amino acid residues of the VH and VL of the human antibody can be modified by performing the PCR reaction described in (4) using the synthetic DNA for modification.
  • the base sequence of the amplified product after PCR reaction is determined by the method described in (1) to confirm that the intended modification has been carried out.
  • a suitable restriction enzyme recognition sequence is introduced into the 5' ends of the synthetic DNAs located at both ends. By doing so, they are cloned upstream of each gene encoding CH or CL of the human antibody in the recombinant antibody expression vector obtained in (2) so that they are expressed in an appropriate form.
  • Any host cell that can express a recombinant antibody can be used as the host cell into which the expression vector is introduced.
  • COS-7 cells [American Type Culture Collection (ATCC) number: CRL1651] can be used. use.
  • ATCC American Type Culture Collection
  • CRL1651 the DEAE-dextran method
  • lipofection method Proc. Natl. Acad. Sci. USA, 84, 7413 ( 1987)].
  • the expression level and antigen-binding activity of the recombinant antibody in the culture supernatant was measured by an enzyme-linked immunosorbent method [Monoclonal Antibodies-Principles and Practice, Third Edition, Academic Press (1996), Antibodies-A Laboratory Manual , Cold Spring Harbor Laboratory (1988), Monoclonal Antibody Experiment Manual, Kodansha Scientific (1987)] and the like.
  • Introduction of expression vectors into host cells includes, for example, electroporation [Japanese Patent Laid-Open No. 2-257891, Cytotechnology, 3, 133 (1990)], calcium ion method, electroporation method, spheroplast method, lithium acetate method, calcium phosphate method, lipofection method, and the like.
  • electroporation Japanese Patent Laid-Open No. 2-257891, Cytotechnology, 3, 133 (1990)
  • calcium ion method calcium ion method
  • electroporation method electroporation method
  • spheroplast method lithium acetate method
  • calcium phosphate method calcium phosphate method
  • lipofection method and the like.
  • methods for introducing genes into animals which will be described later, include microinjection, methods for introducing genes into ES cells using electroporation or lipofection, and nuclear transplantation.
  • Any cell can be used as the host cell into which the recombinant antibody expression vector is introduced, as long as it is a host cell that can express the recombinant antibody.
  • mouse SP2/0-Ag14 cells ATCC CRL1581
  • mouse P3X63-Ag8.653 cells ATCC CRL1580
  • Chinese hamster CHO-K1 cells ATCC CCL-61
  • DUKXB11 ATCC CCL-9096
  • Pro-5 cells ATCC CCL-1781
  • CHO-S cells Life Technologies, Cat No. 11619
  • CHO cells deficient in the dihydrofolate reductase gene (dhfr) CHO/DG44 cells
  • proteins such as enzymes involved in the synthesis of the intracellular sugar nucleotide GDP-fucose, sugar chain modifications in which the 1-position of fucose is ⁇ -bonded to the 6-position of N-acetylglucosamine at the reducing end of N-glycoside-linked complex-type sugar chains.
  • a host cell with reduced or deleted activity such as a protein involved in the transport of the intracellular sugar nucleotide GDP-fucose to the Golgi apparatus, e.g. CHO cells (International Publication No. 2005/035586, International Publication No. 02/31140) and the like can also be used.
  • a transformant that stably expresses the recombinant antibody is selected by culturing in an animal cell culture medium containing a drug such as G418 sulfate (hereinafter referred to as G418) ( Japanese Patent Laid-Open No. 2-257891).
  • Animal cell culture medium includes RPMI1640 medium (manufactured by Invitrogen), GIT medium (manufactured by Nihon Pharmaceutical Co., Ltd.), EX-CELL301 medium (manufactured by JRH), EX-CELL302 medium (manufactured by JRH), EX -CELL325 medium (manufactured by JRH), IMDM medium (manufactured by Invitrogen), or Hybridoma-SFM medium (manufactured by Invitrogen), or a medium obtained by adding various additives such as FBS to these medium is used.
  • RPMI1640 medium manufactured by Invitrogen
  • GIT medium manufactured by Nihon Pharmaceutical Co., Ltd.
  • EX-CELL301 medium manufactured by JRH
  • EX-CELL302 medium manufactured by JRH
  • EX -CELL325 medium manufactured by JRH
  • IMDM medium manufactured by Invitrogen
  • Hybridoma-SFM medium
  • the expression level and antigen-binding activity of the genetically modified antibody in the culture supernatant can be measured by ELISA or the like.
  • the DHFR amplification system Japanese Patent Laid-Open No. 2-257891 or the like can be used to increase the expression level of the recombinant antibody produced by the transformant.
  • Recombinant antibodies can be purified from the culture supernatant of transformants using a protein A column [Monoclonal Antibodies - Principles and practice, Third edition, Academic Press (1996), Antibodies - A Laboratory Manual, Cold Spring Harbor Laboratory (1988)]. Purification can also be carried out by combining methods used in protein purification, such as gel filtration, ion exchange chromatography, and ultrafiltration.
  • a method for purifying a composition containing an antibody comprising purifying an antibody containing an Fc region by protein A column chromatography, wherein said antibody has the H435F mutation in said Fc region is an antibody into which has been introduced.
  • Antibodies in which the H435F mutation has been introduced in the Fc region have excellent binding properties to protein A columns, and can be purified by protein A column chromatography to achieve high purification efficiency.
  • the molecular weight of the purified recombinant antibody H chain, L chain or the entire antibody molecule can be determined by polyacrylamide gel electrophoresis [Nature, 227, 680 (1970)] or Western blotting [Monoclonal Antibodies - Principles and practice, Third edition, Academic Press (1996), Antibodies - A Laboratory Manual, Cold Spring Harbor Laboratory (1988)].
  • bispecific antibody of the present invention can be prepared, for example, by preparing a first antigen-binding domain that binds to CD131 and a second antigen-binding domain that binds to CD116, and linking them. .
  • first antigen-binding domain that binds to CD116
  • first antigen-binding domain is an antibody or an antibody fragment
  • DNA sequences encoding the amino acid sequences of the CDRs or variable regions of the antibody are determined by the methods described in .
  • an antigen binding domain comprising said CDRs or variable regions is designed, and a DNA sequence encoding the amino acid sequence of said antigen binding domain is designed.
  • the first antigen-binding domain is Fab
  • the CDR DNA sequence of the antibody is determined by the method described in .
  • a DNA sequence encoding a polypeptide chain linking the determined VH sequence containing the CDRs of the heavy chain and the CH1 sequence, and a polypeptide chain linking the determined VL sequence containing the CDRs of the light chain and the CL sequence are encoded.
  • Design a DNA sequence. Their DNA sequences are, for example, 2. It can be prepared by incorporating into the recombinant antibody expression vector described in (2) and expressing the antigen-binding domain.
  • the first antigen-binding domain is a polypeptide containing a CD116-binding portion of a protein having binding ability to GM-CSF or CD116, designing a DNA sequence encoding the polypeptide, for example, 2. It can be prepared by incorporating into the recombinant antibody expression vector described in (2) and expressing the antigen-binding domain.
  • the antigen-binding activity of the prepared antigen-binding domains can be evaluated by the method described above, and those that retain the antigen-binding activity can be selected.
  • the antigen-binding domain that binds to CD131 is prepared according to 3-1. It can be produced by the same method as.
  • the bispecific antibody of the present invention can also be produced by the above-described method when the first and second antigen-binding domains are linked with an appropriate amino acid sequence to express a recombinant protein.
  • amino acid residues contained in each antigen-binding domain can be used to chemically link via any linker.
  • Amino acid residues used for linkage may be natural amino acid residues or non-natural amino acid residues. Examples of natural amino acid residues that can be used include cysteine, tyrosine, serine, threonine, lysine, glutamic acid, and aspartic acid.
  • non-natural amino acid residues include, for example, Z-lysine derivatives (N6-((benzyloxy)carbonyl)-L-lysine derivatives) disclosed in WO 2017/030156, TCO*-Lys (N6-( ((trans-cyclooct-2-en-1-yl)oxy)carbonyl)-L-lysine) or BCN-Lys (N6-((bicyclo[6.1.0]non-4-yn-9-ylmethoxy) carbonyl)-L-lysine) can be used.
  • Z-lysine derivatives N6-((benzyloxy)carbonyl)-L-lysine derivatives
  • TCO*-Lys N6-( ((trans-cyclooct-2-en-1-yl)oxy)carbonyl)-L-lysine)
  • BCN-Lys N6-((bicyclo[6.1.0]non-4-yn-9-ylmethoxy)
  • a chemical reaction via non-natural amino acid residues is used because it can selectively react with the linker without affecting other amino acids contained in the antigen-binding domains. It is preferred to use ligation.
  • the method used to link the antigen-binding domains is not particularly limited, and any method for chemically linking the desired amino acid residue and the linker can be used. Examples thereof include chemical ligation using a chemical reaction [Introduction to Antibody Engineering, Chijinshokan (1994), Kolb et al., Angew Chem Int Ed Engl. 40. 2004-21, 2001].
  • the linker used for chemically linking the antigen-binding domain is not particularly limited as long as it has a functional group necessary for reacting with the amino acid residues contained in the antigen-binding domain.
  • the antigen-binding domains can be connected by using a linker having two alkynyl groups in one molecule.
  • the antigen-binding domain prepared in is Fab
  • a part or all of the hinge region of the antibody is added to the C-terminal side of each antigen-binding domain, and the S—S bond forms a binder having a structure of (Fab′) 2.
  • Specific antibodies can also be produced. By adding Fc thereto, an IgG antibody-type bispecific antibody can be produced.
  • the binding activity of the bispecific antibody of the present invention to cell lines expressing at least one of CD116 and CD131 is determined by the above-mentioned 1. It can be measured using the binding assay system described in (7).
  • CDC activity or ADCC activity against cells expressing at least one of CD116 and CD131 can be measured by a known measurement method [Cancer Immunol. Immunother., 36, 373 (1993)].
  • the agonistic activity of the bispecific antibody of the present invention to the GM-CSF receptor can be measured by the following method. For example, TF-1 cells that proliferate in a GM-CSF-dependent manner are seeded in a 96-well plate, GM-CSF or the bispecific antibody of the present invention is added, and cultured for a certain period of time. By measuring, the proliferation rate of the cells is determined.
  • the bispecific antibody or the bispecific antibody fragment addition group that there is agonist activity when the cell proliferation rate is 30% or higher.
  • the agonist activity of the bispecific antibody or the bispecific antibody fragment is preferably 40% or more, more preferably 50% or more, still more preferably 60% or more, still more preferably 70%, when GM-CSF is 100%. % or more.
  • the agonistic activity of the bispecific antibody of the present invention for the GM-CSF receptor can also be evaluated by the differentiation-inducing activity from monocytes to macrophages. Differentiation-inducing activity can be measured by the following method. For example, monocytes are seeded in a 96-well plate, a bispecific antibody is added, cultured for a certain period of time, and then changes in the expression levels of CD14 and CD206 are analyzed by flow cytometry.
  • Signal transduction from CD116 and CD131 into cells can be evaluated by detecting phosphorylation of intracellular proteins by Western blotting or the like.
  • the bispecific antibody or antibody fragment of the present invention is used to treat diseases associated with GM-CSF or neutralizing antibodies to GM-CSF.
  • diseases associated with GM-CSF or neutralizing antibodies to GM-CSF can be used for example, melanoma, head and neck cancer, breast cancer, gastrointestinal cancer, pancreatic cancer, hepatocellular carcinoma, prostate cancer, colorectal cancer, lung cancer, renal cell carcinoma, ovarian cancer, chemotherapy-induced leukopenia, Leukopenia due to bone marrow transplantation, leukopenia due to aplastic anemia, leukopenia due to myelodysplastic syndrome, recovery of bone marrow function after bone marrow transplantation, acute myelogenous leukemia, chronic myelomonocytic leukemia, sepsis, mycosis, HIV Infectious diseases, influenza virus infections, non-tuberculous mycobacterial infections, acute respiratory distress syndrome, alveolar proteinosis, Crohn'
  • a therapeutic agent containing the bispecific antibody or the bispecific antibody fragment of the present invention, or a derivative thereof may contain only the antibody, the antibody fragment, or a derivative thereof as an active ingredient, They are usually mixed with one or more pharmacologically acceptable carriers and provided as a pharmaceutical formulation prepared by a method known in the technical field of pharmaceutical science.
  • the route of administration includes, for example, oral administration, or parenteral administration such as intraoral administration, intratracheal administration, intrarectal administration, subcutaneous administration, intramuscular administration, and intravenous administration.
  • Dosage forms include, for example, sprays, capsules, tablets, powders, granules, syrups, emulsions, suppositories, injections, ointments, and tapes.
  • Various formulations contain commonly used excipients, extenders, binders, wetting agents, disintegrants, surfactants, lubricants, dispersants, buffers, preservatives, solubilizers, preservatives, coloring agents. It can be manufactured by a conventional method using ingredients, flavoring agents, stabilizers, and the like.
  • Excipients include, for example, lactose, fructose, glucose, cornstarch, sorbitol, crystalline cellulose, sterilized water, ethanol, glycerol, physiological saline and buffer solutions.
  • Disintegrants include, for example, starch, sodium alginate, gelatin, calcium carbonate, calcium citrate, dextrin, magnesium carbonate and synthetic magnesium silicate.
  • Binders include, for example, methylcellulose or its salts, ethylcellulose, gum arabic, gelatin, hydroxypropylcellulose and polyvinylpyrrolidone.
  • Lubricants include, for example, talc, magnesium stearate, polyethylene glycol and hydrogenated vegetable oils.
  • stabilizers include amino acids such as arginine, histidine, lysine, and methionine, human serum albumin, gelatin, dextran 40, methylcellulose, sodium sulfite, and sodium metasulfite.
  • additives include, for example, syrup, petrolatum, glycerin, ethanol, propylene glycol, citric acid, sodium chloride, sodium nitrite and sodium phosphate.
  • Formulations suitable for oral administration include, for example, emulsions, syrups, capsules, tablets, powders or granules.
  • Liquid preparations such as emulsions or syrups may contain water, sugars such as sucrose, sorbitol or fructose, glycols such as polyethylene glycol or propylene glycol, oils such as sesame oil, olive oil or soybean oil, p-hydroxybenzoic acid. It is manufactured using preservatives such as esters, or flavors such as strawberry flavor or peppermint as additives.
  • Capsules, tablets, powders, granules, etc. contain excipients such as lactose, glucose, sucrose or mannitol, disintegrants such as starch or sodium alginate, lubricants such as magnesium stearate or talc, polyvinyl alcohol, hydroxy It is manufactured using a binder such as propylcellulose or gelatin, a surfactant such as fatty acid ester, or a plasticizer such as glycerin as an additive.
  • excipients such as lactose, glucose, sucrose or mannitol, disintegrants such as starch or sodium alginate, lubricants such as magnesium stearate or talc, polyvinyl alcohol, hydroxy It is manufactured using a binder such as propylcellulose or gelatin, a surfactant such as fatty acid ester, or a plasticizer such as glycerin as an additive.
  • Formulations suitable for parenteral administration include, for example, injections, suppositories and sprays. Injections are prepared using a carrier consisting of a salt solution, a glucose solution, or a mixture of both.
  • Suppositories are prepared using carriers such as cocoa butter, hydrogenated fats or carboxylic acids. Aerosols are manufactured using a carrier that does not irritate the recipient's oral cavity and respiratory tract mucosa, disperses the monoclonal antibody or antibody fragment thereof of the present invention as fine particles, and facilitates absorption. Carriers include, for example, lactose, glycerin, and the like. It can also be manufactured as an aerosol or dry powder. Furthermore, in the parenteral preparations described above, the ingredients exemplified as additives in formulations suitable for oral administration can also be added.
  • the effective amount administered as a combination of an effective amount of the bispecific antibody of the present invention with a suitable diluent and a pharmacologically acceptable carrier is 0.0001 mg to 100 mg per kg of body weight per administration for 2 days. to 8 weeks apart.
  • a method for diagnosing a disease using the bispecific antibody or the bispecific antibody fragment of the present invention Detecting or measuring cells expressing at least one of CD116 and CD131 using the bispecific antibody or the bispecific antibody fragment of the present invention
  • a disease associated with GM-CSF or a disease associated with a neutralizing antibody to GM-CSF can be diagnosed.
  • GM-CSF Diseases involving GM-CSF can be diagnosed, for example, by detecting or measuring at least one of CD116 and CD131 as follows.
  • the abundance of at least one of CD116 and CD131 in the subject's biological sample is similarly examined, and the abundance is compared with the abundance of healthy subjects.
  • a disease involving GM-CSF can be diagnosed when the abundance of at least one of CD116 and CD131 in a subject is increased or decreased compared to healthy subjects.
  • An immunological method is a method of detecting or measuring the amount of antibody or antigen using a labeled antigen or antibody.
  • Examples thereof include radiolabeled immunoassay, enzyme immunoassay, fluorescence immunoassay, luminescence immunoassay, Western blotting, physicochemical techniques and the like.
  • radiolabeled immuno-antibody method for example, an antigen or a cell expressing the antigen is reacted with the bispecific antibody or antibody fragment of the present invention, and then reacted with a radiolabeled anti-immunoglobulin antibody or binding fragment.
  • a method of measuring with a scintillation counter or the like can be mentioned.
  • an antigen or a cell expressing the antigen is reacted with the bispecific antibody or the bispecific antibody fragment of the present invention, and further reacted with a labeled anti-immunoglobulin antibody or binding fragment. After that, the color-developing dye is measured with an absorptiometer.
  • sandwich ELISA method and the like can be mentioned.
  • a known enzyme label [enzyme immunoassay, Igakushoin (1987)] can be used as the label used in the enzyme immunoassay.
  • enzyme immunoassay Igakushoin (1987)
  • alkaline phosphatase label, peroxidase label, luciferase label, biotin label, or the like is used.
  • the sandwich ELISA method is a method in which an antibody is bound to a solid phase, an antigen to be detected or measured is trapped, and a second antibody is reacted with the trapped antigen.
  • a fluorescent substance such as FITC
  • an enzyme such as peroxidase, or biotin.
  • the above antibody-adsorbed plate was reacted with cells isolated from the living body or their lysate, tissue or its lysate, cell culture supernatant, serum, pleural effusion, ascitic fluid, eye fluid, etc., and then labeled. An antibody or antibody fragment is reacted, and a detection reaction is performed according to the labeling substance.
  • the antigen concentration in the test sample is calculated from a standard curve prepared by serially diluting antigens of known concentrations.
  • Antibodies used in sandwich ELISA may be either polyclonal antibodies or monoclonal antibodies, and antibody fragments such as Fab, Fab', or F(ab') 2 may be used.
  • the combination of two types of antibodies used in the sandwich ELISA method may be a combination of monoclonal antibodies or antibody fragments that bind to different epitopes, or a combination of a polyclonal antibody and a monoclonal antibody or antibody fragment thereof.
  • fluorescence immunoassay method for example, it is measured by the method described in the literature [Monoclonal Antibodies-Principles and practice, Third edition, Academic Press (1996), Monoclonal Antibody Experiment Manual, Kodansha Scientific (1987)], etc. .
  • a known fluorescent label [fluorescent antibody method, Soft Science (1983)] can be used as the label used in the fluorescence immunoassay method. For example, FITC or RITC is used.
  • luminescence immunoassay method for example, the method described in the literature [Bioluminescence and Chemiluminescence Clinical Test 42, Hirokawa Shoten (1998)] is used. Labels used in luminescence immunoassays include known luminescent labels such as acridinium esters and lophine.
  • antigens or cells expressing antigens are fractionated by SDS (sodium dodecyl sulfate)-PAGE [Antibodies-A Laboratory Manual Cold Spring Harbor Laboratory (1988)], and then the gel is treated with polyvinylidene fluoride ( PVDF) membrane or nitrocellulose membrane, reacted with an antibody or antibody fragment that binds to the antigen on the membrane, and further labeled with a fluorescent substance such as FITC, an enzyme label such as peroxidase, or an anti-IgG antibody or biotin label. After reacting with the antibody fragment, the label is measured by visualization. An example is shown below.
  • cells or tissues expressing a polypeptide having a desired amino acid sequence are lysed, and 0.1 to 30 ⁇ g of protein per lane is electrophoresed by SDS-PAGE under reducing conditions.
  • the electrophoresed protein is transferred to a PVDF membrane and reacted with PBS containing 1 to 10% BSA (hereinafter referred to as BSA-PBS) at room temperature for 30 minutes for blocking operation.
  • BSA-PBS PBS containing 1 to 10% BSA
  • the bispecific antibody of the present invention is reacted, washed with PBS containing 0.05 to 0.1% Tween-20 (Tween-PBS), and reacted with peroxidase-labeled goat anti-mouse IgG at room temperature for 2 hours. .
  • the antigen is detected by detecting the antibody-bound band using ECL Western Blotting Detection Reagents (manufactured by Amersham) or the like.
  • ECL Western Blotting Detection Reagents manufactured by Amersham
  • An antibody that can bind to a polypeptide that does not retain its native three-dimensional structure is used as the antibody used for detection in Western blotting.
  • a physicochemical method for example, by binding at least one of the antigens CD116 and CD131 to the bispecific antibody or the bispecific antibody fragment of the present invention, aggregates are formed and the aggregates are detected. do.
  • a capillary tube method for example, a capillary tube method, a one-dimensional immunodiffusion method, an immunoturbidimetric method, or a latex immunoturbidimetric method [Clinical Test Method Report, Kanehara Shuppan (1998)] can be used.
  • a carrier such as polystyrene latex having a particle size of about 0.1 to 1 ⁇ m sensitized with an antibody or an antigen is used, and an antigen-antibody reaction is caused by the corresponding antigen or antibody. Scattered light increases and transmitted light decreases. By detecting this change as absorbance or integrating sphere turbidity, the antigen concentration and the like in the test sample are measured.
  • known immunological detection methods can be used, preferably immunoprecipitation, immunocytostaining, immunohistochemical staining.
  • a fluorescent antibody staining method or the like is used.
  • cells expressing at least one of CD116 and CD131 are reacted with the bispecific antibody of the present invention or an antibody fragment thereof, and then a carrier having specific binding ability to immunoglobulins such as protein G sepharose is used. is added to precipitate the antigen-antibody complex.
  • a carrier having specific binding ability to immunoglobulins such as protein G sepharose is used. is added to precipitate the antigen-antibody complex.
  • the bispecific antibody or the bispecific antibody fragment of the present invention is immobilized on a 96-well plate for ELISA, and then blocked with BSA-PBS.
  • BSA-PBS is discarded, and after thorough washing with PBS, a lysate of cells or tissues expressing at least one of CD116 and CD131 is reacted.
  • Immunoprecipitates are extracted from the well-washed plate with a sample buffer for SDS-PAGE and detected by Western blotting as described above.
  • Immune cell staining method or immunohistochemical staining method is a method in which cells or tissues expressing an antigen are treated with a surfactant, methanol, or the like in some cases to improve antibody permeability, and then subjected to the bispecific staining method of the present invention. After reacting with an antibody and further reacting with an anti-immunoglobulin antibody or a binding fragment thereof labeled with a fluorescent label such as FITC, an enzyme label such as peroxidase, or a biotin label, the label is visualized and microscopically observed. The method.
  • the bispecific antibody or bispecific antibody fragment of the present invention can detect at least one of CD116 and CD131 expressed on the cell membrane by fluorescent antibody staining.
  • the formed antibody-antigen complex and the free antibody-antigen complex not involved in the formation of the antibody-antigen complex can be measured without separating the antibody or antigen.
  • Example 1 Production of CD131 and CD116 antigen expression vectors and soluble antigens (1) Production of human, monkey, and mouse CD131 expression vectors Base sequence of human CD131 gene (Genbank Accession Number: M59941), base sequence of monkey CD131 gene (Genbank Accession Number: XP_015312724_1) and the nucleotide sequence of the mouse CD131 gene (Genbank Accession Number: M34397), obtain the full-length amino acid sequence of human, monkey, and mouse CD131, and convert it to the optimal codon for expression in mammalian cells. was performed to obtain nucleotide sequences encoding human, monkey, and mouse full-length CD131.
  • DNA having the full-length base sequences of human and monkey CD131 (SEQ ID NO: 1, SEQ ID NO: 2) was totally synthesized, and Infusion-HD Cloning Kit (manufactured by Clontech) was added to pEF6-myc-His vector (manufactured by Thermo Fisher). to obtain human and monkey CD131 full-length expression vectors.
  • DNAs (SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5) having nucleotide sequences of human, monkey, and mouse CD131 extracellular regions, and DNAs having nucleotide sequences to which a signal sequence and a human Fc sequence or His tag sequence were added. It was totally synthesized and inserted into a pCI vector (manufactured by Promega) using Infusion-HD Cloning Kit (manufactured by Clontech) to obtain human, monkey and mouse CD131 soluble antigen expression vectors.
  • pCI vector manufactured by Promega
  • Infusion-HD Cloning Kit manufactured by Clontech
  • Human and monkey CD116 full-length base sequences (SEQ ID NO: 6, SEQ ID NO: 7) were totally synthesized, inserted into pCI vector (manufactured by Promega) using Infusion-HD Cloning Kit (manufactured by Clontech), and human and monkey A CD116 full-length expression vector was obtained.
  • a DNA having the nucleotide sequence of human, monkey, and mouse CD116 extracellular region (SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10) and a DNA having a nucleotide sequence to which a signal sequence and a human Fc sequence or His tag sequence are added. It was totally synthesized and inserted into a pCI vector (manufactured by Promega) using Infusion-HD Cloning Kit (manufactured by Clontech) to obtain human, monkey and mouse CD116 soluble antigen expression vectors.
  • the culture supernatant was affinity purified using Protein A resin (MabSelect, manufactured by GE Healthcare) or cOmplete His-Tag Purification Resin (manufactured by Roche).
  • Purification of human Fc fusion using Protein A resin involves adsorbing protein in the culture supernatant to Protein A, washing with D-PBS (-), 20 mM sodium citrate, 50 mM NaCl buffer (pH 3 .4) and collected in a tube containing 1M sodium phosphate buffer (pH 7.0).
  • the concentration of the obtained protein was calculated by measuring the absorbance at a wavelength of 280 nm and using the extinction coefficient estimated from the amino acid sequence of each protein.
  • Example 2 Preparation of anti-human CD131 monoclonal antibody and anti-human CD116 monoclonal antibody (1) Immunization of animals and preparation of antibody-producing cells Human antibody-producing mice [Ishida & Lonberg, IBC's 11th Antibody Engineering, Abstract 2000; , I. et al., Cloning & Stem Cells 4, 91-102 (2002), and Isao Ishida (2002) Experimental medicine 20, 6, 846-851], human CD131-Fc (R&D Systems Inc.
  • Example 2 human CD131 soluble antigen (human Fc fusion) and human CD116 soluble antigen (human Fc fusion) prepared in Example 1 were administered at 20 ⁇ g/mouse or 50 ⁇ g/mouse for a total of 4 to 6 times. Only at the first immunization, Alum gel (0.25 mg/mouse or 2 mg/mouse) and inactivated Bordetella pertussis suspension (manufactured by Nacalai Tesque) (1 ⁇ 10 9 cells/mouse) were added as adjuvants.
  • Alum gel (0.25 mg/mouse or 2 mg/mouse
  • Bordetella pertussis suspension manufactured by Nacalai Tesque
  • the second immunization was performed two weeks after the first immunization, the third immunization was performed one week after that, and the final immunization was performed two weeks after the third immunization. Some individuals were given two booster immunizations at 2-week intervals from the third immunization, and then the final immunization two weeks later.
  • Four days after the final immunization the animals were dissected and lymph nodes or spleens were surgically removed. After the excised lymph node or spleen was homogenized, the cells were transferred to a tube through a cell strainer (manufactured by Falcon) and centrifuged to precipitate the cells.
  • the obtained spleen cells were mixed with an erythrocyte removal reagent (manufactured by Sigma-Aldrich), reacted in a water bath at 37°C for 1 minute, diluted with MEM medium (manufactured by Sigma-Aldrich), and further centrifuged. separated.
  • the obtained splenocytes or lymphocytes were washed twice with MEM medium and then subjected to hybridoma production or antibody library production.
  • mice splenocytes or lymphocytes obtained in (1) and myeloma cells were mixed at a ratio of 2:1 and centrifuged (1500 rpm, 5 minutes). After loosening the obtained precipitated fraction (cell group), cell fusion was performed using GenomONE-CF (manufactured by Ishihara Sangyo Co., Ltd.). After reacting on ice for 5 minutes, it was incubated at 37° C. for 15 minutes.
  • HAT medium a medium obtained by adding 10% FBS (manufactured by Access Biologicals), HAT supplement (manufactured by Thermo Fisher), and gentamicin (20 ⁇ g/mL) to cloning medium CM-B (manufactured by Sekisui Medical Co., Ltd.) (hereinafter referred to as HAT medium).
  • HAT medium a medium obtained by adding 10% FBS (manufactured by Access Biologicals), HAT supplement (manufactured by Thermo Fisher), and gentamicin (20 ⁇ g/mL) to cloning medium CM-B (manufactured by Sekisui Medical Co., Ltd.)
  • HAT medium a medium obtained by adding 10% FBS (manufactured by Access Biologicals), HAT supplement (manufactured by Thermo Fisher), and gentamicin (20 ⁇ g/mL)
  • HAT medium a medium obtained by adding 10% FBS (manufact
  • Various antigen proteins were prepared to 5 ⁇ g/mL with D-PBS(-) (manufactured by Nacalai Tesque) and applied to 96-well or 384-well ELISA plates (MAXISORP NUNC-IMMNO PLATE, Thermo Fisher Scientific). Dispensed at 50 ⁇ L/well or 25 ⁇ L/well, allowed to stand overnight at 4° C. for adsorption, washed 2-3 times with PBS, and added 100 ⁇ L/well of 1% BSA-PBS (manufactured by Nacalai Tesque). It was dispensed into wells or 50 ⁇ L/well and allowed to stand at room temperature for 1 hour for blocking.
  • the hybridoma supernatant was dispensed at 50 ⁇ L/well or 25 ⁇ L/well and allowed to stand at room temperature for 1 hour. After washing this plate three times with PBST, 50 ⁇ L/well of Peroxidase-labeled Goat Anti-Human IgG, Fc ⁇ fragment specific antibody (manufactured by Jackson ImmunoResearch, Cat# 109-035-008) diluted with 1% BSA-PBS or 25 ⁇ L/well was dispensed and allowed to stand at room temperature for 1 hour.
  • This plate was washed three times with PBST, and then treated with ABTS (2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic Acid, manufactured by Wako, Cat # 016-08521) substrate solution or TMB substrate solution (Thermo Fisher). ) was added at 50 ⁇ L/well or 25 ⁇ L/well to develop color, and when appropriate color development was obtained, an equal volume of 1% SDS solution or 0.5 mol/L sulfuric acid was added to stop color development.
  • ABTS 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic Acid, manufactured by Wako, Cat # 016-08521) substrate solution or TMB substrate solution (Thermo Fisher).
  • the absorbance (415 nm-490 nm) at a sample wavelength of 415 nm and a reference wavelength of 490 nm or the absorbance (450 nm-570 nm) at a sample wavelength of 450 nm and a reference wavelength of 570 nm was measured using a plate reader (Spectra Max, manufactured by Molecular Devices, or Spark 10M, manufactured by TECAN). was measured using
  • Expi293 (trademark) Expression System (manufactured by Thermo Fisher) using cells transiently transfected with the human and monkey CD131 full-length expression vectors prepared in Example 1-(1) and non-transfected cells. .
  • Each cell was suspended in 1% BSA-PBS (manufactured by Nacalai Tesque), dispensed into a 96-well plate at 1-2 ⁇ 10 5 cells/well, incubated on ice for 30 minutes, and then centrifuged ( 2000 rpm for 2 minutes). After removing the supernatant, the hybridoma supernatant was dispensed at 20-50 ⁇ L/well and allowed to react on ice for 30 minutes.
  • BSA-PBS manufactured by Nacalai Tesque
  • Anti-human CD116 antibody-producing hybridomas were screened by ELISA and FCM. Screening by ELISA was carried out by applying the human CD116 soluble antigen (His-tagged) and monkey CD116 soluble antigen prepared in Example 1-(3) to a plate on which Tetra His Antibody (manufactured by Qiagen, Cat#34670) was immobilized. (His-tagged), and an indirect solid-phase antigen ELISA system in which mouse CD116 soluble antigen (His-tagged) was captured.
  • Tetra His Antibody was prepared to 5 ⁇ g/mL with D-PBS(-) (manufactured by Nacalai Tesque) and applied to a 96-well or 384-well ELISA plate (MAXISORP NUNC-IMMNO PLATE, ThermoFisher Scientific). Dispensed at 50 ⁇ L/well or 25 ⁇ L/well, allowed to stand overnight at 4° C. for adsorption, washed 2-3 times with PBS, and added 100 ⁇ L/well of 1% BSA-PBS (manufactured by Nacalai Tesque). It was dispensed into wells or 50 ⁇ L/well and allowed to stand at room temperature for 1 hour for blocking.
  • human CD116 soluble antigen (His-tagged), monkey CD116 soluble antigen (His-tagged), and mouse CD116 soluble antigen (His-tagged) prepared in Example 1-(3) were added to 5 ⁇ g/mL with 1% BSA. - 50 ⁇ L/well or 25 ⁇ L/well of the PBS-diluted solution was dispensed and allowed to stand at room temperature for 1 hour. After washing this plate with PBST three times, hybridoma supernatant diluted with 1% BSA-PBS was dispensed at 50 ⁇ L/well or 25 ⁇ L/well and allowed to stand at room temperature for 1 hour.
  • Peroxidase-labeled Goat Anti-Human IgG, Fc antibody (manufactured by IBL, Cat#17507) diluted with 1% BSA-PBS was dispensed at 50 ⁇ L/well or 25 ⁇ L/well. , at room temperature for 1 hour.
  • This plate was washed three times with PBST, and then treated with ABTS (2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic Acid, manufactured by Wako, Cat # 016-08521) substrate solution or TMB substrate solution (Thermo Fisher). ) was added at 50 ⁇ L/well or 25 ⁇ L/well to develop color, and when appropriate color development was obtained, an equal volume of 1% SDS solution or 0.5 mol/L sulfuric acid was added to stop color development.
  • ABTS 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic Acid, manufactured by Wako, Cat # 016-08521) substrate solution or TMB substrate solution (Thermo Fisher).
  • the absorbance (415 nm-490 nm) at a sample wavelength of 415 nm and a reference wavelength of 490 nm or the absorbance (450 nm-570 nm) at a sample wavelength of 450 nm and a reference wavelength of 570 nm was measured using a plate reader (Spectra Max, manufactured by Molecular Devices, or Spark 10M, manufactured by TECAN). was measured using
  • Expi293 (trademark) Expression System (manufactured by Thermo Fisher) using cells transiently transfected with the human and monkey CD116 full-length expression vectors prepared in Example 1-(2) and non-transfected cells. .
  • Each cell was suspended in 1% BSA-PBS (manufactured by Nacalai Tesque), dispensed into a 96-well plate at 1-2 ⁇ 10 5 cells/well, incubated on ice for 30 minutes, and then centrifuged ( 2000 rpm for 2 minutes).
  • the hybridoma supernatant was dispensed at 20-50 ⁇ L/well and allowed to react on ice for 30 minutes. After centrifugation and washing with 1% BSA-PBS 1-2 times, APC-labeled F(ab') 2 Fragment Goat Anti-Human IgG, Fc ⁇ fragment specific antibody (Jackson ImmunoResearch) diluted with 1% BSA-PBS (manufacturer, Cat#109-136-098) was dispensed at 50 ⁇ L/well and allowed to react for 30 minutes on ice in the dark.
  • Hybridomas in positive wells selected by hybridoma screening were seeded on a 96-well plate in which HAT medium was dispensed using a cell sorter (manufactured by SONY, SH800), and single clones were obtained. changed.
  • Cultivation is performed under conditions of 37° C. and 5% CO 2 until the number of cells in the well reaches a cell number suitable for screening, and the obtained monoclonal hybridoma culture supernatant is used to perform (2) or (3) Screening was performed again by the method described in 1. to establish anti-CD131 monoclonal antibody-producing hybridomas and anti-CD116 monoclonal antibody-producing hybridomas.
  • RNA was prepared from the obtained hybridoma using MagNA Pure 96 (manufactured by Roche) and MagNA Pure 96 Cellular RNA Large Volume Kit (manufactured by Roche). Using the prepared total RNA as a template, cDNA was prepared using SMARTer RACE 5'/3' Kit (manufactured by Clontech).
  • a PCR reaction is performed by combining the kit-attached universal primer A mix (containing a forward primer) and a reverse primer encoding a human IgG heavy chain constant region or light chain constant region. was performed using PrimeSTAR Max DNA Polymerase (manufactured by Takara Bio Inc.) to amplify the heavy chain antibody gene fragment and the light chain antibody gene fragment.
  • sequence identification by DNA sequence analysis by direct sequencing method or by DNA sequence analysis by subcloning method using Zero Blunt TOPO PCR Cloning Kit for Sequencing did not occur in the amplified heavy chain antibody gene fragment and light chain antibody gene fragment.
  • DNA sequence analysis by the direct sequencing method was carried out by adding 4 ⁇ L of ExoSAP-IT-Express (manufactured by Thermo Fisher) to 10 ⁇ L of the PCR product, and reacting at 37° C. for 4 minutes and 80° C. for 1 minute. A sample diluted with sterilized water was used as a template, and primers corresponding to the terminal sequences of the primers used for nested-PCR were used.
  • DNA sequence analysis by a subcloning method using Zero Blunt TOPO PCR Cloning Kit for Sequencing was performed according to the following procedure. After inserting the PCR product into a pCR4 vector (manufactured by Invitrogen), the resulting plasmid was introduced into Escherichia coli DH5 ⁇ strain.
  • DNA sequence analysis was performed using the M13 primer attached to the Zero Blunt TOPO PCR Cloning Kit for Sequencing, using the plasmid extracted from the obtained transformant using an automatic plasmid extractor (manufactured by Kurabo Industries) as a template.
  • Table 1 shows the clone name of the CD131 antibody, the amino acid sequence deduced from the entire nucleotide sequence encoding VH, the amino acid sequence of CDR1-3 of VH (hereinafter sometimes referred to as HCDR1-3), and VL.
  • the sequence numbers of the amino acid sequence deduced from the entire base sequence and the amino acid sequence of VL CDR1-3 (hereinafter sometimes referred to as LCDR1-3) are shown.
  • Table 2 shows the clone name of the CD116 antibody, the amino acid sequence deduced from the entire nucleotide sequence encoding VH, the amino acid sequence of CDR1-3 of VH (hereinafter sometimes referred to as HCDR1-3), and VL.
  • the sequence numbers of the amino acid sequence deduced from the entire base sequence and the amino acid sequence of VL CDR1-3 (hereinafter sometimes referred to as LCDR1-3) are shown.
  • VH DNA fragment and the VL DNA fragment having the nucleotide sequence shown in SEQ ID NO: 91 were inserted into a vector in which the tag sequence of phagemid pCANTAB 5E (manufactured by Amersham Pharmacia) was changed to a FLAG-His tag and a trypsin recognition sequence.
  • E. coli TG1 manufactured by Lucigen was transformed to obtain an E. coli library.
  • the resulting E. coli library was amplified and infected with VCSM13 Interference Resistant Helper Phage (manufactured by Agilent Technologies) to obtain CD116 having the VL nucleotide sequence shown in SEQ ID NO: 91 and a library of VH genes.
  • An antibody phage library was obtained.
  • the human CD116 soluble antigen (His-tagged) and the monkey CD116 soluble antigen (His-tagged) prepared in Example 1-(3) were converted to EZ-Link Sulfo-HNS-LC-Biotin, No-Weight Format (Thermo Fisher Scientific) to obtain biotinylated human CD116 soluble antigen (His-tagged) and biotinylated monkey CD116 soluble antigen (His-tagged).
  • Biotinylated human CD116 soluble antigen (His-tagged) and CD116-immune human antibody M13 phage library were reacted at room temperature for 1-2 hours, then streptavidin (manufactured by Thermo Fisher) was immobilized and SuperBlock Blocking Buffer ( It was added to MAXISORP STARTUBE blocked using Thermo Fisher).
  • Plasmids were prepared from transformed E. coli obtained by infecting TG1 with the concentrated phage.
  • Mix & Go Competent Cells-Strain TG1 (manufactured by Zymo Research) was transformed with the prepared plasmid, and plated on a SOBAG plate (2.0% tryptone, 0.5% yeast extract, 0.05% NaCl, 2.0% glucose). , 10 mM MgCl 2 , 100 ⁇ g/mL ampicillin, 1.5% agar) to form colonies. After colonies were inoculated and cultured for several hours, 1 mM IPTG (manufactured by Nacalai Tesque) was added and cultured again to obtain a monoclonal Escherichia coli culture supernatant.
  • streptavidin manufactured by Thermo Fisher
  • MAXISORP plate manufactured by NUNC
  • BSA-PBS manufactured by Nacalai Tesque
  • biotinylated human CD116 soluble antigen was applied.
  • His-tagged or biotinylated monkey CD116 soluble antigen (His-tagged) was conjugated.
  • Each E. coli culture supernatant was added to each well of the plate, reacted at room temperature for 60 minutes, and then each well was washed with PBS-T three times.
  • HRP-labeled goat poly, anti-human IgG F(ab') 2 (manufactured by Abcam) was diluted 1000-fold with 1% BSA-PBS, added to each well by 50 ⁇ L, and incubated at room temperature for 30 minutes. After washing the microplate three times with PBS-T, 50 ⁇ L of TMB coloring substrate solution (manufactured by DAKO) was added to each well and incubated at room temperature for 10 minutes. A 2N HCl solution (50 ⁇ L/well) was added to each well to stop the color development reaction, and absorbance at a wavelength of 450 nm (reference wavelength of 570 nm) was measured using a plate reader (EnSpire: manufactured by Perkin Elmer).
  • Expi293 (trademark) Expression System (manufactured by Thermo Fisher) using cells transiently transfected with the human and monkey CD116 full-length expression vectors prepared in Example 1-(2) and non-transfected cells. .
  • Each cell was suspended in 1% BSA-PBS (manufactured by Nacalai Tesque), dispensed into a 96-well plate at 1-2 ⁇ 10 5 cells/well, incubated on ice for 30 minutes, and then centrifuged ( 2000 rpm for 2 minutes).
  • E. coli culture supernatant and anti-FLAG M2 Antibody (manufactured by SIGMA) were dispensed at 20-50 ⁇ L/well and allowed to react on ice for 30 minutes. After centrifugation and washing with 1% BSA-PBS 1-2 times, APC-labeled Goat anti-Mouse IgG (H+L) antibody (manufactured by Southern Bio) diluted with 1% BSA-PBS was added at 50 ⁇ L/well. The mixture was added and allowed to react for 30 minutes on ice in the dark.
  • Table 3 shows the clone name of the anti-CD116 antibody whose VL amino acid sequence is SEQ ID NO: 30, the amino acid sequence deduced from the entire nucleotide sequence encoding VH, and CDR1-3 of VH (hereinafter referred to as HCDR1-3) SEQ ID NO: of the amino acid sequence of the
  • Example 3 Production and activity evaluation of IgG-type bispecific antibody that binds to CD131 and CD116 (1) Production of IgG-type bispecific antibody that binds to CD131 and CD116 An IgG-type bispecific antibody expression vector having the sequence of the CD116 antibody was constructed. The structure of the IgG-type bispecific antibody, the article Mabs, 7, 377 (2015), and the article Protein Engineering, Design & Selection, 29, 457, (2016) with reference to Kobs-into-Holes described in Figure 2 The bispecific antibody having a hetero H chain used is hereinafter referred to as an IgG-type CD131-CD116 bispecific antibody.
  • a DNA fragment having a nucleotide sequence encoding the amino acid sequence is ligated to a DNA fragment having a nucleotide sequence encoding the amino acid sequence shown in any one of SEQ ID NOs: 12, 14, 16, 18 and 20 as the L chain variable region.
  • an antibody expression vector against the second antigen CD131
  • a DNA fragment having the amino acid sequence shown in any one of SEQ ID NOS: 21, 23, 25, 27 and 29 as an H chain variable region, and an H chain constant region A DNA fragment having a nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 142 containing Y349C/T366S/L368A/Y407V/H435R/Y436F mutations for making a heterozygous H chain is ligated to form an L chain variable region.
  • any combination of the antibody expression vector against the first antigen (CD116) and the antibody expression vector against the second antigen (CD131) was combined with Expi293 cells using the Expi293TM Expression System (manufactured by Thermo Fisher). 16 hours after gene transfer, a Transfection Enhancer was added to express a total of 25 types of IgG-type bispecific antibodies in a transient expression system.
  • the culture supernatant was collected, filtered through a membrane filter with a pore size of 0.22 ⁇ m (manufactured by MILLIPORE), and then using Protein A resin (POROS MabCapture A Affinity Chromatography Resin, manufactured by Thermo Scientific).
  • Antibodies were affinity purified. A 20 mM sodium citrate, 150 mM NaCl buffer (pH 6.0) was used as a washing solution. The antibody adsorbed to Protein A was eluted with 40 mM sodium acetate, 500 mM calcium chloride buffer (pH 4.6) and collected in a tube containing 1 M sodium phosphate buffer (pH 7.0).
  • the concentration of the obtained IgG-type CD131-CD116 bispecific antibody was calculated by measuring the absorbance at a wavelength of 280 nm and using the extinction coefficient estimated from the amino acid sequence of each antibody.
  • SFM medium GFM medium
  • each IgG-type CD131-CD116 bispecific antibody sample was prepared at 5 times the final concentration using Macrophage-SFM medium, added at 20 ⁇ L/well, and statically cultured at 37° C. and 5% CO 2 conditions for 3 days. bottom.
  • luminescence reagent CellTiter-Glo2.0 Promega was added at 100 ⁇ L/well, and luminescence intensity by ATP luciferase reaction was measured using a microplate reader ARVO (PerkinElmer).
  • the proliferation rate of TF-1 cells by each IgG-type CD131-CD116 bispecific antibody was calculated, taking the average value of luminescence in the 200 pM recombinant human GM-CSF added group as 100%. Representative results are shown in FIGS. 3A and 3B.
  • each IgG-type CD131-CD116 bispecific antibody exhibited agonistic activity.
  • Example 4 Production of bispecific antibody that binds to CD131 and CD116 and activity evaluation (1) Production of bispecific antibody that binds to CD131 and CD116 Having the anti-CD131 antibody sequence and anti-CD116 antibody sequence obtained in Example 2 Bispecific antibodies shown in Table 4 were generated.
  • the structure of the bispecific antibody has the N-terminal structure shown in FIG. is shown in SEQ ID NO: 144), VH2 is the VH of the anti-CD116 antibody, the constant region is human IgG4PE R409K described in International Publication No. 2006/033386 (amino acid sequence is shown in SEQ ID NO: 145), wild-type IgG1, or internationally published
  • the constant region sequence of a human antibody such as the human IgG1 LALAGA variant (amino acid sequence shown in SEQ ID NO: 146) described in 2006/031653, or a modified sequence thereof (amino acid sequence shown in SEQ ID NOS: 147-172).
  • a specific antibody Such bispecific antibodies are hereinafter referred to as CD131-CD116 bispecific antibodies.
  • a pCI-OtCMV_hK vector with a signal sequence and a human L chain ( ⁇ chain) constant region sequence was used as the L chain expression vector.
  • H chain expression vector pCI-OtCAG_hG4PE (R409K) vector with signal sequence and human IgG4PE R409K or pCI-OtCAG_hG1LALAGA vector with human IgG1LALAGA was used.
  • R409K pCI-OtCAG_hG4PE
  • a DNA fragment having the base sequence shown by SEQ ID NO: 91 of the fully synthesized VL was inserted into an appropriate restriction enzyme site of the pCI-OtCMV_hK vector to obtain a CD131-CD116 bispecific antibody L chain expression vector.
  • DNA fragment having the nucleotide sequence of anti-CD131 antibody VH shown in SEQ ID NO: 173 a DNA fragment having the nucleotide sequence encoding human IgG4 CH1 shown in SEQ ID NO: 177, and amino acid sequences shown in SEQ ID NOS: 175-186.
  • a DNA fragment having a nucleotide sequence encoding the amino acid sequence of any one anti-CD116 antibody VH was prepared by total synthesis or PCR amplification, and the three DNA fragments were ligated by assemble PCR, followed by pCI-OtCAG_hG4PE (R409K), Alternatively, it was inserted into an appropriate restriction enzyme site of the pCI-OtCAG_hG1LALAGA vector to obtain an H chain expression vector for the CD131-CD116 bispecific antibody.
  • the prepared CD131-CD116 bispecific antibody L chain expression vector and H chain expression vector were transfected by the following method, and the CD131-CD116 bispecific antibody was expressed and purified.
  • the CD131-CD116 bispecific antibody L chain expression vector and H chain expression vector were co-transfected into Expi293 cells, and after 16 hours, a Transfection Enhancer was added. The antibody was expressed in a transient expression system.
  • the culture supernatant was collected, filtered through a membrane filter with a pore size of 0.22 ⁇ m (manufactured by MILLIPORE), and then the antibody was affinity purified using Protein A resin (MabSelect, manufactured by GE Healthcare). bottom. D-PBS(-) was used as a washing solution. The antibody adsorbed to Protein A was eluted with 20 mM sodium citrate, 50 mM NaCl buffer (pH 3.4) and collected in a tube containing 1 M sodium phosphate buffer (pH 7.0).
  • the concentration of the obtained CD131-CD116 bispecific antibody was calculated by measuring the absorbance at a wavelength of 280 nm and using the extinction coefficient estimated from the amino acid sequence of each antibody.
  • a bispecific antibody whose Fc region is wild-type IgG1 was added using the enzyme IdeS (manufactured by Promega).
  • a bispecific antibody from which the Fc region was removed was prepared by treating according to the protocol and performing size exclusion chromatography using a Superdex200increase column (manufactured by GE Healthcare).
  • the human CD131 or CD116 soluble antigen (His-tagged) prepared in Example 1 was adjusted to 5 ⁇ g/mL with D-PBS (-) (manufactured by Nacalai Tesque) and applied to a 96-well or 384-well ELISA plate ( MAXISORP NUNC-IMMNO PLATE, Thermo Fisher Scientific) at 50 ⁇ L/well or 25 ⁇ L/well, allowed to stand overnight at 4° C. for adsorption, then washed 2-3 times with PBS.
  • %BSA-PBS manufactured by Nacalai Tesque
  • a CD131-CD116 bispecific antibody solution was dispensed at 50 ⁇ L/well or 25 ⁇ L/well and allowed to stand at room temperature for 1 hour. After washing this plate three times with PBST, peroxidase-labeled Goat Anti-Human IgG, Fc ⁇ fragment specific antibody (Jackson ImmunoResearch, Cat # 109-035-008) diluted with 1% BSA-PBS was added at 50 ⁇ L/well or 25 ⁇ L/well was dispensed and allowed to stand at room temperature for 1 hour.
  • This plate was washed three times with PBST, and then treated with ABTS (2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic Acid, manufactured by Wako, Cat # 016-08521) substrate solution or TMB substrate solution (Thermo Fisher). ) was added at 50 ⁇ L/well or 25 ⁇ L/well to develop color, and when appropriate color development was obtained, an equal volume of 1% SDS solution or 0.5 mol/L sulfuric acid was added to stop color development.
  • ABTS 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic Acid, manufactured by Wako, Cat # 016-08521) substrate solution or TMB substrate solution (Thermo Fisher).
  • the absorbance (415 nm-490 nm) at a sample wavelength of 415 nm and a reference wavelength of 490 nm or the absorbance (450 nm-570 nm) at a sample wavelength of 450 nm and a reference wavelength of 570 nm was measured using a plate reader (Spectra Max, manufactured by Molecular Devices, or Spark 10M, manufactured by TECAN). was measured using
  • the CD131-CD116 bispecific antibody binds to human CD131 or CD116.
  • Example 4 131-16 (VH amino acid sequence is shown in SEQ ID NO: 23, VL amino acid sequence is shown in SEQ ID NO: 24) combined with 43 types, 131-B2 (VH amino acid sequence) SEQ ID NO: 29, the amino acid sequence of VL is shown in SEQ ID NO: 30), CD131-CD116 bispecific antibodies having different VH sequences of anti-CD116 antibodies were prepared and analyzed for agonist activity. It was found that bispecific antibodies from
  • CD131-CD116 bispecific antibody against human CD14-positive monocytes Human monocytes are differentiated into macrophages in vitro by culturing with the addition of recombinant human GM-CSF. The expression of CD14, a marker molecule for macrophages, is decreased, and the expression of CD206, a marker molecule for macrophages, is increased. Therefore, the agonistic activity of the CD131-CD116 bispecific antibody against human monocytes was evaluated using changes in CD206 expression accompanying differentiation from monocytes to macrophages as an index. In addition, Evaluation was performed by observing the morphology of the cells.
  • CD131-CD116 bispecific antibodies GM398, GM408, GM413, GM435, GM463, GM464, GM466, constant regions using IgG4PE R409K
  • Human CD14-positive monocytes were prepared from frozen human peripheral blood mononuclear cells (AllCells) using human CD14 microbeads (Miltenyi) and LS Columns (Miltenyi Biotec). The prepared CD14-positive monocytes were adjusted to 1.6 ⁇ 10 6 cells/mL in a culture medium [RPMI1640 (nacalai tesque) + 10% FBS + 1% Penicillin-Streptomycin, Mixed Solution (nacalai tesque)], and the conditions were 50 ⁇ L/well. was seeded in 96-well flat bottom plates (Nunc).
  • CD131-CD116 bispecific antibody prepared in medium to final concentrations of 4000, 800, 160, 32, 6.4, 1.28 pM, and final concentrations of 2000, 400, 80, 16, 3 .2, CD131-CD116 bispecific antibodies (GM398, GM408, GM413, GM435, GM463, GM466, all using IgG4PE R409K constant regions) prepared in medium to 0.64 pM and recombinant human GM- 50 ⁇ L/well of CSF (R&D Systems) was added and co-cultured with CD14-positive monocytes under conditions of 37° C. and 5% CO 2 for 7 days.
  • the morphology of the cells cultured for 7 days with each concentration of CD131-CD116 bispecific antibody or recombinant human GM-CSF was photographed and observed using the EVOS XL Core Imaging System (Thermo Fisher Scientific).
  • the cells attached to the bottom of the plate were peeled off and collected.
  • the collected cells were FcR-blocked with FcR Blocking Reagent, human (Miltenyi Biotec).
  • FcR Blocking Reagent human (Miltenyi Biotec).
  • each molecule on the cell surface was stained with a fluorescently labeled anti-human CD14 antibody (BioLegend) or anti-human CD206 antibody (BD Bioscience), and the fluorescence intensity was measured with FACS Canto II (BD Bioscience). The results are shown in FIG.
  • CD131-CD116 bispecific antibody As shown in FIG. 8, a concentration-dependent increase in CD206 expression was observed in all cells to which the CD131-CD116 bispecific antibody and recombinant human GM-CSF were added. In addition, the efficiency of the CD131-CD116 bispecific antibody to increase the expression of CD206 was comparable to that of recombinant human GM-CSF.
  • bispecific antibodies of the present invention exhibit agonistic activity equivalent to GM-CSF on CD14-positive monocytes derived from human peripheral blood mononuclear cells, and induce differentiation into macrophages.
  • Example 5 Analysis of specificity of CD131-CD116 bispecific antibody to GM-CSF receptor (1) Construction of human GM-CSF receptor, IL-3 receptor, IL-5 receptor expression vector GM- CSF receptor, IL-3 receptor, and IL-5 receptor have CD131 as a receptor component in common. Therefore, the specificity of the obtained CD131-CD116 bispecific antibody to the GM-CSF receptor was analyzed.
  • the human GM-CSF receptor, IL-3 receptor, and IL-5 receptor expression vectors contain EcoRI and Kozak sequences, 3 It was constructed by adding a stop codon and a NotI sequence to the ' end and inserting it into pEF6/Myc-His C (Invitrogen) digested with EcoRI and NotI.
  • Human GM-CSF receptor expression vector extracellular domain of CSF2RA (CD116, UniProt Entry. No. P15509), extracellular domain of CSF2RB (CD131, UniProt Entry. No. P32927), Azami-Green sequence furin Amino acid sequence connected across a protein recognition sequence (SEQ ID NO: 147)
  • Human IL-3 receptor expression vector IL3RA (CD123, UniProt Entry. No. P26951) extracellular domain, CSF2RB (CD131, UniProt Entry. No.
  • human GM-CSF R&D Systems
  • human IL-3 R&D Systems
  • IL-5 R&D Systems
  • medium for drug selection 10% FBS (GIBCO), 50 ⁇ g/mL Gentamycin (nacalai tesque), 50 mg/mL G418 (nacalai tesque), RPMI1640 (nacalai tesque), hereinafter also referred to as selection medium
  • selection medium 10% FBS (GIBCO), 50 ⁇ g/mL Gentamycin (nacalai tesque), 50 mg/mL G418 (nacalai tesque), RPMI1640 (nacalai tesque), hereinafter also referred to as selection medium
  • Ba/F3 cells expressing the prepared human GM-CSF receptor, human IL-3 receptor, or human IL-5 receptor are respectively Ba/F3-hGM-CSFR, Ba/F3-hIL-3R, or We will refer to it as Ba/F3-hIL-5R.
  • the cells were suspended in an assay medium [10% FBS (GIBCO), 50 ⁇ g/mL Blasticidin (InvivoGen), RPMI1640 (nacalai tesque)] at 5.0 ⁇ 10 4 cells/mL, and seeded on a 96-well plate at 80 ⁇ L/well. .
  • an assay medium 10% FBS (GIBCO), 50 ⁇ g/mL Blasticidin (InvivoGen), RPMI1640 (nacalai tesque)
  • CD131-CD116 bispecific antibody, recombinant human GM-CSF (R&D Systems), recombinant human IL-3 (R&D Systems), or recombinant human IL-5 (R&D Systems) at 5 times the final concentration in medium was added at 20 ⁇ L/well, and statically cultured for 3 days under conditions of 37° C. and 5% CO 2 .
  • the luminescence reagent CellTiter-Glo2.0 (Promega) was added at 100 ⁇ L/well, and the luminescence intensity due to the ATP luciferase reaction was measured using a microplate reader ARVO (PerkinElmer).
  • the proliferation rate of each CD131-CD116 bispecific antibody sample was calculated by setting the average value of luminescence in the group added with 1 nM of recombinant human GM-CSF, IL-3, and IL-5 as 100%. The results are shown in (A) to (C) of FIG.
  • the CD131-CD116 bispecific antibody showed cell proliferation activity only against Ba/F3 expressing human GM-CSF receptor, and human IL-3 receptor. It did not show cell proliferation activity against Ba/F3 expressed with cytoplasmic or IL-5 receptors. Therefore, it was confirmed that the CD131-CD116 bispecific antibody exhibited agonistic activity specifically to the GM-CSF receptor.
  • Example 6 Analysis of agonist activity of CD131-CD116 bispecific antibody in the presence of anti-GM-CSF neutralizing antibody Agonist activity was analyzed in the presence of the sum antibody.
  • GM-CSF neutralizing antibody a goat anti-human GM-CSF polyclonal antibody (R&D), whose GM-CSF neutralizing activity has been reported in the literature [Protein Eng Des Sel., 28, 461 (2015)] was used. .
  • TF-1 cells After washing the TF-1 cells in the same manner as in Example 3, they were suspended in Macrophage-SFM medium (GIBCO) at 3.3 ⁇ 10 5 cells/mL, and added to 96-well plate (Greiner) at 60 ⁇ L per well. , 2.0 ⁇ 10 4 cells/well.
  • GEBCO Macrophage-SFM medium
  • Reiner 96-well plate
  • GM-CSF and CD131-CD116 bispecific antibody were diluted with Macrophage-SFM medium to 100 pM and added at 20 ⁇ L/well. Further, the GM-CSF neutralizing antibody was diluted with Macrophage-SFM medium to 1000 nM, and 10-fold serial dilutions were prepared and added at 20 ⁇ L/well.
  • the CD131-CD116 bispecific antibody of the present invention has GM-CSF receptor agonist activity even in the presence of a GM-CSF neutralizing antibody.
  • Example 7 Production and activity evaluation of bispecific antibodies that bind to CD131 and CD116 (1) Acquisition of anti-CD116 monoclonal antibody using next-generation sequencing system Using DNA prepared from E. coli obtained by infecting with, sequence analysis was performed with the Ion S5 (trademark) system (manufactured by Thermo Fisher Scientific). The amino acid sequences shown were selected.
  • bispecific antibody expression vector having the anti-CD116 antibody sequence and the anti-CD131 antibody sequence obtained in Examples 7-(1) and (2) was prepared.
  • the structure of the bispecific antibody has the N-terminal structure shown in FIG. is represented by SEQ ID NO: 144), VH2 is the VH of the anti-CD116 antibody, and the constant region is human IgG4PE R409K with an amino acid residue substitution of H435F represented by the EU index (amino acid sequence is represented by SEQ ID NO: 155)
  • Human antibody CD131-CD116 bispecific antibody, which is the constant region sequence of The same light chain as GM408 was used as the light chain.
  • a pCI-OtCMV_hK vector with a signal sequence and a human L chain ( ⁇ chain) constant region sequence was used as the L chain expression vector.
  • a pcDNA3.4 vector (manufactured by Thermo Fisher Scientific) having a signal sequence and human IgG4PE R409K and H435F mutations was used as the H chain expression vector.
  • the L chain expression vector and H chain expression vector of the CD131-CD116 bispecific antibody produced were transfected, expressed and purified in the same manner as in Example 4 to obtain the CD131-CD116 bispecific antibody.
  • Example 7-(2) Analysis of binding activity of CD131-CD116 bispecific antibody to CD116
  • the clones obtained in Example 7-(2) were evaluated for affinity to CD116 using the Biacore T200 system (Cytiva).
  • HBS-EP+buffer (Cytiva) was used as a running buffer.
  • Anti-human Fc antibody was immobilized on the surface of CM5 Sensor chip (Cytiva) using Anti-human antibody capture kit and Amine Coupling Kit (Cytiva). At this time, each antibody was also immobilized on a control flow cell.
  • a chip on which Anti-human Fc was immobilized was used to evaluate the binding of the CD131-CD116 bispecific antibody to the CD116 protein.
  • a CD131-CD116 bispecific antibody diluted to 10 nM was added for 90 sec (flow rate: 10 ⁇ L/min) to capture the CD131-CD116 bispecific antibody on the chip.
  • the human CD116 soluble antigen (His-tagged) prepared in Example 1-(3) diluted to 0.33, 1, 3, 9 or 27 nM was added at a time of 120 sec (flow rate: 30 ⁇ L/min), and the dissociation time was Measurement was performed for 90 sec (flow rate: 30 ⁇ L/min).
  • concentrations of 3, 9, 27, 81 or 243 nM were added.
  • both CD131-CD116 bispecific antibodies exhibited agonist activity comparable to recombinant human GM-CSF.
  • Example 8 Preparation of CD116-CD131 bispecific antibody and analysis of agonist activity Regarding the three types of N-terminal CD131-CD116 bispecific antibodies (GM408, GM463, GM466) shown in Example 4, (A ), the N-terminal CD116-CD131 bispecific antibody was prepared in the same manner as in Example 4 (1) by replacing VH1 and VH2 shown in ) (GM408 inverse, GM463 inverse, GM466 inverse, and constant regions using IgG4PE R409K ). The agonist activities of these CD116-CD131 bispecific antibodies were analyzed in the same manner as in Example 3(2). The results are shown in FIG.
  • Example 9 Preparation of C-terminal CD131-CD116 bispecific antibody and C-terminal CD116-CD131 bispecific antibody and analysis of agonist activity
  • Three types of N-terminal CD131-CD116 bispecific antibodies shown in Example 4 GM408, GM463, GM466), two types of C-terminal bispecific antibodies were prepared. As shown in FIG.
  • CD131-CD116 bispecific antibody Ct GM408, Ct GM463, Ct GM466, having a CD131-binding VH sequence in VH1 and a CD116-binding VH sequence in VH2; Both use IgG4PE R409K) and a C-terminal CD116-CD131 bispecific antibody (Ct GM408 inverse, Ct GM463 inverse, Ct GM466 inverse, constant All regions used IgG4PE R409K) were prepared in the same manner as in Example 3(2) and analyzed for agonist activity. The results are shown in FIGS. 14A and 14B.
  • the C-terminal CD116-CD131 bispecific antibody shown in FIG. 14 (B) has high GM-CSF receptor agonist activity. It was confirmed that
  • Example 10 Conversion of CD131-CD116 bispecific antibody to IgG type bispecific antibody and agonist activity analysis Regarding the three types of N-terminal CD131-CD116 bispecific antibodies (GM408, GM463, GM466) shown in Example 4 , as an IgG-type CD131-CD116 bispecific antibody shown in FIG. 2, was prepared in the same manner as in Example 3 (1).
  • FIG. 15 shows the result of analyzing the agonist activity of the prepared IgG-type CD131-CD116 bispecific antibody in the same manner as in Example 3(2). As a result of analysis, it was confirmed that all of these IgG-type CD131-CD116 bispecific antibodies exhibit GM-CSF receptor agonist activity.
  • Example 11 Analysis of CD131-CD116 bispecific antibody that exhibits high activity
  • GM408 described in Example 4
  • a variant in which the valency of the anti-CD131 antibody and the anti-CD116 antibody is controlled was prepared.
  • the effect on the GM-CSF receptor agonist activity was analyzed.
  • each variant was prepared in the same manner as in Examples 3 (1) and 4 (1) (both constant regions used IgG4PE R409K).
  • D31A and Y98A 2 amino acid mutations (D31A and Y98A, denoted as D31A_Y98A) were introduced into CDR1 and CDR3 of anti-CD116 antibody 116-408. CD116-binding activity was completely lost. VHs were produced.
  • Example 3 (1) since the light chain variable regions are all the same, unlike Example 3 (1), the first H chain, the second H chain, and the L chain constant region are wild-type, which do not contain mutations. used an array. Each variant was analyzed for agonist activity in the same manner as in Example 3(2). The results are shown in FIGS. 17(A) and (B).
  • the numbers in parentheses represent (valence of anti-CD116 antibody x valence of anti-CD131 antibody).
  • GM408WT 2 ⁇ 2
  • GM408v1 (2 ⁇ 1)
  • GM408v2 (1 ⁇ 2)
  • GM408v3 (1 ⁇ 1)
  • GM408v6 (1 ⁇ 1)
  • GM408v7 (1 ⁇ 2)
  • GM408v8 2 ⁇ 1
  • GM408v4 (0 ⁇ 2) and GM408v5 (2 ⁇ 0) could not confirm GM-CSF receptor agonist activity, confirming that binding to both CD116 and CD131 is important for exerting agonist activity. was done.
  • Example 12 Epitope analysis of CD131-CD116 bispecific antibody For anti-CD116 antibody 116-408 and anti-CD131 antibody 131-B2, which constitute the CD131-CD116 bispecific antibody described in Example 4, the respective antigens Certain human CD116 and human CD131 epitopes were analyzed by Integral Molecular.
  • human CD116 289 amino acids of the full-length human CD116 extracellular domain were substituted, and for human CD131, 100 amino acids corresponding to human CD131 extracellular domain 3 were substituted (289 types of human CD116 amino acid substitutes, human 131 amino acid substitutes 100 types of expression vectors were constructed for ).
  • Fabs were prepared from anti-CD116 antibody 116-408 and anti-CD131 antibody 131-B2 by enzymatic treatment, adjusted to 0.25 ⁇ g/mL using PBS, and added to mutant human CD116 or human CD131-expressing HEK-293T at 25°C. for 30 minutes. After washing with PBS, secondary antibody anti (AlexaFluor (registered trademark) 488 AffiniPure Goat Anti-Human IgG F(ab') 2 Fragment, manufactured by Jackson ImmunoResearch) adjusted to 7.5 ⁇ g/mL with PBS was added at 25°C for 30 minutes. After reacting for 1 minute, the amount of Fab binding was analyzed by flow cytometry.
  • Mutant human CD116 and mutant human CD131 have an expression level of 70% or more of wild-type human CD116 and wild-type human CD131, respectively, and the Ala substitution site attenuates the Fab binding level to 40% or less Amino acids constituting epitopes was selected as a residue.
  • Table 6 shows the results.
  • N156, K158 and T187 in human CD116 were identified as epitopes for anti-CD116 antibody 116-408, and W163 and R221 in human CD131 as epitopes for anti-CD131 antibody 131-B2.
  • Example 4 (1 ) (constant regions used were IgG4PE R409K and IgG1 LALAGA, shown in SEQ ID NOS: 147-159 and SEQ ID NOS: 160-172, respectively).
  • the human FcRn-binding activity of the produced CD131-CD116 bispecific antibody mutant was analyzed by the surface plasmon resonance method (SPR method) as described below.
  • Biacore T100 and T200 were used.
  • Amine Coupling Kit manufactured by GE Healthcare
  • Anti-His Antibody (BSA-Free, manufactured by QIAGEN) diluted to 20 ⁇ g/mL with Acetate 4.5 (manufactured by GE Healthcare) was applied to the CM5 sensor chip according to the package insert.
  • Human FcRn (in-house preparation) was diluted with HBS-EP+ (pH 7.4, GE Healthcare) to 10 ⁇ g/mL and added at a flow rate of 10 ⁇ L/min for 120 seconds.
  • a CD131-CD116 bispecific antibody variant (diluted with HBS-EP+ solution of pH 6.0) diluted by 2-fold serial dilutions from 1000 nM was added as an analyte at a flow rate of 30 ⁇ L/min, and FcRn was added.
  • the binding reaction was measured for 60 seconds and the dissociation reaction for 150 seconds.
  • the measurement was performed by the equilibrium value analysis method, and the obtained sensorgram was analyzed using Bia Evaluation Software (manufactured by GE Healthcare). The results are shown in FIGS. 18A to 18C, 19 and 20.
  • FIG. 18A to 18C, 19 and 20 The results are shown in FIGS. 18A to 18C, 19 and 20.
  • FIG. 19 shows a diagram plotting the equilibrium RU values at each analyte concentration for the mutants using the mutated IgG4PE R409K as the constant region. As shown in FIG. 19, it was confirmed that the mutants introduced with amino acid mutations at Tyr436 retained weak binding activity, while the mutants introduced with amino acid mutations at Ile253, His310, and His435 all lost binding. bottom.
  • the mutant using the mutated IgG1 LALAGA as the constant region gave similar results to the case of using the mutated IgG4 PE R409K.
  • Example 14 Analysis of Protein A binding activity of Fc mutants that have lost binding to FcRn For each mutant of the CD131-CD116 bispecific antibody prepared in Example 13, the binding activity to Protein A was compared with that of Example 13. Similarly, Biacore T100 and T200 were used.
  • Protein A derived from Staphylococcus aureus, manufactured by Nacalai
  • 75 RU of Protein A diluted to 1.0 ⁇ g/mL with Acetate 4.5 according to the package insert was immobilized on the CM5 sensor chip.
  • the above antibody sample diluted with HBS-EP+ solution of pH 7.4
  • protein A binding reaction was performed. was measured for 120 seconds, and the dissociation reaction was measured for 120 seconds.
  • the CD131-CD116 bispecific antibody using wild-type IgG4PE R409K and IgG1 LALAGA lost its binding to FcRn in Example 13 under conditions where it exhibited an affinity of about 10 nM for Protein A. Many of the amino acid mutation insertions into Ile253, His310, and His435 that were confirmed to abolish Protein A binding affinity. However, the IgG4PE R409K H435F mutant and the IgG1 LALAGA H435F mutant maintained binding affinity to Protein A equivalent to that of the wild type.
  • SEQ ID NO: 1 full-length nucleotide sequence of human CD131
  • SEQ ID NO: 2 full-length nucleotide sequence of monkey CD131
  • SEQ ID NO: 3 nucleotide sequence of human CD131 extracellular region
  • SEQ ID NO: 4 nucleotide sequence of monkey CD131 extracellular region
  • SEQ ID NO: 5 mouse CD131
  • SEQ ID NO: 6 full-length nucleotide sequence of human CD116
  • SEQ ID NO: 7 full-length nucleotide sequence of monkey CD116
  • SEQ ID NO: 8 nucleotide sequence of human CD116 extracellular region
  • SEQ ID NO: 9 nucleotide sequence of monkey CD116 extracellular region
  • SEQ ID NO: 10 mouse CD116 extracellular domain nucleotide sequence
  • SEQ ID NO: 12 116-08 VL amino acid sequence
  • SEQ ID NO: 13 116-09

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Cell Biology (AREA)
  • Peptides Or Proteins (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本発明は、GM-CSF受容体に対するアゴニスト活性を有するバイスペシフィック抗体、該バイスペシフィック抗体断片の提供を目的とする。本発明は、第1の抗原結合ドメインおよび第2の抗原結合ドメインを含み、前記第1の抗原結合ドメインおよび前記第2の抗原結合ドメインのいずれか一方がCD116に結合する抗原結合ドメインであり、もう一方がCD131に結合する抗原結合ドメインである、バイスペシフィック抗体または該バイスペシフィック抗体断片に関する。

Description

CD116およびCD131に結合するバイスペシフィック抗体
 本発明は、CD116およびCD131に結合する抗原結合ドメインを含むバイスペシフィック抗体、該バイスペシフィック抗体断片、該バイスペシフィック抗体または該バイスペシフィック抗体断片をコードするDNA、該DNAを含むベクター、該バイスペシフィック抗体または該バイスペシフィック抗体断片を生産するハイブリドーマおよび形質転換株、該バイスペシフィック抗体または該バイスペシフィック抗体断片の製造方法、該バイスペシフィック抗体またはバイスペシフィック抗体断片を含む治療および診断薬、該バイスペシフィック抗体またはバイスペシフィック抗体断片を用いる治療および診断方法、ならびに該バイスペシフィック抗体または該バイスペシフィック抗体断片を含む検出または測定用試薬に関する。
 顆粒球-マクロファージコロニー刺激因子(Granulocyte macrophage colony-stimulating factor,GM-CSF)は127アミノ酸残基からなる約22kDaの糖タンパク質であり、骨髄球系前駆細胞に作用し、分化・増殖を促進する因子である。恒常的な造血には必要とされないが、肺胞マクロファージの分化に必須である。
 実際に、GM-CSFノックアウト動物を用いた解析において、好中球、単球、好酸球など血球細胞は正常であったが、肺胞マクロファージの成熟障害が認められ肺サーファクタント処理に異常が生じることが報告されている(非特許文献1)。
 GM-CSFは細胞膜に発現するGM-CSF受容体に特異的に結合することで、その生理作用を発揮する。GM-CSF受容体は好中球、好酸球、単球、マクロファージ、およびそれらの前駆細胞に発現している。GM-CSF受容体はα鎖(CD116)とβc鎖(commonβ鎖、CD131)の2種類のサブユニットから構成されるヘテロ多量体である。
 CD116とCD131はいずれも1回膜貫通タンパク質であり、サイトカイン受容体スーパーファミリーに属する。CD116がGM-CSFに対して特異的な結合を担い、CD131はIL-3受容体、IL-5受容体とも共通した構成分子であり、主にシグナル伝達を担う。
 CD131の細胞内領域にはシグナル伝達分子であるJAK2が結合しており、JAK2およびCD131細胞内領域チロシン残基のリン酸化によってJAK2/STAT5経路、Ras/MAPキナーゼ経路、PI-3キナーゼ経路が活性化されて、細胞の生存および増殖・分化・活性化に作用する。
 定常状態では、CD116とCD131は細胞膜上に別々に存在している。CD116およびCD131がGM-CSF受容体として働く際は、まずGM-CSFがCD116に特異的に結合する。CD116のみではGM-CSFへの親和性は低いが、CD131が加わると高い親和性で結合し、複合体を形成し、特殊な活性化メカニズムによってシグナル伝達されることが明らかとなっている。図1にそのメカニズムを模式的に示す。
 図1に示すように、CD131は定常状態で2量体を形成しており、CD131分子がそれぞれGM-CSFとCD116との結合を経て、6量体を形成する。しかし、6量体の状態においてCD131の膜貫通領域の距離は120Å程度であり、JAK2間の距離が遠くシグナルは流れない。さらに、この6量体が2組くみ合わさり、12量体を形成することで、12量体中のCD131の膜貫通領域間の距離が10Å程度となり、JAK2間の距離が近接し相互リン酸化が可能となり、JAK2およびCD131細胞内領域チロシン残基のリン酸化が起こり、シグナルが伝達される(非特許文献2、3)。
 これまでに、患者の体内でGM-CSFに対して過剰な自己抗体が産生され、GM-CSFが中和されることが原因で発症する疾患が報告されている。例えば、後天性の肺胞蛋白症では、高頻度で高濃度の抗GM-CSF自己抗体が認められる(非特許文献4、5)。肺胞蛋白症は肺胞腔内に異常に肺サーファクタントが貯留し呼吸困難となる疾患であるが、自己抗体によってGM-CSFが中和され、肺胞マクロファージの分化が阻害されることで、肺サーファクタントの処理に異常が生じていると考えられている。またクローン病でも抗GM-CSF自己抗体が認められ、病態形成に寄与していることが報告されている(非特許文献6、7)。
 組換えGM-CSF製剤は、ヨーロッパ、北米、豪州等で1990年代に医薬品として承認販売され、癌化学療法後の骨髄抑制、骨髄異形成症候群、再生不良性貧血、骨髄移植後の定着促進などに対して皮下注射剤として用いられる。製剤としては、大腸菌由来のmolgramostimと酵母由来のsargramostimの2種類があり、両者に顕著な活性差は認められていない(非特許文献8)。これら製剤を用いて、肺胞蛋白症やクローン病の治療が試みられており、特に肺胞蛋白症については治療効果が報告されている(非特許文献9、10)。
 GM-CSF分子のアミノ酸改変によって自己抗体による中和が軽減された例も報告されているが、その効果はわずかに留まっている(非特許文献11)。また、GM-CSFと同様にGM-CSF受容体を介してシグナルを入れる性質を持ちながら、分子としてはGM-CSFと全く異なるGM-CSFミメティクスとして、受容体結合ペプチドをリンカーで接続した研究が報告されている(特許文献1)。
国際公開第2018/227142号 国際公開第2017/021540号
Proc. Natl. Acad. Sci. USA, 91, 5592-5596 (1994) Cell, 134, 496-507 (2008) Cytokine, 74, 247-258 (2015) J. Exp. Med., 190, 875-880 (1999) Blood, 113, 2547-2556 (2009) Gastroenterology, 136, 1261-1271 (2009) Inflamm. Bowel Dis., 19, 1671-1680 (2013) Eur J Haematol., 55, 348-356 (1995) N Engl J Med., 381, 923-932 (2019) N Engl J Med., 352, 2193-2201 (2005) Protein Eng Des Sel., 28, 461-466 (2015) Blood, 103, 1089-1098 (2004) EbioMedicine, 30, 730-743 (2015)
 従来研究されてきたGM-CSF受容体結合ペプチドは薬効が不十分であるという課題があるが、その原因として、GM-CSF受容体結合ペプチドはGM-CSF配列由来であるため、患者の自己抗体により中和される可能性が考えられる。GM-CSFに対する自己抗体がGM-CSFの様々なエピトープに対して産生されていること(非特許文献12)を考慮すると、患者の自己抗体によるGM-CSF受容体ペプチドの中和を、投与ペプチドの分子改変で解決することは困難であると考えられる。
 一方で、エリスロポイエチン受容体や成長ホルモン受容体のようなホモ二量体からなる受容体のみならず、インターロイキン2(IL-2)受容体や、繊維芽鎖相棒増殖因子(FGF)受容体とβ-Klothoタンパク複合体といったヘテロ二量体(多量体)からなる受容体に対しても、バイスペシフィック抗体を用いることでアゴニスト取得が可能であることが示されている(非特許文献13、特許文献2)。しかし、GM-CSF受容体アゴニストについてはこれまで報告されていない。上述のようにGM-CSF受容体の活性化メカニズムは非常に複雑であるため、アゴニスト活性を有する物質の作製は容易ではないと考えられる。GM-CSF受容体へのアゴニスト活性を発揮するためには、GM-CSFとの結合によって生じるCD116とCD131の距離・角度の変化、複合体の形成を模倣する必要があると考えられる。
 本発明はかかる状況をかんがみて為されたものであり、GM-CSF受容体に対するアゴニスト活性を有するバイスペシフィック抗体、該バイスペシフィック抗体断片、該バイスペシフィック抗体またはバイスペシフィック抗体断片をコードするDNA、該DNAを含むベクター、該バイスペシフィック抗体またはバイスペシフィック抗体断片を生産するハイブリドーマおよび形質転換株、該バイスペシフィック抗体またはバイスペシフィック抗体断片の製造方法、該バイスペシフィック抗体またはバイスペシフィック抗体断片を含む治療および診断薬、該バイスペシフィック抗体またはバイスペシフィック抗体断片を用いる治療および診断方法、ならびに該バイスペシフィック抗体またはバイスペシフィック抗体断片を含む検出または測定試薬の提供を目的とする。
 本発明者らは、GM-CSF受容体はCD116とCD131から構成されることから、GM-CSF受容体の構成分子であるCD116およびCD131に結合する抗原結合ドメインを有するバイスペシフィック抗体の作製により、GM-CSF受容体に対するアゴニスト活性を有するバイスペシフィック抗体が作製できることを見出し、本発明を完成するに至った。
 すなわち本発明は、以下に関する。
1.第1の抗原結合ドメインおよび第2の抗原結合ドメインを含み、
 前記第1の抗原結合ドメインおよび前記第2の抗原結合ドメインのいずれか一方がCD116に結合する抗原結合ドメインであり、もう一方がCD131に結合する抗原結合ドメインである、バイスペシフィック抗体または該バイスペシフィック抗体断片。
2.Granulocyte macrophage-colonystimulating factor(以下、GM-CSFと略記する)受容体に対してアゴニスト活性を有する、前記1に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片。
3.前記第1の抗原結合ドメインおよび前記第2の抗原結合ドメインが、それぞれ重鎖可変領域(以下、VHと略記する)および軽鎖可変領域(以下、VLと略記する)を含む、前記1又は2に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片。
4.CD116およびCD131に1価または2価でそれぞれ結合する、前記1~3のいずれか1に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片。
5.前記CD131に結合する抗原結合ドメインが、下記(1a)~(1e)から選ばれるいずれか1である、前記1~4のいずれか1に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片。
(1a)それぞれ配列番号61~63で表されるアミノ酸配列を含む相補性決定領域(以下、CDRと略記する)1~3を含むVH、および、それぞれ配列番号64~66で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(1b)それぞれ配列番号67~69で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号70~72で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(1c)それぞれ配列番号73~75で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号76~78で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(1d)それぞれ配列番号79~81で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号82~84で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(1e)それぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
6.前記CD131に結合する抗原結合ドメインが、下記(1A)~(1E)から選ばれるいずれか1である、前記1~5のいずれか1に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片。
(1A)配列番号21で表されるアミノ酸配列を含むVH、および、配列番号22で表されるアミノ酸配列を含むVLを含む
(1B)配列番号23で表されるアミノ酸配列を含むVH、および、配列番号24で表されるアミノ酸配列を含むVLを含む
(1C)配列番号25で表されるアミノ酸配列を含むVH、および、配列番号26で表されるアミノ酸配列を含むVLを含む
(1D)配列番号27で表されるアミノ酸配列を含むVH、および、配列番号28で表されるアミノ酸配列を含むVLを含む
(1E)配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
7.前記CD116に結合する抗原結合ドメインが、下記(2a)~(2q)および(2r-1)~(2r-12)から選ばれるいずれか1である、前記1~6のいずれか1に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片。
(2a)それぞれ配列番号31~33で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号34~36で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2b)それぞれ配列番号37~39で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号40~42で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2c)それぞれ配列番号43~45で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号46~48で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2d)それぞれ配列番号49~51で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号52~54で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2e)それぞれ配列番号55~57で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号58~60で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2f)それぞれ配列番号104~106で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2g)それぞれ配列番号107~109で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2h)それぞれ配列番号110~112で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2i)それぞれ配列番号113~115で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2j)それぞれ配列番号116~118で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2k)それぞれ配列番号119~121で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2l)それぞれ配列番号122~124で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2m)それぞれ配列番号125~127で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2n)それぞれ配列番号128~130で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2о)それぞれ配列番号131~133で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2p)それぞれ配列番号134~136で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2q)それぞれ配列番号137~139で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2r-1)配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列中の9番目のアルギニンをリジンに置換する改変が導入されたアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2r-2)配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列中の17番目のグリシンをアスパラギン酸に置換する改変が導入されたアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2r-3)配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列中の9番目のアルギニンをスレオニンに置換する改変が導入されたアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2r-4)配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列中の2番目のフェニルアラニンをロイシンに、9番目のアルギニンをスレオニンに置換する改変が導入されたアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2r-5)配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列中の2番目のフェニルアラニンをセリンに、9番目のアルギニンをスレオニンに置換する改変が導入されたアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2r-6)配列番号137で表されるアミノ酸配列の2番目のロイシンをバリンに、3番目のセリンをアラニンに、4番目のメチオニンをロイシンに置換する改変が導入されたアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2r-7)配列番号137で表されるアミノ酸配列の2番目のロイシンをフェニルアラニンに、3番目のセリンをアラニンに置換する改変が導入されたアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2r-8)配列番号137で表されるアミノ酸配列の3番目のセリンをアラニンに、4番目のメチオニンをロイシンに置換する改変が導入されたアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2r-9)配列番号137で表されるアミノ酸配列の2番目のロイシンをチロシンに、3番目のセリンをアラニンに置換する改変が導入されたアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2r-10)配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列の2番目のロイシンをグルタミン酸に置換する改変が導入されたアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2r-11)配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列の2番目のロイシンをグルタミン酸に、5番目のチロシンをトリプトファンに、6番目のチロシンをメチオニンに置換する改変が導入されたアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2r-12)配列番号137で表されるアミノ酸配列の2番目のロイシンをフェニルアラニンに、3番目のセリンをアラニンに、4番目のメチオニンをロイシンに置換する改変が導入されたアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
8.前記CD116に結合する抗原結合ドメインが、下記(2A)~(2Y)および(2Z-1)~(2Z-20)から選ばれるいずれか1である、前記1~7のいずれか1に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片。
(2A)配列番号11で表されるアミノ酸配列を含むVH、および、配列番号12で表されるアミノ酸配列を含むVLを含む
(2B)配列番号13で表されるアミノ酸配列を含むVH、および、配列番号14で表されるアミノ酸配列を含むVLを含む
(2C)配列番号15で表されるアミノ酸配列を含むVH、および、配列番号16で表されるアミノ酸配列を含むVLを含む
(2D)配列番号17で表されるアミノ酸配列を含むVH、および、配列番号18で表されるアミノ酸配列を含むVLを含む
(2E)配列番号19で表されるアミノ酸配列を含むVH、および、配列番号20で表されるアミノ酸配列を含むVLを含む
(2F)配列番号92で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2G)配列番号93で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2H)配列番号94で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2I)配列番号95で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2J)配列番号96で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2K)配列番号97で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2L)配列番号98で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2M)配列番号99で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2N)配列番号100で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2O)配列番号101で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2P)配列番号102で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Q)配列番号103で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2R)配列番号176で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2S)配列番号177で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2T)配列番号178で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2U)配列番号179で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2V)配列番号182で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2W)配列番号183で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2X)配列番号184で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Y)配列番号185で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-1)配列番号190で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-2)配列番号191で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-3)配列番号192で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-4)配列番号193で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-5)配列番号194で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-6)配列番号195で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-7)配列番号196で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-8)配列番号197で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-9)配列番号198で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-10)配列番号199で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-11)配列番号200で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-12)配列番号201で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-13)配列番号202で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-14)配列番号203で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-15)配列番号204で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-16)配列番号205で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-17)配列番号206で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-18)配列番号207で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-19)配列番号208で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-20)配列番号209で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
9.前記第1の抗原結合ドメインがCD131に結合する抗原結合ドメインであり、前記第2の抗原結合ドメインがCD116に結合する抗原結合ドメインである、前記1~8のいずれか1に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片。
10.前記第1の抗原結合ドメインおよび前記第2の抗原結合ドメインがそれぞれFab(以下、第1のFab、第2のFabとそれぞれ略記する)であり、
 前記第1のFabは、VHおよびCH1ドメインを含む重鎖(VH-CH1)と、軽鎖(VL-CL)とを含み、
 前記第2のFabは、VHおよびCH1ドメインを含む重鎖(VH-CH1’)と、軽鎖(VL-CL)とを含む、
前記1~9のいずれか1に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片。
11.前記第1のFabおよび前記第2のFabをそれぞれ1つ、並びにヒンジ領域を含み、
前記第1のFabにおける前記重鎖のC末端と、前記第2のFabにおける前記重鎖のC末端とが、前記ヒンジ領域のN末端にそれぞれ結合している、前記10に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片。
12.下記第1のポリペプチド、下記第2のポリペプチド、およびヒンジ領域を含み、前記第1のポリペプチドのC末端と前記第2のポリペプチドのC末端とが前記ヒンジ領域のN末端にそれぞれ結合している、前記10に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片。
 第1のポリペプチド:前記第1のFab(VH-CH1、VL-CL)をN末端に少なくとも含む、ポリペプチド。
 第2のポリペプチド:前記第2のFab(VH-CH1’、VL-CL)をC末端に少なくとも含む、ポリペプチド。
13.前記第1のFabにおける前記重鎖のC末端と、前記第2のFabにおける前記重鎖のN末端とが直接またはリンカーを介して結合しているポリペプチド鎖(VH-CH1-VH-CH1’)を2本、およびヒンジ領域を含み、
 2本の前記ポリペプチド鎖のC末端が前記ヒンジ領域のN末端にそれぞれ結合している、前記10に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片。
14.さらにFc領域を含み、前記ヒンジ領域のC末端に前記Fc領域のN末端が結合している、前記11~13のいずれか1に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片。
15.前記バイスペシフィック抗体が下記(x1)~(x12)および(x13-1)~(x13-12)から選ばれるいずれか1である、前記1~14のいずれか1に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片。
(x1)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインがそれぞれ配列番号104~106で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
(x2)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインがそれぞれ配列番号107~109で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
(x3)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインがそれぞれ配列番号110~112で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
(x4)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインがそれぞれ配列番号113~115で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
(x5)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインがそれぞれ配列番号116~118で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
(x6)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインがそれぞれ配列番号119~121で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
(x7)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインがそれぞれ配列番号122~124で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
(x8)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインがそれぞれ配列番号125~127で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
(x9)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインがそれぞれ配列番号128~130で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
(x10)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインがそれぞれ配列番号131~133で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
(x11)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインがそれぞれ配列番号134~136で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
(x12)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインがそれぞれ配列番号137~139で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
(x13-1)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列中の9番目のアルギニンをリジンに置換する改変が導入されたアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
(x13-2)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列中の17番目のグリシンをアスパラギン酸に置換する改変が導入されたアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
(x13-3)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列中の9番目のアルギニンをスレオニンに置換する改変が導入されたアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
(X13-4)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列中の2番目のフェニルアラニンをロイシンに、9番目のアルギニンをスレオニンに置換する改変が導入されたアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
(x13-5)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列中の2番目のフェニルアラニンをセリンに、9番目のアルギニンをスレオニンに置換する改変が導入されたアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
(x13-6)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号137で表されるアミノ酸配列の2番目のロイシンをバリンに、3番目のセリンをアラニンに、4番目のメチオニンをロイシンに置換する改変が導入されたアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
(x13-7)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号137で表されるアミノ酸配列の2番目のロイシンをフェニルアラニンに、3番目のセリンをアラニンに置換する改変が導入されたアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
(x13-8)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号137で表されるアミノ酸配列の3番目のセリンをアラニンに、4番目のメチオニンをロイシンに置換する改変が導入されたアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
(x13-9)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号137で表されるアミノ酸配列の2番目のロイシンをチロシンに、3番目のセリンをアラニンに置換する改変が導入されたアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
(x13-10)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列の2番目のロイシンをグルタミン酸に置換する改変が導入されたアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
(x13-11)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列の2番目のロイシンをグルタミン酸に、5番目のチロシンをトリプトファンに、6番目のチロシンをメチオニンに置換する改変が導入されたアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
(x13-12)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号137で表されるアミノ酸配列の2番目のロイシンをフェニルアラニンに、3番目のセリンをアラニンに、4番目のメチオニンをロイシンに置換する改変が導入されたアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
16.前記バイスペシフィック抗体が下記(y1)~(y12)および(y13-1)~(y13-20)から選ばれるいずれか1である、前記1~15のいずれか1に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片。
(y1)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号175で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y2)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号176で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y3)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号177で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y4)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号178で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y5)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号179で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y6)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号180で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y7)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号181で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y8)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号182で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y9)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号183で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y10)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号184で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y11)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号185で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y12)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号186で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y13-1)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号190で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y13-2)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号191で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y13-3)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号192で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y13-4)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号193で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y13-5)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号194で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y13-6)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号195で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y13-7)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号196で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y13-8)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号197で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y13-9)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号198で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y13-10)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号199で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y13-11)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号200で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y13-12)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号201で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y13-13)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号202で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y13-14)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号203で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y13-15)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号204で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y13-16)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号205で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y13-17)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号206で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y13-18)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号207で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y13-19)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号208で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y13-20)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号209で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
17.前記ポリペプチド鎖が前記第1のFabにおける前記重鎖(VH-CH1)のC末端と、前記第2のFabにおける前記重鎖(VH-CH1’)のN末端とが直接またはリンカーを介して結合しているポリペプチド鎖であり、前記ポリペプチド鎖における(VH-CH1-VH)が下記(v1)~(v12)および(v13-1)~(v13-20)から選ばれるいずれか1である、前記13または14に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片。
(v1)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号175で表されるアミノ酸配列を含むVHを含む
(v2)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号176で表されるアミノ酸配列を含むVHを含む
(v3)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号177で表されるアミノ酸配列を含むVHを含む
(v4)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号178で表されるアミノ酸配列を含むVHを含む
(v5)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号179で表されるアミノ酸配列を含むVHを含む
(v6)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号180で表されるアミノ酸配列を含むVHを含む
(v7)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号181で表されるアミノ酸配列を含むVHを含む
(v8)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号182で表されるアミノ酸配列を含むVHを含む
(v9)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号183で表されるアミノ酸配列を含むVHを含む
(v10)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号184で表されるアミノ酸配列を含むVHを含む
(v11)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号185で表されるアミノ酸配列を含むVHを含む
(v12)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号186で表されるアミノ酸配列を含むVHを含む
(v13-1)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号190で表されるアミノ酸配列を含むVHを含む
(v13-2)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号191で表されるアミノ酸配列を含むVHを含む
(v13-3)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号192で表されるアミノ酸配列を含むVHを含む
(v13-4)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号193で表されるアミノ酸配列を含むVHを含む
(v13-5)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号194で表されるアミノ酸配列を含むVHを含む
(v13-6)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号195で表されるアミノ酸配列を含むVHを含む
(v13-7)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号196で表されるアミノ酸配列を含むVHを含む
(v13-8)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号197で表されるアミノ酸配列を含むVHを含む
(v13-9)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号198で表されるアミノ酸配列を含むVHを含む
(v13-10)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号199で表されるアミノ酸配列を含むVHを含む
(v13-11)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号200で表されるアミノ酸配列を含むVHを含む
(v13-12)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号201で表されるアミノ酸配列を含むVHを含む
(v13-13)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号202で表されるアミノ酸配列を含むVHを含む
(v13-14)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号203で表されるアミノ酸配列を含むVHを含む
(v13-15)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号204で表されるアミノ酸配列を含むVHを含む
(v13-16)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号205で表されるアミノ酸配列を含むVHを含む
(v13-17)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号206で表されるアミノ酸配列を含むVHを含む
(v13-18)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号207で表されるアミノ酸配列を含むVHを含む
(v13-19)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号208で表されるアミノ酸配列を含むVHを含む
(v13-20)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号209で表されるアミノ酸配列を含むVHを含む
18.前記第1のFabにおける前記重鎖(VH-CH1)のC末端と、前記第2のFabにおける前記重鎖(VH-CH1’)のN末端とが直接またはリンカーを介して結合している前記ポリペプチド鎖、該ポリペプチド鎖のC末端にN末端が結合しているヒンジ領域、該ヒンジ領域のC末端にN末端が結合しているFc領域(CH2-CH3)を含む重鎖2本と、軽鎖(VL-CL)4本とを含み、
 前記CH1’および前記Fc領域(CH2-CH3)が配列番号145~172のいずれか1で表されるアミノ酸配列を含み、
 前記軽鎖が配列番号30で表されるアミノ酸配列を含むVLを含む、前記17に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片。
A1.CD116およびCD131にそれぞれ2価で結合する、前記1~18のいずれか1に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片。
A2.前記第1のFabおよび前記第2のFabをそれぞれ2つ、ヒンジ領域並びにFc領域を含み、
 2つの前記第1のFabにおける前記第1の抗原結合ドメインの重鎖のC末端がそれぞれ前記ヒンジ領域のN末端に結合し、
 前記ヒンジ領域のC末端が前記Fc領域のN末端に結合し、
 前記Fc領域のC末端に、2つの前記第2のFabにおける前記第2の抗原結合ドメインの重鎖のN末端がそれぞれ結合している、前記10、15、16およびA1のいずれか1に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片。
A3.前記Fc領域がIgG1またはIgG4サブクラスである、前記13~17、A1およびA2のいずれか1に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片。
A4.前記Fc領域がIgG1サブクラスであり、EUインデックスで表されるL234A、L235AおよびG237Aのアミノ酸残基置換を含む、または前記Fc領域がIgG4サブクラスであり、EUインデックスで表されるS228P、L235EおよびR409Kのアミノ酸残基置換を含む、前記14~18およびA1~A3のいずれか1に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片。
A5.前記Fc領域にさらに、EUインデックスで表されるH435Fのアミノ酸残基置換を含む、前記14~18およびA1~A4のいずれか1に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片。
19.前記1~18およびA1~A5のいずれか1に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片をコードするDNA。
20.前記19に記載のDNAを含有する組換え体ベクター。
21.前記20に記載の組換え体ベクターを宿主細胞に導入して得られる形質転換株。
22.前記1~18およびA1~A5のいずれか1に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片を有効成分として含有する、GM-CSFが関与する疾患の治療および/または診断薬。
A6.前記21に記載の形質転換株を培地に培養し、培養物中に前記1~18およびA1~A5のいずれか1に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片を生産蓄積させ、該培養物からバイスペシフィック抗体または該バイスペシフィック抗体断片を採取することを特徴とする前記1~17およびA1~A5のいずれか1に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片の製造方法。
A7.GM-CSFが関与する疾患が、GM-CSFに対する自己抗体が関与する疾患である、前記22に記載の治療薬および/または診断薬。
A8.前記1~18およびA1~A5のいずれか1に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片を用いる、GM-CSFが関与する疾患の治療および/または診断方法。
A9.GM-CSFが関与する疾患がGM-CSFに対する自己抗体が関与する疾患である、前記A8に記載の治療および/または診断方法。
A10.GM-CSFが関与する疾患の治療および/または診断に使用するための、前記1~18およびA1~A5のいずれか1に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片。
A11.GM-CSFが関与する疾患がGM-CSFに対する自己抗体が関与する疾患である、前記A10に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片。
A12.GM-CSFが関与する疾患の治療および/または診断薬の製造のための、前記1~18およびA1~A5のいずれか1に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片の使用。
A13.GM-CSFが関与する疾患がGM-CSFに対する自己抗体が関与する疾患である、前記A12に記載の使用。
A14.前記1~18およびA1~A5のいずれか1に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片を含む、CD116およびCD131の少なくとも一方を検出または測定するための試薬。
23.Fc領域を含有する抗体をプロテインAカラムクロマトグラフィーにより精製することを含む、抗体を含有する組成物の精製方法であって、前記抗体は前記Fc領域においてH435Fの変異が導入されている抗体である、精製方法。
24.CD131(配列番号211)の163番目のW、221番目のRを含むエピトープと、CD116(配列番号210)の156番目のN、158番目のK、187番目のTを含むエピトープとに結合する、前記1~18のいずれか1に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片。
 本発明により、CD116およびCD131に結合する新規なバイスペシフィック抗体、GM-CSF受容体に対するアゴニスト活性を有する新規なバイスペシフィック抗体、該バイスペシフィック抗体断片、該バイスペシフィック抗体またはバイスペシフィック抗体断片をコードするDNA、該DNAを含むベクター、該バイスペシフィック抗体またはバイスペシフィック抗体断片を生産するハイブリドーマおよび形質転換株、該バイスペシフィック抗体またはバイスペシフィック抗体断片の製造方法、該バイスペシフィック抗体またはバイスペシフィック抗体断片を含む治療および診断薬、該バイスペシフィック抗体またはバイスペシフィック抗体断片を用いる治療および診断方法、ならびに該バイスペシフィック抗体またはバイスペシフィック抗体断片を含む検出または測定試薬を提供できる。
図1は、GM-CSF受容体の模式図を示す。 図2は、IgG型CD131-CD116バイスペシフィック抗体の模式図を示す。 図3の(A)および(B)は、IgG型CD131-CD116バイスペシフィック抗体のTF-1細胞に対するGM-CSF受容体アゴニスト活性を示す。アゴニスト活性は、組換えヒトGM-CSF(rhGM-CSF) 200pM添加時の活性を100%とした場合のTF-1細胞の増殖率として示す。(A)は、抗CD131抗体としてCD131-16を用いたIgG型CD131-CD116バイスペシフィック抗体、(B)は抗CD131抗体としてCD131-B2を用いたIgG型CD131-CD116バイスペシフィック抗体のアゴニスト活性を示す(2ウェルの平均値)。横軸は、抗体の濃度を示す。 図4の(A)および(B)は本発明のバイスペシフィック抗体の構造を示す。図4の(A)はN末端型CD131-CD116バイスペシフィック抗体またはN末端型CD116-CD131バイスペシフィック抗体の構造を表す。図4の(B)はC末端型CD131-CD116バイスペシフィック抗体またはC末端型CD116-CD131バイスペシフィック抗体の構造を表す。 図5は、CD131-CD116バイスペシフィック抗体のTF-1細胞に対するGM-CSF受容体アゴニスト活性を示す。アゴニスト活性は、組換えヒトGM-CSF(rhGM-CSF) 200pM添加時の活性を100%とした場合のTF-1細胞の増殖率として示す。定常領域はいずれもIgG4PE R409Kを使用した。横軸は、抗体の濃度を示す。 図6は、Fc領域に変異が挿入されたCD131-CD116バイスペシフィック抗体のTF-1細胞に対するGM-CSF受容体アゴニスト活性を示す。アゴニスト活性は、組換えヒトGM-CSF(rhGM-CSF) 200pM添加時の活性を100%とした場合のTF-1細胞の増殖率として示す(n=3の平均値±標準偏差)。横軸は、抗体の濃度を示す。 図7は、Fc領域に変異が挿入されたCD131-CD116バイスペシフィック抗体のTF-1細胞に対するGM-CSF受容体アゴニスト活性を示す。アゴニスト活性は、組換えヒトGM-CSF(rhGM-CSF) 200pM添加時の活性を100%とした場合のTF-1細胞の増殖率として示す。横軸は、抗体の濃度を示す。 図8は、CD131-CD116バイスペシフィック抗体のヒトCD14陽性単球に対するアゴニスト活性を示す。CD131-CD116バイスペシフィック抗体を添加した場合の、ヒトCD14陽性単球表面上のCD206の発現変化を示す図である(n=2の平均値)。定常領域はいずれもIgG4PE R409Kを使用した。横軸は、抗体の濃度を示す。 図9の(A)~(C)は、CD131-CD116バイスペシフィック抗体が発揮するアゴニスト活性のGM-CSF受容体への特異性を示す。CD131-CD116バイスペシフィック抗体の(A)GM-CSF受容体発現Ba/F3細胞、(B)IL-3受容体発現Ba/F3細胞、(C)IL-5受容体発現Ba/F3細胞へのアゴニスト活性を示す(n=3の平均値±標準偏差)。定常領域はいずれもIgG4PE R409Kを使用した。横軸は、抗体の濃度を示す。 図10は、GM-CSF中和抗体が存在する条件下におけるCD131-CD116バイスペシフィック抗体のアゴニスト活性を示す(n=3の平均値±標準偏差)。定常領域はいずれもIgG4PE R409Kを使用した。横軸は、抗体の濃度を示す。 図11は、次世代シークエンスシステムを用いて取得された抗CD116抗体から作製されたCD131-CD116バイスペシフィック抗体のTF-1細胞に対するGM-CSF受容体アゴニスト活性を示す。アゴニスト活性は、組換えヒトGM-CSF(rhGM-CSF) 200pM添加時の活性を100%とした場合のTF-1細胞の増殖率として示す(n=3の平均値±標準偏差)。定常領域はいずれもIgG4PE R409K H435F変異体を使用した。横軸は、抗体の濃度を示す。 図12は、アフィニティマチュレーションにより得られた抗CD116抗体から作製されたCD131-CD116バイスペシフィック抗体のTF-1細胞に対するGM-CSF受容体アゴニスト活性を示す。アゴニスト活性は、組換えヒトGM-CSF(rhGM-CSF) 200pM添加時の活性を100%とした場合のTF-1細胞の増殖率として示す(n=3の平均値±標準偏差)。定常領域はいずれもIgG4PE R409K H435F変異体を使用した。横軸は、抗体の濃度を示す。 図13は、CD116-CD131バイスペシフィック抗体のTF-1細胞に対するGM-CSF受容体アゴニスト活性を示す。アゴニスト活性は、組換えヒトGM-CSF(rhGM-CSF) 200pM添加時の活性を100%とした場合のTF-1細胞の増殖率として示す(n=3の平均値±標準偏差)。定常領域はいずれもIgG4PE R409Kを使用した。横軸は、抗体の濃度を示す。 図14の(A)はC末端型CD131-CD116バイスペシフィック抗体のTF-1細胞に対するGM-CSF受容体アゴニスト活性を示す。図14の(B)はC末端型CD116-CD131バイスペシフィック抗体のTF-1細胞に対するGM-CSF受容体アゴニスト活性を示す。アゴニスト活性は、組換えヒトGM-CSF(rhGM-CSF) 1000pM添加時の活性を100%とした場合のTF-1細胞の増殖率として示す(n=3の平均値±標準偏差)。定常領域はいずれもIgG4PE R409Kを使用した。横軸は、抗体の濃度を示す。 図15は、IgG型バイスペシフィック抗体に変換したCD131-CD116バイスペシフィック抗体のTF-1細胞に対するGM-CSF受容体アゴニスト活性を示す。アゴニスト活性は、組換えヒトGM-CSF(rhGM-CSF) 200pM添加時の活性を100%とした場合のTF-1細胞の増殖率として示す(n=3の平均値±標準偏差)。 図16は、価数を制御したCD131-CD116バイスペシフィック抗体の構造を示す。116-408 D31A_Y98 VHは、アミノ酸変異により結合活性を消失した116-408 VHである。括弧内に(抗CD116抗体の価数×抗CD131抗体の価数)を示す。 図17の(A)および(B)は、図16に示した価数を制御したCD131-CD116バイスペシフィック抗体のTF-1細胞に対するGM-CSF受容体アゴニスト活性を示す。アゴニスト活性は、組換えヒトGM-CSF(rhGM-CSF) 1000pM添加時の活性を100%とした場合のTF-1細胞の増殖率として示す(n=3の平均値±標準偏差)。 図18の(A)~(C)は、Fc領域にFcRnへの結合を消失させるアミノ酸変異が挿入されたCD131-CD116バイスペシフィック抗体の、ヒトFcRnへの結合活性解析の結果を示す。図18の(A)はFc領域としてIgG4PE R409K野生型(WT)を用いた場合のヒトFcRnへの結合を示すセンサーグラム、図18の(B)はFc領域としてIgG4PE R409 I253A変異体を用いた場合、図18の(C)はFc領域としてIgG4PE R409 H435Fを用いた場合のセンサーグラムを示す。I253AやH435F変異体を用いた場合ではヒトFcRnへの結合が認められない。縦軸はレゾナンユニット(RU)を、横軸は時間(sec)を示す。 図19は、Fc領域にIgG4PE R409K変異体を用いた各CD131-CD116バイスペシフィック抗体各変異体のヒトFcRnへの結合に関する平衡値プロットを示す。縦軸はレゾナンユニット(RU)を、横軸はバイスペシフィック抗体濃度(M,mol/L)を示す。 図20は、Fc領域にIgG1LALAGA変異体を用いた各CD131-CD116バイスペシフィック抗体各変異体のヒトFcRnへの結合に関する平衡値プロットを示す。縦軸はレゾナンユニット(RU)を、横軸はバイスペシフィック抗体濃度(M,mol/L)を示す。
 本発明は、CD116およびCD131に結合する新規なバイスペシフィック抗体、または、GM-CSF受容体に対するアゴニスト活性を有する新規なバイスペシフィック抗体、該バイスペシフィック抗体断片に関する。
 本発明におけるCD116は、CSF2RA、GM-CSFRα、GM-CSF-R-alpha、CDw116、CSF2RAX、CSF2RAY、CSF2RX、CSF2RY、GMCSFR、GMR、MGC3848およびMGC4838と同義として使用される。
 CD116としては例えば、NCBI(https://www.ncbi.nlm.nih.gov/)においてGenBank accession No.P15509に示されるアミノ酸配列を含むヒトCD116に示されるアミノ酸配列を含むサルCD116などが挙げられる。また、例えば、GenBank accession No.P15509に示されるアミノ酸配列において1つ以上のアミノ酸が欠失、置換または付加されたアミノ酸配列からなり、かつCD116の機能を有するポリペプチドが挙げられる。
 GenBank accession No.P15509に示されるアミノ酸配列と通常70%以上、好ましくは80%以上、さらに好ましくは90%以上の相同性を有するアミノ酸配列を含むポリペプチド、最も好ましくは95%以上、96%以上、97%以上、98%以上および99%以上の相同性を有するアミノ酸配列からなり、かつCD116の機能を有するポリペプチドも本発明のCD116に包含される。
 GenBank accession No.P15509に示されるアミノ酸配列において1以上のアミノ酸残基が欠失、置換、または付加されたアミノ酸配列を有するポリペプチドは、部位特異的変異導入法[Molecular Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1989)、Current Protocols in Molecular Biology, John Wiley & Sons (1987-1997)、Nucleic Acids Research, 10, 6487 (1982)、Proc. Natl. Acad. Sci. USA, 79, 6409 (1982)、Gene, 34, 315 (1985)、Nucleic Acids Research, 13, 4431(1985)、Proceeding of the National Academy of Sciences in USA, 82, 488 (1985)]などを用いて、例えば、GenBank accession No.P15509に示されるアミノ酸配列をコードするDNAに、部位特異的変異を導入することにより得ることができる。欠失、置換または付加されるアミノ酸の数は特に限定されないが、好ましくは1個~数十個、例えば、1~20個、より好ましくは1個~数個、例えば、1~5個のアミノ酸である。
 CD116をコードする遺伝子としては、例えば、配列番号6またはGenBank accession No.X17648に示されるヒトCD116の塩基配列、および配列番号7に示されるサルCD116の塩基配列などが挙げられる。
 また、例えば配列番号6、GenBank accession No.X17648または配列番号7に示される塩基配列において1以上の塩基が欠失、置換または付加された塩基配列からなり、かつCD116の機能を有するポリペプチドをコードするDNAを含む遺伝子、配列番号6、GenBank accession No.X17648または配列番号7に示される塩基配列と好ましくは60%以上の相同性を有する塩基配列、より好ましくは80%以上の相同性を有する塩基配列、さらに好ましくは95%以上の相同性を有する塩基配列からなり、かつCD116の機能を有するポリペプチドをコードするDNAを含む遺伝子、並びに配列番号6、GenBank accession No.X17648または配列番号7に示される塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズするDNAからなり、かつCD116の機能を有するポリペプチドをコードするDNAを含む遺伝子なども、本発明のCD116をコードする遺伝子に包含される。
 ストリンジェントな条件下でハイブリダイズするDNAとしては、例えば配列番号6、GenBank accession No.X17648または配列番号7に示される塩基配列を有するDNAをプローブに用いた、コロニー・ハイブリダイゼーション法、プラーク・ハイブリダイゼーション法、サザンブロット・ハイブリダイゼーション法、またはDNAマイクロアレイ法などにより得られるハイブリダイズ可能なDNAを意味する。
 具体的には、ハイブリダイズしたコロニー若しくはプラーク由来のDNA、または該配列を有するPCR産物若しくはオリゴDNAを固定化したフィルターまたはスライドグラスを用いて、0.7~1.0mol/Lの塩化ナトリウム存在下、65℃にてハイブリダイゼーション[Molecular Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1989)、Current Protocols in Molecular Biology, John Wiley & Sons (1987-1997)、DNA Cloning 1: Core Techniques, A Practical Approach, Second Edition, Oxford University (1995)]を行った後、0.1~2倍濃度のSSC溶液(1倍濃度のSSC溶液の組成は、150mmol/L塩化ナトリウム、15mmol/Lクエン酸ナトリウムよりなる)を用い、65℃条件下でフィルターまたはスライドグラスを洗浄することにより同定できるDNAを挙げることができる。ハイブリダイズ可能なDNAとしては、例えば、配列番号6、GenBank accession No.X17648または配列番号7に示される塩基配列と好ましくは60%以上の相同性を有するDNA、より好ましくは80%以上の相同性を有するDNA、さらに好ましくは95%以上の相同性を有するDNAを挙げることができる。
 真核生物のタンパク質をコードする遺伝子の塩基配列には、しばしば遺伝子の多型が認められる。本発明において用いられる遺伝子内に、このような多型によって塩基配列に小規模な変異を生じた遺伝子も、本発明におけるCD116をコードする遺伝子に包含される。
 本発明における相同性の数値は、特に明示した場合を除き、当業者に公知の相同性検索プログラムを用いて算出される数値であってよいが、塩基配列については、BLAST[J. Mol. Biol., 215, 403 (1990)]においてデフォルトのパラメータを用いて算出される数値など、アミノ酸配列については、BLAST2[Nucleic Acids Research,25, 3389 (1997)、Genome Research, 7, 649 (1997)]においてデフォルトのパラメータを用いて算出される数値などが挙げられる。
 CD116のアミノ酸配列の部分配列からなるポリペプチドは、当業者に公知の方法によって作製でき、例えば、CD116の部分配列からなるポリペプチドは、GenBank accession No.P15509に示されるアミノ酸配列をコードするDNAの一部を欠失させ、これを含む発現ベクターを導入した形質転換体を培養することにより作製できる。
 また、上記の方法で作製されるポリペプチドまたはDNAに基づいて、上記と同様の方法により、例えば、GenBank accession No.P15509に示されるアミノ酸配列の部分配列において1以上のアミノ酸が欠失、置換または付加されたアミノ酸配列を有するポリペプチドを得ることができる。
 さらに、CD116のアミノ酸配列の部分配列からなるポリペプチド、またはCD116のアミノ酸配列の部分配列において1以上のアミノ酸が欠失、置換または付加されたアミノ酸配列を有するポリペプチドは、フルオレニルメチルオキシカルボニル(Fmoc)法、t-ブチルオキシカルボニル(tBoc)法などの化学合成法によって製造することもできる。
 本発明におけるCD116の細胞外領域としては、例えば、GenBank accession No.P15509に示されるヒトCD116のアミノ酸配列を、公知の膜貫通領域予測プログラムSOSUI、TMHMM ver.2(https://services.healthtech.dtu.dk/service.php?TMHMM-2.0)またはExPASy Proteomics Server(http://Ca.expasy.org/)などを用いて予測された領域などが挙げられる。具体的には、CD116の細胞外領域としてはGenBank accession No.P15509の23番目~320番目に示されるアミノ酸配列が挙げられる。
 CD116の機能としては、リガンドであるGM-CSFの結合[Cytokine Growth Factor Rev., 12, 19(2001)]が挙げられる。CD116を発現する細胞は例えば、単球、顆粒球、およびそれらの前駆細胞や、内皮細胞や線維芽細胞、ランゲルハンス細胞が挙げられる。
 本発明におけるCD131はCSF2RB、IL3RB、IL5RB、SMDP5、common β receptor、βcと同義として使用される。CD131としては例えば、UniProt Entry.No.P32927に示されるアミノ酸配列を含むヒトCD131、およびGenBank accession No.XP_015312724_1示されるアミノ酸配列を含むサルCD131などが挙げられる。また、例えば、UniProt Entry.No.P32927またはGenBank accession No.XP_015312724_1に示されるアミノ酸配列において1つ以上のアミノ酸が欠失、置換または付加されたアミノ酸配列からなり、かつCD131の機能を有するポリペプチドが挙げられる。
 UniProt Entry.No.P32927またはGenBank accession No.XP_015312724_1に示されるアミノ酸配列と通常70%以上、好ましくは80%以上、さらに好ましくは90%以上の相同性を有するアミノ酸配列を含むポリペプチド、最も好ましくは95%以上、96%以上、97%以上、98%以上および99%以上の相同性を有するアミノ酸配列からなり、かつCD131の機能を有するポリペプチドも本発明におけるCD131に包含される。
 UniProt Entry.No.P32927またはGenBank accession No.XP_015312724_1において1以上のアミノ酸残基が欠失、置換、または付加されたアミノ酸配列を有するポリペプチドは、前述の部位特異的変異導入法などを用いて、例えば、UniProt Entry.No.P32927またはGenBank accession No.XP_015312724_1に示されるアミノ酸配列をコードするDNAに、部位特異的変異を導入することにより得ることができる。欠失、置換または付加されるアミノ酸の数は特に限定されないが、好ましくは1個~数十個、例えば、1~20個、より好ましくは1個~数個、例えば、1~5個のアミノ酸である。
 CD131をコードする遺伝子としては、例えば、配列番号1またはGenBank accession No.M59941に示されるヒトCD131の塩基配列、および配列番号2に示されるサルCD131の塩基配列などが挙げられる。
 また、例えば配列番号1、GenBank accession No.M59941または配列番号2に示される塩基配列において1以上の塩基が欠失、置換または付加された塩基配列からなり、かつCD131の機能を有するポリペプチドをコードするDNAを含む遺伝子、配列番号1、GenBank accession No.M59941または配列番号2に示される塩基配列と好ましくは60%以上の相同性を有する塩基配列、より好ましくは80%以上の相同性を有する塩基配列、さらに好ましくは95%以上の相同性を有する塩基配列からなり、かつCD131の機能を有するポリペプチドをコードするDNAを含む遺伝子、並びに配列番号1、GenBank accession No.M59941または配列番号2に示される塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズするDNAからなり、かつCD131の機能を有するポリペプチドをコードするDNAを含む遺伝子なども、本発明におけるCD131をコードする遺伝子に包まれる。
 ストリンジェントな条件下でハイブリダイズするDNAとしては、前述と同様に、例えば配列番号1またはGenBank accession No.M59941または配列番号2に示される塩基配列を有するDNAをプローブに用いた、コロニー・ハイブリダイゼーション法、プラーク・ハイブリダイゼーション法、サザンブロット・ハイブリダイゼーション法、またはDNAマイクロアレイ法などにより得られるハイブリダイズ可能なDNAを意味する。ハイブリダイズ可能なDNAとしては、例えば、配列番号1、GenBank accession No.M59941または配列番号2に示される塩基配列と好ましくは60%以上の相同性を有するDNA、より好ましくは80%以上の相同性を有するDNA、さらに好ましくは95%以上の相同性を有するDNAを挙げることができる。
 真核生物のタンパク質をコードする遺伝子の塩基配列には、しばしば遺伝子の多型が認められる。本発明において用いられる遺伝子内に、このような多型によって塩基配列に小規模な変異を生じた遺伝子も、本発明のCD131をコードする遺伝子に包含される。
 CD131のアミノ酸配列の部分配列からなるポリペプチドは、UniProt Entry.No.P32927またはGenBank accession No.XP_015312724_1に示されるアミノ酸配列をコードするDNAを用いて、前述と同様に当業者に公知の方法によって作製できる。
 本発明におけるCD131の細胞外領域としては、例えばUniProt Entry.No.P32927に示されるヒトCD131のアミノ酸配列を用いて、前述と同様の方法により予測された領域などが挙げられる。具体的には、CD131の細胞外領域としては、UniProt Entry.No.P32927の17番目~443番目に示されるアミノ酸配列が挙げられる。
 CD131の機能としては、CD116(GM-CSFRα)、CD123(IL-3Rα)、CD125(IL-5Rα)と会合し、それぞれGM-CSF、IL-3、IL-5のシグナルを細胞内に伝達すること[Cytokine Growth Factor Rev., 12, 19(2001)]が挙げられる。
 CD131を発現する細胞は例えば、単球、顆粒球および初期B細胞が挙げられる。
 抗体とは、イムノグロブリンを構成する重鎖の可変領域および重鎖の定常領域、並びに軽鎖の可変領域および軽鎖の定常領域の全部または一部をコードする遺伝子(「抗体遺伝子」と称する)に由来するタンパク質である。本発明の抗体は、いずれのイムノグロブリンクラスおよびサブクラスを有する抗体または抗体断片をも包含する。
 重鎖(H鎖)とは、イムノグロブリン分子を構成する2種類のポリペプチドのうち、分子量が大きい方のポリペプチドを指す。重鎖は抗体のクラスとサブクラスを決定する。IgA、IgD、IgE、IgGおよびIgMは、それぞれα鎖、δ鎖、ε鎖、γ鎖およびμ鎖を重鎖として有し、重鎖の定常領域は異なるアミノ酸配列で特徴付けられる。軽鎖(L鎖)とは、イムノグロブリン分子を構成する2種類のポリペプチドのうち、分子量が小さい方のポリペプチドを指す。ヒトの抗体の場合、軽鎖にはκ鎖とλ鎖の2種類が存在する。
 可変領域(V領域)とは、通常は、イムノグロブリンのN末端側のアミノ酸配列内に存在する多様性に富んだ領域を指す。可変領域以外の部分は多様性の少ない構造をとることから、定常領域(C領域)と呼ばれる。重鎖と軽鎖の各可変領域は会合して抗原結合部位を形成し、抗原への抗体の結合特性を決定する。
 ヒトの抗体の重鎖では、可変領域はKabatらのEUインデックス(Kabat et al., Sequences of proteins of immunological interest, 1991 Fifth edition)における1番目から117番目までのアミノ酸配列に該当し、定常領域は118番目以降のアミノ酸配列に該当する。ヒトの抗体の軽鎖ではKabatらによる番号付け(Kabat numbering)における1番目から107番目までのアミノ酸配列が可変領域に該当し、108番目以降のアミノ酸配列が定常領域に該当する。以下、重鎖可変領域または軽鎖可変領域を、VHまたはVLと略記する。
 抗原結合部位は、抗体において抗原を認識し結合する部位であり、抗原決定基(エピトープ)と相補的な立体構造を形成する部位を指す。抗原結合部位は、抗原決定基との間に強い分子間相互作用を生じる。抗原結合部位は、少なくとも3つの相補性決定領域(CDR)を含むVHおよびVLにより構成される。ヒトの抗体の場合、VHおよびVLはそれぞれ3つのCDRを有する。これらのCDRを、それぞれN末端側から順番にCDR1、CDR2およびCDR3と称する。
 定常領域のうち、重鎖定常領域または軽鎖定常領域は、それぞれCHまたはCLと表記される。CHは、重鎖のサブクラスであるα鎖、δ鎖、ε鎖、γ鎖およびμ鎖によって分類される。CHは、N末端側より順に整列したCH1ドメイン、ヒンジドメイン、CH2ドメイン、CH3ドメインから構成され、CH2ドメインとCH3ドメインとを併せてFc領域という。一方、CLは、Cλ鎖およびCκ鎖とよばれる2つのサブクラスに分類される。
 モノクローナル抗体は、単一性(monoclonality)を保持した抗体産生細胞が分泌する抗体であり、単一のエピトープ(抗原決定基ともいう)を認識する。モノクローナル抗体分子同士は同一のアミノ酸配列(1次構造)を有し、単一の構造をとる。ポリクローナル抗体とは、異なるクローンの抗体産生細胞が分泌する抗体分子の集団をいう。オリゴクローナル抗体とは、複数の異なるモノクローナル抗体を混合した抗体分子の集団をいう。
 エピトープは、抗体が認識し、結合する抗原の構造部位をいう。エピトープとしては、例えば、モノクローナル抗体が認識し、結合する単一のアミノ酸配列、アミノ酸配列からなる立体構造、糖鎖が結合したアミノ酸配列および糖鎖が結合したアミノ酸配列からなる立体構造などが挙げられる。
 本発明におけるモノクローナル抗体としては、ハイブリドーマにより産生される抗体、および抗体遺伝子を含む発現ベクターで形質転換した形質転換体により産生される遺伝子組換え抗体を挙げることができる。
 ハイブリドーマは、例えば、抗原を調製し、該抗原を免疫した動物より抗原特異性を有する抗体産生細胞を取得し、さらに、該抗体産生細胞と骨髄腫細胞とを融合させることによって、調製できる。該ハイブリドーマを培養するか、または該ハイブリドーマを動物に投与して該ハイブリドーマを腹水癌化させ、該培養液または腹水を分離、精製することにより、所望のモノクローナル抗体を取得できる。抗原を免疫する動物としては、ハイブリドーマを作製することが可能であれば、いかなるものも用いることができるが、マウス、ラット、ハムスターおよびラビットなどが好適に用いられる。また、このような被免疫動物から抗体産生能を有する細胞を取得し、該細胞にin vitroで免疫を施した後に、骨髄腫細胞と融合して、ハイブリドーマを作製することもできる。
 本発明における遺伝子組換え抗体としては、例えば、組換えマウス抗体、組換えラット抗体、組換えハムスター抗体、組換えラビット抗体、ヒト型キメラ抗体(キメラ抗体ともいう)、ヒト化抗体(CDR移植抗体ともいう)およびヒト抗体などの、遺伝子組換え技術により製造される抗体が挙げられる。遺伝子組換え抗体においては、対象とする動物種や目的に応じて、どの動物種由来の重鎖および軽鎖の可変領域並びに定常領域を適用するかを決定できる。例えば、対象とする動物種がヒトの場合には、可変領域をヒトまたはマウスなどの非ヒト動物由来とし、定常領域およびリンカーをヒト由来とすることができる。
 キメラ抗体とは、ヒト以外の動物(非ヒト動物)の抗体のVHおよびVLと、ヒト抗体のCHおよびCLとからなる抗体を指す。非ヒト動物としては、マウス、ラット、ハムスターおよびラビットなど、ハイブリドーマを作製することが可能であれば、いかなるものも用いることができる。キメラ抗体は、モノクローナル抗体を生産する非ヒト動物由来のハイブリドーマより、VHおよびVLをコードするcDNAを取得し、ヒト抗体のCHおよびCLをコードするDNAを有する動物細胞用発現ベクターにそれぞれ挿入してキメラ抗体発現ベクターを構築し、動物細胞へ導入して発現させることによって、製造できる。
 ヒト化抗体とは、非ヒト動物抗体のVHおよびVLのCDRをヒト抗体のVHおよびVLの対応するCDRに移植した抗体を指す。VHおよびVLのCDR以外の領域はフレームワーク領域(以下、FRと表記する)と称される。ヒト化抗体は、非ヒト動物抗体のVHのCDRのアミノ酸配列と任意のヒト抗体のVHのFRのアミノ酸配列からなるVHのアミノ酸配列をコードするcDNAと、非ヒト動物抗体のVLのCDRのアミノ酸配列と任意のヒト抗体のVLのFRのアミノ酸配列からなるVLのアミノ酸配列をコードするcDNAを構築し、ヒト抗体のCHおよびCLをコードするDNAを有する動物細胞用発現ベクターにそれぞれ挿入してヒト化抗体発現ベクターを構築し、動物細胞へ導入して発現させることによって、製造できる。
 ヒト抗体は、元来、ヒト体内に天然に存在する抗体をいうが、最近の遺伝子工学的、細胞工学的、発生工学的な技術の進歩により作製されたヒト抗体ファージライブラリーおよびヒト抗体産生トランスジェニック動物から得られる抗体なども含まれる。
 ヒト体内に天然に存在する抗体は、例えば、ヒト末梢血リンパ球にEBウイルスなどを感染させて不死化し、クローニングすることにより、該抗体を産生するリンパ球を培養し、該培養上清より該抗体を精製することにより取得できる。
 ヒト抗体ファージライブラリーは、ヒトB細胞から調製した抗体遺伝子をファージ遺伝子に挿入することにより、Fab、scFv(single chain Fv)など抗体断片をファージ表面に発現させたライブラリーである。該ライブラリーより、抗原を固定化した基質に対する結合活性を指標として、所望の抗原結合活性を有する抗体断片を表面に発現しているファージを回収できる。該抗体断片は、さらに、遺伝子工学的手法により2本の完全なH鎖および2本の完全なL鎖からなるヒト抗体分子へ変換できる。
 ヒト抗体産生トランスジェニック動物は、ヒト抗体遺伝子が細胞内に組み込まれた動物を意味する。具体的には、例えば、マウスES細胞へヒト抗体遺伝子を導入し、該ES細胞をマウスの初期胚へ移植後、個体を発生させることにより、ヒト抗体産生トランスジェニックマウスを作製できる。ヒト抗体産生トランスジェニック動物由来のヒト抗体は、通常の非ヒト動物で行われているハイブリドーマ作製法を用いてハイブリドーマを取得し、培養することで、培養上清中に抗体を生産蓄積させることにより調製できる。
 遺伝子組換え抗体のCHとしては、ヒトイムノグロブリンに属すればいかなるものでもよいが、human immunoglobulin G(hIgG)クラスのものが好ましい。さらにhIgGクラスに属するhIgG1、hIgG2、hIgG3およびhIgG4といったサブクラスのいずれも用いることができる。また、遺伝子組換え抗体のCLとしては、ヒトイムノグロブリンに属すればいずれのものでもよく、κクラスまたはλクラスのものを用いることができる。
 本発明において、バイスペシフィック抗体とは、異なる2種類のエピトープそれぞれに特異的に結合する抗原結合ドメインを有するポリペプチドまたはタンパク質をいう。バイスペシフィック抗体は、単一の抗原の異なるエピトープに結合してもよいし、異なる抗原に結合してもよい。また、異なる抗原に結合する場合、それらの抗原は同一の細胞に存在していてもよいし、異なる細胞に存在していてもよい。
 本発明のバイスペシフィック抗体は、異なる2種類のエピトープとして、CD131またはCD116にそれぞれ特異的に結合する第1の抗原結合ドメインおよび第2の抗原結合ドメインを含む。第1の抗原結合ドメインおよび第2の抗原結合ドメインのいずれか一方がCD116に結合する抗原結合ドメインであり、もう一方がCD131に結合する抗原結合ドメインである。
 本発明のバイスペシフィック抗体のエピトープとしては、CD131(配列番号211)の163番目のトリプトファン(W)および221番目のアルギニン(R)を含むエピトープと、CD116(配列番号210)の156番目のアスパラギン(N)、158番目のリシン(K)および187番目のスレオニン(T)を含むエピトープとが挙げられる。CD131(配列番号211)の163番目のトリプトファン(W)および221番目のアルギニン(R)を含むエピトープ、並びにCD116(配列番号210)の156番目のアスパラギン(N)、158番目のリシン(K)および187番目のスレオニン(T)を含むエピトープはいずれも立体構造のエピトープである。
 本発明において、ポリペプチド、抗体もしくは該抗体断片またはバイスペシフィック抗体もしくは該バイスペシフィック抗体断片が、CD116および/またはCD131に結合することは、例えば、公知の免疫学的検出法、好ましくは蛍光細胞染色法等を用いて、評価したいCD131またはCD116を発現した細胞と抗体との結合性を確認する方法により確認できる。また、公知の免疫学的検出法[Monoclonal Antibodies - Principles and Practice, Third Edition, Academic Press(1996)、Antibodies - A Laboratory Manual, Cold Spring Harbor Laboratory(1988)、単クローン抗体実験マニュアル、講談社サイエンティフィック(1987)]などを組み合わせて用いることもできる。
 本発明のバイスペシフィック抗体または該抗体断片を構成するアミノ酸配列において、1つ以上のアミノ酸残基が欠失、付加、置換または挿入され、かつ上述の抗体またはその抗体断片と同様な活性を有する抗体またはその抗体断片も、本発明のバイスペシフィック抗体またはその抗体断片に包含される。
 欠失、置換、挿入および/または付加されるアミノ酸の数は1個以上でありその数は特に限定されないが、Molecular Cloning, The Second Edition, Cold Spring Harbor Laboratory Press (1989)、Current Protocols in Molecular Biology, John Wiley & Sons(1987-1997)、Nucleic Acids Research, 10, 6487(1982)、Proc. Natl. Acad. Sci., USA, 79, 6409(1982)、Gene, 34, 315 (1985)、Nucleic Acids Research, 13, 4431(1985)、Proc. Natl. Acad. Sci USA, 82, 488(1985)などに記載の部位特異的変異導入法等の周知の技術により、欠失、置換、挿入若しくは付加できる程度の数である。例えば、通常1~数十個、好ましくは1~20個、より好ましくは1~10個、さらに好ましくは1~5個である。
 上記の本発明のバイスペシフィック抗体のアミノ酸配列において1つ以上のアミノ酸残基が欠失、置換、挿入または付加されたとは、次のことを示す。同一配列中の任意、かつ1若しくは複数のアミノ酸配列中において、1または複数のアミノ酸残基の欠失、置換、挿入または付加があることを意味する。また、欠失、置換、挿入または付加が同時に生じる場合もあり、置換、挿入または付加されるアミノ酸残基は天然型と非天然型いずれの場合もある。
 天然型アミノ酸残基としては、例えば、L-アラニン、L-アスパラギン、L-アスパラギン酸、L-グルタミン、L-グルタミン酸、グリシン、L-ヒスチジン、L-イソロイシン、L-ロイシン、L-リジン、L-アルギニン、L-メチオニン、L-フェニルアラニン、L-プロリン、L-セリン、L-スレオニン、L-トリプトファン、L-チロシン、L-バリンおよびL-システインなどが挙げられる。
 以下に、相互に置換可能なアミノ酸残基の好ましい例を示す。同一群に含まれるアミノ酸残基は相互に置換可能である。
 A群:ロイシン、イソロイシン、ノルロイシン、バリン、ノルバリン、アラニン、2-アミノブタン酸、メチオニン、O-メチルセリン、t-ブチルグリシン、t-ブチルアラニン、シクロヘキシルアラニン
 B群:アスパラギン酸、グルタミン酸、イソアスパラギン酸、イソグルタミン酸、2-アミノアジピン酸、2-アミノスベリン酸
 C群:アスパラギン、グルタミン
 D群:リジン、アルギニン、オルニチン、2,4-ジアミノブタン酸、2,3-ジアミノプロピオン酸
 E群:プロリン、3-ヒドロキシプロリン、4-ヒドロキシプロリン
 F群:セリン、スレオニン、ホモセリン
 G群:フェニルアラニン、チロシン
 本発明のバイスペシフィック抗体または該抗体断片には、非天然アミノ酸が含まれていてもよく、例えば、国際公開第2017/030156号に開示のあるZリジン誘導体(N6-((ベンジルオキシ)カルボニル)-L-リジン誘導体)、TCO*-Lys(N6-(((トランス-シクロオクト-2-エン-1-イル)オキシ)カルボニル)-L-リジン)またはBCN-Lys(N6-((ビシクロ[6.1.0]ノン-4-イン-9-イルメトキシ)カルボニル)-L-リジン)が挙げられる。
 本発明のバイスペシフィック抗体または該バイスペシフィック抗体断片は、翻訳後修飾されたいかなるアミノ酸残基を含む抗体をも包含する。翻訳後修飾としては、例えば、H鎖のC末端におけるリジン残基の欠失[リジン・クリッピング(lysine clipping)]およびポリペプチドのN末端におけるグルタミン残基のピログルタミン(pyroGlu)への置換などが挙げられる[Beck et al, Analytical Chemistry, 85, 715-736(2013)]。
 本発明のバイスペシフィック抗体または該バイスペシフィック抗体断片としては、例えばGM-CSF受容体のアゴニスト活性を有するバイスペシフィック抗体または該バイスペシフィック抗体断片が挙げられる。
 本発明のバイスペシフィック抗体または該バイスペシフィック抗体断片としては、CD116およびCD131を発現していない細胞にはGM-CSF受容体アゴニスト活性を示さず、CD116およびCD131を発現した細胞にのみGM-CSF受容体のアゴニスト活性を示すバイスペシフィック抗体または該バイスペシフィック抗体断片が好ましい。
 また、本発明のバイスペシフィック抗体または該バイスペシフィック抗体断片としては、CD131をGM-CSF受容体と共通の構成分子として有する、IL-3受容体やIL-5受容体にはシグナルを入れないものが好ましい。
 本発明のバイスペシフィック抗体または該バイスペシフィック抗体断片は、同一細胞上に発現しているCD116およびCD131に結合してもよいし、異なる細胞上に発現しているCD116およびCD131に結合してもよいが、同一細胞上に発現しているCD116およびCD131に結合することが好ましい。
 アゴニスト活性とは、受容体に結合し、その受容体の本来のリガンドと同様の細胞内情報伝達を行う活性を言う。
 本発明のバイスペシフィック抗体は、GM-CSF受容体に対してアゴニスト活性を有することが好ましい。本発明のバイスペシフィック抗体は、CD116およびCD131の両方に結合することで、GM-CSFと同様にGM-CSF受容体に作用して、アゴニスト活性を発揮し得る。
 本発明において、GM-CSF受容体に対するアゴニスト活性とは、例えばGM-CSFが、細胞上のCD116およびCD131の両方に結合することにより、GM-CSF受容体から細胞内にシグナルが伝達された結果、当該細胞の活性化、細胞増殖促進、細胞生存能増加、分化誘導等をする活性を言う。具体的には、GM-CSF又は本発明のバイスペシフィック抗体がモノサイト上のCD116およびCD131の両方に結合することにより、GM-CSF受容体からシグナル伝達され、マクロファージへの分化を誘導する活性を言う。
 本発明のバイスペシフィック抗体または該バイスペシフィック抗体断片としては、GM-CSF受容体に対するアゴニスト活性を有し、GM-CSF受容体に結合後、細胞内にシグナルを伝達するものが好ましい。また、本発明のバイスペシフィック抗体または該バイスペシフィック抗体断片としては、モノサイト上のGM-CSF受容体に結合し、マクロファージへの分化誘導能を有するものが好ましい。
 本発明のバイスペシフィック抗体または該バイスペシフィック抗体断片としては、同一細胞上に発現するCD116およびCD131に結合したあと、GM-CSF受容体の複合体形成を誘導し、細胞内にシグナルを伝達するものが好ましい。また、本発明のバイスペシフィック抗体または該バイスペシフィック抗体断片としては、モノサイト上のCD116およびCD131に結合し、マクロファージへの分化誘導能を有するものが好ましい。
 GM-CSF受容体に対するアゴニスト活性は、例えばヒト赤芽球細胞株TF-1(CRL-2003)などのGM-CSF受容体を発現し、GM-CSF依存的に増殖する細胞を用いて、細胞の増殖率、生存率、または生細胞数などを評価することにより確認できる。
 マクロファージへの分化誘導能は、例えば、ヒト末梢血単核球(PBMC)由来モノサイトなどを用いて、モノサイトおよびマクロファージのマーカー分子であるCD14とCD206の発現量の変化、細胞数、および細胞の形態などを評価することにより確認できる。
 すなわち、本発明のバイスペシフィック抗体または該バイスペシフィック抗体断片として、具体的には、CD116およびCD131の両方に結合したときに、GM-CSF受容体アゴニストとして作用するもの、および/またはモノサイトに対してマクロファージの分化誘導能を有するバイスペシフィック抗体または該バイスペシフィック抗体断片などが挙げられる。
 一分子のバイスペシフィック抗体が有する、抗原に対する抗原結合ドメインの数を、結合の価数と呼ぶ。例えば、本発明において、一分子のバイスペシフィック抗体が、CD116に結合する抗原結合およびCD131に結合する抗原結合ドメインを一つずつ有する場合、かかるバイスペシフィック抗体は、CD116およびCD131に、それぞれ一価で結合する。
 本発明のバイスペシフィック抗体は、CD116およびCD131に対し1価または2価でそれぞれ結合することが好ましく、アゴニスト活性を向上する観点から2価で結合することがより好ましい。
 本発明において、第1の抗原結合ドメインおよび第2の抗原結合ドメインは、CD131またはCD116をそれぞれ特異的に認識し、結合するものであればいかなるものでもよい。例えば、抗体、リガンド、受容体、および天然に存在する相互作用分子など遺伝子組換え技術によって作製可能なポリペプチド、タンパク質分子およびその断片、並びに該タンパク質分子の低分子または天然物とのコンジュゲート体などいずれの形態であってもよい。
 また、第1の抗原結合ドメインおよび第2の抗原結合ドメインとしては、抗体(以下、イムノグロブリンとも称する)、リガンドおよび受容体など既知の結合分子の結合ドメインを利用して組換えた結合タンパク質でもよく、具体的には各抗原に結合する抗体のCDRを含む組換えタンパク質、CDRを含む抗体可変領域(VHおよびVL)、抗体可変領域などの抗体断片および各抗原に結合するリガンドの結合ドメインを含む組換えタンパク質などが挙げられる。
 本発明において、イムノグロブリンドメインとは、イムノグロブリンに類似したアミノ酸配列を持ち、少なくとも2個のシステイン残基が存在する約100個のアミノ酸残基からなるペプチドを最小単位とする。本発明においてイムノグロブリンドメインは、上記の最小単位のイムノグロブリンドメインを複数含むポリペプチドをも包含する。イムノグロブリンドメインとしては、例えばイムノグロブリン重鎖のVH、CH1、CH2およびCH3、並びにイムノグロブリン軽鎖のVLおよびCLなどが挙げられる。
 イムノグロブリンの動物種は特に限定されないが、ヒトであることが好ましい。また、イムノグロブリン重鎖の定常領域のサブクラスは、IgD、IgM、IgG1、IgG2、IgG3、IgG4、IgA1、IgA2およびIgEのいずれでもよく、好ましくは、IgG由来およびIgM由来が挙げられる。また、イムノグロブリン軽鎖の定常領域のサブクラスは、κおよびλのいずれでもよい。
 また、イムノグロブリンドメインはイムノグロブリン以外のタンパク質にも存在し、例えば主要組織適合抗原(MHC)、CD1、B7およびT細胞受容体(TCR)などのイムノグロブリンスーパーファミリーに属するタンパク質が含むイムノグロブリンドメインが挙げられる。本発明のバイスペシフィック抗体に用いるイムノグロブリンドメインとしては、いずれのイムノグロブリンドメインも適用できる。
 ヒトのIgGの場合、CH1は、EUインデックスで示される118番目から215番目のアミノ酸配列を有する領域を指す。同様に、CH2はKabatらのEUインデックスで示される231番目から340番目のアミノ酸配列を有する領域を、CH3はKabatらのEUインデックスで示される341番目から447番目のアミノ酸配列を有する領域を各々指す。CH1とCH2の間には、ヒンジ(蝶番)領域(以下ヒンジと記載することもある)と呼ばれる柔軟性に富んだアミノ酸領域が存在する。ヒンジ領域は、KabatらのEUインデックスで示される216番目から230番目のアミノ酸配列を有する領域を指す。
 CLは、ヒトの抗体のκ鎖の場合には、Kabat numberingで示される108番目から214番目のアミノ酸配列を有する領域を、λ鎖の場合には、108番目から215番目のアミノ酸配列を有する領域を各々指す。
 本発明のバイスペシフィック抗体に含まれるCD131に結合する抗原結合ドメインとは、CD131の細胞外領域を特異的に認識し、かつ結合する機能を有する抗原結合ドメインをいう。
 本発明のバイスペシフィック抗体に含まれるCD116に結合する抗原結合ドメインとは、CD116の細胞外領域を特異的に認識し、かつ結合する機能を有する抗原結合ドメインをいう。
 本発明のバイスペシフィック抗体は、CD116に結合する抗原結合ドメインおよびCD131に結合する抗原結合ドメインのほかに、抗体のFc領域を有していてもよい。Fc領域は、安定性および調製の容易さの観点から、IgG1またはIgG4サブクラスであることが好ましく、各々下記に示すアミノ酸残基置換を含むことがより好ましい。
(1)Fc領域がIgG1サブクラスである場合、EUインデックスで表されるL234A、L235AおよびG237Aのアミノ酸残基置換を含むことが好ましく、これらのアミノ酸残基置換に加えてEUインデックスで表されるH435Fのアミノ酸残基置換を含むことがより好ましい。
(2)Fc領域がIgG4サブクラスである場合、EUインデックスで表されるS228P、L235EおよびR409Kのアミノ酸残基置換を含むことが好ましく、これらのアミノ酸残基置換に加えてEUインデックスで表されるH435Fのアミノ酸残基置換を含むことがより好ましい。
 本発明において抗原結合ドメインとは、CD131またはCD116に対する抗原結合能を有していれば、単鎖であっても複数のポリペプチド鎖からなる多量体であってもよい。抗原結合ドメインとしては、例えばCD131またはCD116に結合する抗体、抗体断片、またはGM-CSFの部分断片などが挙げられる。
 本発明において抗原結合ドメインは、各抗原(CD131またはCD116)に結合する抗体のCDRを含む、VHおよびVLを含むことが好ましい。
 本発明におけるCD131に結合する抗原結合ドメインとしては、下記(1a)~(1e)から選ばれるいずれか1である抗原結合ドメインが挙げられる。
(1a)それぞれ配列番号61~63で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号64~66で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(1b)それぞれ配列番号67~69で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号70~72で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(1c)それぞれ配列番号73~75で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号76~78で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(1d)それぞれ配列番号79~81で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号82~84で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(1e)それぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
 本発明におけるCD131に結合する抗原結合ドメインとしては、より具体的には、下記(1A)~(1E)から選ばれるいずれか1が挙げられる。
(1A)配列番号21で表されるアミノ酸配列を含むVH、および、配列番号22で表されるアミノ酸配列を含むVLを含む
(1B)配列番号23で表されるアミノ酸配列を含むVH、および、配列番号24で表されるアミノ酸配列を含むVLを含む
(1C)配列番号25で表されるアミノ酸配列を含むVH、および、配列番号26で表されるアミノ酸配列を含むVLを含む
(1D)配列番号27で表されるアミノ酸配列を含むVH、および、配列番号28で表されるアミノ酸配列を含むVLを含む
(1E)配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
 本発明におけるCD116に結合する抗原結合ドメインとしては、具体的には例えば、下記(2a)~(2q)および(2r-1)~(2r-12)から選ばれるいずれか1である抗原結合ドメインが挙げられる。
(2a)それぞれ配列番号31~33で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号34~36で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2b)それぞれ配列番号37~39で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号40~42で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2c)それぞれ配列番号43~45で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号46~48で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2d)それぞれ配列番号49~51で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号52~54で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2e)それぞれ配列番号55~57で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号58~60で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2f)それぞれ配列番号104~106で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2g)それぞれ配列番号107~109で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2h)それぞれ配列番号110~112で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2i)それぞれ配列番号113~115で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2j)それぞれ配列番号116~118で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2k)それぞれ配列番号119~121で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2l)それぞれ配列番号122~124で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2m)それぞれ配列番号125~127で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2n)それぞれ配列番号128~130で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2о)それぞれ配列番号131~133で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2p)それぞれ配列番号134~136で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2q)それぞれ配列番号137~139で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2r-1)配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列中の9番目のアルギニンをリジンに置換する改変が導入されたアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2r-2)配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列中の17番目のグリシンをアスパラギン酸に置換する改変が導入されたアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2r-3)配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列中の9番目のアルギニンをスレオニンに置換する改変が導入されたアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2r-4)配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列中の2番目のフェニルアラニンをロイシンに、9番目のアルギニンをスレオニンに置換する改変が導入されたアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2r-5)配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列中の2番目のフェニルアラニンをセリンに、9番目のアルギニンをスレオニンに置換する改変が導入されたアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2r-6)配列番号137で表されるアミノ酸配列の2番目のロイシンをバリンに、3番目のセリンをアラニンに、4番目のメチオニンをロイシンに置換する改変が導入されたアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2r-7)配列番号137で表されるアミノ酸配列の2番目のロイシンをフェニルアラニンに、3番目のセリンをアラニンに置換する改変が導入されたアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2r-8)配列番号137で表されるアミノ酸配列の3番目のセリンをアラニンに、4番目のメチオニンをロイシンに置換する改変が導入されたアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2r-9)配列番号137で表されるアミノ酸配列の2番目のロイシンをチロシンに、3番目のセリンをアラニンに置換する改変が導入されたアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2r-10)配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列の2番目のロイシンをグルタミン酸に置換する改変が導入されたアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2r-11)配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列の2番目のロイシンをグルタミン酸に、5番目のチロシンをトリプトファンに、6番目のチロシンをメチオニンに置換する改変が導入されたアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2r-12)配列番号137で表されるアミノ酸配列の2番目のロイシンをフェニルアラニンに、3番目のセリンをアラニンに、4番目のメチオニンをロイシンに置換する改変が導入されたアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
 本発明におけるCD116に結合する抗原結合ドメインとしては、より具体的には、下記(2A)~(2Y)および(2Z-1)~(2Z-20)から選ばれるいずれか1である抗原結合ドメインが挙げられる。
(2A)配列番号11で表されるアミノ酸配列を含むVH、および、配列番号12で表されるアミノ酸配列を含むVLを含む
(2B)配列番号13で表されるアミノ酸配列を含むVH、および、配列番号14で表されるアミノ酸配列を含むVLを含む
(2C)配列番号15で表されるアミノ酸配列を含むVH、および、配列番号16で表されるアミノ酸配列を含むVLを含む
(2D)配列番号17で表されるアミノ酸配列を含むVH、および、配列番号18で表されるアミノ酸配列を含むVLを含む
(2E)配列番号19で表されるアミノ酸配列を含むVH、および、配列番号20で表されるアミノ酸配列を含むVLを含む
(2F)配列番号92で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2G)配列番号93で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2H)配列番号94で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2I)配列番号95で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2J)配列番号96で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2K)配列番号97で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2L)配列番号98で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2M)配列番号99で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2N)配列番号100で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2O)配列番号101で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2P)配列番号102で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Q)配列番号103で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2R)配列番号176で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2S)配列番号177で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2T)配列番号178で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2U)配列番号179で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2V)配列番号182で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2W)配列番号183で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2X)配列番号184で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Y)配列番号185で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-1)配列番号190で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-2)配列番号191で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-3)配列番号192で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-4)配列番号193で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-5)配列番号194で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-6)配列番号195で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-7)配列番号196で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-8)配列番号197で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-9)配列番号198で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-10)配列番号199で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-11)配列番号200で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-12)配列番号201で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-13)配列番号202で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-14)配列番号203で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-15)配列番号204で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-16)配列番号205で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-17)配列番号206で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-18)配列番号207で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-19)配列番号208で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-20)配列番号209で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
 本発明のバイスペシフィック抗体の構造としては、第1の抗原結合ドメインと第2の抗原結合ドメインを含んでいれば特に制限されないが、GM-CSF受容体に対するアゴニスト活性を向上する観点から、それぞれFabであることが好ましい。
 本明細書において、第1の抗原結合ドメインがFabである場合を第1のFab、第2の抗原結合ドメインがFabである場合を第2のFabとする。第1のFabは、VHおよびCH1ドメインを含む第1の抗原結合ドメインの重鎖(以下、第1のFabの重鎖と略す)と、VLおよびCLを含む軽鎖とを含むことが好ましく、第2のFabは、VHおよびCH1ドメインを含む第2の結合ドメインの重鎖(以下、第2のFabの重鎖と略す)と、VLおよびCLを含む軽鎖とを含むことが好ましい。
 本発明のバイスペシフィック抗体の構造としては、例えば、下記の(1)~(3)に示す構造が挙げられる。
(1)第1のFab(VH-CH1、VL-CL)および第2のFab(VH-CH1’、VL-CL)をそれぞれ1つ、並びにヒンジ領域を含み、第1のFabにおける重鎖のC末端と、第2のFabにおける重鎖のC末端とが、該ヒンジ領域のN末端にそれぞれ結合している構造(以下、IgG型とも略称する)。
 IgG型バイスペシフィック抗体は、安定性および調製時の容易さの観点から、さらにFc領域を含み、該ヒンジ領域のC末端に該Fc領域のN末端が結合している構造であることが好ましい。かかる態様のIgG型バイスペシフィック抗体の模式図を図2に示す。
(2)下記第1のポリペプチド、下記第2のポリペプチド、およびヒンジ領域を含み、第1のポリペプチドのC末端と第2のポリペプチドのC末端とが前記ヒンジ領域のN末端にそれぞれ結合している構造。
 第1のポリペプチド:第1のFab(VH-CH1、VL-CL)をN末端に少なくとも含む、ポリペプチド。
 第2のポリペプチド:第2のFab(VH-CH1’、VL-CL)をC末端に少なくとも含む、ポリペプチド。
 かかる態様においては、少なくとも、第1のポリペプチドにおける第1のFabの抗原結合性と、第2のポリペプチドにおける第2のFabの抗原結合性とが保持されていることが好ましい。 
 かかる態様においては、さらにFc領域を含み、前記ヒンジ領域のC末端に該Fc領域のN末端が結合している構造を含むことが好ましい。かかる構造を含むことにより、第1のポリペプチドによりCD131に結合し、かつ第2のポリペプチドによりCD116に結合する高次構造をより取りやすくなる。その結果、CD116およびCD131に対して優れた結合性を示し、GM-CSF受容体に対する高いアゴニスト活性を示すと考えられる。
 かかる構造の一態様としては、下記(2-1)~(2-4)が挙げられる。
(2-1)第1のFabと第2のFabとをN末端から順に含む第1のポリペプチド、第1のFabと第2のFabとをN末端から順に含む第2のポリペプチド、およびヒンジ領域を含む構造。かかる構造において、第1のポリペプチドと第2のポリペプチドは、それぞれ、第1のFabにおける重鎖(VH-CH1)のC末端と、第2のFabにおける重鎖(VH-CH1’)のN末端とが直接またはリンカーを介して結合しているポリペプチド鎖(VH-CH1-VH-CH1’)を含み、該ポリペプチド鎖のC末端が該ヒンジ領域のN末端にそれぞれ結合している(以下、かかる構造をN末端型とも略称する)。
 N末端型バイスペシフィック抗体は、安定性の観点から、さらにFc領域を含み、該ヒンジ領域のC末端に該Fc領域のN末端が結合している構造であることが好ましい。かかる態様のN末端型バイスペシフィック抗体の模式図を図4の(A)に示す。具体的な一実施態様としては、例えば、図16に示されるGM408WT(2×2)が挙げられる。
(2-2)第1のFabと第2のFabとをN末端から順に含む第1のポリペプチド、第2のFabを含む第2のポリペプチド、およびヒンジ領域を含む構造。かかる構造においては、第1のポリペプチドは、第1のFabにおける重鎖(VH-CH1)のC末端と、第2のFabにおける重鎖(VH-CH1’)のN末端とが直接またはリンカーを介して結合しているポリペプチド鎖(VH-CH1-VH-CH1’)を含む。
 かかる態様においては、さらにFc領域を含み、前記ヒンジ領域のC末端に該Fc領域のN末端が結合している構造を含むことが好ましい。具体的な一実施態様としては、例えば、図16に示されるGM408v8(2×1)が挙げられる。
(2-3)第1のFabと第2のFabとをN末端から順に含む第1のポリペプチド、第2のFabと第2のFabとをN末端から順に含む第2のポリペプチド、およびヒンジ領域を含む構造であり、且つ第2のポリペプチドにおけるN末端側の第2のFabについて第2の抗原に対する結合活性を失活させる変異がVHに導入された構造。
 かかる構造においては、第1のポリペプチドは、第1のFabにおける重鎖(VH-CH1)のC末端と、第2のFabにおける重鎖(VH-CH1’)のN末端とが直接またはリンカーを介して結合しているポリペプチド鎖(VH-CH1-VH-CH1’)を含む。また、第2のポリペプチドは、第2のFabにおける重鎖(VH-CH1)のC末端と、第2のFabにおける重鎖(VH-CH1’)のN末端とが直接またはリンカーを介して結合しているポリペプチド鎖(VH-CH1-VH-CH1’)を含む。
 かかる態様においては、さらにFc領域を含み、前記ヒンジ領域のC末端に該Fc領域のN末端が結合している構造を含むことが好ましい。
(2-4)前記(2-1)の構造において、第2のポリペプチドにおける第2のFabについて第2の抗原に対する結合活性を失活させる変異がVHに導入された構造。具体的な一実施態様としては、例えば、図16に示されるGM408v2(1×2)が挙げられる。
(2-5)前記(2-3)の構造において、さらに、第1のポリペプチドにおける第2のFabについて第2の抗原に対する結合活性を失活させる変異が重鎖のVHに導入された構造。具体的な一実施態様としては、例えば、図16に示されるGM408v3(1×1)が挙げられる。
 前記(2-3)~(2-5)において、第2のFabについて第2の抗原に対する結合活性を失活させるための重鎖のVHに導入する変異としては、例えば、D31AおよびY98Aが挙げられる。
(3)第1のFab(VH-CH1、VL-CL)および第2のFab(VH-CH1’、VL-CL)をそれぞれ2つ、ヒンジ領域並びにFc領域を含み、2つの第1のFabにおける重鎖のC末端がそれぞれ該ヒンジ領域のN末端に結合し、該ヒンジ領域のC末端が該Fc領域のN末端に結合し、該Fc領域のC末端に、2つの第2のFabにおける重鎖のN末端がそれぞれ結合している構造(以下、C末端型とも略称する)。C末端型バイスペシフィック抗体の模式図を図4の(B)に示す。
 GM-CSF受容体に対するアゴニスト活性を向上する観点から、前記(1)~(3)の構造の中でも、(2)のN末端型バイスペシフィック抗体であることが好ましい。
 抗原結合ドメインを化学連結する際に用いるリンカーは、抗原結合ドメインを化学連結するのに必要な官能基を有しているものであれば特に限定されないが、その分子中にポリオキシエチレン基-(CHCHO)n-(nは1から2000の整数)を有しているリンカーが好ましい。その繰り返し数nは1~100の整数であることが好ましく、1~25の整数であることがより好ましい。
 本発明の抗原結合ドメインに含まれる非天然アミノ酸がアジド基を有する場合、用いるリンカーはアルキニル基を含むものが好ましい。その場合、抗原結合ドメインとリンカーを化学連結する反応として、ヒュスゲン[3+2]環化付加反応(Kolb et al., Angew Chem Int Ed Engl. 40. 2004-21, 2001)を用いることができる。
 抗原結合ドメイン間を適切なペプチドリンカーのアミノ酸配列で連結して組換えタンパク質として発現させるバイスペシフィック抗体のペプチドリンカーとしては特に限定されないが、例えば、Gly-Gly-Gly-Gly-Serの繰返し配列であるいわゆるGSリンカー、イムノグロブリンドメインまたはその断片を含むリンカーなどが挙げられるが、組換えタンパク質として発現可能であればいずれのアミノ酸配列からなるリンカーも使用できる。
 本発明のバイスペシフィック抗体または該バイスペシフィック抗体断片は、第1の抗原結合ドメインがCD131に結合する抗原結合ドメインであり、第2の抗原結合ドメインがCD116に結合する抗原結合ドメインであることが好ましい。第1の抗原結合ドメインおよび第2の抗原結合ドメインがそれぞれFabである場合、第1のFabがCD131に結合する抗原結合ドメインであり、第2のFabがCD116に結合する抗原結合ドメインであることが好ましい。
 本発明のバイスペシフィック抗体または該バイスペシフィック抗体断片として、例えば、第1のFabが以下の(1a)~(1e)からなる群より選ばれる1つであり、第2のFabが下記(2a)~(2q)および(2r-1)~(2r-12)からなる群より選ばれる1つであるバイスペシフィック抗体が挙げられる。
(1a)それぞれ配列番号61~63で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号64~66で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(1b)それぞれ配列番号67~69で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号70~72で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(1c)それぞれ配列番号73~75で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号76~78で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(1d)それぞれ配列番号79~81で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号82~84で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(1e)それぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2a)それぞれ配列番号31~33で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号34~36で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2b)それぞれ配列番号37~39で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号40~42で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2c)それぞれ配列番号43~45で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号46~48で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2d)それぞれ配列番号49~51で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号52~54で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2e)それぞれ配列番号55~57で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号58~60で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2f)それぞれ配列番号104~106で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2g)それぞれ配列番号107~109で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2h)それぞれ配列番号110~112で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2i)それぞれ配列番号113~115で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2j)それぞれ配列番号116~118で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2k)それぞれ配列番号119~121で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2l)それぞれ配列番号122~124で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2m)それぞれ配列番号125~127で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2n)それぞれ配列番号128~130で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2о)それぞれ配列番号131~133で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2p)それぞれ配列番号134~136で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2q)それぞれ配列番号137~139で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2r-1)配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列中の9番目のアルギニンをリジンに置換する改変が導入されたアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2r-2)配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列中の17番目のグリシンをアスパラギン酸に置換する改変が導入されたアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2r-3)配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列中の9番目のアルギニンをスレオニンに置換する改変が導入されたアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2r-4)配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列中の2番目のフェニルアラニンをロイシンに、9番目のアルギニンをスレオニンに置換する改変が導入されたアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2r-5)配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列中の2番目のフェニルアラニンをセリンに、9番目のアルギニンをスレオニンに置換する改変が導入されたアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2r-6)配列番号137で表されるアミノ酸配列の2番目のロイシンをバリンに、3番目のセリンをアラニンに、4番目のメチオニンをロイシンに置換する改変が導入されたアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2r-7)配列番号137で表されるアミノ酸配列の2番目のロイシンをフェニルアラニンに、3番目のセリンをアラニンに置換する改変が導入されたアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2r-8)配列番号137で表されるアミノ酸配列の3番目のセリンをアラニンに、4番目のメチオニンをロイシンに置換する改変が導入されたアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2r-9)配列番号137で表されるアミノ酸配列の2番目のロイシンをチロシンに、3番目のセリンをアラニンに置換する改変が導入されたアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2r-10)配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列の2番目のロイシンをグルタミン酸に置換する改変が導入されたアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2r-11)配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列の2番目のロイシンをグルタミン酸に、5番目のチロシンをトリプトファンに、6番目のチロシンをメチオニンに置換する改変が導入されたアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
(2r-12)配列番号137で表されるアミノ酸配列の2番目のロイシンをフェニルアラニンに、3番目のセリンをアラニンに、4番目のメチオニンをロイシンに置換する改変が導入されたアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
 本発明のバイスペシフィック抗体または該バイスペシフィック抗体断片として、具体的には例えば、第1のFabが以下の(1A)~(1E)からなる群より選ばれる1つであり、第2のFabが下記(2A)~(2Y)および(2Z-1)~(2Z-20)からなる群より選ばれる1つであるバイスペシフィック抗体が挙げられる。
(1A)配列番号21で表されるアミノ酸配列を含むVH、および、配列番号22で表されるアミノ酸配列を含むVLを含む
(1B)配列番号23で表されるアミノ酸配列を含むVH、および、配列番号24で表されるアミノ酸配列を含むVLを含む
(1C)配列番号25で表されるアミノ酸配列を含むVH、および、配列番号26で表されるアミノ酸配列を含むVLを含む
(1D)配列番号27で表されるアミノ酸配列を含むVH、および、配列番号28で表されるアミノ酸配列を含むVLを含む
(1E)配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2A)配列番号11で表されるアミノ酸配列を含むVH、および、配列番号12で表されるアミノ酸配列を含むVLを含む
(2B)配列番号13で表されるアミノ酸配列を含むVH、および、配列番号14で表されるアミノ酸配列を含むVLを含む
(2C)配列番号15で表されるアミノ酸配列を含むVH、および、配列番号16で表されるアミノ酸配列を含むVLを含む
(2D)配列番号17で表されるアミノ酸配列を含むVH、および、配列番号18で表されるアミノ酸配列を含むVLを含む
(2E)配列番号19で表されるアミノ酸配列を含むVH、および、配列番号20で表されるアミノ酸配列を含むVLを含む
(2F)配列番号92で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2G)配列番号93で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2H)配列番号94で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2I)配列番号95で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2J)配列番号96で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2K)配列番号97で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2L)配列番号98で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2M)配列番号99で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2N)配列番号100で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2O)配列番号101で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2P)配列番号102で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Q)配列番号103で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2R)配列番号176で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2S)配列番号177で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2T)配列番号178で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2U)配列番号179で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2V)配列番号182で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2W)配列番号183で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2X)配列番号184で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Y)配列番号185で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-1)配列番号190で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-2)配列番号191で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-3)配列番号192で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-4)配列番号193で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-5)配列番号194で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-6)配列番号195で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-7)配列番号196で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-8)配列番号197で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-9)配列番号198で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-10)配列番号199で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-11)配列番号200で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-12)配列番号201で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-13)配列番号202で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-14)配列番号203で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-15)配列番号204で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-16)配列番号205で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-17)配列番号206で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-18)配列番号207で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-19)配列番号208で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
(2Z-20)配列番号209で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
 後述する表1~3にCD131またはCD116に結合するFabの各クローン名と、それに含まれるVH、VL、およびCDRのアミノ酸配列の配列番号を示す。以降、クローン名を用いるときは、これらのVHおよびVLのアミノ酸配列を含むFabまたは抗体のことを表す。
 本発明のバイスペシフィック抗体または該バイスペシフィック抗体断片として、例えば、実施例において後述する、131-03、131-16、131-18、131-B1または131-B2のVHおよびVLを含む第1のFabと、116-08、116-09、116-18、116-21、116-22、116-398、116-412、116-412a、116-413、116-413a、116-421、116-421a、116-433、116-433a、116-435、116-439、116-463、116-463a、116-464、116-464a、116-465、116-465a、116-466、116-466aまたは116-408のVHおよびVLを含む第2のFabと、を含むバイスペシフィック抗体または該バイスペシフィック抗体断片が挙げられる。これらのバイスペシフィック抗体または該バイスペシフィック抗体断片は、N末端型であることが好ましい。
 本発明のバイスペシフィック抗体として、以下に限定されるものではないが、例えば下記(x1)~(x12)および(x13-1)~(x13-12)からなる群より選ばれるいずれか1つが挙げられる。下記(x1)~(x12)および(x13-1)~(x13-12)において、第1の抗原結合ドメインおよび第2の抗原結合ドメインは、それぞれ第1のFabおよび第2のFabであることが好ましい。
(x1)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインがそれぞれ配列番号104~106で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
(x2)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインがそれぞれ配列番号107~109で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
(x3)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインがそれぞれ配列番号110~112で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
(x4)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインがそれぞれ配列番号113~115で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
(x5)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインがそれぞれ配列番号116~118で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
(x6)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインがそれぞれ配列番号119~121で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
(x7)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインがそれぞれ配列番号122~124で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
(x8)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインがそれぞれ配列番号125~127で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
(x9)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインがそれぞれ配列番号128~130で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
(x10)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインがそれぞれ配列番号131~133で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
(x11)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインがそれぞれ配列番号134~136で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
(x12)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインがそれぞれ配列番号137~139で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
(x13-1)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列中の9番目のアルギニンをリジンに置換する改変が導入されたアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
(x13-2)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列中の17番目のグリシンをアスパラギン酸に置換する改変が導入されたアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
(x13-3)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列中の9番目のアルギニンをスレオニンに置換する改変が導入されたアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
(X13-4)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列中の2番目のフェニルアラニンをロイシンに、9番目のアルギニンをスレオニンに置換する改変が導入されたアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
(x13-5)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列中の2番目のフェニルアラニンをセリンに、9番目のアルギニンをスレオニンに置換する改変が導入されたアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
(x13-6)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号137で表されるアミノ酸配列の2番目のロイシンをバリンに、3番目のセリンをアラニンに、4番目のメチオニンをロイシンに置換する改変が導入されたアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
(x13-7)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号137で表されるアミノ酸配列の2番目のロイシンをフェニルアラニンに、3番目のセリンをアラニンに置換する改変が導入されたアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
(x13-8)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号137で表されるアミノ酸配列の3番目のセリンをアラニンに、4番目のメチオニンをロイシンに置換する改変が導入されたアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
(x13-9)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号137で表されるアミノ酸配列の2番目のロイシンをチロシンに、3番目のセリンをアラニンに置換する改変が導入されたアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
(x13-10)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列の2番目のロイシンをグルタミン酸に置換する改変が導入されたアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
(x13-11)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列の2番目のロイシンをグルタミン酸に、5番目のチロシンをトリプトファンに、6番目のチロシンをメチオニンに置換する改変が導入されたアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
(x13-12)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号137で表されるアミノ酸配列の2番目のロイシンをフェニルアラニンに、3番目のセリンをアラニンに、4番目のメチオニンをロイシンに置換する改変が導入されたアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
 本発明のバイスペシフィック抗体としては、具体的には下記(y1)~(y12)および(y13-1)~(y13-20)から選ばれるいずれか1が挙げられる。下記(y1)~(y12)および(y13-1)~(y13-20)において、第1の抗原結合ドメインおよび第2の抗原結合ドメインは、それぞれ第1のFabおよび第2のFabであることが好ましい。
(y1)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号175で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y2)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号176で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y3)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号177で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y4)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号178で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y5)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号179で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y6)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号180で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y7)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号181で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y8)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号182で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y9)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号183で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y10)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号184で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y11)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号185で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y12)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号186で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y13-1)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号190で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y13-2)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号191で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y13-3)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号192で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y13-4)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号193で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y13-5)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号194で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y13-6)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号195で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y13-7)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号196で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y13-8)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号197で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y13-9)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号198で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y13-10)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号199で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y13-11)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号200で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y13-12)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号201で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y13-13)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号202で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y13-14)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号203で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y13-15)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号204で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y13-16)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号205で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y13-17)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号206で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y13-18)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号207で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y13-19)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号208で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
(y13-20)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号209で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
 本発明のバイスペシフィック抗体または該バイスペシフィック抗体断片として、好ましくは、131-B2を含む第1のFabと、116-398、116-412a、116-413a、116-421a、116-433a、116-435、116-439、116-463a、116-464a、116-465a、116-466aまたは116―408を含む第2のFabと、を含むバイスペシフィック抗体または該バイスペシフィック抗体断片が挙げられる。
 本発明のバイスペシフィック抗体または該バイスペシフィック抗体断片として、より好ましくは、第1のFabにおける重鎖のC末端と、第2のFabにおける重鎖のN末端とが直接またはリンカーを介して結合しているポリペプチド鎖を2本、およびヒンジ領域を含み、2本の前記ポリペプチド鎖のC末端が前記ヒンジ領域のN末端にそれぞれ結合している、バイスペシフィック抗体または該バイスペシフィック抗体断片であって、第1のFabおよび第2のFabが下記(z1)~(z12)のいずれか1である、バイスペシフィック抗体または該バイスペシフィック抗体断片が挙げられる。
(z1)第1のFabが131-B2を含み、第2のFabが116-398を含む
(z2)第1のFabが131-B2を含み、第2のFabが116-412aを含む
(z3)第1のFabが131-B2を含み、第2のFabが116-413aを含む
(z4)第1のFabが131-B2を含み、第2のFabが116-421aを含む
(z5)第1のFabが131-B2を含み、第2のFabが116-433aを含む
(z6)第1のFabが131-B2を含み、第2のFabが116-435を含む
(z7)第1のFabが131-B2を含み、第2のFabが116-439を含む
(z8)第1のFabが131-B2を含み、第2のFabが116-463aを含む
(z9)第1のFabが131-B2を含み、第2のFabが116-464aを含む
(z10)第1のFabが131-B2を含み、第2のFabが116-465aを含む
(z11)第1のFabが131-B2を含み、第2のFabが116-466aを含む
(z12)第1のFabが131-B2を含み、第2のFabが116-408を含む
 本発明のバイスペシフィック抗体または該バイスペシフィック抗体断片の一態様として、具体的には例えば、図4の(A)に示すようにN末端型であり、第1のFabにおける重鎖(VH-CH1)のC末端と、第2のFabにおける重鎖(VH-CH1’)のN末端とが直接またはリンカーを介して結合しているポリペプチド鎖(VH-CH1-VH-CH1’)を含み、該ポリペプチド鎖のC末端がヒンジ領域のN末端に結合し、該ヒンジ領域のC末端にFc領域(CH2-CH3)のN末端が結合している重鎖(VH-CH1-VH-CH1’-CH2-CH3)を2本、および軽鎖(VL-CL)を4本含む構造であって、該重鎖においてVHは好ましくは配列番号21、23、25、27および29のいずれか1で表されるアミノ酸配列、より好ましくは配列番号29で表されるアミノ酸配列を含み、且つVHは配列番号175~186のいずれか1で表されるアミノ酸配列を含むことが好ましい。
 前記態様において、前記重鎖(VH-CH1-VH-CH1’-CH2-CH3)における(VH-CH1-VH)は、下記(v1)~(v12)および(v13-1)~(v13-20)から選ばれるいずれか1であることが好ましい。
(v1)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号175で表されるアミノ酸配列を含むVHを含む
(v2)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号176で表されるアミノ酸配列を含むVHを含む
(v3)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号177で表されるアミノ酸配列を含むVHを含む
(v4)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号178で表されるアミノ酸配列を含むVHを含む
(v5)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号179で表されるアミノ酸配列を含むVHを含む
(v6)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号180で表されるアミノ酸配列を含むVHを含む
(v7)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号181で表されるアミノ酸配列を含むVHを含む
(v8)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号182で表されるアミノ酸配列を含むVHを含む
(v9)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号183で表されるアミノ酸配列を含むVHを含む
(v10)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号184で表されるアミノ酸配列を含むVHを含む
(v11)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号185で表されるアミノ酸配列を含むVHを含む
(v12)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号186で表されるアミノ酸配列を含むVHを含む
(v13-1)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号190で表されるアミノ酸配列を含むVHを含む
(v13-2)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号191で表されるアミノ酸配列を含むVHを含む
(v13-3)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号192で表されるアミノ酸配列を含むVHを含む
(v13-4)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号193で表されるアミノ酸配列を含むVHを含む
(v13-5)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号194で表されるアミノ酸配列を含むVHを含む
(v13-6)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号195で表されるアミノ酸配列を含むVHを含む
(v13-7)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号196で表されるアミノ酸配列を含むVHを含む
(v13-8)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号197で表されるアミノ酸配列を含むVHを含む
(v13-9)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号198で表されるアミノ酸配列を含むVHを含む
(v13-10)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号199で表されるアミノ酸配列を含むVHを含む
(v13-11)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号200で表されるアミノ酸配列を含むVHを含む
(v13-12)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号201で表されるアミノ酸配列を含むVHを含む
(v13-13)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号202で表されるアミノ酸配列を含むVHを含む
(v13-14)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号203で表されるアミノ酸配列を含むVHを含む
(v13-15)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号204で表されるアミノ酸配列を含むVHを含む
(v13-16)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号205で表されるアミノ酸配列を含むVHを含む
(v13-17)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号206で表されるアミノ酸配列を含むVHを含む
(v13-18)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号207で表されるアミノ酸配列を含むVHを含む
(v13-19)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号208で表されるアミノ酸配列を含むVHを含む
(v13-20)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号209で表されるアミノ酸配列を含むVHを含む
 前記態様において、前記重鎖における(CH1’-CH2-CH3)は配列番号145~172のいずれか1で表されるアミノ酸配列を含むことが好ましい。また、前記態様において、前記軽鎖(VL-CL)におけるVLは配列番号30で表されるアミノ酸配列を含むことがより好ましい。
 また、本発明のバイスペシフィック抗体には、CD116および/またはCD131への結合において、上記いずれかのバイスペシフィック抗体と競合するバイスペシフィック抗体も含まれる。
 さらに、本発明のバイスペシフィック抗体には、上記いずれかのバイスペシフィック抗体が認識するCD116および/またはCD131のエピトープと同じエピトープを認識するバイスペシフィック抗体、上記いずれかのバイスペシフィック抗体が認識するCD116および/またはCD131のエピトープの一部を認識するバイスペシフィック抗体、
および、上記いずれかのバイスペシフィック抗体が認識するCD116および/またはCD131のエピトープを含むエピトープを認識するバイスペシフィック抗体も含まれる。
 本発明のバイスペシフィック抗体は、抗体の定常領域に起因するエフェクター活性を有していても、有していなくてもよいが、エフェクター活性を有さないものが好ましい。
 エフェクター活性とは、抗体のFc領域を介して引き起こされる抗体依存性の細胞傷害活性を指し、例えば、抗体依存性細胞傷害活性(Antibody-Dependent Cellular Cytotoxicity activity;ADCC活性)、補体依存性細胞傷害活性(Complement-Dependent Cytotoxicity activity;CDC活性)、マクロファージや樹状細胞などの食細胞による抗体依存性貪食活性(Antibody-dependent cellular phagocytosis activity;ADCP活性)およびオプソニン効果などが挙げられる。
 本発明においてADCC活性およびCDC活性は、公知の測定方法[Cancer Immunol. Immunother., 36, 373(1993)]を用いて測定することができる。
 ADCC活性とは、標的細胞上の抗原に結合した抗体が、抗体のFc領域を介して免疫細胞のFc受容体と結合することで免疫細胞(ナチュラルキラー細胞など)を活性化し、標的細胞を傷害する活性をいう。
 Fc受容体(FcR)は、抗体のFc領域に結合する受容体であり、抗体の結合によりさまざまなエフェクター活性を誘発する。各FcRは抗体のサブクラスに対応し、IgG、IgE、IgA、IgMはそれぞれFcγR、FcεR、FcαR、FcμRに特異的に結合する。さらにFcγRには、FcγRI(CD64)、FcγRII(CD32)およびFcγRIII(CD16)のサブタイプが存在し、それぞれのサブタイプにはFcγRIA、FcγRIB、FcγRIC、FcγRIIA、FcγRIIB、FcγRIIC、FcγRIIIAおよびFcγRIIIBのアイソフォームが存在する。これらの異なるFcγRは異なる細胞上に存在する[Annu. Rev. Immunol. 9:457-492(1991)]。ヒトにおいては、FcγRIIIBは好中球に特異的に発現しており、FcγRIIIAは単球、ナチュラルキラー細胞(NK細胞)、マクロファージおよび一部のT細胞に発現する。FcγRIIIAへの抗体の結合を介して、NK細胞依存的なADCC活性が誘発される。
 CDC活性とは、標的細胞上の抗原に結合した抗体が血液中の補体関連タンパク質群からなる一連のカスケード(補体活性化経路)を活性化し、標的細胞を傷害する活性をいう。また、補体の活性化により生じるタンパク質断片により、免疫細胞の遊走および活性化が誘導される。CDC活性のカスケードは、まずC1qがFc領域に結合し、次に2つのセリンプロテアーゼであるC1rおよびC1sと結合することで、C1複合体を形成し開始される。
 本発明のバイスペシフィック抗体または該抗体断片の抗原発現細胞に対するCDC活性、またはADCC活性は、公知の測定方法[Cancer Immunol. Immunother., 36, 373(1993)]により評価することができる。
 本発明のバイスペシフィック抗体のエフェクター活性を制御する方法としては、抗体のFc領域(CH2およびCH3ドメインからなる定常領域)の297番目のアスパラギン(Asn)に結合するN-結合複合型糖鎖の還元末端に存在するN-アセチルグルコサミン(GlcNAc)にα-1,6結合するフコース(コアフコースともいう)の量を制御する方法(国際公開第2005/035586号、国際公開第2002/31140号および国際公開第00/61739号)や、抗体のFc領域のアミノ酸残基の改変により制御する方法(国際公開第00/42072号)などが知られている。
 バイスペシフィック抗体に付加するフコースの量を制御することで、抗体のADCC活性を増加または低下させることができる。例えば、抗体のFcに結合しているN-結合複合型糖鎖に結合するフコースの含量を低下させる方法として、α1,6-フコース転移酵素遺伝子が欠損した宿主細胞を用いてバイスペシフィック抗体を発現することで、高いADCCを有するバイスペシフィック抗体を取得することができる。一方、バイスペシフィック抗体のFcに結合しているN-結合複合型糖鎖に結合するフコースの含量を増加させる方法として、α1,6-フコース転移酵素遺伝子を導入した宿主細胞を用いて抗体を発現させることで、低いADCC活性を有するバイスペシフィック抗体を取得することができる。
 また、バイスペシフィック抗体のFc領域のアミノ酸残基を改変することでADCC活性やCDC活性を増加または低下させることができる。例えば、米国特許出願公開第2007/0148165号明細書に記載のFc領域のアミノ酸配列を用いることで、バイスペシフィック抗体のCDC活性を増加させることができる。また、米国特許第6,737,056号明細書、米国特許第7,297,775号明細書または米国特許第7,317,091号明細書などに記載のアミノ酸改変を行うことで、ADCC活性またはCDC活性を、増加させることも低下させることもできる。
 さらに、上述の方法を組み合わせることにより、エフェクター活性が制御されたバイスペシフィック抗体を取得してもよい。
 本発明のバイスペシフィック抗体の安定性は、精製過程や一定条件下で保存されたサンプルにおいて形成される凝集体(オリゴマー)量を測定することによって評価することができる。すなわち、同一条件下で凝集体量が低減する場合を、抗体の安定性が向上したものと評価する。凝集体量は、ゲルろ過クロマトグラフィーを含む適当なクロマトグラフィーを用いて凝集した抗体と凝集していない抗体とを分離することによって測定することができる。
 本発明のバイスペシフィック抗体の生産性は、抗体産生細胞から培養液中に産生される抗体量を測定することによって評価することができる。より具体的には、培養液から産生細胞を除いた培養上清に含まれる抗体の量をHPLC法やELISA法などの適当な方法で測定することによって評価することができる。
 本発明において、抗体断片とは、抗原結合部位を含み、該抗原に対する抗原結合活性を有するタンパク質である。例えばFab、Fab’、F(ab’)、scFv、Diabody、dsFv、VHHまたはCDRを含むペプチドなどが挙げられる。
 Fabは、IgG抗体をタンパク質分解酵素パパインで処理して得られる断片のうち(H鎖の224番目のアミノ酸残基で切断される)、H鎖のN末端側約半分とL鎖全体とがジスルフィド結合(S-S結合)で結合した、分子量約5万の抗原結合活性を有する抗体断片である。
 F(ab’)は、IgGをタンパク質分解酵素ペプシンで処理して得られる断片のうち(H鎖の234番目のアミノ酸残基で切断される)、Fabがヒンジ領域のS-S結合を介して結合されたものよりやや大きい、分子量約10万の抗原結合活性を有する抗体断片である。
 Fab’は、上記F(ab’)のヒンジ領域のS-S結合を切断した、分子量約5万の抗原結合活性を有する抗体断片である。
 scFvは、1本のVHと1本のVLとを12残基以上の適当なペプチドリンカー(P)を用いて連結した、VH-P-VLまたはVL-P-VHポリペプチドであり、抗原結合活性を有する抗体断片である。
 Diabodyは、抗原結合特異性の同じまたは異なるscFvが2量体を形成した抗体断片であり、同じ抗原に対する2価の抗原結合活性、または異なる抗原に対し各々特異的な抗原結合活性を有する抗体断片である。
 dsFvは、VHおよびVL中の各1アミノ酸残基をシステイン残基に置換したポリペプチドを、該システイン残基間のS-S結合を介して結合させたものをいう。
 VHHは、ナノボディとも言い、VHH抗体における重鎖可変領域を指し、他のポリペプチドの存在なしで抗原に結合することができる。
 VHH抗体は、アルパカ等のラクダ科の動物およびサメ等の軟骨魚に存在する抗体であり、軽鎖とCH1がなく、重鎖のみからなる。
 CDRを含むペプチドは、VHまたはVLのCDRの少なくとも1領域を含んで構成される。複数のCDRを含むペプチドは、CDR同士を直接または適当なペプチドリンカーを介して結合させることで作製することができる。CDRを含むペプチドは、本発明のバイスペシフィック抗体のVHおよびVLのCDRをコードするDNAを構築し、該DNAを原核生物用発現ベクターまたは真核生物用発現ベクターに挿入し、該発現ベクターを原核生物または真核生物へ導入することにより発現させ、製造することができる。また、CDRを含むペプチドは、Fmoc法またはtBoc法などの化学合成法によって製造することもできる。
 本発明において、バイスペシフィック抗体断片とは、本質的にバイスペシフィック抗体の部分構造からなり、2種類の抗原に対する抗原結合活性を有していれば、いずれのバイスペシフィック抗体の断片であってもよい。
 本発明のバイスペシフィック抗体又は該バイスペシフィック抗体断片にFcが融合したタンパク質、そこにさらに抗体断片が結合した融合タンパク質、該Fcと天然に存在するリガンドまたは受容体とが結合したFc融合タンパク質(イムノアドヘシンともいう)、および複数のFc領域を融合させたFc融合タンパク質等も本発明のバイスペシフィック抗体に包含される。また、抗体のエフェクター活性の増強または欠損、抗体の安定化、および血中半減期の制御を目的とした技術が適用されたFc領域も、本発明のバイスペシフィック抗体に用いることができる。
 前記した血中半減期の制御を目的とした技術としては、例えば、pH6.0におけるFcRnへの結合を切断して、抗体のリサイクリングを阻害する方法が挙げられる。
 pH6.0におけるFcRnへの結合を切断して、抗体のリサイクリングを阻害する方法としては、例えば、EUインデックスで表される253番目のIle、310番目のHis、435番目のHisおよび436番目のTyrから選ばれる少なくとも1にアミノ酸残基の改変を導入することが好ましい。かかる改変としては、具体的には例えば、H435Fが挙げられる。
 FcRnは細胞外(pH7.0-7.5)ではFc領域に結合せず、細胞内に取り込まれたIgGと初期エンドソーム内(pH6.0)で結合し、IgGを細胞外にリサイクルすることで血中濃度を維持していると考えられている(Biochemistry, 34, 14649 (1995) DOI: 10.1021/bi00045a005;Nat. Rev. Immunol., 7, 715 (2007) DOI: 10.1038/nri2155)。pH6.0におけるFc領域とFcRnの結合に重要な残基は、アミノ酸変異(Alaへの置換)導入により結合活性が顕著に低下する部位として探索された結果、上記したEUインデックスで表される253番目のIle、310番目のHis、435番目のHis、436番目のTyrと同定されている (J. Immunol., 176, 346(2006);Int. Immunol., 13, 993 (2001)、J. Biol. Chem., 276, 6591 (2001);J. Immunol., 169, 5171 (2002))。
 本発明のバイスペシフィック抗体または該バイスペシフィック抗体断片としては、本発明のバイスペシフィック抗体または該バイスペシフィック抗体断片に放射性同位元素、低分子の薬剤、高分子の薬剤、タンパク質または抗体医薬などを化学的または遺伝子工学的に結合させた抗体の誘導体を包含する。
 本発明におけるバイスペシフィック抗体の誘導体は、本発明のバイスペシフィック抗体または該バイスペシフィック抗体断片のN末端側或いはC末端側、該バイスペシフィック抗体またはそのバイスペシフィック抗体断片中の適当な置換基或いは側鎖、さらには該バイスペシフィック抗体またはそのバイスペシフィック抗体断片中の糖鎖などに、放射性同位元素、低分子の薬剤、高分子の薬剤、免疫賦活剤、タンパク質または抗体医薬などを化学的手法[抗体工学入門、地人書館(1994)]により結合させることで製造することができる。
 また、本発明におけるバイスペシフィック抗体の誘導体は、本発明のバイスペシフィック抗体または該バイスペシフィック抗体断片をコードするDNAと、所望のタンパク質または抗体医薬をコードするDNAとを連結させて、発現ベクターに挿入し、該発現ベクターを適当な宿主細胞へ導入し発現させる、遺伝子工学的手法により製造することができる。
 放射性同位元素としては、例えば、111In、131I、125I、90Y、64Cu、99Tc、77Luまたは211Atなどが挙げられる。放射性同位元素は、クロラミンT法などによって抗体に直接結合させることができる。また、放射性同位元素をキレートする物質を抗体に結合させてもよい。キレート剤としては、例えば、1-イソチオシアネートベンジル-3-メチルジエチレントリアミンペンタ酢酸(MX-DTPA)などが挙げられる。
 低分子の薬剤としては、例えば、アルキル化剤、ニトロソウレア剤、代謝拮抗剤、抗生物質、植物アルカロイド、トポイソメラーゼ阻害剤、ホルモン療法剤、ホルモン拮抗剤、アロマターゼ阻害剤、P糖蛋白阻害剤、白金錯体誘導体、M期阻害剤若しくはキナーゼ阻害剤などの抗癌剤[臨床腫瘍学、癌と化学療法社(1996)]、ハイドロコーチゾン若しくはプレドニゾンなどのステロイド剤、アスピリン若しくはインドメタシンなどの非ステロイド剤、金チオマレート若しくはペニシラミンなどの免疫調節剤、サイクロフォスファミド若しくはアザチオプリンなどの免疫抑制剤またはマレイン酸クロルフェニラミン若しくはクレマシチンのような抗ヒスタミン剤などの抗炎症剤[炎症と抗炎症療法、医歯薬出版株式会社(1982)]などが挙げられる。
 抗癌剤としては、例えば、アミフォスチン(エチオール)、シスプラチン、ダカルバジン(DTIC)、ダクチノマイシン、メクロレタミン(ナイトロジェンマスタード)、ストレプトゾシン、シクロフォスファミド、イホスファミド、カルムスチン(BCNU)、ロムスチン(CCNU)、ドキソルビシン(アドリアマイシン)、エピルビシン、ゲムシタビン(ゲムザール)、ダウノルビシン、プロカルバジン、マイトマイシン、シタラビン、エトポシド、5-フルオロウラシル、フルオロウラシル、ビンブラスチン、ビンクリスチン、ブレオマイシン、ダウノマイシン、ペプロマイシン、エストラムスチン、パクリタキセル(タキソール)、ドセタキセル(タキソテア)、アルデスロイキン、アスパラギナーゼ、ブスルファン、カルボプラチン、オキサリプラチン、ネダプラチン、クラドリビン、カンプトテシン、10-ヒドロキシ-7-エチル-カンプトテシン(SN38)、フロクスウリジン、フルダラビン、ヒドロキシウレア、イダルビシン、メスナ、イリノテカン(CPT-11)、ノギテカン、ミトキサントロン、トポテカン、ロイプロリド、メゲストロール、メルファラン、メルカプトプリン、ヒドロキシカルバミド、プリカマイシン、ミトタン、ペガスパラガーゼ、ペントスタチン、ピポブロマン、ストレプトゾシン、タモキシフェン、ゴセレリン、リュープロレニン、フルタミド、テニポシド、テストラクトン、チオグアニン、チオテパ、ウラシルマスタード、ビノレルビン、クロラムブシル、ハイドロコーチゾン、プレドニゾロン、メチルプレドニゾロン、ビンデシン、ニムスチン、セムスチン、カペシタビン、トムデックス、アザシチジン、UFT、オキザロプラチン、ゲフィチニブ(イレッサ)、イマチニブ(STI571)、エルロチニブ、FMS-like tyrosine kinase 3(Flt3)阻害剤、vascular endothelial growth facotr receptor(VEGFR)阻害剤、fibroblast growth factor receptor(FGFR)阻害剤、タルセバなどのepidermal growth factor receptor(EGFR)阻害剤、ラディシコール、17-アリルアミノ-17-デメトキシゲルダナマイシン、ラパマイシン、アムサクリン、オール-トランスレチノイン酸、サリドマイド、レナリドマイド、アナストロゾール、ファドロゾール、レトロゾール、エキセメスタン、金チオマレート、D-ペニシラミン、ブシラミン、アザチオプリン、ミゾリビン、シクロスポリン、ラパマイシン、ヒドロコルチゾン、ベキサロテン(タルグレチン)、タモキシフェン、デキサメタゾン、プロゲスチン類、エストロゲン類、アナストロゾール(アリミデックス)、ロイプリン、アスピリン、インドメタシン、セレコキシブ、アザチオプリン、ペニシラミン、金チオマレート、マレイン酸クロルフェニラミン、クロロフェニラミン、クレマシチン、トレチノイン、ベキサロテン、砒素、ボルテゾミブ、アロプリノール、カリケアマイシン、イブリツモマブチウキセタン、タルグレチン、オゾガミン、クラリスロマシン、ロイコボリン、ケトコナゾール、アミノグルテチミド、スラミン、メトトレキセート若しくはメイタンシノイドまたはその誘導体などが挙げられる。
 低分子の薬剤と本発明のバイスペシフィック抗体または該バイスペシフィック抗体断片とを結合させる方法としては、例えば、グルタールアルデヒドを介して薬剤と該抗体のアミノ基間を結合させる方法、または水溶性カルボジイミドを介して薬剤のアミノ基と該抗体のカルボキシル基とを結合させる方法などが挙げられる。
 高分子の薬剤としては、ポリエチレングリコール(PEG)、アルブミン、デキストラン、ポリオキシエチレン、スチレンマレイン酸コポリマー、ポリビニルピロリドン、ピランコポリマー、またはヒドロキシプロピルメタクリルアミドなどが挙げられる。これらの高分子化合物を本発明のバイスペシフィック抗体または抗体断片に結合させることにより、(1)化学的、物理的若しくは生物的な種々の因子に対する安定性の向上、(2)血中半減期の顕著な延長、または(3)免疫原性の消失若しくは抗体産生の抑制、などの効果が期待される[バイオコンジュゲート医薬品、廣川書店(1993)]。
 例えば、PEGと本発明のバイスペシフィック抗体を結合させる方法としては、PEG化修飾試薬と反応させる方法などが挙げられる[バイオコンジュゲート医薬品、廣川書店(1993)]。PEG化修飾試薬としては、リジンのε-アミノ基への修飾剤(日本国特開昭61-178926号公報)、アスパラギン酸およびグルタミン酸のカルボキシル基への修飾剤(日本国特開昭56-23587号公報)、またはアルギニンのグアニジノ基への修飾剤(日本国特開平2-117920号公報)などが挙げられる。
 免疫賦活剤としては、イムノアジュバントとして知られている天然物でもよく、具体例としては、免疫を亢進する薬剤が、β(1→3)グルカン(例えば、レンチナンまたはシゾフィラン)、またはαガラクトシルセラミド(KRN7000)などが挙げられる。
 タンパク質としては、例えば、NK細胞、マクロファージまたは好中球などの免疫担当細胞を活性化するサイトカイン若しくは増殖因子または毒素タンパク質などが挙げられる。
 サイトカインまたは増殖因子としては、例えば、インターフェロン(以下、IFNと記す)-α、IFN-β、IFN-γ、インターロイキン(以下、ILと記す)-2、IL-12、IL-15、IL-18、IL-21、IL-23、顆粒球コロニー刺激因子(G-CSF)、顆粒球/マクロファージコロニー刺激因子(GM-CSF)またはマクロファージコロニー刺激因子(M-CSF)などが挙げられる。
 毒素タンパク質としては、例えば、リシン、ジフテリアトキシンまたはONTAKなどが挙げられ、毒性を調節するためにタンパク質に変異を導入したタンパク毒素も含まれる。
 タンパク質または抗体医薬との融合抗体は、本発明のバイスペシフィック抗体または抗体断片をコードするcDNAにタンパク質をコードするcDNAを連結させ、融合抗体をコードするDNAを構築し、該DNAを原核生物または真核生物用発現ベクターに挿入し、該発現ベクターを原核生物または真核生物へ導入することにより発現させ、製造することができる。 
 上記抗体の誘導体を検出方法、定量方法、検出用試薬、定量用試薬または診断薬として使用する場合に、本発明のバイスペシフィック抗体またはその抗体断片に結合する薬剤としては、通常の免疫学的検出法または測定法で用いられる標識体が挙げられる。標識体としては、例えば、アルカリフォスファターゼ、ペルオキシダーゼ若しくはルシフェラーゼなどの酵素、アクリジニウムエステル若しくはロフィンなどの発光物質、またはフルオレセインイソチオシアネート(FITC)若しくはテトラメチルローダミンイソチオシアネート(RITC)、Alexa(登録商標) Fluor 488、R-phycoerythrin(R-PE)などの蛍光物質などが挙げられる。
 本発明には、CDC活性またはADCC活性などの細胞傷害活性を有するバイスペシフィック抗体および該バイスペシフィック抗体断片が包含される。本発明のバイスペシフィック抗体または該バイスペシフィック抗体断片の抗原発現細胞に対するCDC活性またはADCC活性は公知の測定方法[Cancer Immunol. Immunother., 36, 373 (1993)]により評価することができる。
 また、本発明は、CD116およびCD131を特異的に認識し結合するバイスペシフィック抗体若しくは該バイスペシフィック抗体断片を含む組成物、または該バイスペシフィック抗体若しくは該バイスペシフィック抗体断片を有効成分として含有する、CD116およびCD131の少なくとも一方が関係する疾患、好ましくはCD116およびCD131の発現細胞が関与する疾患の治療薬に関する。
 CD116およびCD131の少なくとも一方が関与する疾患としては、CD116およびCD131の少なくとも一方が関与している疾患であればいかなるものでもよいが、例えば、GM-CSFが関与する疾患、がん、白血球減少症、各種感染症、アルツハイマー病、GM-CSFの中和抗体が関連する疾患などが挙げられる。
 本発明において、GM-CSFが関与する疾患又はGM-CSFの中和抗体が関与する疾患としては、例えば、メラノーマ、頭頸部がん、乳がん、消化器がん、膵癌、肝細胞がん、前立腺がん、結腸直腸がん、肺がん、腎細胞がん、卵巣がん、化学療法による白血球減少症、骨髄移植による白血球減少症、再生不良性貧血による白血球減少症、骨髄異形成症候群による白血球減少症、骨髄移植における骨髄機能回復、急性骨髄性白血病、慢性骨髄単球性白血病、敗血症、真菌症、HIV感染症、インフルエンザウィルス感染症、非結核性抗酸菌感染症、急性呼吸促迫症候群、肺胞蛋白症、クローン病などが挙げられる。
 本発明のバイスペシフィック抗体または該バイスペシフィック抗体断片、またはこれらの誘導体を含有する治療薬は、有効成分としての該バイスペシフィック抗体若しくは該バイスペシフィック抗体断片、またはこれらの誘導体のみを含むものであってもよいが、通常は薬理学的に許容される1以上の担体と一緒に混合し、製剤学の技術分野において公知の任意の方法により製造した医薬製剤として提供するのが好ましい。
 投与経路は、治療に際して最も効果的なものを使用するのが好ましく、例えば、経口投与、または経肺投与、口腔内、気道内、直腸内、皮下、筋肉内若しくは静脈内などの非経口投与が挙げられる。中でも、静脈内または経肺投与が好ましい。
 投与形態としては、例えば、吸入剤、噴霧剤、カプセル剤、錠剤、散剤、顆粒剤、シロップ剤、乳剤、座剤、注射剤、軟膏またはテープ剤などが挙げられる。
 投与量または投与回数は、目的とする治療効果、投与方法、治療期間、年齢および体重などにより異なるが、通常成人1日当たり10μg/kg~10mg/kgである。
 さらに、本発明は、本発明のバイスペシフィック抗体または該バイスペシフィック抗体断片を含有する、CD116およびCD131の少なくとも一方の免疫学的検出用若しくは測定用試薬、またはCD116およびCD131の少なくとも一方が関係する疾患、好ましくはCD116およびCD131の発現細胞が関与する疾患の診断薬に関する。また、本発明は、本発明のバイスペシフィック抗体または該バイスペシフィック抗体断片を用いた、CD116およびCD131の少なくとも一方の免疫学的検出用若しくは測定用方法、CD116およびCD131の少なくとも一方が関係する疾患、好ましくはCD116およびCD131の発現細胞が関与する疾患の治療方法、またはCD116およびCD131の少なくとも一方が関係する疾患、好ましくはCD116およびCD131の発現細胞が関与する疾患の診断方法に関する。
 本発明においてCD116およびCD131の少なくとも一方の量を検出または測定する方法としては、任意の公知の方法が挙げられる。例えば、免疫学的検出または測定方法などが挙げられる。
 免疫学的検出または測定方法とは、標識を施した抗原または抗体を用いて、抗体量または抗原量を検出または測定する方法である。免疫学的検出または測定方法としては、例えば、放射免疫測定法(RIA)、酵素免疫測定法(EIAまたはELISA)、蛍光免疫測定法(FIA)、発光免疫測定法(luminescent immunoassay)、ウェスタンブロット法または物理化学的手法などが挙げられる。
 本発明のバイスペシフィック抗体または該バイスペシフィック抗体断片を用いてCD116およびCD131の少なくとも一方が発現した細胞を検出または測定することにより、CD116およびCD131の少なくとも一方が関係する疾患、好ましくはCD116およびCD131の発現細胞が関与する疾患を診断することができる。
 CD116およびCD131の少なくとも一方が発現している細胞の検出には、公知の免疫学的検出法を用いることができるが、例えば、免疫沈降法、免疫細胞染色法、免疫組織染色法または蛍光抗体染色法などが挙げられる。また、例えば、FMAT8100HTSシステム(アプライドバイオシステム社製)などの蛍光抗体染色法なども挙げられる。
 本発明においてCD116およびCD131の少なくとも一方を検出または測定する対象となる生体試料としては、例えば、組織細胞、血液、血漿、血清、膵液、尿、糞便、組織液または培養液など、CD116およびCD131の少なくとも一方が発現した細胞を含む可能性のあるものであれば特に限定されない。
 本発明のバイスペシフィック抗体若しくは該バイスペシフィック抗体断片、またはこれらの誘導体を含有する診断薬は、目的とする診断方法に応じて、抗原抗体反応を行なうための試薬、該反応の検出用試薬を含んでもよい。抗原抗体反応を行なうための試薬としては、例えば、緩衝剤、塩などが挙げられる。
 検出用試薬としては、例えば、前記バイスペシフィック抗体若しくは該バイスペシフィック抗体断片、またはこれらの誘導体に結合する標識された二次抗体、または標識に対応した基質などの通常の免疫学的検出または測定法に用いられる試薬が挙げられる。
 以下、本発明のバイスペシフィック抗体の作製方法、該バイスペシフィック抗体または該バイスペシフィック抗体断片の活性評価方法、並びに該バイスペシフィック抗体または該バイスペシフィック抗体断片を用いた疾患の治療方法および診断方法について具体的に記載する。
1.モノクローナル抗体の作製方法
 本発明におけるモノクローナル抗体の製造方法は、下記の作業工程を包含する。すなわち、(1)免疫原として使用する抗原の精製および細胞表面に抗原が過剰発現した細胞の作製の少なくとも一方、(2)抗原を動物に免疫した後、血液を採取しその抗体価を検定して脾臓などを摘出する時期を決定し、抗体産生細胞を調製する工程、(3)骨髄腫細胞(ミエローマ)の調製、(4)抗体産生細胞とミエローマとの細胞融合、(5)目的とする抗体を産生するハイブリドーマ群の選別、(6)ハイブリドーマ群からの単クローン(monoclonal)細胞の分離(クローニング)、(7)場合によっては、モノクローナル抗体を大量に製造するためのハイブリドーマの培養、またはハイブリドーマを移植した動物の飼育、(8)このようにして製造されたモノクローナル抗体の生理活性およびその抗原結合特異性の検討、または標識試薬としての特性の検定、などである。
 以下、本発明におけるCD116およびCD131に結合するバイスペシフィック抗体を作製するために使用する、CD116に結合するモノクローナル抗体およびCD131に結合するモノクローナル抗体の作製方法を上記の工程に沿って詳述する。該抗体の作製方法はこれに制限されず、例えば脾臓細胞以外の抗体産生細胞およびミエローマを使用することもできる。
(1)抗原の精製 
 CD116またはCD131を発現させた細胞は、CD116またはCD131の全長またはその部分長をコードするcDNAを含む発現ベクターを、大腸菌、酵母、昆虫細胞または動物細胞などに導入することにより、得ることができる。また、CD116およびCD131の少なくとも一方を多量に発現している各種ヒト腫瘍培養細胞またはヒト組織などからCD116およびCD131の少なくとも一方を精製し、抗原として使用することができる。また、該腫瘍培養細胞または該組織などをそのまま抗原として用いることもできる。さらに、Fmoc法またはtBoc法などの化学合成法によりCD116またはCD131の部分配列を有する合成ペプチドを調製し、抗原に用いることもできる。
 本発明で用いられるCD116またはCD131は、Molecular Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1989)やCurrent Protocols In Molecular Biology, John Wiley & Sons(1987-1997)などに記載された方法などを用い、例えば以下の方法により、該CD116またはCD131をコードするDNAを宿主細胞中で発現させることで製造することができる。 
 CD116またはCD131をコードする部分を含む完全長cDNAを適当な発現ベクターのプロモーターの下流に挿入することにより、組換え体ベクターを作製する。上記完全長cDNAの代わりに、完全長cDNAをもとにして調製された、ポリペプチドをコードする部分を含む適当な長さのDNA断片を用いてもよい。次に、得られた該組換え体ベクターを、該発現ベクターに適合した宿主細胞に導入することにより、CD116またはCD131を生産する形質転換株を得ることができる。 
 発現ベクターとしては、使用する宿主細胞における自律複製または染色体中への組込みが可能で、かつCD116またはCD131をコードするDNAを転写できる位置に適当なプロモーターを含有しているものであれば、いずれも用いることができる。
 宿主細胞としては、例えば、大腸菌などのエシェリヒア属などに属する微生物、酵母、昆虫細胞または動物細胞など、目的とする遺伝子を発現できるものであればいずれも用いることができる。
 大腸菌などの原核生物を宿主細胞として用いる場合、組換え体ベクターは、原核生物中で自律複製が可能であるとともに、プロモーター、リボソーム結合配列、CD116またはCD131をコードする部分を含むDNA、並びに転写終結配列を含むベクターであることが好ましい。また、該組換え体ベクターには、転写終結配列は必ずしも必要ではないが、構造遺伝子の直下に転写終結配列を配置することが好ましい。さらに、該組換え体ベクターは、プロモーターを制御する遺伝子を含んでもよい。
 該組換え体ベクターとしては、リボソーム結合配列であるシャイン・ダルガノ配列と開始コドンとの間を適当な距離(例えば、6~18塩基)に調節したプラスミドを用いることが好ましい。
 また、該CD116またはCD131をコードするDNAの塩基配列としては、宿主内での発現に最適なコドンとなるように塩基を置換することができ、これにより目的とするCD116またはCD131の生産率を向上させることができる。
 発現ベクターとしては、使用する宿主細胞中で機能を発揮できるものであればいずれも用いることができ、例えば、pBTrp2、pBTac1、pBTac2(以上、ロシュ・ダイアグノスティックス社製)、pKK233-2(ファルマシア社製)、pSE280(インビトロジェン社製)、pGEMEX-1(プロメガ社製)、pQE-8(キアゲン社製)、pKYP10(日本国特開昭58-110600号公報)、pKYP200[Agricultural Biological Chemistry, 48, 669(1984)]、pLSA1[Agric. Biol. Chem., 53, 277(1989)]、pGEL1[Proc. Natl. Acad. Sci. USA, 82, 4306(1985)]、pBluescript II SK(-)(ストラタジーン社製)、pTrs30[大腸菌JM109/pTrS30(FERM BP-5407)より調製]、pTrs32[大腸菌JM109/pTrS32(FERM BP-5408)より調製]、pGHA2[大腸菌IGHA2(FERM BP-400)より調製、日本国特開昭60-221091号公報]、pGKA2[大腸菌IGKA2(FERM BP-6798)より調製、日本国特開昭60-221091号公報]、pTerm2(米国特許第4,686,191号明細書、米国特許第4,939,094号明細書、米国特許第5,160,735号明細書)、pSupex、pUB110、pTP5、pC194、pEG400[J. Bacteriol., 172, 2392 (1990)]、pGEX(ファルマシア社製)、pETシステム(ノバジェン社製)またはpME18SFL3(東洋紡社製)などが挙げられる。
 プロモーターとしては、使用する宿主細胞中で機能するものであればいかなるものでもよい。例えば、trpプロモーター(Ptrp)、lacプロモーター、PLプロモーター、PRプロモーターまたはT7プロモーターなどの、大腸菌またはファージなどに由来するプロモーターが挙げられる。また、例えば、Ptrpを2つ直列させたタンデムプロモーター、tacプロモーター、lacT7プロモーター、またはlet Iプロモーターなどの人為的に設計改変されたプロモーターなども挙げられる。
 宿主細胞としては、例えば、大腸菌XL1-Blue、大腸菌XL2-Blue、大腸菌DH1、大腸菌MC1000、大腸菌KY3276、大腸菌W1485、大腸菌JM109、大腸菌HB101、大腸菌No.49、大腸菌W3110、大腸菌NY49、または大腸菌DH5αなどが挙げられる。
 宿主細胞への組換え体ベクターの導入方法としては、使用する宿主細胞へDNAを導入する方法であればいずれも用いることができ、例えば、カルシウムイオンを用いる方法[Proc. Natl. Acad. Sci. USA, 69, 2110(1972)、Gene, 17, 107(1982)、Molecular & General Genetics, 168, 111(1979)]が挙げられる。 
 動物細胞を宿主として用いる場合、発現ベクターとしては、動物細胞中で機能するものであればいずれも用いることができ、例えば、pcDNAI(インビトロジェン社製)、pcDM8(フナコシ社製)、pAGE107[日本国特開平3-22979号公報;Cytotechnology, 3, 133 (1990)]、pAS3-3(日本国特開平2-227075号公報)、pCDM8[Nature, 329, 840 (1987)]、pcDNAI/Amp(インビトロジェン社製)、pcDNA3.1(インビトロジェン社製)、pREP4(インビトロジェン社製)、pAGE103[J. Biochemistry, 101, 1307 (1987)]、pAGE210、pME18SFL3またはpKANTEX93(国際公開第97/10354号)などが挙げられる。
 プロモーターとしては、動物細胞中で機能を発揮できるものであればいずれも用いることができ、例えば、サイトメガロウイルス(CMV)のimmediate early(IE)遺伝子のプロモーター、SV40の初期プロモーター、レトロウイルスのプロモーター、メタロチオネインプロモーター、ヒートショックプロモーター、SRαプロモーターまたはモロニーマウス白血病ウイルスのプロモーター若しくはエンハンサーが挙げられる。また、ヒトCMVのIE遺伝子のエンハンサーをプロモーターと共に用いてもよい。
 宿主細胞としては、例えば、ヒトバーキットリンパ腫細胞Namalwa、アフリカミドリザル腎臓由来細胞COS、チャイニーズハムスター卵巣由来細胞CHO、またはヒト白血病細胞HBT5637(日本国特開昭63-000299号公報)などが挙げられる。
 宿主細胞への組換え体ベクターの導入方法としては、動物細胞にDNAを導入する方法であればいずれも用いることができ、例えば、エレクトロポレーション法[Cytotechnology, 3, 133 (1990)]、リン酸カルシウム法(日本国特開平2-227075号公報)、またはリポフェクション法[Proc. Natl. Acad. Sci. USA, 84, 7413(1987)]などが挙げられる。
 以上のようにして得られるCD116またはCD131をコードするDNAを組み込んだ組換え体ベクターを保有する微生物、または動物細胞などに由来する形質転換体を培地中で培養し、培養物中に該CD116および/またはCD131を生成蓄積させ、該培養物から採取することにより、CD116またはCD131を製造することができる。該形質転換体を培地中で培養する方法は、宿主の培養に用いられる通常の方法に従って行うことができる。
 真核生物由来の細胞で発現させた場合には、糖または糖鎖が付加されたCD116またはCD131を得ることができる。
 誘導性のプロモーターを用いた組換え体ベクターで形質転換した微生物を培養する際には、必要に応じてインデューサーを培地に添加してもよい。例えば、lacプロモーターを用いた組換え体ベクターで形質転換した微生物を培養する場合にはイソプロピル-β-D-チオガラクトピラノシドなどを、trpプロモーターを用いた組換え体ベクターで形質転換した微生物を培養する場合にはインドールアクリル酸などを、各々培地に添加してもよい。
 動物細胞を宿主として得られた形質転換体を培養する培地としては、例えば、一般に使用されているRPMI1640培地[The Journal of the American Medical Association, 199, 519(1967)]、EagleのMEM培地[Science, 122, 501 (1952)]、ダルベッコ改変MEM培地[Virology, 8, 396(1959)]、199培地[Proc. Soc. Exp. Biol. Med., 73, 1 (1950)]、Iscove’s Modified Dulbecco’s Medium(IMDM)培地、またはこれら培地に牛胎児血清(FBS)などを添加した培地などが挙げられる。培養は、通常pH6~8、30~40℃、5%CO存在下などの条件下で1~7日間行う。また、培養中に、必要に応じて、カナマイシン、ペニシリンなどの抗生物質を培地に添加してもよい。
 CD116またはCD131をコードする遺伝子の発現方法としては、直接発現以外に、分泌生産または融合タンパク質発現などの方法[Molecular Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1989)]を用いることができる。CD116またはCD131の生産方法としては、例えば、宿主細胞内に生産させる方法、宿主細胞外に分泌させる方法、または宿主細胞外膜上に生産させる方法が挙げられ、使用する宿主細胞や、生産させるCD116またはCD131の構造を変えることにより、適切な方法を選択することができる。
 例えば、細胞外領域のアミノ酸配列をコードするDNAに、抗体のFc領域をコードするDNA、グルタチオンS-トランスフェラーゼ(GST)をコードするDNA、またはFLAGタグをコードするDNAまたはHistidineタグをコードするDNAなどを連結したDNAを作製して、発現し精製することで抗原融合タンパク質を作製することができる。具体的には、例えばCD116またはCD131の細胞外領域をヒトIgGのFc領域に結合させたFc融合タンパク質、CD116またはCD131の細胞外領域とグルタチオンS-トランスフェラーゼ(GST)との融合タンパク質が挙げられる。
 CD116またはCD131が宿主細胞内または宿主細胞外膜上に生産される場合、ポールソンらの方法[J. Biol. Chem., 264, 17619 (1989)]、ロウらの方法[Proc. Natl. Acad. Sci., USA, 86, 8227 (1989)、Genes Develop., 4, 1288(1990)]、日本国特開平05-336963号公報、または国際公開第1994/23021号などに記載の方法を用いることにより、CD116またはCD131を宿主細胞外に積極的に分泌させることができる。また、ジヒドロ葉酸還元酵素遺伝子などを用いた遺伝子増幅系(日本国特開平2-227075号公報)を利用してCD116またはCD131の生産量を上昇させることもできる。
 生産したCD116またはCD131は、例えば、以下のようにして単離、精製することができる。
 CD116またはCD131が細胞内に溶解状態で発現した場合には、培養終了後に細胞を遠心分離により回収し、水系緩衝液に懸濁後、超音波破砕機、フレンチプレス、マントンガウリンホモゲナイザー、またはダイノミルなどを用いて細胞を破砕し、無細胞抽出液を得る。該無細胞抽出液を遠心分離して得られる上清から、通常のタンパク質の単離精製法、すなわち溶媒抽出法、硫安などによる塩析法、脱塩法、有機溶媒による沈殿法、ジエチルアミノエチル(DEAE)-セファロース、DIAION HPA-75(三菱ケミカル社製)などのレジンを用いた陰イオン交換クロマトグラフィー法、S-Sepharose FF(ファルマシア社製)などのレジンを用いた陽イオン交換クロマトグラフィー法、ブチルセファロース、フェニルセファロースなどのレジンを用いた疎水性クロマトグラフィー法、分子篩を用いたゲルろ過法、アフィニティークロマトグラフィー法、クロマトフォーカシング法、または等電点電気泳動などの電気泳動法などの手法を、単独でまたは組み合わせて用いることで、精製タンパク質を得ることができる。
 CD116またはCD131が細胞内に不溶体を形成して発現した場合は、上記と同様に細胞を回収後破砕し、遠心分離を行うことにより、沈殿画分として該CD116またはCD131の不溶体を回収する。回収した該CD116またはCD131の不溶体をタンパク質変性剤で可溶化する。該可溶化液を希釈または透析することにより、該CD116またはCD131を正常な立体構造に戻した後、上記と同様の単離精製法によりポリペプチドの精製タンパク質を得ることができる。
 CD116またはCD131またはその糖修飾体などの誘導体が細胞外に分泌された場合には、培養上清において該CD116またはCD131、またはその糖修飾体などの誘導体を回収することができる。該培養上清を上記と同様に遠心分離などの手法を用いて処理することにより、可溶性画分を取得し、該可溶性画分から上記と同様の単離精製法を用いることにより、精製タンパク質を得ることができる。
 また、本発明において用いられるCD116またはCD131は、Fmoc法またはtBoc法などの化学合成法によっても製造することができる。具体的には、例えば、アドバンストケムテック社製、パーキン・エルマー社製、ファルマシア社製、プロテインテクノロジインストルメント社製、シンセセル-ベガ社製、パーセプチブ社製、または島津製作所社製などのペプチド合成機を利用して化学合成することができる。
(2)抗体産生細胞の調製工程
 マウス、ラット、ハムスター、ウサギ、ウシ、またはアルパカなどの動物に、(1)で得られる抗原を免疫して、その動物の脾臓、リンパ節または末梢血中の抗体産生細胞を採取する。また、動物としては、例えば、富塚らの文献[Tomizuka. et al., Proc Natl Acad Sci USA., 97, 722(2000)]に記載されているヒト由来抗体を産生するトランスジェニックマウス、免疫原性を高めるためにCD116またはCD131のコンディショナルノックアウトマウスなどが被免疫動物として挙げられる。
 免疫は、フロイントの完全アジュバント、または水酸化アルミニウムゲルと百日咳菌ワクチンなどの適当なアジュバントとともに抗原を投与することにより行う。マウス免疫の際の免疫原投与法は、皮下注射、腹腔内注射、静脈内注射、皮内注射、筋肉内注射または足蹠注射などいずれでもよいが、腹腔内注射、足蹠注射または静脈内注射が好ましい。抗原が部分ペプチドである場合には、BSA(ウシ血清アルブミン)、またはKLH(Keyhole Limpet hemocyanin)などのキャリアタンパク質とのコンジュゲート体を作製し、これを免疫原として用いる。
 抗原の投与は、1回目の投与の後、1~2週間おきに5~10回行う。各投与後3~7日目に眼底静脈叢より採血し、その血清の抗体価を酵素免疫測定法[Antibodies - A Laboratory Manual, Cold Spring Harbor Laboratory(1988)]などを用いて測定する。免疫に用いた抗原に対し上記の血清が十分な抗体価を示した動物を、融合用抗体の産生細胞の供給源として用いれば、以後の操作の効果を高めることができる。
 抗原の最終投与後3~7日目に、免疫した動物より脾臓などの抗体産生細胞を含む組織を摘出し、抗体産生細胞を採取する。抗体産生細胞は、形質細胞およびその前駆細胞であるリンパ球であり、これは個体のいずれの部位から得てもよく、一般には脾臓、リンパ節、骨髄、扁桃、末梢血、またはこれらを適宜組み合わせたもの等から得ることができるが、脾臓細胞が最も一般的に用いられる。脾臓細胞を用いる場合には、脾臓を細断してほぐした後、遠心分離し、さらに赤血球を除去することにより、融合用抗体産生細胞を取得する。
(3)ミエローマの調製工程
 ミエローマとしては、マウス、ラット、モルモット、ハムスター、ウサギまたはヒト等の哺乳動物に由来する自己抗体産生能のない細胞を用いることが出来るが、一般的にはマウスから得られた株化細胞、例えば、8-アザグアニン耐性マウス(BALB/c由来)ミエローマ細胞株P3-X63Ag8-U1(P3-U1)[Current Topics in Microbiology and Immunology, 18, 1(1978)]、P3-NS1/1-Ag41(NS-1)[European J. Immunology, 6, 511 (1976)]、SP2/0-Ag14(SP-2)[Nature, 276, 269(1978)]、P3-X63-Ag8653(653)[J. Immunology, 123, 1548 (1979)]、またはP3-X63-Ag8(X63)[Nature, 256, 495(1975)]などが用いられる。該細胞株は、適当な培地、例えば8-アザグアニン培地[グルタミン、2-メルカプトエタノール、ゲンタマイシン、FCSおよび8-アザグアニンを加えたRPMI-1640培地]、イスコフ改変ダルベッコ培地(Iscove’s Modified Dulbecco’s Medium;以下「IMDM」という)、またはダルベッコ改変イーグル培地(Dulbecco’s Modified Eagle Medium;以下「DMEM」という)などの培地で継代培養する。細胞融合の3~4日前に上記の細胞株を正常培地(例えば、10% FCSを含むDMEM培地)で継代培養し、融合を行う当日に2×10個以上の細胞数を確保する。
(4)細胞融合
 (2)で得られる融合用抗体産生細胞と(3)で得られるミエローマ細胞を、Minimum Essential Medium(MEM)培地またはPBS(リン酸二ナトリウム1.83g、リン酸一カリウム0.21g、食塩7.65g、蒸留水1リットル、pH7.2)でよく洗浄し、融合用抗体産生細胞:ミエローマ細胞=5:1~10:1になるように混合し、遠心分離した後、上清を除く。沈澱した細胞集塊をよくほぐした後、ポリエチレングリコール-1000(PEG-1000)、MEM培地およびジメチルスルホキシドの混合液を、37℃にて攪拌しながら加える。さらに1~2分間毎にMEM培地1~2mLを数回加えた後、MEM培地を加えて全量が50mLになるようにする。遠心分離後、上清を除き、沈澱した細胞集塊を緩やかにほぐした後、HAT培地[ヒポキサンチン、チミジンおよびアミノプテリンを加えた正常培地]中に緩やかに細胞を懸濁する。この懸濁液を5%COインキュベータ中、37℃にて7~14日間培養する。 
 また、以下の方法でも細胞融合を行うことができる。脾臓細胞とミエローマ細胞とを無血清培地(例えばDMEM)、またはリン酸緩衝生理食塩液(以下「リン酸緩衝液」という)でよく洗浄し、脾臓細胞とミエローマ細胞の細胞数の比が5:1~10:1程度になるように混合し、遠心分離する。上清を除去し、沈澱した細胞集塊をよくほぐした後、撹拌しながら1mLの50%(w/v)ポリエチレングリコール(分子量1000~4000)を含む無血清培地を滴下する。その後、10mLの無血清培地をゆっくりと加えた後、遠心分離する。再び上清を捨て、沈澱した細胞を適量のヒポキサンチン・アミノプテリン・チミジン(HAT)液およびヒトインターロイキン-2(IL-2)を含む正常培地(以下、HAT培地という)中に懸濁して培養用プレート(以下、プレートという)の各ウェルに分注し、5%炭酸ガス存在下、37℃にて2週間程度培養する。途中適宜HAT培地を補う。
(5)ハイブリドーマ群の選択
 融合に用いたミエローマ細胞が8-アザグアニン耐性株である場合、すなわちヒポキサンチン・グアニン・ホスホリボシルトランスフェラーゼ(HGPRT)欠損株である場合は、融合しなかったミエローマ細胞およびミエローマ細胞同士の融合細胞は、HAT培地中では生存することができない。一方、抗体産生細胞同士の融合細胞および抗体産生細胞とミエローマ細胞とのハイブリドーマは、HAT培地中で生存することができるが、抗体産生細胞同士の融合細胞はやがて寿命に達する。したがって、HAT培地中での培養を続けることによって、抗体産生細胞とミエローマ細胞とのハイブリドーマのみが生き残り、結果的にハイブリドーマを取得することができる。
 コロニー状に生育してきたハイブリドーマについて、HAT培地からアミノプテリンを除いた培地(以下、HT培地という)への培地交換を行う。その後、培養上清の一部を採取し、後述する抗体価測定法を用いて、抗体を産生するハイブリドーマを選択することができる。抗体価の測定方法としては、例えば、放射性同位元素免疫定量法(RIA法)、固相酵素免疫定量法(ELISA法)、蛍光抗体法および受身血球凝集反応法など種々の公知技術が挙げられるが、検出感度、迅速性、正確性および操作の自動化の可能性などの観点から、RIA法またはELISA法が好ましい。
 抗体価を測定することにより、所望の抗体を産生することが判明したハイブリドーマを、別のプレートに移しクローニングを行う。このクローニング法としては、例えば、プレートの1ウェルに1個の細胞が含まれるように希釈して培養する限界希釈法、軟寒天培地中で培養しコロニーを回収する軟寒天法、マイクロマニュピレーターによって1個の細胞を単離する方法、セルソーターによって1個の細胞を単離する方法などが挙げられる。
 抗体価の認められたウェルについて、例えば限界希釈法によるクローニングを2~4回繰り返し、安定して抗体価の認められたものを、CD116またはCD131に対するモノクローナル抗体を産生するハイブリドーマ株として選択する。 
(6)モノクローナル抗体の調製
 プリスタン処理[2,6,10,14-テトラメチルペンタデカン(Pristane)0.5mLを腹腔内投与し、2週間飼育する]した8~10週令のマウスまたはヌードマウスに、(5)で得られるモノクローナル抗体産生ハイブリドーマを腹腔内に注射する。10~21日でハイブリドーマは腹水癌化する。このマウスから腹水を採取し、遠心分離して固形分を除去後、40~50%硫酸アンモニウムで塩析し、カプリル酸沈殿法、DEAE-セファロースカラム、プロテインAカラムまたはゲル濾過カラムによる精製を行い、IgGまたはIgM画分を集め、精製モノクローナル抗体とする。また、同系統のマウス(例えば、BALB/c)若しくはNu/Nuマウス、ラット、モルモット、ハムスターまたはウサギ等の腹腔内で該ハイブリドーマを増殖させることにより、CD116またはCD131に結合するモノクローナル抗体を大量に含む腹水を得ることができる。
 (5)で得られたモノクローナル抗体産生ハイブリドーマを、10%FBS添加を添加したRPMI1640培地などで培養した後、遠心分離により上清を除き、GIT培地、または5%ダイゴGF21を添加したHybridoma-SFM培地等に懸濁し、フラスコ培養、スピナー培養またはバック培養などにより3~7日間培養する。得られた細胞懸濁液を遠心分離し、得られた上清よりプロテインAカラムまたはプロテインGカラムによる精製を行ない、IgG画分を集め、精製モノクローナル抗体を得ることもできる。精製の簡便な方法としては、市販のモノクローナル抗体精製キット(例えば、MAbTrap GIIキット;アマシャムファルマシアバイオテク社製)等を利用することもできる。
 抗体のサブクラスの決定は、サブクラスタイピングキットを用いて酵素免疫測定法により行う。蛋白量の定量は、ローリー法および280nmにおける吸光度[1.4(OD280)=イムノグロブリン1mg/mL]より算出する方法により行うことができる。
(7)CD116またはCD131に対するモノクローナル抗体の結合アッセイ
 CD116またはCD131に対するモノクローナル抗体の結合活性は、オクテルロニー(Ouchterlony)法、ELISA法、RIA法、フローサイトメトリー法(FCM)または表面プラズモン共鳴法(SPR)などのバインディングアッセイ系により測定することができる。
 オクテルロニー法は簡便ではあるが、抗体の濃度が低い場合には濃縮操作が必要である。一方、ELISA法またはRIA法を用いた場合は、培養上清をそのまま抗原吸着固相と反応させ、さらに二次抗体として各種イムノグロブリンアイソタイプ、サブクラスに対応する抗体を用いることにより、抗体のアイソタイプ、サブクラスを同定すると共に、抗体の結合活性を測定することが可能である。
 手順の具体例としては、精製または部分精製した組換えCD116またはCD131をELISA用96穴プレート等の固相表面に吸着させ、さらに抗原が吸着していない固相表面を抗原と無関係なタンパク質、例えばウシ血清アルブミン(BSA)によりブロッキングを行う。ELISAプレートをphosphate buffer saline(PBS)および0.05% Tween20を含むPBS(Tween-PBS)などで洗浄後、段階希釈した第1抗体(例えばマウス血清、培養上清など)を反応させ、プレートに固定化された抗原へ抗体を結合させる。次に、第2抗体としてビオチン、酵素(horse radish peroxidase;HRP、alkaline phosphatase;ALPなど)、化学発光物質または放射線化合物などで標識した抗イムノグロブリン抗体を分注して、プレートに結合した第1抗体に第2抗体を反応させる。Tween-PBSでよく洗浄した後、第2抗体の標識物質に応じた反応を行い、標的抗原に対し特異的に反応するモノクローナル抗体を選択する。
 FCM法では、抗体の抗原発現細胞に対する結合活性を測定することができる[Cancer Immunol. Immunother., 36, 373 (1993)]。抗体が細胞膜上に発現している膜タンパク質抗原に結合することは、当該抗体が天然に存在する抗原の立体構造を認識し、結合することを意味する。
 SPR法としては、Biacoreによるkinetics解析が挙げられる。例えば、Biacore T100を用い、抗原と被験物質との間の結合におけるkineticsを測定し、その結果を機器付属の解析ソフトウェアで解析をする。手順の具体例としては、抗マウスIgG抗体をセンサーチップCM5にアミンカップリング法により固定した後、ハイブリドーマ培養上清または精製モノクローナル抗体などの被験物質を流して適当量を結合させ、さらに濃度既知の複数濃度の抗原を流して、結合および解離を測定する。
 次に、得られたデータについて、機器付属のソフトウェアを用いて1:1バインディングモデルによるkinetics解析を行い、各種パラメータを取得する。または、CD116またはCD131をセンサーチップ上に、例えばアミンカップリング法により固定した後、濃度既知の複数濃度の精製モノクローナル抗体を流して、結合および解離を測定する。得られたデータについて、機器付属のソフトウェアを用いてバイバレントバインディングモデルによるkinetics解析を行い、各種パラメータを取得する。
 また、本発明において、CD116またはCD131に対する抗体と競合してCD116またはCD131に結合する抗体は、上述のバインディングアッセイ系に被検抗体を共存させて反応させることにより、選択することができる。すなわち、被検抗体を加えた時に抗原との結合が阻害される抗体をスクリーニングすることにより、CD116またはCD131への結合について、前記で取得した抗体と競合する抗体を得ることができる。
(8)CD116またはCD131に対するモノクローナル抗体のエピトープの同定
 本発明において、抗体が認識し結合するエピトープの同定は以下のようにして行うことができる。
 例えば、抗原の部分欠損体、種間で異なるアミノ酸残基を改変した変異体、または特定のドメインを改変した変異体を作製し、該欠損体または変異体に対する抗体の反応性が低下すれば、欠損部位またはアミノ酸改変部位が該抗体のエピトープであることが明らかになる。このような抗原の部分欠損体および変異体は、適当な宿主細胞、例えば大腸菌、酵母、植物細胞または哺乳動物細胞などを用いて、分泌タンパク質として取得してもよいし、宿主細胞の細胞膜上に発現させて抗原発現細胞として調製してもよい。膜型抗原の場合は、抗原の立体構造を保持したまま発現させるために、宿主細胞の膜上に発現させることが好ましい。また、抗原の1次構造または立体構造を模倣した合成ペプチドを作製し、抗体の反応性を確認することもできる。合成ペプチドは、公知のペプチド合成技術を用いて、その分子の様々な部分ペプチドを作製する方法等が挙げられる。
 例えば、ヒトおよびマウスのCD116またはCD131の細胞外領域について、各領域を構成するドメインを適宜組み合わせたキメラタンパク質を作製し、該タンパク質に対する抗体の反応性を確認することで、抗体のエピトープを同定することができる。その後、さらに細かく、その対応部分のオリゴペプチド、または該ペプチドの変異体等を、当業者に周知のオリゴペプチド合成技術を用いて種々合成し、該ペプチドに対する抗体の反応性を確認することでエピトープを特定することができる。多種類のオリゴペプチドを得るための簡便な方法として、市販のキット[例えば、SPOTsキット(ジェノシス・バイオテクノロジーズ社製)、マルチピン合成法を用いた一連のマルチピン・ペプチド合成キット(カイロン社製)等]を利用することもできる。
 CD116またはCD131に結合する抗体断片、例えばFabは、上記に記載のハイブリドーマを用いた方法の他、Phage Display法、Yeast display法などの技術により単離し、取得することが出来る[Emmanuelle Laffy et. al., Human Antibodies 14, 33-55, (2005)]。
 CD116またはCD131に結合する抗体が結合するエピトープと同じエピトープに結合する抗体は、上述のバインディングアッセイ系で得た抗体のエピトープを同定し、該エピトープの部分的な合成ペプチド、該エピトープの立体構造を模した合成ペプチド、または該エピトープの組換え体等を作製し、免疫することで取得することができる。
 例えば、エピトープが膜タンパク質であれば、全細胞外領域または一部の細胞外ドメインを、適当なタグ、例えば、FLAGタグ、Histidineタグ、GSTタンパク質または抗体Fc領域などに連結した組換え融合タンパク質を作製し、該組換えタンパク質を免疫することで、より効率的に該エピトープ特異的な抗体を作製することができる。
2.遺伝子組換え抗体の作製
 遺伝子組換え抗体の作製例として、P. J. Delves., ANTIBODY PRODUCTION ESSENTIAL TECHNIQUES., 1997 WILEY、P. Shepherd and C. Dean. Monoclonal Antibodies., 2000 OXFORD UNIVERSITY PRESSおよびJ. W. Goding., Monoclonal Antibodies: principles and practice., 1993 ACADEMIC PRESSなどに概説されているが、以下にキメラ抗体、ヒト化抗体およびヒト抗体の作製方法を示す。また、遺伝子組換えマウス、ラット、ハムスターおよびラビット抗体についても、同様の方法で作製することができる。
(1)ハイブリドーマからのモノクローナル抗体のV領域をコードするcDNAの取得
 モノクローナル抗体のVHおよびVLをコードするcDNAの取得は、例えば以下のようにして行うことができる。
 まず、モノクローナル抗体を産生するハイブリドーマよりmRNAを抽出し、cDNAを合成する。次に、合成したcDNAをファージまたはプラスミドなどのベクターにクローニングしてcDNAライブラリーを作製する。該ライブラリーより、抗体のC領域部分またはV領域部分をコードするDNAをプローブとして用いて、VHまたはVLをコードするcDNAを有する組換えファージまたは組換えプラスミドをそれぞれ単離する。単離した組換えファージまたは組換えプラスミド内のVHまたはVLの全塩基配列を決定し、当該塩基配列よりVHまたはVLの全アミノ酸配列を推定する。
 ハイブリドーマの作製に用いる非ヒト動物としては、マウス、ラット、ハムスターまたはウサギなどを用いるが、ハイブリドーマを作製することが可能であれば、いかなる動物も用いることができる。
 ハイブリドーマからの全RNAの調製には、チオシアン酸グアニジン-トリフルオロ酢酸セシウム法[Methods in Enzymol., 154, 3 (1987)]、またはRNA easy kit(キアゲン社製)などのキットなどを用いる。 
 全RNAからのmRNAの調製には、オリゴ(dT)固定化セルロースカラム法[Molecular Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press(1989)]、またはOligo-dT30<Super>mRNA Purification Kit(タカラバイオ社製)などのキットなどを用いる。また、Fast Track mRNA Isolation Kit(インビトロジェン社製)またはQuickPrep mRNA Purification Kit(ファルマシア社製)などのキットを用いて、mRNAを調製することもできる。
 cDNAの合成およびcDNAライブラリーの作製には、公知の方法[Molecular Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press(1989)、Current Protocols in Molecular Biology, Supplement 1, John Wiley & Sons(1987-1997)]またはSuperScript Plasmid System for cDNA Synthesis and Plasmid Cloning(インビトロジェン社製)若しくはZAP-cDNA Synthesis Kit(ストラタジーン社製)などのキットなどを用いる。
 cDNAライブラリーの作製の際に、ハイブリドーマから抽出したmRNAを鋳型として合成したcDNAを組み込むベクターとしては、該cDNAを組み込めるベクターであればいかなるものでも用いることができる。
 例えば、ZAP Express[Strategies, 5, 58(1992)]、pBluescript II SK(+)[Nucleic Acids Research, 17, 9494(1989)]、λZAPII(Stratagene社製)、λgt10、λgt11[DNA Cloning: A Practical Approach, I, 49(1985)]、Lambda BlueMid(クローンテック社製)、λExCell、pT7T3-18U(ファルマシア社製)、pcD2[Mol. Cell. Biol., 3, 280(1983)]またはpUC18[Gene, 33, 103(1985)]などを用いる。
 ファージまたはプラスミドベクターにより構築されるcDNAライブラリーを導入する大腸菌には、該cDNAライブラリーを導入、発現および維持できるものであればいかなるものでも用いることができる。例えば、XL1-Blue MRF’[Strategies, 5, 81(1992)]、C600[Genetics, 39, 440(1954)]、Y1088、Y1090[Science, 222, 778(1983)]、NM522[J. Mol. Biol., 166, 1(1983)]、K802[J. Mol. Biol., 16, 118(1966)]、またはJM105[Gene, 38, 275(1985)]などを用いる。
 cDNAライブラリーからの非ヒト抗体のVHまたはVLをコードするcDNAクローンの選択には、アイソトープ若しくは蛍光標識したプローブを用いたコロニー・ハイブリダイゼーション法、またはプラーク・ハイブリダイゼーション法[Molecular Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press(1989)]などを用いる。
 また、プライマーを調製し、mRNAから合成したcDNAまたはcDNAライブラリーを鋳型として、Polymerase Chain Reaction法[以下、PCR法と表記する、Molecular Cloning, A Laboratory Manual, Second Edition , Cold Spring Harbor Laboratory Press(1989)、Current Protocols in Molecular Biology, Supplement 1, John Wiley & Sons(1987-1997)]を行うことにより、VHまたはVLをコードするcDNAを調製することもできる。
 選択されたcDNAを、適当な制限酵素などで切断した後、pBluescript SK(-)(ストラタジーン社製)などのプラスミドにクローニングし、通常用いられる塩基配列解析方法などにより該cDNAの塩基配列を決定する。例えば、ジデオキシ法[Proc. Natl. Acad. Sci. USA, 74, 5463(1977)]などの反応を行った後、A.L.F.DNAシークエンサー(ファルマシア社製)などの塩基配列自動分析装置などを用いて解析する。
 決定した全塩基配列からVHおよびVLの全アミノ酸配列をそれぞれ推定し、既知の抗体のVHおよびVLの全アミノ酸配列[Sequences of Proteins of Immunological Interest, US Dept. Health and Human Services(1991)]と比較することにより、取得したcDNAが、分泌シグナル配列を含めて抗体のVHおよびVL各々の完全なアミノ酸配列をコードしているか否かを確認する。
 分泌シグナル配列を含む抗体のVHおよびVL各々の完全なアミノ酸配列に関しては、既知の抗体のVHおよびVLの全アミノ酸配列[Sequences of Proteins of Immunological Interest, US Dept. Health and Human Services(1991)]と比較することにより、分泌シグナル配列の長さおよびN末端アミノ酸配列を推定することができ、さらにそれらが属するサブグループを同定することができる。
 また、VHおよびVLの各CDRのアミノ酸配列は、既知の抗体のVHおよびVLのアミノ酸配列[Sequences of Proteins of Immunological Interest, US Dept. Health and Human Services(1991)]と比較することによって推定することができる。
 また、得られたVHおよびVLの完全なアミノ酸配列について、例えば、SWISS-PROTまたはPIR-Proteinなどの任意のデータベースを用いてBLAST法[J. Mol. Biol., 215, 403(1990)]などによる相同性検索を行うことで、当該VHおよびVLの完全なアミノ酸配列が新規なものであるか否かを確認することができる。
(2)遺伝子組換え抗体発現ベクターの構築
 遺伝子組換え抗体発現ベクターは、動物細胞用発現ベクターにヒト抗体のCHおよびCLの少なくとも一方をコードするDNAをクローニングすることにより構築することができる。
 ヒト抗体のC領域としては、任意のヒト抗体のCHおよびCLを用いることができ、例えば、ヒト抗体のγ1サブクラスのCHおよびκクラスのCLなどを用いることができる。ヒト抗体のCHおよびCLをコードするDNAとしてはcDNAを用いるが、エキソンとイントロンからなる染色体DNAを用いることもできる。
 動物細胞用発現ベクターとしては、ヒト抗体のC領域をコードする遺伝子を組み込んで発現できるものであれば、いかなるものでも用いることができ、例えば、pAGE107[Cytotechnol., 3, 133 (1990)]、pAGE103[J. Biochem., 101, 1307(1987)]、pHSG274[Gene, 27, 223 (1984)]、pKCR[Proc. Natl. Acad. Sci. USA, 78, 1527 (1981)]、pSG1bd2-4[Cytotechnol., 4, 173 (1990)]、またはpSE1UK1Sed1-3[Cytotechnol., 13, 79 (1993)]、INPEP4(Biogen-IDEC社製)、N5KG1val(米国特許第6,001,358号明細書)、N5KG4PE R409K(国際公開第2006/033386号に記載)、N5KG2ベクター(国際公開第2003/033538号に記載)、トランスポゾンベクター(国際公開第2010/143698号)などを用いることができる。
 動物細胞用発現ベクターのプロモーターとエンハンサーとしては、SV40の初期プロモーター[J. Biochem., 101, 1307 (1987)]、モロニーマウス白血病ウイルスLTR[Biochem. Biophys. Res. Commun., 149, 960 (1987)]、CMVプロモーター(米国特許第5,168,062号明細書)または免疫グロブリンH鎖のプロモーター[Cell, 41, 479 (1985)]とエンハンサー[Cell, 33, 717(1983)]などを用いることができる。
 遺伝子組換え抗体の発現には、ベクターの構築の容易さ、動物細胞への導入の容易さ、細胞内における抗体H鎖およびL鎖の発現量の均衡性などの観点から、抗体H鎖およびL鎖の両遺伝子を搭載したベクター(タンデム型ベクター)[J. Immunol. Methods, 167, 271 (1994)]を用いるが、抗体H鎖とL鎖の各遺伝子を別々に搭載した複数のベクター(セパレート型ベクター)を組み合わせて用いることもできる。
 タンデム型の遺伝子組換え抗体発現ベクターとしては、pKANTEX93(国際公開第97/10354号)、pEE18[Hybridoma, 17, 559(1998)]、N5KG1val(米国特許第6,001,358号明細書)、N5KG4PE R409K(国際公開第2006/033386号に記載)、N5KG2ベクター(国際公開第2003/033538号に記載)、Tol2トランスポゾンベクター(国際公開第2010/143698号)などを用いる。
(3)キメラ抗体発現ベクターの構築
 (2)で得られる遺伝子組換え抗体発現ベクター内のヒト抗体のCHまたはCLをコードする遺伝子の各々の上流に、(1)で得られる非ヒト抗体のVHまたはVLをコードするcDNAを各々クローニングすることで、キメラ抗体発現ベクターを構築することができる。
 まず、非ヒト抗体のVHまたはVLをコードするcDNAの3’末端側と、ヒト抗体のCHまたはCLの5’末端側とを連結するために、連結部分の塩基配列が適切なアミノ酸をコードし、かつ適当な制限酵素認識配列になるように設計したVHおよびVLのcDNAを作製する。次に、作製したVHおよびVLのcDNAを、(2)で得られる遺伝子組換え抗体発現ベクター内のヒト抗体のCHまたはCLをコードする遺伝子の各々の上流に、それらが適切な形で発現する様にそれぞれクローニングし、キメラ抗体発現ベクターを構築する。
 また、非ヒト抗体のVHまたはVLをコードするcDNAを、適当な制限酵素の認識配列を両端に有する合成DNAを用いてPCR法によりそれぞれ増幅し、(2)で得られる遺伝子組換え抗体発現ベクターにクローニングすることで、キメラ抗体発現ベクターを構築することもできる。
(4)ヒト化抗体のV領域をコードするcDNAの作製
 ヒト化抗体のVHまたはVLをコードするcDNAは、以下のようにして作製することができる。まず、(1)で得られる非ヒト抗体のVHまたはVLのCDRのアミノ酸配列を移植するヒト抗体のVHまたはVLのフレームワーク領域(以下、FRと表記する)のアミノ酸配列をそれぞれ選択する。
 選択するFRのアミノ酸配列には、ヒト抗体由来のものであればいずれのものでも用いることができる。例えば、Protein Data Bankなどのデータベースに登録されているヒト抗体のFRのアミノ酸配列、またはヒト抗体のFRの各サブグループの共通アミノ酸配列[Sequences of Proteins of Immunological Interest, US Dept. Health and Human Services(1991)]などを用いる。抗体の結合活性の低下を抑えるために、元の非ヒト抗体のVHまたはVLのFRのアミノ酸配列とできるだけ高い相同性(60%以上)を有するヒトFRのアミノ酸配列を選択する。
 次に、選択したヒト抗体のVHまたはVLのFRのアミノ酸配列に、元の非ヒト抗体のCDRのアミノ酸配列をそれぞれ移植し、ヒト化抗体のVHまたはVLのアミノ酸配列をそれぞれ設計する。設計したアミノ酸配列を、抗体遺伝子の塩基配列に見られるコドンの使用頻度[Sequences of Proteins of Immunological Interest, US Dept. Health and Human Services(1991)]を考慮してDNA配列に変換することで、ヒト化抗体のVHまたはVLのcDNA配列をそれぞれ設計する。
 設計したcDNA配列に基づき、100~150塩基前後の長さからなる数本の合成DNAを合成し、それらを用いてPCR反応を行う。この場合、PCR反応における反応効率および合成可能なDNA長の観点から、好ましくはH鎖およびL鎖に対し各々4~6本の合成DNAを設計する。また、可変領域全長の合成DNAを合成して用いることもできる。
 さらに、両端に位置する合成DNAの5’末端に適当な制限酵素の認識配列を導入することで、(2)で得られる遺伝子組換え抗体発現ベクターに、容易にヒト化抗体のVHまたはVLをコードするcDNAをクローニングすることができる。PCR反応後、増幅産物をpBluescript SK(-)(ストラタジーン社製)などのプラスミドにそれぞれクローニングし、(1)に記載の方法と同様の方法により塩基配列を決定し、所望のヒト化抗体のVHまたはVLのアミノ酸配列をコードするDNA配列を有するプラスミドを取得する。
(5)ヒト化抗体のV領域のアミノ酸配列の改変
 ヒト化抗体は、非ヒト抗体のVHおよびVLのCDRのみをヒト抗体のVHおよびVLのFRに移植しただけでは、その抗原結合活性は元の非ヒト抗体に比べて低下する[BIO/TECHNOLOGY, 9, 266(1991)]。そのため、ヒト抗体のVHおよびVLのFRのアミノ酸配列のうち、直接抗原との結合に関与しているアミノ酸残基、CDRのアミノ酸残基と相互作用するアミノ酸残基、および抗体の立体構造を維持し間接的に抗原との結合に関与しているアミノ酸残基を同定し、それらのアミノ酸残基を元の非ヒト抗体のアミノ酸残基に置換することにより、低下したヒト化抗体の抗原結合活性を上昇させることができる。    
 抗原結合活性に関わるFRのアミノ酸残基を同定するために、X線結晶解析[J. Mol. Biol., 112, 535(1977)]またはコンピューターモデリング[Protein Engineering, 7, 1501(1994)]などを用いることにより、抗体の立体構造の構築および解析を行うことができる。また、それぞれの抗体について数種の改変体を作製し、それぞれの抗原結合活性との相関を検討することを繰り返し、試行錯誤することで、必要な抗原結合活性を有する改変ヒト化抗体を取得できる。
 ヒト抗体のVHおよびVLのFRのアミノ酸残基は、改変用合成DNAを用いて(4)に記載のPCR反応を行うことにより、改変することができる。PCR反応後の増幅産物について、(1)に記載の方法により、塩基配列を決定し、目的とする改変が施されたことを確認する。
(6)ヒト化抗体発現ベクターの構築
 (2)で得られる遺伝子組換え抗体発現ベクターのヒト抗体のCHまたはCLをコードするそれぞれの遺伝子の上流に、構築したヒト化抗体のVHまたはVLをコードするcDNAをそれぞれクローニングし、ヒト化抗体発現ベクターを構築することができる。
 例えば、(4)および(5)で得られるヒト化抗体のVHまたはVLを構築する際に用いる合成DNAのうち、両端に位置する合成DNAの5’末端に適当な制限酵素の認識配列を導入することで、(2)で得られる遺伝子組換え抗体発現ベクター内のヒト抗体のCHまたはCLをコードする各遺伝子の上流に、それらが適切な形で発現するようにそれぞれクローニングする。
(7)ヒト抗体発現ベクターの構築
 ヒト抗体を産生する動物を被免疫動物として用いて、モノクローナル抗体を産生するハイブリドーマを樹立した場合には、(1)において、ヒト抗体のVHおよびVLのアミノ酸配列およびcDNA配列を得ることができる。そこで、(2)で得られる遺伝子組換え抗体発現ベクターのヒト抗体のCHまたはCLをコードするそれぞれの遺伝子の上流に、(1)で得たヒト抗体のVHまたはVLをコードする遺伝子をそれぞれクローニングすることで、ヒト抗体発現ベクターを構築することができる。
(8)遺伝子組換え抗体の一過性発現
 (3)、(6)および(7)で得られる遺伝子組換え抗体発現ベクター、またはそれらを改変した発現ベクターを用いて遺伝子組換え抗体を一過性に発現させ、得られた多種類の遺伝子組換え抗体の抗原結合活性を効率的に評価することができる。
 発現ベクターを導入する宿主細胞には、遺伝子組換え抗体を発現できる宿主細胞であれば、いかなる細胞でも用いることができるが、例えばCOS-7細胞[American Type Culture Collection(ATCC)番号:CRL1651]を用いる。COS-7細胞への発現ベクターの導入には、DEAE-デキストラン法[Methods in Nucleic Acids Res., CRC press(1991)]、またはリポフェクション法[Proc. Natl. Acad. Sci. USA, 84, 7413(1987)]などを用いる。
 発現ベクターの導入後、培養上清中の遺伝子組換え抗体の発現量および抗原結合活性を、酵素免疫抗体法[Monoclonal Antibodies-Principles and practice, Third Edition, Academic Press(1996)、Antibodies - A Laboratory Manual, Cold Spring Harbor Laboratory(1988)、単クローン抗体実験マニュアル、講談社サイエンティフィック(1987)]などを用いて測定する。 
(9)遺伝子組換え抗体の安定的発現株の取得と遺伝子組換え抗体の調製
 (3)、(6)および(7)で得られた遺伝子組換え抗体発現ベクターを適当な宿主細胞に導入することにより遺伝子組換え抗体を安定的に発現する形質転換株を得ることができる。
 宿主細胞への発現ベクターの導入としては、例えば、エレクトロポレーション法[日本国特開平2-257891号公報、Cytotechnology, 3, 133(1990)]、カルシウムイオン方法、エレクトロポレーション法、スフェロプラスト法、酢酸リチウム法、リン酸カルシウム法、リポフェクション法などが挙げられる。また、後述の動物に遺伝子を導入する方法としては、例えば、マイクロインジェクション法、ES細胞にエレクトロポレーション法やリポフェクション法を用いて遺伝子を導入する方法、および核移植法などが挙げられる。
 遺伝子組換え抗体発現ベクターを導入する宿主細胞としては、遺伝子組換え抗体を発現させることができる宿主細胞であれば、いかなる細胞でも用いることができる。例えば、マウスSP2/0-Ag14細胞(ATCC CRL1581)、マウスP3X63-Ag8.653細胞(ATCC CRL1580)、チャイニーズハムスターCHO-K1細胞(ATCC CCL-61)、DUKXB11(ATCC CCL-9096)、Pro-5細胞(ATCC CCL-1781)、CHO-S細胞(Life Technologies、Cat No.11619)、ジヒドロ葉酸還元酵素遺伝子(dhfr)が欠損したCHO細胞(CHO/DG44細胞)[Proc. Natl. Acad. Sci. USA, 77, 4216(1980)]、レクチン耐性を獲得したLec13細胞[Somatic Cell and Molecular genetics, 12, 55(1986)]、α1,6-フコース転移酵素遺伝子が欠損したCHO細胞(国際公開第2005/035586号、国際公開第02/31140号)、ラットYB2/3HL.P2.G11.16Ag.20細胞(ATCC番号:CRL1662)などを用いる。
 また、細胞内糖ヌクレオチドGDP-フコースの合成に関与する酵素などのタンパク質、N-グリコシド結合複合型糖鎖の還元末端のN-アセチルグルコサミンの6位にフコースの1位がα結合する糖鎖修飾に関与する酵素などのタンパク質、または細胞内糖ヌクレオチドGDP-フコースのゴルジ体への輸送に関与するタンパク質などの活性が低下または欠失した宿主細胞、例えばα1,6-フコース転移酵素遺伝子が欠損したCHO細胞(国際公開第2005/035586号、国際公開第02/31140号)などを用いることもできる。
 発現ベクターの導入後、遺伝子組換え抗体を安定的に発現する形質転換株を、G418硫酸塩(以下、G418と表記する)などの薬剤を含む動物細胞培養用培地で培養することにより選択する(日本国特開平2-257891号公報)。
 動物細胞培養用培地には、RPMI1640培地(インビトロジェン社製)、GIT培地(日本製薬社製)、EX-CELL301培地(ジェイアールエイチ社製)、EX-CELL302培地(ジェイアールエイチ社製)、EX-CELL325培地(ジェイアールエイチ社製)、IMDM培地(インビトロジェン社製)若しくはHybridoma-SFM培地(インビトロジェン社製)、またはこれらの培地にFBSなどの各種添加物を添加した培地などを用いる。得られた形質転換株を培地中で培養することで、培養上清中に遺伝子組換え抗体を発現、蓄積させる。培養上清中の遺伝子組換え抗体の発現量および抗原結合活性はELISA法などにより測定することができる。また、DHFR増幅系(日本国特開平2-257891号公報)などを利用して、形質転換株の産生する遺伝子組換え抗体の発現量を上昇させることができる。
 遺伝子組換え抗体は、形質転換株の培養上清よりプロテインAカラムを用いて精製することができる[Monoclonal Antibodies - Principles and practice, Third edition, Academic Press(1996)、Antibodies - A Laboratory Manual, Cold Spring Harbor Laboratory(1988)]。また、ゲル濾過、イオン交換クロマトグラフィーおよび限外濾過など、タンパク質の精製で用いられる方法を組み合わせて精製することもできる。
 本発明の一実施形態として、Fc領域を含有する抗体をプロテインAカラムクロマトグラフィーにより精製することを含む、抗体を含有する組成物の精製方法であって、前記抗体は前記Fc領域においてH435Fの変異が導入されている抗体である、精製方法が挙げられる。Fc領域においてH435Fの変異が導入されている抗体はプロテインAカラムに対する結合性に優れ、プロテインAカラムクロマトグラフィーにより精製することで、高い精製効率を実現できる。
 精製した遺伝子組換え抗体のH鎖、L鎖または抗体分子全体の分子量は、ポリアクリルアミドゲル電気泳動法[Nature, 227, 680(1970)]、またはウェスタンブロット法[Monoclonal Antibodies - Principles and practice, Third edition, Academic Press(1996)、Antibodies - A Laboratory Manual, Cold Spring Harbor Laboratory(1988)]など用いて測定することができる。 
(10)非天然型アミノ酸残基を導入した抗体または抗体断片の取得
 非天然型アミノ酸残基を導入した抗体または抗体断片は、国際公開第2017/030156号に記載の方法に従って取得することができる。
3.バイスペシフィック抗体の作製
 本発明のバイスペシフィック抗体は、例えば、CD131に結合する第1の抗原結合ドメインとCD116に結合する第2の抗原結合ドメインとをそれぞれ作製し、それらを連結させることによって作製できる。
3-1.CD116に結合する第1の抗原結合ドメインの作製
 第1の抗原結合ドメインが、抗体または抗体断片である場合、上記1.および2.に記載の方法で、抗体のCDRまたは可変領域のアミノ酸配列をコードするDNA配列を決定する。さらに、該CDRまたは可変領域を含む抗原結合ドメインを設計し、該抗原結合ドメインのアミノ酸配列をコードするDNA配列を設計する。それを、例えば2.(2)に記載の遺伝子組み換え抗体発現ベクターに組み込み、該抗原結合ドメインを発現させることによって作製することができる。
 具体的には、例えば第1の抗原結合ドメインがFabである場合、上記1.および2.に記載の方法で、抗体のCDRのDNA配列を決定する。さらに、決定した重鎖のCDRを含むVH配列とCH1配列を連結したポリペプチド鎖をコードするDNA配列、および決定した軽鎖のCDRを含むVL配列とCL配列を連結したポリペプチド鎖をコードするDNA配列を設計する。それらのDNA配列を、例えば2.(2)に記載の遺伝子組み換え抗体発現ベクターに組み込み、該抗原結合ドメインを発現させることによって作製することができる。
 第1の抗原結合ドメインが、GM-CSFまたはCD116に対する結合能を有するタンパク質のCD116への結合部分を含むポリペプチドである場合、そのポリペプチドをコードするDNA配列を設計し、例えば2.(2)に記載の遺伝子組み換え抗体発現ベクターに組み込み、該抗原結合ドメインを発現させることによって作製することができる。
 作製した抗原結合ドメインの抗原結合活性は、上記方法で評価し、抗原結合活性を保持しているものを選択することができる。
3-2.CD131に結合する第2の抗原結合ドメインの作製
 CD131に結合する抗原結合ドメインは、上記3-1.と同様の方法により、作製することができる。また、第1と第2の抗原結合ドメインを適当なアミノ酸配列で連結させて組換えタンパク質を発現させる場合も上述の方法で本発明のバイスペシフィック抗体を作製することができる。
3-3.2つの抗原結合ドメインの連結
 上記3-1.および3-2.で作製したCD116およびCD131に結合する抗原結合ドメインを以下の方法で連結させて、バイスペシフィック抗体を作製する。
 それぞれの抗原結合ドメインに含まれるアミノ酸残基を使用し、任意のリンカーを介して化学連結することができる。連結に使用されるアミノ酸残基は、天然型アミノ酸残基でも非天然型アミノ酸残基でもよい。天然型アミノ酸残基としては、例えば、システイン、チロシン、セリン、スレオニン、リジン、グルタミン酸、アスパラギン酸を用いることができる。非天然型アミノ酸残基としては、例えば、国際公開公報2017/030156号に開示のあるZリジン誘導体(N6-((ベンジルオキシ)カルボニル)-L-リジン誘導体)、TCO*-Lys(N6-(((トランス-シクロオクト-2-エン-1-イル)オキシ)カルボニル)-L-リジン)またはBCN-Lys(N6-((ビシクロ[6.1.0]ノン-4-イン-9-イルメトキシ)カルボニル)-L-リジン)を用いることができる。
 抗原結合ドメインを連結する方法としては、抗原結合ドメインに含まれるその他のアミノ酸に影響を与えることなく、選択的にリンカーと反応させることができるという理由から、非天然型アミノ酸残基を介した化学連結を用いることが好ましい。
 抗原結合ドメインを連結する際に用いる方法は特に限定されず、所望のアミノ酸残基とリンカーを化学連結するいずれの方法も用いることができる。例えば、化学反応を利用した化学連結[抗体工学入門,地人書館(1994)、Kolb et al., Angew Chem Int Ed Engl. 40. 2004-21, 2001]が挙げられる。
 抗原結合ドメインを化学連結する際に用いるリンカーは、抗原結合ドメインに含まれるアミノ酸残基と反応するのに必要な官能基を有しているものであれば特に限定されない。例えば、それぞれアジド-Zリジン誘導体を含む抗原結合ドメイン2つを連結する場合、1つの分子中に2つのアルキニル基を有するリンカーを用いることで、抗原結合ドメインを連結することができる。
 また、3-1.および3-2.で作製した抗原結合ドメインがFabである場合、抗体のヒンジ領域の一部または全部をそれぞれの抗原結合ドメインのC末端側に付加し、S-S結合により(Fab’)2の構造を有するバイスペシフィック抗体を作製することもできる。そこにFcを付加し、IgG抗体型のバイスペシフィック抗体を作製することもできる。
4.本発明のバイスペシフィック抗体またはそのバイスペシフィック抗体断片の活性評価
 精製したバイスペシフィック抗体または該バイスペシフィック抗体断片の活性評価は、以下のように行うことができる。
 CD116およびCD131の少なくとも一方を発現した細胞株に対する本発明のバイスペシフィック抗体の結合活性は、前述の1.(7)記載のバインディングアッセイ系を用いて測定することができる。
 CD116およびCD131の少なくとも一方を発現した細胞に対するCDC活性、またはADCC活性は公知の測定方法[Cancer Immunol. Immunother., 36, 373(1993)]により測定することができる。
 本発明のバイスペシフィック抗体のGM-CSF受容体に対するアゴニスト活性は次の方法で測定することができる。例えば、GM-CSF依存的に増殖をするTF-1細胞を96穴プレートに播種し、GM-CSFまたは本発明のバイスペシフィック抗体を添加して一定期間培養した後に、ATPルシフェラーゼ反応による発光強度を測定することにより、細胞の増殖率を測定する。
 上記方法において、GM-CSF非添加群のTF-1細胞増殖率を0%、GM-CSF添加群の細胞増殖率を100%とした時に、バイスペシフィック抗体または該バイスペシフィック抗体断片の添加群で、細胞増殖率が30%以上の時にアゴニスト活性があるとする。バイスペシフィック抗体または該バイスペシフィック抗体断片のアゴニスト活性は、GM-CSFを100%とした際に、好ましくは40%以上、より好ましくは50%以上、更に好ましくは60%以上、さらにより好ましくは70%以上であることが望ましい。   
 本発明のバイスペシフィック抗体のGM-CSF受容体に対するアゴニスト活性は、モノサイトからマクロファージへの分化誘導活性によっても評価できる。分化誘導活性は、次の方法で測定することができる。例えば、モノサイトを96穴プレートに播種し、バイスペシフィック抗体を添加して一定期間培養した後に、CD14およびCD206の発現量の変化をフローサイトメトリー法により解析する。
 CD116およびCD131から細胞内へのシグナル伝達は、細胞内のタンパク質のリン酸化をウェスタンブロット法などにより検出することにより評価することができる。
5.本発明のバイスペシフィック抗体または該抗体断片を用いた疾患の治療方法
 本発明のバイスペシフィック抗体または該抗体断片は、GM-CSFが関与する疾患またはGM-CSFの中和抗体が関与する疾患の治療に用いることができる。例えば、メラノーマ、頭頸部がん、乳がん、消化器がん、膵癌、肝細胞がん、前立腺がん、結腸直腸がん、肺がん、腎細胞がん、卵巣がん、化学療法による白血球減少症、骨髄移植による白血球減少症、再生不良性貧血による白血球減少症、骨髄異形成症候群による白血球減少症、骨髄移植における骨髄機能回復、急性骨髄性白血病、慢性骨髄単球性白血病、敗血症、真菌症、HIV感染症、インフルエンザウィルス感染症、非結核性抗酸菌感染症、急性呼吸促迫症候群、肺胞蛋白症、クローン病、アルツハイマー病および各種感染症などが挙げられる。
 本発明のバイスペシフィック抗体または該バイスペシフィック抗体断片、またはこれらの誘導体を含有する治療薬は、有効成分としての該抗体若しくは該抗体断片、またはこれらの誘導体のみを含むものであってもよいが、通常は薬理学的に許容される1以上の担体と一緒に混合し、製剤学の技術分野において公知の方法により製造した医薬製剤として提供される。
 投与経路としては、例えば、経口投与、または口腔内、気道内、直腸内、皮下、筋肉内若しくは静脈内などの非経口投与が挙げられる。投与形態としては、例えば、噴霧剤、カプセル剤、錠剤、散剤、顆粒剤、シロップ剤、乳剤、座剤、注射剤、軟膏またはテープ剤などが挙げられる。各種製剤は、通常用いられている賦形剤、増量剤、結合剤、浸潤剤、崩壊剤、表面活性剤、滑沢剤、分散剤、緩衝剤、保存剤、溶解補助剤、防腐剤、着色料、香味剤、および安定化剤などを用いて常法により製造することができる。
 賦形剤としては、例えば、乳糖、果糖、ブドウ糖、コーンスターチ、ソルビット、結晶セルロース、滅菌水、エタノール、グリセロール、生理食塩水および緩衝液などが挙げられる。崩壊剤としては、例えば、澱粉、アルギン酸ナトリウム、ゼラチン、炭酸カルシウム、クエン酸カルシウム、デキストリン、炭酸マグネシウムおよび合成ケイ酸マグネシウムなどが挙げられる。
 結合剤としては、例えば、メチルセルロースまたはその塩、エチルセルロース、アラビアゴム、ゼラチン、ヒドロキシプロピルセルロースおよびポリビニルピロリドンなどが挙げられる。滑沢剤としては、例えば、タルク、ステアリン酸マグネシウム、ポリエチレングリコールおよび硬化植物油などが挙げられる。
 安定化剤としては、例えば、アルギニン、ヒスチジン、リジン、メチオニンなどのアミノ酸、ヒト血清アルブミン、ゼラチン、デキストラン40、メチルセルロース、亜硫酸ナトリウム、メタ亜硫酸ナトリウムなどが挙げられる。
 その他の添加剤としては、例えば、シロップ、ワセリン、グリセリン、エタノール、プロピレングリコール、クエン酸、塩化ナトリウム、亜硝酸ソーダおよびリン酸ナトリウムなどが挙げられる。
 経口投与に適当な製剤としては、例えば、乳剤、シロップ剤、カプセル剤、錠剤、散剤または顆粒剤などが挙げられる。
 乳剤またはシロップ剤のような液体調製物は、水、ショ糖、ソルビトール若しくは果糖などの糖類、ポリエチレングリコール若しくはプロピレングリコールなどのグリコール類、ごま油、オリーブ油若しくは大豆油などの油類、p-ヒドロキシ安息香酸エステル類などの防腐剤、またはストロベリーフレーバー若しくはペパーミントなどのフレーバー類などを添加剤として用いて製造される。 
 カプセル剤、錠剤、散剤または顆粒剤などは、乳糖、ブドウ糖、ショ糖若しくはマンニトールなどの賦形剤、デンプン若しくはアルギン酸ナトリウムなどの崩壊剤、ステアリン酸マグネシウム若しくはタルクなどの滑沢剤、ポリビニルアルコール、ヒドロキシプロピルセルロース若しくはゼラチンなどの結合剤、脂肪酸エステルなどの界面活性剤、またはグリセリンなどの可塑剤などを添加剤として用いて製造される。
 非経口投与に適当な製剤としては、例えば、注射剤、座剤または噴霧剤などが挙げられる。注射剤は、塩溶液、ブドウ糖溶液、またはその両者の混合物からなる担体などを用いて製造される。
 座剤はカカオ脂、水素化脂肪またはカルボン酸などの担体を用いて製造される。噴霧剤は、受容者の口腔および気道粘膜を刺激せず、かつ本発明のモノクローナル抗体またはその抗体断片を微細な粒子として分散させ、吸収を容易にさせる担体などを用いて製造される。担体としては、例えば、乳糖またはグリセリンなどが挙げられる。また、エアロゾルまたはドライパウダーとして製造することもできる。さらに、上記非経口剤においても、経口投与に適当な製剤で添加剤として例示した成分を添加することもできる。
 本発明のバイスペシフィック抗体の有効量と適切な希釈剤および薬理学的に使用し得るキャリアとの組合せとして投与される有効量は、1回につき体重1kgあたり0.0001mg~100mgであり、2日から8週間間隔で投与される。
6.本発明のバイスペシフィック抗体または該バイスペシフィック抗体断片を用いた疾患の診断方法
 本発明のバイスペシフィック抗体または該バイスペシフィック抗体断片を用いて、CD116およびCD131の少なくとも一方が発現した細胞を検出または測定することにより、GM-CSFが関与する疾患またはGM-CSFの中和抗体が関与する疾患を診断することができる。
 GM-CSFが関与する疾患の診断は、例えば、以下のようにCD116およびCD131の少なくとも一方を検出または測定して行うことができる。
 まず、複数の健常者の生体から採取した生体試料について、本発明のバイスペシフィック抗体若しくは該バイスペシフィック抗体断片、またはこれらの誘導体を用い、下記の免疫学的手法を用いて、CD116およびCD131の少なくとも一方の検出または測定を行い、健常者の生体試料中のCD116およびCD131の少なくとも一方の存在量を調べる。
 次に、被験者の生体試料中についても同様にCD116およびCD131の少なくとも一方の存在量を調べ、その存在量を健常者の存在量と比較する。被験者のCD116およびCD131の少なくとも一方の存在量が健常者と比較して増加または減少している場合に、GM-CSFが関与する疾患であると診断できる。
 免疫学的手法とは、標識を施した抗原または抗体を用いて、抗体量または抗原量を検出または測定する方法である。例えば、放射性物質標識免疫抗体法、酵素免疫測定法、蛍光免疫測定法、発光免疫測定法、ウェスタンブロット法または物理化学的手法などが挙げられる。
 放射性物質標識免疫抗体法としては、例えば、抗原または抗原を発現した細胞などに、本発明のバイスペシフィック抗体または該抗体断片を反応させ、さらに放射線標識を施した抗イムノグロブリン抗体または結合断片を反応させた後、シンチレーションカウンターなどで測定する方法が挙げられる。
 酵素免疫測定法としては、例えば、抗原または抗原を発現した細胞などに、本発明のバイスペシフィック抗体または該バイスペシフィック抗体断片を反応させ、さらに標識を施した抗イムノグロブリン抗体または結合断片を反応させた後、発色色素を吸光光度計で測定する方法が挙げられる。例えば、サンドイッチELISA法などが挙げられる。
 酵素免疫測定法で用いる標識体としては、公知の酵素標識[酵素免疫測定法、医学書院(1987)]を用いることができる。例えば、アルカリフォスファターゼ標識、ペルオキシダーゼ標識、ルシフェラーゼ標識、またはビオチン標識などを用いる。
 サンドイッチELISA法は、固相に抗体を結合させた後、検出または測定対象である抗原をトラップさせ、トラップされた抗原に第2の抗体を反応させる方法である。該ELISA法では、検出または測定したい抗原に結合する抗体または抗体断片であって、抗原結合部位の異なる2種類の抗体を準備し、そのうち、第1の抗体または抗体断片をあらかじめプレート(例えば、96穴プレート)に吸着させ、次に第2の抗体または抗体断片をFITCなどの蛍光物質、ペルオキシダーゼなどの酵素、またはビオチンなどで標識しておく。上記の抗体が吸着したプレートに、生体内から分離された細胞若しくはその破砕液、組織若しくはその破砕液、細胞培養上清、血清、胸水、腹水、または眼液などを反応させた後、標識した抗体または抗体断片を反応させ、標識物質に応じた検出反応を行う。濃度既知の抗原を段階的に希釈して作製した検量線より、被験サンプル中の抗原濃度を算出する。
 サンドイッチELISA法に用いる抗体としては、ポリクローナル抗体またはモノクローナル抗体のいずれを用いてもよく、Fab、Fab’、またはF(ab’)などの抗体断片を用いてもよい。サンドイッチELISA法で用いる2種類の抗体の組み合わせとしては、異なるエピトープに結合するモノクローナル抗体または該抗体断片の組み合わせでもよいし、ポリクローナル抗体とモノクローナル抗体またはその抗体断片との組み合わせでもよい。
 蛍光免疫測定法としては、例えば、文献[Monoclonal Antibodies-Principles and practice, Third edition, Academic Press(1996)、単クローン抗体実験マニュアル、講談社サイエンティフィック(1987)]などに記載された方法で測定する。蛍光免疫測定法で用いる標識体としては、公知の蛍光標識[蛍光抗体法、ソフトサイエンス社(1983)]を用いることができる。例えば、FITCまたはRITCなどを用いる。
 発光免疫測定法としては、例えば、文献[生物発光と化学発光 臨床検査42、廣川書店(1998)]などに記載された方法で測定する。発光免疫測定法で用いる標識体としては、公知の発光体標識が挙げられ、例えば、アクリジニウムエステルまたはロフィンなどを用いる。
 ウェスタンブロット法としては、抗原または抗原を発現した細胞などをSDS(ドデシル硫酸ナトリウム)-PAGE[Antibodies - A Laboratory Manual Cold Spring Harbor Laboratory(1988)]で分画した後、該ゲルをポリフッ化ビニリデン(PVDF)膜またはニトロセルロース膜にブロッティングし、該膜に抗原に結合する抗体または抗体断片を反応させ、さらにFITCなどの蛍光物質、ペルオキシダーゼなどの酵素標識、またはビオチン標識などを施した抗IgG抗体またはその抗体断片を反応させた後、該標識を可視化することによって測定する。一例を以下に示す。
 まず、所望のアミノ酸配列を有するポリペプチドを発現している細胞や組織を溶解し、還元条件下でレーンあたりのタンパク質量として0.1~30μgをSDS-PAGE法により泳動する。次に、泳動されたタンパク質をPVDF膜にトランスファーし1~10%BSAを含むPBS(以下、BSA-PBSと表記する)に室温で30分間反応させブロッキング操作を行う。ここで本発明のバイスペシフィック抗体を反応させ、0.05~0.1%のTween-20を含むPBS(Tween-PBS)で洗浄し、ペルオキシダーゼ標識したヤギ抗マウスIgGを室温で2時間反応させる。Tween-PBSで洗浄し、ECL Western Blotting Detection Reagents(アマシャム社製)などを用いて該抗体が結合したバンドを検出することにより、抗原を検出する。ウェスタンブロット法での検出に用いられる抗体としては、天然型の立体構造を保持していないポリペプチドに結合できる抗体が用いられる。
 物理化学的手法としては、例えば、抗原であるCD116およびCD131の少なくとも一方と本発明のバイスペシフィック抗体または該バイスペシフィック抗体断片とを結合させることにより、凝集体を形成させて、該凝集体を検出する。この他に物理化学的手法として、毛細管法、一次元免疫拡散法、免疫比濁法またはラテックス免疫比濁法[臨床検査法提要、金原出版(1998)]などを用いることもできる。
 ラテックス免疫比濁法では、抗体または抗原を感作させた粒径0.1~1μm程度のポリスチレンラテックスなどの担体を用い、対応する抗原または抗体により抗原抗体反応を起こさせると、反応液中の散乱光は増加し、透過光は減少する。この変化を吸光度または積分球濁度として検出することにより、被験サンプル中の抗原濃度などを測定する。
 一方、CD116およびCD131の少なくとも一方が発現している細胞の検出または測定には、公知の免疫学的検出法を用いることができるが、好ましくは免疫沈降法、免疫細胞染色法、免疫組織染色法または蛍光抗体染色法などを用いる。
 免疫沈降法としては、CD116およびCD131の少なくとも一方を発現した細胞などを本発明のバイスペシフィック抗体またはその抗体断片と反応させた後、プロテインGセファロースなどのイムノグロブリンに特異的な結合能を有する担体を加えて、抗原抗体複合体を沈降させる。
 または、以下のような方法によっても行なうことができる。まず、ELISA用96穴プレートに本発明のバイスペシフィック抗体または該バイスペシフィック抗体断片を固相化した後、BSA-PBSによりブロッキングする。次に、BSA-PBSを捨てPBSでよく洗浄した後、CD116およびCD131の少なくとも一方を発現している細胞や組織の溶解液を反応させる。よく洗浄した後のプレートより、免疫沈降物をSDS-PAGE用サンプルバッファーで抽出し、上記のウェスタンブロッティングにより検出する。
 免疫細胞染色法または免疫組織染色法とは、抗原を発現した細胞または組織などを、場合によっては抗体の透過性を良くするために界面活性剤やメタノールなどで処理した後、本発明のバイスペシフィック抗体と反応させ、さらにFITCなどの蛍光標識、ペルオキシダーゼなどの酵素標識またはビオチン標識などを施した抗イムノグロブリン抗体またはその結合断片と反応させた後、該標識を可視化し、顕微鏡にて顕鏡する方法である。また、蛍光標識の抗体と細胞を反応させ、フローサイトメーターにて解析する蛍光抗体染色法[Monoclonal Antibodies - Principles and practice, Third edition, Academic Press (1996)、単クローン抗体実験マニュアル、講談社サイエンティフィック(1987)]により検出を行うことができる。特に、本発明のバイスペシフィック抗体または該バイスペシフィック抗体断片は、蛍光抗体染色法により、細胞膜上に発現しているCD116およびCD131の少なくとも一方を検出できる。
 また、蛍光抗体染色法のうち、FMAT8100HTSシステム(アプライドバイオシステム社製)などを用いた場合には、形成された抗体-抗原複合体と、抗体-抗原複合体の形成に関与していない遊離の抗体または抗原とを分離することなく、抗原量または抗体量を測定できる。
[実施例1]CD131、CD116抗原発現ベクターおよび可溶性抗原の作製
(1)ヒト、サル、およびマウスCD131発現ベクターの作製
 ヒトCD131遺伝子の塩基配列(Genbank Accession Number:M59941)、サルCD131遺伝子の塩基配列(Genbank Accession Number:XP_015312724_1)、およびマウスCD131遺伝子の塩基配列(Genbank Accession Number:M34397)から、ヒト、サル、およびマウスCD131全長のアミノ酸配列を取得し、哺乳類細胞での発現に最適なコドンに変換を行い、ヒト、サル、およびマウスCD131全長をコードする塩基配列を得た。
 ヒトおよびサルCD131全長の塩基配列(配列番号1、配列番号2)を有するDNAを全合成し、pEF6-myc-Hisベクター(サーモフィッシャー社製)に、Infusion-HD Cloning Kit(Clontech社製)を用いて挿入し、ヒトおよびサルCD131全長発現ベクターを得た。
 ヒト、サル、およびマウスCD131細胞外領域の塩基配列を有するDNA(配列番号3、配列番号4、配列番号5)と、シグナル配列とヒトFc配列またはHisタグ配列を付加した塩基配列を有するDNAを全合成し、pCIベクター(Promega社製)に、Infusion-HD Cloning Kit(Clontech社製)を用いて挿入し、ヒト、サルおよびマウスCD131可溶性抗原発現ベクターを得た。
(2)ヒト、サル、およびマウスCD116発現ベクターの作製
 ヒトCD116遺伝子の塩基配列(Genbank Accession Number:X17648)、マウスCD116遺伝子の塩基配列(Genbank Accession Number:M85078)から、ヒト、マウスCD116全長のアミノ酸配列を取得した。サルCD116についてはカニクイザルtotal RNAよりクローニングし全長の塩基配列およびアミノ酸配列情報を得た。これらアミノ酸配列を哺乳類細胞での発現に最適なコドンに変換を行い、ヒト、サル、およびマウスCD116全長をコードする塩基配列を得た。
 ヒトおよびサルCD116全長の塩基配列(配列番号6、配列番号7)を全合成し、pCIベクター(Promega社製)に、Infusion-HD Cloning Kit(Clontech社製)を用いて挿入し、ヒトおよびサルCD116全長発現ベクターを得た。
 ヒト、サル、およびマウスCD116細胞外領域の塩基配列(配列番号8、配列番号9、配列番号10)を有するDNAと、シグナル配列とヒトFc配列またはHisタグ配列を付加した塩基配列を有するDNAを全合成し、pCIベクター(Promega社製)に、Infusion-HD Cloning Kit(Clontech社製)を用いて挿入し、ヒト、サルおよびマウスCD116可溶性抗原発現ベクターを得た。
(3)可溶性CD131タンパク質および可溶性CD116タンパク質の作製
 Expi293(商標)Expression System(Thermo Fisher社製)を用いて、(1)で作製したヒト、サルおよびマウスCD131可溶性抗原発現ベクター(ヒトFc融合体またはHisタグ融合体)、および(2)で作製したヒト、サルおよびマウスCD116可溶性抗原発現ベクター(ヒトFc融合体またはHisタグ融合体)、をExpi293F細胞に導入して培養し、一過性にタンパク質を発現させた。ベクター導入4~5日後に培養上清を回収し、孔径0.22μmのメンブランフィルター(MILLIPORE社製)で濾過した。
 前記培養上清をProtein A樹脂(MabSelect、GEヘルスケア社製)またはcOmplete His-Tag Purification Resin(ロシュ社製)を用いてアフィニティー精製を行った。
 ProteinA樹脂を用いたヒトFc融合体の精製は、培養上清中のタンパク質をプロテインAに吸着させたのち、D-PBS(-)にて洗浄し、20mMクエン酸ナトリウム、50mM NaCl緩衝液(pH3.4)により溶出して、1Mリン酸ナトリウム緩衝液(pH7.0)を含むチューブに回収した。
 cOmplete His-Tag Purification Resinを用いたHisタグ融合体の精製は、培養上清中のタンパク質を、20mM リン酸、500mM NaClバッファーで平衡化したレジンに吸着させたのち、20mM リン酸、500mM NaCl、5mM イミダゾールバッファーで洗浄し、20mM リン酸、500mM NaCl、250mM イミダゾールバッファーで溶出し、チューブに回収した。
 次に、NAP-25(GEヘルスケア社製)を用いて、溶出液をD-PBS(-)に置換した後、孔径0.22μmのメンブレンフィルターMillex-Gv(Millipore社製)でろ過滅菌した。
 取得したタンパク質の濃度は、波長280nmの吸光度を測定して、各タンパク質のアミノ酸配列から推定される吸光係数を用いて算出した。
[実施例2]抗ヒトCD131モノクローナル抗体、および抗ヒトCD116モノクローナル抗体の作製
(1)動物への免疫と抗体産生細胞の調製
 ヒト抗体産生マウス[Ishida & Lonberg, IBC‘s 11th Antibody Engineering, Abstract 2000;Ishida, I. et al., Cloning & Stem Cells 4, 91-102 (2002)、および石田 功(2002)実験医学20,6,846-851]に、免疫原として、ヒトCD131-Fc(R&D システムズ社製)または実施例1で作製したヒトCD131可溶性抗原(ヒトFc融合体)、ヒトCD116可溶性抗原(ヒトFc融合体)を20μg/匹または50μg/匹で計4~6回投与した。初回免疫時のみ、アジュバントとしてAlumゲル(0.25mg/匹または2mg/匹)および不活性化百日咳菌懸濁液(ナカライテスク社製)(1×10個/匹)を添加した。
 初回免疫から2週間後に2回目免疫、その1週間後に3回目免疫、3回目免疫から2週間後に最終免疫を行った。なお、一部の個体については、3回目免疫から2週間間隔で2回の追加免疫を行ったのち、2週間後に最終免疫を行った。最終免疫から4日後に解剖してリンパ節または脾臓を外科的に摘出した。摘出したリンパ節または脾臓をホモジナイズした後、セルストレイナー(ファルコン社製)を通して細胞をチューブへ移し、遠心分離して細胞を沈殿させた。
 得られた脾臓細胞は、赤血球除去試薬(シグマアルドリッチ社製)と混和し、37℃の湯浴で1分間反応させた後、MEM培地(シグマアルドリッチ社製)で希釈を行った後、更に遠心分離を行った。得られた脾細胞またはリンパ球は、MEM培地で2回洗浄した後、ハイブリドーマの作製または抗体ライブラリーの作製に供した。
(2)ハイブリドーマの作製
 8-アザグアニン耐性マウス骨髄腫細胞株p3-U1[P3X63Ag8U.1、ATCC:CRL-1597、European Journal of Immunology、6、511(1976)]をRPMI 1640培地(和光純薬社製)に10% FBS(Access Biologicals社製)、ゲンタマイシン(20μg/mL)を添加した培地で培養し、細胞融合時に必要な細胞数(3×10cells以上)となるまで拡大培養した。
 (1)で得られたマウス脾細胞またはリンパ球と、骨髄腫細胞を2:1になるように混合し、遠心分離(1500rpm、5分間)した。得られた沈殿画分(細胞群)をほぐしたのち、GenomONE-CF(石原産業社製)を用いて細胞融合を行った。氷上で5分間反応させたのち、37℃で15分間インキュベートした。
 その後、クローニングメデュームCM-B(積水メディカル株式会社製)に10% FBS(Access Biologicals社製)、HAT supplement(サーモフィッシャー社製)、ゲンタマイシン(20μg/mL)を添加した培地(以下、HAT培地)を加え、2.5~5×10cells/18mLとなるように懸濁し、96ウェルプレートにA列を除いて200μLずつ播種し、37℃、5%COの条件下で8~10日間培養した。培地交換は、スクリーニングの1~2日前にHAT培地を用いて行い、培地交換から1~2日後の培養上清を用いて、以下に記載するハイブリドーマのスクリーニングを行った。
(3)抗ヒトCD131抗体産生ハイブリドーマのスクリーニング
 抗ヒトCD131抗体産生ハイブリドーマのスクリーニングは、ELISAおよびFCMにより行った。ELISAによるスクリーニングは、実施例1-(3)で調製したヒトCD131可溶性抗原(Hisタグ体)、サルCD131可溶性抗原(Hisタグ体)、およびマウスCD131可溶性抗原(Hisタグ体)を固相化させた固相抗原ELISA系を用いた。
 各種抗原タンパク質を、D-PBS(-)(ナカライテスク社製)にて5μg/mLに調製したものを96ウェルまたは384ウェルのELISA用プレート(MAXISORP NUNC-IMMNO PLATE、Thermo Fisher Scientific社製)に50μL/ウェルまたは25μL/ウェルで分注し、4℃にて一晩静置して吸着させたのち、PBSで2~3回洗浄し、1%BSA-PBS(ナカライテスク社製)を100μL/ウェルまたは50μL/ウェルで分注し、室温にて1時間静置してブロッキングした。
 次に、ハイブリドーマ上清を50μL/ウェルまたは25μL/ウェルで分注し、室温にて1時間静置した。このプレートをPBSTで3回洗浄した後、1%BSA-PBSで希釈したPeroxidase標識Goat Anti-Human IgG,Fcγ fragment specific抗体(Jackson ImmunoResearch社製、Cat#109-035-008) を50μL/ウェルまたは25μL/ウェルで分注し、室温にて1時間静置した。
 このプレートをPBSTで3回洗浄し、ABTS(2,2’-Azino-bis(3-ethylbenzothiazoline-6-sulfonic Acid、Wako社製、Cat#016-08521)基質液またはTMB基質液(サーモフィッシャー社製)を50μL/ウェルまたは25μL/ウェルで添加して発色させ、適当な発色が得られたところで、1%SDS溶液または0.5mol/L硫酸を等量添加して発色を停止させたのち、サンプル波長415nm、リファレンス波長490nmにおける吸光度(415nm-490nm)またはサンプル波長450nm、リファレンス波長570nmにおける吸光度(450nm-570nm)をプレートリーダー(Spectra Max,Molecular Devices社製、またはSPARK 10M、TECAN社製)を用いて測定した。
 FCMによるスクリーニングは、Expi293(商標)Expression System(Thermo Fisher社製)に、実施例1-(1)で作製したヒトおよびサルCD131全長発現ベクターを一過性導入した細胞および未導入細胞を用いた。各細胞を1%BSA-PBS(ナカライテスク社製)に懸濁し、1~2×10細胞/ウェルとなるように96ウェルプレートに分注し、氷上で30分間インキュベートしたのち、遠心分離(2000rpm、2分間)した。上清を除去後、ハイブリドーマ上清を20~50μL/ウェルで分注し、氷上で30分間反応させた。遠心分離と1%BSA-PBSによる洗浄を1~2回行ったのち、1%BSA-PBSで希釈したAPC標識F(ab’) Fragment Goat Anti-Human IgG,Fcγ fragment specific抗体(Jackson ImmunoResearch社製、Cat#109-136-098) を50μL/ウェルで分注し、氷上、遮光下で30分間反応させた。遠心分離と1%BSA-PBSによる洗浄を3回行ったのち、1%BSA-PBSに懸濁し、フローサイトメーター(FACS CantoII、BDバイオサイエンス社製、またはCyAn ADP、BECKMAN COULTER社製)により蛍光強度の測定を行った。
(4)抗ヒトCD116抗体産生ハイブリドーマのスクリーニング
 抗ヒトCD116抗体産生ハイブリドーマのスクリーニングは、ELISAおよびFCMにより行った。ELISAによるスクリーニングは、Tetra His Antibody(キアゲン社製、Cat#34670)を固相化させたプレートに、実施例1-(3)で調製したヒトCD116可溶性抗原(Hisタグ体)、サルCD116可溶性抗原(Hisタグ体)、およびマウスCD116可溶性抗原(Hisタグ体)をキャプチャーさせた間接固相抗原ELISA系を用いた。
 Tetra His Antibodyを、D-PBS(-)(ナカライテスク社製)にて5μg/mLに調製したものを96ウェルまたは384ウェルのELISA用プレート(MAXISORP NUNC-IMMNO PLATE、Thermo Fisher Scientific社製)に50μL/ウェルまたは25μL/ウェルで分注し、4℃にて一晩静置して吸着させたのち、PBSで2~3回洗浄し、1%BSA-PBS(ナカライテスク社製)を100μL/ウェルまたは50μL/ウェルで分注し、室温にて1時間静置してブロッキングした。
 次に、実施例1-(3)で調製したヒトCD116可溶性抗原(Hisタグ体)、サルCD116可溶性抗原(Hisタグ体)、マウスCD116可溶性抗原(Hisタグ体)を5μg/mLに1%BSA-PBSで希釈したものを50μL/ウェルまたは25μL/ウェルで分注し、室温にて1時間静置した。このプレートをPBSTで3回洗浄した後、1%BSA-PBSで希釈したハイブリドーマ上清を50μL/ウェルまたは25μL/ウェルで分注し、室温にて1時間静置した。このプレートをPBSTで3回洗浄した後、1%BSA-PBSで希釈したPeroxidase標識Goat Anti-Human IgG,Fc抗体(IBL社製、Cat#17507)を50μL/ウェルまたは25μL/ウェルで分注し、室温にて1時間静置した。
 このプレートをPBSTで3回洗浄し、ABTS(2,2’-Azino-bis(3-ethylbenzothiazoline-6-sulfonic Acid、Wako社製、Cat#016-08521)基質液またはTMB基質液(サーモフィッシャー社製)を50μL/ウェルまたは25μL/ウェルで添加して発色させ、適当な発色が得られたところで、1%SDS溶液または0.5mol/L硫酸を等量添加して発色を停止させたのち、サンプル波長415nm、リファレンス波長490nmにおける吸光度(415nm-490nm)またはサンプル波長450nm、リファレンス波長570nmにおける吸光度(450nm-570nm)をプレートリーダー(Spectra Max,Molecular Devices社製、またはSPARK 10M、TECAN社製)を用いて測定した。
 FCMによるスクリーニングは、Expi293(商標)Expression System(Thermo Fisher社製)に、実施例1-(2)で作製したヒトおよびサルCD116全長発現ベクターを一過性導入した細胞および未導入細胞を用いた。各細胞を1%BSA-PBS(ナカライテスク社製)に懸濁し、1~2×10細胞/ウェルとなるように96ウェルプレートに分注し、氷上で30分間インキュベートしたのち、遠心分離(2000rpm、2分間)した。
 上清を除去後、ハイブリドーマ上清を20~50μL/ウェルで分注し、氷上で30分間反応させた。遠心分離と1%BSA-PBSによる洗浄を1~2回行った後、1%BSA-PBSで希釈したAPC標識F(ab’) Fragment Goat Anti-Human IgG, Fcγ fragment specific抗体(Jackson ImmunoResearch社製、Cat#109-136-098) を50μL/ウェルで分注し、氷上、遮光下で30分間反応させた。
 遠心分離と1%BSA-PBSによる洗浄を3回行ったのち、1%BSA-PBSに懸濁し、フローサイトメーター(FACS CantoII、BDバイオサイエンス社製、またはCyAn ADP、BECKMAN COULTER社製)により蛍光強度の測定を行った。
(5)ハイブリドーマの単離および抗体遺伝子配列の解析
 ハイブリドーマのスクリーニングにより選択した陽性ウェルのハイブリドーマについて、セルソーター(SONY社製、SH800)を用いてHAT培地を分注した96ウェルプレートに播種し単クローン化を行った。
 37℃、5%COの条件下、ウェル内の細胞がスクリーニングに適した細胞数になるまで、培養を行い、得られた単クローンハイブリドーマ培養上清を用いて、(2)または(3)に記載した方法によるスクリーニングを再度行い、抗CD131モノクローナル抗体産生ハイブリドーマおよび抗CD116モノクローナル抗体産生ハイブリドーマを樹立した。
 得られたハイブリドーマからMagNApure 96(Roche社製)およびMagNA Pure 96 Cellular RNA Large Volume Kit(Roche社製)を用い、total RNAを調製した。調製したtotal RNAを鋳型として、SMARTer RACE 5’/3’ Kit(Clontech社製)を用いて、cDNAを作製した。
 得られた各ハイブリドーマに対応するcDNAを鋳型として、キット添付のユニバーサルプライマーA mix(フォワードプライマーを含有する)と、ヒトIgG重鎖定常領域または軽鎖定常領域をコードするリバースプライマーを組み合わせたPCR反応を、PrimeSTAR Max DNA Polymerase(タカラバイオ社製)を用いて行うことで、重鎖抗体遺伝子断片および軽鎖抗体遺伝子断片を増幅させた。
 増幅した重鎖抗体遺伝子断片および軽鎖抗体遺伝子断片について、ダイレクトシーケンス法によるDNAシーケンス解析、または、Zero Blunt TOPO PCR CloningKit for Sequencing(インビトロジェン社製)を用いたサブクローニング法によるDNAシーケンス解析により、配列同定を行った。
 ダイレクトシーケンス法によるDNAシーケンス解析は、PCR産物10μLに対して、ExoSAP-IT-Express(サーモフィッシャー社製)を4μL添加し、37℃、4分間、80℃、1分間の反応を行った後、滅菌水で希釈したサンプルを鋳型として、Nested-PCRに使用したプライマーの末端配列に対応するプライマーを用いて行った。
 Zero Blunt TOPO PCR CloningKit for Sequencing(インビトロジェン社製)を用いたサブクローニング法によるDNAシーケンス解析は、以下の手順で行った。PCR産物を、pCR4ベクター(インビトロジェン社製)に挿入したのち、得られたプラスミドを、大腸菌DH5α株に導入した。
 得られた形質転換株より自動プラスミド抽出機(クラボウ社製)を用いて抽出したプラスミドを鋳型として用い、Zero Blunt TOPO PCR CloningKit for Sequencingに添付のM13プライマーを用いて、DNAシーケンス解析を行った。
 DNAシーケンス解析結果から、完全長のVHをコードする塩基配列またはVLをコードする塩基配列を確認し、各ハイブリドーマが発現するCD131に対する抗体およびCD116に対する抗体のアミノ酸配列を決定した。それぞれのクローン名、VH、VLおよびCDRのアミノ酸配列と配列番号との対応を、表1および表2に示す。
 表1に、CD131抗体のクローン名、VHをコードする全塩基配列から推定されるアミノ酸配列、およびVHのCDR1~3(以下ではHCDR1~3と記載することもある)のアミノ酸配列、VLをコードする全塩基配列から推定されるアミノ酸配列、およびVLのCDR1~3(以下ではLCDR1~3と記載することもある)のアミノ酸配列、の配列番号を示す。
 表2に、CD116抗体のクローン名、VHをコードする全塩基配列から推定されるアミノ酸配列、およびVHのCDR1~3(以下ではHCDR1~3と記載することもある)のアミノ酸配列、VLをコードする全塩基配列から推定されるアミノ酸配列、およびVLのCDR1~3(以下ではLCDR1~3と記載することもある)のアミノ酸配列、の配列番号を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
(6)抗ヒトCD116抗体ファージライブラリーの作製
 実施例2-(5)において得られた配列番号30で示されるアミノ酸配列を有するCD131抗体のL鎖を有するCD116抗体ファージライブラリーを下記の方法で作製した。実施例2-(1)において得られたリンパ節細胞または脾臓細胞からRNeasy Mini Plus kit(QIAGEN社製)を用いてRNAを抽出し、SMARTer RACE cDNA増幅キット(Clontech社製)にてcDNAを増幅させ、さらにPCRにてVH遺伝子断片を増幅させた。
 前記VHのDNA断片および配列番号91で示される塩基配列を有するVLのDNA断片を、ファージミドpCANTAB 5E(Amersham Pharmacia社製)のタグ配列をFLAG-Hisタグおよびトリプシン認識配列に変更したベクターに挿入し、大腸菌TG1(Lucigen社製)を形質転換して大腸菌ライブラリーを得た。
 得られた大腸菌ライブラリーを増幅し、VCSM13 Interference Resistant Helper Phage(Agilent Technologies社製)に感染させることで、配列番号91で示されるVLの塩基配列を有し、VH遺伝子がライブラリー化されたCD116抗体ファージライブラリーを得た。
(7)ファージディスプレイ法による抗ヒトCD116抗体のスクリーニング
 実施例2-(6)で得られたCD116抗体ファージライブラリーを用いて、下記のファージディスプレイ法により、配列番号30で示されるアミノ酸配列を有するCD131抗体のL鎖を有する抗CD116モノクローナル抗体を取得した。
 実施例1-(3)で調製したヒトCD116可溶性抗原(Hisタグ体)、およびサルCD116可溶性抗原(Hisタグ体)を、EZ-Link Sulfo-HNS-LC-Biotin, No-Weight Format(Thermo Fisher Scientific社製)を用いてビオチン化し、ビオチン化ヒトCD116可溶性抗原(Hisタグ体)およびビオチン化サルCD116可溶性抗原(Hisタグ体)を得た。
 ビオチン化ヒトCD116可溶性抗原(Hisタグ体)と、CD116免疫ヒト抗体M13ファージライブラリーを室温下で1~2時間反応させたのち、ストレプトアビジン(Thermo Fisher社製)を固相化しSuperBlock Blocking Buffer(Thermo Fisher社製)を用いてブロッキングしたMAXISORP STARTUBEに添加した。
 室温で30分~1時間反応させたのち、D-PBS(-)および0.1% Tween20含有PBS(以下PBS-Tと記載する。和光純薬工業社製)で洗浄した後に、0.25%トリプシン(ナカライテスク社製)でファージを溶出した。溶出したファージをTG1コンピテントセルに感染させ、増幅させた。
 得られたファージを、MAXISORP STARTUBEに固相化したビオチン化ヒトCD116可溶性抗原(Hisタグ体)と再度反応させた後、チューブを洗浄し、ファージを溶出した。この操作を繰り返し、ヒトCD116およびサルCD116に特異的に結合する抗体分子を提示したファージを濃縮した。
 濃縮されたファージをTG1に感染させることにより得た形質転換大腸菌から、プラスミドを調製した。調製したプラスミドを用いてMix&Go Competent Cells-Strain TG1(Zymo Research社製)を形質転換し、SOBAGプレート(2.0% トリプトン、0.5% Yeast extract、0.05% NaCl、2.0% グルコース、10mM MgCl、100μg/mL アンピシリン、1.5% アガー)に播種してコロニーを形成させた。コロニーを植菌して数時間培養後、1mM IPTG(ナカライテスク社製)を添加し、再度培養することで単クローンの大腸菌培養上清を得た。
 得られた単クローンの大腸菌培養上清を用いて、以下に記載するELISA法およびFCM法にて、ヒトCD116およびサルCD116の両方に結合するクローンのスクリーニングを実施した。
 ELISAによるスクリーニングでは、MAXISORPプレート(NUNC社製)にストレプトアビジン(Thermo Fisher社製)を固相化し、1%BSA-PBS(ナカライテスク社製)を用いてブロッキングした後、ビオチン化ヒトCD116可溶性抗原(Hisタグ体)、またはビオチン化サルCD116可溶性抗原(Hisタグ体)を結合させた。該プレートの各ウェルに各々の大腸菌培養上清を加え、室温下で60分間反応させた後、各ウェルをPBS-Tで3回洗浄した。
 次いで、HRP標識Goat poly, anti-human IgG F(ab’)(Abcam社製)を1%BSA-PBSで1000倍に希釈し、各ウェルに50μLずつ加え、室温下30分間インキュベートした。マイクロプレートを、PBS-Tで3回洗浄後、TMB発色基質液(DAKO社製)を各ウェルに50μLずつ加え、室温下で10分間インキュベートした。各ウェルに2N HCl溶液(50μL/well)を加えて発色反応を止め、波長450nm(参照波長570nm)での吸光度をプレートリーダー(EnSpire:パーキン・エルマー社製)で測定した。
 FCMによるスクリーニングは、Expi293(商標)Expression System(Thermo Fisher社製)に、実施例1-(2)で作製したヒトおよびサルCD116全長発現ベクターを一過性導入した細胞および未導入細胞を用いた。各細胞を1%BSA-PBS(ナカライテスク社製)に懸濁し、1~2×10細胞/ウェルとなるように96ウェルプレートに分注し、氷上で30分間インキュベートしたのち、遠心分離(2000rpm、2分間)した。
 上清を除去後、大腸菌培養上清およびanti-FLAG M2 Antibody(SIGMA社製)を20~50μL/ウェルで分注し、氷上で30分間反応させた。遠心分離と1%BSA-PBSによる洗浄を1~2回行ったのち、1%BSA-PBSで希釈したAPC標識Goat anti-Mouse IgG(H+L) 抗体(Southen Bio社製) を50μL/ウェルで分注し、氷上、遮光下で30分間反応させた。
 遠心分離と1%BSA-PBSによる洗浄を3回行ったのち、1%BSA-PBSに懸濁し、フローサイトメーター(FACS CantoII、BDバイオサイエンス社製、またはCyAn ADP、BECKMAN COULTER社製)により蛍光強度の測定を行った。
 スクリーニングの結果、ヒトCD116およびサルCD116の両方に結合したクローンについて、VH配列の解析を行い、得られた結果を表3に示す。
 表3に、VLのアミノ酸配列が配列番号30である抗CD116抗体のクローン名、VHをコードする全塩基配列から推定されるアミノ酸配列、およびVHのCDR1~3(以下ではHCDR1~3と記載することもある)のアミノ酸配列の配列番号を示す。
Figure JPOXMLDOC01-appb-T000003
[実施例3]CD131とCD116に結合するIgG型バイスペシフィック抗体の作製と活性評価
(1)CD131とCD116に結合するIgG型バイスペシフィック抗体の作製
 実施例2において取得した抗CD131抗体の配列および抗CD116抗体の配列を有するIgG型バイスペシフィック抗体発現ベクターを作製した。IgG型バイスペシフィック抗体の構造は、論文Mabs, 7, 377(2015)、および論文Protein Engineering, Design & Selection, 29, 457,(2016)を参考とし、図2に記載するKobs-into-Holesを用いたヘテロH鎖を有するバイスペシフィック抗体であり、以下、IgG型CD131-CD116バイスペシフィック抗体と記載する。
 Promega社製pCI ベクターを共通主骨格としてシグナル配列下流にヒト抗体遺伝子を発現させるために必要な制限酵素サイトを導入し、以下のように2種類の全合成によってH鎖、L鎖発現用のベクターを作製した。
 第一の抗原(CD116)に対する抗体発現ベクターとして、H鎖可変領域として配列番号11、13、15、17および19のいずれか1で示されるアミノ酸配列をコードする塩基配列を有するDNA断片と、H鎖定常領域配列としてL鎖のミスペアリングを抑制するF126C/C220A変異、ヘテロH鎖とするためのS354C/T366W変異、エフェクター活性を消失させるL234A/L235A/P329G変異を含む配列番号140で示されるアミノ酸配列をコードする塩基配列を有するDNA断片とを連結し、L鎖可変領域として配列番号12、14、16、18および20のいずれかで示されるアミノ酸配列をコードする塩基配列を有するDNA断片と、L鎖定常領域としてL鎖のミスペアリングを抑制するS121C/C214S変異を含む配列番号141で示されるアミノ酸配列をコードする塩基配列を有するDNA断片とを連結した。
 同様に、第二の抗原(CD131)に対する抗体発現ベクターとして、H鎖可変領域として配列番号21、23、25、27および29のいずれかで示されるアミノ酸配列を有するDNA断片と、H鎖定常領域配列としてヘテロH鎖とするためのY349C/T366S/L368A/Y407V/H435R/Y436F変異を含む配列番号142で示されるアミノ酸配列をコードする塩基配列を有するDNA断片とを連結し、L鎖可変領域として配列番号22、24、26、28および30のいずれかで示されるアミノ酸配列を有するDNA断片と、L鎖定常領域配列として配列番号143で示されるアミノ酸配列をコードする塩基配列を有するDNA断片とを連結した。
 これら第一の抗原(CD116)に対する抗体発現ベクターと第二の抗原(CD131)に対する抗体発現ベクターを任意の組み合わせで、Expi293(商標)Expression System(Thermo Fisher社製)を用いて、Expi293細胞に共遺伝子導入し、16時間後にTransfection Enhancerを添加して、一過性発現系で合計25種類のIgG型バイスペシフィック抗体を発現させた。
 ベクター導入3~5日後に培養上清を回収し、孔径0.22μmのメンブランフィルター(MILLIPORE社製)で濾過した後、Protein A樹脂(POROS MabCapture A Affinity Chromatography Resin、Thermo Scientific社製)を用いて抗体をアフィニティー精製した。洗浄液として20mMクエン酸ナトリウム、150mM NaCl緩衝液(pH6.0)を用いた。Protein Aに吸着させた抗体を、40mM酢酸ナトリウム、500mM 塩化カルシウム緩衝液(pH4.6)により溶出し、1Mリン酸ナトリウム緩衝液(pH7.0)を含むチューブに回収した。
 次に、NAP-25(GEヘルスケア社製)を用いて、溶出液をD-PBS(-)に置換した後、孔径0.22μmのメンブレンフィルターMillex-Gv(Millipore社製)でろ過滅菌した。
 取得したIgG型CD131-CD116バイスペシフィック抗体の濃度は、波長280nmの吸光度を測定して、各抗体のアミノ酸配列から推定される吸光係数を用いて算出した。
(2)IgG型CD131-CD116バイスペシフィック抗体のアゴニスト活性解析
 上記で調製した25種類のCD131-CD116バイスペシフィック抗体について、以下の方法でアゴニスト活性を解析した。活性解析は、GM-CSFシグナルに依存して増殖活性を示すTF-1細胞株(ATCC,CRL-2003)を使用した。
 2ng/mLの組換えヒトGM-CSF(R&D Systems)が添加された10% FBS、Gentamicin Sulfate Solution 50μg/mL添加RPMI1640培地(nacalai tesque)で継代維持されたTF-1細胞を遠心し、Macrophage-SFM培地(GIBCO)で3回洗浄後、Macrophage-SFM培地に2.5×10cells/mLとなるように懸濁し、96-well plate(Greiner)に1wellあたり80μL、2.0×10cells/wellとなるように分注した。
 その後、各IgG型CD131-CD116バイスペシフィック抗体サンプルを終濃度の5倍でMacrophage-SFM培地を用いて調製し、20μL/wellで添加し、37℃、5% CO条件で3日間静置培養した。3日後、発光試薬CellTiter-Glo2.0(Promega)を100μL/wellで添加した後、マイクロプレートリーダーARVO(PerkinElmer)を用いてATPルシフェラーゼ反応による発光強度を測定した。
 組換えヒトGM-CSF 200pM添加群の発光の平均値を100%として、各IgG型CD131-CD116バイスペシフィック抗体によるTF-1細胞の増殖率を算出した。代表的な結果を図3の(A)および(B)に示す。
 図3の(A)および(B)に示すように、各IgG型CD131-CD116バイスペシフィック抗体は、アゴニスト活性を示した。
[実施例4]CD131とCD116に結合するバイスペシフィック抗体の作製と活性評価
(1)CD131とCD116に結合するバイスペシフィック抗体の作製
 実施例2において取得した抗CD131抗体配列および抗CD116抗体配列を有する表4に示すバイスペシフィック抗体を作製した。
Figure JPOXMLDOC01-appb-T000004
 バイスペシフィック抗体の構造は、図4の(A)に示すN末端型構造を有し、VH1は抗CD131抗体のVH(アミノ酸配列を配列番号29で示す)、CH1はヒトIgG4のCH1(アミノ酸配列を配列番号144で示す)、VH2は抗CD116抗体のVH、定常領域は国際公開第2006/033386号記載のヒトIgG4PE R409K(アミノ酸配列を配列番号145で示す)、野生型IgG1、もしくは、国際公開第2006/031653号記載のヒトIgG1 LALAGA変異体(アミノ酸配列を配列番号146で示す)等のヒト抗体の定常領域配列、またはその改変配列(アミノ酸配列を配列番号147~172で示す)であるバイスペシフィック抗体とした。かかるバイスペシフィック抗体を、以下、CD131-CD116バイスペシフィック抗体と記載する。
 L鎖発現ベクターとしては、シグナル配列およびヒトL鎖(κ鎖)定常領域配列を有したpCI-OtCMV_hKベクターを用いた。H鎖発現ベクターとしては、シグナル配列およびヒトIgG4PE R409Kを有したpCI-OtCAG_hG4PE(R409K)ベクター、またはヒトIgG1LALAGAを有したpCI-OtCAG_hG1LALAGAベクターを用いた。なおこれらのベクターは、Promega社製pCIベクターを共通主骨格としてヒト抗体遺伝子を発現させるために必要な制限酵素サイトを導入し、全合成によって作製されたベクターである。
 pCI-OtCMV_hKベクターの適切な制限酵素サイトに、全合成したVLの配列番号91で示される塩基配列を有するDNA断片を挿入し、CD131-CD116バイスペシフィック抗体のL鎖発現ベクターを得た。
 また、配列番号173に示す抗CD131抗体VHの塩基配列を有するDNA断片、配列番号177に示すヒトIgG4のCH1をコードする塩基配列を有するDNA断片、および、アミノ酸配列を配列番号175~186に示すいずれか1の抗CD116抗体VHのアミノ酸配列をコードする塩基配列を有するDNA断片を、全合成またはPCR増幅により調製し、3つのDNA断片をアセンブルPCRにより連結したのち、pCI-OtCAG_hG4PE(R409K)、またはpCI-OtCAG_hG1LALAGAベクターの適切な制限酵素サイトに挿入し、CD131-CD116バイスペシフィック抗体のH鎖発現ベクターを得た。
 作製したCD131-CD116バイスペシフィック抗体のL鎖発現ベクターおよびH鎖発現ベクターを、以下の方法で遺伝子導入し、CD131-CD116バイスペシフィック抗体をそれぞれ発現させ精製した。
 Expi293(商標)Expression System(Thermo Fisher社製)を用いて、Expi293細胞に、CD131-CD116バイスペシフィック抗体のL鎖発現ベクターおよびH鎖発現ベクターを共遺伝子導入し、16時間後にTransfection Enhancerを添加して、一過性発現系で抗体を発現させた。
 ベクター導入3~5日後に培養上清を回収し、孔径0.22μmのメンブランフィルター(MILLIPORE社製)で濾過した後、Protein A樹脂(MabSelect、GEヘルスケア社製)を用いて抗体をアフィニティー精製した。洗浄液としてD-PBS(-)を用いた。Protein Aに吸着させた抗体を、20mMクエン酸ナトリウム、50mM NaCl緩衝液(pH3.4)により溶出し、1Mリン酸ナトリウム緩衝液(pH7.0)を含むチューブに回収した。
 次に、NAP-25(GEヘルスケア社製)を用いて、溶出液をD-PBS(-)に置換した後、孔径0.22μmのメンブレンフィルターMillex-Gv(Millipore社製)でろ過滅菌した。
 取得したCD131-CD116バイスペシフィック抗体の濃度は、波長280nmの吸光度を測定して、各抗体のアミノ酸配列から推定される吸光係数を用いて算出した。また、取得したCD131-CD116バイスペシフィック抗体のFc領域の有無がアゴニスト活性に与える影響を解析するため、Fc領域が野生型IgG1であるバイスペシフィック抗体を、酵素IdeS(Promega社製)を用いて添付プロトコールに従って処理し、Superdex200increaseカラム(GEヘルスケア社製)を用いてサイズ排除クロマトグラフィーを行うことで、Fc領域が除去されたバイスペシフィック抗体を調製した。
(2)CD131-CD116バイスペシフィック抗体の結合活性の解析
 上記で調製したCD131-CD116バイスペシフィック抗体について、抗原結合活性をELISA(Enzyme-Linked Immuno Sorbent Assay)にて解析した。
 実施例1で調製したヒトCD131またはCD116可溶性抗原(Hisタグ体)をD-PBS(-)(ナカライテスク社製)にて5μg/mLに調製したものを96ウェルまたは384ウェルのELISA用プレート(MAXISORP NUNC-IMMNO PLATE、Thermo Fisher Scientific社製)に50μL/ウェルまたは25μL/ウェルで分注し、4℃にて一晩静置して吸着させたのち、PBSで2~3回洗浄し、1%BSA-PBS(ナカライテスク社製)を100μL/ウェルまたは50μL/ウェルで分注し、室温にて1時間静置してブロッキングした。次に、CD131-CD116バイスペシフィック抗体溶液を50μL/ウェルまたは25μL/ウェルで分注し、室温にて1時間静置した。このプレートをPBSTで3回洗浄した後、1%BSA-PBSで希釈したPeroxidase標識Goat Anti-Human IgG,Fcγ fragment specific抗体(Jackson ImmunoResearch社製、Cat#109-035-008)を50μL/ウェルまたは25μL/ウェルで分注し、室温にて1時間静置した。このプレートをPBSTで3回洗浄し、ABTS(2,2’-Azino-bis(3-ethylbenzothiazoline-6-sulfonic Acid、Wako社製、Cat#016-08521)基質液またはTMB基質液(サーモフィッシャー社製)を50μL/ウェルまたは25μL/ウェルで添加して発色させ、適当な発色が得られたところで、1%SDS溶液または0.5mol/L硫酸を等量添加して発色を停止させたのち、サンプル波長415nm、リファレンス波長490nmにおける吸光度(415nm-490nm)またはサンプル波長450nm、リファレンス波長570nmにおける吸光度(450nm-570nm)をプレートリーダー(Spectra Max,Molecular Devices社製、またはSPARK 10M、TECAN社製)を用いて測定した。
 その結果、CD131-CD116バイスペシフィック抗体はヒトCD131またはCD116に結合することを確認できた。
(3)CD131-CD116バイスペシフィック抗体のアゴニスト活性解析
 上記で調製した7種類のCD131-CD116バイスペシフィック抗体(GM398、GM408、GM413、GM435、GM463、GM464、GM466、定常領域はいずれもIgG4PE R409Kを使用)について、実施例3-(2)と同様にアゴニスト活性を解析した。結果を図5に示す。
 図5に示すようにCD131-CD116バイスペシフィック抗体はいずれも組換えヒトGM-CSFに匹敵するアゴニスト活性を示した。また、図6に示すように、3種類のバイスペシフィック抗体(GM408、GM463、GM466)について、Fc領域の有無がアゴニスト活性に与える影響を解析したところ、該アゴニスト活性はFc領域の有無によって影響を受けないことがわかった。さらに、図7に示すように、Fc領域への変異導入によっても影響を受けないことが確認された。
 なお、実施例4(1)において、131-16(VHのアミノ酸配列を配列番号23、VLのアミノ酸配列を配列番号24で示す)との組み合わせで43種類、131-B2(VHのアミノ酸配列を配列番号29、VLのアミノ酸配列を配列番号30で示す)との組み合わせで、それぞれ異なる抗CD116抗体のVH配列を有するCD131-CD116バイスペシフィック抗体を調製しアゴニスト活性を解析した結果、上記の7種類のバイスペシフィック抗体が特に高いアゴニスト活性を示すことがわかった。
(4)CD131-CD116バイスペシフィック抗体のヒトCD14陽性単球に対するアゴニスト活性
 ヒト単球は、組換えヒトGM-CSFを添加して培養することによりin vitroでマクロファージに分化し、その過程で単球のマーカー分子であるCD14の発現が低下し、マクロファージのマーカー分子であるCD206の発現が上昇する。したがって、CD131-CD116バイスペシフィック抗体のヒト単球に対するアゴニスト活性を、単球からマクロファージへの分化に伴うCD206発現の変化を指標に評価した。加えて、
細胞の形態観察による評価を実施した。
 実施例4(3)でアゴニスト活性を評価した7種類のCD131-CD116バイスペシフィック抗体(GM398、GM408、GM413、GM435、GM463、GM464、GM466、定常領域はいずれもIgG4PE R409Kを使用)について本評価を実施した。
 ヒトCD14陽性単球は、凍結ヒト末梢血単核細胞(AllCells)から、ヒトCD14マイクロビーズ(Miltenyi)およびLS Column(Miltenyi Biotec)を用いて調製した。調製したCD14陽性単球を培養培地[RPMI1640(nacalai tesque)+10% FBS+1% Penicillin-Streptomycin,Mixed Solution(nacalai tesque)]にて1.6×10cells/mLに調製し、50μL/wellの条件で96well平底プレート(Nunc)に播種した。
 終濃度が4000、800、160、32、6.4、1.28pMとなるように培地にて調製したCD131-CD116バイスペシフィック抗体(GM464)、および終濃度が2000、400、80、16、3.2、0.64pMとなるように培地にて調製したCD131-CD116バイスペシフィック抗体(GM398、GM408、GM413、GM435、GM463、GM466、定常領域はいずれもIgG4PE R409Kを使用)および組換えヒトGM-CSF(R&D Systems)を50μL/well添加し、CD14陽性単球と37℃、5%COの条件下で7日間、共培養した。
 7日後に、各濃度のCD131-CD116バイスペシフィック抗体もしくは組換えヒトGM-CSFと7日間培養した細胞の形態を、EVOS XL Core Imaging System(Thermo Fisher Scientific)にて撮影して観察した。
 その結果、CD131-CD116バイスペシフィック抗体もしくは組換えヒトGM-CSFと共培養した細胞の形態は、類似性が認められた。また、CD131-CD116バイスペシフィック抗体もしくは組換えヒトGM-CSFの濃度依存的に細胞のサイズが大きくなり、wellあたりの細胞数が多くなった。
 共培養後、プレート底面に付着した細胞を剥離して回収した。回収した細胞を、FcR Blocking Reagent,human(Miltenyi Biotec)にてFcRをブロッキングした。その後、蛍光標識された抗ヒトCD14抗体(BioLegend)もしくは抗ヒトCD206抗体(BDバイオサイエンス)にて細胞表面上の各分子を染色し、FACSCanto II(BDバイオサイエンス)にて蛍光強度を測定した。結果を図8に示す。
 図8に示すように、すべてのCD131-CD116バイスペシフィック抗体および組換えヒトGM-CSFを添加した細胞において、濃度依存的なCD206の発現上昇が認められた。また、CD131-CD116バイスペシフィック抗体のCD206の発現上昇のエフィカシーは、組換えヒトGM-CSFと同程度であった。
 以上より、これら本発明のバイスペシフィック抗体は、ヒト末梢血単核細胞由来のCD14陽性単球に対してGM-CSFと同等のアゴニスト活性を示し、マクロファージへ分化誘導させることが確認された。
[実施例5]CD131-CD116バイスペシフィック抗体のGM-CSF受容体への特異性の解析
(1)ヒトGM-CSF受容体、IL-3受容体、IL-5受容体発現ベクターの構築
 GM-CSF受容体とIL-3受容体、IL-5受容体は、受容体の構成分子としてCD131を共通して有している。そこで、取得したCD131-CD116バイスペシフィック抗体のGM-CSF受容体への特異性を解析した。
 ヒトGM-CSF受容体、IL-3受容体、およびIL-5受容体発現ベクターは、下記〔1〕~〔3〕のアミノ酸配列をコードする塩基配列の5’末端にEcoRIとKozak配列、3’末端にstop codonとNotI配列を付加し、EcoRIとNotIで消化されたpEF6/Myc-His C(Invitrogen)に挿入することで構築した。
〔1〕ヒトGM-CSF受容体発現ベクター:CSF2RA(CD116,UniProt Entry.No.P15509)の細胞外ドメイン、CSF2RB(CD131,UniProt Entry.No.P32927)の細胞外ドメイン、Azami-Green配列をfurinタンパク質の認識配列を挟んで接続したアミノ酸配列(配列番号147)
〔2〕ヒトIL-3受容体発現ベクター:IL3RA(CD123,UniProt Entry.No.P26951)の細胞外ドメイン、CSF2RB(CD131,UniProt Entry.No.P32927)の細胞外ドメイン、Azami-Green配列をfurinタンパク質の認識配列を挟んで接続したアミノ酸配列(配列番号148)
〔3〕ヒトIL-5受容体発現ベクター:IL5RA(CD125,UniProt Entry.No.Q01344)の細胞外ドメイン、CSF2RB(CD131,UniProt Entry.No.P32927)の細胞外ドメイン、Azami-Green配列をfurinタンパク質の認識配列を挟んで接続したアミノ酸配列(配列番号149)
(2)ヒトGM-CSF受容体、IL-3受容体、IL-5受容体を発現するBa/F3細胞の作製
 上記ベクターをNucleofector 2b(Lonza)とCell Line Nucleofector kit V(Lonza)を用いてBa/F3に遺伝子導入し、培養用培地[5ng/mL マウスIL-3(Miltenyi Biotec)、10% FBS(GIBCO)、10μg/mL Blasticidin(InvivoGen)、RPMI1640(nacalai tesque)]を用いて培養した。
 4日後、目的遺伝子が導入された細胞を選抜するため、終濃度10ng/mLでヒトGM-CSF(R&D Systems)、もしくはヒトIL-3(R&D Systems)、IL-5(R&D Systems)をそれぞれ加えた薬剤選抜用培地[10% FBS(GIBCO)、50μg/mL Gentamycin(nacalai tesque)、50mg/mL G418(nacalai tesque)、RPMI1640(nacalai tesque)、以降選抜用培地とも記載する]に培地交換し、2週間培養した。
 次に選抜用培地に懸濁後、限界希釈法にてそれぞれのサイトカインに対して高感受性を示すクローンを選抜した。作製したヒトGM-CSF受容体、ヒトIL-3受容体、またはヒトIL-5受容体を発現するBa/F3細胞を、それぞれBa/F3-hGM-CSFR、Ba/F3-hIL-3R、またはBa/F3-hIL-5Rと記載する。
(3)CD131-CD116バイスペシフィック抗体のGM-CSF受容体への特異性の解析
 選抜用培地を用いて培養したBa/F3-hGM-CSFR、Ba/F3-hIL-3R、Ba/F3-hIL-5Rを遠心管に回収し、1200rpmで3分間、遠心分離後、上清を吸引除去し、さらにDPBS(nacalai tesque)で4回洗浄した。アッセイ用培地[10% FBS(GIBCO)、50μg/mL Blasticidin(InvivoGen)、RPMI1640(nacalai tesque)]に5.0×10cells/mLに懸濁し、96-wellプレートに80μL/wellで播種した。
 その後、CD131-CD116バイスペシフィック抗体、組換えヒトGM-CSF(R&D Systems)、組換えヒトIL-3(R&D Systems)、または組換えヒトIL-5(R&D Systems)を終濃度の5倍で培地を用いて調製し、20μL/wellで添加し、37℃、5%CO条件で3日間静置培養した。
 3日後、発光試薬CellTiter-Glo2.0(Promega)を100μL/wellで添加した後、マイクロプレートリーダーARVO(PerkinElmer)を用いてATPルシフェラーゼ反応による発光強度を測定した。組換えヒトGM-CSF、IL-3、IL-5 1nM添加群の発光の平均値を100%として、各CD131-CD116バイスペシフィック抗体サンプルの増殖率を算出した。結果を図9の(A)~(C)に示す。
 図9の(A)~(C)に示すように、CD131-CD116バイスペシフィック抗体はヒトGM-CSF受容体を発現させたBa/F3に対してのみ細胞増殖活性を示し、ヒトIL-3受容体またはIL-5受容体を発現させたBa/F3に対しては細胞増殖活性を示さなかった。よって、CD131-CD116バイスペシフィック抗体はGM-CSF受容体に特異的にアゴニスト活性を示すことを確認できた。
[実施例6]抗GM-CSF中和抗体存在下でのCD131-CD116バイスペシフィック抗体のアゴニスト活性の解析
 実施例5でアゴニスト活性を解析したCD131-CD116バイスペシフィック抗体3種について、GM-CSF中和抗体が存在する条件下におけるアゴニスト活性を解析した。GM-CSF中和抗体としては、文献[Protein Eng Des Sel., 28, 461 (2015)]でGM-CSF中和活性が報告されているヤギ抗ヒトGM-CSFポリクローナル抗体(R&D)を使用した。
 実施例3と同様に、TF-1細胞を洗浄後、Macrophage-SFM培地(GIBCO)に3.3×10cells/mLとなるように懸濁し、96-well plate(Greiner)に1wellあたり60μL、2.0×10cells/wellとなるように分注した。
 組換えGM-CSFおよびCD131-CD116バイスペシフィック抗体を100pMとなるようにMacrophage-SFM培地で希釈し、20μL/wellで添加した。またGM-CSF中和抗体は1000nMとなるようにMacrophage-SFM培地で希釈し、10倍希釈で希釈系列を作製し20μL/wellで添加した。
 37℃、5% CO条件で3日間静置培養した後、発光試薬CellTiter-Glo2.0(Promega)を100μL/wellで添加し、マイクロプレートリーダーARVO(PerkinElmer)を用いてATPルシフェラーゼ反応による発光強度を測定した。GM-CSF中和抗体を添加していない群の発光の平均値を100%として、GM-CSF中和抗体を各濃度で添加した場合の増殖率を算出した。結果を図10に示す。
 解析の結果、組換えGM-CSFによる細胞増殖は、GM-CSF中和抗体の抗体濃度依存的に阻害されたが、図10に示すように、本発明のCD131-CD116バイスペシフィック抗体による細胞増殖は、いずれの濃度のGM-CSF中和抗体の存在下でも阻害されなかった。従って、本発明のCD131-CD116バイスペシフィック抗体は、GM-CSF中和抗体存在下であっても、GM-CSF受容体アゴニスト活性を有することが確認された。 
[実施例7]CD131とCD116に結合するバイスペシフィック抗体の作製と活性評価
(1)次世代シーケンシングシステムを用いた抗CD116モノクローナル抗体の取得
 実施例2-(6)の濃縮されたファージをTG1に感染させることにより取得した大腸菌から調製したDNAを用いて、Ion S5(商標)システム(Thermo Fisher Scientific社製)で配列解析を行い、濃縮されている抗体のアミノ酸配列として配列番号190~199で示されるアミノ酸配列を選択した。
(2)抗CD116抗体のアフィニティマチュレーションによる抗CD116モノクローナル抗体の取得
 Abwiz Bio社にてファージディスプレイ法を用いて、GM408の抗CD116クローンVHのCDR1~3のアミノ酸配列を改変した抗CD116抗体のスクリーニングを行った。得られた抗体のアミノ酸配列情報を解析し、抗体のアミノ酸配列として配列番号200~209で示されるアミノ酸配列を選択した。
(3)CD131とCD116に結合するバイスペシフィック抗体の作製
 実施例7-(1)、(2)において取得した抗CD116抗体配列および抗CD131抗体配列を有するバイスペシフィック抗体発現ベクターを作製した。
 バイスペシフィック抗体の構造は、図4の(A)に示すN末端型構造を有し、VH1は抗CD131抗体のVH(アミノ酸配列を配列番号29で示す)、CH1はヒトIgG4のCH1(アミノ酸配列を配列番号144で示す)、VH2は抗CD116抗体のVH、定常領域はヒトIgG4PE R409KにEUインデックスで表されるH435Fのアミノ酸残基置換を加えた(アミノ酸配列を配列番号155で示す)ヒト抗体の定常領域配列であるCD131-CD116バイスペシフィック抗体とした。軽鎖はGM408と同一の軽鎖を用いた。
 L鎖発現ベクターとしては、シグナル配列およびヒトL鎖(κ鎖)定常領域配列を有したpCI-OtCMV_hKベクターを用いた。H鎖発現ベクターとしては、シグナル配列およびヒトIgG4PE R409KおよびH435F変異を有したpcDNA3.4ベクター(Thermo Fisher Scientific社製)を用いた。作製したCD131-CD116バイスペシフィック抗体のL鎖発現ベクターおよびH鎖発現ベクターを実施例4と同様の手法で遺伝子導入、発現および精製し、CD131-CD116バイスペシフィック抗体をそれぞれ取得した。
(4)CD131-CD116バイスペシフィック抗体のCD116に対する結合活性の解析
 実施例7-(2)で取得したクローンについて、CD116に対する親和性をBiacore T200システム(Cytiva社)を用い評価した。Running bufferはHBS-EP+ buffer(Cytiva)を用いた。Anti-human antibody capture kitおよびAmine Coupling Kit(Cytiva)を用い、Anti-human Fc抗体をCM5 Sensor chip(Cytiva)表面に固定化した。この際、コントロールフローセルにも各抗体の固定化を実施した。
 Anti-human Fcを固定化したチップを用いてCD116タンパク質に対するCD131-CD116バイスペシフィック抗体の結合評価を行った。測定ではまず、10nMに希釈したCD131-CD116バイスペシフィック抗体を90sec(流速:10μL/min)添加することでチップ上にCD131-CD116バイスペシフィック抗体をキャプチャーさせた。次に0.33、1、3、9又は27nMに希釈した実施例1-(3)で調製したヒトCD116可溶性抗原(Hisタグ体)を120sec(流速:30μL/min)ずつ添加し、解離時間90sec(流速:30μL/min)で測定した。サルCD116可溶性抗原(Hisタグ体)を用いた実験では3、9、27、81又は243nMの濃度で添加した。
 定量解析においては、Biacore T200 Evaluation Software version 3.2(Cytiva)にて、Single cycle kinetics法により算出した。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5に示す通り、GM408_H301、H302およびH303のCD116に対する結合活性は、元のGM408よりも優れることが分かった。
 結合活性が高いクローンを用いることにより、標的細胞に対するアゴニスト作用の特異性を高めることが期待できる。
(5)CD131-CD116バイスペシフィック抗体のアゴニスト活性解析
 上記で調製した20種類のCD131-CD116バイスペシフィック抗体(定常領域はいずれもIgG4PE R409K H435Fを使用)について、実施例3-(2)と同様の手法で2日間静置培養によりアゴニスト活性を解析した。結果を図11および12に示す。
 図11および12に示すようにCD131-CD116バイスペシフィック抗体はいずれも組換えヒトGM-CSFに匹敵するアゴニスト活性を示した。
[実施例8]CD116-CD131バイスペシフィック抗体の作製とアゴニスト活性の解析
 実施例4に示した3種類のN末端型CD131-CD116バイスペシフィック抗体(GM408、GM463、GM466)について、図4の(A)に示すVH1とVH2を入れ替え、N末端型のCD116-CD131バイスペシフィック抗体を実施例4(1)と同様に作製した(GM408 inverse、GM463 inverse、GM466 inverse、定常領域はいずれもIgG4PE R409Kを使用)。これらのCD116-CD131バイスペシフィック抗体のアゴニスト活性を、実施例3(2)と同様に解析した。結果を図13に示す。
 図13に示すように、これらのCD116-CD131バイスペシフィック抗体は、いずれもGM-CSF受容体アゴニスト活性を示すことが確認された。
[実施例9]C末端型CD131-CD116バイスペシフィック抗体およびC末端型CD116-CD131バイスペシフィック抗体の作製とアゴニスト活性の解析
 実施例4に示した3種類のN末端型CD131-CD116バイスペシフィック抗体(GM408、GM463、GM466)を基に、C末端型バイスペシフィック抗体を2種類作製した。図4の(B)に示す通り、VH1にCD131結合VH配列を有し、VH2にCD116結合VH配列を有するC末端型CD131-CD116バイスペシフィック抗体(Ct GM408、Ct GM463、Ct GM466、定常領域はいずれもIgG4PE R409Kを使用)および、VH1にCD116結合VH配列を有し、VH2にCD131結合VH配列を有するC末端型CD116-CD131バイスペシフィック抗体(Ct GM408 inverse、Ct GM463 inverse、Ct GM466 inverse、定常領域はいずれもIgG4PE R409Kを使用)を実施例3(2)と同様に作製し、アゴニスト活性を解析した。結果を図14の(A)および(B)に示す。
 その結果、図14の(A)に示すC末端型CD131-CD116バイスペシフィック抗体と比較し、図14の(B)に示すC末端型CD116-CD131バイスペシフィック抗体が高いGM-CSF受容体アゴニスト活性を示すことが確認された。
[実施例10]CD131-CD116バイスペシフィック抗体のIgG型バイスペシフィック抗体への変換とアゴニスト活性解析
 実施例4に示した3種類のN末端型CD131-CD116バイスペシフィック抗体(GM408、GM463、GM466)について、図2に示すIgG型CD131-CD116バイスペシフィック抗体として、実施例3(1)と同様に調製した。作製したIgG型CD131-CD116バイスペシフィック抗体について、実施例3(2)と同様にアゴニスト活性を解析した結果を図15に示す。解析の結果、これらのIgG型CD131-CD116バイスペシフィック抗体は、いずれもGM-CSF受容体アゴニスト活性を示すことが確認された。
[実施例11]高活性を発揮するCD131-CD116バイスペシフィック抗体の解析
 実施例4に記載されたCD131-CD116バイスペシフィック抗体GM408について、抗CD131抗体と抗CD116抗体の価数を制御した改変体を作製し、GM-CSF受容体アゴニスト活性への影響を解析した。
 図16に示す通り、各改変体を実施例3(1)および実施例4(1)と同様に作製した(定常領域はいずれもIgG4PE R409Kを使用)。CD131およびCD116へ結合する価数を制御する目的で、抗CD116抗体116-408のCDR1およびCDR3に2アミノ酸変異(D31AおよびY98A、D31A_Y98Aと表記)を導入したCD116への結合活性が完全に消失したVHを作製した。二種類のH鎖を組み合わせるGM408v1(2×1)、GM408v2(1×2)、GM408v3(1×1)、GM408v6(1×1)、GM408v7(1×2)、GM408v8(2×1)については、実施例3(1)と同様にKnobs-into-Holes(第一のH鎖にS354C/T366W変異、第二のH鎖にY349C/T366S/L368A/Y407V/H435R/Y436F変異)を用いた。この時、軽鎖可変領域はいずれも同一であるため実施例3(1)とは異なり、第一のH鎖と第二のH鎖、およびL鎖定常領域はいずれも変異を含まない野生型配列を使用した。各改変体について、実施例3(2)と同様にアゴニスト活性を解析した。結果を図17(A)、(B)に示す。
 括弧内の数字は(抗CD116抗体の価数×抗CD131抗体の価数)を表す。野生型のGM408WT(2×2)に加えて、GM408v1(2×1)、GM408v2(1×2)およびGM408v3(1×1)、GM408v6(1×1)、GM408v7(1×2)およびGM408v8(2×1)においてGM-CSF受容体アゴニスト活性を発揮することが確認された。しかし、GM408v4(0×2)、GM408v5(2×0)ではGM-CSF受容体アゴニスト活性は確認できず、アゴニスト活性を発揮する上でCD116およびCD131の両方への結合が重要であることが確認された。
[実施例12] CD131-CD116バイスペシフィック抗体のエピトープ解析
 実施例4に記載されたCD131-CD116バイスペシフィック抗体を構成する抗CD116抗体116-408、および抗CD131抗体131-B2について、それぞれの抗原であるヒトCD116、ヒトCD131におけるエピトープをIntegral Molecular社への委託により解析した。
 ヒトCD116およびCD131に対して網羅的にアミノ酸置換(Ala置換)を導入し、抗CD116抗体116-408、および抗CD131抗体131-B2の結合活性を大きく減弱させるAla置換部位を同定することで、エピトープを解析実施した。まず、網羅的にAla置換が導入されたヒトCD116、およびCD131を発現する発現ベクターを、哺乳類細胞用ベクターを用いて作製した。
 ヒトCD116については、ヒトCD116細胞外ドメイン全長289アミノ酸、ヒトCD131については、ヒトCD131細胞外ドメイン3に相当する100アミノ酸が置換された(ヒトCD116アミノ酸置換体については289種類、ヒト131アミノ酸置換体については100種類の発現ベクターが作製された)。
 これら発現ベクターをそれぞれHEK-293T細胞へ導入し、Ala置換が導入された変異型ヒトCD116あるいはヒトCD131を発現させた。酵素処理により抗CD116抗体116-408、および抗CD131抗体131-B2からFabを調製し、PBSを用いて0.25μg/mLに調製し、変異型ヒトCD116あるいはヒトCD131発現HEK-293Tに25℃で30分間反応させた。PBSで洗浄後、PBSで7.5μg/mLに調製した二次抗体抗(AlexaFluor(登録商標) 488 AffiniPure Goat Anti-Human IgG F(ab’) Fragment,Jackson ImmunoResearch社製)を25℃で30分間反応させ、フローサイトメトリー法によりFab結合量を解析した。
 変異型ヒトCD116、変異型ヒトCD131がそれぞれ野生型ヒトCD116、野生型ヒトCD131の70%以上の発現量を有し、Fab結合量が40%以下に減弱するAla置換部位がエピトープを構成するアミノ酸残基として選抜された。その結果を表6に示す。解析の結果、抗CD116抗体116-408についてはヒトCD116におけるN156、K158、T187、抗CD131抗体131-B2についてはヒトCD131におけるW163、R221がエピトープとして同定された。
Figure JPOXMLDOC01-appb-T000006
[実施例13]FcRnへの結合が消失したFc変異の同定
 抗体Fc領域とNeonatal Fc receptor(FcRn)の結合は、抗体の血中半減期維持(Nat. Rev. Immunol., 7, 715 (2007))、および肺胞から血中への抗体のトランスサイトーシス(Proc Natl Acad Sci U S A., 101, 9763 (2004))に重要だと示唆されている。ゆえに、本発明のバイスペシフィック抗体を経肺投与する場合において、CD131-CD116バイスペシフィック抗体とFcRnとの結合を消失させることで、肺胞中におけるCD131-CD116バイスペシフィック抗体の滞留性が向上し、持続的な治療効果が期待される。加えて、CD131-CD116バイスペシフィック抗体の血中半減期が短縮されることにより、肺から全身循環血に漏出したバイスペシフィック抗体による予期せぬ副作用リスクが低減することが期待される。
 pH6.0における抗体Fc領域とFcRnの結合に重要な残基として知られるIle253、His310、His435、Tyr436に対して、各種アミノ酸置換を導入したCD131-CD116バイスペシフィック抗体変異体を実施例4(1)と同様に作製した(定常領域はIgG4PE R409K、並びにIgG1 LALAGAを使用した。それぞれ、配列番号147~159、配列番号160~172で示す)。作製したCD131-CD116バイスペシフィック抗体変異体のヒトFcRn結合活性を、下記の通り表面プラズモン共鳴法(SPR法)により解析した。
 測定機器として、Biacore T100並びにT200(GE Healthcare社製)を使用した。Amine Coupling Kit(GE Healthcare社製)を用いて、Acetate 4.5(GE Healthcare社製)で20μg/mLに希釈したAnti-His Antibody(BSA-Free, QIAGEN社製)を添付文書に従いCM5センサーチップ(GE Healthcare社製)に固定化した。ヒトFcRn(インハウス調製品)をHBS-EP+ (pH 7.4,GE Healthcare社製)で10μg/mLに希釈し、10μL/minの流速で120秒間添加した。
 次いで、アナライトとして1000nMより5回の段階希釈で2倍ずつ希釈したCD131-CD116バイスペシフィック抗体変異体(pH 6.0のHBS-EP+溶液で希釈)を30μL/minの流速で添加し、FcRnとの結合反応を60秒間、解離反応を150秒間測定した。測定は平衡値解析法で行い、得られたセンサーグラムは、Bia Evaluation Software(GE Healthcare社製)を用いて解析した。結果を図18の(A)~(C)、図19、図20に示す。
 図18の(A)および(B)に示すように、定常領域として野生型IgG4PE R409Kを使用したCD131-CD116バイスペシフィック抗体が明確なヒトFcRnへの結合を示す条件において、FcRnへの結合が消失することが報告されているI253A変異体(Int Immunol.,18, 1759 (2006))が結合反応を示さないことを確認した。
 図19は、定常領域として変異挿入IgG4PE R409Kを使用した変異体について、各アナライト濃度における平衡状態のRU値をプロットした図を示す。図19に示すように、Tyr436にアミノ酸変異を導入した変異体では弱い結合活性が残存した一方で、Ile253、His310、His435にアミノ酸変異が導入された変異体はいずれも結合を消失することを確認した。
 図20に示す通り、定常領域として変異挿入IgG1 LALAGAを使用した変異体についても、変異挿入IgG4PE R409Kを使用した場合と同様の結果となった。
[実施例14] FcRnへの結合が消失したFc変異体のProtein A結合活性の解析
 実施例13で作製したCD131-CD116バイスペシフィック抗体各変異体について、Protein Aへの結合活性を実施例13と同様にBiacore T100並びにT200を使用して実施した。
 Amine Coupling Kitを用いて、添付文書に従いAcetate 4.5で1.0μg/mLに希釈したProtein A(Staphylococcus aureus 由来、Nacalai社製)をCM5センサーチップに75 RU固定化した。次いで、アナライトとして100nMより5回の段階希釈で4倍ずつ希釈した上記抗体サンプル(pH 7.4のHBS-EP+溶液で希釈)を30μL/minの流速で添加し、Protein Aとの結合反応を120秒間、解離反応を120秒間測定した。
 測定はシングルサイクルカイネティクス法で行った。得られたセンサーグラムは、Bia Evaluation Software(GE Healthcare社製)を用いて解析し、Bivalent analyte modelにて各抗体の速度論定数を算出した。結合速度定数(ka)、解離速度定数(kd)および結合親和性(KD)を求めた。結果を表7、表8に示す。
 表7および表8に示すように、野生型IgG4PE R409KおよびIgG1 LALAGAを用いたCD131-CD116バイスペシフィック抗体がProtein Aへ10nM程度の親和性を示す条件において、実施例13でFcRnへの結合を消失することが確認されたIle253、His310、His435へのアミノ酸変異挿入の多くはProtein A結合親和性も消失させた。しかし、IgG4PE R409K H435F変異体、IgG1 LALAGA H435F変異体では、Protein Aへの結合親和性が野生型と同等に維持された。
 現行、抗体医薬の多くはProtein Aアフィニティークロマトグラフィーを用いて精製されている。よって、Protein Aへの結合活性を維持したままFcRn結合を消失する変異体は、生産面で好ましい。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。なお、本出願は、2021年8月26日付けで出願された日本特許出願(特願2021-138181)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
配列番号1:ヒトCD131の全長塩基配列
配列番号2:サルCD131の全長塩基配列
配列番号3:ヒトCD131細胞外領域の塩基配列
配列番号4:サルCD131細胞外領域の塩基配列
配列番号5:マウスCD131細胞外領域の塩基配列
配列番号6:ヒトCD116の全長塩基配列
配列番号7:サルCD116の全長塩基配列
配列番号8:ヒトCD116細胞外領域の塩基配列
配列番号9:サルCD116細胞外領域の塩基配列
配列番号10:マウスCD116細胞外領域の塩基配列
配列番号11:116-08 VHのアミノ酸配列
配列番号12:116-08 VLのアミノ酸配列
配列番号13:116-09 VHのアミノ酸配列
配列番号14:116-09 VLのアミノ酸配列
配列番号15:116-18 VHのアミノ酸配列
配列番号16:116-18 VLのアミノ酸配列
配列番号17:116-21 VHのアミノ酸配列
配列番号18:116-21 VLのアミノ酸配列
配列番号19:116-22 VHのアミノ酸配列
配列番号20:116-22 VLのアミノ酸配列
配列番号21:131-03 VHのアミノ酸配列
配列番号22:131-03 VLのアミノ酸配列
配列番号23:131-16 VHのアミノ酸配列
配列番号24:131-16 VLのアミノ酸配列
配列番号25:131-18 VHのアミノ酸配列
配列番号26:131-18 VLのアミノ酸配列
配列番号27:131-B1 VHのアミノ酸配列
配列番号28:131-B1 VLのアミノ酸配列
配列番号29:131-B2 VHのアミノ酸配列
配列番号30:131-B2 VLのアミノ酸配列
配列番号31:116-08 VH CDR1のアミノ酸配列
配列番号32:116-08 VH CDR2のアミノ酸配列
配列番号33:116-08 VH CDR3のアミノ酸配列
配列番号34:116-08 VL CDR1のアミノ酸配列
配列番号35:116-08 VL CDR2のアミノ酸配列
配列番号36:116-08 VL CDR3のアミノ酸配列
配列番号37:116-09 VH CDR1のアミノ酸配列
配列番号38:116-09 VH CDR2のアミノ酸配列
配列番号39:116-09 VH CDR3のアミノ酸配列
配列番号40:116-09 VL CDR1のアミノ酸配列
配列番号41:116-09 VL CDR2のアミノ酸配列
配列番号42:116-09 VL CDR3のアミノ酸配列
配列番号43:116-18 VH CDR1のアミノ酸配列
配列番号44:116-18 VH CDR2のアミノ酸配列
配列番号45:116-18 VH CDR3のアミノ酸配列
配列番号46:116-18 VL CDR1のアミノ酸配列
配列番号47:116-18 VL CDR2のアミノ酸配列
配列番号48:116-18 VL CDR3のアミノ酸配列
配列番号49:116-21 VH CDR1のアミノ酸配列
配列番号50:116-21 VH CDR2のアミノ酸配列
配列番号51:116-21 VH CDR3のアミノ酸配列
配列番号52:116-21 VL CDR1のアミノ酸配列
配列番号53:116-21 VL CDR2のアミノ酸配列
配列番号54:116-21 VL CDR3のアミノ酸配列
配列番号55:116-22 VH CDR1のアミノ酸配列
配列番号56:116-22 VH CDR2のアミノ酸配列
配列番号57:116-22 VH CDR3のアミノ酸配列
配列番号58:116-22 VL CDR1のアミノ酸配列
配列番号59:116-22 VL CDR2のアミノ酸配列
配列番号60:116-22 VL CDR3のアミノ酸配列
配列番号61:131-03 VH CDR1のアミノ酸配列
配列番号62:131-03 VH CDR2のアミノ酸配列
配列番号63:131-03 VH CDR3のアミノ酸配列
配列番号64:131-03 VL CDR1のアミノ酸配列
配列番号65:131-03 VL CDR2のアミノ酸配列
配列番号66:131-03 VL CDR3のアミノ酸配列
配列番号67:131-16 VH CDR1のアミノ酸配列
配列番号68:131-16 VH CDR2のアミノ酸配列
配列番号69:131-16 VH CDR3のアミノ酸配列
配列番号70:131-16 VL CDR1のアミノ酸配列
配列番号71:131-16 VL CDR2のアミノ酸配列
配列番号72:131-16 VL CDR3のアミノ酸配列
配列番号73:131-18 VH CDR1のアミノ酸配列
配列番号74:131-18 VH CDR2のアミノ酸配列
配列番号75:131-18 VH CDR3のアミノ酸配列
配列番号76:131-18 VL CDR1のアミノ酸配列
配列番号77:131-18 VL CDR2のアミノ酸配列
配列番号78:131-18 VL CDR3のアミノ酸配列
配列番号79:131-B1 VH CDR1のアミノ酸配列
配列番号80:131-B1 VH CDR2のアミノ酸配列
配列番号81:131-B1 VH CDR3のアミノ酸配列
配列番号82:131-B1 VL CDR1のアミノ酸配列
配列番号83:131-B1 VL CDR2のアミノ酸配列
配列番号84:131-B1 VL CDR3のアミノ酸配列
配列番号85:131-B2 VH CDR1のアミノ酸配列
配列番号86:131-B2 VH CDR2のアミノ酸配列
配列番号87:131-B2 VH CDR3のアミノ酸配列
配列番号88:131-B2 VL CDR1のアミノ酸配列
配列番号89:131-B2 VL CDR2のアミノ酸配列
配列番号90:131-B2 VL CDR3のアミノ酸配列
配列番号91:131-B2 VLのアミノ酸配列
配列番号92:116-398のアミノ酸配列
配列番号93:116-412のアミノ酸配列
配列番号94:116-413のアミノ酸配列
配列番号95:116-421のアミノ酸配列
配列番号96:116-433のアミノ酸配列
配列番号97:116-435のアミノ酸配列
配列番号98:116-439のアミノ酸配列
配列番号99:116-463のアミノ酸配列
配列番号100:116-464のアミノ酸配列
配列番号101:116-465のアミノ酸配列
配列番号102:116-466のアミノ酸配列
配列番号103:116-408のアミノ酸配列
配列番号104:116-398 VH CDR1のアミノ酸配列
配列番号105:116-398 VH CDR2のアミノ酸配列
配列番号106:116-398 VH CDR3のアミノ酸配列
配列番号107:116-412 VH CDR1のアミノ酸配列
配列番号108:116-412 VH CDR2のアミノ酸配列
配列番号109:116-412 VH CDR3のアミノ酸配列
配列番号110:116-413 VH CDR1のアミノ酸配列
配列番号111:116-413 VH CDR2のアミノ酸配列
配列番号112:116-413 VH CDR3のアミノ酸配列
配列番号113:116-421 VH CDR1のアミノ酸配列
配列番号114:116-421 VH CDR2のアミノ酸配列
配列番号115:116-421 VH CDR3のアミノ酸配列
配列番号116:116-433 VH CDR1のアミノ酸配列
配列番号117:116-433 VH CDR2のアミノ酸配列
配列番号118:116-433 VH CDR3のアミノ酸配列
配列番号119:116-435 VH CDR1のアミノ酸配列
配列番号120:116-435 VH CDR2のアミノ酸配列
配列番号121:116-435 VH CDR3のアミノ酸配列
配列番号122:116-439 VH CDR1のアミノ酸配列
配列番号123:116-439 VH CDR2のアミノ酸配列
配列番号124:116-439 VH CDR3のアミノ酸配列
配列番号125:116-463 VH CDR1のアミノ酸配列
配列番号126:116-463 VH CDR2のアミノ酸配列
配列番号127:116-463 VH CDR3のアミノ酸配列
配列番号128:116-464 VH CDR1のアミノ酸配列
配列番号129:116-464 VH CDR2のアミノ酸配列
配列番号130:116-464 VH CDR3のアミノ酸配列
配列番号131:116-465 VH CDR1のアミノ酸配列
配列番号132:116-465 VH CDR2のアミノ酸配列
配列番号133:116-465 VH CDR3のアミノ酸配列
配列番号134:116-466 VH CDR1のアミノ酸配列
配列番号135:116-466 VH CDR2のアミノ酸配列
配列番号136:116-466 VH CDR3のアミノ酸配列
配列番号137:116-408 VH CDR1のアミノ酸配列
配列番号138:116-408 VH CDR2のアミノ酸配列
配列番号139:116-408 VH CDR3のアミノ酸配列
配列番号140:DuetMAb LALAPG CH1~CH3定常領域1のアミノ酸配列
配列番号141:DuetMAb LALAPG CL定常領域1のアミノ酸配列
配列番号142:DuetMAb LALAPG CH1~CH3定常領域2のアミノ酸配列
配列番号143:DuetMAb LALAPG CL定常領域2のアミノ酸配列
配列番号144:IgG4CH1定常領域のアミノ酸配列
配列番号145:IgG4PE R409K CH1~CH3定常領域のアミノ酸配列
配列番号146:IgG1 LALAGA CH1~CH3定常領域のアミノ酸配列
配列番号147:IgG4PE R409K CH1~CH3定常領域I253A変異体のアミノ酸配列
配列番号148:IgG4PE R409K CH1~CH3定常領域I253H変異体のアミノ酸配列
配列番号149:IgG4PE R409K CH1~CH3定常領域I253D変異体のアミノ酸配列
配列番号150:IgG4PE R409K CH1~CH3定常領域I253S変異体のアミノ酸配列
配列番号151:IgG4PE R409K CH1~CH3定常領域H310D変異体のアミノ酸配列
配列番号152:IgG4PE R409K CH1~CH3定常領域H310G変異体のアミノ酸配列
配列番号153:IgG4PE R409K CH1~CH3定常領域H435A変異体のアミノ酸配列
配列番号154:IgG4PE R409K CH1~CH3定常領域H435E変異体のアミノ酸配列
配列番号155:IgG4PE R409K CH1~CH3定常領域H435F変異体のアミノ酸配列
配列番号156:IgG4PE R409K CH1~CH3定常領域H435T変異体のアミノ酸配列
配列番号157:IgG4PE R409K CH1~CH3定常領域Y436A変異体のアミノ酸配列
配列番号158:IgG4PE R409K CH1~CH3定常領域Y436E変異体のアミノ酸配列
配列番号159:IgG4PE R409K CH1~CH3定常領域Y436G変異体のアミノ酸配列
配列番号160:IgG1 LALAGA CH1~CH3定常領域I253A変異体のアミノ酸配列
配列番号161:IgG1 LALAGA CH1~CH3定常領域I253H変異体のアミノ酸配列
配列番号162:IgG1 LALAGA CH1~CH3定常領域I253D変異体のアミノ酸配列
配列番号163:IgG1 LALAGA CH1~CH3定常領域I253S変異体のアミノ酸配列
配列番号164:IgG1 LALAGA CH1~CH3定常領域H310D変異体のアミノ酸配列
配列番号165:IgG1 LALAGA CH1~CH3定常領域H310G変異体のアミノ酸配列
配列番号166:IgG1 LALAGA CH1~CH3定常領域H435A変異体のアミノ酸配列
配列番号167:IgG1 LALAGA CH1~CH3定常領域H435E変異体のアミノ酸配列
配列番号168:IgG1 LALAGA CH1~CH3定常領域H435F変異体のアミノ酸配列
配列番号169:IgG1 LALAGA CH1~CH3定常領域H435T変異体のアミノ酸配列
配列番号170:IgG1 LALAGA CH1~CH3定常領域Y436A変異体のアミノ酸配列
配列番号171:IgG1 LALAGA CH1~CH3定常領域Y436E変異体のアミノ酸配列
配列番号172:IgG1 LALAGA CH1~CH3定常領域Y436G変異体のアミノ酸配列
配列番号173:131-B2 VHの塩基配列
配列番号174:IgG4CH1定常領域の塩基配列
配列番号175:GM398 116 VHのアミノ酸配列
配列番号176:GM412 116 VH FR1をバイスペシフィック抗体に最適化したアミノ酸配列
配列番号177:GM413 116 VH FR1をバイスペシフィック抗体に最適化したアミノ酸配列
配列番号178:GM421 116 VH FR1をバイスペシフィック抗体に最適化したアミノ酸配列
配列番号179:GM433 116 VH FR1をバイスペシフィック抗体に最適化したアミノ酸配列
配列番号180:GM435 116 VHのアミノ酸配列
配列番号181:GM439 116 VHのアミノ酸配列
配列番号182:GM463 116 VH FR1をバイスペシフィック抗体に最適化したアミノ酸配列
配列番号183:GM464 116 VH FR1をバイスペシフィック抗体に最適化したアミノ酸配列
配列番号184:GM465 116 VH FR1をバイスペシフィック抗体に最適化
配列番号185:GM466 116 VH FR1をバイスペシフィック抗体に最適化
配列番号186:GM408 116 VHのアミノ酸配列
配列番号187:human GM-CSF受容体発現ベクターのアミノ酸配列
配列番号188:human IL-3受容体発現ベクターのアミノ酸配列
配列番号189:human IL-5受容体発現ベクターのアミノ酸配列
配列番号190:GM408ngs007 VHのアミノ酸配列
配列番号191:GM408ngs058 VHのアミノ酸配列
配列番号192:GM408ngs365 VHのアミノ酸配列
配列番号193:GM408ngs127 VHのアミノ酸配列
配列番号194:GM408ngs008 VHのアミノ酸配列
配列番号195:GM408ngs300 VHのアミノ酸配列
配列番号196:GM408ngs041 VHのアミノ酸配列
配列番号197:GM408ngs048 VHのアミノ酸配列
配列番号198:GM408ngs047 VHのアミノ酸配列
配列番号199:GM408ngs539 VHのアミノ酸配列
配列番号200:GM408_H101 VHのアミノ酸配列
配列番号201:GM408_H102 VHのアミノ酸配列
配列番号202:GM408_H103 VHのアミノ酸配列
配列番号203:GM408_H104 VHのアミノ酸配列
配列番号204:GM408_H105 VHのアミノ酸配列
配列番号205:GM408_H301 VHのアミノ酸配列
配列番号206:GM408_H302 VHのアミノ酸配列
配列番号207:GM408_H303 VHのアミノ酸配列
配列番号208:GM408_H106 VHのアミノ酸配列
配列番号209:GM408_H107 VHのアミノ酸配列
配列番号210:human_CD116ECD(23-320)のアミノ酸配列
配列番号211:human_CD131ECD(17-443)のアミノ酸配列

Claims (22)

  1.  第1の抗原結合ドメインおよび第2の抗原結合ドメインを含み、
     前記第1の抗原結合ドメインおよび前記第2の抗原結合ドメインのいずれか一方がCD116に結合する抗原結合ドメインであり、もう一方がCD131に結合する抗原結合ドメインである、バイスペシフィック抗体または該バイスペシフィック抗体断片。
  2.  Granulocyte macrophage-colonystimulating factor(以下、GM-CSFと略記する)受容体に対してアゴニスト活性を有する、請求項1に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片。
  3.  前記第1の抗原結合ドメインおよび前記第2の抗原結合ドメインが、それぞれ重鎖可変領域(以下、VHと略記する)および軽鎖可変領域(以下、VLと略記する)を含む、請求項1又は2に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片。
  4.  CD116およびCD131に1価または2価でそれぞれ結合する、請求項1~3のいずれか1項に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片。
  5.  前記CD131に結合する抗原結合ドメインが、下記(1a)~(1e)から選ばれるいずれか1である、請求項1~4のいずれか1項に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片。
    (1a)それぞれ配列番号61~63で表されるアミノ酸配列を含む相補性決定領域(以下、CDRと略記する)1~3を含むVH、および、それぞれ配列番号64~66で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
    (1b)それぞれ配列番号67~69で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号70~72で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
    (1c)それぞれ配列番号73~75で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号76~78で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
    (1d)それぞれ配列番号79~81で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号82~84で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
    (1e)それぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
  6.  前記CD131に結合する抗原結合ドメインが、下記(1A)~(1E)から選ばれるいずれか1である、請求項1~5のいずれか1項に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片。
    (1A)配列番号21で表されるアミノ酸配列を含むVH、および、配列番号22で表されるアミノ酸配列を含むVLを含む
    (1B)配列番号23で表されるアミノ酸配列を含むVH、および、配列番号24で表されるアミノ酸配列を含むVLを含む
    (1C)配列番号25で表されるアミノ酸配列を含むVH、および、配列番号26で表されるアミノ酸配列を含むVLを含む
    (1D)配列番号27で表されるアミノ酸配列を含むVH、および、配列番号28で表されるアミノ酸配列を含むVLを含む
    (1E)配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
  7.  前記CD116に結合する抗原結合ドメインが、下記(2a)~(2q)および(2r-1)~(2r-12)から選ばれるいずれか1である、請求項1~6のいずれか1項に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片。
    (2a)それぞれ配列番号31~33で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号34~36で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
    (2b)それぞれ配列番号37~39で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号40~42で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
    (2c)それぞれ配列番号43~45で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号46~48で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
    (2d)それぞれ配列番号49~51で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号52~54で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
    (2e)それぞれ配列番号55~57で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号58~60で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
    (2f)それぞれ配列番号104~106で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
    (2g)それぞれ配列番号107~109で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
    (2h)それぞれ配列番号110~112で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
    (2i)それぞれ配列番号113~115で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
    (2j)それぞれ配列番号116~118で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
    (2k)それぞれ配列番号119~121で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
    (2l)それぞれ配列番号122~124で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
    (2m)それぞれ配列番号125~127で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
    (2n)それぞれ配列番号128~130で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
    (2о)それぞれ配列番号131~133で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
    (2p)それぞれ配列番号134~136で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
    (2q)それぞれ配列番号137~139で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
    (2r-1)配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列中の9番目のアルギニンをリジンに置換する改変が導入されたアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
    (2r-2)配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列中の17番目のグリシンをアスパラギン酸に置換する改変が導入されたアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
    (2r-3)配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列中の9番目のアルギニンをスレオニンに置換する改変が導入されたアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
    (2r-4)配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列中の2番目のフェニルアラニンをロイシンに、9番目のアルギニンをスレオニンに置換する改変が導入されたアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
    (2r-5)配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列中の2番目のフェニルアラニンをセリンに、9番目のアルギニンをスレオニンに置換する改変が導入されたアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
    (2r-6)配列番号137で表されるアミノ酸配列の2番目のロイシンをバリンに、3番目のセリンをアラニンに、4番目のメチオニンをロイシンに置換する改変が導入されたアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
    (2r-7)配列番号137で表されるアミノ酸配列の2番目のロイシンをフェニルアラニンに、3番目のセリンをアラニンに置換する改変が導入されたアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
    (2r-8)配列番号137で表されるアミノ酸配列の3番目のセリンをアラニンに、4番目のメチオニンをロイシンに置換する改変が導入されたアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
    (2r-9)配列番号137で表されるアミノ酸配列の2番目のロイシンをチロシンに、3番目のセリンをアラニンに置換する改変が導入されたアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
    (2r-10)配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列の2番目のロイシンをグルタミン酸に置換する改変が導入されたアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
    (2r-11)配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列の2番目のロイシンをグルタミン酸に、5番目のチロシンをトリプトファンに、6番目のチロシンをメチオニンに置換する改変が導入されたアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
    (2r-12)配列番号137で表されるアミノ酸配列の2番目のロイシンをフェニルアラニンに、3番目のセリンをアラニンに、4番目のメチオニンをロイシンに置換する改変が導入されたアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む
  8.  前記CD116に結合する抗原結合ドメインが、下記(2A)~(2Y)および(2Z-1)~(2Z-20)から選ばれるいずれか1である、請求項1~7のいずれか1項に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片。
    (2A)配列番号11で表されるアミノ酸配列を含むVH、および、配列番号12で表されるアミノ酸配列を含むVLを含む
    (2B)配列番号13で表されるアミノ酸配列を含むVH、および、配列番号14で表されるアミノ酸配列を含むVLを含む
    (2C)配列番号15で表されるアミノ酸配列を含むVH、および、配列番号16で表されるアミノ酸配列を含むVLを含む
    (2D)配列番号17で表されるアミノ酸配列を含むVH、および、配列番号18で表されるアミノ酸配列を含むVLを含む
    (2E)配列番号19で表されるアミノ酸配列を含むVH、および、配列番号20で表されるアミノ酸配列を含むVLを含む
    (2F)配列番号92で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
    (2G)配列番号93で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
    (2H)配列番号94で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
    (2I)配列番号95で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
    (2J)配列番号96で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
    (2K)配列番号97で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
    (2L)配列番号98で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
    (2M)配列番号99で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
    (2N)配列番号100で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
    (2O)配列番号101で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
    (2P)配列番号102で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
    (2Q)配列番号103で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
    (2R)配列番号176で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
    (2S)配列番号177で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
    (2T)配列番号178で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
    (2U)配列番号179で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
    (2V)配列番号182で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
    (2W)配列番号183で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
    (2X)配列番号184で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
    (2Y)配列番号185で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
    (2Z-1)配列番号190で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
    (2Z-2)配列番号191で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
    (2Z-3)配列番号192で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
    (2Z-4)配列番号193で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
    (2Z-5)配列番号194で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
    (2Z-6)配列番号195で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
    (2Z-7)配列番号196で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
    (2Z-8)配列番号197で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
    (2Z-9)配列番号198で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
    (2Z-10)配列番号199で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
    (2Z-11)配列番号200で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
    (2Z-12)配列番号201で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
    (2Z-13)配列番号202で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
    (2Z-14)配列番号203で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
    (2Z-15)配列番号204で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
    (2Z-16)配列番号205で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
    (2Z-17)配列番号206で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
    (2Z-18)配列番号207で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
    (2Z-19)配列番号208で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
    (2Z-20)配列番号209で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む
  9.  前記第1の抗原結合ドメインがCD131に結合する抗原結合ドメインであり、前記第2の抗原結合ドメインがCD116に結合する抗原結合ドメインである、請求項1~8のいずれか1項に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片。
  10.  前記第1の抗原結合ドメインおよび前記第2の抗原結合ドメインがそれぞれFab(以下、第1のFab、第2のFabとそれぞれ略記する)であり、
     前記第1のFabは、VHおよびCH1ドメインを含む重鎖(VH-CH1)と、軽鎖(VL-CL)とを含み、
     前記第2のFabは、VHおよびCH1ドメインを含む重鎖(VH-CH1’)と、軽鎖(VL-CL)とを含む、
    請求項1~9のいずれか1項に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片。
  11.  前記第1のFabおよび前記第2のFabをそれぞれ1つ、並びにヒンジ領域を含み、
     前記第1のFabにおける前記重鎖のC末端と、前記第2のFabにおける前記重鎖のC末端とが、前記ヒンジ領域のN末端にそれぞれ結合している、請求項10に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片。
  12.  下記第1のポリペプチド、下記第2のポリペプチド、およびヒンジ領域を含み、前記第1のポリペプチドのC末端と前記第2のポリペプチドのC末端とが前記ヒンジ領域のN末端にそれぞれ結合している、請求項10に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片。
     第1のポリペプチド:前記第1のFab(VH-CH1、VL-CL)をN末端に少なくとも含む、ポリペプチド。
     第2のポリペプチド:前記第2のFab(VH-CH1’、VL-CL)をC末端に少なくとも含む、ポリペプチド。
  13.  前記第1のFabにおける前記重鎖のC末端と、前記第2のFabにおける前記重鎖のN末端とが直接またはリンカーを介して結合しているポリペプチド鎖(VH-CH1-VH-CH1’)を2本、およびヒンジ領域を含み、
     2本の前記ポリペプチド鎖のC末端が前記ヒンジ領域のN末端にそれぞれ結合している、請求項10に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片。
  14.  さらにFc領域を含み、前記ヒンジ領域のC末端に前記Fc領域のN末端が結合している、請求項11~13のいずれか1項に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片。
  15.  前記バイスペシフィック抗体が下記(x1)~(x12)および(x13-1)~(x13-12)から選ばれるいずれか1である、請求項1~14のいずれか1項に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片。
    (x1)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインがそれぞれ配列番号104~106で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
    (x2)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインがそれぞれ配列番号107~109で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
    (x3)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインがそれぞれ配列番号110~112で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
    (x4)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインがそれぞれ配列番号113~115で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
    (x5)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインがそれぞれ配列番号116~118で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
    (x6)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインがそれぞれ配列番号119~121で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
    (x7)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインがそれぞれ配列番号122~124で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
    (x8)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインがそれぞれ配列番号125~127で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
    (x9)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインがそれぞれ配列番号128~130で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
    (x10)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインがそれぞれ配列番号131~133で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
    (x11)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインがそれぞれ配列番号134~136で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
    (x12)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインがそれぞれ配列番号137~139で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
    (x13-1)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列中の9番目のアルギニンをリジンに置換する改変が導入されたアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
    (x13-2)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列中の17番目のグリシンをアスパラギン酸に置換する改変が導入されたアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
    (x13-3)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列中の9番目のアルギニンをスレオニンに置換する改変が導入されたアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
    (X13-4)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列中の2番目のフェニルアラニンをロイシンに、9番目のアルギニンをスレオニンに置換する改変が導入されたアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
    (x13-5)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列中の2番目のフェニルアラニンをセリンに、9番目のアルギニンをスレオニンに置換する改変が導入されたアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
    (x13-6)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号137で表されるアミノ酸配列の2番目のロイシンをバリンに、3番目のセリンをアラニンに、4番目のメチオニンをロイシンに置換する改変が導入されたアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
    (x13-7)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号137で表されるアミノ酸配列の2番目のロイシンをフェニルアラニンに、3番目のセリンをアラニンに置換する改変が導入されたアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
    (x13-8)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号137で表されるアミノ酸配列の3番目のセリンをアラニンに、4番目のメチオニンをロイシンに置換する改変が導入されたアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
    (x13-9)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号137で表されるアミノ酸配列の2番目のロイシンをチロシンに、3番目のセリンをアラニンに置換する改変が導入されたアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
    (x13-10)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列の2番目のロイシンをグルタミン酸に置換する改変が導入されたアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
    (x13-11)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号137で表されるアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列の2番目のロイシンをグルタミン酸に、5番目のチロシンをトリプトファンに、6番目のチロシンをメチオニンに置換する改変が導入されたアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
    (x13-12)前記第1の抗原結合ドメインがそれぞれ配列番号85~87で表されるアミノ酸配列を含むCDR1~3を含むVH、および、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号137で表されるアミノ酸配列の2番目のロイシンをフェニルアラニンに、3番目のセリンをアラニンに、4番目のメチオニンをロイシンに置換する改変が導入されたアミノ酸配列を含むCDR1、配列番号138で表されるアミノ酸配列を含むCDR2および配列番号139で表されるアミノ酸配列を含むCDR3を含むVH、並びに、それぞれ配列番号88~90で表されるアミノ酸配列を含むCDR1~3を含むVLを含む、バイスペシフィック抗体
  16.  前記バイスペシフィック抗体が下記(y1)~(y12)および(y13-1)~(y13-20)から選ばれるいずれか1である、請求項1~15のいずれか1項に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片。
    (y1)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号175で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
    (y2)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号176で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
    (y3)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号177で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
    (y4)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号178で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
    (y5)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号179で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
    (y6)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号180で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
    (y7)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号181で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
    (y8)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号182で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
    (y9)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号183で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
    (y10)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号184で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
    (y11)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号185で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
    (y12)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号186で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
    (y13-1)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号190で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
    (y13-2)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号191で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
    (y13-3)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号192で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
    (y13-4)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号193で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
    (y13-5)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号194で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
    (y13-6)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号195で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
    (y13-7)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号196で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
    (y13-8)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号197で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
    (y13-9)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号198で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
    (y13-10)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号199で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
    (y13-11)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号200で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
    (y13-12)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号201で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
    (y13-13)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号202で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
    (y13-14)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号203で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
    (y13-15)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号204で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
    (y13-16)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号205で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
    (y13-17)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号206で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
    (y13-18)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号207で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
    (y13-19)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号208で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
    (y13-20)前記第1の抗原結合ドメインが配列番号29で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含み、且つ前記第2の抗原結合ドメインが配列番号209で表されるアミノ酸配列を含むVH、および、配列番号30で表されるアミノ酸配列を含むVLを含む、バイスペシフィック抗体
  17.  前記ポリペプチド鎖が前記第1のFabにおける前記重鎖(VH-CH1)のC末端と、前記第2のFabにおける前記重鎖(VH-CH1’)のN末端とが直接またはリンカーを介して結合しているポリペプチド鎖(VH-CH1-VH-CH1’)であり、前記ポリペプチド鎖における(VH-CH1-VH)が下記(v1)~(v12)および(v13-1)~(v13-20)から選ばれるいずれか1である、請求項13または14に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片。
    (v1)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号175で表されるアミノ酸配列を含むVHを含む
    (v2)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号176で表されるアミノ酸配列を含むVHを含む
    (v3)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号177で表されるアミノ酸配列を含むVHを含む
    (v4)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号178で表されるアミノ酸配列を含むVHを含む
    (v5)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号179で表されるアミノ酸配列を含むVHを含む
    (v6)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号180で表されるアミノ酸配列を含むVHを含む
    (v7)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号181で表されるアミノ酸配列を含むVHを含む
    (v8)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号182で表されるアミノ酸配列を含むVHを含む
    (v9)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号183で表されるアミノ酸配列を含むVHを含む
    (v10)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号184で表されるアミノ酸配列を含むVHを含む
    (v11)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号185で表されるアミノ酸配列を含むVHを含む
    (v12)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号186で表されるアミノ酸配列を含むVHを含む
    (v13-1)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号190で表されるアミノ酸配列を含むVHを含む
    (v13-2)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号191で表されるアミノ酸配列を含むVHを含む
    (v13-3)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号192で表されるアミノ酸配列を含むVHを含む
    (v13-4)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号193で表されるアミノ酸配列を含むVHを含む
    (v13-5)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号194で表されるアミノ酸配列を含むVHを含む
    (v13-6)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号195で表されるアミノ酸配列を含むVHを含む
    (v13-7)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号196で表されるアミノ酸配列を含むVHを含む
    (v13-8)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号197で表されるアミノ酸配列を含むVHを含む
    (v13-9)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号198で表されるアミノ酸配列を含むVHを含む
    (v13-10)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号199で表されるアミノ酸配列を含むVHを含む
    (v13-11)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号200で表されるアミノ酸配列を含むVHを含む
    (v13-12)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号201で表されるアミノ酸配列を含むVHを含む
    (v13-13)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号202で表されるアミノ酸配列を含むVHを含む
    (v13-14)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号203で表されるアミノ酸配列を含むVHを含む
    (v13-15)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号204で表されるアミノ酸配列を含むVHを含む
    (v13-16)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号205で表されるアミノ酸配列を含むVHを含む
    (v13-17)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号206で表されるアミノ酸配列を含むVHを含む
    (v13-18)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号207で表されるアミノ酸配列を含むVHを含む
    (v13-19)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号208で表されるアミノ酸配列を含むVHを含む
    (v13-20)N末端から順に、配列番号29で表されるアミノ酸配列を含むVH、配列番号144で表されるアミノ酸配列を含むCH1、配列番号209で表されるアミノ酸配列を含むVHを含む
  18.  前記第1のFabにおける前記重鎖(VH-CH1)のC末端と、前記第2のFabにおける前記重鎖(VH-CH1’)のN末端とが直接またはリンカーを介して結合している前記ポリペプチド鎖、該ポリペプチド鎖のC末端にN末端が結合しているヒンジ領域、該ヒンジ領域のC末端にN末端が結合しているFc領域(CH2-CH3)を含む重鎖2本と、軽鎖(VL-CL)4本とを含み、
     前記CH1’および前記Fc領域(CH2-CH3)が配列番号145~172のいずれか1で表されるアミノ酸配列を含み、
     前記軽鎖が配列番号30で表されるアミノ酸配列を含むVLを含む、請求項17に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片。
  19.  請求項1~18のいずれか1項に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片をコードするDNA。
  20.  請求項19に記載のDNAを含有する組換え体ベクター。
  21.  請求項20に記載の組換え体ベクターを宿主細胞に導入して得られる形質転換株。
  22.  請求項1~18のいずれか1項に記載のバイスペシフィック抗体または該バイスペシフィック抗体断片を有効成分として含有する、GM-CSFが関与する疾患の治療および/または診断薬。
PCT/JP2022/032233 2021-08-26 2022-08-26 Cd116およびcd131に結合するバイスペシフィック抗体 WO2023027177A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU2022332728A AU2022332728A1 (en) 2021-08-26 2022-08-26 Bispecific antibody that binds to cd116 and cd131
CA3229748A CA3229748A1 (en) 2021-08-26 2022-08-26 Bispecific antibody that binds to cd116 and cd131
JP2023544004A JPWO2023027177A1 (ja) 2021-08-26 2022-08-26
EP22861465.7A EP4393952A1 (en) 2021-08-26 2022-08-26 Bispecific antibody that binds to cd116 and cd131
MX2024002349A MX2024002349A (es) 2021-08-26 2022-08-26 Anticuerpo biespecifico que se une a cd116 y cd131.
KR1020247006195A KR20240049285A (ko) 2021-08-26 2022-08-26 Cd116 및 cd131에 결합하는 이중 특이적 항체
CN202280057635.8A CN117836326A (zh) 2021-08-26 2022-08-26 与cd116和cd131结合的双特异性抗体
US18/587,502 US20240190980A1 (en) 2021-08-26 2024-02-26 Bispecific antibody that binds to cd116 and cd131

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-138181 2021-08-26
JP2021138181 2021-08-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/587,502 Continuation US20240190980A1 (en) 2021-08-26 2024-02-26 Bispecific antibody that binds to cd116 and cd131

Publications (1)

Publication Number Publication Date
WO2023027177A1 true WO2023027177A1 (ja) 2023-03-02

Family

ID=85322949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032233 WO2023027177A1 (ja) 2021-08-26 2022-08-26 Cd116およびcd131に結合するバイスペシフィック抗体

Country Status (10)

Country Link
US (1) US20240190980A1 (ja)
EP (1) EP4393952A1 (ja)
JP (1) JPWO2023027177A1 (ja)
KR (1) KR20240049285A (ja)
CN (1) CN117836326A (ja)
AU (1) AU2022332728A1 (ja)
CA (1) CA3229748A1 (ja)
MX (1) MX2024002349A (ja)
TW (1) TW202317637A (ja)
WO (1) WO2023027177A1 (ja)

Citations (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623587A (en) 1979-08-03 1981-03-05 Mitsuwa Seiki Co Ltd Vane type compressor
JPS58110600A (ja) 1981-12-25 1983-07-01 Kyowa Hakko Kogyo Co Ltd ヒトβ型インタ−フエロン遺伝子を含む組みかえ体プラスミド
JPS60221091A (ja) 1983-12-21 1985-11-05 Kyowa Hakko Kogyo Co Ltd 新規プロモ−タ−
JPS61178926A (ja) 1984-03-06 1986-08-11 Takeda Chem Ind Ltd 化学修飾ペプチドホルモンおよびその製造法
JPS63299A (ja) 1986-04-22 1988-01-05 イミユネツクス・コ−ポレ−シヨン ヒトg−csfタンパク質の発現
JPH02117920A (ja) 1988-05-06 1990-05-02 Sumitomo Pharmaceut Co Ltd ポリエチレングリコール誘導体、修飾ペプチドおよびその製造方法
US4939094A (en) 1985-08-28 1990-07-03 Kyowa Hakko Kogyo Co., Ltd. Fused antigen polypeptide
JPH02227075A (ja) 1988-09-29 1990-09-10 Kyowa Hakko Kogyo Co Ltd 新規ポリペプチド
JPH02257891A (ja) 1989-03-31 1990-10-18 Kyowa Hakko Kogyo Co Ltd 組換え動物細胞による蛋白質の製造
JPH0322979A (ja) 1989-06-19 1991-01-31 Kyowa Hakko Kogyo Co Ltd 新規プラスミノーゲン活性化因子
US5168062A (en) 1985-01-30 1992-12-01 University Of Iowa Research Foundation Transfer vectors and microorganisms containing human cytomegalovirus immediate-early promoter-regulatory DNA sequence
JPH05336963A (ja) 1991-12-17 1993-12-21 Kyowa Hakko Kogyo Co Ltd 新規α2→3シアリルトランスフェラーゼ
WO1994023021A1 (en) 1993-03-29 1994-10-13 Kyowa Hakko Kogyo Co., Ltd. α-1,3-FUCOSYLTRANSFERASE
WO1997010354A1 (en) 1995-09-11 1997-03-20 Kyowa Hakko Kogyo Co., Ltd. ANTIBODY AGAINTS α-CHAIN OF HUMAN INTERLEUKIN 5 RECEPTOR
US6001358A (en) 1995-11-07 1999-12-14 Idec Pharmaceuticals Corporation Humanized antibodies to human gp39, compositions containing thereof
WO2000042072A2 (en) 1999-01-15 2000-07-20 Genentech, Inc. Polypeptide variants with altered effector function
WO2000061739A1 (en) 1999-04-09 2000-10-19 Kyowa Hakko Kogyo Co., Ltd. Method for controlling the activity of immunologically functional molecule
WO2002031140A1 (fr) 2000-10-06 2002-04-18 Kyowa Hakko Kogyo Co., Ltd. Cellules produisant des compositions d'anticorps
WO2003033538A1 (fr) 2001-10-15 2003-04-24 Kirin Beer Kabushiki Kaisha Anticorps anti-hlr-dr
US6737056B1 (en) 1999-01-15 2004-05-18 Genentech, Inc. Polypeptide variants with altered effector function
WO2005035586A1 (ja) 2003-10-08 2005-04-21 Kyowa Hakko Kogyo Co., Ltd. 融合蛋白質組成物
WO2006031653A2 (en) 2004-09-10 2006-03-23 Wyeth Humanized anti-5t4 antibodies and anti-5t4 antibody / calicheamicin conjugates
WO2006033386A1 (ja) 2004-09-22 2006-03-30 Kirin Beer Kabushiki Kaisha 安定化されたヒトIgG4抗体
US20070148165A1 (en) 2005-07-22 2007-06-28 Kyowa Hakko Kogyo Co., Ltd. Recombinant antibody composition
US7297775B2 (en) 1998-04-02 2007-11-20 Genentech, Inc. Polypeptide variants
US7317091B2 (en) 2002-03-01 2008-01-08 Xencor, Inc. Optimized Fc variants
WO2010143698A1 (ja) 2009-06-11 2010-12-16 大学共同利用機関法人情報・システム研究機構 タンパク質の生産方法
WO2017030156A1 (ja) 2015-08-19 2017-02-23 国立研究開発法人理化学研究所 非天然アミノ酸導入抗体
JP2019500859A (ja) * 2015-11-27 2019-01-17 シーエスエル リミティド Cd131結合タンパク質とその利用
JP2021514368A (ja) * 2018-02-22 2021-06-10 ウニヴェルズィテート チューリッヒ Allo−HCTを受けた患者の血液悪性腫瘍の治療に使用するためのGM−CSFまたはGM−CSF受容体のリガンド
JP2021138181A (ja) 2020-03-02 2021-09-16 株式会社Subaru 衝突検知装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3328894T3 (pl) 2015-08-06 2019-05-31 Agency Science Tech & Res Przeciwciała dla il2rbeta/wspólnego łańcucha gamma
WO2018227142A1 (en) 2017-06-09 2018-12-13 The Regents Of The University Of Colorado, A Body Corporate Gm-csf mimetics and methods of making and using same

Patent Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623587A (en) 1979-08-03 1981-03-05 Mitsuwa Seiki Co Ltd Vane type compressor
JPS58110600A (ja) 1981-12-25 1983-07-01 Kyowa Hakko Kogyo Co Ltd ヒトβ型インタ−フエロン遺伝子を含む組みかえ体プラスミド
US4686191A (en) 1981-12-25 1987-08-11 Hakko Kogyo Co., Ltd. Kyowa Recombinant plasmid containing human interferon-beta gene
JPS60221091A (ja) 1983-12-21 1985-11-05 Kyowa Hakko Kogyo Co Ltd 新規プロモ−タ−
JPS61178926A (ja) 1984-03-06 1986-08-11 Takeda Chem Ind Ltd 化学修飾ペプチドホルモンおよびその製造法
US5168062A (en) 1985-01-30 1992-12-01 University Of Iowa Research Foundation Transfer vectors and microorganisms containing human cytomegalovirus immediate-early promoter-regulatory DNA sequence
US4939094A (en) 1985-08-28 1990-07-03 Kyowa Hakko Kogyo Co., Ltd. Fused antigen polypeptide
JPS63299A (ja) 1986-04-22 1988-01-05 イミユネツクス・コ−ポレ−シヨン ヒトg−csfタンパク質の発現
JPH02117920A (ja) 1988-05-06 1990-05-02 Sumitomo Pharmaceut Co Ltd ポリエチレングリコール誘導体、修飾ペプチドおよびその製造方法
JPH02227075A (ja) 1988-09-29 1990-09-10 Kyowa Hakko Kogyo Co Ltd 新規ポリペプチド
JPH02257891A (ja) 1989-03-31 1990-10-18 Kyowa Hakko Kogyo Co Ltd 組換え動物細胞による蛋白質の製造
JPH0322979A (ja) 1989-06-19 1991-01-31 Kyowa Hakko Kogyo Co Ltd 新規プラスミノーゲン活性化因子
US5160735A (en) 1989-06-19 1992-11-03 Kyowa Hakko Kogyo Co. Ltd. Plasminogen activator
JPH05336963A (ja) 1991-12-17 1993-12-21 Kyowa Hakko Kogyo Co Ltd 新規α2→3シアリルトランスフェラーゼ
WO1994023021A1 (en) 1993-03-29 1994-10-13 Kyowa Hakko Kogyo Co., Ltd. α-1,3-FUCOSYLTRANSFERASE
WO1997010354A1 (en) 1995-09-11 1997-03-20 Kyowa Hakko Kogyo Co., Ltd. ANTIBODY AGAINTS α-CHAIN OF HUMAN INTERLEUKIN 5 RECEPTOR
US6001358A (en) 1995-11-07 1999-12-14 Idec Pharmaceuticals Corporation Humanized antibodies to human gp39, compositions containing thereof
US7297775B2 (en) 1998-04-02 2007-11-20 Genentech, Inc. Polypeptide variants
US6737056B1 (en) 1999-01-15 2004-05-18 Genentech, Inc. Polypeptide variants with altered effector function
WO2000042072A2 (en) 1999-01-15 2000-07-20 Genentech, Inc. Polypeptide variants with altered effector function
WO2000061739A1 (en) 1999-04-09 2000-10-19 Kyowa Hakko Kogyo Co., Ltd. Method for controlling the activity of immunologically functional molecule
WO2002031140A1 (fr) 2000-10-06 2002-04-18 Kyowa Hakko Kogyo Co., Ltd. Cellules produisant des compositions d'anticorps
WO2003033538A1 (fr) 2001-10-15 2003-04-24 Kirin Beer Kabushiki Kaisha Anticorps anti-hlr-dr
US7317091B2 (en) 2002-03-01 2008-01-08 Xencor, Inc. Optimized Fc variants
WO2005035586A1 (ja) 2003-10-08 2005-04-21 Kyowa Hakko Kogyo Co., Ltd. 融合蛋白質組成物
WO2006031653A2 (en) 2004-09-10 2006-03-23 Wyeth Humanized anti-5t4 antibodies and anti-5t4 antibody / calicheamicin conjugates
WO2006033386A1 (ja) 2004-09-22 2006-03-30 Kirin Beer Kabushiki Kaisha 安定化されたヒトIgG4抗体
US20070148165A1 (en) 2005-07-22 2007-06-28 Kyowa Hakko Kogyo Co., Ltd. Recombinant antibody composition
WO2010143698A1 (ja) 2009-06-11 2010-12-16 大学共同利用機関法人情報・システム研究機構 タンパク質の生産方法
WO2017030156A1 (ja) 2015-08-19 2017-02-23 国立研究開発法人理化学研究所 非天然アミノ酸導入抗体
JP2019500859A (ja) * 2015-11-27 2019-01-17 シーエスエル リミティド Cd131結合タンパク質とその利用
JP2021514368A (ja) * 2018-02-22 2021-06-10 ウニヴェルズィテート チューリッヒ Allo−HCTを受けた患者の血液悪性腫瘍の治療に使用するためのGM−CSFまたはGM−CSF受容体のリガンド
JP2021138181A (ja) 2020-03-02 2021-09-16 株式会社Subaru 衝突検知装置

Non-Patent Citations (108)

* Cited by examiner, † Cited by third party
Title
"Antibodies-A Laboratory Manual", 1988, COLD SPRING HARBOR LABORATORY
"Bioluminescence, Chemiluminescence Clinical Examination", vol. 42, 1998, HIROKAWA SHOTEN
"Fluorescent Antibody Method", 1983, SOFT SCIENCE CO., LTD.
"GenBank", Database accession no. XP 01 5312724_1
"Genbank", Database accession no. YP 01 5312724_1
"Methods in Nucleic Acids Res.", 1991, CRC PRESS
"Monoclonal Antibodies-Principles and practice", 1996, ACADEMIC PRESS
"Monoclonal Antibody Experiment Manual", 1987, KODANSHA SCIENTIFIC
"UniProt", Database accession no. P32927
AGRIC. BIOL. CHEM., vol. 53, 1989, pages 277
AGRICULTURAL BIOLOGICAL CHEMISTRY, vol. 48, 1984, pages 669
ANNU. REV. IMMUNOL., vol. 9, 1991, pages 457 - 492
BECK ET AL., ANALYTICAL CHEMISTRY, vol. 85, 2013, pages 715 - 736
BIO/TECHNOLOGY, vol. 9, 1991, pages 266
BIOCHEM. BIOPHYS. RES. COMMUN., vol. 149, 1987, pages 960
BIOCHEMISTRY, vol. 34, 1995, pages 14649
BLOOD, vol. 103, 2004, pages 1089 - 1098
BLOOD, vol. 113, 2009, pages 2547 - 2556
CANCER IMMUNOL. IMMUNOTHER, vol. 36, 1993, pages 373
CANCER IMMUNOL. IMMUNOTHER., vol. 36, 1993, pages 373
CELL, vol. 134, 2008, pages 496 - 507
CELL, vol. 33, 1983, pages 717
CELL, vol. 41, 1985, pages 479
CHIJIN SHOKAN, INTRODUCTION TO ANTIBODY ENGINEERING, 1994
CLINICAL ONCOLOGY, CANCER AND CHEMOTHERAPY, 1996
CURRENT TOPICS IN MICROBIOLOGY AND IMMUNOLOGY, vol. 18, 1978, pages 1
CYTOKINE GROWTH FACTOR REV., vol. 12, 2001, pages 19
CYTOKINE, vol. 74, 2015, pages 247 - 258
CYTOTECHNOL., vol. 13, 1993, pages 79
CYTOTECHNOL., vol. 4, 1990, pages 173
CYTOTECHNOLOGY, vol. 3, 1990, pages 133
DNA CLONING: A PRACTICAL APPROACH, vol. I, 1985, pages 49
EBIOMEDICINE, vol. 30, 2015, pages 730 - 743
EMMANUELLE LAFFY, HUMAN ANTIBODIES, vol. 14, 2005, pages 33 - 55
EUR J HAEMATOL., vol. 55, 1995, pages 348 - 356
EUROPEAN J. IMMUNOLOGY, vol. 6, 1976, pages 511
EUROPEAN JOURNAL OF IMMUNOLOGY, vol. 6, 1976, pages 511
GASTROENTEROLOGY, vol. 136, 2009, pages 1261 - 1271
GENE, vol. 17, 1982, pages 107
GENE, vol. 27, 1984, pages 223
GENE, vol. 38, 1985, pages 275
GENES DEVELOP., vol. 4, 1990, pages 1288
GENETICS, vol. 39, 1954, pages 440
GENOME RESEARCH, vol. 7, 1997, pages 649
HASEGAWA AIKO, SAITO SHOJI, NARIMATSU SHOGO, NAKANO SHIGERU, NAGAI MIKA, OHNOTA HIDEKI, INADA YOICHI, MOROKAWA HIROKAZU, NAKASHIMA: "Mutated GM‐CSF‐based CAR‐T cells targeting CD116/CD131 complexes exhibit enhanced anti‐tumor effects against acute myeloid leukaemia", CLINICAL & TRANSLATIONAL IMMUNOLOGY, JOHN WILEY & SONS LTD, GB, vol. 10, no. 5, 1 January 2021 (2021-01-01), GB , XP055855242, ISSN: 2050-0068, DOI: 10.1002/cti2.1282 *
HEINZELMAN PETE, CARLSON SHARON J., COX GEORGE N.: "Cytokine refacing effect reduces granulocyte macrophage colony-stimulating factor susceptibility to antibody neutralization", PROTEIN ENGINEERING, DESIGN AND SELECTION, OXFORD JOURNAL, LONDON, GB, vol. 28, no. 10, 1 October 2015 (2015-10-01), GB , pages 461 - 466, XP093038442, ISSN: 1741-0126, DOI: 10.1093/protein/gzv019 *
HYBRIDOMA, vol. 17, 1998, pages 559
INFLAMM. BOWEL DIS., vol. 19, 2013, pages 1671 - 1680
INT IMMUNOL., vol. 18, 2006, pages 1759
INT. IMMUNOL., vol. 13, 2001, pages 993
ISHIDA ISAO, XPERIMENTAL MEDICINE, vol. 20, no. 6, 2002, pages 846 - 851
ISHIDA, I. ET AL., CLONING & STEM CELLS, vol. 4, 2002, pages 91 - 102
ISHIDALONBERG, IBC'S 11TH ANTIBODY ENGINEERING, 2000
J. BACTERIOL., vol. 172, 1990, pages 2392
J. BIOCHEM., vol. 101, 1987, pages 1307
J. BIOCHEMISTRY, vol. 101, 1987, pages 1307
J. BIOL. CHEM., vol. 276, 2001, pages 6591
J. EXP. MED., vol. 190, 1999, pages 875 - 880
J. IMMUNOL. METHODS, vol. 167, 1994, pages 271
J. IMMUNOL., vol. 169, 2002, pages 5171
J. IMMUNOL., vol. 176, 2006, pages 346
J. IMMUNOLOGY, vol. 123, 1979, pages 1548
J. MOL. BIOL., vol. 112, 1977, pages 535
J. MOL. BIOL., vol. 16, 1966, pages 118
J. MOL. BIOL., vol. 166, 1983, pages 1
J. MOL. BIOL., vol. 215, 1990, pages 403
KOLB ET AL., ANGEW CHEM INT ED ENGL., vol. 40, 2001, pages 2004 - 21
MABS, vol. 7, 2015, pages 377
METHODS IN ENZYMOL, vol. 154, 1987, pages 3
MOL. CELL. BIOL., vol. 3, 1983, pages 280
MOLECULAR & GENERAL GENETICS, vol. 168, 1979, pages 111
N ENGL J MED., vol. 352, 2005, pages 2193 - 2201
N ENGL J MED., vol. 381, 2019, pages 923 - 932
NAT. REV. IMMUNOL., vol. 7, 2007, pages 715
NATURE, vol. 227, 1970, pages 680
NATURE, vol. 256, 1975, pages 495
NATURE, vol. 276, 1978, pages 269
NATURE, vol. 329, 1987, pages 840
NUCLEIC ACIDS RESEARCH, vol. 10, 1982, pages 6487
NUCLEIC ACIDS RESEARCH, vol. 13, 1985, pages 4431
NUCLEIC ACIDS RESEARCH, vol. 17, 1989, pages 9494
NUCLEIC ACIDS RESEARCH, vol. 25, 1997, pages 3389
P. J. DELVES.: "ANTIBODY PRODUCTION ESSENTIAL TECHNIQUES", 1997, WILEY
PAULSON ET AL., J. BIOL. CHEM., vol. 264, 1989, pages 17619
PETE HEINZELMAN, PRIEBE MOLLY C.: "Engineering superactive granulocyte macrophage colony-stimulating factor transferrin fusion proteins as orally-delivered candidate agents for treating neurodegenerative disease", BIOTECHNOLOGY PROGRESS, AMERICAN CHEMICAL SOCIETY, vol. 31, no. 3, 1 May 2015 (2015-05-01), pages 668 - 677, XP055586019, ISSN: 8756-7938, DOI: 10.1002/btpr.2071 *
PROC. NATL. ACAD. SCI ., USA, vol. 79, 1982, pages 6409
PROC. NATL. ACAD. SCI USA, vol. 82, 1985, pages 488
PROC. NATL. ACAD. SCI. USA, vol. 69, 1972, pages 2110
PROC. NATL. ACAD. SCI. USA, vol. 74, 1977, pages 5463
PROC. NATL. ACAD. SCI. USA, vol. 77, 1980, pages 4216
PROC. NATL. ACAD. SCI. USA, vol. 78, 1981, pages 1527
PROC. NATL. ACAD. SCI. USA, vol. 79, 1982, pages 6409
PROC. NATL. ACAD. SCI. USA, vol. 82, 1985, pages 4306
PROC. NATL. ACAD. SCI. USA, vol. 84, 1987, pages 7413
PROC. NATL. ACAD. SCI. USA, vol. 91, 1994, pages 5592 - 5596
PROC. SOC. EXP. BIOL. MED., vol. 73, 1950, pages 1
PROCEEDING OF THE NATIONAL ACADEMY OF SCIENCES IN USA, vol. 82, 1985, pages 488
PROTEIN ENG DES SEL., vol. 28, 2015, pages 461 - 466
PROTEIN ENGINEERING, DESIGN & SELECTION, vol. 29, 2016, pages 457
PROTEIN ENGINEERING, vol. 7, 1994, pages 1501
ROWE ET AL., PROC. NATL. ACAD. SCI., USA, vol. 86, 1989, pages 8227
SCIENCE, vol. 122, 1952, pages 501
SCIENCE, vol. 222, 1983, pages 778
SOMATIC CELL AND MOLECULAR GENETICS, vol. 12, 1986, pages 55
STRATEGIES, vol. 5, 1992, pages 81
THE JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, vol. 199, 1967, pages 519
TOMIZUKA. ET AL., PROC NATL ACAD SCI USA., vol. 97, 2000, pages 722
VIROLOGY, vol. 8, 1959, pages 396

Also Published As

Publication number Publication date
KR20240049285A (ko) 2024-04-16
CN117836326A (zh) 2024-04-05
EP4393952A1 (en) 2024-07-03
US20240190980A1 (en) 2024-06-13
MX2024002349A (es) 2024-03-13
JPWO2023027177A1 (ja) 2023-03-02
AU2022332728A1 (en) 2024-03-14
TW202317637A (zh) 2023-05-01
CA3229748A1 (en) 2023-03-02

Similar Documents

Publication Publication Date Title
US10550181B2 (en) Anti-TIM-3 antibody
JP5511686B2 (ja) 抗cd4抗体
WO2011155579A1 (ja) 抗Trop-2抗体
JP7311425B2 (ja) CD40とEpCAMに結合するバイスペシフィック抗体
KR20120115511A (ko) 항시스템 asc 아미노산 트랜스포터 2(asct2) 항체
EP3970743A1 (en) Bispecific antibody binding to cd40 and fap
JP2024119984A (ja) TfRに結合するバイスペシフィック抗体
WO2016111344A1 (ja) Trailr2とpsmaに結合するバイスペシフィック抗体
JP7502281B2 (ja) Cd40とgpc3に結合するバイスペシフィック抗体
WO2023027177A1 (ja) Cd116およびcd131に結合するバイスペシフィック抗体
WO2021261597A1 (ja) GPC3とTfRに結合するバイスペシフィック抗体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22861465

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024104464

Country of ref document: RU

Ref document number: 2023544004

Country of ref document: JP

Ref document number: 3229748

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20247006195

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280057635.8

Country of ref document: CN

Ref document number: 2401001204

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 202447013749

Country of ref document: IN

Ref document number: 808594

Country of ref document: NZ

Ref document number: 2022332728

Country of ref document: AU

Ref document number: AU2022332728

Country of ref document: AU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024003399

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2022332728

Country of ref document: AU

Date of ref document: 20220826

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022861465

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11202401279V

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 2022861465

Country of ref document: EP

Effective date: 20240326

ENP Entry into the national phase

Ref document number: 112024003399

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20240221