Nothing Special   »   [go: up one dir, main page]

WO2023026454A1 - ブラケット、及び緩み判定装置 - Google Patents

ブラケット、及び緩み判定装置 Download PDF

Info

Publication number
WO2023026454A1
WO2023026454A1 PCT/JP2021/031439 JP2021031439W WO2023026454A1 WO 2023026454 A1 WO2023026454 A1 WO 2023026454A1 JP 2021031439 W JP2021031439 W JP 2021031439W WO 2023026454 A1 WO2023026454 A1 WO 2023026454A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
sensor
axle
looseness
arm
Prior art date
Application number
PCT/JP2021/031439
Other languages
English (en)
French (fr)
Inventor
博久 山田
Original Assignee
太平洋工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太平洋工業株式会社 filed Critical 太平洋工業株式会社
Priority to PCT/JP2021/031439 priority Critical patent/WO2023026454A1/ja
Publication of WO2023026454A1 publication Critical patent/WO2023026454A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B3/00Disc wheels, i.e. wheels with load-supporting disc body
    • B60B3/14Attaching disc body to hub ; Wheel adapters
    • B60B3/16Attaching disc body to hub ; Wheel adapters by bolts or the like
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/013Wheels

Definitions

  • the present disclosure relates to brackets and looseness determination devices.
  • a vehicle includes a plurality of axles, a plurality of hubs, a plurality of wheels, and a fixing member that generates an axial force for fixing the wheels to the axles.
  • One hub is provided at each end of the axle.
  • the wheel is rotatable integrally with the axle by fastening a fixing member to the hub.
  • Patent Literature 1 discloses a sensor unit that detects an abnormality in the fastening state of a wheel nut as a fixing member.
  • the sensor unit includes a ring-shaped spacer member and a strain sensor as a sensor attached to the spacer member.
  • a spacer-like member is interposed, for example, between the wheel and the hub.
  • the spacer-like member is compressed and deformed between the wheel and the hub by screwing together the plurality of hub bolts and the plurality of wheel nuts.
  • the strain sensor detects a change in behavior of the spacer-like member as a change in strain, thereby detecting an abnormality in the fastening state of the wheel nut.
  • a bracket configured to be mounted on a wheel, wherein the wheel is mounted on the axle by threaded engagement of male and female threads at each of a plurality of fastening points about the axis of the axle.
  • a fixing member is a member that is fixed to and has the male thread or the female thread and generates an axial force for fixing the wheel to the axle
  • the bracket is a main body and extends on the extension of the axle and an arm portion radially extending from the base portion toward each of the fixing members positioned at the plurality of fastening points and positioned with respect to the fixing member while being in contact with the fixing member.
  • a sensor configured to detect a change in behavior of the body.
  • the sensor can detect loosening of the fixing member by detecting a change in behavior of the main body. Therefore, it is possible to detect the loosening of the fixing members even if the plurality of fixing members are not loosened.
  • the senor is an acceleration sensor, and the acceleration sensor is preferably provided at a position where the distances from all the fixing members are the same.
  • the senor may be a strain sensor provided on at least one of the arms, and the strain sensor may be attached to at least one of the base and the arm. .
  • the bracket may include a transmitter configured to transmit the detection signal of the sensor.
  • a looseness determination device for determining looseness of a fixing member that generates an axial force for fixing a wheel to an axle, wherein the wheel has a plurality of fastening points around the axis of the axle. is fixed to the axle by screwing a male screw and a female screw in each of the brackets, the fixing member has the male screw or the female screw, and the looseness determination device is a bracket configured to be provided on the wheel, , a base positioned on the extension of the axle, and radially extending from the base towards each of the fixing members positioned at the plurality of fastening locations, and positioned with respect to the fixing member while being in contact with the fixing member.
  • a bracket comprising: a main body having an arm that is shaped like an arm; a sensor configured to detect a change in behavior of the main body; and a transmitter; and receiving a signal transmitted from the transmitter. and a determination unit configured to determine looseness of the fixing member based on the detection signal of the sensor.
  • the sensor can detect loosening of the fixing member by detecting a change in behavior of the main body. Therefore, it is possible to detect the loosening of the fixing members even if the plurality of fixing members are not loosened.
  • the sensor is an acceleration sensor, and the acceleration sensor is provided at a position where the distances from all the fixing members are the same.
  • the determination unit may be provided in the receiver and configured to determine looseness of the fixing member based on the detection signal of the acceleration sensor transmitted from the transmitter.
  • the sensor is a strain sensor provided on at least one of the arms, the strain sensor is attached to at least one of the base and the arm, and
  • the determination unit may be provided in the receiver and configured to determine looseness of the fixing member based on a detection signal of the strain sensor transmitted from the transmitter.
  • FIG. 1 is a schematic configuration diagram of a vehicle
  • FIG. 2 is an exploded perspective view of a hub included in the vehicle in FIG. 1, a wheel included in the vehicle in FIG. 1, a wheel nut included in the vehicle in FIG. 1, and a bracket included in the vehicle in FIG. 1.
  • FIG. It is sectional drawing when cut
  • 2 is a schematic configuration diagram of a transmitter and a receiver provided in the vehicle of FIG. 1;
  • FIG. 2 is a graph showing amplitudes of acceleration values used in wheel nut looseness determination executed by a receiver provided in the vehicle of FIG. 1;
  • the perspective view which shows 2nd Embodiment of a bracket. It is sectional drawing when cutting 2nd Embodiment of a bracket.
  • FIG. 1 is a schematic configuration diagram of a vehicle
  • FIG. 2 is an exploded perspective view of a hub included in the vehicle in FIG. 1, a wheel included in the vehicle in FIG. 1, a wheel
  • FIG. 2 is a graph showing changes in values of a strain sensor used in wheel nut looseness determination performed by a receiver provided in the vehicle of FIG. 1 ;
  • FIG. FIG. 11 is a schematic diagram showing a modified example of the arms of the bracket;
  • FIG. 5 is a cross-sectional view showing a modification of the means for fixing the main body of the bracket to the wheel;
  • a looseness determination device and a bracket according to a first embodiment will be described.
  • the structure of the vehicle will be described before the structure of the looseness determination device and the structure of the bracket.
  • Vehicle 10 includes multiple axles 11 , multiple hubs 12 , multiple wheels 14 , multiple wheel nuts 20 , and a looseness determination device 30 .
  • Vehicle 10 may be of any type, such as a truck, bus, passenger car, commercial vehicle, or the like.
  • one hub 12 is provided at each end of the axle 11 .
  • the hub 12 can rotate integrally with the axle 11 .
  • Hub 12 has a plurality of hub bolts 13 .
  • six hub bolts 13 are employed for one hub 12 .
  • All the hub bolts 13 are arranged at a plurality of locations around the axis m1 of the axle 11 at intervals.
  • Around the axis m1 of the axle 11 is the direction of rotation of the axle 11 .
  • All the hub bolts 13 are arranged around the axis m1 of the axle 11 at regular intervals. All the hub bolts 13 pass through the wheel 14 at a plurality of points around the axis m1 of the axle 11.
  • - ⁇ It should be noted that the number of hub bolts 13 may be appropriately changed as long as two or more hub bolts 13 are provided for one hub 12 .
  • the wheel nut 20 is a hexagonal cap nut.
  • the wheel nut 20 is located on the opposite side of the wheel 14 from the axle 11 in the axial direction of the axle 11 .
  • the wheel nut 20 has a fastening portion 21 to which the hub bolt 13 is fastened.
  • the fastening portion 21 has an inner peripheral surface 22 defining a screw hole 23 .
  • the hub bolt 13 is inserted into the threaded hole 23 .
  • the threaded hole 23 has a female thread into which the male thread of the hub bolt 13 is screwed.
  • the wheel nut 20 is an example of a fixing member that generates an axial force for fixing the wheel 14 to the axle 11 .
  • the wheel nut 20 is a member that strengthens or weakens the axial force for fixing the wheel 14 to the axle 11 by relatively moving in the axial direction of the axle 11 .
  • the wheel nut 20 has a first surface 24 and a second surface 25 located on the side opposite to the first surface 24 in the axial direction of the fastening portion 21 .
  • wheel nuts 20 are fastened to the hub bolts 13 passing through the wheel 14 at a plurality of locations around the axis m1 of the axle 11 .
  • the wheel 14 is fixed to the axle 11 by screwing the male thread of the hub bolt 13 and the female thread of the wheel nut 20 at each of a plurality of fastening points around the axis m1 of the axle 11 .
  • Wheel 14 is fixed to axle 11 via hub 12 .
  • a plurality of wheels 14 may be provided on each of both ends of at least one axle 11 among the plurality of axles 11 . That is, each end of the axle 11 may be provided with one wheel for a single tire or two wheels for a double tire.
  • the slackness determination device 30 includes a bracket 40 and a receiver 70 .
  • Bracket 40 is configured to be mounted on wheel 14 .
  • brackets 40 are provided on all four wheels 14 of vehicle 10 .
  • Receiver 70 is mounted inside vehicle 10 .
  • the bracket 40 has a body portion 50 and a weight 60 .
  • the body portion 50 is a plate-like member.
  • the body portion 50 is located on the opposite side of the wheel 14 from the axle 11 in the axial direction of the axle 11 .
  • the body portion 50 has a disk-shaped base portion 51 and a plurality of arm portions 52 extending from the base portion 51 .
  • the base 51 is located on the extension of the axle 11 .
  • the base portion 51 includes a first surface 51a and a second surface 51b located on the side opposite to the first surface 51a in the thickness direction of the base portion 51 .
  • Each of all the arms 52 has a plate shape. All arms 52 extend radially from base 51 . In this embodiment, six arm portions 52 are employed for one base portion 51 . All the arms 52 are arranged around the axis m1 of the axle 11 at regular intervals. Note that the number of arms 52 may be changed as appropriate as long as it is the same as the number of hub bolts 13 .
  • the arm portion 52 has a plate-like first portion 521 and a plate-like second portion 522 .
  • the first portion 521 has a first surface 521a and a second surface 521b positioned opposite to the first surface 521a in the thickness direction of the first portion 521 .
  • the first surface 521a of the first portion 521 and the first surface 51a of the base portion 51 are continuous.
  • the second surface 521b of the first portion 521 and the second surface 51b of the base portion 51 are continuous.
  • the first portion 521 is inclined with respect to the base portion 51 .
  • a first surface 521 a of the first portion 521 is inclined with respect to the first surface 51 a of the base portion 51 .
  • a second surface 521 b of the first portion 521 is inclined with respect to the second surface 51 b of the base portion 51 .
  • the inclination angles of all the first portions 521 with respect to the base portion 51 are the same.
  • the second portion 522 extends from a portion of the first portion 521 located on the opposite side of the base portion 51 .
  • the second portion 522 has a first surface 522b and a second surface 522c positioned opposite to the first surface 522b in the thickness direction of the second portion 522 .
  • the first surface 522b of the second portion 522 and the first surface 521a of the first portion 521 are continuous.
  • the second surface 522c of the second portion 522 and the second surface 521b of the first portion 521 are continuous.
  • the first surface 522b of the second portion 522 and the first surface 51a of the base portion 51 are parallel.
  • the second portion 522 has an insertion hole 522a.
  • the insertion hole 522a is a hole through which the hub bolt 13 passing through the wheel 14 is inserted.
  • the second portion 522 has the second surface 522c in contact with the wheel 14 while the hub bolt 13 is inserted through the insertion hole 522a.
  • a wheel nut 20 is fastened to the hub bolt 13 that has passed through the insertion hole 522a of the second portion 522.
  • the second surface 25 of the wheel nut 20 contacts the first surface 522 b of the second portion 522 .
  • the wheel nut 20 presses the second portion 522 against the wheel 14 .
  • the force with which the wheel nut 20 presses the second portion 522 toward the wheel 14 serves as an axial force for fixing the wheel 14 to the axle 11 .
  • All the arm portions 52 radially extend from the base portion 51 toward each of the wheel nuts 20 located at a plurality of fastening points. All arms 52 are fastened together to wheel 14 by wheel nuts 20 .
  • the arm portion 52 does not move relative to the wheel nut 20 when the arm portion 52 is sandwiched between the wheel nut 20 and the wheel 14 . Therefore, all the arm portions 52 are positioned with respect to the wheel nut 20 while contacting the wheel nut 20 .
  • the main-body part 50 is metal.
  • weight 60 has acceleration sensor 61 and transmitter 62 .
  • the weight 60 is a member in which the acceleration sensor 61 and the transmitter 62 are integrated with resin or the like.
  • the acceleration sensor 61 and transmitter 62 are electrically connected.
  • FIG. 3 does not show the detailed configuration of the weight 60, but shows the general configuration with a chain double-dashed line.
  • the weight 60 is provided on the opposite side of the base 51 to the wheel 14 in the axial direction of the axle 11 .
  • Weight 60 is provided on axis m1 of axle 11 .
  • An acceleration sensor 61 is also provided on the axis m1 of the axle 11 .
  • the acceleration sensor 61 is provided at a position where the distances D1 from the six wheel nuts 20 that fix one wheel 14 to the axle 11 are the same.
  • the distance D1 is the distance between the axis m2 of the wheel nut 20 and the axis m1 of the axle 11 .
  • the transmitter 62 has a transmitter control device 63 , a transmission circuit 64 and a transmission antenna 65 .
  • the transmitter control device 63 has a processor 63a and a storage section 63b.
  • Examples of the processor 63a include an MPU (Micro Processing Unit), a CPU (Central Processing Unit), and a DSP (Digital Signal Processor).
  • the storage unit 63b includes RAM (Random Access Memory) and ROM (Read Only Memory).
  • the storage unit 63b stores program codes or instructions configured to cause the processor 63a to perform processing.
  • the transmitter control device 63 may be composed of hardware circuits such as ASIC and FPGA.
  • the processing circuitry, transmitter controller 63 may include one or more processors operating according to a computer program, one or more hardware circuits such as ASICs or FPGAs, or a combination thereof.
  • ROM and RAM or computer-readable media include any available media that can be accessed by a general purpose or special purpose computer.
  • the transmitter control device 63 inputs the detection signal detected by the acceleration sensor 61 to the transmission circuit 64 .
  • the transmission circuit 64 transmits a radio signal modulated according to the detection signal of the acceleration sensor 61 input from the transmitter control device 63 from the transmission antenna 65 . That is, the transmitter 62 is configured to transmit the detection signal of the acceleration sensor 61 .
  • the transmitter 62 transmits the detection signal of the acceleration sensor 61 to the receiver 70 .
  • a radio signal is a signal in a predetermined frequency band. Examples of frequency bands include the LF band, MF band, HF band, VHF band, UHF band, and 2.4 GHz band.
  • the transmitter control device 63 is configured to cause the transmission circuit 64 to transmit radio signals at predetermined transmission intervals.
  • the predetermined transmission interval may be a predetermined constant interval, or may be an interval that randomly fluctuates between a predetermined upper limit and lower limit.
  • the receiver 70 is configured to receive the signal transmitted from the transmitter 62 .
  • the receiver 70 has a receiver control device 71 , a receiving antenna 72 and a receiving circuit 73 .
  • the receiver control device 71 has a processor 71a and a storage section 71b. Examples of the processor 71a include MPU, CPU, and DSP.
  • the storage unit 71b includes ROM and RAM.
  • the storage unit 71b stores program codes or instructions configured to cause the processor 71a to execute processing.
  • the receiver control device 71 may be configured by a hardware circuit such as ASIC or FPGA.
  • the processing circuitry, receiver controller 71 may include one or more processors operating according to a computer program, one or more hardware circuits such as ASICs or FPGAs, or a combination thereof.
  • ROM and RAM or computer-readable media include any available media that can be accessed by a general purpose or special purpose computer.
  • the receiving antenna 72 receives the radio signal transmitted from the transmitter 62 .
  • the receiving circuit 73 demodulates the radio signal received via the receiving antenna 72 and obtains the detection signal of the acceleration sensor 61 .
  • the receiving circuit 73 outputs the demodulated detection signal of the acceleration sensor 61 to the receiver control device 71 .
  • the receiver control device 71 acquires the detection signal of the acceleration sensor 61 . That is, the receiver 70 receives the detection signal of the acceleration sensor 61 transmitted from the transmitter 62 .
  • the receiver control device 71 calculates the value of the acceleration G caused by the vibration of the main body 50 from the detection signal of the acceleration sensor 61 .
  • Loosening of the wheel nut 20 will be described with reference to FIG.
  • Loosening the wheel nut 20 means separating the wheel nut 20 from the wheel 14 so that the arm portion 52 is not sandwiched between the wheel nut 20 and the wheel 14 .
  • the loosening of the wheel nut 20 means that the positioning of the arm portion 52 with respect to the wheel nut 20 is released and the axial force generated by the wheel nut 20 is eliminated.
  • the loosening of the wheel nut 20 means that the second surface 25 of the wheel nut 20 is separated from the first surface 522 b of the second portion 522 .
  • the arm 52 positioned against that wheel nut 20 tends to move between the wheel 14 and that wheel nut 20 .
  • the arm portions 52 positioned with respect to the five wheel nuts 20 that are not loosened are fixed ends, and the arm portions 52 positioned with respect to the loose wheel nuts 20 are free ends. becomes. Even if the arm portion 52 is positioned by the wheel nut 20, the arm portion 52 vibrates. and the wheel 14 easily vibrate.
  • the vibration of the arm 52 positioned with respect to the wheel nut 20 is greater after the wheel nut 20 is loosened. Since the vibration of the arm portion 52 is transmitted to the base portion 51, the vibration of the body portion 50 becomes greater after the wheel nut 20 is loosened. Therefore, the vibration of the body portion 50 changes due to the change in the vibration of the arm portion 52 positioned on the wheel nut 20 . When the vibration of the body portion 50 changes, the acceleration G of the body portion 50 changes.
  • the acceleration sensor 61 detects a detection signal according to changes in vibration of the main body 50 .
  • the acceleration sensor 61 is an example of a sensor configured to detect changes in behavior of the main body 50 .
  • the acceleration sensor 61 detects looseness of the wheel nut 20 by detecting a change in behavior of the body portion 50 as a change in vibration of the body portion 50 . Note that even when one of the six wheel nuts 20 is loosened and a plurality of wheel nuts 20 are loosened, the acceleration sensor 61 detects a change in the behavior of the body portion 50 to detect changes in the behavior of the wheel nuts 20 . Detect looseness.
  • receiver 70 monitors the amplitude of the value of acceleration G versus time.
  • the receiver 70 determines looseness of the wheel nut 20 using the value of the acceleration G based on the detection signal of the acceleration sensor 61 transmitted from the transmitter 62 .
  • the receiver control device 71 monitors whether or not the magnitude of the value of the acceleration G is greater than or equal to the threshold value g1 stored in the storage section 71b.
  • the receiver control device 71 determines that none of the six wheel nuts 20 are loosened when the magnitude of the value of the acceleration G is less than the threshold value g1.
  • the receiver control device 71 determines that at least one of the six wheel nuts 20 is loose when the value of the acceleration G is greater than or equal to the threshold value g1.
  • the receiver control device 71 is an example of a determination unit that is provided in the receiver 70 and determines looseness of the wheel nut 20 based on the detection signal of the acceleration sensor 61 transmitted from the transmitter 62 .
  • the threshold g1 is set so as not to exceed the amplitude of the value of the acceleration G when the vehicle 10 is running with the six wheel nuts 20 not loosened.
  • the vibration of the arm 52 positioned with respect to the wheel nut 20 changes.
  • the change in vibration of the arm portion 52 changes the vibration of the body portion 50 .
  • the acceleration sensor 61 detects looseness of the wheel nut 20 by detecting a change in behavior of the body portion 50 as a change in vibration of the body portion 50 .
  • a change in vibration of the arm portion 52 positioned with respect to the loosened wheel nut 20 results in a change in vibration of the body portion 50. Therefore, the acceleration sensor 61 detects a change in behavior of the body portion 50. It can be detected as a change in vibration of the body portion 50 . Therefore, it is possible to detect that the wheel nuts 20 are loose even if the plurality of wheel nuts 20 are not loose.
  • the acceleration sensor 61 is provided at a position where the distances D1 from all wheel nuts 20 are the same. Therefore, fluctuations in the value of the acceleration G due to the rotation of the wheel 14 are suppressed. Therefore, the acceleration sensor 61 can accurately detect looseness of the wheel nut 20 as a change in vibration of the body portion 50 .
  • a looseness determination device and a bracket according to a second embodiment will be described.
  • the main differences between this embodiment and the first embodiment are the structure of the bracket and the method of determining looseness of the wheel nut by the receiver control device. This point will be described below, and detailed description of the same configuration as that of the first embodiment will be omitted.
  • FIG. 6 shows bracket 40 prior to securing body portion 50 to wheel 14 .
  • Each of all the arm portions 52 is a single plate member with no bent portion. All arms 52 have insertion holes 522a.
  • the arm portion 52 has a first surface 52a and a second surface 52b positioned opposite to the first surface 52a in the thickness direction of the arm portion 52 .
  • the first surface 52a of the arm portion 52 and the first surface 51a of the base portion 51 are flush with each other.
  • the second surface 52b of the arm portion 52 and the second surface 51b of the base portion 51 are flush with each other.
  • the bracket 40 has six strain sensors 66 in place of the acceleration sensor 61. Each of the six strain sensors 66 is attached to the base portion 51 and the arm portion 52 so as to straddle the boundary B between each arm portion 52 and the base portion 51 .
  • FIG. 7 shows the bracket 40 after fixing the body portion 50 to the wheel 14 .
  • Six strain sensors 66 are electrically connected to transmitter 62 . Detection signals from the six strain sensors 66 are input to the transmitter 62 .
  • the transmitter controller 63 inputs detection signals detected by the six strain sensors 66 to the transmission circuit 64 .
  • the transmission circuit 64 transmits, from the transmission antenna 65, a radio signal modulated according to the detection signals of the six strain sensors 66 input from the transmitter control device 63.
  • the detection signals of the six strain sensors 66 may be input to the transmitter 62 after being amplified by an amplifier.
  • All the arms 52 are bent toward the wheel 14 with respect to the base 51. All the arm portions 52 and base portions 51 are elastically deformed so as to be inclined relative to each other with the boundary B as a reference. All the arms 52 are elastically deformed to have a tip 52c that contacts the wheel 14. As shown in FIG. In the body portion 50 , a deformed portion P is defined as a portion that is elastically deformed at the boundary B. FIG. Each of the six strain sensors 66 is provided so as to straddle the deformation point P. As shown in FIG.
  • the hub bolts 13 are inserted through the insertion holes 522a of all the arm portions 52.
  • a wheel nut 20 is fastened to the hub bolt 13 passing through the insertion hole 522a.
  • all the arm portions 52 are fastened together with the wheel 14 by the wheel nuts 20 .
  • the strain ⁇ at the deformed portion P is larger at the boundary B than before the body portion 50 is elastically deformed.
  • a restoring force is constantly acting on all the arm portions 52 to eliminate the strain ⁇ of the deformed portion P.
  • the strain ⁇ of the deformed portion P between the arm portion 52 and the base portion 51 positioned with respect to the wheel nut 20 is the same as when the wheel nut 20 is loosened. After that, it becomes smaller.
  • the strain sensor 66 provided on the arm portion 52 and the base portion 51 that has moved following the loosened wheel nut 20 detects a detection signal corresponding to the change in the strain ⁇ of the deformed portion P. Note that the strain sensor 66 detects a change in the strain ⁇ of the body portion 50 not only when one of the six wheel nuts 20 is loosened, but also when a plurality of wheel nuts 20 are loosened.
  • the wheel nut 20 is loosening means that the second surface 25 of the wheel nut 20 is separated from the wheel 14 while the arm portion 52 is sandwiched between the wheel nut 20 and the wheel 14 . Further, when the wheel nut 20 is loosened, it means that the axial force for fixing the wheel 14 to the axle 11 is generated, but the axial force is weakened compared to the case where the wheel nut 20 is not loosened. is.
  • the strain ⁇ of the deformed portion P between the arm portion 52 positioned with respect to the wheel nut 20 and the base portion 51 is higher when the wheel nut 20 is about to loosen. become smaller.
  • the strain sensor 66 provided on the arm portion 52 positioned with respect to the loose wheel nut 20 and the base portion 51 detects a detection signal according to the change in the strain ⁇ of the deformed portion P.
  • the strain sensor 66 is an example of a sensor configured to detect changes in behavior of the body portion 50 .
  • the strain sensor 66 detects the loosening of the wheel nut 20 or the loosening of the wheel nut 20 by detecting a change in the behavior of the body portion 50 as a change in the strain ⁇ of the body portion 50 .
  • the receiver 70 After receiving the radio signal transmitted from the transmitter 62 , the receiver 70 demodulates the radio signal to obtain detection signals of the six strain sensors 66 . That is, the receiver 70 receives the detection signal of the strain sensor 66 transmitted from the transmitter 62 . The receiver 70 calculates the strain ⁇ caused by the elastic deformation of the main body 50 from the demodulated detection signals of the six strain sensors 66 .
  • the receiver 70 monitors changes in strain ⁇ over time.
  • the receiver 70 uses the value of the strain ⁇ based on the strain sensor 66 transmitted from the transmitter 62 to determine whether the wheel nut 20 is loose or the wheel nut 20 is about to be loosened.
  • the receiver control device 71 compares the strain ⁇ value of each of the six strain sensors 66 with the first threshold value ⁇ 1 stored in the storage unit 71b.
  • the receiver control device 71 determines that none of the six wheel nuts 20 are loosened when the value of the strain ⁇ is the first threshold value ⁇ 1.
  • the receiver control device 71 determines that at least one of the six wheel nuts 20 is loosened or at least one of the six wheel nuts 20 is about to be loosened. determined to be
  • the first threshold value ⁇ 1 is the value of the strain ⁇ acting on the deformed portion P when the six wheel nuts 20 are not loosened.
  • the receiver control device 71 determines whether or not the value of strain ⁇ exceeds the second threshold ⁇ 2.
  • the second threshold ⁇ 2 is smaller than the first threshold ⁇ 1.
  • the receiver control device 71 determines that at least one of the six wheel nuts 20 is about to loosen when the value of the strain ⁇ exceeds the second threshold value ⁇ 2.
  • the receiver control device 71 determines that at least one of the six wheel nuts 20 is loosened when the value of the strain ⁇ is equal to or less than the second threshold value ⁇ 2.
  • the second threshold value ⁇ 2 is the value of the strain ⁇ when the axial force generated by the loose wheel nut 20 disappears.
  • the receiver control device 71 is an example of a determination unit that is provided in the receiver 70 and determines looseness of the wheel nut 20 based on the detection signal of the strain sensor 66 transmitted from the transmitter 62 .
  • the strain sensor 66 detects looseness of the wheel nut 20 by detecting a change in behavior of the body portion 50 as a change in the strain ⁇ of the body portion 50 . Further, the strain sensor 66 detects a looseness of the wheel nut 20 by detecting a change in the behavior of the body portion 50 as a change in the strain ⁇ of the body portion 50 .
  • the arm portion 52 has a through hole 53 with a size capable of accommodating the wheel nut 20 instead of the through hole 522a.
  • An inner peripheral surface defining the through hole 53 is formed by a plurality of projections 54 .
  • All protrusions 54 are provided on the entire circumference of the through hole 53 .
  • All protrusions 54 are tapered toward the center of through hole 53 .
  • the tips of all projections 54 are located on the same virtual circle. That is, the distances from the tips of all the protrusions 54 to the center of the through hole 53 are the same.
  • the wheel nut 20 is accommodated in the through hole 53 so as to overlap the arm portion 52.
  • Each of the six corners 20 a of the wheel nut 20 is sandwiched by two of the multiple projections 54 .
  • Two protrusions 54 out of the plurality of protrusions 54 are pressed against each of the six corners 20a.
  • the protrusions 54 that are not in contact with the corner portion 20 a are not in contact with the wheel nut 20 .
  • the wheel nut 20 is positioned inside the through hole 53 . Accordingly, the arm portion 52 is positioned with respect to the wheel nut 20 while contacting the wheel nut 20 with the plurality of projections 54 .
  • FIG. 10 is based on the first embodiment.
  • a bolt 80 is adopted in place of the wheel nut 20.
  • the bolt 80 penetrates the wheel 14 and the hub 12 while being inserted through the insertion hole 522 a of the arm portion 52 .
  • the hub 12 is provided with a plurality of screw holes 12a through which the bolts 80 are inserted. All threaded holes 12a have female threads into which male threads of bolts 80 are screwed. All the screw holes 12a are preferably spaced apart from each other around the axis m1 of the axle 11 . Even with such a change, the wheel 14 is fixed to the axle 11 by screwing the bolts 80 into the screw holes 12a at a plurality of locations around the axis m1 of the axle 11 .
  • the bolt 80 is an example of a fixing member that has a male thread and generates an axial force for fixing the wheel 14 to the axle 11 .
  • the second embodiment may be similarly modified.
  • the arm portion 52 may be positioned with respect to the bolt 80 while contacting the head portion of the bolt 80 by means of a plurality of projections 54 as in the modified example described above.
  • the acceleration sensor 61 is provided on the axis m1 of the axle 11, but the present invention is not limited to this.
  • the acceleration sensor 61 may be provided on each arm 52 .
  • looseness of each wheel nut 20 may be determined by whether or not the amplitude of the acceleration G based on the detection signal of each acceleration sensor 61 is greater than or equal to the threshold value g1.
  • Looseness of the wheel nut 20 may also be determined by comparing values of the acceleration G based on detection signals of the acceleration sensors 61 . Specifically, it may be determined that the wheel nut 20 positioning the arm portion 52 having a relatively large value of the acceleration G is loosened. Therefore, the receiver control device 71 only needs to be able to determine looseness of the wheel nut 20 or the bolt 80 based on the detection signal of the acceleration sensor 61 transmitted from the transmitter 62 .
  • the looseness of the wheel nut 20 is determined by the receiver control device 71, but the present invention is not limited to this.
  • looseness of the wheel nut 20 may be determined by the transmitter control device 63 .
  • the determination result by the transmitter controller 63 may be changed to be transmitted to the receiver 70 .
  • the transmitter 62 is changed to include the acceleration sensor 61 .
  • the transmitter control device 63 calculates the value of the acceleration G of the main body 50 from the detection signal of the acceleration sensor 61 and uses the value of the acceleration G to determine looseness of the wheel nut 20 . That is, the transmitter control device 63 may be a determination unit that determines looseness of the wheel nut 20 based on the detection signal of the acceleration sensor 61 .
  • the transmitter control device 63 inputs the determination result data to the transmission circuit 64 .
  • the transmission circuit 64 transmits a radio signal modulated according to the data from the transmission antenna 65 to the receiver 70 .
  • the transmitter 62 may be changed to conform to the specifications of a TPMS (Tire Pressure Monitoring System) transmitter. Note that even if the fixing member is changed from the wheel nut 20 to the bolt 80 , the looseness of the bolt 80 may be determined by the transmitter control device 63 .
  • looseness of the wheel nut 20 may be determined by comparing the strain ⁇ values based on the detection signals of the strain sensors 66 . Specifically, when there is a deformed portion P where the value of the strain ⁇ is relatively small, it is determined that the wheel nut 20 positioning the arm portion 52 including the deformed portion P is loosened. You can change it to Therefore, the receiver control device 71 only needs to be able to determine looseness of the wheel nut 20 or the bolt 80 based on the detection signal of the strain sensor 66 transmitted from the transmitter 62 .
  • the looseness of the wheel nut 20 is determined by the receiver control device 71, but the present invention is not limited to this.
  • looseness of the wheel nut 20 may be determined by the transmitter control device 63 .
  • the transmitter control device 63 may be a determination unit that determines looseness of the wheel nut 20 based on the detection signal of the strain sensor 66 .
  • the determination result by the transmitter control device 63 may be changed to be transmitted to the receiver 70 . Note that even if the fixing member is changed from the wheel nut 20 to the bolt 80 , the looseness of the bolt 80 may be determined by the transmitter control device 63 .
  • the strain sensor 66 is provided on the arm portion 52 and the base portion 51 so as to straddle the boundary B, it is not limited to this.
  • the strain sensor 66 may be provided at a location where the arm portion 52 is elastically deformed to bring the tip portion 52c into contact with the wheel 14 . That is, the strain sensor 66 may be provided only on the arm portion 52 . Therefore, the strain sensor 66 should be attached to at least the arm portion 52 of the base portion 51 and the arm portion 52 .
  • all the arm portions 52 may be bent so that the tip portion 52 c that contacts the wheel 14 is provided in advance.
  • all arms 52 and bases 51 may be pre-bent so as to be inclined with respect to boundary B before fixing body 50 to wheel 14 .
  • the degree of deformation of the main body portion 50 is such that when the main body portion 50 is fixed to the wheel 14, the arm portion 52 is elastically deformed so as to bring the deformation portion P and the tip portion 52c into contact with the wheel 14. It is to the extent that the restoring force acts on the part where it is moved.
  • the shape of the arm portion 52 when elastically deformed may be changed as appropriate.
  • the arm portion 52 when fixing the body portion 50 to the wheel 14, the arm portion 52 may be elastically deformed in a bow shape.
  • the strain sensor 66 is preferably attached to a portion of the arm portion 52 that is elastically deformed in a bow shape.
  • the arm portion 52 may be previously deformed into a bow shape before the main body portion 50 is fixed to the wheel 14 .
  • the degree of deformation of the arm portion 50 is such that when the main body portion 50 is fixed to the wheel 14, a restoring force acts on the portion elastically deformed in a bow shape.
  • the strain sensor 66 does not have to be provided on all the arms 52 , as long as it is provided on at least one of the plurality of arms 52 .
  • the looseness determination device 30 may include a determination device as a determination unit that determines whether the wheel nut 20 or the bolt 80 is loose or almost loose, apart from the transmitter 62 and the receiver 70 .
  • the determination device determines looseness of the wheel nut 20 or the bolt 80 based on a detection signal from a sensor configured to detect a change in behavior of the body portion 50 .
  • the bracket 40 may include the main body 50 and a sensor configured to detect changes in behavior of the main body 50, such as the acceleration sensor 61 or the strain sensor 66, and may not include the transmitter 62. . When modified in this way, the vehicle is also not equipped with a receiver 70 . Therefore, the bracket 40 may have a determination device for determining looseness of the wheel nut 20 or the bolt 80 . Note that the bracket 40 may omit the determination device described above, and may include at least the main body 50 and a sensor such as the acceleration sensor 61 or the strain sensor 66 .
  • the wheel nut 20 is not limited to a cap nut, and may be a nut having a threaded hole penetrating in its axial direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

ホイール(14)は、車軸(11)の軸線(m1)回りの複数の締結箇所の各々において雄ねじと雌ねじとの螺合により車軸(11)に固定される。ホイール(14)を車軸(11)に固定するための軸力を発生させるホイールナット(20)又はボルト(80)が固定部材である。ホイール(14)に設けられるように構成されたブラケット(40)は、車軸(11)の延長上に位置する基部(51)と、基部(51)から複数の締結箇所に位置する固定部材の各々に向けて放射状に延びる腕部(52)と、を有する本体部(50)を備えている。ブラケット(40)は、本体部(50)の挙動の変化を検出するセンサ(61,66)を備えている。

Description

ブラケット、及び緩み判定装置
 本開示は、ブラケット、及び緩み判定装置に関する。
 車両は、複数の車軸と、複数のハブと、複数のホイールと、当該ホイールを車軸に固定するための軸力を発生させる固定部材と、を備えている。ハブは、車軸の両端に1つずつ設けられている。ホイールは、ハブに固定部材が締結されることで車軸と一体回転可能に設けられている。
 ホイールが車軸から脱落することを抑制するため、固定部材の締結状態を検出する技術が知られている。例えば、特許文献1には、固定部材としてのホイールナットの締結状態の異常を検出するセンサユニットが開示されている。センサユニットは、リング状のスペーサ状部材と、スペーサ状部材に取り付けられたセンサとしてのひずみセンサと、を備えている。スペーサ状部材は、例えばホイールとハブとの間に介在される。スペーサ状部材は、複数のハブボルトと複数のホイールナットとの螺合によりホイールとハブとの間で圧縮変形している。ホイールナットに緩みが生じた場合、ひずみセンサがスペーサ状部材の挙動の変化をひずみの変化として検出することによりホイールナットの締結状態の異常を検出できる。
特許第6545528号公報
 ところが、全ての固定部材のうち1つに緩みが生じる、もしくは固定部材が緩みかけていると、スペーサ状部材の挙動が変化しにくい。このため、複数の固定部材に緩みが生じていなければ、固定部材の緩みをセンサにより検出できない虞がある。
 本開示の第一の態様によれば、ホイールに設けられるように構成されたブラケットであって、前記ホイールは車軸の軸線回りの複数の締結箇所の各々において雄ねじと雌ねじとの螺合により前記車軸に固定され、前記雄ねじ又は前記雌ねじを有するとともに前記ホイールを前記車軸に固定するための軸力を発生させる部材が固定部材であり、前記ブラケットは、本体部であって、前記車軸の延長上に位置する基部と、前記基部から複数の前記締結箇所に位置する前記固定部材の各々に向けて放射状に延びるとともに、前記固定部材に接触しつつ前記固定部材に対して位置決めされた腕部と、を有する本体部と、前記本体部の挙動の変化を検出するように構成されたセンサと、を備える。
 これによれば、全ての固定部材のうち1つに緩みが生じていても、当該固定部材に対して位置決めされていた腕部の挙動が変化する。当該腕部の挙動の変化により、本体部の挙動が変化する。このため、センサは、本体部の挙動の変化を検出することにより固定部材に緩みが生じていることを検出できる。したがって、複数の固定部材に緩みが生じていなくても、固定部材に緩みが生じていることを検出できる。
 上記ブラケットについて、前記センサは、加速度センサであり、前記加速度センサは、全ての前記固定部材からの距離が同じとなる位置に設けられているとよい。
 上記ブラケットについて、前記センサは、前記腕部の少なくとも1つに設けられているひずみセンサであり、前記ひずみセンサは、前記基部及び前記腕部のうち、少なくとも前記腕部に取り付けられているとよい。
 上記ブラケットについて、前記センサの検出信号を送信するように構成された送信機を備えるとよい。
 本開示の第二の態様によれば、ホイールを車軸に固定するための軸力を発生させる固定部材の緩みを判定する緩み判定装置であって、前記ホイールは車軸の軸線回りの複数の締結箇所の各々において雄ねじと雌ねじとの螺合により前記車軸に固定され、前記固定部材は前記雄ねじ又は前記雌ねじを有し、前記緩み判定装置は、前記ホイールに設けられるように構成されたブラケットであって、前記車軸の延長上に位置する基部と、前記基部から複数の前記締結箇所に位置する前記固定部材の各々に向けて放射状に延びるとともに、前記固定部材に接触しつつ前記固定部材に対して位置決めされた腕部と、を有する本体部と、前記本体部の挙動の変化を検出するように構成されたセンサと、送信機と、を備えるブラケットと、前記送信機から送信された信号を受信するように構成された受信機と、前記センサの検出信号に基づき前記固定部材の緩みを判定するように構成される判定部と、を備える。
 これによれば、全ての固定部材のうち1つに緩みが生じていても、当該固定部材に対して位置決めされていた腕部の挙動が変化する。当該腕部の挙動の変化により、本体部の挙動が変化する。このため、センサは、本体部の挙動の変化を検出することにより固定部材に緩みが生じていることを検出できる。したがって、複数の固定部材に緩みが生じていなくても、固定部材に緩みが生じていることを検出できる。
 上記緩み判定装置について、前記センサは、加速度センサであり、前記加速度センサは、全ての前記固定部材からの距離が同じとなる位置に設けられているとよい。
 上記緩み判定装置について、前記判定部は、前記受信機に設けられ、前記送信機から送信される前記加速度センサの検出信号に基づき前記固定部材の緩みを判定するように構成されるとよい。
 上記緩み判定装置について、前記センサは、前記腕部の少なくとも1つに設けられるひずみセンサであり、前記ひずみセンサは、前記基部及び前記腕部のうち、少なくとも前記腕部に取り付けられており、前記判定部は前記受信機に設けられ、前記送信機から送信される前記ひずみセンサの検出信号に基づき前記固定部材の緩みを判定するように構成されるとよい。
車両の概略構成図である。 図1の車両が備えるハブ、図1の車両が備えるホイール、図1の車両が備えるホイールナット、及び図1の車両が備えるブラケットの分解斜視図である。 ブラケットの第1実施形態を切断したときの断面図である。 図1の車両が備える送信機及び受信機の概略構成図である。 図1の車両が備える受信機が実行するホイールナットの緩み判定で使用される加速度の値の振幅を示したグラフである。 ブラケットの第2実施形態を示す斜視図。 ブラケットの第2実施形態を切断したときの断面図である。 図1の車両が備える受信機が実行するホイールナットの緩み判定で使用されるひずみセンサの値の変化を示したグラフである。 ブラケットの腕部の変更例を示した概略図である。 ブラケットの本体部をホイールへ固定する手段の変更例を示した断面図である。
 [第1実施形態]
 緩み判定装置、及びブラケットの第1実施形態について説明する。なお、説明の便宜上、緩み判定装置の構成、及びブラケットの構成の説明の前に車両の構成について説明する。
 <車両の構成>
 図1に示すように、車両10は、複数の車軸11と、複数のハブ12と、複数のホイール14と、複数のホイールナット20と、緩み判定装置30と、を備えている。車両10は、トラック、バス、乗用車、商用車など、どのような種類のものであってもよい。
 図2に示すように、ハブ12は、車軸11の両端に1つずつ設けられている。ハブ12は、車軸11と一体回転可能である。ハブ12は、複数のハブボルト13を有している。本実施形態では、ハブボルト13は、1つのハブ12に対して6つ採用されている。全てのハブボルト13は、車軸11の軸線m1回りの複数箇所に互いに間隔を空けて配置されている。車軸11の軸線m1回りとは、車軸11の回転方向である。全てのハブボルト13は、車軸11の軸線m1回りに等間隔に配置されている。全てのハブボルト13は、車軸11の軸線m1回りの複数箇所でホイール14を貫通する。なお、ハブボルト13は、1つのハブ12に対して2つ以上設けられていれば数は適宜変更してもよい。
 図3に示すように、ホイールナット20は、六角袋ナットである。ホイールナット20は、車軸11の軸方向においてホイール14の車軸11とは反対側に位置している。ホイールナット20は、ハブボルト13が締結される締結部21を備える。締結部21は、ねじ穴23を区画する内周面22を有している。ねじ穴23には、ハブボルト13が挿入される。ねじ穴23は、ハブボルト13の雄ねじが螺合される雌ねじを有している。ホイールナット20は、ホイール14を車軸11に固定するための軸力を発生させる部材である固定部材の一例である。ホイールナット20は、車軸11の軸方向に相対移動することによりホイール14を車軸11に固定するための軸力を強めたり弱めたりする部材である。ホイールナット20は、第1面24と、締結部21の軸方向において第1面24とは反対側に位置する第2面25と、を有している。
 図2に示すように、車軸11の軸線m1回りの複数箇所において、ホイール14を貫通したハブボルト13には、ホイールナット20が締結される。ホイール14は、車軸11の軸線m1回りの複数の締結箇所の各々においてハブボルト13の雄ねじとホイールナット20の雌ねじとの螺合により車軸11に固定される。ホイール14は、ハブ12を介して車軸11に固定される。なお、各車軸11の両端に1つずつホイール14を設けている場合について説明したが、これに限らない。例えば、複数の車軸11のうち少なくとも1つの車軸11の両端の各々に複数のホイール14が設けられていてもよい。すなわち、車軸11の両端の各々に、シングルタイヤ用の1つのホイールが設けられてもよいし、ダブルタイヤ用2つのホイールが設けられてもよい。
 <緩み判定装置の構成、及びブラケットの構成>
 図1に示すように、緩み判定装置30は、ブラケット40と、受信機70と、を備えている。ブラケット40は、ホイール14に設けられるように構成されている。本実施形態では、ブラケット40は、車両10の4つのホイール14の全てに設けられている。受信機70は、車両10の内部に搭載されている。ブラケット40は、本体部50と、錘60と、を備えている。
 <本体部について>
 図2に示すように、本体部50は、板状の部材である。本体部50は、車軸11の軸方向においてホイール14の車軸11とは反対側に位置している。本体部50は、円板状の基部51と、基部51から延びる複数の腕部52と、を有している。基部51は、車軸11の延長上に位置している。基部51は、第1面51aと、基部51の厚さ方向において第1面51aとは反対側に位置する第2面51bとを備える。
 全ての腕部52の各々は、板状をなしている。全ての腕部52は、基部51から放射状に延びている。本実施形態では、1つの基部51に対して腕部52が6つ採用されている。全ての腕部52は、車軸11の軸線m1回りに等間隔に配置されている。なお、腕部52の数は、ハブボルト13の数と同じであれば適宜変更してもよい。
 次に、腕部52の構成を図3にしたがって説明する。なお、説明の便宜上、2つの腕部52だけを図3に図示し、残りの腕部52の図示を図3から割愛している。
 図3に示すように、腕部52は、板状の第1部位521と、板状の第2部位522と、を有している。第1部位521は、第1面521aと、第1部位521の厚さ方向において第1面521aとは反対側に位置する第2面521bとを有している。第1部位521の第1面521aと基部51の第1面51aとは連続している。第1部位521の第2面521bと基部51の第2面51bとは連続している。第1部位521は、基部51に対して傾斜している。第1部位521の第1面521aは、基部51の第1面51aに対して傾斜している。第1部位521の第2面521bは、基部51の第2面51bに対し傾斜している。全ての第1部位521の基部51に対する傾斜角度は、同じである。
 第2部位522は、第1部位521の基部51とは反対側に位置する部位から延びている。第2部位522は、第1面522bと、第2部位522の厚さ方向において第1面522bとは反対側に位置する第2面522cと、を有している。第2部位522の第1面522bと第1部位521の第1面521aとは連続している。第2部位522の第2面522cと第1部位521の第2面521bとは連続している。第2部位522の第1面522bと基部51の第1面51aとは平行である。第2部位522は、挿通孔522aを有している。挿通孔522aは、ホイール14を貫通したハブボルト13が挿通される孔である。第2部位522は、挿通孔522aにハブボルト13が挿通されつつ第2面522cがホイール14に接触している。
 第2部位522の挿通孔522aを通過したハブボルト13には、ホイールナット20が締結されている。ホイールナット20をホイール14に向けて近づけると、ホイールナット20の第2面25が第2部位522の第1面522bに接触する。ホイールナット20をホイール14にさらに近づけると、ホイールナット20が第2部位522をホイール14に押し付ける。ホイールナット20が第2部位522をホイール14に向けて押し付ける力が、ホイール14を車軸11に固定するための軸力となる。全ての腕部52は、基部51から複数の締結箇所に位置するホイールナット20の各々に向けて放射状に延びている。全ての腕部52は、ホイールナット20によりホイール14に共締めされている。ホイールナット20とホイール14との間に腕部52が挟まれた状態において、腕部52は、ホイールナット20に対して相対移動しない。このため、全ての腕部52は、ホイールナット20に接触しつつホイールナット20に対して位置決めされている。なお、本体部50は、金属製である。
 <錘の構成>
 図3に示すように、錘60は、加速度センサ61と、送信機62と、を有している。錘60は、加速度センサ61と送信機62とを、例えば樹脂等で一体的にまとめた部材である。加速度センサ61と送信機62とは電気的に接続されている。なお、錘60において、加速度センサ61と送信機62とを一体的にまとめる手段として種々の構成が考えられる。このため、図3には、錘60の詳細な構成は記載せず、概略の構成を二点鎖線で示している。
 錘60は、車軸11の軸方向において基部51のホイール14とは反対側に設けられている。錘60は、車軸11の軸線m1上に設けられている。加速度センサ61も、車軸11の軸線m1上に設けられている。加速度センサ61は、1つのホイール14を車軸11に固定する6つのホイールナット20からの距離D1が同じとなる位置に設けられている。距離D1とは、ホイールナット20の軸線m2と車軸11の軸線m1との間の距離である。
 <送信機の構成、及び受信機の構成>
 図4に示すように、送信機62は、送信機用制御装置63と、送信回路64と、送信アンテナ65と、を有している。
 送信機用制御装置63は、プロセッサ63aと、記憶部63bと、を有している。プロセッサ63aとしては、例えば、MPU(Micro Processing Unit)、CPU(Central Processing Unit)、及びDSP(Digital Signal Processor)を挙げることができる。
 記憶部63bは、RAM(Random Access Memory)及びROM(Read Only Memory)を含む。記憶部63bは、処理をプロセッサ63aに実行させるように構成されたプログラムコード又は指令を格納している。
 送信機用制御装置63は、ASICやFPGA等のハードウェア回路によって構成されていてもよい。処理回路である送信機用制御装置63は、コンピュータプログラムに従って動作する1つ以上のプロセッサ、ASICやFPGA等の1つ以上のハードウェア回路、或いは、それらの組み合わせを含み得る。ROM及びRAMすなわちコンピュータ可読媒体は、汎用または専用のコンピュータでアクセスできるあらゆる利用可能な媒体を含む。
 送信機用制御装置63は、加速度センサ61が検出した検出信号を送信回路64に入力する。送信回路64は、送信機用制御装置63から入力された加速度センサ61の検出信号に応じた変調を行った無線信号を送信アンテナ65から送信する。すなわち、送信機62は、加速度センサ61の検出信号を送信するように構成されている。送信機62は、加速度センサ61の検出信号を受信機70に送信する。無線信号は、所定の周波数帯の信号である。周波数帯としては、例えば、LF帯、MF帯、HF帯、VHF帯、UHF帯、及び2.4GHz帯を挙げることができる。送信機用制御装置63は、所定の送信間隔で送信回路64から無線信号を送信させるように構成されている。所定の送信間隔は、予め定められた一定の間隔であってもよいし、予め定められた上限と下限との間でランダムに変動する間隔であってもよい。
 受信機70は、送信機62から送信された信号を受信するように構成されている。受信機70は、受信機用制御装置71と、受信アンテナ72と、受信回路73と、を有している。
 受信機用制御装置71は、プロセッサ71aと、記憶部71bと、を有している。プロセッサ71aとしては、例えば、MPU、CPU、及びDSPを挙げることができる。記憶部71bは、ROM及びRAMを含む。記憶部71bは、処理をプロセッサ71aに実行させるように構成されたプログラムコード又は指令を格納している。受信機用制御装置71は、ASICやFPGA等のハードウェア回路によって構成されていてもよい。処理回路である受信機用制御装置71は、コンピュータプログラムに従って動作する1つ以上のプロセッサ、ASICやFPGA等の1つ以上のハードウェア回路、或いは、それらの組み合わせを含み得る。ROM及びRAMすなわちコンピュータ可読媒体は、汎用または専用のコンピュータでアクセスできるあらゆる利用可能な媒体を含む。
 受信アンテナ72は、送信機62から送信された無線信号を受信する。受信回路73は、受信アンテナ72を介して受信された無線信号を復調して、加速度センサ61の検出信号を得る。受信回路73は、復調された加速度センサ61の検出信号を受信機用制御装置71に出力する。これにより、受信機用制御装置71は、加速度センサ61の検出信号を取得する。すなわち、受信機70は、送信機62から送信される加速度センサ61の検出信号を受信する。受信機用制御装置71は、加速度センサ61の検出信号から本体部50の振動により生じる加速度Gの値を演算する。
 <ホイールナットの緩みについて>
 ホイールナット20の緩みについて図3にしたがって説明する。ホイールナット20が緩むとは、ホイールナット20とホイール14との間に腕部52が挟まれていない状態となるようにホイールナット20をホイール14から離すことである。また、ホイールナット20が緩むとは、ホイールナット20に対する腕部52の位置決めが解除され、且つ当該ホイールナット20の発生させる軸力が無くなることである。ホイールナット20が緩むとは、ホイールナット20の第2面25が第2部位522の第1面522bから離れることである。
 例えば、図3の二点鎖線で示すように、1つのホイール14を車軸11に固定する6つのホイールナット20のうち1つが緩む場合を想定する。6つのホイールナット20のうち1つが緩むと、当該ホイールナット20に対して位置決めされていた腕部52がホイール14と当該ホイールナット20との間で移動しやすくなる。本体部50において、緩みが生じていない5つのホイールナット20に対して位置決めされた腕部52が固定端となり、且つ緩みが生じたホイールナット20に対して位置決めされていた腕部52が自由端となる。ホイールナット20によって腕部52が位置決めされていても腕部52には振動が発生しているが、ホイールナット20が緩んで腕部52が自由端となることで、腕部52はホイールナット20とホイール14との間で振動しやすくなる。
 1つのホイールナット20に緩みが生じる前後で比較すると、当該ホイールナット20に対して位置決めされた腕部52の振動は、当該ホイールナット20に緩みが生じた後の方が大きくなる。当該腕部52の振動が基部51に伝わることにより、本体部50の振動は、当該ホイールナット20に緩みが生じた後の方が大きくなる。よって、当該ホイールナット20に位置決めされていた腕部52の振動の変化により、本体部50の振動が変化する。本体部50の振動が変化すると、本体部50の加速度Gが変化する。
 加速度センサ61は、本体部50の振動の変化に応じた検出信号を検出する。加速度センサ61は、本体部50の挙動の変化を検出するように構成されたセンサの一例である。加速度センサ61は、本体部50の挙動の変化を本体部50の振動の変化として検出することによりホイールナット20の緩みを検出する。なお、6つのホイールナット20のうち1つが緩む場合に限らず、複数のホイールナット20が緩む場合であっても、加速度センサ61は、本体部50の挙動の変化を検出することによりホイールナット20の緩みを検出する。
 <ホイールナットの緩み判定>
 図5に示すように、受信機70は、時間に対する加速度Gの値の振幅を監視している。受信機70は、送信機62から送信される加速度センサ61の検出信号に基づく加速度Gの値を用いてホイールナット20の緩みを判定する。受信機用制御装置71は、加速度Gの値の大きさが記憶部71bに記憶された閾値g1以上となるか否かを監視している。受信機用制御装置71は、加速度Gの値の大きさが閾値g1に満たない場合、6つのホイールナット20の全てに緩みが生じていないと判定する。受信機用制御装置71は、加速度Gの値の大きさが閾値g1以上となった場合、6つのホイールナット20のうち少なくとも1つに緩みが生じていると判定する。受信機用制御装置71は、受信機70に設けられ、且つ送信機62から送信される加速度センサ61の検出信号に基づきホイールナット20の緩みを判定する判定部の一例である。閾値g1は、6つのホイールナット20に緩みが生じていない状態で車両10を走行させたときの加速度Gの値の振幅を上回らないように設定されている。
 <本実施形態の作用>
 本実施形態の作用について説明する。
 6つのホイールナット20のうち1つに緩みが生じていても、当該ホイールナット20に対して位置決めされていた腕部52の振動が変化する。当該腕部52の振動の変化により、本体部50の振動が変化する。加速度センサ61は、本体部50の挙動の変化を本体部50の振動の変化として検出することによりホイールナット20の緩みを検出する。
 <本実施形態の効果>
 本実施形態の効果について説明する。
 (1-1)緩みが生じたホイールナット20に対して位置決めされていた腕部52の振動の変化が本体部50の振動の変化となるため、加速度センサ61により本体部50の挙動の変化を本体部50の振動の変化として検出できる。したがって、複数のホイールナット20に緩みが生じていなくても、ホイールナット20に緩みが生じていることを検出できる。
 (1-2)全てのホイールナット20からの距離D1が同じとなる位置に加速度センサ61が設けられている。このため、ホイール14の回転による加速度Gの値のぶれが抑制される。よって、加速度センサ61は、ホイールナット20の緩みを本体部50の振動の変化として正確に検出できる。
 (1-3)ホイールナット20に緩みが生じると、当該ホイールナット20に対して位置決めされていた腕部52が自由端となる。当該自由端となる腕部52がホイールナット20とホイール14との間で振動すると、錘60により基部51に伝わる当該振動が増幅される。このため、複数のホイールナット20のうち1つが緩む場合であっても、錘60により本体部50の振動が顕著になる。したがって、複数のホイールナット20のうち1つが緩む場合であっても、加速度センサ61によりホイールナット20の緩みを検出しやすくなる。
 [第2実施形態]
 緩み判定装置、及びブラケットの第2実施形態について説明する。なお、本実施形態の第1実施形態との主な違いは、ブラケットの構成、及び受信機用制御装置によるホイールナットの緩み判定手法である。以下、その点について説明し、第1実施形態と同じ構成については詳細な説明を割愛する。
 <ブラケットの構成>
 図6に本体部50をホイール14に固定する前のブラケット40を示す。全ての腕部52の各々は、曲がった箇所がない1枚の板部材である。全ての腕部52は挿通孔522aを有している。腕部52は、第1面52aと、腕部52の厚さ方向において第1面52aとは反対側に位置する第2面52bと、を有している。腕部52の第1面52aと基部51の第1面51aとは面一である。腕部52の第2面52bと基部51の第2面51bとは面一である。
 ブラケット40は、加速度センサ61に代替して6つのひずみセンサ66を備えている。6つのひずみセンサ66の各々は、各腕部52と基部51との境界Bを跨ぐように基部51及び腕部52に取り付けられている。
 図7に本体部50をホイール14に固定した後のブラケット40を示す。6つのひずみセンサ66は、送信機62に電気的に接続されている。送信機62には、6つのひずみセンサ66の検出信号が入力される。送信機用制御装置63は、6つのひずみセンサ66が検出した検出信号を送信回路64に入力する。送信回路64は、送信機用制御装置63から入力された6つのひずみセンサ66の検出信号に応じた変調を行った無線信号を送信アンテナ65から送信する。すなわち、送信機62は、ひずみセンサ66の検出信号を受信機70に送信する。なお、6つのひずみセンサ66の検出信号は、アンプにより増幅した後に送信機62に入力されてもよい。
 全ての腕部52は基部51に対してホイール14に向けて折り曲げられている。全ての腕部52及び基部51は、境界Bを基準として互いに傾斜するように弾性変形させられている。全ての腕部52は、ホイール14に接触する先端部52cを有するように弾性変形させられている。本体部50において、境界Bで弾性変形している箇所を変形箇所Pとする。6つのひずみセンサ66の各々は、変形箇所Pを跨ぐように設けられている。
 全ての腕部52の挿通孔522aにハブボルト13が挿通されている。挿通孔522aを通過したハブボルト13には、ホイールナット20が締結されている。これにより、全ての腕部52がホイールナット20によりホイール14に共締めされている。変形箇所Pのひずみεは、境界Bで本体部50が弾性変形する前と比較して大きくなっている。全ての腕部52がホイール14に共締めされた状態で、全ての腕部52には、変形箇所Pのひずみεを解消しようとする復元力が常に作用している。
 <ホイールナットの緩み、及びホイールナットの緩みかけについて>
 ホイールナット20の緩みについて説明する。
 例えば、図7の二点鎖線で示すように、1つのホイール14を車軸11に固定する6つのホイールナット20のうち1つが緩む場合を想定する。6つのホイールナット20のうち1つに緩みが生じていると、当該ホイールナット20に対して位置決めされていた腕部52が、復元力により当該ホイールナット20に追従して移動する。6つのホイールナット20のうち1つに緩みが生じていると、当該ホイールナット20に対して位置決めされた腕部52と基部51との間の変形箇所Pに作用する応力が小さくなる。
 1つのホイールナット20に緩みが生じる前後で比較すると、当該ホイールナット20に対して位置決めされた腕部52と基部51との間の変形箇所Pのひずみεは、当該ホイールナット20に緩みが生じた後の方が小さくなる。緩みが生じたホイールナット20に追従して移動した腕部52、及び基部51に設けられたひずみセンサ66は、当該変形箇所Pのひずみεの変化に応じた検出信号を検出する。なお、6つのホイールナット20のうち1つが緩む場合に限らず、複数のホイールナット20が緩む場合であっても、ひずみセンサ66は、本体部50のひずみεの変化を検出する。
 次に、6つのホイールナット20のうち少なくとも1つが緩みかけている場合を想定する。ホイールナット20が緩みかけているとは、ホイールナット20とホイール14との間に腕部52を挟み込みつつ、ホイールナット20の第2面25がホイール14から離れることである。また、ホイールナット20が緩みかけているとは、ホイール14を車軸11に固定するための軸力を発生させつつ、ホイールナット20に緩みが生じていない場合と比較して当該軸力が弱まることである。
 6つのホイールナット20の少なくとも1つが緩みかけていると、当該ホイールナット20に対して位置決めされた腕部52と基部51との間の変形箇所Pに作用する応力が小さくなる。
 ホイールナット20が緩みかける前後を比較すると、当該ホイールナット20に対して位置決めされた腕部52と基部51との間の変形箇所Pのひずみεは、当該ホイールナット20が緩みかけている方が小さくなる。緩みかけたホイールナット20に対して位置決めされた腕部52、及び基部51に設けられたひずみセンサ66は、当該変形箇所Pのひずみεの変化に応じた検出信号を検出する。
 よって、当該ホイールナット20に位置決めされていた腕部52の挙動の変化により、本体部50の弾性変形が変化する。本体部50の弾性変形が変化すると、本体部50のひずみεが変化する。ひずみセンサ66は、本体部50の挙動の変化を検出するように構成されたセンサの一例である。ひずみセンサ66は、本体部50の挙動の変化を本体部50のひずみεの変化として検出することによりホイールナット20に緩みが生じること、又はホイールナット20が緩みかけていることを検出する。
 <ホイールナットの緩み、及びホイールナットの緩みかけの判定>
 受信機70は、送信機62から送信された無線信号を受信した後、当該無線信号を復調して、6つのひずみセンサ66の検出信号を得る。すなわち、受信機70は、送信機62から送信されるひずみセンサ66の検出信号を受信する。受信機70は、復調された6つのひずみセンサ66の検出信号から本体部50の弾性変形により生じるひずみεの値を演算する。
 図8に示すように、受信機70は、時間に対するひずみεの変化を監視している。受信機70は、送信機62から送信されるひずみセンサ66に基づくひずみεの値を用いてホイールナット20の緩み、又はホイールナット20の緩みかけを判定する。受信機用制御装置71は、6つのひずみセンサ66の各々のひずみεの値と記憶部71bに記憶された第1閾値ε1とを比較している。受信機用制御装置71は、ひずみεの値が第1閾値ε1である場合、6つのホイールナット20の全てに緩みが生じていないと判定する。受信機用制御装置71は、ひずみεの値が第1閾値ε1よりも小さい場合、6つのホイールナット20の少なくとも1つに緩みが生じている、又は6つのホイールナット20の少なくとも1つが緩みかけていると判定する。第1閾値ε1は、6つのホイールナット20に緩みが生じていない状態で変形箇所Pに作用するひずみεの値である。
 受信機用制御装置71は、ひずみεの値が第1閾値ε1よりも小さい場合、ひずみεの値が第2閾値ε2を上回るか否かを判定する。第2閾値ε2は、第1閾値ε1よりも小さい。受信機用制御装置71は、ひずみεの値が第2閾値ε2を上回っている場合、6つのホイールナット20の少なくとも1つが緩みかけていると判定する。受信機用制御装置71は、ひずみεの値が第2閾値ε2以下である場合、6つのホイールナット20の少なくとも1つに緩みが生じていると判定する。第2閾値ε2は、緩みかけたホイールナット20が発生させる軸力が無くなるときのひずみεの値である。受信機用制御装置71は、受信機70に設けられ、且つ送信機62から送信されるひずみセンサ66の検出信号に基づきホイールナット20の緩みを判定する判定部の一例である。
 <本実施形態の作用>
 本実施形態の作用を説明する。
 6つのホイールナット20のうち1つに緩みが生じていても、当該ホイールナット20に対して位置決めされていた腕部52の挙動が変化する。当該腕部52の挙動の変化により、本体部50のひずみεが変化する。また、ホイールナット20が緩みかけていても、本体部50のひずみεが変化する。このため、ひずみセンサ66は、本体部50の挙動の変化を本体部50のひずみεの変化として検出することによりホイールナット20の緩みを検出する。また、ひずみセンサ66は、本体部50の挙動の変化を本体部50のひずみεの変化として検出することによりホイールナット20の緩みかけを検出する。
 <本実施形態の効果>
 本実施形態の効果を説明する。
 (2-1)ホイールナット20に緩みが生じている、又は緩みかけているとき、本体部50のひずみεが変化する。このため、ひずみセンサ66により本体部50の挙動の変化を本体部50のひずみεの変化を検出できる。したがって、複数のホイールナット20に緩みが生じていなくても、ホイールナット20に緩みが生じていること、又はホイールナット20が緩みかけていることを検出できる。
 (2-2)ひずみセンサ66の検出信号に基づくひずみεの値を用いてホイールナット20の緩みを検出している。このため、本体部50の変形箇所Pに作用する応力の変化をひずみεの変化を通じて検出できる。よって、ホイールナット20に緩みが生じている状態だけでなく、ホイールナット20が緩みかけている状態も検出できる。
 [変更例]
 上記の各実施形態は、以下のように変更して実施することができる。上記の各実施形態及び以下の変形例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
 ・腕部52は、ホイールナット20によりホイール14に共締めされることによりホイールナット20に対して位置決めされていたが、例えば、図9に示すように変更してもよい。
 図9に示すように、腕部52は、挿通孔522aに代替してホイールナット20を内部に収容可能な大きさの貫通孔53を有している。貫通孔53を画成する内周面は、複数の突起54により形成されている。全ての突起54は、貫通孔53の全周に設けられている。全ての突起54は、貫通孔53の中心に向かうにつれて先細りの形状となる。全ての突起54の先端は、同一の仮想円上に位置している。すなわち、全ての突起54の先端から貫通孔53の中心までの距離は同じである。
 ホイールナット20は、腕部52と重なるように貫通孔53に収容される。ホイールナット20の6つの角部20aの各々は、複数の突起54のうちの2つの突起54により挟み込まれている。6つの角部20aの各々には、複数の突起54のうちの2つの突起54が押し付けられる。なお、複数の突起54のうちの角部20aに接触していない突起54は、ホイールナット20に接触していない。
 これにより、ホイールナット20は、貫通孔53の内部に位置決めされている。よって、腕部52は、複数の突起54によりホイールナット20に接触しつつホイールナット20に対して位置決めされる。
 ・固定部材として、ホイールナット20が採用されていたが、例えば、図10に示すように変更してもよい。なお、図10は、第1実施形態をもとに記載している。
 図10に示すように、ホイールナット20に代替してボルト80を採用する。ボルト80は、腕部52の挿通孔522aに挿通されつつホイール14及びハブ12を貫通している。ハブ12には、ボルト80が挿通される複数のねじ穴12aが設けられている。全てのねじ穴12aは、ボルト80の雄ねじが螺合される雌ねじを有している。全てのねじ穴12aは、車軸11の軸線m1回りに互いに間隔を空けて配置されるとよい。このように変更しても、ホイール14は、車軸11の軸線m1回りの複数箇所でねじ穴12aに対してボルト80が螺合されることにより車軸11に固定される。ボルト80は、雄ねじを有するとともに、ホイール14を車軸11に固定するための軸力を発生させる部材である固定部材の一例である。なお、第2実施形態も同様に変更してもよい。また、腕部52は、上述した変更例と同様に、複数の突起54によりボルト80の頭部に接触しつつボルト80に対して位置決めされていてもよい。
 ・第1実施形態において、加速度センサ61は、車軸11の軸線m1上に設けられていたが、これに限らない。例えば、加速度センサ61は、全ての腕部52の各々に設けられていてもよい。
 このように変更する場合、各ホイールナット20の緩みを、各加速度センサ61の検出信号に基づく加速度Gの振幅が閾値g1の大きさ以上となるか否かによって判定してもよい。
 また、各加速度センサ61の検出信号に基づく加速度Gの値の各々を比較することによりホイールナット20の緩みを判定してもよい。具体的には、加速度Gの値が比較的大きくなっている腕部52を位置決めしていたホイールナット20に緩みが生じていると判定するように変更してもよい。よって、受信機用制御装置71は、送信機62から送信される加速度センサ61の検出信号に基づきホイールナット20又はボルト80の緩みを判定できればよい。
 ・第1実施形態において、受信機用制御装置71によりホイールナット20の緩みを判定していたが、これに限らない。例えば、送信機用制御装置63によりホイールナット20の緩みを判定してもよい。この場合、送信機用制御装置63による判定結果を、受信機70に送信するように変更してもよい。このように変更する場合、送信機62に加速度センサ61が含まれるように変更する。送信機用制御装置63は、加速度センサ61の検出信号から本体部50の加速度Gの値を演算し、且つ当該加速度Gの値を用いてホイールナット20の緩みを判定する。すなわち、送信機用制御装置63は、加速度センサ61の検出信号に基づきホイールナット20の緩みを判定する判定部としてもよい。
 送信機用制御装置63は、判定結果のデータを送信回路64に入力する。送信回路64は、当該データに応じて変調した無線信号を送信アンテナ65から受信機70に送信する。すなわち、送信機62を、TPMS(タイヤ空気圧監視システム)の送信機の仕様となるように変更するとよい。なお、固定部材がホイールナット20からボルト80に変更されたとしても、送信機用制御装置63によりボルト80の緩みを判定してもよい。
 ・第2実施形態において、各ひずみセンサ66の検出信号に基づくひずみεの値の各々を比較することによりホイールナット20の緩みを判定してもよい。具体的には、ひずみεの値が比較的小さくなっている変形箇所Pがある場合、その変形箇所Pを含む腕部52を位置決めしていたホイールナット20について、緩みが生じていると判定するように変更してもよい。よって、受信機用制御装置71は、送信機62から送信されるひずみセンサ66の検出信号に基づきホイールナット20又はボルト80の緩みを判定できればよい。
 ・第2実施形態において、受信機用制御装置71によりホイールナット20の緩みを判定していたが、これに限らない。例えば、送信機用制御装置63によりホイールナット20の緩みを判定してもよい。すなわち、送信機用制御装置63は、ひずみセンサ66の検出信号に基づきホイールナット20の緩みを判定する判定部としてもよい。この場合、送信機用制御装置63による判定結果を受信機70に送信するように変更してもよい。なお、固定部材がホイールナット20からボルト80に変更されたとしても、送信機用制御装置63によりボルト80の緩みを判定してもよい。
 ・ひずみセンサ66は、境界Bを跨ぐように腕部52と基部51とに設けられていたが、これに限らない。例えば、先端部52cをホイール14に接触させるために腕部52を弾性変形させた箇所にひずみセンサ66を設けてもよい。すなわち、ひずみセンサ66は、腕部52のみに設けられていてもよい。よって、ひずみセンサ66は、基部51及び腕部52のうち、少なくとも腕部52に取り付けられていればよい。
 ・第2実施形態において、本体部50をホイール14に固定する前の状態において、全ての腕部52は、ホイール14に接触する先端部52cが予め設けられるように曲げられていてもよい。同様に、本体部50をホイール14に固定する前の状態において、全ての腕部52及び基部51は、境界Bを基準として互いに傾斜するように予め曲げられていてもよい。本体部50を予め変形させる場合、本体部50の変形具合は、本体部50をホイール14に固定したとき、変形箇所P、及び先端部52cをホイール14に接触させるために腕部52を弾性変形させた箇所に復元力が作用する程度とする。
 ・第2実施形態において、腕部52が弾性変形したときの形状は適宜変更してもよい。例えば、本体部50をホイール14に固定するときに腕部52を弓なりに弾性変形させてもよい。ひずみセンサ66は、腕部52の弓なりに弾性変形した箇所に取り付けるとよい。なお、上述した変更例と同様に、本体部50をホイール14に固定する前の状態において、腕部52は、弓なりをなすように予め変形させられていてもよい。腕部52を予め変形させる場合、腕部50の変形具合は、本体部50をホイール14に固定したとき、弓なりに弾性変形した箇所に復元力が作用する程度とする。
 ・ひずみセンサ66は、全ての腕部52に設けられていなくてもよく、複数の腕部52の少なくとも1つに設けられていればよい。
 ・緩み判定装置30は、送信機62及び受信機70とは別にホイールナット20又はボルト80の緩み又は緩みかけを判定する判定部としての判定装置を備えていてもよい。判定装置は、本体部50の挙動の変化を検出するように構成されたセンサの検出信号に基づきホイールナット20またはボルト80の緩みを判定する。
 ・ブラケット40は、本体部50と、加速度センサ61又はひずみセンサ66のような本体部50の挙動の変化を検出するように構成されたセンサとを備え、送信機62を備えていなくてもよい。このように変更する場合、車両は受信機70も備えない。このため、ホイールナット20又はボルト80の緩みを判定するための判定装置をブラケット40が有していてもよい。なお、ブラケット40は、上記の判定装置を割愛してもよく、少なくとも本体部50と、加速度センサ61又はひずみセンサ66のようなセンサとを備えていればよい。
 ・ホイールナット20は、袋ナットに限らず、その軸方向に貫通したねじ穴を有するナットであってもよい。
 11…車軸、14…ホイール、20…ホイールナット、30…緩み判定装置、40…ブラケット、50…本体部、51…基部、52…腕部、61…加速度センサ、62…送信機、66…ひずみセンサ、70…受信機、80…ボルト、D1…距離、m1…車軸の軸線、G…加速度、ε…ひずみ。

Claims (8)

  1.  ホイールに設けられるように構成されたブラケットであって、
     前記ホイールは車軸の軸線回りの複数の締結箇所の各々において雄ねじと雌ねじとの螺合により前記車軸に固定され、
     前記雄ねじ又は前記雌ねじを有するとともに前記ホイールを前記車軸に固定するための軸力を発生させる部材が固定部材であり、
     前記ブラケットは、
     本体部であって、
      前記車軸の延長上に位置する基部と、
      前記基部から複数の前記締結箇所に位置する前記固定部材の各々に向けて放射状に延びるとともに、前記固定部材に接触しつつ前記固定部材に対して位置決めされた腕部と、を有する本体部と、
     前記本体部の挙動の変化を検出するように構成されたセンサと、を備えるブラケット。
  2.  前記センサは、加速度センサであり、
     前記加速度センサは、全ての前記固定部材からの距離が同じとなる位置に設けられている、請求項1に記載のブラケット。
  3.  前記センサは、前記腕部の少なくとも1つに設けられているひずみセンサであり、
     前記ひずみセンサは、前記基部及び前記腕部のうち、少なくとも前記腕部に取り付けられている、請求項1に記載のブラケット。
  4.  前記センサの検出信号を送信するように構成された送信機を備える、請求項1~請求項3のいずれか一項に記載のブラケット。
  5.  ホイールを車軸に固定するための軸力を発生させる固定部材の緩みを判定する緩み判定装置であって、
     前記ホイールは車軸の軸線回りの複数の締結箇所の各々において雄ねじと雌ねじとの螺合により前記車軸に固定され、
     前記固定部材は前記雄ねじ又は前記雌ねじを有し、
     前記緩み判定装置は、
     前記ホイールに設けられるように構成されたブラケットであって、
      前記車軸の延長上に位置する基部と、前記基部から複数の前記締結箇所に位置する前記固定部材の各々に向けて放射状に延びるとともに、前記固定部材に接触しつつ前記固定部材に対して位置決めされた腕部と、を有する本体部と、
      前記本体部の挙動の変化を検出するように構成されたセンサと、
      送信機と、を備えるブラケットと、
     前記送信機から送信された信号を受信するように構成された受信機と、
     前記センサの検出信号に基づき前記固定部材の緩みを判定するように構成される判定部と、を備える緩み判定装置。
  6.  前記センサは、加速度センサであり、
     前記加速度センサは、全ての前記固定部材からの距離が同じとなる位置に設けられている、請求項5に記載の緩み判定装置。
  7.  前記判定部は、前記受信機に設けられ、前記送信機から送信される前記加速度センサの検出信号に基づき前記固定部材の緩みを判定するように構成される、請求項6に記載の緩み判定装置。
  8.  前記センサは、前記腕部の少なくとも1つに設けられるひずみセンサであり、
     前記ひずみセンサは、前記基部及び前記腕部のうち、少なくとも前記腕部に取り付けられており、
     前記判定部は、前記受信機に設けられ、前記送信機から送信される前記ひずみセンサの検出信号に基づき前記固定部材の緩みを判定するように構成される、請求項5に記載の緩み判定装置。
PCT/JP2021/031439 2021-08-27 2021-08-27 ブラケット、及び緩み判定装置 WO2023026454A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/031439 WO2023026454A1 (ja) 2021-08-27 2021-08-27 ブラケット、及び緩み判定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/031439 WO2023026454A1 (ja) 2021-08-27 2021-08-27 ブラケット、及び緩み判定装置

Publications (1)

Publication Number Publication Date
WO2023026454A1 true WO2023026454A1 (ja) 2023-03-02

Family

ID=85322552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031439 WO2023026454A1 (ja) 2021-08-27 2021-08-27 ブラケット、及び緩み判定装置

Country Status (1)

Country Link
WO (1) WO2023026454A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0663405U (ja) * 1993-02-22 1994-09-09 株式会社東海理化電機製作所 タイヤの異常検出装置
WO2005021983A1 (en) * 2003-09-03 2005-03-10 PÄÄKKÖ, Eero Loosening indicator for a bolt or nut and a corresponding system
JP2005329907A (ja) * 2004-05-21 2005-12-02 Denso Corp 車輪脱落検出装置
WO2016158586A1 (ja) * 2015-03-30 2016-10-06 Ntn株式会社 ホイールナット緩み検出用のセンサユニット、およびこれを備えた装置
WO2016158587A1 (ja) * 2015-03-30 2016-10-06 Ntn株式会社 車輪締結状態の判定装置
WO2017038803A1 (ja) * 2015-09-04 2017-03-09 Ntn株式会社 ホイール締結状態判定装置
JP2017529499A (ja) * 2014-09-18 2017-10-05 マキシオン ホイールズ ジャーマニー ホールディングス ゲーエムベーハー ナット(特にホイールナットまたはアクスルナット)、ワッシャ、車両のホイールナットまたはアクスルナット用の制御装置、及びそれが設けられた車両
US20180304679A1 (en) * 2015-05-14 2018-10-25 Wheely-Safe Ltd. Wheel Sensor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0663405U (ja) * 1993-02-22 1994-09-09 株式会社東海理化電機製作所 タイヤの異常検出装置
WO2005021983A1 (en) * 2003-09-03 2005-03-10 PÄÄKKÖ, Eero Loosening indicator for a bolt or nut and a corresponding system
JP2005329907A (ja) * 2004-05-21 2005-12-02 Denso Corp 車輪脱落検出装置
JP2017529499A (ja) * 2014-09-18 2017-10-05 マキシオン ホイールズ ジャーマニー ホールディングス ゲーエムベーハー ナット(特にホイールナットまたはアクスルナット)、ワッシャ、車両のホイールナットまたはアクスルナット用の制御装置、及びそれが設けられた車両
WO2016158586A1 (ja) * 2015-03-30 2016-10-06 Ntn株式会社 ホイールナット緩み検出用のセンサユニット、およびこれを備えた装置
WO2016158587A1 (ja) * 2015-03-30 2016-10-06 Ntn株式会社 車輪締結状態の判定装置
US20180304679A1 (en) * 2015-05-14 2018-10-25 Wheely-Safe Ltd. Wheel Sensor
WO2017038803A1 (ja) * 2015-09-04 2017-03-09 Ntn株式会社 ホイール締結状態判定装置

Similar Documents

Publication Publication Date Title
US9978190B2 (en) Nut, in particular wheel or axle nut, washer, control device for wheel or axle nuts in vehicles and vehicle provided therewith
US7703316B2 (en) Valve stem assembly for tire pressure detecting systems
GB1603226A (en) Tyre condition sensing apparatus
WO2016158586A1 (ja) ホイールナット緩み検出用のセンサユニット、およびこれを備えた装置
US7236892B2 (en) Vehicle wheel state monitoring device and method
US20060220812A1 (en) Wheel unit for motor vehicle tyre pressure monitoring device
WO2023026454A1 (ja) ブラケット、及び緩み判定装置
WO2023007717A1 (ja) ホイール固定部材緩み検知装置
JP2001524049A (ja) 横断方向振動信号を発生する安全インサートおよび安全インサート上でのタイヤの支持を検出する装置
US20200156687A1 (en) Device for detecting state of vehicle operator
US4254398A (en) Tire pressure drop alarming apparatus
CN210591204U (zh) 一片式汽车轮辋卸胎槽填平装置
WO2023144942A1 (ja) 固定部材緩み検知装置、及び固定部材緩み警報装置
JP2023066796A (ja) タイヤ異常判定システム
EP3765828A1 (en) Rim for wheel with sensor and wheel comprising said rim
JP2005170224A (ja) 車輪異常検出装置
WO2009119068A1 (ja) センサ付車輪用軸受
JP7081043B2 (ja) 送信機、受信機、及び送受信システム
JP2008175665A (ja) センサ付車輪用軸受
WO2023007718A1 (ja) ホイール固定部材緩み検知装置
US20230139686A1 (en) Tire revolution direction determination system
WO2023048123A1 (ja) 車輪状態判定装置
US20240025217A1 (en) Hot hubs
JP2011131688A (ja) 路面状況検出用モジュールおよびこれを備えたタイヤ空気圧検出用モジュール
JP4072688B2 (ja) タイヤ作用力検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21955065

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21955065

Country of ref document: EP

Kind code of ref document: A1