WO2023020101A1 - 芯片测试夹具及芯片测试夹具组合 - Google Patents
芯片测试夹具及芯片测试夹具组合 Download PDFInfo
- Publication number
- WO2023020101A1 WO2023020101A1 PCT/CN2022/099456 CN2022099456W WO2023020101A1 WO 2023020101 A1 WO2023020101 A1 WO 2023020101A1 CN 2022099456 W CN2022099456 W CN 2022099456W WO 2023020101 A1 WO2023020101 A1 WO 2023020101A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- test
- chip
- fixture
- interface
- sub
- Prior art date
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 198
- 230000005540 biological transmission Effects 0.000 claims abstract description 20
- 238000010586 diagram Methods 0.000 description 13
- 239000002184 metal Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 241000282414 Homo sapiens Species 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/2851—Testing of integrated circuits [IC]
- G01R31/2886—Features relating to contacting the IC under test, e.g. probe heads; chucks
- G01R31/2889—Interfaces, e.g. between probe and tester
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R1/00—Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
- G01R1/02—General constructional details
- G01R1/04—Housings; Supporting members; Arrangements of terminals
- G01R1/0408—Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
- G01R1/0416—Connectors, terminals
Definitions
- the present application relates to the technical field of radio frequency circuit debugging, in particular to a chip test fixture.
- wireless communication technology As human beings enter the information age, wireless communication technology has developed rapidly. Mobile phones, wireless local area networks, Bluetooth, etc. have become an indispensable part of social life and development. The progress of wireless communication technology is inseparable from the development of radio frequency circuit and microwave technology.
- the debugging of radio frequency chips and circuits is a key content.
- test boards are usually used to test chip performance.
- the interface of a testing instrument used for chip performance testing such as an S-parameter tester
- SMA or BNC standard type
- the pins of the chip under test are usually not common interfaces such as SMA or BNC. Therefore, the connection between the chip under test and the test instrument requires an auxiliary fixture.
- the S parameter measured by the S parameter tester is the overall S parameter including the fixture, not the S parameter of the chip.
- this application intends to provide a chip test fixture.
- the corresponding parameter files can be obtained through the measurement of the three channels of the fixture, and then the test parameters of the chip can be obtained after the operation and transmission of the single-chip microcomputer. (i.e. de-embed the file).
- the chip test fixture provided by this application includes:
- a group of test interfaces arranged on the EVB board
- the data transmission interface is arranged on the EVB board;
- a group of power interfaces is arranged on the EVB board.
- the set of test interfaces includes:
- the second test interface is set opposite to the first test interface
- the fourth test interface is set opposite to the third test interface
- the sixth test interface is set opposite to the fifth test interface.
- the set of test interfaces includes SMA interfaces.
- the EVB board includes: Rogers board.
- the set of power interfaces includes: a VCC voltage interface and a GND ground interface.
- the form of the set of power interfaces includes: a form of pin headers.
- the data transmission interface includes: a USB interface.
- the present application also provides a chip test fixture combination, characterized in that it includes:
- the sub-fixture is fixed in the groove of the chip test fixture by bolts, and includes a set of sub-fixture test interfaces, and the set of sub-fixture test interfaces is correspondingly connected to the test interfaces of the chip test fixture.
- the group of sub-fixture test interfaces is correspondingly connected to the test interfaces of the chip test fixture through elastic pieces.
- the sub-clamps include: single-chip micro-clamps or chip sub-clamps.
- the chip test fixture provided by this application only needs one chip test fixture to obtain the de-embedding file, which is more convenient than the traditional three fixtures.
- the sub-fixture can be disassembled and assembled with the chip test fixture through the screw hole, which is convenient for replacement and multi-purpose on one board.
- the sub-fixture of the single-chip microcomputer can perform formula calculations on the three sets of parameters obtained by the test inside the single-chip microcomputer to obtain the final de-embedding file, which does not need to be exported separately for calculation, which simplifies the calculation steps.
- Fig. 1 shows a schematic structural diagram of a chip test fixture according to an exemplary embodiment of the present application
- Fig. 2 shows a schematic structural diagram of a sub-clamp according to a first exemplary embodiment of the present application
- Fig. 3 shows a schematic structural diagram of a sub-clamp according to a second exemplary embodiment of the present application
- FIG. 4 shows a schematic diagram of a combined connection of a chip test fixture according to an exemplary embodiment of the present application
- Fig. 5 shows a schematic diagram of a combined structure of a chip test fixture according to a first exemplary embodiment of the present application
- FIG. 6 shows a schematic diagram of a combined structure of a chip test fixture according to a second exemplary embodiment of the present application.
- the present application intends to provide a chip test fixture, which only needs one chip test fixture to obtain three sets of parameters to obtain a de-embedding file.
- FIG. 1 shows a schematic structural diagram of a chip test fixture according to an exemplary embodiment of the present application.
- the chip test fixture 1000 provided by the present application includes an EVB board 100 , a set of test interfaces 200 , a set of power supply interfaces 300 and a data transmission interface 400 .
- the EVB board 100 can be a rectangular Rogers board with a groove 110 in the center for placing a test sub-fixture, such as a single-chip microcomputer sub-fixture or a chip sub-fixture.
- a set of test interfaces 200 is disposed on the EVB board 100 .
- a group of test interfaces includes 6 test interfaces, which are respectively a first test interface 211, a second test interface 221, a third test interface 212, a fourth test interface 222, The fifth test interface 213 and the sixth test interface 223 .
- the first test interface 211 , the third test interface 212 and the third test interface 213 are disposed on one side of the EVB board 100 .
- the second test interface 221 , the fourth test interface 222 and the sixth test interface 223 are disposed on the other side of the EVB board 100 .
- the second test interface 221 is opposite to the first test interface 211 .
- the fourth test interface 222 is opposite to the third test interface 212 .
- the sixth test interface 223 is opposite to the fifth test interface 213 .
- a shrapnel (not shown in the figure) may be provided at each test interface for connecting the interface of the sub-fixture.
- the set of test interfaces 200 may be SMA interfaces.
- a set of power interfaces 300 includes a VCC voltage interface 310 and a GND ground interface 320, which are arranged on one side of the EVB board 100, and are used to supply power to the single-chip microcomputer or chip during testing.
- the set of power interfaces 300 may be in the form of pin headers.
- the data transmission interface 400 is set on one side of the EVB board 100 , after the parameter test is completed, the test result can be directly transmitted to the software of the test system through the data transmission interface 400 .
- the data transmission interface may be a USB interface.
- the chip test fixture 1000 provided by the present application is used as a mother fixture in cooperation with a sub-fixture, and finally a chip de-embedding file is obtained.
- the sub-fixture can be a microcontroller sub-fixture or a chip sub-fixture.
- Fig. 2 shows a schematic structural diagram of a sub-clamp according to the first exemplary embodiment of the present application.
- the single-chip sub-clamp 500 includes a first group of interfaces: interface 511, interface 512 and interface 513, and a second group of interfaces: interface 521, interface 522 and interface 523, two groups
- the interfaces form three test paths, which are respectively connected to three sets of test interfaces of the chip test fixture, for example, connected together through shrapnel at the interfaces of the chip test fixture.
- the interface 511 and the interface 521 are connected to the straight-through port on the back of the microcontroller.
- the interface 512 and the interface 522 are respectively connected to the open-circuit end of the single-chip microcomputer.
- the interface 513 and the interface 523 are respectively connected to the grounding port inside the single-chip microcomputer.
- the MCU sub-fixture 500 also includes a power interface 531 , a ground interface 532 and a data transmission interface 540 .
- Fig. 3 shows a schematic structural diagram of a sub-clamp according to a second exemplary embodiment of the present application.
- the chip sub-clamp 600 is substantially the same size as the single-chip microcomputer sub-clamp, including an interface 610 , an interface 620 , a power interface 631 , a ground interface 632 and a data transmission interface 640 .
- the interface 610 is connected to the input terminal 710 of the chip under test 700
- the interface 620 is connected to the output terminal 720 of the chip under test 700 .
- the power interface 631 is connected to the power supply
- the ground interface 632 is connected to the ground
- the data transmission interface 640 is used to transmit test data
- the other interfaces are left open.
- FIG. 4 shows a schematic diagram of the combination and connection of a chip test fixture according to an exemplary embodiment of the present application.
- the sub-fixture and the chip test fixture can be connected by means of metal spring sheets and metal contacts.
- each test port of the chip test fixture 1000 is provided with a metal spring piece in the middle groove area, for example, the test interface 213 is correspondingly provided with a metal spring piece 2131.
- Fig. 5 shows a schematic diagram of a combined structure of a chip test fixture according to the first exemplary embodiment of the present application.
- a group of interfaces 511 , 512 , and 513 of the single-chip microcomputer sub-fixture 500 are respectively connected to the first test interface 211 , the third test interface 212 , and the third test interface 213 of the chip test fixture.
- a group of interfaces 521 , 522 , and 523 of the single-chip microcomputer sub-fixture 500 are respectively connected to the second test interface 221 , the fourth test interface 222 , and the sixth test interface 223 of the chip test fixture.
- the power interface 531 and the ground interface 532 of the microcontroller sub-fixture 500 are respectively connected to the VCC voltage interface 310 and the GND ground interface 320 of the chip test fixture.
- the data transmission interface 540 of the single chip microcomputer sub-fixture 500 is connected with the data transmission interface 400 of the chip test fixture.
- the interface 511 and the interface 521 of the single-chip microcomputer sub-clamp 500 are connected to the through port on the back of the single-chip microcomputer.
- the interface 512 and the interface 522 of the single-chip sub-fixture 500 are respectively connected to the open-circuit end of the single-chip microcomputer.
- the interface 513 and the interface 523 of the single-chip microcomputer sub-fixture 500 are respectively connected to the ground port inside the single-chip microcomputer.
- the path connected by the first test interface 211 of the chip test fixture, the interface 511 of the single-chip microcomputer sub-fixture 500 , the interface 521 of the single-chip microcomputer sub-fixture 500 and the third test interface 221 of the chip test fixture is a straight path.
- the path connected by the second test interface 212 of the chip test fixture, the interface 512 of the single-chip microcomputer sub-fixture 500 , the interface 522 of the single-chip microcomputer sub-fixture 500 and the fourth test interface 222 of the chip test fixture is an open circuit.
- the path connected by the third test interface 213 of the chip test fixture, the interface 513 of the single-chip microcomputer sub-fixture 500 , the interface 523 of the single-chip microcomputer sub-fixture 500 and the sixth test interface 223 of the chip test fixture is a short circuit.
- the obtained S parameter is straight-through.
- the obtained S parameter is an open circuit.
- the obtained S parameter is a short circuit.
- the single-chip microcomputer When the S parameters of the three channels are tested respectively, the single-chip microcomputer will record three sets of S parameters.
- the final de-embedded S-parameters are obtained after formula conversion with the de-embedding formula internally. According to some embodiments of the present application, the de-embedded S-parameters can be output through the data transmission port 400 .
- FIG. 6 shows a schematic diagram of a combined structure of a chip test fixture according to a second exemplary embodiment of the present application.
- the single chip microcomputer fixture can be taken out from the chip test fixture, replaced with the chip sub fixture 600, and the chip sub fixture 600 is fixed in the center of the groove through the bolt hole on the chip test fixture, Form the second chip test fixture assembly, as shown in FIG. 6 .
- the interface 610 of the chip sub-fixture 600 is connected to the second test interface 212 of the chip test fixture 1000, the interface 620 of the chip sub-fixture 600 is connected to the fourth test interface 222 of the chip test fixture, and the other test interfaces of the chip test fixture are suspended.
- the interface 610 is also connected to the input terminal of the chip to be tested, and the interface 620 is also connected to the output terminal of the chip to be tested.
- the power interface 631 and the ground interface 632 of the chip sub-fixture 600 are respectively connected to the VCC voltage interface 310 and the GND ground interface 320 of the chip test fixture.
- the data transmission interface 640 of the chip sub-fixture 600 is connected with the data transmission interface 400 of the chip test fixture.
- a set of chip S parameters without de-embedding can be obtained through the second chip test fixture combination. Similarly, the S-parameters of the chip without de-embedding can be output through the data transmission port 400 .
- the S-parameters of de-embedding are obtained.
- the chip test fixture with the chip sub-fixture, the chip S-parameters without de-embedding are obtained.
- a real chip S-parameter with only the input terminal to the output terminal of the chip can be obtained.
- the chip test fixture and the chip test fixture combination provided in this application only need one chip test fixture to obtain the de-embedding file, which is more convenient than the traditional three fixtures.
- the sub-fixture can be disassembled and assembled with the chip test fixture through the screw hole, which is convenient for replacement and multi-purpose on one board.
- the sub-fixture of the single-chip microcomputer can perform formula calculations on the three sets of parameters obtained by the test inside the single-chip microcomputer to obtain the final de-embedding file, which does not need to be exported separately for calculation, which simplifies the calculation steps.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Engineering & Computer Science (AREA)
- Test And Diagnosis Of Digital Computers (AREA)
Abstract
一种芯片测试夹具(1000)及芯片测试夹具组合,芯片测试夹具(1000)包括:EVB板(100),中央设置凹槽(110);一组测试接口(200),设置于EVB板(100)上;数据传输接口(400),设置于EVB板(100)上;一组电源接口(300),设置于EVB板(100)上。相比传统的三块夹具而言,只需要一块芯片测试夹具(1000)即可获得去嵌文件,更方便快捷。
Description
本申请涉及射频电路调试技术领域,具体地涉及一种芯片测试夹具。
随着人类进入信息化时代,无线通信技术有了飞速发展。手机、无线局域网、蓝牙等已成为社会生活和发展不可或缺的一部分。无线通信技术的进步离不开射频电路和微波技术的发展。
在射频电路技术中,射频芯片与电路的调试是关键的一项内容。目前,在射频芯片与电路的调试过程中,通常采用测试板来测试芯片性能。一般,用于芯片性能测试的测试仪器,例如S参数测试仪,其接口通常是SMA或者BNC等标准类型。但是,待测芯片的引脚通常不是SMA或者BNC等通用接口。因此待测芯片和测试仪器之间的连接需要辅助夹具。这样S参数测试仪所测得到的S参数是包含夹具的整体S参数,而非芯片的S参数。若要得到芯片的参数,需要通过至少三块夹具进行分别测试后,再进行相应的计算,才能获得芯片的参数。
发明内容
为了简化芯片测试参数的提取过程,本申请拟提供一种芯片测试夹具,通过夹具的三个通路的测量可以分别得到相对应的参数文件,再经过单片机的运算与传输后可以得到芯片的测试参数(即去嵌文件)。
本申请提供的芯片测试夹具包括:
EVB板,中央设置凹槽;
一组测试接口,设置于所述EVB板上;
数据传输接口,设置于所述EVB板上;
一组电源接口,设置于所述EVB板上。
根据本申请的一些实施例,所述一组测试接口包括:
第一测试接口;
第二测试接口,与所述第一测试接口相对设置;
第三测试接口;
第四测试接口,与所述第三测试接口相对设置;
第五测试接口;
第六测试接口,与所述第五测试接口相对设置。
根据本申请的一些实施例,所述一组测试接口包括SMA接口。
根据本申请的一些实施例,所述EVB板包括:罗杰斯板材。
根据本申请的一些实施例,所述一组电源接口包括:VCC电压接口和GND接地接口。
根据本申请的一些实施例,所述一组电源接口的形式包括:排针形式。
根据本申请的一些实施例,所述数据传输接口包括:USB接口。
本申请还提供一种芯片测试夹具组合,其特征在于,包括:
上述芯片测试夹具;
子夹具,通过螺栓固定在所述芯片测试夹具的凹槽中,包括一组子夹具测试接口,所述一组子夹具测试接口与所述芯片测试夹具的测试接口对应相连。
根据本申请的一些实施例,所述一组子夹具测试接口通过弹片与所述芯片测试夹具的测试接口对应相连。
根据本申请的一些实施例,所述子夹具包括:单片机子夹具或芯片 子夹具。
本申请提供的芯片测试夹具,只需要一块芯片测试夹具即可获得去嵌文件,相比传统的三块夹具而言,更便捷。子夹具可以通过螺孔与芯片测试夹具进行拆装,更换方便、一板多用。单片机的子夹具可以将测试得到的三组参数在单片机内部进行公式运算,得到最终的去嵌文件,不需要分别导出后再计算,简化了运算步骤。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图,而并不超出本申请要求保护的范围。
图1示出根据本申请示例实施例的芯片测试夹具结构示意图;
图2示出根据本申请第一示例实施例的子夹具结构示意图;
图3示出根据本申请第二示例实施例的子夹具结构示意图;
图4示出根据本申请示例实施例的芯片测试夹具组合连接示意图;
图5示出根据本申请第一示例实施例的芯片测试夹具组合结构示意图;
图6示出根据本申请第二示例实施例的芯片测试夹具组合结构示意图。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的 范围。
此外,所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本申请的实施例的充分理解。然而,本领域技术人员将意识到,可以实践本申请的技术方案而没有特定细节中的一个或更多,或者可以采用其它的方法、组元、装置、步骤等。在其它情况下,不详细示出或描述公知方法、装置、实现或者操作以避免模糊本申请的各方面。
应理解,虽然本文中可能使用术语第一、第二等来描述各种组件,但这些组件不应受这些术语限制。这些术语乃用以区分一组件与另一组件。因此,下文论述的第一组件可称为第二组件而不偏离本申请概念的教示。如本文中所使用,术语“及/或”包括相关联的列出项目中的任一个及一或多者的所有组合。
本领域技术人员可以理解,附图只是示例实施例的示意图,可能不是按比例的。附图中的模块或流程并不一定是实施本申请所必须的,因此不能用于限制本申请的保护范围。
本发明人发现,在现有的射频芯片的测试板性能测试中,若要获取芯片的去嵌文件,需要通过三块夹具分别进行测试获取三组参数,测试效率低且需要的夹具数量多、成本高。为此,本申请拟提供一种芯片测试夹具,只需要一块芯片测试夹具即可获得三组参数从而获得去嵌文件。
以下将结合附图对本申请的技术方案进行详细介绍。
图1示出根据本申请示例实施例的芯片测试夹具结构示意图。
如图1所示,本申请提供的芯片测试夹具1000包括EVB板100、一组测试接口200、一组电源接口300和数据传输接口400。
EVB板100可以是一块矩形的罗杰斯板材,其中央设置凹槽110, 用于放置测试子夹具,例如单片机子夹具或者芯片子夹具。一组测试接口200设置于所述EVB板100上。根据本申请的示例实施例,如图1所示,一组测试接口包括6个测试接口,分别为第一测试接口211、第二测试接口221、第三测试接口212、第四测试接口222、第五测试接口213、第六测试接口223。第一测试接口211、第三测试接口212、第三测试接口213设置于EVB板100的一侧。第二测试接口221、第四测试接口222、第六测试接口223设置于EVB板100的另一侧。第二测试接口221与所述第一测试接口211相对设置。第四测试接口222与所述第三测试接口212相对设置。第六测试接口223与所述第五测试接口213相对设置。根据本申请的一些实施例,每个测试接口处可以设置弹片(图中未示),用以连接子夹具的接口。根据本申请的一些实施例,所述一组测试接口200可以是SMA接口。
一组电源接口300包括VCC电压接口310和GND接地接口320,设置于所述EVB板100的一侧边上,用于在测试时为单片机或芯片供电。根据本申请的一些实施例,所述一组电源接口300的形式可以是排针。数据传输接口400设置于所述EVB板100的一个侧边上,参数测试完毕后,可以通过数据传输接口400直接将测试结果传输至测试系统的软件中。根据本申请的一些实施例,所述数据传输接口可以是USB接口。
在进行芯片测试时,本申请提供的芯片测试夹具1000作为母夹具与子夹具进行配合使用,最终获得芯片的去嵌文件。子夹具可以是单片机子夹具或者芯片子夹具。
图2示出根据本申请第一示例实施例的子夹具结构示意图。
根据本申请的示例实施例,如图2所示,单片机子夹具500包括第一组接口:接口511、接口512和接口513,以及第二组接口:接口521、接口522和接口523,两组接口组成三路测试通路,分别与芯片测试夹具的三组测试接口相连,例如通过芯片测试夹具的接口处的弹片连接在一起。接口511和接口521连接单片机背部的直通口。接口512和接口 522分别连接单片机的开路端。接口513和接口523分别连接单片机内部的接地口。单片机子夹具500还包括电源接口531和接地接口532以及数据传输接口540。
图3示出根据本申请第二示例实施例的子夹具结构示意图。
根据本申请的示例实施例,如图3所示,芯片子夹具600与单片机子夹具的大小基本一致,包括接口610、接口620、电源接口631、接地接口632以及数据传输接口640。接口610连接待测芯片700的输入端710,接口620连接待测芯片700的输出端720。电源接口631连接电源,接地接口632连接地,数据传输接口640用于传输测试数据,其他接口悬空开路。芯片子夹具600与芯片测试夹具组合时,接口610、接口620分别与芯片测试夹具的一组测试接口相连。
图4示出根据本申请示例实施例的芯片测试夹具组合连接示意图。
子夹具与芯片测试夹具可以通过金属弹簧片和金属触点的方式连接。如图4所示,以单片机子夹具500与芯片测试夹具1000的组合连接为例,芯片测试夹具1000的各个测试口在中间凹槽区域均设置金属弹簧片,例如测试接口213对应设置金属弹簧片2131。单片机子夹具500的背面均有连接用的金属触点,例如图中的5131。当单片子夹具向下按压时,金属触点5131和金属弹簧片2131就会接触在一起。每一个接口处的金属触点和弹簧片接触后,再通过螺丝固定四角后即可达到无焊接连接。
图5示出根据本申请第一示例实施例的芯片测试夹具组合结构示意图。
在进行芯片性能测试时,首先将单片机子夹具500通过芯片测试夹具上的螺栓孔固定在凹槽的中央,形成第一芯片测试夹具组合,如图5所示。单片机子夹具500的一组接口511、512、513分别与芯片测试夹具的第一测试接口211、第三测试接口212、第三测试接口213相连。 单片机子夹具500的一组接口521、522、523分别与芯片测试夹具的第二测试接口221、第四测试接口222、第六测试接口223相连。单片机子夹具500的电源接口531和接地接口532分别芯片测试夹具的VCC电压接口310和GND接地接口320相连。单片机子夹具500的数据传输接口540与芯片测试夹具的数据传输接口400相连。
此外,单片机子夹具500的接口511和接口521连接单片机背部的直通口。单片机子夹具500的接口512和接口522分别连接单片机的开路端。单片机子夹具500的接口513和接口523分别连接单片机内部的接地口。
芯片测试夹具的第一测试接口211、单片机子夹具500的接口511、单片机子夹具500的接口521和芯片测试夹具的第三测试接口221连接成的通路为直通路。芯片测试夹具的第二测试接口212、单片机子夹具500的接口512、单片机子夹具500的接口522和芯片测试夹具的第四测试接口222连接成的通路为开路。芯片测试夹具的第三测试接口213、单片机子夹具500的接口513、单片机子夹具500的接口523和芯片测试夹具的第六测试接口223连接成的通路为短路。
当芯片测试仪的测试接口连接芯片测试夹具的第一测试接口211和第三测试接口221时,获得的S参数为直通。当芯片测试仪的测试接口连接芯片测试夹具的第二测试接口212和第四测试接口222时,获得的S参数为开路。当芯片测试仪的测试接口连接芯片测试夹具的第三测试接口213和第六测试接口223时,获得的S参数为短路。
当三路的S参数分别测试完后,单片机将记录下三组S参数。在内部用去嵌公式经过公式换算后得到最终的去嵌S参数。根据本申请的一些实施例,可以通过数据传输口400将去嵌S参数输出。
图6示出根据本申请第二示例实施例的芯片测试夹具组合结构示意图。
通过单片机子夹具获得去嵌S参数后,可以将单片机子夹具从芯片测试夹具中取出,更换为芯片子夹具600,将芯片子夹具600通过芯片测试夹具上的螺栓孔固定在凹槽的中央,形成第二芯片测试夹具组合,如图6所示。芯片子夹具600的接口610与芯片测试夹具1000的第二测试接口212相连,芯片子夹具600的接口620与芯片测试夹具的第四测试接口222相连,芯片测试夹具的其他测试接口悬空。接口610还连接待测芯片的输入端,接口620还连接待测芯片的输出端。芯片子夹具600的电源接口631和接地接口632分别与芯片测试夹具的VCC电压接口310和GND接地接口320相连。芯片子夹具600的数据传输接口640与芯片测试夹具的数据传输接口400相连。
通过第二芯片测试夹具组合可以得到一组没有去嵌的芯片S参数。类似地,可以通过数据传输口400将没有去嵌的芯片S参数输出。
由此,通过将芯片测试夹具与单片机子夹具组合,获得了去嵌的S参数。通过将芯片测试夹具与芯片子夹具组合,获得了没有去嵌的芯片S参数。将去嵌的S参数和没有去嵌的芯片S参数进行运算后可以便可以得到个只有芯片输入端到输出端的真实的芯片S参数。
本申请提供的芯片测试夹具及芯片测试夹具组合,只需要一块芯片测试夹具即可获得去嵌文件,相比传统的三块夹具而言,更便捷。子夹具可以通过螺孔与芯片测试夹具进行拆装,更换方便、一板多用。单片机的子夹具可以将测试得到的三组参数在单片机内部进行公式运算,得到最终的去嵌文件,不需要分别导出后再计算,简化了运算步骤。
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明仅用于帮助理解本申请的方法及其核心思想。同时,本领域技术人员依据本申请的思想,基于本申请的具体实施方式及应用范围上做出的改变或变形之处,都属于本申请保护的范围。综上所述,本说明书内容不应理解为对本申请的限制。
Claims (10)
- 一种用于获取芯片去嵌参数的芯片测试夹具,作为测试母夹具与测试子夹具进行配合使用,其特征在于,包括:EVB板,中央设置凹槽,所述测试子夹具通过螺栓固定在所述凹槽中;一组测试接口,设置于所述EVB板上,与所述测试子夹具的测试接口对应相连,获取去嵌参数或未去嵌的芯片参数;数据传输接口,设置于所述EVB板上,所述芯片测试夹具通过所述数据传输接口将所述去嵌参数和所述未去嵌的芯片参数输出,并经过运算获得所述芯片去嵌参数;一组电源接口,设置于所述EVB板上。
- 根据权利要求1所述的芯片测试夹具,其特征在于,所述一组测试接口包括:第一测试接口;第二测试接口,与所述第一测试接口相对设置;第三测试接口;第四测试接口,与所述第三测试接口相对设置;第五测试接口;第六测试接口,与所述第五测试接口相对设置。
- 根据权利要求2所述的芯片测试夹具,其特征在于,所述一组测试接口包括SMA接口。
- 根据权利要求1所述的芯片测试夹具,其特征在于,所述EVB板包括:罗杰斯板材。
- 根据权利要求1所述的芯片测试夹具,其特征在于,所述一组电源接口包括:VCC电压接口和GND接地接口。
- 根据权利要求5所述的芯片测试夹具,其特征在于,所述一组电源接口的形式包括:排针形式。
- 根据权利要求1所述的芯片测试夹具,其特征在于,所述数据传输接口包括:USB接口。
- 一种用于获取芯片去嵌参数的芯片测试夹具组合,其特征在于,包括:如权利要求1-7中任一项所述的芯片测试夹具;子夹具,通过螺栓固定在所述芯片测试夹具的凹槽中,包括一组子夹具测试接口,所述一组子夹具测试接口与所述芯片测试夹具的测试接口对应相连,获取去嵌参数或未去嵌的芯片参数;所述芯片测试夹具将所述去嵌参数和所述未去嵌的芯片参数输出后,经过运算获得所述芯片去嵌参数。
- 根据权利要求8所述的芯片测试夹具组合,其特征在于,所述一组子夹具测试接口通过弹片与所述芯片测试夹具的测试接口对应相连。
- 根据权利要求8所述的芯片测试夹具组合,其特征在于,所述子夹具包括:单片机子夹具或芯片子夹具。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110951867.5 | 2021-08-19 | ||
CN202110951867.5A CN113406485B (zh) | 2021-08-19 | 2021-08-19 | 芯片测试夹具及芯片测试夹具组合 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023020101A1 true WO2023020101A1 (zh) | 2023-02-23 |
Family
ID=77688778
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/099456 WO2023020101A1 (zh) | 2021-08-19 | 2022-06-17 | 芯片测试夹具及芯片测试夹具组合 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113406485B (zh) |
WO (1) | WO2023020101A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113406485B (zh) * | 2021-08-19 | 2021-12-03 | 深圳飞骧科技股份有限公司 | 芯片测试夹具及芯片测试夹具组合 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060197535A1 (en) * | 2005-03-07 | 2006-09-07 | Research In Motion Limited | Fixture for manual functional testing of wireless devices |
US20090153162A1 (en) * | 2007-12-14 | 2009-06-18 | King Yuan Electronics Co., Ltd. | Sharing conversion board for testing chips |
CN108120853A (zh) * | 2016-11-28 | 2018-06-05 | 联芯科技有限公司 | 芯片测试夹具 |
CN111638444A (zh) * | 2020-05-07 | 2020-09-08 | 湖北航天技术研究院计量测试技术研究所 | 基于spi配置方式的大容量fpga的测试工装和测试方法 |
CN111707929A (zh) * | 2020-06-29 | 2020-09-25 | 深圳赛西信息技术有限公司 | 一种pga封装微波测试夹具 |
CN111913841A (zh) * | 2020-05-11 | 2020-11-10 | 电子科技大学 | 一种低成本的芯片功能测试平台 |
CN212365506U (zh) * | 2020-07-22 | 2021-01-15 | 深圳市宏旺微电子有限公司 | 用于NAND Flash测试电路 |
CN212391573U (zh) * | 2020-04-17 | 2021-01-22 | 北京百度网讯科技有限公司 | 芯片测试装置和设备 |
CN212497317U (zh) * | 2020-02-13 | 2021-02-09 | 深圳飞骧科技有限公司 | 用于射频电路测试的夹具 |
CN113406485A (zh) * | 2021-08-19 | 2021-09-17 | 深圳飞骧科技股份有限公司 | 芯片测试夹具及芯片测试夹具组合 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203929811U (zh) * | 2014-05-19 | 2014-11-05 | 福建火炬电子科技股份有限公司 | 一种测试夹具 |
CN105445575B (zh) * | 2015-11-04 | 2018-05-11 | 中国电子科技集团公司第四十一研究所 | 一种光器件s参数测量中的光路去嵌入方法 |
CN205353140U (zh) * | 2016-01-26 | 2016-06-29 | 中国振华集团云科电子有限公司 | 微带环形器测试夹具 |
CN105891628B (zh) * | 2016-03-30 | 2018-05-29 | 清华大学 | 通用四端口在片高频去嵌入方法 |
CN112748374A (zh) * | 2019-10-29 | 2021-05-04 | 深圳市寒驰科技有限公司 | 高频芯片测试定制夹治具 |
CN212207665U (zh) * | 2020-05-11 | 2020-12-22 | 成都东盛同创电子技术有限公司 | 一种tr组件参数测试夹具 |
-
2021
- 2021-08-19 CN CN202110951867.5A patent/CN113406485B/zh active Active
-
2022
- 2022-06-17 WO PCT/CN2022/099456 patent/WO2023020101A1/zh active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060197535A1 (en) * | 2005-03-07 | 2006-09-07 | Research In Motion Limited | Fixture for manual functional testing of wireless devices |
US20090153162A1 (en) * | 2007-12-14 | 2009-06-18 | King Yuan Electronics Co., Ltd. | Sharing conversion board for testing chips |
CN108120853A (zh) * | 2016-11-28 | 2018-06-05 | 联芯科技有限公司 | 芯片测试夹具 |
CN212497317U (zh) * | 2020-02-13 | 2021-02-09 | 深圳飞骧科技有限公司 | 用于射频电路测试的夹具 |
CN212391573U (zh) * | 2020-04-17 | 2021-01-22 | 北京百度网讯科技有限公司 | 芯片测试装置和设备 |
CN111638444A (zh) * | 2020-05-07 | 2020-09-08 | 湖北航天技术研究院计量测试技术研究所 | 基于spi配置方式的大容量fpga的测试工装和测试方法 |
CN111913841A (zh) * | 2020-05-11 | 2020-11-10 | 电子科技大学 | 一种低成本的芯片功能测试平台 |
CN111707929A (zh) * | 2020-06-29 | 2020-09-25 | 深圳赛西信息技术有限公司 | 一种pga封装微波测试夹具 |
CN212365506U (zh) * | 2020-07-22 | 2021-01-15 | 深圳市宏旺微电子有限公司 | 用于NAND Flash测试电路 |
CN113406485A (zh) * | 2021-08-19 | 2021-09-17 | 深圳飞骧科技股份有限公司 | 芯片测试夹具及芯片测试夹具组合 |
Also Published As
Publication number | Publication date |
---|---|
CN113406485A (zh) | 2021-09-17 |
CN113406485B (zh) | 2021-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023020100A1 (zh) | 芯片测试系统 | |
CN107817368B (zh) | 一种多通道s参数的测量装置及测量方法 | |
CN101988938B (zh) | 天线测试系统、测试方法及测试治具 | |
CN101025428A (zh) | 射频同轴微带连接器的测试样件及其测试方法 | |
WO2023020101A1 (zh) | 芯片测试夹具及芯片测试夹具组合 | |
US7084639B2 (en) | Impedance standard substrate and method for calibrating vector network analyzer | |
CN110058146A (zh) | 一种换模通用老炼试验装置及其操作方法 | |
CN212258965U (zh) | 一种射频模块的自动测试系统 | |
US7513776B1 (en) | Patch panel | |
CN113917308A (zh) | 一种印制电路板的自动化测试平台 | |
CN102313868B (zh) | 电信端量测装置 | |
CN101577592B (zh) | 一种射频测试系统及方法 | |
CN209372983U (zh) | 微控制器管脚参数自动测试平台 | |
CN209858645U (zh) | 基于散射参数级联的数据采集系统 | |
CN208623043U (zh) | 维修调试转接板 | |
CN104316787B (zh) | 一种声表面波器件测试装置及其测试方法 | |
WO2017049903A1 (zh) | 一种晶体管仿真系统及方法 | |
CN204086443U (zh) | 一种排线测试工装 | |
CN114980193A (zh) | 一种全自动化无线通信模块生产和测试集成系统及方法 | |
CN209640423U (zh) | 一种数控衰减器测试工装 | |
CN221575372U (zh) | 射频测试功能切换箱 | |
WO2020232564A1 (zh) | 一种Massive MIMO天线组件及其分模块测试方法 | |
TWI785923B (zh) | Jtag轉接電路板 | |
US7688093B2 (en) | Sharing conversion board for testing chips | |
CN221380944U (zh) | 射频自动测试机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22857414 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22857414 Country of ref document: EP Kind code of ref document: A1 |