Nothing Special   »   [go: up one dir, main page]

WO2023084666A1 - Ultraviolet light irradiation system - Google Patents

Ultraviolet light irradiation system Download PDF

Info

Publication number
WO2023084666A1
WO2023084666A1 PCT/JP2021/041472 JP2021041472W WO2023084666A1 WO 2023084666 A1 WO2023084666 A1 WO 2023084666A1 JP 2021041472 W JP2021041472 W JP 2021041472W WO 2023084666 A1 WO2023084666 A1 WO 2023084666A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultraviolet light
irradiation
target area
unit
irradiation target
Prior art date
Application number
PCT/JP2021/041472
Other languages
French (fr)
Japanese (ja)
Inventor
聖 成川
友宏 谷口
誉人 桐原
亜弥子 岩城
和秀 中島
隆 松井
裕之 飯田
千里 深井
悠途 寒河江
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/041472 priority Critical patent/WO2023084666A1/en
Publication of WO2023084666A1 publication Critical patent/WO2023084666A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings

Definitions

  • the present disclosure relates to an ultraviolet light irradiation system that uses ultraviolet light to sterilize and inactivate viruses.
  • Non-Patent Document 1 is an autonomous mobile robot that irradiates ultraviolet light. By irradiating the robot with ultraviolet light while moving in a room in a building such as a hospital room, the robot can automatically realize sterilization in a wide range without human intervention.
  • Stationary air purifier The product of Non-Patent Document 2 is a device that is installed on the ceiling or at a predetermined place in a room, and performs sterilization while circulating the air in the room.
  • Non-Patent Document 3 is a portable apparatus equipped with an ultraviolet light source. A user can bring the device to a desired area and irradiate it with ultraviolet light. Therefore, the device can be used in various places.
  • Kantum Ushikata Co., Ltd. website https://www.kantum.co.jp/product/sakkin_robot/sakkinn_robot/UVD_robot
  • June 22, 2020 Iwasaki Electric Co., Ltd. website https://www.iwasaki.co.jp/optics/ARrilization/air/air03.html
  • June 22, 2020 Funakoshi Co., Ltd. website https://www.funakoshi.co.jp/contents/68182
  • Non-Patent Document 1 has the following problems.
  • Economy Since the product of Non-Patent Document 1 is irradiated with high-output ultraviolet light, the apparatus becomes large and expensive. Therefore, the product of Non-Patent Document 1 has a problem that it is difficult to realize an economical system.
  • Non-Patent Document 3 cannot irradiate ultraviolet light to narrow pipes or areas where people cannot enter.
  • the product of Non-Patent Literature has a problem of versatility in that it can irradiate any place with ultraviolet light.
  • (3) Operability The product of Non-Patent Document 3 is portable and can be irradiated with ultraviolet light at various locations. However, in order to obtain sufficient effects such as sterilization at the target location, the user is required to have skill and knowledge, and there is a problem in operability.
  • an ultraviolet light irradiation system 300 using an optical fiber as shown in FIG. 1 is conceivable.
  • This ultraviolet light irradiation system transmits ultraviolet light from the light source 11 using a thin and flexible optical fiber, and irradiates the ultraviolet light output from the tip of the optical fiber 14 to an irradiation target area AR to be sterilized or the like with pinpoint accuracy.
  • the versatility of the above problem (2) can be solved because the ultraviolet light can be irradiated to any place simply by moving the irradiation unit 13 at the tip of the optical fiber 14 .
  • the operability of the above problem (3) can be resolved.
  • an optical distribution unit 12 such as an optical splitter in the optical transmission line 16 to form a P-MP (Point to MultiPoint) system configuration such as FTTH (Fiber To The Home)
  • FTTH Fiber To The Home
  • the irradiation target areas differ in transmission loss, area, and required time for deactivation in the optical fiber.
  • the required inactivation time is the time required to satisfy the desired inactivation rate (the ratio of bacteria before irradiation to the state after irradiation, or the ratio of viruses between the state before irradiation and after irradiation).
  • the issue is explained in Figure 1.
  • the irradiation target area ARN has a standard amount of bacteria and viruses
  • the irradiation target area AR1 has a large amount of bacteria and viruses and is a place that needs to be sterilized in a short time
  • the irradiation target area AR2 has bacteria and viruses. It should be a place where the amount of waste is small and sterilization, etc. is unnecessary.
  • the ultraviolet light irradiation system 300 equally distributes the ultraviolet light to all the optical fibers 14 (if the light distribution unit is an equal branch coupler, the ultraviolet light power is equally branched; Since the time slots are equally assigned to each output port, the ultraviolet light is supplied to the irradiation target area AR2, which does not require sterilization, etc., while the same amount of ultraviolet light is distributed to the irradiation target area AR1, so sterilization, etc. is shortened. It is inefficient because it cannot be completed in time. In other words, the ultraviolet light irradiation system 300 has a problem that it is difficult to flexibly meet the requirements of each irradiation target area.
  • An object of the present invention is to provide an ultraviolet light irradiation system that can flexibly meet the requirements of each irradiation target area in order to solve the above problems.
  • the ultraviolet light irradiation system includes an irradiation unit whose irradiation direction is variable, and emits ultraviolet light from other irradiation units to an irradiation target area that requires sterilization or the like in a short time. It was decided to irradiate by superimposing the light to increase the illuminance.
  • the ultraviolet light irradiation system includes: an ultraviolet light source that generates ultraviolet light; N (N is a natural number of 2 or more) irradiation units that irradiate M (M is a natural number of 2 or more) irradiation target regions with the ultraviolet light; a light distribution unit that distributes the ultraviolet light to each of the irradiation units; A direction for instructing the irradiating unit on the direction of the ultraviolet light to be output so that the ultraviolet light output from at least two of the N irradiating units is superimposed and irradiates one irradiation target area.
  • a control unit Prepare.
  • the ultraviolet light irradiation system judges the necessity of irradiating the irradiation target area with the ultraviolet light, and irradiates the ultraviolet light irradiating the irradiation target area with the low necessity. It is characterized by further comprising a total control unit that instructs the direction control unit to irradiate the irradiation target area with high efficiency.
  • This ultraviolet light irradiation system can change the direction in which the irradiation unit emits ultraviolet light.
  • the irradiating unit which is in charge of an irradiation target area that does not require sterilization or the like, changes the irradiation direction of the ultraviolet light to an irradiation target area that requires sterilization or the like in a short period of time. For this reason, in an irradiation target area where sterilization or the like is desired to be performed in a short time, the ultraviolet light from the irradiation section in charge of itself and the ultraviolet light from the irradiation section in charge of the others are superimposed, and the illuminance of the ultraviolet light increases. As a result, sterilization and the like of the irradiation target area can be completed in a short time.
  • the present invention can provide an ultraviolet light irradiation system that can flexibly meet the requirements of each irradiation target area.
  • Efficiency means: (a) It is not necessary to change the output of the ultraviolet light source because the irradiation target area to be sterilized or the like in a short time can be dealt with by switching the ultraviolet light. That is, the output of the ultraviolet light source is more efficient in terms of electric power than corresponding output. (b) Ultraviolet light is directed to a desired irradiation target area where sterilization or the like is unnecessary, and the ultraviolet light is concentrated, so that the time required for sterilization or the like can be shortened. In other words, the total time for sterilization and the like can be shortened, and the efficiency in terms of time is increased.
  • the light distribution unit of the ultraviolet light irradiation system has a variable distribution ratio for distributing the ultraviolet light to each of the directions, and the general control unit distributes the ultraviolet light to one irradiation target area. may be instructed to the light distribution unit to increase the distribution ratio to the direction to the irradiation unit on which is superimposed.
  • the distribution ratio to each direction as well as the irradiation direction of the ultraviolet light, it is possible to more flexibly meet the requirements of each irradiation target area.
  • the ultraviolet light irradiation system further comprises a sensor unit for detecting whether or not there is an avoidance target to be avoided from being exposed to the ultraviolet light in a region including the irradiation target region,
  • the integrated control unit sets the irradiation target area where the avoidance target exists as the irradiation target area to be superimposed with the ultraviolet light, and performs irradiation from the plurality of irradiation units during a time when the avoidance target is not present in the irradiation target area.
  • the irradiation target area may be irradiated with the ultraviolet light. It is possible to prevent ultraviolet light from being applied to avoidance targets existing in the irradiation target area, thereby enhancing safety.
  • the ultraviolet light irradiation system further includes a monitor unit that observes the amount of ultraviolet light for each of the directions, The general control unit superimposes the ultraviolet light on the direction control unit when the amount of the ultraviolet light irradiated to the irradiation target area on which the ultraviolet light is superimposed exceeds a predetermined value.
  • the irradiation of the irradiation target area may be terminated. Excessive ultraviolet light is prevented from being applied to the irradiation target area, and the efficiency of the entire ultraviolet light irradiation system is increased.
  • the irradiation unit of the ultraviolet light irradiation system has an optical delay circuit with a variable delay amount, and the direction control unit superimposes the ultraviolet light on one irradiation target area.
  • the optical delay circuit is adjusted based on the distance of each path from the light distribution unit to the irradiation target area so that the phases of the ultraviolet light are aligned in the irradiation target area. Attenuation of power due to superimposition can be avoided.
  • the present invention can provide an ultraviolet light irradiation system that can flexibly meet the requirements of each irradiation target area.
  • the energy of ultraviolet light considering the time to be supplied to each direction and the energy of ultraviolet light considering the time to irradiate the irradiation target area AR is the integrated light amount (unit: J).
  • the energy per unit time is defined as power (unit: W)
  • the power per unit area of the ultraviolet light irradiated to the irradiation target area AR is defined as illuminance (unit: W/m 2 )
  • the cumulative amount of light per unit area is defined as ultraviolet light amount (unit: J/m 2 or W ⁇ s/m 2 ).
  • FIG. 2 is a diagram illustrating the ultraviolet light irradiation system 301 of this embodiment.
  • the ultraviolet light irradiation system 301 is an ultraviolet light source unit 11 that generates ultraviolet light; N (N is a natural number of 2 or more) irradiation units 13 that irradiate M (M is a natural number of 2 or more) irradiation target areas AR with the ultraviolet light; a light distribution unit 12-10 for distributing the ultraviolet light to a path 14 to each irradiation unit 13; A direction for instructing the irradiation unit 13 of the direction of the ultraviolet light to be output so that the ultraviolet light output from at least two of the N irradiation units 13 is superimposed to irradiate one irradiation target area AR.
  • a control unit 18 Prepare.
  • the ultraviolet light source unit 11 outputs light in the ultraviolet region (ultraviolet light) that is effective for sterilization and the like.
  • the ultraviolet light source section 11 and the light distribution section 12-10 are connected by an optical transmission line 16, which is an optical fiber or space.
  • the optical splitter 12-10 is an equal splitting coupler, an unequal splitting coupler, a variable splitting ratio coupler, or an optical switch.
  • the equal splitting coupler equally splits the power of the ultraviolet light input through the optical transmission line 16 to each output port.
  • the unequal splitting coupler splits the power of the ultraviolet light input through the optical transmission line 16 to each output port at a preset splitting ratio.
  • the unequal branch coupler is, for example, the unequal branch coupler disclosed in JP-A-2020-036068.
  • the variable branching ratio coupler can change the branching ratio according to instructions from the general control unit 15-10.
  • the branching ratio variable coupler branches the power of the ultraviolet light input through the optical transmission line 16 according to the branching ratio, and outputs the branched light to a plurality of output ports.
  • the variable branching ratio coupler has a configuration including a Mach-Zehnder interferometer that changes the branching ratio with a heater, as disclosed in Reference 1, for example. (Reference 1) NTT Technical Journal (https://www.ntt.co.jp/journal/0505/files/jn200505012.pdf), published in May 2005
  • the optical switch outputs the ultraviolet light input through the optical transmission line 16 to one of the output ports according to the switching timing specified by the general control unit 15-10.
  • the time during which ultraviolet light is output to each output port is called a time slot.
  • the "distribution ratio” means the time ratio in the case of an optical switch, and the branch ratio in the case of a coupler.
  • the ultraviolet light output from the output ports 1 to N is irradiated to the irradiation target areas AR (1 to N) via the route 14 and the irradiation unit 13, respectively.
  • FIG. Path 14 propagates the ultraviolet light distributed by the light distribution section 12-10 to each irradiation section 13.
  • FIG. Path 14 is an optical fiber. Since it is an optical fiber, it can be installed in narrow places where conventional robots and devices cannot enter.
  • FIG. 3 is a diagram illustrating cross sections of optical fibers that can be used for the optical fiber transmission lines 16 and 14. As shown in FIG. (1) Solid Core Optical Fiber This optical fiber has one solid core 52 in the clad 60 having a higher refractive index than the clad 60 . "Full" means "not hollow". The solid core can also be realized by forming an annular low refractive index region in the clad.
  • Hole-assisted optical fiber This optical fiber has a solid core 52 in the clad 60 and a plurality of holes 53 arranged around the core.
  • the medium of the holes 53 is air, and the refractive index of air is sufficiently smaller than that of quartz-based glass. Therefore, the hole-assisted optical fiber has a function of returning light leaking from the core 52 due to bending or the like to the core 52 again, and is characterized by a small bending loss.
  • Hole structure optical fiber This optical fiber has a hole group 53a of a plurality of holes 53 in the clad 60, and has an effective refractive index lower than that of the host material (glass or the like). This structure is called a photonic crystal fiber.
  • This structure can take a structure in which a high-refractive-index core with a changed refractive index does not exist, and light can be confined using the region 52a surrounded by the holes 53 as an effective core region.
  • photonic crystal fibers can reduce the effects of absorption and scattering losses due to additives in the core.
  • Optical characteristics that cannot be realized can be realized.
  • This optical fiber has a core region made of air. Light can be confined in the core region by forming a photonic bandgap structure with a plurality of holes in the cladding region or an anti-resonant structure with glass wires. This optical fiber has low nonlinear effects and is capable of delivering high power or high energy lasers.
  • Coupling Core Optical Fiber In this optical fiber, a plurality of solid cores 52 having a high refractive index are closely arranged in a clad 60 . This optical fiber guides light by optical wave coupling between solid cores 52 . Coupling-core type optical fibers can disperse and transmit light as many times as the number of cores, so high power can be used for efficient sterilization. There is an advantage that the service life can be extended.
  • the irradiation unit 13 irradiates the ultraviolet light transmitted through the route 14 to a predetermined target location (irradiation target area AR) for sterilization or the like.
  • the irradiation unit 13 is composed of an optical system such as a lens designed for the wavelength of ultraviolet light.
  • the irradiation unit 13 also includes an actuator that moves the optical system and changes the irradiation direction of the ultraviolet light.
  • the direction control unit 18 instructs the actuator of the irradiating unit 13 about the direction of the ultraviolet light to be irradiated (which irradiation target area AR to irradiate).
  • the irradiation units 13 each have an irradiation target area AR for which they are in charge.
  • the irradiation unit 13-1 is in charge of the irradiation target area AR1
  • the irradiation unit 13-2 is in charge of the irradiation target area AR2
  • . . . the irradiation unit 13-N is in charge of the irradiation target area ARN.
  • the direction control unit 18 instructs the actuators of the respective irradiation units 13 to irradiate ultraviolet light onto the irradiation target areas AR for which they are responsible.
  • the integrated control unit 15-10 determines the necessity of irradiating the irradiation target area AR with the ultraviolet light, and irradiates the irradiation target area AR with the low necessity with the ultraviolet light with the high necessity irradiation.
  • the direction control unit 18 is instructed to irradiate the target area AR.
  • the virus load in the irradiation target area AR1 has increased and the virus load in the irradiation target area AR2 has decreased.
  • the general control unit 15-10 obtains such information and instructs the direction control unit 18 to change the irradiation direction of the ultraviolet light from the irradiation unit 13-2 from the irradiation target area AR2 to the irradiation target area AR1. do.
  • the direction control unit 18 instructs the actuator of the irradiation unit 13-2 to change the irradiation direction from the irradiation target area AR2 to the irradiation target area AR1.
  • the ultraviolet light from the irradiating section 13-1 and the ultraviolet light from the irradiating section 13-2 are superimposed on the irradiation target area AR1 to increase the amount of ultraviolet light, and sterilization and the like can be completed in a short time.
  • the integrated control unit 15-10 appropriately instructs the irradiation units 13 about the irradiation direction of the ultraviolet light, so that sterilization or the like can be realized in a short time.
  • the general control unit 15-10 controls the distribution ratio to the route 14 to the irradiation unit 13 that superimposes the ultraviolet light on one irradiation target area AR. may be instructed to the optical distributor 12-10 to increase the .
  • the general control unit 15-10 changes the irradiation direction of the ultraviolet light from the irradiation unit 13-2 from the irradiation target area AR2 to the irradiation target area AR1.
  • the control unit 18 instructs the optical distribution unit 12-10 to increase the branching ratio of the output ports 1 and 2.
  • the general control unit 15-10 changes the irradiation direction of the ultraviolet light of the irradiation unit 13-2 from the irradiation target area AR2 to the irradiation target area AR1.
  • the optical distribution unit 12-10 is instructed to increase the time slots of the output ports 1 and 2.
  • the general control unit 15-10 When the general control unit 15-10 outputs an instruction to superimpose the ultraviolet light, by increasing the distribution ratio of the output port to the irradiation target area on which the ultraviolet light is superimposed on the light distribution unit 12-10, the time can be shortened. sterilization etc. can be realized.
  • FIG. 4 is a diagram illustrating the ultraviolet light irradiation system 302 of this embodiment.
  • the ultraviolet light irradiation system 302 has a sensor unit that detects whether or not there is an avoidance target H that should be avoided from being exposed to the ultraviolet light in an area including the irradiation target area AR. 31 is further provided.
  • the sensor unit 31-n detects the existence and movement of each irradiation target area ARn and avoidance targets (humans, animals, etc.) H in the vicinity thereof.
  • the sensor unit 31 performs temperature acquisition by a thermometer, infrared acquisition by an infrared sensor, image acquisition by a camera, light acquisition by LiDAR (Light Detection and Ranging), etc., and information processing (shape, face, fingerprint, vein, iris etc.) to detect the existence and movement of the avoidance target.
  • the sensor unit 31-n monitors not only whether or not the object to be avoided H exists within the irradiation target area ARn, but also the periphery of the irradiation target area ARn. Therefore, based on the movement of the avoidance target H, the sensor unit 31-n determines whether the avoidance target H will enter the irradiation target area ARn or not, or whether the avoidance target H will move away from the irradiation target area ARn. It is possible to detect whether the Then, the sensor section 31 notifies the integrated control section 15-10 of the detection result.
  • the notification to the integrated control unit 15-10 may be wired or wireless.
  • the general control unit 15-10 receives the notification from the sensor unit 31, and designates the irradiation target area AR in which the avoidance target H exists as the target for superimposing the ultraviolet light.
  • the integrated control unit 15-10 sterilizes the irradiation target area AR1 in a short time. Judged as a target.
  • the total control unit 15-10 causes the irradiation unit 13-2 to irradiate the irradiation target area AR2 with ultraviolet light. A decision is made to turn to area AR1.
  • the general control unit 15-10 irradiates the irradiation target area AR with the ultraviolet light from the plurality of irradiation units 13 during the time when the avoidance target H is not present in the irradiation target area AR.
  • the ultraviolet light is superimposed, the amount of ultraviolet light increases and there is a possibility that the object to be avoided H will be harmed.
  • the integrated control unit 15-10 superimposes the ultraviolet light during the time when the avoidance target H is not present, thereby enhancing safety.
  • the general control unit 15-10 redirects the ultraviolet light from the irradiation unit 13-2 to the irradiation target area AR1 after the avoidance target H has left the irradiation target area AR1.
  • FIG. 5 is a diagram illustrating the ultraviolet light irradiation system 303 of this embodiment.
  • the ultraviolet light irradiation system 303 further includes a monitor unit 41 that observes the amount of ultraviolet light for each route 14 .
  • the monitor unit 41 may be arranged on the route 14 to measure the amount of ultraviolet light input to the irradiation unit 13, measure the amount of ultraviolet light emitted by the irradiation unit 13, or measure the amount of ultraviolet light emitted by the irradiation unit 13.
  • the amount of ultraviolet light received by the entire target area AR may be measured.
  • the amount of light is the integrated amount of light (unit: J), power (unit: W), illuminance in the irradiation target area AR (unit: W/m 2 ), energy per unit area in the irradiation target area AR (unit: J/m 2 or W ⁇ s/m 2 ). Then, the monitor section 41 notifies the total control section 15-10 of the amount of light.
  • the notification to the integrated control unit 15-10 may be wired or wireless.
  • the general control unit 15-10 superimposes the ultraviolet light on the direction control unit 18 when the amount of the ultraviolet light irradiated to the irradiation target area AR on which the ultraviolet light is superimposed exceeds a predetermined value. to terminate the irradiation of the irradiation target area AR.
  • the general control unit 15-10 receives the notification from the monitor unit 41, and terminates superimposed irradiation of ultraviolet light when the amount of ultraviolet light in the irradiation target area AR on which the ultraviolet light is superimposed exceeds a predetermined value.
  • the predetermined value is determined by the amount of light required for deactivation of the irradiation target area AR.
  • the amount of light required for inactivation is the amount of ultraviolet light (unit: J/m 2 ) required to satisfy the desired inactivation (how much initial bacteria are reduced or how much viruses are inactivated). means. In this way, by ending superimposed irradiation of ultraviolet light when the amount of ultraviolet light exceeds a predetermined value, excessive sterilization etc. can be avoided, and ultraviolet light is not irradiated like the irradiation target area AR2 (sterilization etc. is not done).
  • the irradiation section 13-1 and the irradiation section 13-2 are currently irradiating the irradiation target area AR1 with superimposed ultraviolet light.
  • the integrated control unit 15-10 sums the amounts of ultraviolet light notified by the monitor units 41 of the irradiation units 13-1 and 13-2 and compares the sum with a predetermined value. When the total amount of ultraviolet light exceeds a predetermined value, the total control unit 15-10 determines that the sterilization or the like is completed, and causes the direction control unit 18 to irradiate the ultraviolet light irradiation direction of the irradiation unit 13-2 from the irradiation target area AR1. It instructs to return to the target area AR2.
  • the light distribution unit 12-10 has the ultraviolet light source unit 11 as a laser and an equal branching coupler, an unequal branching coupler, or a variable branching ratio coupler, superimposing the ultraviolet light on one irradiation target area AR results in Light can be attenuated due to its wave nature. Therefore, the irradiation unit 13 of the ultraviolet light irradiation system (301 to 303) has an optical delay circuit with a variable delay amount. Then, when superimposing the ultraviolet light on one irradiation target area AR, the direction control unit 18 determines the irradiation target area AR based on the distance of each route from the light distribution unit 12-10 to the irradiation target area AR.
  • optical delay circuit There are known examples of the optical delay circuit as follows.
  • Public example 1 Optical modulator (https://www.japanlaser.co.jp/product/conoptics_modulation-systems/, retrieved on October 21, 2021)
  • Public Known Example 3 Optical Delay Line (https://www.optoscience.com/maker/oz/fiber_device/optical_delay_line.html, retrieved on October 21, 2021)
  • the direction control unit 18 preliminarily determines the optical path length from the light distribution unit 12-10 to each irradiation unit 13, and the optical path length to each irradiation target area AR for each irradiation unit 13 (from the irradiation unit 13-1 to the irradiation target area AR1, AR2, . AR2, . . . , the optical path length to ARN).
  • the total control unit 15-10 instructs to change the ultraviolet light irradiation direction of the irradiation unit 13-2 to the irradiation target area AR1
  • the direction control unit 18 changes the ultraviolet light irradiation direction of the irradiation unit 13-2 to the irradiation target.
  • the amount of change in the optical path length when the area AR2 is changed to the irradiation target area AR1 is calculated.
  • the optical path length that does not weaken (the optical path length from the light distribution unit 12-10 to the irradiation target area AR1 via the irradiation unit 13-2) is calculated.
  • the direction control unit 18 adjusts the optical delay circuit of the irradiation unit 13-2 so that the calculated optical path length is achieved.
  • the ultraviolet light irradiation system of this embodiment can avoid weakening the illuminance due to interference when trying to superimpose the ultraviolet light in order to increase the illuminance.
  • Ultraviolet light source unit 12 Light distribution unit (equally branched) 12-10: Light distribution units 13, 13-1, . . . , 13-N: Irradiation unit 14: Direction (optical fiber) 15-10: General control unit 16: Optical transmission line 18: Direction control units 31, 31-1, . Hole group 53c: Hole 60: Cladding 300, 301, 302, 303: Ultraviolet light irradiation system AR1, AR2, ..., ARN: Area to be irradiated (area to be irradiated with ultraviolet light)

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

The purpose of the present invention is to provide an ultraviolet light irradiation system capable of flexibly responding to each of requests from irradiation target regions. This ultraviolet light irradiation system 301 comprises: an ultraviolet light source unit 11 which generates ultraviolet light; N (N is a natural number no less than 2) irradiation units 13 which irradiate M (M is a natural number no less than 2) irradiation target regions with the ultraviolet light; a light distribution unit 12-10 which distributes the ultraviolet light to paths 14 toward the respective irradiation units 13; and a direction control unit 18 which controls the direction of the ultraviolet light output from the irradiation units 13 so that the ultraviolet light output from at least two irradiation units 13 among the N irradiation units is superposed and emitted onto one irradiation target region AR.

Description

紫外光照射システムUltraviolet light irradiation system
 本開示は、紫外光を用いて殺菌やウィルスの不活化を行う紫外光照射システムに関する。 The present disclosure relates to an ultraviolet light irradiation system that uses ultraviolet light to sterilize and inactivate viruses.
 感染症予防などの目的から、紫外光を用いた殺菌やウィルスの不活化を行うシステムの需要が高まっている。当該システムには、大きく3つのカテゴリの製品がある。なお、本明細書では、「殺菌等」と記載する場合、殺菌とウィルスの不活化を意味するものとする。
(I)移動型殺菌ロボット
 非特許文献1の製品は、紫外光を照射する自律移動型のロボットである。当該ロボットは、病室などの建物内の部屋の中を移動しながら紫外光を照射することで、人手を介さず、自動で広い範囲の殺菌等を実現できる。
(II)据え置き型空気清浄機
 非特許文献2の製品は、天井や室内の所定の場所に設置され、室内の空気を循環しながら殺菌等する装置である。当該装置は、直接紫外光を照射せず、人体への影響がないため、安全性の高い殺菌が可能である。
(III)ポータブル型殺菌装置
 非特許文献3の製品は、紫外光源を搭載したポータブル型の装置である。ユーザが当該装置を所望のエリアに持って行って紫外光を照射できる。このため、当該装置は様々な場所で使用可能である。
Demand is increasing for systems that perform sterilization and virus inactivation using ultraviolet light for the purpose of preventing infectious diseases. There are three main categories of products in this system. In this specification, the term “sterilization, etc.” shall mean sterilization and virus inactivation.
(I) Mobile sterilization robot The product of Non-Patent Document 1 is an autonomous mobile robot that irradiates ultraviolet light. By irradiating the robot with ultraviolet light while moving in a room in a building such as a hospital room, the robot can automatically realize sterilization in a wide range without human intervention.
(II) Stationary air purifier The product of Non-Patent Document 2 is a device that is installed on the ceiling or at a predetermined place in a room, and performs sterilization while circulating the air in the room. Since this device does not directly irradiate ultraviolet light and has no effect on the human body, highly safe sterilization is possible.
(III) Portable Sterilization Apparatus The product of Non-Patent Document 3 is a portable apparatus equipped with an ultraviolet light source. A user can bring the device to a desired area and irradiate it with ultraviolet light. Therefore, the device can be used in various places.
 しかし、非特許文献に記載される装置には次のような課題がある。
(1)経済性
 非特許文献1の製品は、高出力の紫外光を照射するため、装置が大掛かりとなり高価となる。このため、非特許文献1の製品には経済的なシステムの実現が困難という課題がある。
(2)汎用性
 非特許文献1の製品は、紫外光照射箇所がロボットが移動/進入できる場所に限定されるため、細かい場所や奥まった場所などへの紫外光の照射が困難である。
 非特許文献2の製品は、循環させた室内の空気を殺菌するため、殺菌等をしたい場所に直接紫外光を照射することができない。
 非特許文献3の製品は、例えば、細い管路や人が入られないエリアについては紫外光を照射することができない。
 このように、非特許文献の製品には、任意の場所に紫外光を照射できるという汎用性に課題がある。
(3)操作性
 非特許文献3の製品は、可搬性であり様々な場所で紫外光の照射が可能である。しかし、対象箇所で十分な殺菌等の効果が得られるためには、ユーザにスキルや知識を要求しており、操作性に課題がある。
However, the device described in Non-Patent Document has the following problems.
(1) Economy Since the product of Non-Patent Document 1 is irradiated with high-output ultraviolet light, the apparatus becomes large and expensive. Therefore, the product of Non-Patent Document 1 has a problem that it is difficult to realize an economical system.
(2) Versatility In the product of Non-Patent Document 1, since the ultraviolet light irradiation position is limited to a place where the robot can move/enter, it is difficult to irradiate the ultraviolet light to a small place or a deep place.
Since the product of Non-Patent Document 2 sterilizes the circulated indoor air, it is not possible to directly irradiate a place to be sterilized with ultraviolet light.
The product of Non-Patent Document 3, for example, cannot irradiate ultraviolet light to narrow pipes or areas where people cannot enter.
Thus, the product of Non-Patent Literature has a problem of versatility in that it can irradiate any place with ultraviolet light.
(3) Operability The product of Non-Patent Document 3 is portable and can be irradiated with ultraviolet light at various locations. However, in order to obtain sufficient effects such as sterilization at the target location, the user is required to have skill and knowledge, and there is a problem in operability.
 これらの課題に対して、図1のような光ファイバを用いた紫外光照射システム300が考えられる。この紫外光照射システムは、細くて曲げやすい光ファイバを用いて光源11から紫外光を伝送し、光ファイバ14の先端から出力される紫外光をピンポイントで殺菌等したい照射対象域ARへ照射する。光ファイバ14の先端の照射部13を移動させるだけで任意の場所に紫外光を照射できるため上記課題(2)の汎用性を解消できる。また、紫外光光源の移動や設定が不要でユーザにスキルや知識を求めないため、上記課題(3)の操作性も解消できる。さらに、光スプリッタのような光分配部12を光伝送路16に設け、FTTH(Fiber To The Home)のようなP-MP(Point to MultiPoint)のシステム構成とすることで、単一の光源をシェアすることで複数の箇所を殺菌等できる。このため、上記課題(1)の経済性も解消できる。 For these problems, an ultraviolet light irradiation system 300 using an optical fiber as shown in FIG. 1 is conceivable. This ultraviolet light irradiation system transmits ultraviolet light from the light source 11 using a thin and flexible optical fiber, and irradiates the ultraviolet light output from the tip of the optical fiber 14 to an irradiation target area AR to be sterilized or the like with pinpoint accuracy. . The versatility of the above problem (2) can be solved because the ultraviolet light can be irradiated to any place simply by moving the irradiation unit 13 at the tip of the optical fiber 14 . In addition, since there is no need to move or set the ultraviolet light source, and the user is not required to have skills or knowledge, the operability of the above problem (3) can be resolved. Furthermore, by providing an optical distribution unit 12 such as an optical splitter in the optical transmission line 16 to form a P-MP (Point to MultiPoint) system configuration such as FTTH (Fiber To The Home), a single light source can be used. By sharing, you can sterilize multiple places. Therefore, it is possible to solve the problem (1) economically.
 しかし、紫外光照射システムとしてのP-MP構成の実現には次のような課題がある。
 照射対象域は、それぞれ光ファイバでの伝送損失、面積、不活化要求時間が異なる。なお、不活化要求時間とは、所望の不活化率(照射前の状態と照射後の状態の菌の比率、あるいは照射前の状態と照射後の状態のウィルスの比率)を満たすために要する時間を意味する。
However, there are the following problems in realizing the P-MP configuration as an ultraviolet light irradiation system.
The irradiation target areas differ in transmission loss, area, and required time for deactivation in the optical fiber. The required inactivation time is the time required to satisfy the desired inactivation rate (the ratio of bacteria before irradiation to the state after irradiation, or the ratio of viruses between the state before irradiation and after irradiation). means
 図1で課題を説明する。照射対象域ARNは標準的な菌やウィルスの量であることに対し、照射対象域AR1は菌やウィルスの量が多く、短時間で殺菌等が必要な箇所、照射対象域AR2は菌やウィルスの量が少なく、殺菌等が不要な箇所とする。この場合であっても、紫外光照射システム300は全ての光ファイバ14に均等に紫外光を分配する(光分配部が等分岐カプラであれば紫外光パワーを等分岐し、光スイッチであれば各出力ポートへ均等にタイムスロットを割り当てる)ので、殺菌等が不要な照射対象域AR2にも紫外光が供給される一方、照射対象域AR1にも同じ紫外光量が分配されるので殺菌等を短時間で終わらせることができず非効率である。つまり、紫外光照射システム300には、照射対象域それぞれの要求に柔軟に対応することが困難という課題があった。 The issue is explained in Figure 1. The irradiation target area ARN has a standard amount of bacteria and viruses, while the irradiation target area AR1 has a large amount of bacteria and viruses and is a place that needs to be sterilized in a short time, and the irradiation target area AR2 has bacteria and viruses. It should be a place where the amount of waste is small and sterilization, etc. is unnecessary. Even in this case, the ultraviolet light irradiation system 300 equally distributes the ultraviolet light to all the optical fibers 14 (if the light distribution unit is an equal branch coupler, the ultraviolet light power is equally branched; Since the time slots are equally assigned to each output port, the ultraviolet light is supplied to the irradiation target area AR2, which does not require sterilization, etc., while the same amount of ultraviolet light is distributed to the irradiation target area AR1, so sterilization, etc. is shortened. It is inefficient because it cannot be completed in time. In other words, the ultraviolet light irradiation system 300 has a problem that it is difficult to flexibly meet the requirements of each irradiation target area.
 本発明は、上記課題を解決するために、照射対象域それぞれの要求に柔軟に対応することができる紫外光照射システムを提供することを目的とする。 An object of the present invention is to provide an ultraviolet light irradiation system that can flexibly meet the requirements of each irradiation target area in order to solve the above problems.
 上記目的を達成するために、本発明に係る紫外光照射システムは、照射方向が可変である照射部を備え、短時間で殺菌等が必要な照射対象域に対し、他の照射部からの紫外光を重畳させて照度を高めて照射することとした。 In order to achieve the above object, the ultraviolet light irradiation system according to the present invention includes an irradiation unit whose irradiation direction is variable, and emits ultraviolet light from other irradiation units to an irradiation target area that requires sterilization or the like in a short time. It was decided to irradiate by superimposing the light to increase the illuminance.
 具体的には、本発明に係る紫外光照射システムは、
 紫外光を発生させる紫外光源部と、
 前記紫外光をM個(Mは2以上の自然数)の照射対象域に照射するN個(Nは2以上の自然数)の照射部と、
 前記紫外光をそれぞれの前記照射部への方路へ分配する光分配部と、
 N個のうち少なくとも2つの前記照射部から出力される前記紫外光が重畳して1つの前記照射対象域に照射するように、出力する前記紫外光の方向を前記照射部に対して指示する方向制御部と、
を備える。
Specifically, the ultraviolet light irradiation system according to the present invention includes:
an ultraviolet light source that generates ultraviolet light;
N (N is a natural number of 2 or more) irradiation units that irradiate M (M is a natural number of 2 or more) irradiation target regions with the ultraviolet light;
a light distribution unit that distributes the ultraviolet light to each of the irradiation units;
A direction for instructing the irradiating unit on the direction of the ultraviolet light to be output so that the ultraviolet light output from at least two of the N irradiating units is superimposed and irradiates one irradiation target area. a control unit;
Prepare.
 また、本発明に係る紫外光照射システムは、前記照射対象域に前記紫外光を照射する必要性を判断し、前記必要性の低い前記照射対象域に照射している前記紫外光を、前記必要性の高い前記照射対象域に照射するように前記方向制御部に指示する総合制御部をさらに備えることを特徴とする。 Further, the ultraviolet light irradiation system according to the present invention judges the necessity of irradiating the irradiation target area with the ultraviolet light, and irradiates the ultraviolet light irradiating the irradiation target area with the low necessity. It is characterized by further comprising a total control unit that instructs the direction control unit to irradiate the irradiation target area with high efficiency.
 本紫外光照射システムは、照射部が紫外光を照射する方向を変えることができる。殺菌等が不要な照射対象域を担当する照射部は、短時間で殺菌等を行いたい照射対象域へ紫外光の照射方向を変える。このため、短時間で殺菌等を行いたい照射対象域には、自身を担当する照射部からの紫外光と他を担当する照射部からの紫外光が重畳し、紫外光の照度が高まる。この結果、当該照射対象域の殺菌等を短時間で終了することができる。 This ultraviolet light irradiation system can change the direction in which the irradiation unit emits ultraviolet light. The irradiating unit, which is in charge of an irradiation target area that does not require sterilization or the like, changes the irradiation direction of the ultraviolet light to an irradiation target area that requires sterilization or the like in a short period of time. For this reason, in an irradiation target area where sterilization or the like is desired to be performed in a short time, the ultraviolet light from the irradiation section in charge of itself and the ultraviolet light from the irradiation section in charge of the others are superimposed, and the illuminance of the ultraviolet light increases. As a result, sterilization and the like of the irradiation target area can be completed in a short time.
 従って、本発明は、照射対象域それぞれの要求に柔軟に対応することができる紫外光照射システムを提供することができる。 Therefore, the present invention can provide an ultraviolet light irradiation system that can flexibly meet the requirements of each irradiation target area.
 また、殺菌等が不要な照射対象域へ紫外光を照射せず、当該紫外光を必要な照射対象域へ振り替えるため、紫外光照射システム全体の効率が高まる。ここでの効率とは次を意味する。
(a)短時間で殺菌等を行いたい照射対象域に対し、紫外光の振り替えで対応するので、紫外光源の出力を変化させる必要がない。つまり、紫外光源の出力で対応するより電力的な効率が高まる。
(b)殺菌等が不要な照射対象域へ紫外光を所望の照射対象域に振り向け、紫外光を集中させるので殺菌等の時間を短時間化できる。つまり、トータル的な殺菌等の時間を短縮でき、時間的な効率が高まる。
In addition, since the ultraviolet light is not applied to an irradiation target area that does not require sterilization or the like, and the ultraviolet light is transferred to a necessary irradiation target area, the efficiency of the entire ultraviolet light irradiation system is increased. Efficiency here means:
(a) It is not necessary to change the output of the ultraviolet light source because the irradiation target area to be sterilized or the like in a short time can be dealt with by switching the ultraviolet light. That is, the output of the ultraviolet light source is more efficient in terms of electric power than corresponding output.
(b) Ultraviolet light is directed to a desired irradiation target area where sterilization or the like is unnecessary, and the ultraviolet light is concentrated, so that the time required for sterilization or the like can be shortened. In other words, the total time for sterilization and the like can be shortened, and the efficiency in terms of time is increased.
 本発明に係る紫外光照射システムの前記光分配部は、前記紫外光をそれぞれの前記方路へ分配する分配比が可変であり、前記総合制御部は、1つの前記照射対象域に前記紫外光を重畳させている前記照射部への前記方路への分配比率を高くするように前記光分配部に指示することとしてもよい。紫外光の照射方向とともに各方路への分配比も調整することで、照射対象域それぞれの要求にさらに柔軟に対応することができる。 The light distribution unit of the ultraviolet light irradiation system according to the present invention has a variable distribution ratio for distributing the ultraviolet light to each of the directions, and the general control unit distributes the ultraviolet light to one irradiation target area. may be instructed to the light distribution unit to increase the distribution ratio to the direction to the irradiation unit on which is superimposed. By adjusting the distribution ratio to each direction as well as the irradiation direction of the ultraviolet light, it is possible to more flexibly meet the requirements of each irradiation target area.
 本発明に係る紫外光照射システムは、前記照射対象域を含む領域に前記紫外光の被爆を回避すべき回避対象が存在するか否かを検知するセンサ部をさらに備え、
 前記総合制御部は、前記回避対象が存在した前記照射対象域を前記紫外光を重畳させる前記照射対象域とし、前記照射対象域に前記回避対象が不在である時間に、複数の前記照射部から前記照射対象域へ前記紫外光を照射させてもよい。照射対象域に存在する回避対象に紫外光が照射されることを防ぎ、安全性を高めることができる。
The ultraviolet light irradiation system according to the present invention further comprises a sensor unit for detecting whether or not there is an avoidance target to be avoided from being exposed to the ultraviolet light in a region including the irradiation target region,
The integrated control unit sets the irradiation target area where the avoidance target exists as the irradiation target area to be superimposed with the ultraviolet light, and performs irradiation from the plurality of irradiation units during a time when the avoidance target is not present in the irradiation target area. The irradiation target area may be irradiated with the ultraviolet light. It is possible to prevent ultraviolet light from being applied to avoidance targets existing in the irradiation target area, thereby enhancing safety.
 本発明に係る紫外光照射システムは、前記方路毎に前記紫外光の光量を観測するモニタ部をさらに備え、
 前記総合制御部は、前記紫外光を重畳させている前記照射対象域に照射される前記紫外光の光量が所定値を超えた時点で、前記方向制御部に対して前記紫外光を重畳して前記照射対象域へ照射することを終了させてもよい。過剰な紫外光が照射対象域に照射されることを防ぎ、紫外光照射システム全体の効率が高まる。
The ultraviolet light irradiation system according to the present invention further includes a monitor unit that observes the amount of ultraviolet light for each of the directions,
The general control unit superimposes the ultraviolet light on the direction control unit when the amount of the ultraviolet light irradiated to the irradiation target area on which the ultraviolet light is superimposed exceeds a predetermined value. The irradiation of the irradiation target area may be terminated. Excessive ultraviolet light is prevented from being applied to the irradiation target area, and the efficiency of the entire ultraviolet light irradiation system is increased.
 本発明に係る紫外光照射システムの前記照射部は、遅延量が可変である光遅延回路を有しており、前記方向制御部は、1つの前記照射対象域に前記紫外光を重畳させるときに、前記光分配部から前記照射対象域までの各経路の距離に基づき、前記照射対象域で前記紫外光の位相が揃うように前記光遅延回路を調整することを特徴とする。重畳したことでパワーが減衰することが回避できる。 The irradiation unit of the ultraviolet light irradiation system according to the present invention has an optical delay circuit with a variable delay amount, and the direction control unit superimposes the ultraviolet light on one irradiation target area. The optical delay circuit is adjusted based on the distance of each path from the light distribution unit to the irradiation target area so that the phases of the ultraviolet light are aligned in the irradiation target area. Attenuation of power due to superimposition can be avoided.
 なお、上記各発明は、可能な限り組み合わせることができる。 The above inventions can be combined as much as possible.
 本発明は、照射対象域それぞれの要求に柔軟に対応することができる紫外光照射システムを提供することができる。 The present invention can provide an ultraviolet light irradiation system that can flexibly meet the requirements of each irradiation target area.
本発明の課題を説明する図である。It is a figure explaining the subject of this invention. 本発明に係る紫外光照射システムを説明する図である。It is a figure explaining the ultraviolet light irradiation system which concerns on this invention. 光ファイバの断面構造を説明する図である。It is a figure explaining the cross-sectional structure of an optical fiber. 本発明に係る紫外光照射システムを説明する図である。It is a figure explaining the ultraviolet light irradiation system which concerns on this invention. 本発明に係る紫外光照射システムを説明する図である。It is a figure explaining the ultraviolet light irradiation system which concerns on this invention.
 添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。 An embodiment of the present invention will be described with reference to the attached drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In addition, in this specification and the drawings, constituent elements having the same reference numerals are the same as each other.
 なお、本明細書では、各方路へ供給する時間を考慮した紫外光のエネルギー及び照射対象域ARに照射する時間を考慮した紫外光のエネルギーを積算光量(単位J)とし、それら紫外光の単位時間あたりのエネルギーをパワー(単位W)とし、照射対象域ARに照射する紫外光の単位面積当たりのパワーを照度(単位W/m)とし、単位面積当たりの積算光量を紫外光量(単位J/m又はW・s/m)として説明する。 In this specification, the energy of ultraviolet light considering the time to be supplied to each direction and the energy of ultraviolet light considering the time to irradiate the irradiation target area AR is the integrated light amount (unit: J). The energy per unit time is defined as power (unit: W), the power per unit area of the ultraviolet light irradiated to the irradiation target area AR is defined as illuminance (unit: W/m 2 ), and the cumulative amount of light per unit area is defined as ultraviolet light amount (unit: J/m 2 or W·s/m 2 ).
(実施形態1)
 図2は、本実施形態の紫外光照射システム301を説明する図である。紫外光照射システム301は、
 紫外光を発生させる紫外光源部11と、
 前記紫外光をM個(Mは2以上の自然数)の照射対象域ARに照射するN個(Nは2以上の自然数)の照射部13と、
 前記紫外光をそれぞれの照射部13への方路14へ分配する光分配部12-10と、
 N個のうち少なくとも2つの照射部13から出力される前記紫外光が重畳して1つの照射対象域ARに照射するように、出力する前記紫外光の方向を照射部13に対して指示する方向制御部18と、
を備える。
(Embodiment 1)
FIG. 2 is a diagram illustrating the ultraviolet light irradiation system 301 of this embodiment. The ultraviolet light irradiation system 301 is
an ultraviolet light source unit 11 that generates ultraviolet light;
N (N is a natural number of 2 or more) irradiation units 13 that irradiate M (M is a natural number of 2 or more) irradiation target areas AR with the ultraviolet light;
a light distribution unit 12-10 for distributing the ultraviolet light to a path 14 to each irradiation unit 13;
A direction for instructing the irradiation unit 13 of the direction of the ultraviolet light to be output so that the ultraviolet light output from at least two of the N irradiation units 13 is superimposed to irradiate one irradiation target area AR. a control unit 18;
Prepare.
 紫外光源部11は、殺菌等に有効である紫外領域の光(紫外光)を出力する。紫外光源部11と光分配部12-10とは光ファイバ又は空間である光伝送路16で接続される。 The ultraviolet light source unit 11 outputs light in the ultraviolet region (ultraviolet light) that is effective for sterilization and the like. The ultraviolet light source section 11 and the light distribution section 12-10 are connected by an optical transmission line 16, which is an optical fiber or space.
 光分配部12-10は、等分岐カプラ、不等分岐カプラ、又は分岐比可変カプラ、又は光スイッチである。
 等分岐カプラは、光伝送路16で入力された紫外光を各出力ポートに均等にパワー分岐する。
 不等分岐カプラは、光伝送路16で入力された紫外光を予め設定された分岐比で各出力ポートにパワー分岐する。不等分岐カプラは、例えば、特開2020-036068で開示される不等分岐カプラである。
The optical splitter 12-10 is an equal splitting coupler, an unequal splitting coupler, a variable splitting ratio coupler, or an optical switch.
The equal splitting coupler equally splits the power of the ultraviolet light input through the optical transmission line 16 to each output port.
The unequal splitting coupler splits the power of the ultraviolet light input through the optical transmission line 16 to each output port at a preset splitting ratio. The unequal branch coupler is, for example, the unequal branch coupler disclosed in JP-A-2020-036068.
 分岐比可変カプラは、総合制御部15-10からの指示によって分岐比を変化させることができる。分岐比可変カプラは、光伝送路16で入力された紫外光を当該分岐比に従ってパワー分岐し、複数の出力ポートに出力する。分岐比可変カプラは、例えば、参考文献1に開示されるような、ヒーターで分岐比を変化させるマッハツェンダ干渉計を備える構成である。
(参考文献1)NTT技術ジャーナル(https://www.ntt.co.jp/journal/0505/files/jn200505012.pdf)、2005年5月発行
The variable branching ratio coupler can change the branching ratio according to instructions from the general control unit 15-10. The branching ratio variable coupler branches the power of the ultraviolet light input through the optical transmission line 16 according to the branching ratio, and outputs the branched light to a plurality of output ports. The variable branching ratio coupler has a configuration including a Mach-Zehnder interferometer that changes the branching ratio with a heater, as disclosed in Reference 1, for example.
(Reference 1) NTT Technical Journal (https://www.ntt.co.jp/journal/0505/files/jn200505012.pdf), published in May 2005
 光スイッチは、総合制御部15-10からの指示による切り替えタイミングにしたがい、光伝送路16で入力された紫外光をいずれかの出力ポートに出力する。なお、各出力ポートに紫外光を出力する時間をタイムスロットという。 The optical switch outputs the ultraviolet light input through the optical transmission line 16 to one of the output ports according to the switching timing specified by the general control unit 15-10. The time during which ultraviolet light is output to each output port is called a time slot.
 本明細書では、「分配比」とは光スイッチであれば時間比、カプラであれば分岐比を意味する。 In this specification, the "distribution ratio" means the time ratio in the case of an optical switch, and the branch ratio in the case of a coupler.
 出力ポート1~Nから出力された紫外光は方路14及び照射部13を介して、それぞれ照射対象域AR(1~N)に照射される。 The ultraviolet light output from the output ports 1 to N is irradiated to the irradiation target areas AR (1 to N) via the route 14 and the irradiation unit 13, respectively.
 方路14は、光分配部12-10で分配された紫外光をそれぞれの照射部13まで伝搬する。方路14は光ファイバである。光ファイバなので従来技術のロボットや装置が入り込めない細かい場所などにも敷設することができる。図3は、光ファイバ伝送路16および方路14に使用可能な光ファイバの断面を説明する図である。
(1)充実コア光ファイバ
 この光ファイバは、クラッド60の中にクラッド60より高屈折率である1つの充実コア52を有する。「充実」とは「空洞ではない」という意味である。尚、充実コアは、クラッド内に円環状の低屈折率領域を形成することでも実現できる。
(2)空孔アシスト光ファイバ
 この光ファイバは、クラッド60の中に充実コア52とその外周に配置された複数の空孔53を有する。空孔53の媒質は空気であり、空気の屈折率は石英系ガラスに比べ十分小さい。このため、空孔アシスト光ファイバは、曲げなどでコア52から漏れた光を再びコア52に戻す機能があり、曲げ損失が小さいという特徴がある。
(3)空孔構造光ファイバ
この光ファイバは、クラッド60の中に複数の空孔53の空孔群53aを有し、ホスト材料(ガラス等)よりも実効的に屈折率が低い。本構造は、フォトニック結晶ファイバと呼ばれる。本構造には、屈折率を変化させた高屈折率コアが存在しない構造をとることができ、空孔53に取り囲まれた領域52aを実効的なコア領域として、光を閉じ込めることができる。充実コアを有する光ファイバに比べ、フォトニック結晶ファイバは、コアの添加剤による吸収や散乱損失の影響を低減することができるとともに、曲げ損失の低減や非線形効果の制御等、充実型光ファイバでは実現し得ない光学特性を実現できる。
(4)中空コア光ファイバ
この光ファイバは、コア領域が空気で形成される。クラッド領域に複数の空孔によるフォトニックバンドギャップ構造もしくはガラス細線によるアンチレゾナント構造をとることによって光をコア領域に閉じ込めることができる。この光ファイバは、非線形効果が小さく、高出力または高エネルギーレーザ供給が可能である。
(5)結合コア型光ファイバ
 この光ファイバは、クラッド60の中に複数の高屈折率である充実コア52が近接して配置される。この光ファイバは、充実コア52間で光波結合で光を導波する。結合コア型光ファイバは、コア数分だけ光を分散して送れるので、その分ハイパワー化して効率的な殺菌等ができる、また、結合コア型光ファイバは、紫外光によるファイバ劣化を緩和し長寿命化できるというメリットがある。
The path 14 propagates the ultraviolet light distributed by the light distribution section 12-10 to each irradiation section 13. FIG. Path 14 is an optical fiber. Since it is an optical fiber, it can be installed in narrow places where conventional robots and devices cannot enter. FIG. 3 is a diagram illustrating cross sections of optical fibers that can be used for the optical fiber transmission lines 16 and 14. As shown in FIG.
(1) Solid Core Optical Fiber This optical fiber has one solid core 52 in the clad 60 having a higher refractive index than the clad 60 . "Full" means "not hollow". The solid core can also be realized by forming an annular low refractive index region in the clad.
(2) Hole-assisted optical fiber This optical fiber has a solid core 52 in the clad 60 and a plurality of holes 53 arranged around the core. The medium of the holes 53 is air, and the refractive index of air is sufficiently smaller than that of quartz-based glass. Therefore, the hole-assisted optical fiber has a function of returning light leaking from the core 52 due to bending or the like to the core 52 again, and is characterized by a small bending loss.
(3) Hole structure optical fiber This optical fiber has a hole group 53a of a plurality of holes 53 in the clad 60, and has an effective refractive index lower than that of the host material (glass or the like). This structure is called a photonic crystal fiber. This structure can take a structure in which a high-refractive-index core with a changed refractive index does not exist, and light can be confined using the region 52a surrounded by the holes 53 as an effective core region. Compared to optical fibers with solid cores, photonic crystal fibers can reduce the effects of absorption and scattering losses due to additives in the core. Optical characteristics that cannot be realized can be realized.
(4) Hollow core optical fiber This optical fiber has a core region made of air. Light can be confined in the core region by forming a photonic bandgap structure with a plurality of holes in the cladding region or an anti-resonant structure with glass wires. This optical fiber has low nonlinear effects and is capable of delivering high power or high energy lasers.
(5) Coupling Core Optical Fiber In this optical fiber, a plurality of solid cores 52 having a high refractive index are closely arranged in a clad 60 . This optical fiber guides light by optical wave coupling between solid cores 52 . Coupling-core type optical fibers can disperse and transmit light as many times as the number of cores, so high power can be used for efficient sterilization. There is an advantage that the service life can be extended.
 照射部13は、方路14で伝送された紫外光を、殺菌等を行う所定の対象箇所(照射対象域AR)に照射する。照射部13は、紫外光の波長に対して設計されたレンズなどの光学系で構成されている。また、照射部13は、前記光学系を動かし、紫外光の照射方向を変更するアクチュエータも備える。 The irradiation unit 13 irradiates the ultraviolet light transmitted through the route 14 to a predetermined target location (irradiation target area AR) for sterilization or the like. The irradiation unit 13 is composed of an optical system such as a lens designed for the wavelength of ultraviolet light. The irradiation unit 13 also includes an actuator that moves the optical system and changes the irradiation direction of the ultraviolet light.
 方向制御部18は、照射部13のアクチュエータに対して、照射する紫外光の向き(いずれの照射対象域ARに向けて照射するか)を指示する。照射部13は、それぞれ担当する照射対象域ARを有している。例えば、照射部13-1は照射対象域AR1を担当し、照射部13-2は照射対象域AR2を担当し、・・・照射部13-Nは照射対象域ARNを担当する。通常時には、方向制御部18は、各照射部13のアクチュエータに対し、それぞれ担当する照射対象域ARに紫外光を照射するように紫外光の照射方向を指示する。 The direction control unit 18 instructs the actuator of the irradiating unit 13 about the direction of the ultraviolet light to be irradiated (which irradiation target area AR to irradiate). The irradiation units 13 each have an irradiation target area AR for which they are in charge. For example, the irradiation unit 13-1 is in charge of the irradiation target area AR1, the irradiation unit 13-2 is in charge of the irradiation target area AR2, . . . the irradiation unit 13-N is in charge of the irradiation target area ARN. Normally, the direction control unit 18 instructs the actuators of the respective irradiation units 13 to irradiate ultraviolet light onto the irradiation target areas AR for which they are responsible.
 総合制御部15-10は、照射対象域ARに前記紫外光を照射する必要性を判断し、前記必要性の低い照射対象域ARに照射している前記紫外光を、前記必要性の高い照射対象域ARに照射するように方向制御部18に指示する。 The integrated control unit 15-10 determines the necessity of irradiating the irradiation target area AR with the ultraviolet light, and irradiates the irradiation target area AR with the low necessity with the ultraviolet light with the high necessity irradiation. The direction control unit 18 is instructed to irradiate the target area AR.
 例えば、照射対象域AR1のウィルス量が高まり、照射対象域AR2のウィルス量が少なくなったとする。この場合、照射対象域AR1に対しては、紫外光量を増加して早急に殺菌等を行いたい一方、照射対象域AR2に対しては、紫外光による殺菌等が当面不要である。 For example, assume that the virus load in the irradiation target area AR1 has increased and the virus load in the irradiation target area AR2 has decreased. In this case, it is desirable to quickly sterilize the irradiation target area AR1 by increasing the amount of ultraviolet light, while sterilizing the irradiation target area AR2 is unnecessary for the time being.
 そこで、総合制御部15-10は、このような情報を得て、照射部13-2の紫外光の照射方向を照射対象域AR2から照射対象域AR1へ変更するように方向制御部18に指示する。方向制御部18は、照射部13-2のアクチュエータに照射方向を照射対象域AR2から照射対象域AR1へ変更する指示を出す。そうすると、照射対象域AR1は照射部13-1からの紫外光と照射部13-2からの紫外光とが重畳して紫外光量が多くなり、短時間で殺菌等が終了できる。このように、総合制御部15-10が各照射部13に紫外光の照射方向を適宜指示することで短時間での殺菌等が実現できる。 Therefore, the general control unit 15-10 obtains such information and instructs the direction control unit 18 to change the irradiation direction of the ultraviolet light from the irradiation unit 13-2 from the irradiation target area AR2 to the irradiation target area AR1. do. The direction control unit 18 instructs the actuator of the irradiation unit 13-2 to change the irradiation direction from the irradiation target area AR2 to the irradiation target area AR1. Then, the ultraviolet light from the irradiating section 13-1 and the ultraviolet light from the irradiating section 13-2 are superimposed on the irradiation target area AR1 to increase the amount of ultraviolet light, and sterilization and the like can be completed in a short time. In this way, the integrated control unit 15-10 appropriately instructs the irradiation units 13 about the irradiation direction of the ultraviolet light, so that sterilization or the like can be realized in a short time.
 光分配部12-10の分配比が可変である場合、総合制御部15-10は、1つの照射対象域ARに前記紫外光を重畳させている照射部13への方路14への分配比率を高くするように光分配部12-10に指示してもよい。 When the distribution ratio of the light distribution unit 12-10 is variable, the general control unit 15-10 controls the distribution ratio to the route 14 to the irradiation unit 13 that superimposes the ultraviolet light on one irradiation target area AR. may be instructed to the optical distributor 12-10 to increase the .
 具体的に、上述した照射対象域AR1に照射部13-1からの紫外光と照射部13-2からの紫外光とを重畳させる場合で説明する。
 光分配部12-10が分岐比可変カプラである場合、総合制御部15-10は、照射部13-2の紫外光の照射方向を照射対象域AR2から照射対象域AR1へ変更するように方向制御部18に指示するとともに、光分配部12-10に対し、出力ポート1と2の分岐比率を高くするように指示する。
 また、光分配部12-10が光スイッチである場合、総合制御部15-10は、照射部13-2の紫外光の照射方向を照射対象域AR2から照射対象域AR1へ変更するように方向制御部18に指示するとともに、光分配部12-10に対し、出力ポート1と2のタイムスロットを増やすように指示する。
Specifically, a case in which the ultraviolet light from the irradiation unit 13-1 and the ultraviolet light from the irradiation unit 13-2 are superimposed on the irradiation target area AR1 will be described.
When the light distribution unit 12-10 is a variable branching ratio coupler, the general control unit 15-10 changes the irradiation direction of the ultraviolet light from the irradiation unit 13-2 from the irradiation target area AR2 to the irradiation target area AR1. In addition to instructing the control unit 18, it instructs the optical distribution unit 12-10 to increase the branching ratio of the output ports 1 and 2. FIG.
Further, when the light distribution unit 12-10 is an optical switch, the general control unit 15-10 changes the irradiation direction of the ultraviolet light of the irradiation unit 13-2 from the irradiation target area AR2 to the irradiation target area AR1. In addition to instructing the control unit 18, the optical distribution unit 12-10 is instructed to increase the time slots of the output ports 1 and 2. FIG.
 総合制御部15-10が紫外光を重畳させる指示を出力するとき、光分配部12-10に対して紫外光を重畳させる照射対象域への出力ポートの分配比を高めることで、より短時間での殺菌等が実現できる。 When the general control unit 15-10 outputs an instruction to superimpose the ultraviolet light, by increasing the distribution ratio of the output port to the irradiation target area on which the ultraviolet light is superimposed on the light distribution unit 12-10, the time can be shortened. sterilization etc. can be realized.
(実施形態2)
 図4は、本実施形態の紫外光照射システム302を説明する図である。紫外光照射システム302は、図2の紫外光照射システム301に対して、照射対象域ARを含む領域に前記紫外光の被爆を回避すべき回避対象Hが存在するか否かを検知するセンサ部31をさらに備える。
(Embodiment 2)
FIG. 4 is a diagram illustrating the ultraviolet light irradiation system 302 of this embodiment. Compared to the ultraviolet light irradiation system 301 of FIG. 2, the ultraviolet light irradiation system 302 has a sensor unit that detects whether or not there is an avoidance target H that should be avoided from being exposed to the ultraviolet light in an area including the irradiation target area AR. 31 is further provided.
 センサ部31-n(nは1からNまでの整数)は、それぞれの照射対象域ARnとその周辺にある回避対象(人や動物など)Hの存否や動きを検知する。例えば、センサ部31は、温度計による温度取得、赤外線センサによる赤外線取得、カメラによる画像取得、LiDAR(Light Detection and Ranging)による光取得等を行い、情報処理(形、顔、指紋、静脈、虹彩など)を施し、回避対象の存否や動きを検知する。 The sensor unit 31-n (where n is an integer from 1 to N) detects the existence and movement of each irradiation target area ARn and avoidance targets (humans, animals, etc.) H in the vicinity thereof. For example, the sensor unit 31 performs temperature acquisition by a thermometer, infrared acquisition by an infrared sensor, image acquisition by a camera, light acquisition by LiDAR (Light Detection and Ranging), etc., and information processing (shape, face, fingerprint, vein, iris etc.) to detect the existence and movement of the avoidance target.
 センサ部31-nは、照射対象域ARn内に回避対象Hが存在するか否かだけでなく、照射対象域ARnの周辺についても監視している。このため、センサ部31-nは、回避対象Hの動きから、この後、回避対象Hが照射対象域ARn内に進入するのか、それとも進入しないのか、あるいは回避対象Hが照射対象域ARnから離れていくのか、を検知することができる。
 そして、センサ部31は、その検知結果を総合制御部15-10へ通知する。総合制御部15-10への通知は有線でも無線でもよい。
The sensor unit 31-n monitors not only whether or not the object to be avoided H exists within the irradiation target area ARn, but also the periphery of the irradiation target area ARn. Therefore, based on the movement of the avoidance target H, the sensor unit 31-n determines whether the avoidance target H will enter the irradiation target area ARn or not, or whether the avoidance target H will move away from the irradiation target area ARn. It is possible to detect whether the
Then, the sensor section 31 notifies the integrated control section 15-10 of the detection result. The notification to the integrated control unit 15-10 may be wired or wireless.
 総合制御部15-10は、センサ部31からの通知を受け、回避対象Hが存在した照射対象域ARを前記紫外光を重畳させる対象とする。図4の例であれば、センサ部31-1が照射対象域AR1に回避対象Hが存在することを通知するので、総合制御部15-10は照射対象域AR1を短時間で殺菌等を行う対象と判断する。そして、センサ部31-2が照射対象域AR2に回避対象Hが存在しないことを通知するので、総合制御部15-10は照射部13-2が照射対象域AR2へ照射する紫外光を照射対象域AR1へ振り向けることを判断する。 The general control unit 15-10 receives the notification from the sensor unit 31, and designates the irradiation target area AR in which the avoidance target H exists as the target for superimposing the ultraviolet light. In the example of FIG. 4, since the sensor unit 31-1 notifies that the avoidance target H exists in the irradiation target area AR1, the integrated control unit 15-10 sterilizes the irradiation target area AR1 in a short time. Judged as a target. Then, since the sensor unit 31-2 notifies that the avoidance target H does not exist in the irradiation target area AR2, the total control unit 15-10 causes the irradiation unit 13-2 to irradiate the irradiation target area AR2 with ultraviolet light. A decision is made to turn to area AR1.
 ここで、総合制御部15-10は、照射対象域ARに回避対象Hが不在である時間に、複数の照射部13から照射対象域ARへ前記紫外光を照射させる。紫外光が重畳すると紫外光量が増して回避対象Hに害が生じる可能性がある。このため、総合制御部15-10は、回避対象Hが不在である時間に紫外光を重畳させ、安全性を高める。図4の例であれば、総合制御部15-10は、照射対象域AR1から回避対象Hが出て行った後に照射部13-2からの紫外光を照射対象域AR1へ振り向ける。 Here, the general control unit 15-10 irradiates the irradiation target area AR with the ultraviolet light from the plurality of irradiation units 13 during the time when the avoidance target H is not present in the irradiation target area AR. When the ultraviolet light is superimposed, the amount of ultraviolet light increases and there is a possibility that the object to be avoided H will be harmed. For this reason, the integrated control unit 15-10 superimposes the ultraviolet light during the time when the avoidance target H is not present, thereby enhancing safety. In the example of FIG. 4, the general control unit 15-10 redirects the ultraviolet light from the irradiation unit 13-2 to the irradiation target area AR1 after the avoidance target H has left the irradiation target area AR1.
(実施形態3)
 図5は、本実施形態の紫外光照射システム303を説明する図である。紫外光照射システム303は、図2の紫外光照射システム301に対して、方路14毎に前記紫外光の光量を観測するモニタ部41をさらに備える。モニタ部41は、方路14に配置され、照射部13に入力される紫外光の光量を測定してもよいし、照射部13が照射する紫外光の光量を測定してもよいし、照射対象域AR全体が受ける紫外光の光量を測定してもよい。なお、光量とは、積算光量(単位J)、パワー(単位W)とし、照射対象域ARにおける照度(単位W/m)、照射対象域ARにおける単位面積当たりのエネルギー(単位J/m又はW・s/m)のいずれでもよい。
 そして、モニタ部41は、その光量を総合制御部15-10へ通知する。総合制御部15-10への通知は有線でも無線でもよい。
(Embodiment 3)
FIG. 5 is a diagram illustrating the ultraviolet light irradiation system 303 of this embodiment. Compared to the ultraviolet light irradiation system 301 of FIG. 2, the ultraviolet light irradiation system 303 further includes a monitor unit 41 that observes the amount of ultraviolet light for each route 14 . The monitor unit 41 may be arranged on the route 14 to measure the amount of ultraviolet light input to the irradiation unit 13, measure the amount of ultraviolet light emitted by the irradiation unit 13, or measure the amount of ultraviolet light emitted by the irradiation unit 13. The amount of ultraviolet light received by the entire target area AR may be measured. Note that the amount of light is the integrated amount of light (unit: J), power (unit: W), illuminance in the irradiation target area AR (unit: W/m 2 ), energy per unit area in the irradiation target area AR (unit: J/m 2 or W·s/m 2 ).
Then, the monitor section 41 notifies the total control section 15-10 of the amount of light. The notification to the integrated control unit 15-10 may be wired or wireless.
 総合制御部15-10は、前記紫外光を重畳させている照射対象域ARに照射される前記紫外光の光量が所定値を超えた時点で、方向制御部18に対して前記紫外光を重畳して照射対象域ARへ照射することを終了させる。総合制御部15-10は、モニタ部41からの通知を受け、紫外光が重畳されている照射対象域ARでの紫外光量が所定値を超えた時点で紫外光の重畳照射を終了させる。なお、前記所定値は、照射対象域ARの不活化要求光量によって定める。不活化要求光量とは、所望の不活化(初期の菌をどの程度まで減少させるか、あるいはウィルスをどの程度まで不活化させるか)を満たすために要する紫外光量(単位はJ/m)を意味する。
 このように、紫外光量が所定値を超えた時点で紫外光の重畳照射を終了することで、過剰な殺菌等を回避すること、及び照射対象域AR2のように紫外光が照射されない(殺菌等がされない)時間が長くならないようにすることができる。
The general control unit 15-10 superimposes the ultraviolet light on the direction control unit 18 when the amount of the ultraviolet light irradiated to the irradiation target area AR on which the ultraviolet light is superimposed exceeds a predetermined value. to terminate the irradiation of the irradiation target area AR. The general control unit 15-10 receives the notification from the monitor unit 41, and terminates superimposed irradiation of ultraviolet light when the amount of ultraviolet light in the irradiation target area AR on which the ultraviolet light is superimposed exceeds a predetermined value. The predetermined value is determined by the amount of light required for deactivation of the irradiation target area AR. The amount of light required for inactivation is the amount of ultraviolet light (unit: J/m 2 ) required to satisfy the desired inactivation (how much initial bacteria are reduced or how much viruses are inactivated). means.
In this way, by ending superimposed irradiation of ultraviolet light when the amount of ultraviolet light exceeds a predetermined value, excessive sterilization etc. can be avoided, and ultraviolet light is not irradiated like the irradiation target area AR2 (sterilization etc. is not done).
 図5の例であれば、現在、照射対象域AR1に照射部13-1と照射部13-2が紫外光を重畳させて照射している。総合制御部15-10は、照射部13-1と13-2のモニタ部41が通知する紫外光量を合算して所定値と比較する。総合制御部15-10は、合算した紫外光量が所定値より大きくなった場合、殺菌等が終了したとして、方向制御部18に照射部13-2の紫外光照射方向を照射対象域AR1から照射対象域AR2へ戻すように指示する。 In the example of FIG. 5, the irradiation section 13-1 and the irradiation section 13-2 are currently irradiating the irradiation target area AR1 with superimposed ultraviolet light. The integrated control unit 15-10 sums the amounts of ultraviolet light notified by the monitor units 41 of the irradiation units 13-1 and 13-2 and compares the sum with a predetermined value. When the total amount of ultraviolet light exceeds a predetermined value, the total control unit 15-10 determines that the sterilization or the like is completed, and causes the direction control unit 18 to irradiate the ultraviolet light irradiation direction of the irradiation unit 13-2 from the irradiation target area AR1. It instructs to return to the target area AR2.
(実施形態4)
 光分配部12-10が、紫外光源部11がレーザであり、等分岐カプラ、不等分岐カプラ、あるいは分岐比可変カプラである場合、1つの照射対象域ARに紫外光を重畳させると光の波動の性質により光が弱まってしまうことがある。
 そこで、紫外光照射システム(301~303)の照射部13は、遅延量が可変である光遅延回路を有している。そして、方向制御部18は、1つの照射対象域ARに前記紫外光を重畳させるときに、光分配部12-10から当該照射対象域ARまでの各経路の距離に基づき、当該照射対象域ARで前記紫外光の位相が揃うように前記光遅延回路を調整する。
 光遅延回路は、次のような公知例がある。
(公知例1)光学変調器(https://www.japanlaser.co.jp/product/conoptics_modulation-systems/、2021年10月21日検索)
(公知例2)位相変調器(https://www.daico.co.jp/products/products.php?id=84、2021年10月21日検索)
(公知例3)光ディレイライン(https://www.optoscience.com/maker/oz/fiber_device/optical_delay_line.html、2021年10月21日検索)
(Embodiment 4)
In the case where the light distribution unit 12-10 has the ultraviolet light source unit 11 as a laser and an equal branching coupler, an unequal branching coupler, or a variable branching ratio coupler, superimposing the ultraviolet light on one irradiation target area AR results in Light can be attenuated due to its wave nature.
Therefore, the irradiation unit 13 of the ultraviolet light irradiation system (301 to 303) has an optical delay circuit with a variable delay amount. Then, when superimposing the ultraviolet light on one irradiation target area AR, the direction control unit 18 determines the irradiation target area AR based on the distance of each route from the light distribution unit 12-10 to the irradiation target area AR. to adjust the optical delay circuit so that the phases of the ultraviolet light are aligned.
There are known examples of the optical delay circuit as follows.
(Public example 1) Optical modulator (https://www.japanlaser.co.jp/product/conoptics_modulation-systems/, retrieved on October 21, 2021)
(Public Known Example 2) Phase Modulator (https://www.daico.co.jp/products/products.php?id=84, retrieved on Oct. 21, 2021)
(Public Known Example 3) Optical Delay Line (https://www.optoscience.com/maker/oz/fiber_device/optical_delay_line.html, retrieved on October 21, 2021)
 図2の例で説明する。方向制御部18は、予め光分配部12-10から各照射部13までの光路長、及び照射部13毎の各照射対象域ARまでの光路長(照射部13-1から照射対象域AR1、AR2、・・・、ARNまでの光路長、照射部13-2から照射対象域AR1、AR2、・・・、ARNまでの光路長、・・・、照射部13-Nから照射対象域AR1、AR2、・・・、ARNまでの光路長)を取得しておく。総合制御部15-10から照射部13-2の紫外光照射方向を照射対象域AR1へ変更する指示があったとき、方向制御部18は、照射部13-2の紫外光照射方向を照射対象域AR2から照射対象域AR1へ変更したときの光路長の変化量を算出し、照射対象域AR1で紫外光を重畳させたとき、照射部13-1からの紫外光と干渉して光強度が弱まらない光路長(光分配部12-10から照射部13-2を経由して照射対象域AR1に至る光路長)を算出する。そして、方向制御部18は、算出した光路長となるように照射部13-2の光遅延回路を調整する。 The example in Fig. 2 will be explained. The direction control unit 18 preliminarily determines the optical path length from the light distribution unit 12-10 to each irradiation unit 13, and the optical path length to each irradiation target area AR for each irradiation unit 13 (from the irradiation unit 13-1 to the irradiation target area AR1, AR2, . AR2, . . . , the optical path length to ARN). When the total control unit 15-10 instructs to change the ultraviolet light irradiation direction of the irradiation unit 13-2 to the irradiation target area AR1, the direction control unit 18 changes the ultraviolet light irradiation direction of the irradiation unit 13-2 to the irradiation target. The amount of change in the optical path length when the area AR2 is changed to the irradiation target area AR1 is calculated. The optical path length that does not weaken (the optical path length from the light distribution unit 12-10 to the irradiation target area AR1 via the irradiation unit 13-2) is calculated. Then, the direction control unit 18 adjusts the optical delay circuit of the irradiation unit 13-2 so that the calculated optical path length is achieved.
 本実施形態の紫外光照射システムは、照度を高めるために紫外光を重畳しようとして、逆に干渉により照度が弱まってしまうことを回避することができる。 The ultraviolet light irradiation system of this embodiment can avoid weakening the illuminance due to interference when trying to superimpose the ultraviolet light in order to increase the illuminance.
11:紫外光源部
12:光分配部(等分岐)
12-10:光分配部
13、13-1、・・・、13-N:照射部
14:方路(光ファイバ)
15-10:総合制御部
16:光伝送路
18:方向制御部
31、31-1、・・・、31-N:センサ部
41:モニタ部
52:充実コア
52a:領域
53:空孔
53a:空孔群
53c:空孔
60:クラッド
300、301、302、303:紫外光照射システム
AR1、AR2、・・・、ARN:照射対象域(紫外光を照射しようとする領域)
11: Ultraviolet light source unit 12: Light distribution unit (equally branched)
12-10: Light distribution units 13, 13-1, . . . , 13-N: Irradiation unit 14: Direction (optical fiber)
15-10: General control unit 16: Optical transmission line 18: Direction control units 31, 31-1, . Hole group 53c: Hole 60: Cladding 300, 301, 302, 303: Ultraviolet light irradiation system AR1, AR2, ..., ARN: Area to be irradiated (area to be irradiated with ultraviolet light)

Claims (6)

  1.  紫外光を発生させる紫外光源部と、
     前記紫外光をM個(Mは2以上の自然数)の照射対象域に照射するN個(Nは2以上の自然数)の照射部と、
     前記紫外光をそれぞれの前記照射部への方路へ分配する光分配部と、
     N個のうち少なくとも2つの前記照射部から出力される前記紫外光が重畳して1つの前記照射対象域に照射するように、出力する前記紫外光の方向を前記照射部に対して指示する方向制御部と、
    を備える紫外光照射システム。
    an ultraviolet light source that generates ultraviolet light;
    N (N is a natural number of 2 or more) irradiation units that irradiate M (M is a natural number of 2 or more) irradiation target regions with the ultraviolet light;
    a light distribution unit that distributes the ultraviolet light to each of the irradiation units;
    A direction for instructing the irradiating unit on the direction of the ultraviolet light to be output so that the ultraviolet light output from at least two of the N irradiating units is superimposed and irradiates one irradiation target area. a control unit;
    An ultraviolet light irradiation system.
  2.  前記照射対象域に前記紫外光を照射する必要性を判断し、前記必要性の低い前記照射対象域に照射している前記紫外光を、前記必要性の高い前記照射対象域に照射するように前記方向制御部に指示する総合制御部をさらに備えることを特徴とする請求項1に記載の紫外光照射システム。 Determining the necessity of irradiating the irradiation target area with the ultraviolet light, and irradiating the irradiation target area with the high necessity with the ultraviolet light irradiating the irradiation target area with the low necessity 2. The ultraviolet light irradiation system according to claim 1, further comprising a general control section for instructing said direction control section.
  3.  前記光分配部は、前記紫外光をそれぞれの前記方路へ分配する分配比が可変であり、
     前記総合制御部は、1つの前記照射対象域に前記紫外光を重畳させている前記照射部への前記方路への分配比率を高くするように前記光分配部に指示すること
    を特徴とする請求項2に記載の紫外光照射システム。
    The light distribution unit has a variable distribution ratio for distributing the ultraviolet light to each of the directions,
    The integrated control unit is characterized in that it instructs the light distribution unit to increase the distribution ratio to the direction to the irradiation unit that superimposes the ultraviolet light on one irradiation target area. The ultraviolet light irradiation system according to claim 2.
  4.  前記照射対象域を含む領域に前記紫外光の被爆を回避すべき回避対象が存在するか否かを検知するセンサ部をさらに備え、
     前記総合制御部は、前記回避対象が存在した前記照射対象域を前記紫外光を重畳させる前記照射対象域とし、前記照射対象域に前記回避対象が不在である時間に、複数の前記照射部から前記照射対象域へ前記紫外光を照射させること
    を特徴とする請求項2又は3に記載の紫外光照射システム。
    further comprising a sensor unit for detecting whether or not there is an avoidance target to be avoided from being exposed to the ultraviolet light in a region including the irradiation target region;
    The integrated control unit sets the irradiation target area where the avoidance target exists as the irradiation target area to be superimposed with the ultraviolet light, and performs irradiation from the plurality of irradiation units during a time when the avoidance target is not present in the irradiation target area. 4. The ultraviolet light irradiation system according to claim 2, wherein the irradiation target area is irradiated with the ultraviolet light.
  5.  前記方路毎に前記紫外光の光量を観測するモニタ部をさらに備え、
     前記総合制御部は、前記紫外光を重畳させている前記照射対象域に照射される前記紫外光の光量が所定値を超えた時点で、前記方向制御部に対して前記紫外光を重畳して前記照射対象域へ照射することを終了させること
    を特徴とする請求項1から4のいずれかに記載の紫外光照射システム。
    further comprising a monitor unit that observes the amount of ultraviolet light for each of the routes;
    The general control unit superimposes the ultraviolet light on the direction control unit when the amount of the ultraviolet light irradiated to the irradiation target area on which the ultraviolet light is superimposed exceeds a predetermined value. 5. The ultraviolet light irradiation system according to any one of claims 1 to 4, wherein the irradiation of the irradiation target area is terminated.
  6.  前記照射部は、遅延量が可変である光遅延回路を有しており、
     前記方向制御部は、1つの前記照射対象域に前記紫外光を重畳させるときに、前記光分配部から前記照射対象域までの各経路の距離に基づき、前記照射対象域で前記紫外光の位相が揃うように前記光遅延回路を調整すること
    を特徴とする請求項1から5のいずれかに記載の紫外光照射システム。
    The irradiation unit has an optical delay circuit with a variable delay amount,
    When superimposing the ultraviolet light on one of the irradiation target areas, the direction control unit controls the phase of the ultraviolet light in the irradiation target area based on the distance of each route from the light distribution unit to the irradiation target area. 6. The ultraviolet light irradiation system according to any one of claims 1 to 5, wherein the optical delay circuit is adjusted so that
PCT/JP2021/041472 2021-11-11 2021-11-11 Ultraviolet light irradiation system WO2023084666A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/041472 WO2023084666A1 (en) 2021-11-11 2021-11-11 Ultraviolet light irradiation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/041472 WO2023084666A1 (en) 2021-11-11 2021-11-11 Ultraviolet light irradiation system

Publications (1)

Publication Number Publication Date
WO2023084666A1 true WO2023084666A1 (en) 2023-05-19

Family

ID=86335378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041472 WO2023084666A1 (en) 2021-11-11 2021-11-11 Ultraviolet light irradiation system

Country Status (1)

Country Link
WO (1) WO2023084666A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63221302A (en) * 1987-03-11 1988-09-14 Sumitomo Electric Ind Ltd Light guide and photoirradiation device
JP2000066041A (en) * 1998-08-19 2000-03-03 Mitsubishi Cable Ind Ltd Manufacturing method of fiber grating and manufacturing device thereof
JP2003339738A (en) * 2002-05-29 2003-12-02 Akimasa Sugaya Medical lighting lamp
JP2007007232A (en) * 2005-07-01 2007-01-18 Mitsubishi Electric Corp Photo-sterilizer and photo-sterilizing system
JP2010262149A (en) * 2009-05-08 2010-11-18 Hoya Corp Optical transmission system for scanning type observation device, confocal observation system, optical coupler, and image forming method
WO2015008435A1 (en) * 2013-07-17 2015-01-22 パナソニックIpマネジメント株式会社 Spectroscope

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63221302A (en) * 1987-03-11 1988-09-14 Sumitomo Electric Ind Ltd Light guide and photoirradiation device
JP2000066041A (en) * 1998-08-19 2000-03-03 Mitsubishi Cable Ind Ltd Manufacturing method of fiber grating and manufacturing device thereof
JP2003339738A (en) * 2002-05-29 2003-12-02 Akimasa Sugaya Medical lighting lamp
JP2007007232A (en) * 2005-07-01 2007-01-18 Mitsubishi Electric Corp Photo-sterilizer and photo-sterilizing system
JP2010262149A (en) * 2009-05-08 2010-11-18 Hoya Corp Optical transmission system for scanning type observation device, confocal observation system, optical coupler, and image forming method
WO2015008435A1 (en) * 2013-07-17 2015-01-22 パナソニックIpマネジメント株式会社 Spectroscope

Similar Documents

Publication Publication Date Title
JP2024059974A (en) Ultraviolet light radiation system
JP6732784B2 (en) Laser array with improved safety
GB2488849A (en) Optical path switching with Raman amplification
WO2023084666A1 (en) Ultraviolet light irradiation system
WO2023058144A1 (en) Ultraviolet light irradiation system and ultraviolet light irradiation method
WO2023084669A1 (en) Ultraviolet light radiation system and radiation method
WO2023084675A1 (en) Uv irradiation system
WO2023084674A1 (en) Ultraviolet light irradiation system and control method
WO2023084668A1 (en) Ultraviolet light radiation system and control method
WO2023073774A1 (en) Uv irradiation system
WO2023073771A1 (en) Ultraviolet light irradiation system
WO2023084665A1 (en) Uv radiation system
WO2023073885A1 (en) Ultraviolet light irradiation system
WO2022024303A1 (en) Ultraviolet irradiation system and control method
WO2022085123A1 (en) Ultraviolet light irradiation system and ultraviolet light irradiation method
WO2023276148A1 (en) Ultraviolet light irradiation system and control method
WO2023073884A1 (en) Ultraviolet light irradiation system
US20230408761A1 (en) Ultraviolet light irradiation system and method
WO2024105873A1 (en) Light spot shaper and optical transmission system
WO2024100863A1 (en) Optical transmission system and optical transmission method
WO2024105874A1 (en) Optical transmission system, optical splitter unit, and optical transmission method
WO2024100864A1 (en) Optical transmission system and optical transmission method
WO2024100862A1 (en) Optical transmission system
WO2022254713A1 (en) Ultraviolet light irradiation system and ultraviolet light irradiation method
WO2023157281A1 (en) Optical transmission device, optical irradiation system, and optical transmission method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964021

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21964021

Country of ref document: EP

Kind code of ref document: A1