Nothing Special   »   [go: up one dir, main page]

WO2023050091A1 - 一种上行波束的测量方法及其装置 - Google Patents

一种上行波束的测量方法及其装置 Download PDF

Info

Publication number
WO2023050091A1
WO2023050091A1 PCT/CN2021/121458 CN2021121458W WO2023050091A1 WO 2023050091 A1 WO2023050091 A1 WO 2023050091A1 CN 2021121458 W CN2021121458 W CN 2021121458W WO 2023050091 A1 WO2023050091 A1 WO 2023050091A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
srs
serving cell
dci
neighboring
Prior art date
Application number
PCT/CN2021/121458
Other languages
English (en)
French (fr)
Inventor
罗星熠
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202180002954.4A priority Critical patent/CN114026907B/zh
Priority to PCT/CN2021/121458 priority patent/WO2023050091A1/zh
Publication of WO2023050091A1 publication Critical patent/WO2023050091A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • the present disclosure relates to the technical field of communications, and in particular to a method and device for measuring an uplink beam.
  • the adjacent cells can be used to provide services for terminal devices.
  • TRP Transmission Reception Point
  • the adjacent cell it is necessary to obtain a suitable uplink beam pair between the terminal device and the adjacent cell through uplink beam measurement.
  • the related uplink beam measurement technology only the uplink beam between the terminal device and the serving cell can be obtained, but the appropriate uplink beam between the terminal device and the neighboring cell cannot be obtained. Therefore, how to obtain a suitable uplink beam pair between a terminal device and a neighboring cell is an urgent problem to be solved at present.
  • Embodiments of the present disclosure provide a method and device for measuring an uplink beam, which can be applied in the technical field of communications.
  • an embodiment of the present disclosure provides a method for measuring an uplink beam, the method is executed by a terminal device, and the method includes: receiving configuration information, where the configuration information includes a sounding reference signal (SRS) corresponding to a neighboring cell.
  • SRS sounding reference signal
  • the configuration information further includes: a path loss reference signal corresponding to the neighboring cell, and a spatial relationship information parameter corresponding to the neighboring cell.
  • the first MAC CE is used to activate or deactivate the semi-static SRS corresponding to the first cell, the first cell is a serving cell or neighboring districts.
  • indication information where the indication information is used to indicate a beam for the terminal device
  • the second cell corresponding to the indicated beam is different from the third cell that currently provides data services for the terminal device, deactivate the semi-static SRS in the activated state in the third cell.
  • the neighbor cell changes, deactivate the semi-static SRS that only contains the identifier of the neighbor cell in the corresponding cell list;
  • the timing advance corresponding to the neighboring cell and the serving cell is the same as the timing advance corresponding to the terminal device, and the cells included in the cell list are cells measured based on the SRS.
  • the received first MAC CE determine the cell list corresponding to each semi-static SRS.
  • the third DCI is used to trigger an aperiodic SRS corresponding to the third cell, where the third cell is a serving cell or a neighboring cell.
  • an embodiment of the present disclosure provides another method for measuring an uplink beam, the method is executed by a network device, and the method includes: sending configuration information, wherein the configuration information includes the sounding reference signal SRS corresponding to the neighboring cell .
  • the configuration information further includes: a path loss reference signal corresponding to the neighboring cell, and a spatial relationship information parameter corresponding to the neighboring cell.
  • a first multimedia access control MAC control element CE is sent, and the first MAC CE is used to activate or deactivate the neighboring cell and the serving cell.
  • the semi-static SRS corresponding to any of the cells.
  • the first downlink control information DCI is sent, where the first DCI is used to trigger the aperiodic SRS corresponding to the neighboring cell or the serving cell.
  • the second DCI is sent based on the time-frequency domain resource corresponding to the serving cell, where the second DCI is used to trigger the selected SRS.
  • the third DCI is sent, where the third DCI is used to trigger an aperiodic SRS corresponding to any one of the serving cell and the neighboring cell.
  • the embodiment of the present disclosure provides a communication device, which has part or all of the functions of the terminal device in the method described in the first aspect above, for example, the communication device may have part or all of the functions in the present disclosure
  • the functions in the embodiments may also have the functions of independently implementing any one of the embodiments in the present disclosure.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the embodiment of the present disclosure provides another communication device, which has some or all functions of the network device in the method example described in the second aspect above, for example, the function of the communication device may have some of the functions in the present disclosure Or the functions in all the embodiments may also have the function of implementing any one embodiment in the present disclosure alone.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • an embodiment of the present disclosure provides a communication device, where the communication device includes a processor, and when the processor invokes a computer program in a memory, executes the method described in the first aspect above.
  • an embodiment of the present disclosure provides a communication device, where the communication device includes a processor, and when the processor invokes a computer program in a memory, it executes the method described in the second aspect above.
  • an embodiment of the present disclosure provides a communication device, the communication device includes a processor and a memory, and a computer program is stored in the memory; when the computer program is executed by the processor, the communication device executes the above-mentioned The method described in the first aspect.
  • an embodiment of the present disclosure provides a communication device, the communication device includes a processor and a memory, and a computer program is stored in the memory; when the computer program is executed by the processor, the communication device executes the above-mentioned The method described in the second aspect.
  • an embodiment of the present disclosure provides a communication device, the device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to make the The device executes the method described in the first aspect above.
  • an embodiment of the present disclosure provides a communication device, the device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to make the The device executes the method described in the second aspect above.
  • an embodiment of the present disclosure provides a communication system, the system includes the communication device described in the third aspect and the communication device described in the fourth aspect, or the system includes the communication device described in the fifth aspect and The communication device described in the sixth aspect, or, the system includes the communication device described in the seventh aspect and the communication device described in the eighth aspect, or, the system includes the communication device described in the ninth aspect and the communication device described in the tenth aspect the communication device described above.
  • an embodiment of the present invention provides a computer-readable storage medium for storing instructions used by the above-mentioned terminal device, and when the instructions are executed, the method described in the above-mentioned first aspect is implemented.
  • an embodiment of the present invention provides a computer-readable storage medium for storing instructions used by the above-mentioned network device, and when the instructions are executed, the method described in the above-mentioned second aspect is implemented.
  • the present disclosure further provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the first aspect above.
  • the present disclosure further provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the second aspect above.
  • the present disclosure provides a chip system
  • the chip system includes at least one processor and an interface, used to support the terminal device to implement the functions involved in the first aspect, for example, determine or process the data involved in the above method and at least one of information.
  • the chip system further includes a memory, and the memory is configured to store necessary computer programs and data of the terminal device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present disclosure provides a chip system
  • the chip system includes at least one processor and an interface, used to support the network device to implement the functions involved in the second aspect, for example, determine or process the data involved in the above method and at least one of information.
  • the chip system further includes a memory, and the memory is used for saving necessary computer programs and data of the network device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present disclosure provides a computer program that, when run on a computer, causes the computer to execute the method described in the first aspect above.
  • the present disclosure provides a computer program that, when run on a computer, causes the computer to execute the method described in the second aspect above.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a method for measuring an uplink beam provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of a method for measuring an uplink beam provided by another embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart of a method for measuring an uplink beam provided by another embodiment of the present disclosure
  • FIG. 5 is a schematic flowchart of a method for measuring an uplink beam provided by another embodiment of the present disclosure.
  • FIG. 6 is a schematic flowchart of a method for measuring an uplink beam provided by another embodiment of the present disclosure.
  • FIG. 7 is a schematic flowchart of a method for measuring an uplink beam provided by another embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart of a method for measuring an uplink beam provided by another embodiment of the present disclosure.
  • FIG. 9 is a schematic flowchart of a method for measuring an uplink beam provided by another embodiment of the present disclosure.
  • FIG. 10 is a schematic flowchart of a method for measuring an uplink beam provided by another embodiment of the present disclosure.
  • FIG. 11 is a schematic flowchart of a method for measuring an uplink beam provided by another embodiment of the present disclosure.
  • FIG. 12 is a schematic flowchart of a method for measuring an uplink beam provided by another embodiment of the present disclosure.
  • FIG. 13 is a schematic flowchart of a method for measuring an uplink beam provided by another embodiment of the present disclosure.
  • FIG. 14 is a schematic flowchart of a method for measuring an uplink beam provided by another embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of a communication device according to an embodiment of the present disclosure.
  • Fig. 16 is a schematic structural diagram of a communication device according to another embodiment of the present disclosure.
  • FIG. 17 is a schematic structural diagram of a chip according to an embodiment of the present disclosure.
  • SRS Sounding Reference Signal
  • SRS is used to estimate the frequency domain information of the uplink channel for frequency selective scheduling; or it is used to estimate the downlink channel for downlink beamforming.
  • MAC CE is a way of exchanging control information between UE and the network outside of radio resource control (radio resource control, RRC) messages and non-access stratum (non access stratum, NAS) messages. It exchanges information about MAC Layer control information.
  • RRC radio resource control
  • NAS non-access stratum
  • DCI Downlink Control Information
  • DCI is control information related to physical uplink and downlink shared channels (PUSCH, PDSCH) transmitted on the PDCCH channel.
  • DCI information include several related contents such as resource block (RB) allocation information, modulation mode, etc. Only when the terminal correctly decodes the DCI information, can it correctly process PDSCH data or PUSCH data.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present disclosure.
  • the communication system may include, but is not limited to, a network device and a terminal device.
  • the number and form of the devices shown in Figure 1 are for example only and do not constitute a limitation to the embodiments of the present disclosure. In practical applications, two or more network equipment, two or more terminal equipment.
  • the communication system shown in FIG. 1 includes a network device 11 and a terminal device 12 .
  • LTE long term evolution
  • 5th generation 5th generation
  • 5G new radio new radio, NR
  • other future new mobile communication systems etc.
  • the network device 11 in the embodiment of the present disclosure is an entity on the network side for transmitting or receiving signals.
  • the network device 11 may be an evolved base station (evolved NodeB, eNB), a transmission point (transmission reception point, TRP), a next generation base station (next generation NodeB, gNB) in the NR system, or a base station in other future mobile communication systems Or an access node in a wireless fidelity (wireless fidelity, WiFi) system, etc.
  • eNB evolved NodeB
  • TRP transmission reception point
  • gNB next generation base station
  • gNB next generation NodeB
  • the embodiments of the present disclosure do not limit the specific technology and specific device form adopted by the network device.
  • the network device provided by the embodiment of the present disclosure may be composed of a centralized unit (central unit, CU) and a distributed unit (distributed unit, DU), wherein the CU may also be called a control unit (control unit), and the CU-DU
  • the structure of the network device such as the protocol layer of the base station, can be separated, and the functions of some protocol layers are placed in the centralized control of the CU, and the remaining part or all of the functions of the protocol layer are distributed in the DU, and the CU centrally controls the DU.
  • the terminal device 12 in the embodiment of the present disclosure is an entity on the user side for receiving or transmitting signals, such as a mobile phone.
  • the terminal equipment may also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal equipment (mobile terminal, MT) and so on.
  • the terminal device can be a car with communication functions, a smart car, a mobile phone, a wearable device, a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control (industrial control), wireless terminal equipment in self-driving (self-driving), wireless terminal equipment in remote medical surgery (remote medical surgery), smart grid ( Wireless terminal devices in smart grid, wireless terminal devices in transportation safety, wireless terminal devices in smart city, wireless terminal devices in smart home, etc.
  • the embodiments of the present disclosure do not limit the specific technology and specific device form adopted by the terminal device.
  • FIG. 2 is a schematic flowchart of a method for measuring an uplink beam provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 2, the method may include but not limited to the following steps:
  • Step 21 receiving configuration information, wherein the configuration information includes sounding reference signals (SRS) corresponding to neighboring cells.
  • SRS sounding reference signals
  • the network device usually configures the SRS resource corresponding to the serving cell (serving cell) for the terminal device through radio resource control (Radio Resource Control, RRC) signaling, so that the terminal device can
  • the SRS is sent on frequency domain resources, where different SRSs correspond to different transmission beams.
  • the serving cell After receiving the SRS, the serving cell can find the best transmission beam according to the received power. That is, in the related art, only the uplink beam between the serving cell and the terminal device can be determined, but the appropriate uplink beam between the terminal device and the neighboring cell cannot be determined.
  • the network device can not only configure the SRS resource corresponding to the serving cell for the terminal device, but also configure the SRS resource corresponding to the neighboring cell (non-serving cell) for the terminal device. Therefore, the terminal device can send SRS to the neighboring cell based on the SRS resources corresponding to the neighboring cell, so that the neighboring cell can determine the best transmission beam between the neighboring cell and the terminal device according to the measured receiving power of each SRS, and then provide the terminal device with Serve.
  • the configuration information may also include: the path loss reference signal (path loss reference signal, PL RS) corresponding to the neighboring cell, and the spatial relationship information parameter (spatialRelationInfo) corresponding to the neighboring cell, etc., which is not limited in this disclosure . Therefore, after receiving the configuration information, the terminal device can determine the transmit power of the SRS according to the PL RS corresponding to the neighboring cell, determine the transmit beam corresponding to the SRS according to the spatialRelationInfo, and then based on the determined transmit power and transmit beam, send to the Neighboring cells send SRS.
  • the path loss reference signal path loss reference signal
  • PL RS path loss reference signal
  • spatialRelationInfo spatial relationship information parameter
  • the number of neighboring cells may be one or more. For example, 1, 3, 5, etc., which are not limited in the present disclosure.
  • the SRS corresponding to the neighboring cell may be a periodic (cyclicity) SRS, a semi-persistent (Semi-persistent) SRS, or an aperiodic (Aperiodic) SRS, which is not limited in the present disclosure.
  • the terminal device receives the configuration information including the SRS corresponding to the neighboring cell, and then can send the SRS to the neighboring cell, so that the neighboring cell can determine the best transmission beam for the terminal device according to the measured receiving power .
  • the uplink beam measurement between the terminal equipment and the adjacent cell is supported, and a basis is provided for realizing that the adjacent cell provides services for the terminal equipment.
  • FIG. 3 is a schematic flowchart of a method for measuring an uplink beam provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 3, the method may include but not limited to the following steps:
  • Step 31 receiving configuration information, wherein the configuration information includes sounding reference signals (SRS) corresponding to neighboring cells.
  • SRS sounding reference signals
  • Step 32 receiving the first multimedia access control MAC control unit CE sent by the first cell, the first MAC CE is used to activate or deactivate the semi-static SRS corresponding to the first cell, the first cell is a serving cell or a neighboring cell .
  • the terminal device can send the SRS to the serving cell or neighboring cell based on the time-frequency domain resources corresponding to the activated semi-static SRS after the semi-static SRS needs to be activated according to the MAC CE.
  • the terminal device needs to deactivate the semi-static SRS corresponding to cell A and activate the semi-static SRS corresponding to cell B.
  • the terminal device may deactivate the semi-static SRS corresponding to cell A according to the MAC CE sent by cell A, and activate the semi-static SRS corresponding to cell B according to the MAC CE sent by cell B.
  • the terminal device first receives the SRS corresponding to the neighboring cell, and then activates or deactivates the semi-static SRS corresponding to the serving cell or the neighboring cell according to the received MAC CE sent by the first cell.
  • the terminal device activates the semi-static SRS, it can obtain a suitable uplink beam pair between the terminal device and the neighboring cell, and then the neighboring cell can provide services for the terminal device.
  • FIG. 4 is a schematic flowchart of a method for measuring an uplink beam provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 4, the method may include but not limited to the following steps:
  • Step 41 receiving configuration information, wherein the configuration information includes sounding reference signals (SRS) corresponding to neighboring cells.
  • SRS sounding reference signals
  • step 41 for the specific implementation form of step 41, reference may be made to the detailed descriptions in other embodiments of the present disclosure, and details will not be repeated here.
  • Step 42 Receive indication information, where the indication information is used to indicate a beam for the terminal device.
  • the network device can send indication information to the terminal device through the MAC CE.
  • the network device may also send indication information to the terminal device through the DCI.
  • Step 43 In the case that the second cell corresponding to the indicated beam is different from the third cell currently providing data services for the terminal device, deactivate the semi-static SRS in the activated state in the third cell.
  • the second cell corresponding to the indicated beam may be a cell that is about to provide services for the terminal device. Therefore, after the network device indicates a beam for the terminal device, if the second cell corresponding to the indicated beam is the same as the current terminal device If the third cells providing the data service are different, the terminal device may deactivate the semi-static SRS in the activated state in the third cell. Therefore, the terminal device can send the SRS to the second cell according to the indicated beam.
  • the terminal device first receives the SRS corresponding to the neighboring cell, and then receives the indication information indicating the beam for the terminal device, and finally, the second cell corresponding to the indicated beam and the current If the third cell that the terminal device provides the data service is different, deactivate the semi-static SRS in the active state in the third cell.
  • the terminal device can send an SRS to the corresponding second cell based on the indicated beam, and the second cell provides services for the terminal device.
  • FIG. 5 is a schematic flowchart of a method for measuring an uplink beam provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 5, the method may include but not limited to the following steps:
  • Step 51 receiving configuration information, wherein the configuration information includes sounding reference signals (SRS) corresponding to neighboring cells.
  • SRS sounding reference signals
  • step 51 for the specific implementation form of step 51, reference may be made to the detailed descriptions in other embodiments of the present disclosure, and details are not repeated here.
  • Step 52 in the case of a change in the neighboring cell, deactivate the semi-static SRS in the activated state corresponding to the neighboring cell, wherein the timing advance corresponding to the neighboring cell and the serving cell is equal to the timing advance (Timing Advance, TA) corresponding to the terminal device different.
  • Timing Advance, TA Timing Advance
  • the adjacent cell and the serving cell respectively manage their corresponding SRSs.
  • the neighboring cell corresponding to the terminal device may change from neighboring cell A to neighboring cell B.
  • the terminal device does not need to send the SRS to the neighboring cell A, therefore, the terminal device needs to deactivate the activated semi-static SRS corresponding to the neighboring cell A.
  • the terminal device may determine that the neighboring cell has changed according to high-layer signaling sent by the network device.
  • the terminal device first receives the SRS corresponding to the neighboring cell, and then changes in the neighboring cell, and the timing advance corresponding to the neighboring cell and the serving cell is ahead of the timing corresponding to the terminal device
  • deactivate the semi-static SRS corresponding to the neighboring cell in the activated state In this way, it not only supports the uplink beam measurement between the terminal equipment and the neighboring cell, but also realizes the reliable deactivation of the semi-static SRS when the neighboring cell changes, thereby ensuring that the neighboring cell can provide reliable services for the terminal equipment , and avoid resource waste.
  • FIG. 6 is a schematic flowchart of a method for measuring an uplink beam provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 6, the method may include but not limited to the following steps:
  • Step 61 receiving configuration information, wherein the configuration information includes sounding reference signals (SRS) corresponding to neighboring cells.
  • SRS sounding reference signals
  • step 61 for the specific implementation form of step 61, reference may be made to the detailed descriptions in other embodiments of the present disclosure, and details will not be repeated here.
  • Step 62 in the case that the neighbor cell changes, deactivate the semi-static SRS that only includes the neighbor cell identifier in the corresponding cell list.
  • the timing advance corresponding to the neighboring cell and the serving cell is the same as the timing advance corresponding to the terminal device, and the cells included in the cell list are the cells that are measured based on the SRS.
  • the adjacent cell and the serving cell may perform simultaneous measurements based on the same SRS. If the semi-static SRS is directly deactivated, then It may cause the SRS corresponding to the serving cell to be unavailable. Therefore, the terminal device can record the list of cells measured based on each SRS, and then determine whether to deactivate the semi-static SRS based on the conditions of the cells included in the cell list corresponding to the semi-static SRS when the neighboring cells change.
  • the terminal device changes from neighboring cell A to neighboring cell B during the movement process, and the cell list corresponding to semi-static SRS#1 only contains the identity of neighboring cell A, and the cell list corresponding to semi-static SRS#2
  • the list includes neighboring cell A and neighboring cell B, and at this time, only the semi-static SRS#1 can be deactivated.
  • the terminal device may determine the cell list corresponding to each semi-static SRS according to the received first MAC CE.
  • the activated semi-static SRS corresponding to the neighbor cell may also be deactivated.
  • the terminal device first receives the SRS corresponding to the neighboring cell, and then changes in the neighboring cell, and the timing advance corresponding to the neighboring cell and the serving cell is ahead of the timing corresponding to the terminal device
  • FIG. 7 is a schematic flowchart of a method for measuring an uplink beam provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 7, the method may include but not limited to the following steps:
  • Step 71 receiving configuration information, wherein the configuration information includes sounding reference signals (SRS) corresponding to neighboring cells.
  • SRS sounding reference signals
  • step 71 for the specific implementation form of step 71, reference may be made to the detailed descriptions in other embodiments of the present disclosure, and details are not repeated here.
  • Step 72 receiving first downlink control information DCI sent by the serving cell, wherein the first DCI is used to trigger an aperiodic SRS corresponding to the neighboring cell or the serving cell.
  • the network device may add N bits to the request field of the SRS request in the DCI of the serving cell to instruct the terminal device to trigger the aperiodic SRS corresponding to the neighboring cell and/or the serving cell.
  • N may be 2, 4, etc., which is not limited in the present disclosure.
  • the terminal device can send the SRS according to the configuration information of the triggered SRS, so that the serving cell and/or the neighboring cell can perform uplink beam measurement.
  • the network device first configures the SRS resource corresponding to the adjacent cell to the terminal device, and then sends the first DCI to the terminal device through the serving cell to trigger the aperiodic SRS corresponding to the adjacent cell and the serving cell, so that The terminal device can use the triggered SRS resource to send the SRS, so as to complete the measurement of the uplink beam.
  • the DCI sent by the serving cell can trigger the aperiodic SRS corresponding to the serving cell and the neighboring cell, thereby realizing the uplink beam measurement between the terminal device and the neighboring cell, and providing a basis for realizing that the neighboring cell provides services for the terminal device .
  • FIG. 8 is a schematic flowchart of a method for measuring an uplink beam provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 8, the method may include but not limited to the following steps:
  • Step 81 receiving configuration information, wherein the configuration information includes sounding reference signals (SRS) corresponding to neighboring cells.
  • SRS sounding reference signals
  • step 81 for the specific implementation form of step 81, reference may be made to the detailed descriptions in other embodiments of the present disclosure, and details are not repeated here.
  • Step 82 receiving a second MAC CE sent by the serving cell, wherein the second MAC CE is used to indicate the selected SRS among the multiple aperiodic SRSs corresponding to the neighboring cell and the serving cell.
  • the network device may use multiple bits in the MAC CE to indicate the selected SRS among the multiple aperiodic SRSs corresponding to the neighboring cell and the serving cell.
  • the configuration information received by the terminal device may include the SRSs corresponding to 8 adjacent cells and the serving cell, and then the second MAC CE may include 8 selection status flags, and then the serving cell may send to the terminal device
  • the second MAC CE instructs the terminal device to select 2, 4, 5 SRSs and so on from 8 SRSs.
  • Step 83 Receive the second DCI sent by the serving cell, where the second DCI is used to trigger the selected SRS.
  • the serving cell may first send the second MAC CE to the terminal device to select some SRSs from multiple aperiodic SRSs, and then the serving cell may send the second DCI to the terminal device to trigger the selected SRS After that, the terminal device can send an SRS to a neighboring cell or a serving cell based on the triggered SRS resource, so as to complete the measurement of the uplink beam.
  • the configuration information received by the terminal device may include SRSs corresponding to 8 neighboring cells and the serving cell.
  • the terminal device receives the second MAC CE sent by the network device, and selects from the 8 SRSs according to the instruction of the second MAC CE. Select 4 SRSs, and finally receive the second DCI sent by the network device to trigger the selected SRSs.
  • the terminal device first receives the SRS corresponding to the neighboring cell, and then, according to the received second MAC CE sent by the serving cell, selects a part of the SRS from multiple aperiodic SRSs, and selects part of the SRS according to the received serving cell
  • the second DCI sent determines the SRS to be triggered, and then the uplink beam measurement can be completed based on the triggered SRS.
  • the triggering of some of the SRSs among the multiple aperiodic SRSs corresponding to the adjacent cell and the serving cell can be realized, thereby realizing the support for terminal equipment to communicate with adjacent cells.
  • the uplink beam measurement between them provides a basis for realizing that adjacent cells provide services for terminal equipment.
  • FIG. 9 is a schematic flowchart of a method for measuring an uplink beam provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 9, the method may include but not limited to the following steps:
  • Step 91 receiving configuration information, wherein the configuration information includes sounding reference signals (SRS) corresponding to neighboring cells.
  • SRS sounding reference signals
  • step 91 for the specific implementation form of step 91, reference may be made to the detailed descriptions in other embodiments of the present disclosure, and details are not repeated here.
  • Step 92 receiving a third DCI sent by the third cell, wherein the third DCI is used to trigger an aperiodic SRS corresponding to the third cell, and the third cell is a serving cell or a neighboring cell.
  • the terminal device needs to trigger the aperiodic SRS according to the received DCI, and then send the triggered SRS to the neighbor cell and the serving cell.
  • the adjacent cell and the serving cell can indicate the triggered aperiodic SRS to the terminal device through their respective DCIs, and then the terminal device can complete the uplink beam measurement of the serving cell according to the SRS triggered by the serving cell indication, and based on The neighbor cell indicates the triggered SRS, and completes the uplink beam measurement of the neighbor cell.
  • the serving cell indicates that its corresponding aperiodic SRS resource set #1 is triggered
  • the neighboring cell indicates that its corresponding aperiodic SRS resource set #1 is triggered.
  • Periodic SRS resource set set#5 then the terminal device can send SRS to the serving cell based on the resources corresponding to SRS set#1 to complete the uplink beam measurement corresponding to the serving cell, and based on the resources corresponding to SRS set#5, send SRS to the serving cell
  • the neighboring cell sends the SRS to complete the uplink beam measurement corresponding to the neighboring cell.
  • the terminal device first receives configuration information for configuring the SRS corresponding to the neighboring cell, and then triggers the aperiodic SRS corresponding to the third cell according to the received third DCI sent by the third cell.
  • the serving cell and the neighboring cells can respectively trigger their corresponding aperiodic SRS, thereby realizing the uplink beam measurement between the terminal device and the neighboring cell, and providing a basis for realizing that the neighboring cells provide services for the terminal device.
  • FIG. 10 is a schematic flowchart of a method for measuring an uplink beam provided by an embodiment of the present disclosure, and the method is executed by a network device. As shown in Figure 10, the method may include but not limited to the following steps:
  • Step 101 sending configuration information, wherein the configuration information includes sounding reference signals (SRS) corresponding to neighboring cells.
  • SRS sounding reference signals
  • the network device usually configures the SRS resource corresponding to the serving cell (serving cell) for the terminal device through radio resource control (Radio Resource Control, RRC) signaling, so that the terminal device can
  • the SRS is sent on frequency domain resources, where different SRSs correspond to different transmission beams.
  • the serving cell After receiving the SRS, the serving cell can find the best transmission beam according to the received power. That is, in the related art, only the uplink beam between the serving cell and the terminal device can be determined, but the appropriate uplink beam between the terminal device and the neighboring cell cannot be determined.
  • the network device can not only configure the SRS resource corresponding to the serving cell for the terminal device, but also configure the SRS resource corresponding to the neighboring cell (non-serving cell) for the terminal device. Therefore, the terminal device can send SRS to the neighboring cell based on the SRS resources corresponding to the neighboring cell, so that the neighboring cell can determine the best transmission beam between the neighboring cell and the terminal device according to the measured receiving power of each SRS, and then provide the terminal device with Serve.
  • the configuration information may also include: the path loss reference signal (path loss reference signal, PL RS) corresponding to the neighboring cell, and the spatial relationship information parameter (spatialRelationInfo) corresponding to the neighboring cell, etc., which is not limited in this disclosure . Therefore, after receiving the configuration information, the terminal device can determine the transmit power of the SRS according to the PL RS corresponding to the neighboring cell, determine the transmit beam corresponding to the SRS according to the spatialRelationInfo, and then based on the determined transmit power and transmit beam, send to the Neighboring cells send SRS.
  • the path loss reference signal path loss reference signal
  • PL RS path loss reference signal
  • spatialRelationInfo spatial relationship information parameter
  • the number of neighboring cells may be one or more. For example, 1, 3, 5, etc., which are not limited in the present disclosure.
  • the SRS corresponding to the neighboring cell may be a periodic (cyclicity) SRS, a semi-persistent (Semi-persistent) SRS, or an aperiodic (Aperiodic) SRS, which is not limited in the present disclosure.
  • the network device sends configuration information including the SRS corresponding to the neighboring cell to the terminal device, so that the terminal device sends the SRS to the neighboring cell, so that the neighboring cell determines the best Good launch beam.
  • the uplink beam measurement between the terminal equipment and the adjacent cell is supported, and a basis is provided for realizing that the adjacent cell provides services for the terminal equipment.
  • FIG. 11 is a schematic flowchart of a method for measuring an uplink beam provided by an embodiment of the present disclosure, and the method is executed by a network device. As shown in Figure 11, the method may include but not limited to the following steps:
  • Step 111 sending configuration information, wherein the configuration information includes sounding reference signals (SRS) corresponding to neighboring cells.
  • SRS sounding reference signals
  • step 111 for the specific implementation form of step 111, reference may be made to the detailed descriptions in other embodiments of the present disclosure, and details are not repeated here.
  • Step 112 based on the time-frequency domain resources corresponding to the adjacent cell or the serving cell, send the first multimedia access control MAC control element CE, the first MAC CE is used to activate or deactivate the adjacent cell corresponding to any cell in the serving cell
  • the semi-static SRS based on the time-frequency domain resources corresponding to the adjacent cell or the serving cell.
  • the terminal device can send information to the serving cell or neighboring cells based on the time-frequency domain resources corresponding to the activated semi-static SRS. Send SRS.
  • the network device can send a MAC CE to the terminal device based on the time-frequency domain resources corresponding to cell A, so that Semi-static SRS deactivation: based on the time-frequency domain resources corresponding to cell B, send a MAC CE to the terminal device to activate the semi-static SRS corresponding to cell B, so that cell B can provide services for the terminal device.
  • the network device first sends the SRS corresponding to the neighboring cell to the terminal device, and then sends the first MAC CE to the terminal device based on the time-frequency domain resources corresponding to the neighboring cell or the serving cell to activate or deactivate the serving cell or The semi-static SRS corresponding to the neighboring cell. Therefore, after the network device activates the semi-static SRS corresponding to the adjacent cell through the MAC CE, it can obtain a suitable uplink beam pair between the terminal device and the adjacent cell, and then the adjacent cell can provide services for the terminal device.
  • FIG. 12 is a schematic flowchart of a method for measuring an uplink beam provided by an embodiment of the present disclosure, and the method is executed by a network device. As shown in Figure 12, the method may include but not limited to the following steps:
  • Step 121 sending configuration information, wherein the configuration information includes sounding reference signals (SRS) corresponding to neighboring cells.
  • SRS sounding reference signals
  • step 121 for the specific implementation form of step 121, reference may be made to the detailed descriptions in other embodiments of the present disclosure, and details will not be repeated here.
  • Step 122 Based on the time-frequency domain resource corresponding to the serving cell, send first downlink control information DCI, wherein the first DCI is used to trigger an aperiodic SRS corresponding to a neighbor cell or a serving cell.
  • the network device may add N bits to the SRS request field in the first DCI to instruct the terminal device to trigger the aperiodic SRS corresponding to the neighboring cell and/or the serving cell.
  • N may be 2, 4, etc., which is not limited in the present disclosure.
  • the terminal device can use the configuration information of the triggered SRS to send the SRS, so that the serving cell and/or the adjacent cell perform uplink beam measurement.
  • the network device first configures the SRS resource corresponding to the adjacent cell to the terminal device, and then sends the first DCI to the terminal device through the serving cell to trigger the aperiodic SRS corresponding to the adjacent cell and the serving cell, so that The terminal device can use the triggered SRS resource to send the SRS, so as to complete the measurement of the uplink beam.
  • the DCI sent by the serving cell can trigger the aperiodic SRS corresponding to the serving cell and the neighboring cell, thereby realizing the uplink beam measurement between the terminal device and the neighboring cell, and providing a basis for realizing that the neighboring cell provides services for the terminal device .
  • FIG. 13 is a schematic flowchart of a method for measuring an uplink beam provided by an embodiment of the present disclosure, and the method is executed by a network device. As shown in Figure 13, the method may include but not limited to the following steps:
  • Step 131 sending configuration information, wherein the configuration information includes sounding reference signals (SRS) corresponding to neighboring cells.
  • SRS sounding reference signals
  • step 131 for the specific implementation form of step 131, reference may be made to the detailed descriptions in other embodiments of the present disclosure, and details are not repeated here.
  • Step 132 sending a second MAC CE, wherein the second MAC CE is used to indicate the selected SRS among the multiple aperiodic SRSs corresponding to the neighboring cell and the serving cell.
  • the network device may use multiple bits in the MAC CE to indicate the selected SRS among the multiple aperiodic SRSs corresponding to the neighboring cell and the serving cell.
  • Step 133 Based on the time-frequency domain resource corresponding to the serving cell, the second DCI is sent, wherein the second DCI is used to trigger the selected SRS.
  • the network device needs to send DCI to the terminal device, and only after the selected aperiodic SRS is triggered, the terminal device can send the SRS to the neighbor cell and the serving cell based on the triggered SRS.
  • the serving cell may first send the second MAC CE to the terminal device to select some SRSs from multiple aperiodic SRSs, and then the serving cell may send the second DCI to the terminal device to trigger the selected SRS After that, the terminal device can send an SRS to a neighboring cell or a serving cell based on the triggered SRS resource, so as to complete the measurement of the uplink beam.
  • the configuration information sent by the network device may include SRSs corresponding to 8 neighboring cells and the serving cell, and then the network device sends the second MAC CE to the terminal device to instruct the terminal device to select 4 SRSs from the 8 SRSs. SRS, and finally send the second DCI to the terminal device to trigger the selected SRS.
  • the network device first sends the SRS corresponding to the adjacent cell to the terminal device, and then sends the second MAC CE to the terminal device to indicate the selected SRS among the multiple aperiodic SRSs corresponding to the adjacent cell and the serving cell , and finally send the second DCI to the terminal device through the serving cell to trigger the selected SRS.
  • the triggering of some of the SRSs among the multiple aperiodic SRSs corresponding to the adjacent cell and the serving cell can be realized, thereby realizing the support for terminal equipment to communicate with adjacent cells.
  • the uplink beam measurement between them provides a basis for realizing that adjacent cells provide services for terminal equipment.
  • FIG. 14 is a schematic flowchart of a method for measuring an uplink beam provided by an embodiment of the present disclosure, and the method is executed by a network device. As shown in Figure 14, the method may include but not limited to the following steps:
  • Step 141 sending configuration information, wherein the configuration information includes sounding reference signals (SRS) corresponding to neighboring cells.
  • SRS sounding reference signals
  • step 141 for the specific implementation form of step 141, reference may be made to the detailed descriptions in other embodiments of the present disclosure, and details will not be repeated here.
  • Step 142 Based on the time-frequency domain resources corresponding to the neighboring cell or the serving cell, the third DCI is sent, wherein the third DCI is used to trigger an aperiodic SRS corresponding to any one of the serving cell and the neighboring cell.
  • the network device needs to send DCI to the terminal device to trigger the aperiodic SRS corresponding to the adjacent cell or the serving cell, and then send the SRS to the adjacent cell and the serving cell based on the triggered SRS resources.
  • the adjacent cell and the serving cell can indicate the triggered aperiodic SRS to the terminal device through their respective DCIs, and then the terminal device can complete the uplink beam measurement of the serving cell according to the SRS triggered by the serving cell indication, and based on The neighbor cell indicates the triggered SRS, and completes the uplink beam measurement of the neighbor cell.
  • the serving cell indicates that its corresponding aperiodic SRS resource set #1 is triggered
  • the neighboring cell indicates that its corresponding aperiodic SRS resource set #1 is triggered.
  • Periodic SRS resource set set#5 the terminal device can send SRS to the serving cell based on the resources corresponding to SRSset#1 to complete the uplink beam measurement corresponding to the serving cell, and based on the resources corresponding to SRSset#5, send SRS to the neighboring cell Send SRS to complete uplink beam measurement corresponding to adjacent cells.
  • the network device first sends the SRS corresponding to the adjacent cell to the terminal device, and then sends the third DCI based on the time-frequency domain resources corresponding to the adjacent cell or the serving cell to trigger any cell in the serving cell or the adjacent cell Corresponding aperiodic SRS.
  • the serving cell and the neighboring cells can respectively trigger their corresponding aperiodic SRS, thereby realizing the uplink beam measurement between the terminal device and the neighboring cell, and providing a basis for realizing that the neighboring cells provide services for the terminal device.
  • the methods provided in the embodiments of the present disclosure are introduced from the perspectives of network devices and terminal devices respectively.
  • the network device and the terminal device may include a hardware structure and a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a certain function among the above-mentioned functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 15 is a schematic structural diagram of a communication device 150 provided by an embodiment of the present disclosure.
  • the communication device 150 shown in FIG. 15 may include a processing module 1501 and a transceiver module 1502 .
  • the transceiver module 1502 may include a sending module and/or a receiving module, the sending module is used to implement a sending function, the receiving module is used to implement a receiving function, and the transceiver module 1502 may implement a sending function and/or a receiving function.
  • the communication device 150 may be a terminal device, may also be a device in the terminal device, and may also be a device that can be matched and used with the terminal device.
  • the communication device 150 on the side of the terminal device, the device includes:
  • the transceiver module 1502 is configured to receive configuration information, wherein the configuration information includes sounding reference signals (SRS) corresponding to neighboring cells.
  • SRS sounding reference signals
  • the configuration information also includes: path loss reference signals corresponding to neighboring cells, and spatial relationship information parameters corresponding to neighboring cells.
  • the transceiver module 1502 is also specifically used for:
  • the first MAC CE is used to activate or deactivate the semi-static SRS corresponding to the first cell, the first cell is a serving cell or a neighboring cell.
  • the transceiver module 1502 is further configured to receive indication information, where the indication information is used to indicate a beam for the terminal device;
  • the processing module 1501 is configured to deactivate the activated semi-static SRS in the third cell when the second cell corresponding to the indicated beam is different from the third cell currently providing data services for the terminal device.
  • processing module 1501 is also specifically used for:
  • the activated semi-static SRS corresponding to the neighbor cell is deactivated, wherein the timing advance corresponding to the neighbor cell and the serving cell is different from the timing advance corresponding to the terminal device.
  • processing module 1501 is also specifically used for:
  • the timing advance corresponding to the neighboring cell and the serving cell is the same as the timing advance corresponding to the terminal device, and the cells included in the cell list are the cells that are measured based on the SRS.
  • processing module 1501 is also specifically used for:
  • the received first MAC CE determine the cell list corresponding to each semi-static SRS.
  • the transceiver module 1502 is also specifically used for:
  • the first downlink control information DCI sent by the serving cell is received, wherein the first DCI is used to trigger the aperiodic SRS corresponding to the neighboring cell or the serving cell.
  • the transceiver module 1502 is also specifically used for:
  • the transceiver module 1502 is also specifically used for:
  • a third DCI sent by the third cell is received, where the third DCI is used to trigger an aperiodic SRS corresponding to the third cell, and the third cell is a serving cell or a neighboring cell.
  • the terminal device receives configuration information including the SRS corresponding to the adjacent cell, and then can send the SRS to the adjacent cell, so that the adjacent cell can determine the best transmit beam for the terminal device according to the measured receiving power .
  • the uplink beam measurement between the terminal equipment and the adjacent cell is supported, and a basis is provided for realizing that the adjacent cell provides services for the terminal equipment.
  • the communication device 150 may be a network device, may also be a device in the network device, and may also be a device that can be matched and used with the network device.
  • the communication device 150 on the network device side, the device includes:
  • the transceiver module 1502 is configured to send configuration information, wherein the configuration information includes sounding reference signals (SRS) corresponding to neighboring cells.
  • SRS sounding reference signals
  • the configuration information also includes: path loss reference signals corresponding to neighboring cells, and spatial relationship information parameters corresponding to neighboring cells.
  • the transceiver module 1502 is also specifically used for
  • the first multimedia access control MAC control element CE is sent, and the first MAC CE is used to activate or deactivate the semi-static corresponding to any cell in the adjacent cell and the serving cell. SRS.
  • the transceiver module 1502 is also specifically used for:
  • the first downlink control information DCI is sent, wherein the first DCI is used to trigger an aperiodic SRS corresponding to the neighboring cell or the serving cell.
  • the transceiver module 1502 is also specifically used for:
  • the second DCI is sent, where the second DCI is used to trigger the selected SRS.
  • the transceiver module 1502 is also specifically used for:
  • the third DCI is sent, where the third DCI is used to trigger an aperiodic SRS corresponding to any cell in the serving cell and the neighboring cell.
  • the network device sends the configuration information including the SRS corresponding to the neighboring cell to the terminal device, so that the terminal device sends the SRS to the neighboring cell, so that the neighboring cell can determine the optimal value of the terminal device according to the measured receiving power.
  • Good launch beam the uplink beam measurement between the terminal equipment and the adjacent cell is supported, and a basis is provided for realizing that the adjacent cell provides services for the terminal equipment.
  • FIG. 16 is a schematic structural diagram of another communication device 160 provided by an embodiment of the present disclosure.
  • the communication device 160 may be a network device, a terminal device, a chip, a chip system, or a processor that supports the network device to implement the above method, or a chip, a chip system, or a chip that supports the terminal device to implement the above method. processor etc.
  • the device can be used to implement the methods described in the above method embodiments, and for details, refer to the descriptions in the above method embodiments.
  • Communications device 160 may include one or more processors 1601 .
  • the processor 1601 may be a general-purpose processor or a special-purpose processor. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs , to process data for computer programs.
  • the communication device 160 may further include one or more memories 1602, on which a computer program 1604 may be stored, and the processor 1601 executes the computer program 1604, so that the communication device 160 executes the method described in the foregoing method embodiments. method.
  • data may also be stored in the memory 1602 .
  • the communication device 160 and the memory 1602 can be set separately or integrated together.
  • the communication device 160 may further include a transceiver 1605 and an antenna 1606 .
  • the transceiver 1605 may be called a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver 1605 may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • the communication device 160 may further include one or more interface circuits 1607 .
  • the interface circuit 1607 is used to receive code instructions and transmit them to the processor 1601 .
  • the processor 1601 runs the code instructions to enable the communication device 160 to execute the methods described in the foregoing method embodiments.
  • the communication device 160 is a terminal device: the processor 1601 is used to execute step 43 in FIG. 4 ; step 52 in FIG. 5 , and so on.
  • the transceiver 1605 is used to execute step 21 in FIG. 2 ; step 31 and step 32 in FIG. 3 ; step 41 and step 42 in FIG. 4 ; or step 51 in FIG. 5 and so on.
  • the communication device 160 is a network device: the transceiver 1605 is used to execute step 101 in FIG. 10; step 111 and step 112 in FIG. 11; step 121 and step 123 in FIG. 12; or step 131 and step 132 in FIG. 13 , and step 133 and so on.
  • the processor 1601 may include a transceiver for implementing receiving and sending functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transmission.
  • the processor 1601 may store a computer program 1603 , and the computer program 1603 runs on the processor 1601 to enable the communication device 160 to execute the methods described in the foregoing method embodiments.
  • the computer program 1603 may be solidified in the processor 1601, and in this case, the processor 1601 may be implemented by hardware.
  • the communication device 160 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this disclosure can be implemented on integrated circuits (integrated circuits, ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device, but the scope of the communication device described in this disclosure is not limited thereto, and the structure of the communication device may not be limited by FIG. 16 .
  • a communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • a set of one or more ICs may also include storage components for storing data and computer programs;
  • ASIC such as modem (Modem);
  • the communication device may be a chip or a chip system
  • the schematic structural diagram of the chip shown in FIG. 17 refer to the schematic structural diagram of the chip shown in FIG. 17 .
  • the chip shown in FIG. 17 includes a processor 1701 and an interface 1702 .
  • the number of processors 1701 may be one or more, and the number of interfaces 1702 may be more than one.
  • Processor 1701 configured to execute step 43 in FIG. 4; step 52 in FIG. 5, etc.
  • the interface 1702 is used to execute step 21 in FIG. 2 ; step 31 and step 32 in FIG. 3 ; step 41 and step 42 in FIG. 4 ; or step 51 in FIG. 5 and so on.
  • the interface 1702 is used to execute step 101 in FIG. 10; step 111 and step 112 in FIG. 11; step 121 and step 123 in FIG. 12; or step 131, step 132 and step 133 in FIG. 13, etc.
  • the chip further includes a memory 1703 for storing necessary computer programs and data.
  • the embodiment of the present disclosure also provides a communication system, the system includes the communication device as the terminal device and the communication device as the network device in the aforementioned embodiment of Figure 15, or the system includes the communication device as the terminal device in the aforementioned embodiment of Figure 16 devices and communication devices as network devices.
  • the present disclosure also provides a computer-readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any one of the above method embodiments are realized.
  • the present disclosure also provides a computer program product, which implements the functions of any one of the above method embodiments when the computer program product is executed by a computer.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs. When the computer program is loaded and executed on the computer, all or part of the processes or functions according to the embodiments of the present disclosure will be generated.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer program can be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program can be downloaded from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • At least one in the present disclosure can also be described as one or more, and a plurality can be two, three, four or more, and the present disclosure is not limited.
  • the technical feature is distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in the “first”, “second”, “third”, “A”, “B”, “C” and “D” have no sequence or order of magnitude among the technical features described.
  • the word “if” may be construed as “at” or “when” or “in response to a determination” or "under circumstances”.
  • each table in the present disclosure may be configured or predefined.
  • the values of the information in each table are just examples, and may be configured as other values, which are not limited in the present disclosure.
  • the corresponding relationship shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, for example, splitting, merging, and so on.
  • the names of the parameters shown in the titles of the above tables may also adopt other names understandable by the communication device, and the values or representations of the parameters may also be other values or representations understandable by the communication device.
  • other data structures can also be used, for example, arrays, queues, containers, stacks, linear tables, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables can be used wait.
  • Predefinition in the present disclosure can be understood as definition, predefinition, storage, prestorage, prenegotiation, preconfiguration, curing, or prefiring.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例公开了一种上行波束的测量方法及其装置,可应用于通信技术领域,其中,由终端设备执行的方法包括:接收配置信息,其中,所述配置信息中包括邻小区对应的探测参考信号SRS。由此,终端设备在接收邻小区对应的SRS之后,即可向邻小区发送SRS,以使邻小区根据测量的接收功率,确定终端设备最佳的发射波束,实现了支持终端设备与邻小区之间的上行波束测量,为实现邻小区为终端设备提供服务提供了依据。

Description

一种上行波束的测量方法及其装置 技术领域
本公开涉及通信技术领域,尤其涉及一种上行波束的测量方法及其装置。
背景技术
在通信系统中的小区间波束管理(inter-cell mobility),或小区间inter-cell多个multi发送接收点(Transmission Reception Point,TRP)场景下,可以利用邻小区为终端设备提供服务。但是在邻小区为终端设备提供服务之前,需要通过上行波束测量,获取终端设备与邻小区之间的合适的上行波束对。相关的上行波束测量技术中,只能获取终端设备与服务小区之间的上行波束,而无法获取终端设备与邻小区之间的合适的上行波束。因此,如何获取终端设备与邻小区之间的合适的上行波束对是目前亟需解决的问题。
发明内容
本公开实施例提供一种上行波束的测量方法及其装置,可应用于通信技术领域中。
第一方面,本公开实施例提供一种上行波束的测量方法,所述方法由终端设备执行,该方法包括:接收配置信息,其中,所述配置信息中包括邻小区对应的探测参考信号SRS。
可选的,所述配置信息中还包括:所述邻小区对应的路径损耗参考信号,以及所述邻小区对应的空间关系信息参数。
可选的,还包括:
接收第一小区发送的第一多媒体接入控制MAC控制单元CE,所述第一MAC CE用于激活或去激活所述第一小区对应的半静态SRS,所述第一小区为服务小区或邻小区。
可选的,还包括:
接收指示信息,其中,所述指示信息用于为所述终端设备指示波束;
在所述指示的波束对应的第二小区与当前为所述终端设备提供数据服务的第三小区不同的情况下,去激活所述第三小区中处于激活态的半静态SRS。
可选的,还包括:
在所述邻小区变化的情况下,将所述邻小区对应的处于激活态的半静态SRS去激活,其中,所述邻小区与服务小区对应的定时提前与所述终端设备对应的定时提前不同。
可选的,还包括:
在所述邻小区变化的情况下,将所述邻小区对应的处于激活态的半静态SRS去激活;
或者,在所述邻小区变化的情况下,将对应小区列表中仅包含所述邻小区标识的半静态SRS去激活;
其中,所述邻小区与服务小区对应的定时提前与所述终端设备对应的定时提前相同,所述小区列表中包括的小区为基于所述SRS进行测量的小区。
可选的,还包括:
根据接收的第一MAC CE,确定每个半静态SRS对应的小区列表。
可选的,还包括:
接收服务小区发送的第一下行控制信息DCI,其中,所述第一DCI用于触发所述邻小区或服务小区对应的非周期SRS。
可选的,还包括:
接收第二MAC CE,其中,所述第二MAC CE用于指示所述邻小区及服务小区对应的多个非周期的SRS中被选中的SRS;
接收服务小区发送的第二DCI,其中,所述第二DCI用于触发所述被选中的SRS。
可选的,还包括:
接收第三小区发送的第三DCI,其中,所述第三DCI用于触发所述第三小区对应的非周期的SRS,所述第三小区为服务小区或邻小区。
第二方面,本公开实施例提供另一种上行波束的测量方法,所述方法由网络设备执行,该方法包括:发送配置信息,其中,所述配置信息中包括邻小区对应的探测参考信号SRS。
可选的,所述配置信息中还包括:所述邻小区对应的路径损耗参考信号,以及所述邻小区对应的空间关系信息参数。
可选的,还包括:
可选的,基于邻小区或者服务小区对应的时频域资源,发送第一多媒体接入控制MAC控制单元CE,所述第一MAC CE用于激活或去激活所述邻小区与服务小区中任一小区对应的半静态SRS。
可选的,还包括:
基于服务小区对应的时频域资源,发送第一下行控制信息DCI,其中,所述第一DCI用于触发所述邻小区或服务小区对应的非周期的SRS。
可选的,还包括:
发送第二MAC CE,其中,所述第二MAC CE用于指示所述邻小区及服务小区对应的多个非周期的SRS中被选中的SRS;
基于服务小区对应的时频域资源,发送第二DCI,其中,所述第二DCI用于触发所述被选中的SRS。
可选的,还包括:
基于邻小区或服务小区对应的时频域资源,发送第三DCI,其中,所述第三DCI用于触发服务小区与邻小区中任一小区对应的非周期SRS。
第三方面,本公开实施例提供一种通信装置,该通信装置具有实现上述第一方面所述的方法中终端设备的部分或全部功能,比如通信装置的功能可具备本公开中的部分或全部实施例中的功能,也可以具备单独实施本公开中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
第四方面,本公开实施例提供另一种通信装置,该通信装置具有实现上述第二方面所述的方法示例中网络设备的部分或全部功能,比如通信装置的功能可具备本公开中的部分或全部实施例中的功能,也可以具备单独实施本公开中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
第五方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
第六方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第二方面所述的方法。
第七方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;当所述计算机程序被所述处理器执行时,使该通信装置执行上述第一方面所述的方法。
第八方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;当所述计算机程序被所述处理器执行时,使该通信装置执行上述第二方面所述的方法。
第九方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法。
第十方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第二方面所述的方法。
第十一方面,本公开实施例提供一种通信系统,该系统包括第三方面所述的通信装置以及第四方面所述的通信装置,或者,该系统包括第五方面所述的通信装置以及第六方面所述的通信装置,或者,该系统包括第七方面所述的通信装置以及第八方面所述的通信装置,或者,该系统包括第九方面所述的通信装置以及第十方面所述的通信装置。
第十二方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述终端设备所用的指令,当所述指令被执行时,使上述第一方面所述的方法被实现。
第十三方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述网络设备所用的指令,当所述指令被执行时,使上述第二方面所述的方法被实现。
第十四方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十五方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
第十六方面,本公开提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持终端设备实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十七方面,本公开提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持网络设备实现第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十八方面,本公开提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十九方面,本公开提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
附图说明
为了更清楚地说明本公开实施例或背景技术中的技术方案,下面将对本公开实施例或背景技术中所需要使用的附图进行说明。
图1是本公开实施例提供的一种通信系统的架构示意图;
图2是本公开一实施例提供的一种上行波束的测量方法的流程示意图;
图3是本公开另一实施例提供的一种上行波束的测量方法的流程示意图;
图4是本公开另一实施例提供的一种上行波束的测量方法的流程示意图;
图5是本公开另一实施例提供的一种上行波束的测量方法的流程示意图;
图6是本公开另一实施例提供的一种上行波束的测量方法的流程示意图;
图7是本公开另一实施例提供的一种上行波束的测量方法的流程示意图;
图8是本公开另一实施例提供的一种上行波束的测量方法的流程示意图;
图9是本公开另一实施例提供的一种上行波束的测量方法的流程示意图;
图10是本公开另一实施例提供的一种上行波束的测量方法的流程示意图;
图11是本公开另一实施例提供的一种上行波束的测量方法的流程示意图;
图12是本公开另一实施例提供的一种上行波束的测量方法的流程示意图;
图13是本公开另一实施例提供的一种上行波束的测量方法的流程示意图;
图14是本公开另一实施例提供的一种上行波束的测量方法的流程示意图;
图15是本公开一实施例的通信装置的结构示意图;
图16是本公开另一实施例的通信装置的结构示意图;
图17是本公开一实施例的芯片的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
可以理解的是,本公开中“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
为了便于理解,首先介绍本申请涉及的术语。
1、探测参考信号(Sounding Reference Signal,SRS)
在无线通信中,SRS用于估计上行信道频域信息,做频率选择性调度;或者,用于估计下行信道,做下行波束赋形。
2、媒体接入控制(medium access control,MAC)控制单元(Control Element,CE)
MAC CE是在无线资源控制(radio resource control,RRC)消息和非接入层(non access stratum,NAS)消息之外,UE和网络之间的交换控制信息的一个途径,它交换的是关于MAC层的控制信息。
3、下行控制信息(Downlink Control Information,DCI)
DCI为在PDCCH信道传输的、与物理上下行共享信道(PUSCH、PDSCH)相关的控制信息,这些DCI信息包含了诸如资源块(resource block,RB)分配信息、调制方式等等若干相关内容。终端只有正确的解码到了DCI信息,才能正确的处理PDSCH数据或PUSCH数据。
为了更好的理解本公开实施例公开的一种上行波束的测量方法,下面首先对本公开实施例适用的通信系统进行描述。
请参见图1,图1为本公开实施例提供的一种通信系统的架构示意图。该通信系统可包括但不限于一个网络设备、一个终端设备,图1所示的设备数量和形态仅用于举例并不构成对本公开实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1所示的通信系统以包括一个网络设备11、一个终端设备12。
需要说明的是,本公开实施例的技术方案可以应用于各种通信系统。例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、5G新空口(new radio,NR)系统,或者其他未来的新型移动通信系统等。
本公开实施例中的网络设备11是网络侧的一种用于发射或接收信号的实体。例如,网络设备11可以为演进型基站(evolved NodeB,eNB)、传输点(transmission reception  point,TRP)、NR系统中的下一代基站(next generation NodeB,gNB)、其他未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等。本公开的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本公开实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本公开实施例中的终端设备12是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本公开的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
可以理解的是,本公开实施例描述的通信系统是为了更加清楚的说明本公开实施例的技术方案,并不构成对于本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合附图对本公开所提供的上行波束的测量方法及其装置进行详细地介绍。
请参见图2,图2是本公开实施例提供的一种上行波束的测量方法的流程示意图,该方法由终端设备执行。如图2所示,该方法可以包括但不限于如下步骤:
步骤21,接收配置信息,其中,配置信息中包括邻小区对应的探测参考信号SRS。
需要说明的是,相关技术中,网络设备通常会通过无线资源控制(Radio Resource Control,RRC)信令为终端设备配置服务小区(serving cell)对应的SRS资源,从而终端设备即可在配置的时频域资源上发送SRS,其中不同的SRS对应不同的发射波束,服务小区在接收到SRS后,即可根据接收功率,找到最佳的发射波束。即相关技术中,只能确定服务小区与终端设备之间的上行波束,不能确定终端设备与邻小区之间的合适的上行波束。本公开中,网络设备不仅可以为终端设备配置服务小区对应的SRS资源,还可以为终端设备配置邻小区(non-serving cell)对应的SRS资源。从而,终端设备可以基于邻小区对应的SRS资源,向邻小区发送SRS,以使邻小区根据测量各SRS的接收功率,确定邻小区与终端设备间的最佳的发射波束,进而为终端设备提供服务。
可选的,配置信息中还可以包括:邻小区对应的路径损耗参考信号(path loss reference signal,PL RS),以及邻小区对应的空间关系信息参数(spatialRelationInfo)等,本公开对此不做限定。从而终端设备在收到该配置信息后,即可根据邻小区对应的PL RS,确定SRS的发射功率,根据spatialRelationInfo,确定SRS对应的发射波束等,进而再基于确定的发射功率及发射波束,向邻小区发送SRS。
可选的,邻小区的数量可以为1个或多个。比如,1个、3个、5个等等,本公开对此不做限定。
可选的,邻小区对应的SRS可以为周期性(cyclicity)SRS、半静态(Semi-persistent)SRS、或非周期(Aperiodic)SRS,本公开对此不做限定。
通过实施本公开实施例,终端设备接收包括邻小区对应的探测参考信号SRS的配置信息,之后即可向邻小区发送SRS,以使邻小区根据测量的接收功率,确定终端设备最佳的发射波束。由此,实现了支持终端设备与邻小区之间的上行波束测量,为实现邻小区为终端设备提供服务提供了依据。
请参见图3,图3是本公开实施例提供的一种上行波束的测量方法的流程示意图,该方法由终端设备执行。如图3所示,该方法可以包括但不限于如下步骤:
步骤31,接收配置信息,其中,配置信息中包括邻小区对应的探测参考信号SRS。
其中,步骤31的具体实现形式,可参照本公开中其他各实施例中的详细描述,此处不再详细赘述。
步骤32,接收第一小区发送的第一多媒体接入控制MAC控制单元CE,第一MAC CE用于激活或去激活第一小区对应的半静态SRS,第一小区为服务小区或邻小区。
可以理解的是,对于半静态的SRS,需要根据MAC CE对半静态SRS激活之后,终端设备才可以基于激活后的半静态SRS对应的时频域资源,向服务小区或邻小区发送SRS。
举例来说,如果为终端设备提供服务的小区发生变化,由小区A变化为小区B,则终端设备需要将小区A对应的半静态SRS去激活,小区B对应的半静态SRS激活。本实施例中,终端设备可以根据小区A发送的MAC CE去激活小区A对应的半静态SRS,根据小区B发送的MAC CE激活小区B对应的半静态SRS。
通过实施本公开实施例,终端设备首先接收邻小区对应的SRS,之后根据接收的第一小区发送的MAC CE,激活或去激活服务小区或邻小区对应的半静态SRS。由此,终端设备在对半静态SRS进行激活之后,即可获取终端设备与邻小区之间的合适的上行波束对,进而可以由邻小区为终端设备提供服务。
请参见图4,图4是本公开实施例提供的一种上行波束的测量方法的流程示意图,该方法由终端设备执行。如图4所示,该方法可以包括但不限于如下步骤:
步骤41,接收配置信息,其中,配置信息中包括邻小区对应的探测参考信号SRS。
其中,步骤41的具体实现形式,可参照本公开中其他各实施例中的详细描述,此处不再详细赘述。
步骤42,接收指示信息,其中,指示信息用于为终端设备指示波束。
可选的,网络设备可以通过MAC CE向终端设备发送指示信息。或者,网络设备也可以通过DCI向终端设备发送指示信息。
步骤43,在指示的波束对应的第二小区与当前为终端设备提供数据服务的第三小区不同的情况下,去激活第三小区中处于激活态的半静态SRS。
需要说明的是,波束与小区之间的对应关系可以是预先配置好的。
可以理解的是,指示的波束对应的第二小区可以为即将为终端设备提供服务的小区,因此,在网络设备为终端设备指示波束之后,若指示的波束对应的第二小区与当前为终端设备提供数据服务的第三小区不同,则终端设备可以将第三小区中处于激活态的半静态SRS去激活。从而终端设备即可根据指示的波束向第二小区发送SRS。
通过实施本公开实施例,终端设备在小区间波束管理的场景中,首先接收邻小区对应的SRS,之后接收为终端设备指示波束的指示信息,最后在指示的波束对应的第二小区与当前为终端设备提供数据服务的第三小区不同的情况下,去激活第三小区中处于激活态的半静态SRS。由此,终端设备即可基于指示的波束向对应的第二小区发送SRS,并由第二小区为终端设备提供服务。
请参见图5,图5是本公开实施例提供的一种上行波束的测量方法的流程示意图,该方法由终端设备执行。如图5所示,该方法可以包括但不限于如下步骤:
步骤51,接收配置信息,其中,配置信息中包括邻小区对应的探测参考信号SRS。
其中,步骤51的具体实现形式,可参照本公开中其他各实施例中的详细描述,此处不再详细赘述。
步骤52,在邻小区变化的情况下,将邻小区对应的处于激活态的半静态SRS去激活,其中,邻小区与服务小区对应的定时提前与终端设备对应的定时提前(Timing Advance,TA)不同。
可以理解的是,邻小区与服务小区对应的TA与终端设备对应的TA不同时,邻小区与服务小区分别对自己对应的SRS进行管理。此时,随着终端设备的移动,终端设备对应的邻小区可能由邻小区A变化为邻小区B。此时,终端设备就不需要向邻小区A发送SRS,因此,终端设备需要将邻小区A对应的处于激活态的半静态SRS去激活。
可选的,终端设备可以根据网络设备发送的高层信令,确定邻小区发生变化。
通过实施本公开实施例,终端设备在inter-cell multi-TRP场景中,首先接收邻小区对应的SRS,之后在邻小区变化,且邻小区与服务小区对应的定时提前与终端设备对应的定时提前不同的情况下,将邻小区对应的处于激活态的半静态SRS去激活。由此,不仅实现了支持终端设备与邻小区之间的上行波束测量,而且实现了在邻小区变化时,对半静态SRS的可靠去激活,从而即保证了邻小区可以为终端设备提供可靠服务,又避免了资源浪费。
请参见图6,图6是本公开实施例提供的一种上行波束的测量方法的流程示意图,该方法由终端设备执行。如图6所示,该方法可以包括但不限于如下步骤:
步骤61,接收配置信息,其中,配置信息中包括邻小区对应的探测参考信号SRS。
其中,步骤61的具体实现形式,可参照本公开中其他各实施例中的详细描述,此处不再详细赘述。
步骤62,在邻小区变化的情况下,将对应小区列表中仅包含邻小区标识的半静态SRS去激活。其中,邻小区与服务小区对应的定时提前与终端设备对应的定时提前相同,小区列表中包括的小区为基于SRS进行测量的小区。
需要说明的是,在邻小区与服务小区对应的TA与终端设备对应的TA相同的情况下,邻小区和服务小区可能会基于同一个SRS进行同时测量,若直接将半静态SRS去激活,则可能会导致服务小区对应的SRS不能用。因此,终端设备可以记录基于每个SRS进行测量的小区列表,之后在邻小区变化的情况下,基于半静态SRS对应的小区列表中包含的小区情况,确定是否对半静态SRS进行去激活。
举例来说,终端设备在移动过程中,由邻小区A变化至了邻小区B,且半静态SRS#1对应的小区列表中,仅包含邻小区A的标识,半静态SRS#2对应的小区列表中,包含邻小区A及邻小区B,则此时,仅可以把半静态SRS#1进行去激活。
可选的,终端设备可以根据接收的第一MAC CE,确定每个半静态SRS对应的小区列表。
可选的,在邻小区变化,且邻小区与服务小区对应的定时提前与终端设备对应的定时提前相同的情况下,也可以将邻小区对应的处于激活态的半静态SRS去激活。
通过实施本公开实施例,终端设备在inter-cell multi-TRP场景中,首先接收邻小区对应的SRS,之后在邻小区变化,且邻小区与服务小区对应的定时提前与终端设备对应的定时提前相同的情况下,将对应小区列表中仅包含邻小区标识的半静态SRS去激活。由此,不仅实现了支持终端设备与邻小区之间的上行波束测量,而且实现了在邻小区变化时,对半静态SRS的可靠去激活,从而即保证了邻小区可以为终端设备提供可靠服务,又避免了 资源浪费。
请参见图7,图7是本公开实施例提供的一种上行波束的测量方法的流程示意图,该方法由终端设备执行。如图7所示,该方法可以包括但不限于如下步骤:
步骤71,接收配置信息,其中,配置信息中包括邻小区对应的探测参考信号SRS。
其中,步骤71的具体实现形式,可参照本公开中其他各实施例中的详细描述,此处不再详细赘述。
步骤72,接收服务小区发送的第一下行控制信息DCI,其中,第一DCI用于触发邻小区或服务小区对应的非周期SRS。
可选的,网络设备可以将服务小区的DCI中的SRS请求request域中增加N比特bits,以指示终端设备触发邻小区和/或服务小区对应的非周期SRS。其中,N可以为2、4等等,本公开对此不做限定。
可以理解的是,邻小区及服务小区对应的非周期SRS被触发之后,终端设备即可根据被触发的SRS的配置信息发送SRS,以使服务小区和/或邻小区进行上行波束测量。
通过实施本公开实施例,网络设备首先向终端设备配置邻小区对应的SRS资源,之后即可通过服务小区向终端设备发送第一DCI,以触发邻小区及服务小区对应的非周期SRS,从而使得终端设备即可利用被触发的SRS资源发送SRS,以完成上行波束的测量。由此,通过服务小区发送的DCI即可触发服务小区及邻小区对应的非周期SRS,从而实现了终端设备与邻小区之间的上行波束测量,为实现邻小区为终端设备提供服务提供了依据。
请参见图8,图8是本公开实施例提供的一种上行波束的测量方法的流程示意图,该方法由终端设备执行。如图8所示,该方法可以包括但不限于如下步骤:
步骤81,接收配置信息,其中,配置信息中包括邻小区对应的探测参考信号SRS。
其中,步骤81的具体实现形式,可参照本公开中其他各实施例中的详细描述,此处不再详细赘述。
步骤82,接收服务小区发送的第二MAC CE,其中,第二MAC CE用于指示邻小区及服务小区对应的多个非周期的SRS中被选中的SRS。
可选的,网络设备可以通过MAC CE中的多个bits来指示邻小区及服务小区对应的多个非周期的SRS中被选中的SRS。比如,邻小区及服务小区共对应N个非周期SRS,则MAC CE中可以至少包括与各个SRS对应的选择状态标识位T0~TN,Ti=1表示其对应的第i个SRS资源集被选中,Ti=0则表示其对应的第i个SRS资源集未被选中。举例来说,T0=1,表示第一个SRS资源集被选中。
举例来说,终端设备接收的配置信息中可以包含8个邻小区及服务小区对应的SRS,则第二MAC CE中,可以包含8个选择状态标识位,之后,服务小区可以通过向终端设备发送第二MAC CE,指示终端设备从8个SRS中选择2个、4个、5个SRS等等。
步骤83,接收服务小区发送的第二DCI,其中,第二DCI用于触发被选中的SRS。
可以理解的是,对应非周期的SRS,需要接收网络设备发送的DCI,对非周期SRS进行触发之后,才可以基于触发的SRS向邻小区及服务小区发送SRS。
本公开中,可以通过服务小区向终端设备先发送第二MAC CE,以从多个非周期SRS中选择部分SRS,进而再由服务小区向终端设备发送第二DCI,以触发被选中的SRS中的部分SRS,之后,终端设备即可基于被触发的SRS资源向邻小区或者服务小区发送SRS,以完成上行波束的测量。
举例来说,终端设备接收的配置信息中可以包含8个邻小区及服务小区对应的SRS, 之后,终端设备再接收网络设备发送第二MAC CE,根据第二MAC CE的指示从8个SRS中选择4个SRS,最后接收网络设备发送的第二DCI,以触发被选中的SRS。
通过实施本公开实施例,终端设备首先接收邻小区对应的SRS,之后,即可根据接收的服务小区发送的第二MAC CE,从多个非周期SRS中选择部分SRS,并根据接收的服务小区发送的第二DCI,确定待触发的SRS,之后,即可基于被触发的SRS完成上行波束测量。由此,通过服务小区发送的第二MAC CE及第二DCI,即可实现对邻小区及服务小区对应的多个非周期性SRS中的部分SRS的触发,从而实现了支持终端设备与邻小区之间的上行波束测量,为实现邻小区为终端设备提供服务提供了依据。
请参见图9,图9是本公开实施例提供的一种上行波束的测量方法的流程示意图,该方法由终端设备执行。如图9所示,该方法可以包括但不限于如下步骤:
步骤91,接收配置信息,其中,配置信息中包括邻小区对应的探测参考信号SRS。
其中,步骤91的具体实现形式,可参照本公开中其他各实施例中的详细描述,此处不再详细赘述。
步骤92,接收第三小区发送的第三DCI,其中,第三DCI用于触发第三小区对应的非周期的SRS,第三小区为服务小区或邻小区。
可以理解的是,对应非周期的SRS,终端设备需要根据接收的DCI,对非周期SRS进行触发之后,才可以基于触发的SRS向邻小区及服务小区发送。
本公开中,邻小区及服务小区,可以通过各自的DCI向终端设备指示触发的非周期的SRS,之后,终端设备即可根据服务小区指示触发的SRS,完成服务小区的上行波束测量,并基于邻小区指示触发的SRS,完成邻小区的上行波束测量。
举例来说,服务小区通过向终端设备发送第三DCI,指示触发其对应的非周期性SRS资源集set#1被触发,而邻小区通过向终端设备发送第三DCI,指示触发其对应的非周期性SRS资源集set#5,则终端设备即可基于SRS set#1对应的资源,向服务小区发送SRS,以完成服务小区对应的上行波束测量,并基于SRS set#5对应的资源,向邻小区发送SRS,以完成邻小区对应的上行波束测量。
通过实施本公开实施例,终端设备首先接收用于配置邻小区对应的SRS的配置信息,之后即可根据接收到的第三小区发送的第三DCI,触发第三小区对应的非周期的SRS。由此,服务小区及邻小区,可以各自触发其对应的非周期SRS,从而实现了终端设备与邻小区之间的上行波束测量,为实现邻小区为终端设备提供服务提供了依据。
请参见图10,图10是本公开实施例提供的一种上行波束的测量方法的流程示意图,该方法由网络设备执行。如图10所示,该方法可以包括但不限于如下步骤:
步骤101,发送配置信息,其中,配置信息中包括邻小区对应的探测参考信号SRS。
需要说明的是,相关技术中,网络设备通常会通过无线资源控制(Radio Resource Control,RRC)信令为终端设备配置服务小区(serving cell)对应的SRS资源,从而终端设备即可在配置的时频域资源上发送SRS,其中不同的SRS对应不同的发射波束,服务小区在接收到SRS后,即可根据接收功率,找到最佳的发射波束。即相关技术中,只能确定服务小区与终端设备之间的上行波束,不能确定终端设备与邻小区之间的合适的上行波束。本公开中,网络设备不仅可以为终端设备配置服务小区对应的SRS资源,还可以为终端设备配置邻小区(non-serving cell)对应的SRS资源。从而,终端设备可以基于邻小区对应的SRS资源,向邻小区发送SRS,以使邻小区根据测量各SRS的接收功率,确定邻小区与终端设备间的最佳的发射波束,进而为终端设备提供服务。
可选的,配置信息中还可以包括:邻小区对应的路径损耗参考信号(path loss  reference signal,PL RS),以及邻小区对应的空间关系信息参数(spatialRelationInfo)等,本公开对此不做限定。从而终端设备在收到该配置信息后,即可根据邻小区对应的PL RS,确定SRS的发射功率,根据spatialRelationInfo,确定SRS对应的发射波束等,进而再基于确定的发射功率及发射波束,向邻小区发送SRS。
可选的,邻小区的数量可以为1个或多个。比如,1个、3个、5个等等,本公开对此不做限定。
可选的,邻小区对应的SRS可以为周期性(cyclicity)SRS、半静态(Semi-persistent)SRS、或非周期(Aperiodic)SRS,本公开对此不做限定。
通过实施本公开实施例,网络设备通过向终端设备发送包括邻小区对应的探测参考信号SRS的配置信息,使终端设备向邻小区发送SRS,从而使邻小区根据测量的接收功率,确定终端设备最佳的发射波束。由此,实现了支持终端设备与邻小区之间的上行波束测量,为实现邻小区为终端设备提供服务提供了依据。
请参见图11,图11是本公开实施例提供的一种上行波束的测量方法的流程示意图,该方法由网络设备执行。如图11所示,该方法可以包括但不限于如下步骤:
步骤111,发送配置信息,其中,配置信息中包括邻小区对应的探测参考信号SRS。
其中,步骤111的具体实现形式,可参照本公开中其他各实施例中的详细描述,此处不再详细赘述。
步骤112,基于邻小区或者服务小区对应的时频域资源,发送第一多媒体接入控制MAC控制单元CE,第一MAC CE用于激活或去激活邻小区与服务小区中任一小区对应的半静态SRS。
可以理解的是,对于半静态的SRS,需要根据网络设备发送的MAC CE对半静态SRS激活之后,终端设备才可以基于激活后的半静态SRS对应的时频域资源,向服务小区或邻小区发送SRS。
举例来说,如果为终端设备提供服务的小区发生变化,由小区A变化为小区B,则网络设备可以基于小区A对应的时频域资源,向终端设备发送MAC CE,以将小区A对应的半静态SRS去激活;基于小区B对应的时频域资源,向终端设备发送MAC CE,以激活小区B对应的半静态SRS,由此,可以有小区B为终端设备提供服务。
通过实施本公开实施例,网络设备首先向终端设备发送邻小区对应的SRS,之后基于邻小区或者服务小区对应的时频域资源,向终端设备发送第一MAC CE,激活或去激活服务小区或邻小区对应的半静态SRS。由此,网络设备通过MAC CE激活邻小区对应的半静态SRS之后,即可获取终端设备与邻小区之间的合适的上行波束对,进而可以由邻小区为终端设备提供服务。
请参见图12,图12是本公开实施例提供的一种上行波束的测量方法的流程示意图,该方法由网络设备执行。如图12所示,该方法可以包括但不限于如下步骤:
步骤121,发送配置信息,其中,配置信息中包括邻小区对应的探测参考信号SRS。
其中,步骤121的具体实现形式,可参照本公开中其他各实施例中的详细描述,此处不再详细赘述。
步骤122,基于服务小区对应的时频域资源,发送第一下行控制信息DCI,其中,第一DCI用于触发邻小区或服务小区对应的非周期的SRS。
可选的,网络设备可以在第一DCI中的SRS request域中增加N比特bits,以指示终端设备触发邻小区和/或服务小区对应的非周期SRS。其中,N可以为2、4等等,本公开对此不做限定。
可以理解的是,邻小区及服务小区对应的非周期SRS被触发之后,终端设备即可利用被触发的SRS的配置信息发送SRS,以使服务小区和/或邻小区进行上行波束测量。
通过实施本公开实施例,网络设备首先向终端设备配置邻小区对应的SRS资源,之后即可通过服务小区向终端设备发送第一DCI,以触发邻小区及服务小区对应的非周期SRS,从而使得终端设备即可利用被触发的SRS资源发送SRS,以完成上行波束的测量。由此,通过服务小区发送的DCI即可触发服务小区及邻小区对应的非周期SRS,从而实现了终端设备与邻小区之间的上行波束测量,为实现邻小区为终端设备提供服务提供了依据。
请参见图13,图13是本公开实施例提供的一种上行波束的测量方法的流程示意图,该方法由网络设备执行。如图13所示,该方法可以包括但不限于如下步骤:
步骤131,发送配置信息,其中,配置信息中包括邻小区对应的探测参考信号SRS。
其中,步骤131的具体实现形式,可参照本公开中其他各实施例中的详细描述,此处不再详细赘述。
步骤132,发送第二MAC CE,其中,第二MAC CE用于指示邻小区及服务小区对应的多个非周期的SRS中被选中的SRS。
可选的,网络设备可以通过MAC CE中的多个bits来指示邻小区及服务小区对应的多个非周期的SRS中被选中的SRS。比如,邻小区及服务小区共对应N个非周期SRS,则MAC CE中可以至少包括与各个SRS对应的选择状态标识位T0~TN,Ti=1表示其对应的第i个SRS资源集被选中,Ti=0则表示其对应的第i个SRS资源集未被选中。举例来说,T0=1,表示第一个SRS资源集被选中。
步骤133,基于服务小区对应的时频域资源,发送第二DCI,其中,第二DCI用于触发被选中的SRS。
可以理解的是,对应非周期的SRS,网络设备需要向终端设备发送DCI,对被选中的非周期SRS进行触发之后,终端设备才可以基于触发的SRS向邻小区及服务小区发送SRS。
本公开中,可以通过服务小区向终端设备先发送第二MAC CE,以从多个非周期SRS中选择部分SRS,进而再由服务小区向终端设备发送第二DCI,以触发被选中的SRS中的部分SRS,之后,终端设备即可基于被触发的SRS资源向邻小区或者服务小区发送SRS,以完成上行波束的测量。
举例来说,网络设备发送的配置信息中可以包含8个邻小区及服务小区对应的SRS,之后,网络设备再向终端设备发送第二MAC CE,以指示终端设备从8个SRS中选择4个SRS,最后再向终端设备发送第二DCI,以触发被选中的SRS。
通过实施本公开实施例,网络设备首先向终端设备发送邻小区对应的SRS,之后向终端设备发送第二MAC CE,以指示邻小区及服务小区对应的多个非周期的SRS中被选中的SRS,最后通过服务小区向终端设备发送第二DCI,以触发被选中的SRS。由此,通过服务小区发送的第二MAC CE及第二DCI,即可实现对邻小区及服务小区对应的多个非周期性SRS中的部分SRS的触发,从而实现了支持终端设备与邻小区之间的上行波束测量,为实现邻小区为终端设备提供服务提供了依据。
请参见图14,图14是本公开实施例提供的一种上行波束的测量方法的流程示意图,该方法由网络设备执行。如图14所示,该方法可以包括但不限于如下步骤:
步骤141,发送配置信息,其中,配置信息中包括邻小区对应的探测参考信号SRS。
其中,步骤141的具体实现形式,可参照本公开中其他各实施例中的详细描述,此处不再详细赘述。
步骤142,基于邻小区或服务小区对应的时频域资源,发送第三DCI,其中,第三DCI 用于触发服务小区与邻小区中任一小区对应的非周期SRS。
可以理解的是,对应非周期的SRS,网络设备需要向终端设备发送DCI,以触发邻小区或服务小区对应的非周期SRS,之后才可以基于触发的SRS资源向邻小区及服务小区发送SRS。
本公开中,邻小区及服务小区,可以通过各自的DCI向终端设备指示触发的非周期的SRS,之后,终端设备即可根据服务小区指示触发的SRS,完成服务小区的上行波束测量,并基于邻小区指示触发的SRS,完成邻小区的上行波束测量。
举例来说,服务小区通过向终端设备发送第三DCI,指示触发其对应的非周期性SRS资源集set#1被触发,而邻小区通过向终端设备发送第三DCI,指示触发其对应的非周期性SRS资源集set#5,则终端设备即可基于SRSset#1对应的资源,向服务小区发送SRS,以完成服务小区对应的上行波束测量,并基于SRSset#5对应的资源,向邻小区发送SRS,以完成邻小区对应的上行波束测量。
通过实施本公开实施例,网络设备首先向终端设备发送邻小区对应的SRS,之后基于邻小区或服务小区对应的时频域资源,发送第三DCI,以触发服务小区与邻小区中任一小区对应的非周期SRS。由此,服务小区及邻小区,可以各自触发其对应的非周期SRS,从而实现了终端设备与邻小区之间的上行波束测量,为实现邻小区为终端设备提供服务提供了依据。
上述本公开提供的实施例中,分别从网络设备、终端设备的角度对本公开实施例提供的方法进行了介绍。为了实现上述本公开实施例提供的方法中的各功能,网络设备和终端设备可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
请参见图15,为本公开实施例提供的一种通信装置150的结构示意图。图15所示的通信装置150可包括处理模块1501和收发模块1502。
收发模块1502可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块1502可以实现发送功能和/或接收功能。
可以理解的是,通信装置150可以是终端设备,也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。
通信装置150,在终端设备侧,该装置,包括:
收发模块1502,用于接收配置信息,其中,配置信息中包括邻小区对应的探测参考信号SRS。
可选的,配置信息中还包括:邻小区对应的路径损耗参考信号,以及邻小区对应的空间关系信息参数。
可选的,收发模块1502,还具体用于:
接收第一小区发送的第一多媒体接入控制MAC控制单元CE,第一MAC CE用于激活或去激活第一小区对应的半静态SRS,第一小区为服务小区或邻小区。
可选的,还包括:
收发模块1502,还用于接收指示信息,其中,指示信息用于为终端设备指示波束;
处理模块1501,用于在指示的波束对应的第二小区与当前为终端设备提供数据服务的第三小区不同的情况下,去激活第三小区中处于激活态的半静态SRS。
可选的,处理模块1501,还具体用于:
在邻小区变化的情况下,将邻小区对应的处于激活态的半静态SRS去激活,其中,邻小区与服务小区对应的定时提前与终端设备对应的定时提前不同。
可选的,处理模块1501,还具体用于:
在邻小区变化的情况下,将邻小区对应的处于激活态的半静态SRS去激活;
或者,在邻小区变化的情况下,将对应小区列表中仅包含邻小区标识的半静态SRS去激活;
其中,邻小区与服务小区对应的定时提前与终端设备对应的定时提前相同,小区列表中包括的小区为基于SRS进行测量的小区。
可选的,处理模块1501,还具体用于:
根据接收的第一MAC CE,确定每个半静态SRS对应的小区列表。
可选的,收发模块1502,还具体用于:
接收服务小区发送的第一下行控制信息DCI,其中,第一DCI用于触发邻小区或服务小区对应的非周期SRS。
可选的,收发模块1502,还具体用于:
接收第二MAC CE,其中,第二MAC CE用于指示邻小区及服务小区对应的多个非周期的SRS中被选中的SRS;
接收服务小区发送的第二DCI,其中,第二DCI用于触发被选中的SRS。
可选的,收发模块1502,还具体用于:
接收第三小区发送的第三DCI,其中,第三DCI用于触发第三小区对应的非周期的SRS,第三小区为服务小区或邻小区。
本公开提供的通信装置,终端设备接收包括邻小区对应的探测参考信号SRS的配置信息,之后即可向邻小区发送SRS,以使邻小区根据测量的接收功率,确定终端设备最佳的发射波束。由此,实现了支持终端设备与邻小区之间的上行波束测量,为实现邻小区为终端设备提供服务提供了依据。
可以理解的是,通信装置150可以是网络设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。
通信装置150,在网络设备侧,该装置,包括:
收发模块1502,用于发送配置信息,其中,配置信息中包括邻小区对应的探测参考信号SRS。
可选的,配置信息中还包括:邻小区对应的路径损耗参考信号,以及邻小区对应的空间关系信息参数。
可选的,收发模块1502,还具体用于
基于邻小区或者服务小区对应的时频域资源,发送第一多媒体接入控制MAC控制单元CE,第一MAC CE用于激活或去激活邻小区与服务小区中任一小区对应的半静态SRS。
可选的,收发模块1502,还具体用于:
基于服务小区对应的时频域资源,发送第一下行控制信息DCI,其中,第一DCI用于触发邻小区或服务小区对应的非周期的SRS。
可选的,收发模块1502,还具体用于:
发送第二MAC CE,其中,第二MAC CE用于指示邻小区及服务小区对应的多个非周期的SRS中被选中的SRS;
基于服务小区对应的时频域资源,发送第二DCI,其中,第二DCI用于触发被选中的SRS。
可选的,收发模块1502,还具体用于:
基于邻小区或服务小区对应的时频域资源,发送第三DCI,其中,第三DCI用于触发服务小区与邻小区中任一小区对应的非周期SRS。
本公开提供的通信装置,网络设备通过向终端设备发送包括邻小区对应的探测参考信 号SRS的配置信息,使终端设备向邻小区发送SRS,从而使邻小区根据测量的接收功率,确定终端设备最佳的发射波束。由此,实现了支持终端设备与邻小区之间的上行波束测量,为实现邻小区为终端设备提供服务提供了依据。
请参见图16,图16是本公开实施例提供的另一种通信装置160的结构示意图。通信装置160可以是网络设备,也可以是终端设备,也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置160可以包括一个或多个处理器1601。处理器1601可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置160中还可以包括一个或多个存储器1602,其上可以存有计算机程序1604,处理器1601执行所述计算机程序1604,以使得通信装置160执行上述方法实施例中描述的方法。可选的,所述存储器1602中还可以存储有数据。通信装置160和存储器1602可以单独设置,也可以集成在一起。
可选的,通信装置160还可以包括收发器1605、天线1606。收发器1605可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1605可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置160中还可以包括一个或多个接口电路1607。接口电路1607用于接收代码指令并传输至处理器1601。处理器1601运行所述代码指令以使通信装置160执行上述方法实施例中描述的方法。
通信装置160为终端设备:处理器1601用于执行图4中的步骤43;图5中的步骤52等等。收发器1605用于执行图2中的步骤21;图3中的步骤31、步骤32;图4中的步骤41、步骤42;或图5中的步骤51等等。
通信装置160为网络设备:收发器1605用于执行图10中的步骤101;图11中的步骤111、步骤112;图12中的步骤121、步骤123;或图13中的步骤131、步骤132、及步骤133等等。
在一种实现方式中,处理器1601中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器1601可以存有计算机程序1603,计算机程序1603在处理器1601上运行,可使得通信装置160执行上述方法实施例中描述的方法。计算机程序1603可能固化在处理器1601中,该种情况下,处理器1601可能由硬件实现。
在一种实现方式中,通信装置160可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本公开中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive  channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备,但本公开中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图16的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图17所示的芯片的结构示意图。图17所示的芯片包括处理器1701和接口1702。其中,处理器1701的数量可以是一个或多个,接口1702的数量可以是多个。
对于芯片用于实现本公开实施例中终端设备的功能的情况:
处理器1701,用于执行图4中的步骤43;图5中的步骤52等等
接口1702,用于执行图2中的步骤21;图3中的步骤31、步骤32;图4中的步骤41、步骤42;或图5中的步骤51等等。
对于芯片用于实现本公开实施例中网络设备的功能的情况:
接口1702,用于执行图10中的步骤101;图11中的步骤111、步骤112;图12中的步骤121、步骤123;或图13中的步骤131、步骤132、及步骤133等等。
可选的,芯片还包括存储器1703,存储器1703用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本公开实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本公开实施例保护的范围。
本公开实施例还提供一种通信系统,该系统包括前述图15实施例中作为终端设备的通信装置和作为网络设备的通信装置,或者,该系统包括前述图16实施例中作为终端设备的通信装置和作为网络设备的通信装置。
本公开还提供一种计算机可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本公开还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本公开实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式 向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本公开中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本公开实施例的范围,也表示先后顺序。
本公开中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本公开不做限制。在本公开实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”或“在……情况下”。
本公开中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本公开并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本公开中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本公开中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
进一步可以理解的是,本公开实施例中尽管在附图中以特定的顺序描述操作,但是不应将其理解为要求按照所示的特定顺序或是串行顺序来执行这些操作,或是要求执行全部所示的操作以得到期望的结果。在特定环境中,多任务和并行处理可能是有利的。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (38)

  1. 一种上行波束的测量方法,其特征在于,由终端设备执行,所述方法包括:
    接收配置信息,其中,所述配置信息中包括邻小区对应的探测参考信号SRS。
  2. 如权利要求1所述的方法,其特征在于,所述配置信息中还包括:所述邻小区对应的路径损耗参考信号,以及所述邻小区对应的空间关系信息参数。
  3. 如权利要求1所述的方法,其特征在于,还包括:
    接收第一小区发送的第一多媒体接入控制MAC控制单元CE,所述第一MAC CE用于激活或去激活所述第一小区对应的半静态SRS,所述第一小区为服务小区或邻小区。
  4. 如权利要求1所述的方法,其特征在于,还包括:
    接收指示信息,其中,所述指示信息用于为所述终端设备指示波束;
    在所述指示的波束对应的第二小区与当前为所述终端设备提供数据服务的第三小区不同的情况下,去激活所述第三小区中处于激活态的半静态SRS。
  5. 如权利要求1所述的方法,其特征在于,还包括:
    在所述邻小区变化的情况下,将所述邻小区对应的处于激活态的半静态SRS去激活,其中,所述邻小区与服务小区对应的定时提前与所述终端设备对应的定时提前不同。
  6. 如权利要求1所述的方法,其特征在于,还包括:
    在所述邻小区变化的情况下,将所述邻小区对应的处于激活态的半静态SRS去激活;
    或者,在所述邻小区变化的情况下,将对应小区列表中仅包含所述邻小区标识的半静态SRS去激活;
    其中,所述邻小区与服务小区对应的定时提前与所述终端设备对应的定时提前相同,所述小区列表中包括的小区为基于所述SRS进行测量的小区。
  7. 如权利要求6所述的方法,其特征在于,还包括:
    根据接收的第一MAC CE,确定每个半静态SRS对应的小区列表。
  8. 如权利要求1-7任一所述的方法,其特征在于,还包括:
    接收服务小区发送的第一下行控制信息DCI,其中,所述第一DCI用于触发所述邻小区或服务小区对应的非周期SRS。
  9. 如权利要求1-7任一所述的方法,其特征在于,还包括:
    接收第二MAC CE,其中,所述第二MAC CE用于指示所述邻小区及服务小区对应的多个非周期的SRS中被选中的SRS;
    接收服务小区发送的第二DCI,其中,所述第二DCI用于触发所述被选中的SRS。
  10. 如权利要求1-7任一所述的方法,其特征在于,还包括:
    接收第三小区发送的第三DCI,其中,所述第三DCI用于触发所述第三小区对应的非周期的SRS,所述第三小区为服务小区或邻小区。
  11. 一种上行波束的测量方法,其特征在于,由网络设备执行,所述方法包括:
    发送配置信息,其中,所述配置信息中包括邻小区对应的探测参考信号SRS。
  12. 如权利要求11所述的方法,其特征在于,所述配置信息中还包括:所述邻小区对应的路径损耗参考信号,以及所述邻小区对应的空间关系信息参数。
  13. 如权利要求11所述的方法,其特征在于,还包括:
    基于邻小区或者服务小区对应的时频域资源,发送第一多媒体接入控制MAC控制单元CE,所述第一MAC CE用于激活或去激活所述邻小区与服务小区中任一小区对应的半静态SRS。
  14. 如权利要求11-13任一所述的方法,其特征在于,还包括:
    基于服务小区对应的时频域资源,发送第一下行控制信息DCI,其中,所述第一DCI用于触发所述邻小区或服务小区对应的非周期的SRS。
  15. 如权利要求11-13任一所述的方法,其特征在于,还包括:
    发送第二MAC CE,其中,所述第二MAC CE用于指示所述邻小区及服务小区对应的多个非周期的SRS中被选中的SRS;
    基于服务小区对应的时频域资源,发送第二DCI,其中,所述第二DCI用于触发所述被选中的SRS。
  16. 如权利要求11-13任一所述的方法,其特征在于,还包括:
    基于邻小区或服务小区对应的时频域资源,发送第三DCI,其中,所述第三DCI用于触发服务小区与邻小区中任一小区对应的非周期SRS。
  17. 一种上行波束的测量装置,其特征在于,所述装置在终端设备侧,所述装置包括:
    收发模块,用于接收配置信息,其中,所述配置信息中包括邻小区对应的探测参考信号SRS。
  18. 如权利要求17所述的装置,其特征在于,所述配置信息中还包括:所述邻小区对应的路径损耗参考信号,以及所述邻小区对应的空间关系信息参数。
  19. 如权利要求17所述的装置,其特征在于,所述收发模块,还具体用于:
    接收第一小区发送的第一多媒体接入控制MAC控制单元CE,所述第一MAC CE用于激活或去激活所述第一小区对应的半静态SRS,所述第一小区为服务小区或邻小区。
  20. 如权利要求17所述的装置,其特征在于,还包括:
    所述收发模块,还用于接收指示信息,其中,所述指示信息用于为所述终端设备指示波束;
    处理模块,用于在所述指示的波束对应的第二小区与当前为所述终端设备提供数据服务的第三小区不同的情况下,去激活所述第三小区中处于激活态的半静态SRS。
  21. 如权利要求17所述的装置,其特征在于,所述处理模块,还具体用于:
    在所述邻小区变化的情况下,将所述邻小区对应的处于激活态的半静态SRS去激活,其中,所述邻小区与服务小区对应的定时提前与所述终端设备对应的定时提前不同。
  22. 如权利要求17所述的装置,其特征在于,所述处理模块,还具体用于:
    在所述邻小区变化的情况下,将所述邻小区对应的处于激活态的半静态SRS去激活;
    或者,在所述邻小区变化的情况下,将对应小区列表中仅包含所述邻小区标识的半静态SRS去激活;
    其中,所述邻小区与服务小区对应的定时提前与所述终端设备对应的定时提前相同,所述小区列表中包括的小区为基于所述SRS进行测量的小区。
  23. 如权利要求22所述的装置,其特征在于,所述处理模块,还具体用于:
    根据接收的第一MAC CE,确定每个半静态SRS对应的小区列表。
  24. 如权利要求17-23任一所述的装置,其特征在于,所述收发模块,还具体用于:
    接收服务小区发送的第一下行控制信息DCI,其中,所述第一DCI用于触发所述邻小区或服务小区对应的非周期SRS。
  25. 如权利要求17-23任一所述的装置,其特征在于,所述收发模块,还具体用于:
    接收第二MAC CE,其中,所述第二MAC CE用于指示所述邻小区及服务小区对应的多个非周期的SRS中被选中的SRS;
    接收服务小区发送的第二DCI,其中,所述第二DCI用于触发所述被选中的SRS。
  26. 如权利要求17-23任一所述的装置,其特征在于,所述收发模块,还具体用于:
    接收第三小区发送的第三DCI,其中,所述第三DCI用于触发所述第三小区对应的非周期的SRS,所述第三小区为服务小区或邻小区。
  27. 一种上行波束的测量装置,其特征在于,所述装置在网络设备侧,所述装置包括:
    收发模块,用于发送配置信息,其中,所述配置信息中包括邻小区对应的探测参考信号SRS。
  28. 如权利要求27所述的装置,其特征在于,所述配置信息中还包括:所述邻小区对应的路径损耗参考信号,以及所述邻小区对应的空间关系信息参数。
  29. 如权利要求27所述的装置,其特征在于,所述收发模块,还具体用于:
    基于邻小区或者服务小区对应的时频域资源,发送第一多媒体接入控制MAC控制单元CE,所述第一MAC CE用于激活或去激活所述邻小区与服务小区中任一小区对应的半静态SRS。
  30. 如权利要求27-29任一所述的装置,其特征在于,所述收发模块,还具体用于:
    基于服务小区对应的时频域资源,发送第一下行控制信息DCI,其中,所述第一DCI用于触发所述邻小区或服务小区对应的非周期的SRS。
  31. 如权利要求27-29任一所述的装置,其特征在于,所述收发模块,还具体用于:
    发送第二MAC CE,其中,所述第二MAC CE用于指示所述邻小区及服务小区对应的多个非周期的SRS中被选中的SRS;
    基于服务小区对应的时频域资源,发送第二DCI,其中,所述第二DCI用于触发所述 被选中的SRS。
  32. 如权利要求27-29任一所述的装置,其特征在于,所述收发模块,还具体用于:
    基于邻小区或服务小区对应的时频域资源,发送第三DCI,其中,所述第三DCI用于触发服务小区与邻小区中任一小区对应的非周期SRS。
  33. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至10中任一项所述的方法。
  34. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求11至16中任一项所述的方法。
  35. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至10中任一项所述的方法。
  36. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求11至16中任一项所述的方法。
  37. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至10中任一项所述的方法被实现。
  38. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求11至16中任一项所述的方法被实现。
PCT/CN2021/121458 2021-09-28 2021-09-28 一种上行波束的测量方法及其装置 WO2023050091A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180002954.4A CN114026907B (zh) 2021-09-28 2021-09-28 一种上行波束的测量方法及其装置
PCT/CN2021/121458 WO2023050091A1 (zh) 2021-09-28 2021-09-28 一种上行波束的测量方法及其装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/121458 WO2023050091A1 (zh) 2021-09-28 2021-09-28 一种上行波束的测量方法及其装置

Publications (1)

Publication Number Publication Date
WO2023050091A1 true WO2023050091A1 (zh) 2023-04-06

Family

ID=80069894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121458 WO2023050091A1 (zh) 2021-09-28 2021-09-28 一种上行波束的测量方法及其装置

Country Status (2)

Country Link
CN (1) CN114026907B (zh)
WO (1) WO2023050091A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111083747A (zh) * 2018-10-19 2020-04-28 华为技术有限公司 通信方法及装置
CN111095824A (zh) * 2019-12-13 2020-05-01 北京小米移动软件有限公司 波束测量方法及波束测量装置
CN111543076A (zh) * 2020-04-03 2020-08-14 北京小米移动软件有限公司 传输方法、装置及计算机存储介质
CN111586831A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 信号传输方法与装置
WO2021023065A1 (en) * 2019-08-07 2021-02-11 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and device for srs transmission, network device and ue

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011152685A2 (ko) * 2010-06-04 2011-12-08 엘지전자 주식회사 단말의 비주기적 사운딩 참조신호 트리거링 기반 srs 전송 방법 및 비주기적 srs를 전송하기 위한 상향링크 전송 전력을 제어 방법
KR102600387B1 (ko) * 2018-05-10 2023-11-09 삼성전자 주식회사 차세대 이동 통신 시스템에서 주변 셀의 기준 신호로 준지속적 사운딩 기준 신호를 지시하는 방법 및 장치
KR102450969B1 (ko) * 2018-08-09 2022-10-05 삼성전자 주식회사 무선 통신 시스템에서 경로감쇄 결정 방법 및 장치
CN111585732B (zh) * 2019-02-15 2022-02-25 华为技术有限公司 通信方法和通信设备
US11546114B2 (en) * 2019-05-10 2023-01-03 Huawei Technologies Co., Ltd. Sounding reference signal configuration for new radio positioning
CN112350808B (zh) * 2019-08-06 2022-04-05 华为技术有限公司 信号传输的方法与装置
WO2021034049A1 (ko) * 2019-08-16 2021-02-25 엘지전자 주식회사 사운딩 참조 신호를 송신하는 방법 및 이를 위한 장치
CN112449370B (zh) * 2019-08-30 2023-02-14 华为技术有限公司 定位的方法和通信装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111083747A (zh) * 2018-10-19 2020-04-28 华为技术有限公司 通信方法及装置
CN111586831A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 信号传输方法与装置
WO2021023065A1 (en) * 2019-08-07 2021-02-11 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and device for srs transmission, network device and ue
CN111095824A (zh) * 2019-12-13 2020-05-01 北京小米移动软件有限公司 波束测量方法及波束测量装置
CN111543076A (zh) * 2020-04-03 2020-08-14 北京小米移动软件有限公司 传输方法、装置及计算机存储介质

Also Published As

Publication number Publication date
CN114026907B (zh) 2024-01-30
CN114026907A (zh) 2022-02-08

Similar Documents

Publication Publication Date Title
WO2023092468A1 (zh) 一种智能中继服务链路的波束指示方法及其装置
WO2023010471A1 (zh) 一种传输配置指示tci状态配置的方法及其装置
WO2023206180A1 (zh) 一种确定传输配置指示状态的方法及装置
WO2023206179A1 (zh) 一种确定传输配置指示状态的方法及装置
WO2023283841A1 (zh) 波束测量上报激活方法及装置
WO2024026799A1 (zh) 数据传输方法和装置
WO2023092467A1 (zh) 一种智能中继的波束指示方法及装置
WO2023044620A1 (zh) 一种传输配置指示状态的确定方法及其装置
WO2023087156A1 (zh) 一种新空口和新空口侧行链路切换的方法及装置
CN115553023A (zh) 一种侧行链路sl波束配置方法、装置、设备及存储介质
WO2024050776A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2022261915A1 (zh) 一种通信方法及其装置
WO2023050091A1 (zh) 一种上行波束的测量方法及其装置
WO2024086979A1 (zh) 一种传输配置指示tci状态的确定方法及装置
WO2024077619A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2024092834A1 (zh) 切换时延的确定方法和装置
WO2023102945A1 (zh) 测量间隔配置方法及装置
WO2023283840A1 (zh) 用于确定波束测量上报方式的方法及装置
WO2024077620A1 (zh) 物理下行共享信道pdsch传输方法及装置
WO2023168576A1 (zh) 确定探测参考信号srs资源配置信息的方法及其装置
WO2023168575A1 (zh) 一种天线切换能力上报方法及其装置
WO2024000202A1 (zh) 一种信道状态信息csi反馈的确定方法及其装置
WO2023240418A1 (zh) 一种多小区调度的调度信息的检测方法及其装置
WO2023077463A1 (zh) 波束的确定方法及装置
WO2024031718A1 (zh) 支持8Tx的基于非码本的PUSCH传输的预编码指示方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21958686

Country of ref document: EP

Kind code of ref document: A1