Nothing Special   »   [go: up one dir, main page]

WO2022202095A1 - Microporous polyolefin film, separator for battery, and secondary battery - Google Patents

Microporous polyolefin film, separator for battery, and secondary battery Download PDF

Info

Publication number
WO2022202095A1
WO2022202095A1 PCT/JP2022/007847 JP2022007847W WO2022202095A1 WO 2022202095 A1 WO2022202095 A1 WO 2022202095A1 JP 2022007847 W JP2022007847 W JP 2022007847W WO 2022202095 A1 WO2022202095 A1 WO 2022202095A1
Authority
WO
WIPO (PCT)
Prior art keywords
microporous membrane
polyolefin microporous
measured
less
raman
Prior art date
Application number
PCT/JP2022/007847
Other languages
French (fr)
Japanese (ja)
Inventor
中嶋龍太
豊田直樹
坂本光隆
久万琢也
大倉正寿
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2022517180A priority Critical patent/JPWO2022202095A1/ja
Priority to CN202280009082.9A priority patent/CN116724371A/en
Priority to KR1020237013238A priority patent/KR20230160224A/en
Publication of WO2022202095A1 publication Critical patent/WO2022202095A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention is a separation membrane used for material separation, selective permeation, etc., and a polyolefin microporous membrane (also referred to as porous polyolefin film).
  • a polyolefin microporous membrane suitable for use as a separator for non-aqueous electrolyte secondary batteries such as lithium ion batteries, and is used as a separator having higher safety than conventional polyolefin microporous membranes.
  • Polyolefin microporous membranes are used as filters, separators for fuel cells, and separators for capacitors.
  • it is suitably used as a separator for non-aqueous electrolyte secondary batteries, such as lithium ion batteries, which are widely used in notebook personal computers, mobile phones, and the like.
  • non-aqueous electrolyte secondary batteries such as lithium ion batteries
  • Patent Document 1 dry re-stretching is performed in the MD direction (machine direction) as a method for improving the strength, shrinkage rate, and shutdown temperature, and the film thickness is 12 ⁇ m or less by controlling the Raman orientation parameter value in the MD direction.
  • a technique for obtaining a microporous membrane having a strength of 230 gf or more and a heat shrinkage rate of 15% in the TD direction (width direction) at 105° C. for 8 hours is disclosed.
  • Patent Document 2 describes a technique for improving shutdown temperature and puncture strength, in which polyolefin having a weight molecular weight of 500,000 or more is used as a main component, and the ratio of orientation in the MD direction and the TD direction obtained by X-ray analysis is controlled.
  • a technique for obtaining a microporous membrane with a puncture strength of 24-0.75 N/(g/m 2 ) and a shutdown temperature of 139° C.-146° C. is disclosed.
  • Patent Document 3 discloses, as a method for improving mechanical strength and permeability, a method for obtaining a microporous film having a puncture strength of 300 to 500 gf converted to 25 ⁇ m by controlling the degree of orientation determined by infrared spectrum measurement.
  • JP 2020-95950 A Japanese Patent No. 6671255 JP 2013-199545 A
  • Separators are required to have high strength and low shrinkage at high temperatures. However, it was not sufficient from the standpoint of achieving both high strength and low shrinkage at high temperatures, as well as the thickness of the separator accompanying the increase in capacity of the battery.
  • an object of the present invention is to provide a polyolefin microporous membrane that achieves both higher strength and lower shrinkage at high temperatures than before, and a separator using the same.
  • the present inventors have made intensive studies to achieve the above-mentioned object, and as a result, a microporous film having a specific range of orientation parameters at high temperature in the MD and TD directions calculated by microscopic Raman spectroscopy solves the above-mentioned problems.
  • the inventors have found that both high strength and low shrinkage at high temperatures can be achieved, and have completed the present invention. That is, the present invention has the following configurations.
  • Both the orientation parameter value (fMH) in the MD direction and the orientation parameter value (fTH) in the TD direction measured at 130° C. calculated by the following formulas (1) and (2) using a microscopic Raman spectrometer are 0.00. Above, it is characterized by being 1.70 or less.
  • Formula fTH Ia (TD, 130°C)/ Ib (TD, 130°C) (2)
  • I a is the maximum Raman band intensity in the Raman shift band range of 1100 to 1170 cm -1 and I b is the Raman band maximum intensity in the Raman shift band range of 1040 to 1090 cm -1
  • I a (MD, 130°C) and I b (MD, 130° C.) are the maximum intensities in the MD direction measured at 130° C.
  • I a (TD, 130° C.) and I b (TD, 130° C.) are is the maximum intensity in the TD direction measured at .
  • a highly safe polyolefin microporous membrane that achieves both high strength and low shrinkage at high temperatures can be obtained.
  • the polyolefin microporous membrane according to the embodiment of the present invention is useful as a battery separator because of its excellent strength and shrinkage rate, and has excellent safety.
  • the present invention can be realized by satisfying the orientation parameters in the MD direction and the TD direction at high temperatures calculated by microscopic Raman spectroscopy within the range described later, leading to compatibility between strength and shrinkage ratio, which were conventionally in a trade-off relationship. This is what I found.
  • the present invention is not limited to the embodiments described below.
  • the direction in which the tape is drawn is called the width direction or the TD direction.
  • the polyolefin microporous membrane according to the embodiment of the present invention has an orientation parameter value (fMH) in the MD direction and an orientation parameter value (fTH) in the TD direction measured at 130 ° C. by the method described later. ) are all 1.70 or less.
  • the orientation parameter is an index indicating the degree of orientation of crystal molecular chains as a value calculated by Raman spectroscopy, and the higher the value, the more highly oriented the crystal molecular chains.
  • fMH and fTH are 0.00 or more, it means that the film has a strong structure in which the orientation state is maintained even at high temperatures in both the MD and TD directions, and excellent strength can be obtained.
  • fMH and fTH are 0.00 or more, preferably 0.50 or more, more preferably 0.90 or more, still more preferably 1.00 or more, and particularly preferably 1.10 or more.
  • fMH and fTH are 1.70 or less, preferably 1.50 or less, and more preferably 1.20 or less. From the viewpoint of the balance between strength and shrinkage, it is important that both fMH and fTH are 1.70 or less. By satisfying the above ranges, both high strength and low shrinkage at high temperatures can be achieved. note that.
  • the main raw material is a polyolefin resin with a weight average molecular weight of 0.8 ⁇ 10 6 or more with a long relaxation time. It is preferable to form a film in which a highly oriented structure is formed by wet sequential stretching, and dry re-stretching after washing and drying is performed at a high temperature.
  • the polyolefin microporous membrane contains 30% by mass or more of a component with a molecular weight of 0.9 ⁇ 10 6 or more with a long relaxation time, and a molecular weight of 0.3 ⁇ with a short relaxation time. It is more preferable that the component having a molecular weight of 10 6 or less is contained in a range of less than 50% by mass. As a result, a highly oriented structure with little change in orientation even at high temperatures can be obtained, and a highly safe polyolefin microporous membrane having both high strength and low shrinkage at high temperatures can be obtained.
  • the polyolefin microporous film according to the embodiment of the present invention has an orientation parameter value (fML) in the MD direction and an orientation parameter value (fTL) in the TD direction measured at 25 ° C. by the method described later, both of which are 1.70.
  • fML orientation parameter value
  • fTL orientation parameter value
  • the following are preferred. From the viewpoint of strength, the higher the fML and fTL, the better. However, when the highly oriented structure increases in the measurement at 25° C., the shrinkage rate increases due to the relaxation of the molecular orientation at high temperature. From the viewpoint of shrinkage rate suppression, fML and fTL are preferably 1.50 or less, more preferably 1.30 or less.
  • the above fML and fTL are orientation parameters calculated by the following equations (3) and (4), I a is the maximum intensity in the Raman shift band 1100 to 1170 cm ⁇ 1 , and I b is the Raman shift.
  • the maximum intensities of Raman bands in the range of 1040-1090 cm ⁇ 1 , I a (MD, 25° C.) and I b (MD, 25° C.) were measured in the MD direction of the polyolefin microporous membrane at 25° C., and I a ( TD, 25°C) and I b (TD, 25°C) are values measured in the TD direction of the polyolefin microporous membrane at 25°C.
  • the polyolefin microporous membrane according to the embodiment of the present invention has a ratio ( fMLH ) and Da (TD, 25°C) of Ia (MD, 25°C) and Da (MD, 130°C) measured by the method described later. ) and Da (TD, 130 ° C.) ( fTLH ) are both preferably 4.00 or less, more preferably 3.00 or less, still more preferably 2.50 or less, and even more preferably 2.00 or less. Preferably, 1.50 or less is particularly preferable. When it is 4.00 or less, it means that the C—C stretching vibration of the polyethylene molecular chain in the crystal phase at 130° C.
  • D a is the difference between the maximum intensity in the Raman shift band of 1100 to 1170 cm ⁇ 1 and the intensity at 1200 cm ⁇ 1 , D a (MD, 130° C.) is measured in the MD direction of the polyolefin microporous membrane at 130° C.
  • Da (TD, 130°C) is measured in the TD direction of the polyolefin microporous membrane at 130°C
  • Da (MD, 25°C) is measured in the MD direction of the polyolefin microporous membrane at 25°C
  • Da (TD, 25°C) °C) is the value measured at 25°C in the TD direction of the polyolefin microporous membrane.
  • 1130 cm ⁇ 1 is a band attributed to the C—C stretching vibration of the polyethylene molecular chain in the crystal phase, and the direction of the Raman tensor of vibration is the molecular chain axis.
  • the above range can be achieved by applying the raw materials, molecular weight, and manufacturing method within the ranges described later.
  • the orientation parameter measured at 130°C decreases more than the orientation parameter measured at 25°C (orientation parameter measured at 25°C > orientation parameter measured at 130°C). Also, recrystallization occurs at 130°C in samples with high melting points of the film, and the orientation parameter measured at 130°C may increase from the orientation parameter measured at 25°C. Therefore, the smaller the difference between the orientation parameters at 25° C. and 130° C. and the closer the variation is to 0, the better the retention of the crystal structure at high temperatures and the smaller the shrinkage rate. It is particularly preferable that the change in the orientation parameter at 25° C. and 130° C.
  • the difference between fML and fMH (fML ⁇ fMH (7)) and the difference between fTL and fTH (fTL ⁇ fTH (8) are preferably 0.50 or less. It is more preferably 0.40, and more preferably 0.20 or less.
  • the lower limit of the difference between fML and fMH (fML-fMH) and the difference between fTL and fTL (fTL-fTH) is -0.50 or more, preferably -0.20 or more, more preferably -0.10 or more, and 0 0.00 or more is more preferable.
  • fML-fMH difference between fML and fMH
  • fTL-fTH difference between fTL and fTH
  • orientation parameters fMH, fTH, fML, and fTL particularly excellent strength and shrinkage properties can be obtained, and the above ranges can be controlled by raw material design and manufacturing methods, which will be described later.
  • polyolefin resin with a weight average molecular weight of 0.8 x 106 or more with a long relaxation time is used as the main raw material, and a highly oriented structure is formed by wet sequential stretching.
  • the polyolefin microporous membrane contains 30% by mass or more of a component with a molecular weight of 0.9 ⁇ 10 6 or more with a long relaxation time, and a molecular weight of 0.3 ⁇ with a short relaxation time. It is preferable that the component of 10 6 or less is contained in the range of less than 50% by mass. As a result, a highly oriented structure with little change in orientation even at high temperatures can be obtained, and a highly safe polyolefin microporous film having both high strength and low shrinkage at high temperatures can be obtained.
  • the porosity of the polyolefin microporous membrane according to the embodiment of the present invention is preferably 30% or more, more preferably 35% or more, and still more preferably 40% from the viewpoint of permeability and electrolyte content. That's it.
  • the porosity is 30% or more, the balance between permeability, strength and electrolyte content is improved, and non-uniformity in battery reaction is eliminated.
  • the separator can be used without impairing the performance of conventional batteries, and can be suitably used as a separator for secondary batteries.
  • the porosity is preferably 50% or less, more preferably 48% or less.
  • the pin puncture strength of the polyolefin microporous membrane converted to a thickness of 10 ⁇ m is preferably 2.5 N or more, more preferably 3.0 N or more, still more preferably 4.0 N or more, and even more preferably 4.3 N or more. 0N or more is particularly preferable.
  • the puncture strength per unit basis weight which is an index showing the strength of the film obtained by standardizing the puncture strength with the amount of resin, is preferably 0.7 N/(g/m 2 ) or more, and is preferably 0.7 N/(g/m 2 ) or more. 8 N/(g/m 2 ) or more is more preferable, and 0.9 N/(g/m 2 ) or more is particularly preferable.
  • the puncture strength is within the above range, short circuits due to foreign matter or the like are suppressed, and good battery safety is obtained.
  • the puncture strength it is preferable to combine the use of ultra-high-molecular-weight polyolefin as the main component in the raw material formulation and the increase in the number of tie molecules that connect the lamellar crystals to increase the strength, in addition to controlling the orientation of the crystals.
  • an ultrahigh molecular weight polyolefin having a small amount of low molecular weight components and a sharp molecular weight distribution.
  • the puncture strength can be achieved by setting the aforementioned fMH, fTH, fML, and fTL in specific ranges and adopting the raw materials, molecular weight, resin concentration, and stretching method within the ranges described later.
  • the total shrinkage rate in the MD direction and the TD direction at 130 ° C./1 h is preferably 30% or less, more preferably 29% or less, further preferably 28% or less, and 27% or less. Even more preferably, 25% or less is particularly preferable.
  • the total shrinkage ratio in the MD direction and the TD direction at 130 ° C./1 h when applying a high heat resistant coating layer such as aramid or polyimide is preferably 33% or less, more preferably 31% or less, and 30% or less. More preferably, 29% or less is even more preferable, and 28% or less is particularly preferable. If the shrinkage ratio is within this range, the battery's internal temperature will not change much, and the insulation will be maintained. be done.
  • the above range can be achieved by applying the raw materials, molecular weight, and manufacturing method within the ranges described later.
  • the polyolefin microporous membrane according to the embodiment of the present invention preferably has a shrinkage rate in the MD direction at 130° C./1 h of 15% or less, more preferably 12% or less, further preferably 11% or less. % or less is even more preferable.
  • the shrinkage ratio in the MD direction is within this range, the dimensional change is small when the internal temperature of the battery rises, and the insulation can be maintained, resulting in high safety.
  • the above range can be achieved by applying the raw materials, molecular weight, and manufacturing method within the ranges described later.
  • the polyolefin microporous membrane according to the embodiment of the present invention preferably has a shrinkage rate in the TD direction at 130°C/1h of 30% or less, more preferably 25% or less, and even more preferably 20% or less.
  • a shrinkage rate in the TD direction at 130°C/1h of 30% or less, more preferably 25% or less, and even more preferably 20% or less.
  • the above heat shrinkage rate can be achieved by setting the fMH, fTH, fML, and fTL in specific ranges and adopting the raw materials, resin concentration, and stretching method described later.
  • the shrinkage ratios in the MD direction and the TD direction at 130° C./1 h can be measured by the method described in Examples.
  • the tensile breaking strength in the MD direction (tensile breaking strength in the MD direction; hereinafter simply referred to as "MD tensile strength") is effective for suppressing film breakage in the battery winding process and removing foreign matter in the battery.
  • the MD tensile strength is preferably 200 MPa or more, more preferably 250 MPa or more, and even more preferably 280 MPa or more.
  • the tensile breaking strength in the TD direction (tensile breaking strength in the TD direction; hereinafter simply referred to as "TD tensile strength”) is 100 MPa or more, preferably 160 MPa or more. , more preferably 190 MPa or more, still more preferably 200 MPa or more.
  • TD tensile strength is within the above range, the balance between the MD tensile strength and the TD tensile strength is good, and wrinkles and sagging of the film are suppressed. improved sexuality.
  • the above tensile strength can be achieved by adopting the raw materials, resin concentration, and stretching method, which will be described later.
  • the tensile (breaking) elongation in the MD direction and the TD direction is preferably 50% or more, more preferably 60% or more, and 90% or more. More preferably, 120% or more is even more preferable, and 150% or more is particularly preferable.
  • MD elongation or the TD elongation is 50% or more, short circuits due to foreign matter during winding or in the battery can be suppressed, and good safety can be obtained, which is preferable.
  • Both MD elongation and TD elongation are preferably 200% or less, more preferably 170% or less. When the MD elongation and TD elongation are 200% or less, both strength and elongation can be achieved.
  • the tensile strength and tensile elongation in the MD and TD directions can be measured by the method described in Examples.
  • air permeability is a value measured according to JIS P 8117 (2009).
  • air permeability is used in the sense of "air permeability when the film thickness is 10 ⁇ m", unless otherwise specified for the film thickness.
  • the air permeability is preferably 200 sec/100 cm 3 or less, more preferably 130 sec/100 cm 3 or less, even more preferably 110 sec/100 cm 3 or less. If the air permeability is 200 sec/100 cm 3 or less, good ion permeability can be obtained and electric resistance can be lowered.
  • the resistance increases as the film thickness increases, and the output characteristics of the battery deteriorate.
  • the film thickness is preferably 12 ⁇ m or less, more preferably 10 ⁇ m or less, and even more preferably 5 ⁇ m or less.
  • the shutdown temperature is the temperature at which the resin part shrinks and melts and the pores close when the polyolefin microporous membrane is heated to stop discharging and charging, and is the temperature measured by the method described later. Since the electrodes used in lithium-ion secondary batteries designed for high energy density tend to have reduced thermal stability, it is preferable to shut down (hole clogging) quickly after the battery is short-circuited.
  • the shutdown temperature of the polyolefin microporous membrane according to the embodiment of the present invention is 143° C. or less. It is preferably 141° C. or lower, more preferably 140° C. or lower, and still more preferably 139° C. or lower.
  • the microporous membrane obtained by the present invention has excellent short-circuit resistance and has the shutdown temperature described above, so that excellent battery safety can be obtained.
  • the shutdown temperature In order to set the shutdown temperature within the above range, it is preferable to set the raw material composition of the microporous membrane within the range described below.
  • the resin raw material in the polyolefin microporous membrane according to the embodiment of the present invention may be a single composition, or may be a composition in which a main raw material and an auxiliary raw material are combined. It may be a polyolefin resin mixture (polyolefin resin composition).
  • the raw material form of the polyolefin microporous membrane is preferably a polyolefin resin, and examples of the polyolefin resin include polyethylene and polypropylene, and more preferably a single composition.
  • the polyolefin resin is preferably a homopolymer of ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, etc., and particularly preferably an ethylene homopolymer (polyethylene).
  • Polyethylene may be a homopolymer of ethylene and a copolymer containing other ⁇ -olefins.
  • ⁇ -olefins include propylene, butene-1, hexene-1, pentene-1, 4-methylpentene-1, octene, alkenes having more carbon atoms, vinyl acetate, methyl methacrylate, styrene, and the like. mentioned.
  • polyethylene is preferable, and high-density polyethylene having a density exceeding 0.94 g/cm 3 , medium-density polyethylene having a density in the range of 0.93 to 0.94 g/cm 3 , and density of 0.94 g/cm 3 are used.
  • High density polyethylene lower than 93 g/cm 3 , linear low density polyethylene and the like are included.
  • an ultra - high molecular weight polyolefin alone or as a main component of the polyolefin resin. It is preferably 9.0 ⁇ 10 5 or more, more preferably 10 ⁇ 10 5 or more, particularly preferably 15 ⁇ 10 5 or more, and preferably 100 ⁇ 10 5 or less from the viewpoint of moldability. In addition, it is important to add the auxiliary material within a range that does not impair the fibril structure formed by the main material and the moldability.
  • the relaxation time is long, so the retention of the crystal structure at high temperatures is improved, and the melting and shrinkage are suppressed, and the orientation state is maintained even at high temperatures. It has a strong structure and can achieve both strength and shrinkage, improving the safety of the battery.
  • a polyolefin resin with a weight-average molecular weight of 9.0 ⁇ 10 5 or more the number of tie molecules increases, making it easier to obtain high strength.
  • the heat setting temperature can be raised by lowering the relaxation rate of the resin, and good shrinkage characteristics can be obtained.
  • the weight average molecular weight (Mw) of the polyolefin microporous membrane is preferably 8.0 ⁇ 10 5 or more, more preferably 9.0 ⁇ 10 5 or more, further preferably 10 ⁇ 10 5 or more, and maintains the molecular weight of the raw material. It is particularly preferred that In order to form a strong structure that maintains the orientation state at high temperatures, the polyolefin microporous membrane contains 30% by mass or more of a component with a molecular weight distribution of 9.0 ⁇ 10 5 or more that has a long relaxation time.
  • the content of the component having a molecular weight of 3.0 ⁇ 10 5 or less is preferably less than 50% by mass, more preferably 45% by mass or less. It is preferably 40% by mass or less, more preferably 35% by mass or less.
  • the content of components having a molecular weight of 3.0 ⁇ 10 5 or less is preferably 30% by mass or more, more preferably 35% by mass or more, even more preferably 40% by mass or more, further preferably 45% by mass, for lower shutdown temperatures.
  • the above-described raw material formulation is added to the antioxidant and kneaded under a nitrogen atmosphere, and a combination of the addition of an antioxidant and kneading under a nitrogen atmosphere. It is preferable to form the film with.
  • the molecular weight distribution (weight average molecular weight (Mw)/number average molecular weight (Mn)) of the ultrahigh molecular weight polyolefin is preferably within the range of 3.0-100.
  • the amount of low-molecular-weight components increases, resulting in a decrease in strength and the melting and fusion of fine fibrils during stretching and heat setting. is 20 or less, particularly preferably 10 or less.
  • the blending ratio of the polyolefin resin and the plasticizer may be appropriately adjusted within a range that does not impair the molding processability. is preferred.
  • the proportion of the polyolefin resin is 10% by mass or more (the proportion of the plasticizer is 90% by mass or less), it is possible to suppress swelling and neck-in at the outlet of the die when forming a sheet, thereby improving the moldability and the manufacturability of the sheet.
  • the film properties are improved, and when the proportion of the polyolefin resin is 50% by mass or less (the proportion of the plasticizer is 50% by mass or more), the pressure rise in the film forming process can be suppressed, and good moldability can be obtained.
  • the ratio of the polyolefin resin is preferably 10% by mass or more, more preferably 20% by mass or more, when the total of the polyolefin resin and the plasticizer is 100% by mass.
  • the ratio of the polyolefin resin from the viewpoint of the pressure and stretching stress in the film forming process is 100 mass of the total of the polyolefin resin and the plasticizer.
  • % is preferably 35% by mass or less, more preferably 30% by mass or less, still more preferably less than 28.5% by mass, and even more preferably less than 25% by mass.
  • the weight-average molecular weight (Mw) obtained by high-temperature gel permeation chromatography (GPC) measurement or the like of the high-density polyethylene used in the embodiment of the present invention, apart from the ultra-high molecular weight polyethylene, is preferably 1 ⁇ 10 5 or less.
  • Mw is within the above range, the structure formed by the ultra-high molecular weight polyethylene is less likely to be disturbed, and low-melting crystal formation and reduction in shrinkage force during melting are likely to be possible. This makes it possible to achieve both mechanical strength, shrinkage, and shutdown characteristics.
  • the melting point (°C) obtained from a differential scanning calorimeter (DSC) of the high-density polyethylene used in the embodiment of the present invention is preferably 132°C or less. Further, the melting point of high-density polyethylene is more preferably 127° C. or higher, more preferably 130° C. or higher, and particularly preferably 131° C. or higher.
  • the melting point of the high-density polyethylene is within the above range, the melting point of the structure before stretching can be lowered in an appropriate range, and when it is made into a polyolefin microporous membrane, the structure formed by the ultra-high molecular weight polyethylene is hardly hindered. , the formation of low-melting-point crystals is likely to be possible. This makes it possible to improve the shutdown characteristics of the polyolefin microporous membrane.
  • the low molecular weight polyethylene used in the embodiment of the present invention preferably has a heat of fusion ⁇ H (J / g) obtained from a differential scanning calorimeter (DSC) of 200 J / g or more, more preferably 210 J / g or more, 220 J/g or more is more preferable.
  • ⁇ H heat of fusion
  • the upper limit of ⁇ H is not particularly limited, it is typically 260 J/g or less due to the properties of polyethylene.
  • ⁇ H is within the above range, low-melting-point crystals can easily be formed without excessively reducing the amount of crystals in the polyolefin microporous membrane. This makes it possible to achieve both shutdown characteristics and transparency.
  • the polyolefin microporous membrane according to the embodiment of the present invention may contain an antioxidant, a heat stabilizer, an antistatic agent, an ultraviolet absorber, an antiblocking agent, and a filler within the range that does not impair the effects of the present invention.
  • You may contain various additives, such as.
  • antioxidants examples include 2,6-di-t-butyl-p-cresol (BHT: molecular weight 220.4), 1,3,5-trimethyl-2,4,6-tris(3,5- di-t-butyl-4-hydroxybenzyl)benzene (for example, BASF "Irganox” (registered trademark) 1330: molecular weight 775.2), tetrakis[methylene-3(3,5-di-t-butyl-4 -Hydroxyphenyl)propionate]methane (for example, "Irganox" (registered trademark) 1010 manufactured by BASF, molecular weight 1177.7) and the like are preferably used.
  • BHT 2,6-di-t-butyl-p-cresol
  • 1,3,5-trimethyl-2,4,6-tris(3,5- di-t-butyl-4-hydroxybenzyl)benzene for example, BASF "Irganox" (registered trademark) 1330: mo
  • the characteristics of the polyolefin microporous membrane can be adjusted or enhanced by appropriately selecting the type and amount of antioxidant and heat stabilizer to be added. It is preferable that the amount added does not increase the MFR of the gel-like sheet described later, which is measured by the method described in JIS K7210-1 (2014), and the amount of antioxidant added is 0.5 mass with respect to the resin amount. % or more is preferable, 0.7 mass % or more is more preferable, 1.0 mass % or more is still more preferable, 1.2 mass % or more is still more preferable, and 1.5 mass % or more is more preferable.
  • the upper limit is 3.0% by mass or less from the viewpoint of film-forming properties such as drool and streaks, and it is particularly preferable to suppress oxidative deterioration by combining the addition of an antioxidant and kneading in a nitrogen atmosphere.
  • the layer structure of the polyolefin microporous membrane according to the embodiment of the present invention may be a single layer or a laminate, and a laminate is preferable from the viewpoint of physical property balance.
  • a laminate is preferable from the viewpoint of physical property balance.
  • the above layers are contained in the total film thickness in an amount of 50% by mass or more.
  • a method for producing a microporous polyolefin film according to an embodiment of the present invention preferably includes the following steps (a) to (e).
  • Step (a) a step of melt-kneading a polymer material containing one or more polyolefin resins and optionally a solvent to prepare a polyolefin resin solution; (b) extruding the obtained molten mixture into a sheet; (c) stretching the obtained sheet by a sequential stretching method including a roll method or a tenter method; (d) extracting a plasticizer from the obtained stretched film and drying the film; Step (e) A step of heat-treating/re-stretching by a stretching method including a roll method or a tenter method.
  • step (a) for the purpose of preventing a decrease in molecular weight, an antioxidant is added in an amount to be described later and kneaded in a nitrogen atmosphere, and (c) wet sequential stretching is performed in the longitudinal direction and the lateral direction,
  • step (e) it is particularly preferable to carry out heat treatment/restretching at a temperature of 130° C. or higher by a tenter method.
  • Step of preparing polyolefin resin solution The polymer material is heated and dissolved in a plasticizer to prepare a polyolefin resin solution.
  • the plasticizer is not particularly limited as long as it is a solvent capable of sufficiently dissolving the polyolefin resin, but the solvent is preferably liquid at room temperature in order to enable stretching at a relatively high magnification.
  • Solvents include aliphatic, cycloaliphatic or aromatic hydrocarbons such as nonane, decane, decalin, paraxylene, undecane, dodecane, liquid paraffin, mineral oil fractions with boiling points corresponding to these, and dibutyl phthalate, Phthalic acid esters that are liquid at room temperature, such as dioctyl phthalate, can be mentioned.
  • liquid solvent it is preferable to use a non-volatile liquid solvent such as liquid paraffin in order to obtain a stable gel-like sheet.
  • the solvent that is solid at room temperature may be mixed with the liquid solvent.
  • solid solvents include stearyl alcohol, ceryl alcohol, paraffin wax, and the like.
  • stearyl alcohol ceryl alcohol
  • paraffin wax paraffin wax
  • the viscosity of the liquid solvent is preferably 20-200 cSt at 40°C. If the viscosity at 40° C. is 20 cSt or more, the sheet obtained by extruding the polyolefin resin solution from the die is less likely to be uneven. On the other hand, if the viscosity at 40° C. is 200 cSt or less, the liquid solvent can be easily removed. The viscosity of the liquid solvent is measured at 40° C. using an Ubbelohde viscometer.
  • the method for uniform melt-kneading of the polyolefin resin solution is not particularly limited, but when it is desired to prepare a high-concentration polyolefin resin solution, it is preferably carried out in a twin-screw extruder.
  • known additives such as metallic soaps such as calcium stearate, ultraviolet absorbers, light stabilizers, antistatic agents, etc., may be added to the extent that the effects of the present invention are not impaired without impairing the film formability. may In particular, it is preferable to add an antioxidant to prevent oxidation of the polyolefin resin.
  • the polyolefin resin solution is uniformly mixed at a temperature at which the polyolefin resin is completely melted.
  • the melt-kneading temperature varies depending on the polyolefin resin used, but is preferably from (the melting point of the polyolefin resin +10° C.) to (the melting point of the polyolefin resin +120° C.). More preferably, it is (melting point of polyolefin resin +20° C.) to (melting point of polyolefin resin +100° C.).
  • the melting point refers to a value measured by DSC (Differential scanning calorimetry) based on JIS K7121 (1987) (hereinafter the same).
  • the melt-kneading temperature of the polyethylene-based resin is preferably in the range of 140 to 250°C. It is more preferably 150 to 230°C, particularly preferably 150 to 200°C.
  • the melt-kneading temperature is preferably 140 to 250°C.
  • a lower melt-kneading temperature is preferable, but if the temperature is lower than the above-mentioned temperature, unmelted substances are generated in the extrudate extruded from the die, and film breakage etc. occur in the subsequent stretching process. may cause it. On the other hand, if the temperature is higher than the above temperature, thermal decomposition of the polyolefin resin becomes violent, and the physical properties of the obtained polyolefin microporous membrane, such as strength and porosity, may deteriorate. In addition, the decomposition products are deposited on chill rolls, rolls in the stretching process, etc., and adhere to the sheet, leading to deterioration of the appearance.
  • the melt-kneading temperature is preferably kneaded within the above range.
  • Q/Ns which is the ratio of the extrusion rate Q (kg/h) of the polyolefin solution to the screw rotation speed Ns (rpm) of the twin-screw extruder
  • the kneadability of the resin increases, and a uniform solution can be obtained. be done.
  • a decrease in Q/Ns causes a large amount of shear heat generation, which promotes deterioration of the resin and makes it impossible to obtain the molecular weight component in the film within the range described above. Low-molecular-weight components accumulate in the bleeding-out plasticizer and adhere to the sheet, thereby deteriorating the appearance.
  • the obtained extrudate is cooled to obtain a gel-like sheet, and the cooling can fix the microphase of the polyolefin resin separated by the solvent. It is preferable to cool the gel-like sheet to 10 to 50° C. in the cooling step. This is because the final cooling temperature is set to the crystallization finish temperature or lower, and by making the higher-order structure finer, it becomes easier to perform uniform stretching in subsequent stretching. Therefore, it is preferable to cool at least at a rate of 30° C./min or more until the gelling temperature or lower.
  • Cooling methods include direct contact with cold air, cooling water, and other cooling media, contact with rolls cooled with a refrigerant, and the use of casting drums.
  • the polyolefin microporous membrane according to the embodiment of the present invention is not limited to a single layer, and may be a laminate.
  • the number of layers to be laminated is not particularly limited, and may be a two-layer lamination or a lamination of three or more layers.
  • the laminated portion may contain any desired resin to the extent that the effect of the present invention is not impaired.
  • a conventional method can be used as a method of forming a polyolefin microporous membrane into a laminate.
  • the desired resins may be prepared as desired, fed separately to an extruder, melted at the desired temperature, and combined in a polymer tube or die to achieve the desired thickness of each laminate.
  • the resulting gel-like (including laminated sheet) sheet is stretched.
  • the stretching method used includes uniaxial stretching in the sheet conveying direction (MD direction) by rolling or a roll stretching machine, uniaxial stretching in the sheet width direction (TD direction) by a tenter, roll stretching machine and tenter, or tenter and tenter. and simultaneous biaxial stretching using a simultaneous biaxial tenter, etc., but the sequential biaxial stretching step is preferred from the viewpoint of orientation control in the MD direction and the TD direction.
  • a pressure of 0.1 MPa or more between the stretching rolls and the nip rolls in the uniaxial stretching in the sheet conveying direction (MD direction) by the roll stretching machine it is preferable to apply a pressure of 0.1 MPa or more between the stretching rolls and the nip rolls in the uniaxial stretching in the sheet conveying direction (MD direction) by the roll stretching machine.
  • MD direction sheet conveying direction
  • the crystal molecular chains can be more oriented. If the pressure between the stretching rolls and the nip rolls is less than 0.1 MPa, slippage occurs on the rolls, making it difficult to apply stretching stress, and the crystal molecular chains may not be sufficiently oriented.
  • the stretching ratio of the gel-like sheet may be appropriately adjusted within a range that does not impair the orientation parameters in the MD direction and the TD direction. It is more preferably 6 times or more in both directions, and from the viewpoint of maintaining the crystal structure at high temperatures, the stretching ratio in the MD direction is preferably 7 times or more, and the area ratio is preferably 40 times or more, more preferably 45 times or more, and still more preferably. is more than 50 times.
  • the stretching temperature is preferably the melting point of the gel sheet + 10°C or less, more preferably in the range of (the crystal dispersion temperature Tcd of the polyolefin resin) to (the melting point of the gel sheet + 5°C).
  • the stretching temperature is preferably 100 to 130°C, more preferably 110 to 120°C.
  • the crystal dispersion temperature Tcd is obtained from the temperature characteristics of dynamic viscoelasticity measured according to ASTM D 4065 (2012). If the above upper limit is exceeded, the relaxation of the molecules is accelerated, and the molecular chains cannot be sufficiently oriented by stretching.
  • the stretching temperature is within the above range, film breakage due to stretching of the polyolefin resin is suppressed, and crystal molecular chains can be more oriented while allowing stretching at a high magnification.
  • the higher-order structure of the gel sheet is cleaved by stretching, and the crystal phase is refined to form a fibril structure oriented in the stretching direction. It is possible to obtain a microporous membrane that maintains a structure and has both excellent strength and high-temperature shrinkage resistance. Therefore, the polyolefin microporous membranes according to the embodiments of the present invention are suitable for battery separators, and the polyolefin microporous membranes of the present application can greatly improve the safety of batteries compared to the conventional technology.
  • washing solvents include saturated hydrocarbons such as pentane, hexane and heptane; chlorinated hydrocarbons such as methylene chloride and carbon tetrachloride; ethers such as diethyl ether and dioxane; ketones such as methyl ethyl ketone; and chain fluorocarbons.
  • These cleaning solvents have a low surface tension (for example, 24 mN/m or less at 25°C).
  • a cleaning solvent with low surface tension By using a cleaning solvent with low surface tension, the network structure that forms the micropores is suppressed from shrinking due to the surface tension of the air-liquid interface during drying after cleaning, resulting in a polyolefin microporous membrane with excellent porosity and permeability. is obtained.
  • These cleaning solvents are appropriately selected according to the plasticizer and used alone or in combination.
  • Examples of the cleaning method include a method of immersing the gel-like sheet in a cleaning solvent for extraction, a method of showering the gel-like sheet with a cleaning solvent, and a combination of these methods.
  • the amount of the cleaning solvent used varies depending on the cleaning method, but generally it is preferably 300 parts by mass or more per 100 parts by mass of the gel-like sheet.
  • the washing temperature may be 15-30°C, and if necessary, it is heated to 80°C or lower.
  • the physical properties of the obtained polyolefin microporous membrane for example, the physical properties in the TD and / or MD directions
  • the mechanical properties of the polyolefin microporous membrane From the viewpoint of improving physical properties and electrical properties, the longer the gel-like sheet is immersed in the cleaning solvent, the better.
  • the washing as described above is preferably carried out until the residual solvent in the gel-like sheet after washing, that is, the polyolefin microporous membrane is less than 1% by mass.
  • the solvent in the polyolefin microporous membrane is dried and removed in the drying process.
  • the drying method is not particularly limited, and a method using a metal heating roll, a method using hot air, or the like can be selected.
  • the drying temperature is preferably 40-100°C, more preferably 40-80°C. If the drying is insufficient, the porosity of the polyolefin microporous membrane will decrease in the subsequent heat treatment, and the permeability will deteriorate.
  • the dried microporous polyolefin membrane may be stretched (re-stretched) at least uniaxially.
  • the re-stretching can be performed by a tenter method or the like while heating the polyolefin microporous membrane in the same manner as the stretching described above.
  • Re-stretching may be uniaxial stretching or biaxial stretching. In the case of multistage stretching, simultaneous biaxial stretching or sequential stretching is combined.
  • the re-stretching temperature is preferably below the melting point of the polyolefin resin composition, and more preferably within the range of (Tcd-20°C of the polyolefin resin composition) to the melting point of the polyolefin resin composition.
  • the re-stretching temperature is preferably 70 to 140.degree. C., more preferably 110 to 140.degree. C., still more preferably 120 to 140.degree. 135 to 140°C is even more preferred.
  • the polyolefin microporous membrane according to the embodiment of the present invention is made mainly of polyethylene having a weight average molecular weight of 0.9 ⁇ 10 6 or more with a long relaxation time, and is stretched and heat set at a high temperature of 130 ° C. or more. It is possible to obtain a highly oriented structure by suppressing the relaxation of the orientation of the polyolefin molecular chain and forming a thermally stable structure.
  • the resulting microporous film has a high orientation parameter at 130° C., a small difference in orientation parameter between 25° C. and 130° C., and a microporous film that satisfies both per unit weight equivalent puncture strength and thermal shrinkage characteristics.
  • the relaxation time is short, and heat treatment at 130° C. or higher leads to a decrease in porosity.
  • polyethylene with a weight-average molecular weight of 0.9 ⁇ 10 6 or more has a long relaxation time. Since it can be fixed, it is possible to suppress the relaxation of orientation at high temperature and obtain a highly oriented structure. Therefore, it is preferable to use polyethylene having a weight-average molecular weight of 0.9 ⁇ 10 6 or more and to heat-set at a temperature higher than 130°C.
  • the re-stretching ratio is preferably 1.01 to 3.0 times, particularly preferably 1.1 to 1.2 times, more preferably 1.2 to 1.7 times in the TD direction. .
  • the film is biaxially stretched, it is preferably stretched 1.01 to 2.0 times in each of the MD and TD directions.
  • the re-stretching ratio may be different in the MD direction and the TD direction, and multi-stage stretching combining successive stretching is preferred.
  • the dry stretching process is effective in controlling the orientation of molecular chains measured at 25° C. using Raman spectroscopy, and high puncture strength can be obtained by dry stretching at the above stretching ratio.
  • the relaxation rate from the maximum re-stretching ratio is preferably 30% or less, more preferably 25% or less, and even more preferably 20% or less. A uniform fibril structure is obtained when the relaxation rate is 20% or less.
  • the polyolefin microporous membrane may be subjected to hydrophilization treatment according to other uses.
  • Hydrophilization treatment can be performed by monomer grafting, surfactant treatment, corona discharge, or the like. Monomer grafting is preferably carried out after the cross-linking treatment.
  • the polyolefin microporous membrane prefferably to cross-linking treatment by irradiating it with ionizing radiation such as ⁇ -rays, ⁇ -rays, ⁇ -rays and electron beams.
  • ionizing radiation such as ⁇ -rays, ⁇ -rays, ⁇ -rays and electron beams.
  • electron beam irradiation an electron dose of 0.1 to 100 Mrad is preferred, and an acceleration voltage of 100 to 300 kV is preferred.
  • the cross-linking treatment increases the meltdown temperature of the polyolefin microporous membrane.
  • nonionic surfactants In the case of surfactant treatment, nonionic surfactants, cationic surfactants, anionic surfactants or amphoteric surfactants can all be used, but nonionic surfactants are preferred.
  • a polyolefin microporous membrane is immersed in a solution of a surfactant dissolved in water or a lower alcohol such as methanol, ethanol, or isopropyl alcohol, or the solution is applied to the polyolefin microporous membrane by a doctor blade method.
  • the polyolefin microporous membrane according to the embodiment of the present invention is a fluororesin porous material such as polyvinylidene fluoride, polytetrafluoroethylene, etc., for the purpose of improving meltdown characteristics and heat resistance when used as a battery separator.
  • a fluororesin porous material such as polyvinylidene fluoride, polytetrafluoroethylene, etc.
  • Surface coating of porous materials such as polyimide, polyphenylene sulfide, etc., inorganic coating such as ceramics, etc. may be performed.
  • the polyolefin porous membrane obtained by the present invention has high strength and low thermal shrinkage, tension control during coating is facilitated, and shrinkage during the drying process is suppressed, resulting in excellent coatability.
  • the polyolefin microporous membrane obtained as described above can be used in various applications such as filters, separators for fuel cells, and separators for capacitors, and is particularly safe when used as a battery separator. Therefore, the separator can be preferably used as a battery separator for secondary batteries, such as electric vehicles, which require high energy density, high capacity, and high output.
  • Mw weight average molecular weight
  • GPC high-temperature gel permeation chromatography
  • Detector Differential Refractive Index Detector RI Guard column: Shodex G-HT Column: Shodex HT806M (2 columns) ( ⁇ 7.8 mm ⁇ 30 cm, manufactured by Showa Denko) Solvent: 1,2,4-trichlorobenzene (TCB, manufactured by Wako Pure Chemical Industries) (0.1% BHT added) Flow rate: 1.0 mL/min Column temperature: 145°C Sample preparation: 5 mL of a measurement solvent was added to 5 mg of a sample, and the mixture was heated and stirred at 160 to 170° C.
  • Air permeability (sec/100 cm 3 ) In accordance with JIS P8117: 2009, the polyolefin microporous membrane having a thickness of T 1 ( ⁇ m) is measured in an atmosphere of 25 ° C. with an Oken type air permeability meter (manufactured by Asahi Seiko Co., Ltd., EGO-1T). Air permeability (sec/100 cm 3 ) was measured. Also, the air permeability (converted to 10 ⁇ m) (sec/100 cm 3 ) when the film thickness was 10 ⁇ m was calculated according to the following formula.
  • Porosity (%) (volume - mass / film density) / volume x 100 The film density was calculated assuming a constant value of 0.99 g/cm 3 .
  • the weight-converted strength was obtained by measuring (L1) the maximum load (N) when the polyolefin microporous membrane was pierced in an atmosphere of 25° C., and calculating the weight-converted piercing strength (L3) from the following formula.
  • L3 L1/weight of polyolefin microporous membrane.
  • the basis weight of the polyolefin microporous membrane was calculated by the following formula by cutting a 50 mm ⁇ 50 mm square sample from the polyolefin microporous membrane, measuring the mass (g) at room temperature of 25° C.
  • basis weight (g/m 2 ) mass (g)/(50 (mm) x 50 (mm)) x 10 6 .
  • the thermal shrinkage rate after 1 hour at 130° C. was calculated by the following formula. Further, this measurement was performed at arbitrary three points within the sample surface, and the average value was calculated as the thermal shrinkage rate (%) after 1 hour at 130°C.
  • Formula 130 ° C in MD direction, thermal shrinkage rate (%) after 1 hour 100 ⁇ (L 1MD - L 2MD ) / L 1MD
  • Thermal contraction rate (%) after 1 hour at 130°C in the TD direction 100 x (L 1TD - L 2TD )/L 1TD .
  • the ratio I 1130 /I 1060 of the Raman bands at 1130 cm ⁇ 1 and 1060 cm ⁇ 1 in the obtained Raman spectrum was defined as the Raman orientation parameter and the value was calculated.
  • the Raman spectrum was obtained with the polarizer having the direction parallel (0°/0°) to the longitudinal direction of the film as the MD direction and the direction (90°/90°) perpendicular to the film as the TD direction.
  • 1130 cm- 1 is a band attributed to the C—C stretching vibration of the polyethylene molecular chain in the crystal phase, and since the direction of the Raman tensor of vibration coincides with the molecular chain axis, the orientation of the molecular chain can be known.
  • a larger value of the orientation parameter means that the crystal molecular chains are highly oriented.
  • I a maximum Raman band intensity I b in the Raman shift band range of 1100 to 1170 cm ⁇ 1 : Raman band maximum intensity I a in the Raman shift band range of 1040 to 1090 cm ⁇ 1 (MD, 25° C.): 25 MD value Ia (TD, 25°C) measured in °C: TD value Ib (MD, 25°C) measured at 25°C: TD value measured at 25°C I b (TD, 25° C.): value in TD measured at 25° C.
  • I a in equations (5) and (6) is the difference between the maximum intensity in the Raman shift band of 1100 to 1170 cm ⁇ 1 and the intensity at 1200 cm ⁇ 1
  • I a (MD, 130° C.) is the MD direction.
  • Ia (TD, 130°C) is measured at 130°C in the TD direction
  • Ia (MD, 25°C) is measured in the TD direction at 25°C
  • Ia (TD, 25°C) is measured in the TD It is a value measured at 25° C. in the direction.
  • the polyolefin microporous membrane was fixed on four sides MD and TD with a Kapton tape.
  • the measurement cell consisted of an aluminum block and had a structure with a thermocouple directly below the polyolefin microporous membrane. A sample was cut into a 5 cm x 5 cm square, and the temperature was measured while fixing the periphery with an O-ring.
  • Short-circuit test Short-circuit resistance was evaluated using a desktop precision universal testing machine, Autograph AGS-X (manufactured by Shimadzu Corporation).
  • Polypropylene insulator (thickness: 0.2 ⁇ m)/negative electrode (for lithium-ion battery (copper foil (thickness: approx. 0.9 ⁇ m), active material: artificial graphite (particle diameter: approx. 13 ⁇ m))/separator/500 ⁇ m diameter chromium ball (material: : Chromium (SUJ-2))/aluminum foil laminate was prepared.
  • the aluminum foil and negative electrode of the sample laminate were connected with a cable to a circuit consisting of a capacitor and a clad resistor. The capacitor was charged to about 1.5 V.
  • a metal ball material: chromium (SUJ-2)
  • a metal ball material: chromium (SUJ-2)
  • the starting point is the point where the leakage current value begins to rise
  • the short-circuit point is the moment when the above circuit is formed via the metal ball and the current is detected.
  • a sample that does not short-circuit even with a large amount of displacement has better resistance to foreign matter, and the relationship between the amount of displacement and resistance to foreign matter is made into the following four stages. A or higher is preferable because higher energy density and higher capacity will be achieved.
  • Displacement (mm)/separator thickness ( ⁇ m) is greater than 0.025
  • the melting point of the raw material polyolefin resin was measured by differential scanning calorimetry (DSC) in accordance with JIS K7121:1987. 6.0 mg of the sample was sealed in an aluminum pan, and the temperature was raised from 30 ° C. to 230 ° C. at a rate of 10 ° C./min under a nitrogen atmosphere using a PYRIS Diamond DSC manufactured by Parking Elmer. After the temperature was raised at 230°C for 5 minutes (first temperature rise), the temperature was maintained at 230°C for 5 minutes, cooled at a rate of 10°C/min, and again heated from 30°C to 230°C at a rate of temperature increase of 10°C/min. (Second heating), each melting endotherm curve was obtained. The temperature of the peak top on the melting endothermic curve obtained in the second heating was taken as the melting point of the polyolefin resin raw material.
  • DSC differential scanning calorimetry
  • Heat of fusion ( ⁇ H) of polyolefin resin raw material The heat of fusion of the raw material polyolefin resin was measured by differential scanning calorimetry (DSC) in accordance with JIS K7121:1987. 6.0 mg of the sample was sealed in an aluminum pan, and the temperature was raised from 30 ° C. to 230 ° C. at a rate of 10 ° C./min under a nitrogen atmosphere using a PYRIS Diamond DSC manufactured by Parking Elmer.
  • Example 1 Ultra high molecular weight polyethylene with Mw of 15 ⁇ 10 5 is used as a raw material, 80 parts by weight of liquid paraffin is added to 20 parts by weight of ultra high molecular weight polyethylene, and 0.5 parts by weight is added to the weight of 20 parts by weight of ultra high molecular weight polyethylene.
  • of 2,6-di-t-butyl-p-cresol and 0.7 parts by mass of tetrakis[methylene-3-(3,5-di-t-butyl-4-hydroxyphenyl)-propionate]methane for antioxidant were added as agents and mixed to prepare a polyethylene resin solution.
  • the obtained polyethylene resin solution was charged into a twin-screw extruder and kneaded at 180° C.
  • the resulting polyethylene solution was supplied to a T-die, and the extrudate was cooled with a cooling roll controlled at 35°C to form a gel sheet.
  • the resulting gel-like sheet was longitudinally stretched by a roll system at a stretching temperature of 115° C. at a stretching ratio of 7.0 times. At this time, the pressure between the stretching rolls and the nip rolls was 0.3 Mpa. Subsequently, the film was led to a tenter and laterally stretched at a stretching temperature of 120° C. at a stretching ratio of 7.0 times.
  • the stretched membrane was washed in a methylene chloride washing tank to remove liquid paraffin. The washed membrane was dried and laterally stretched again at a temperature of 135° C. at a stretching ratio of 1.4 times by a tenter method to obtain a polyolefin microporous membrane.
  • Examples 2 to 4 A polyolefin microporous membrane was produced in the same manner as in Example 1, except that the raw material formulation and membrane-forming conditions were changed as shown in Table 1.
  • Example 5 Polyethylene consisting of 70 parts by mass of ultra-high molecular weight polyethylene with Mw of 15 ⁇ 10 5 and 30 parts by mass of high-density polyethylene with Mw of 1 ⁇ 10 5 , melting point of 131.5° C., and ⁇ H of 225 (J/g) as raw materials.
  • PE polyethylene
  • 0.5 parts by weight of 2,6-di-t-butyl-p-cresol and 0.7 parts by weight of tetrakis[methylene-3-(3) with respect to 70 parts by weight of ultra-high molecular weight polyethylene ,5-di-t-butyl-4-hydroxyphenyl)-propionate]methane was added as an antioxidant to obtain a polyethylene mixture.
  • the washed membrane is dried, longitudinally stretched again to 1.7 times at a temperature of 100°C by a roll stretching method, and then transversely stretched again to a stretching ratio of 1.7 times at a temperature of 137°C by a tenter method.
  • a membrane was obtained.
  • Examples 6 to 8 A polyolefin microporous membrane was produced in the same manner as in Example 1, except that the raw material formulation and membrane-forming conditions were changed as shown in Table 1. The same high-density polyethylene as used in Example 5 was used as the high-density polyethylene used in Examples 6 and 7.
  • Example 1 a microporous film with a small orientation parameter at high temperature calculated by microscopic Raman spectroscopy is obtained, and both excellent strength and low shrinkage are achieved. No. 7 achieves particularly good strength and low shrinkage, and a microporous membrane excellent in the short-circuit test is obtained.
  • Comparative Examples 1 and 2 using high-density polyethylene as a main component have large orientation parameters at high temperatures and are inferior in strength and low shrinkage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cell Separators (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

A microporous polyolefin film in which an orientation parameter value (fMH) of the MD direction and an orientation parameter value (fTH) of the TD direction, measured at 130°C calculated by formulas (1) and (2) using a microscopic Raman spectroscope, are both 1.70 or less. fMH = Ia (MD, 130°C)/Ib (MD, 130°C) <sb /> … formula (1) fTH = Ia (TD, 130°C)/Ib (TD, 130°C) <sb /> … formula (2) Where, Ia is the maximum intensity of the Raman band in a Raman shift band range of 1100-1170 cm-1, Ib is the maximum intensity of the Raman band in a Raman shift band range of 1040-1090 cm-1, Ia (MD, 130°C) and Ib (MD, 130°C) are the maximum intensity of the MD direction measured at 130°C, and Ia (TD, 130°C) and Ib (TD, 130°C) are the maximum intensity of the TD direction measured at 130°C.  Provided is a microporous polyolefin film having better strength and shrinkage rate than in the prior art.

Description

ポリオレフィン微多孔膜、電池用セパレータ及び二次電池Polyolefin microporous membrane, battery separator and secondary battery
 本発明は、物質の分離、選択透過等に用いられる分離膜、及びアルカリ電池、リチウム二次電池、燃料電池、コンデンサ等電気化学反応装置の隔離材等として広く使用されているポリオレフィン微多孔膜(多孔性ポリオレフィンフィルムともいう)に関する。特に本発明は、リチウムイオン電池等の非水電解液二次電池用セパレータとして好適に使用されるポリオレフィン微多孔膜であり、従来のポリオレフィン微多孔膜に比べ高い安全性を有するセパレータとして用いられる。 The present invention is a separation membrane used for material separation, selective permeation, etc., and a polyolefin microporous membrane ( Also referred to as porous polyolefin film). In particular, the present invention relates to a polyolefin microporous membrane suitable for use as a separator for non-aqueous electrolyte secondary batteries such as lithium ion batteries, and is used as a separator having higher safety than conventional polyolefin microporous membranes.
 ポリオレフィン微多孔膜は、フィルター、燃料電池用セパレータ、コンデンサ用セパレータとして用いられる。特にノート型パーソナルコンピュータや携帯電話等に広く使用されるリチウムイオン電池等の非水電解液二次電池用のセパレータとして好適に使用されている。その理由は、ポリオレフィン微多孔膜が優れた機械強度やシャットダウン特性、イオン透過性能を有していることが挙げられる。 Polyolefin microporous membranes are used as filters, separators for fuel cells, and separators for capacitors. In particular, it is suitably used as a separator for non-aqueous electrolyte secondary batteries, such as lithium ion batteries, which are widely used in notebook personal computers, mobile phones, and the like. The reason for this is that the polyolefin microporous membrane has excellent mechanical strength, shutdown characteristics, and ion permeation performance.
 近年リチウムイオン二次電池は電子機器の小型化や車載用途への展開を中心に電池の高容量化が進んでいる。それに伴い、セパレータの薄膜化が一層求められている。しかし、セパレータを薄膜化すると強度が低下するため、電極や異物による短絡(耐異物性)や電池が衝撃を受けた際に破膜(耐衝撃性の低下)が起こりやすく、電池の安全性が低下する。そのため、従来よりもさらなる高強度が求められる。加えて、高いエネルギーを有する電池においては、セパレータが有するシャットダウン機能により電気化学反応の進行をストップさせても電池内の温度が上昇し続け、その結果、セパレータが熱収縮して破膜し、両極が短絡(ショート)するという問題がある。そのため、セパレータには高強度、高温下での低収縮率が求められる。 In recent years, the capacity of lithium-ion secondary batteries has been increasing, mainly due to the miniaturization of electronic devices and the development of in-vehicle applications. Along with this, there is a growing demand for thinner separators. However, thinning the separator reduces its strength, making it more likely that the electrode or foreign matter will cause a short circuit (foreign object resistance), or if the battery receives an impact, the membrane will rupture (decrease in impact resistance), reducing battery safety. descend. Therefore, higher strength than ever before is required. In addition, in a battery with high energy, even if the progress of the electrochemical reaction is stopped by the shutdown function of the separator, the temperature inside the battery continues to rise. is short-circuited. Therefore, separators are required to have high strength and low shrinkage at high temperatures.
 例えば特許文献1には強度と収縮率、シャットダウン温度を改善する手法としてMD方向(機械方向)に乾式再延伸を行い、MD方向のラマン配向パラメータ値を制御することで膜厚が12μm以下、突刺強度が230gf以上、105℃、8時間におけるTD方向(幅方向)の熱収縮率が15%の微多孔膜を得る手法が開示されている。 For example, in Patent Document 1, dry re-stretching is performed in the MD direction (machine direction) as a method for improving the strength, shrinkage rate, and shutdown temperature, and the film thickness is 12 μm or less by controlling the Raman orientation parameter value in the MD direction. A technique for obtaining a microporous membrane having a strength of 230 gf or more and a heat shrinkage rate of 15% in the TD direction (width direction) at 105° C. for 8 hours is disclosed.
 特許文献2にはシャットダウン温度と突刺強度を改善する手法として、重量分子量が50万以上であるポリオレフィンを主成分とし、X線解析により求めたMD方向とTD方向の配向割合を制御し、0.24~0.75 N/(g/m)の突刺強度、シャットダウン温度が139℃~146℃の微多孔膜を得る手法が開示されている。 Patent Document 2 describes a technique for improving shutdown temperature and puncture strength, in which polyolefin having a weight molecular weight of 500,000 or more is used as a main component, and the ratio of orientation in the MD direction and the TD direction obtained by X-ray analysis is controlled. A technique for obtaining a microporous membrane with a puncture strength of 24-0.75 N/(g/m 2 ) and a shutdown temperature of 139° C.-146° C. is disclosed.
 特許文献3には機械的強度と透過性を改善する手法として、赤外スペクトル測定により求めた配向度を制御し25μmに換算した突刺強度が300~500gfの微多孔膜を得る手法が開示されている。 Patent Document 3 discloses, as a method for improving mechanical strength and permeability, a method for obtaining a microporous film having a puncture strength of 300 to 500 gf converted to 25 μm by controlling the degree of orientation determined by infrared spectrum measurement. there is
特開2020-95950号公報JP 2020-95950 A 特許第6671255号公報Japanese Patent No. 6671255 特開2013-199545号公報JP 2013-199545 A
 セパレータには高強度、高温下での低収縮率が求められるが、セパレータの強度を高めると高温下での収縮特性が悪化するという問題があり、特許文献1~3に記載される微多孔膜は電池の高容量化に伴うセパレータの薄膜、高強度かつ高温下での低収縮率を両立するという観点において十分ではなかった。 Separators are required to have high strength and low shrinkage at high temperatures. However, it was not sufficient from the standpoint of achieving both high strength and low shrinkage at high temperatures, as well as the thickness of the separator accompanying the increase in capacity of the battery.
 上記事情に鑑み、本発明は、従来よりも高強度かつ高温下での低収縮率を両立したポリオレフィン微多孔膜及び、それを用いたセパレータを提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide a polyolefin microporous membrane that achieves both higher strength and lower shrinkage at high temperatures than before, and a separator using the same.
 本発明者らは上述の目的を達成する為に鋭意研究を重ねた結果、顕微ラマン分光により算出したMD方向およびTD方向の高温下における配向パラメータが特定の範囲を有する微多孔膜が上記課題を解決し、高強度かつ高温下での低収縮率を両立できることを見出し、本発明を完成するに至った。すなわち、本発明は下記の通りの構成を有する。 The present inventors have made intensive studies to achieve the above-mentioned object, and as a result, a microporous film having a specific range of orientation parameters at high temperature in the MD and TD directions calculated by microscopic Raman spectroscopy solves the above-mentioned problems. The inventors have found that both high strength and low shrinkage at high temperatures can be achieved, and have completed the present invention. That is, the present invention has the following configurations.
 顕微ラマン分光装置を用いて下記(1)、(2)式により算出される130℃で測定したMD方向の配向パラメータ値(fMH)とTD方向の配向パラメータ値(fTH)がいずれも0.00以上、1.70以下であることを特徴とする。
fMH = I(MD、130℃)/ I(MD、130℃)  ・・・(1)式
fTH = I(TD、130℃)/ I(TD、130℃)  ・・・(2)式
 なお、Iはラマンシフトの帯域1100~1170cm-1の範囲におけるラマンバンドの最大強度、Iはラマンシフトの帯域1040~1090cm-1の範囲におけるラマンバンドの最大強度、I(MD、130℃)、 I(MD、130℃)は130℃で測定したMD方向の最大強度、I(TD、130℃)、I(TD、130℃)は130℃で測定したTD方向の最大強度である。
Both the orientation parameter value (fMH) in the MD direction and the orientation parameter value (fTH) in the TD direction measured at 130° C. calculated by the following formulas (1) and (2) using a microscopic Raman spectrometer are 0.00. Above, it is characterized by being 1.70 or less.
fMH = Ia (MD, 130°C)/ Ib (MD, 130°C)  (1) Formula fTH = Ia (TD, 130°C)/ Ib (TD, 130°C)  (2) where I a is the maximum Raman band intensity in the Raman shift band range of 1100 to 1170 cm -1 and I b is the Raman band maximum intensity in the Raman shift band range of 1040 to 1090 cm -1 , I a (MD, 130°C) and I b (MD, 130° C.) are the maximum intensities in the MD direction measured at 130° C. I a (TD, 130° C.) and I b (TD, 130° C.) are is the maximum intensity in the TD direction measured at .
 本発明によれば高強度かつ高温下での低収縮率を両立した、高い安全性を有するポリオレフィン微多孔膜が得られる。 According to the present invention, a highly safe polyolefin microporous membrane that achieves both high strength and low shrinkage at high temperatures can be obtained.
 本発明の実施形態にかかるポリオレフィン微多孔膜は、強度及び収縮率に優れているため電池用のセパレータとして有用であり、優れた安全性を有している。本発明は後述する範囲の顕微ラマン分光により算出したMD方向とTD方向の高温下での配向パラメータを満足させることにより実現でき、従来トレードオフの関係にあった強度と収縮率の両立につながることを見出したものである。なお、本発明は以下に説明する実施態様に限定されるものではなく、ポリオレフィン微多孔膜の製膜する方向に平行な方向を製膜方向、長手方向あるいはMD方向と称し、製膜方向に直交する方向を幅方向あるいはTD方向と称する。 The polyolefin microporous membrane according to the embodiment of the present invention is useful as a battery separator because of its excellent strength and shrinkage rate, and has excellent safety. The present invention can be realized by satisfying the orientation parameters in the MD direction and the TD direction at high temperatures calculated by microscopic Raman spectroscopy within the range described later, leading to compatibility between strength and shrinkage ratio, which were conventionally in a trade-off relationship. This is what I found. The present invention is not limited to the embodiments described below. The direction in which the tape is drawn is called the width direction or the TD direction.
 以下、本発明についてさらに詳述する。 The present invention will be described in further detail below.
 [1]ポリオレフィン微多孔膜
 本発明の実施形態にかかるポリオレフィン微多孔膜は、後述する手法により測定される130℃で測定したMD方向の配向パラメータ値(fMH)とTD方向の配向パラメータ値(fTH)がいずれも1.70以下であることを特徴とする。なお、配向パラメータとは、結晶分子鎖の配向度合いをラマン分光測定によって算出した値で示す指標であり、この値が高いほど結晶分子鎖がより高度に配向していること表す。fMHとfTHが0.00以上であると、MD方向とTD方向ともに高温下においても配向状態を維持した強い構造を有していることを意味しており、優れた強度が得られる。強度の観点からfMHとfTHは0.00以上であり、0.50以上が好ましく、0.90以上がより好ましく、1.00以上がさらに好ましく、1.10以上が特に好ましい。しかし、fMHとfTHが高すぎると、高温下で結晶構造の緩和により収縮率の悪化につながる。そのため、fMHとfTHは1.70以下であり、好ましくは1.50以下であり、より好ましくは1.20以下である。強度と収縮率のバランスの観点から、fMHとfTHはともに1.70以下であることが重要であり、上記範囲を満たすことで高強度かつ高温下での低収縮率が両立できる。なお。上記範囲は後述する原料設計や製法により制御でき、高温下における配向状態を維持した強い構造を形成するために、緩和時間が長い重量平均分子量が0.8×10以上のポリオレフィン樹脂を主原料とし、湿式逐次延伸で高度に配向した構造を形成し、洗浄乾燥後の乾式再延伸を高温で行う製膜が好ましい。上記観点から、ポリオレフィン微多孔膜の分子量分布において、緩和時間が長い分子量0.9×10以上の成分がポリオレフィン微多孔膜中に30質量%以上含まれ、緩和時間が短い分子量0.3×106以下の成分は50質量%未満の範囲で含まれていることがさらに好ましい。これにより、高温下においても配向変化が少なく高度に配向した構造が得られ、高強度かつ高温下での低収縮率を両立した、高い安全性を有するポリオレフィン微多孔膜が得られる。
[1] Polyolefin microporous membrane The polyolefin microporous membrane according to the embodiment of the present invention has an orientation parameter value (fMH) in the MD direction and an orientation parameter value (fTH) in the TD direction measured at 130 ° C. by the method described later. ) are all 1.70 or less. The orientation parameter is an index indicating the degree of orientation of crystal molecular chains as a value calculated by Raman spectroscopy, and the higher the value, the more highly oriented the crystal molecular chains. When fMH and fTH are 0.00 or more, it means that the film has a strong structure in which the orientation state is maintained even at high temperatures in both the MD and TD directions, and excellent strength can be obtained. From the viewpoint of strength, fMH and fTH are 0.00 or more, preferably 0.50 or more, more preferably 0.90 or more, still more preferably 1.00 or more, and particularly preferably 1.10 or more. However, if fMH and fTH are too high, relaxation of the crystal structure at high temperature leads to deterioration of the shrinkage ratio. Therefore, fMH and fTH are 1.70 or less, preferably 1.50 or less, and more preferably 1.20 or less. From the viewpoint of the balance between strength and shrinkage, it is important that both fMH and fTH are 1.70 or less. By satisfying the above ranges, both high strength and low shrinkage at high temperatures can be achieved. note that. The above range can be controlled by the raw material design and manufacturing method described later, and in order to form a strong structure that maintains the orientation state at high temperatures, the main raw material is a polyolefin resin with a weight average molecular weight of 0.8 × 10 6 or more with a long relaxation time. It is preferable to form a film in which a highly oriented structure is formed by wet sequential stretching, and dry re-stretching after washing and drying is performed at a high temperature. From the above viewpoint, in the molecular weight distribution of the polyolefin microporous membrane, the polyolefin microporous membrane contains 30% by mass or more of a component with a molecular weight of 0.9 × 10 6 or more with a long relaxation time, and a molecular weight of 0.3 × with a short relaxation time. It is more preferable that the component having a molecular weight of 10 6 or less is contained in a range of less than 50% by mass. As a result, a highly oriented structure with little change in orientation even at high temperatures can be obtained, and a highly safe polyolefin microporous membrane having both high strength and low shrinkage at high temperatures can be obtained.
 本発明の実施形態にかかるポリオレフィン微多孔膜は、後述する手法により測定される25℃で測定したMD方向の配向パラメータ値(fML)とTD方向の配向パラメータ値(fTL)がいずれも1.70以下が好ましい。強度の観点からfMLとfTLは高いほど好ましいが、25℃測定において高度に配向した構造が増加すると高温下で分子配向が緩和されることにより収縮率が増加する。収縮率抑制の観点から、fMLとfTLは好ましくは1.50以下であり、より好ましくは1.30以下である。なお、上記fMLとfTLは下記、(3)、(4)式により算出される配向パラメータであり、Iはラマンシフトの帯域1100~1170cm-1の範囲における最大強度、Iはラマンシフトの帯域1040~1090cm-1の範囲におけるラマンバンドの最大強度、I(MD、25℃)およびI(MD、25℃)はポリオレフィン微多孔膜のMD方向を25℃で測定し、I(TD、25℃)およびI(TD、25℃)はポリオレフィン微多孔膜のTD方向を25℃で測定した値である。なお、上記範囲は後述する範囲の原料や分子量、製法を適用することにより達成できる。
fML = I(MD、25℃)/ I(MD、25℃)  ・・・(3)式
fTL = I(TD、25℃)/ I(TD、25℃)  ・・・(4)式。
The polyolefin microporous film according to the embodiment of the present invention has an orientation parameter value (fML) in the MD direction and an orientation parameter value (fTL) in the TD direction measured at 25 ° C. by the method described later, both of which are 1.70. The following are preferred. From the viewpoint of strength, the higher the fML and fTL, the better. However, when the highly oriented structure increases in the measurement at 25° C., the shrinkage rate increases due to the relaxation of the molecular orientation at high temperature. From the viewpoint of shrinkage rate suppression, fML and fTL are preferably 1.50 or less, more preferably 1.30 or less. The above fML and fTL are orientation parameters calculated by the following equations (3) and (4), I a is the maximum intensity in the Raman shift band 1100 to 1170 cm −1 , and I b is the Raman shift. The maximum intensities of Raman bands in the range of 1040-1090 cm −1 , I a (MD, 25° C.) and I b (MD, 25° C.) were measured in the MD direction of the polyolefin microporous membrane at 25° C., and I a ( TD, 25°C) and I b (TD, 25°C) are values measured in the TD direction of the polyolefin microporous membrane at 25°C. The above range can be achieved by applying the raw materials, molecular weight, and manufacturing method within the ranges described later.
fML = Ia (MD, 25°C)/ Ib (MD, 25°C)  (3) Formula fTL = Ia (TD, 25°C)/ Ib (TD, 25°C)  ... (4) Formula.
 本発明の実施形態にかかるポリオレフィン微多孔膜は、後述する手法により測定されるI(MD、25℃)とD(MD、130℃)の比(fMLH)およびD(TD、25℃)とD(TD、130℃)の比(fTLH)が共に4.00以下であることが好ましく、3.00以下がより好ましく、2.50以下がさらに好ましく、2.00以下がよりさらに好ましく、1.50以下がとくに好ましい。4.00以下であると、130℃における結晶相中ポリエチレン分子鎖のC-C伸縮振動を維持、すなわち、130℃においても結晶の分子鎖構造が高度に保持された構造を意味し、高い強度が得られる。なお、Dはラマンシフトの帯域1100~1170cm-1の範囲における最大強度と1200cm-1の強度の差、D(MD、130℃)はポリオレフィン微多孔膜のMD方向を130℃で測定、D(TD、130℃)はポリオレフィン微多孔膜のTD方向を130℃で測定、D(MD、25℃)はポリオレフィン微多孔膜のMD方向を25℃で測定、D(TD、25℃)はポリオレフィン微多孔膜のTD方向の25℃で測定した値である。1130cm-1は結晶相中ポリエチレン分子鎖のC-C伸縮振動に帰属されるバンドであり、振動のラマンテンソルの方向が分子鎖軸である。なお、上記範囲は後述する範囲の原料や分子量、製法を適用することにより達成できる。
fMLH=D(MD、25℃)/D(MD、130℃))・・・(5)式
fTLH=D(TD、25℃)/D(TD、130℃))・・・(6)式。
The polyolefin microporous membrane according to the embodiment of the present invention has a ratio ( fMLH ) and Da (TD, 25°C) of Ia (MD, 25°C) and Da (MD, 130°C) measured by the method described later. ) and Da (TD, 130 ° C.) ( fTLH ) are both preferably 4.00 or less, more preferably 3.00 or less, still more preferably 2.50 or less, and even more preferably 2.00 or less. Preferably, 1.50 or less is particularly preferable. When it is 4.00 or less, it means that the C—C stretching vibration of the polyethylene molecular chain in the crystal phase at 130° C. is maintained, that is, the structure in which the molecular chain structure of the crystal is highly retained even at 130° C., and the strength is high. is obtained. D a is the difference between the maximum intensity in the Raman shift band of 1100 to 1170 cm −1 and the intensity at 1200 cm −1 , D a (MD, 130° C.) is measured in the MD direction of the polyolefin microporous membrane at 130° C. Da (TD, 130°C) is measured in the TD direction of the polyolefin microporous membrane at 130°C, Da (MD, 25°C) is measured in the MD direction of the polyolefin microporous membrane at 25°C, Da (TD, 25°C) °C) is the value measured at 25°C in the TD direction of the polyolefin microporous membrane. 1130 cm −1 is a band attributed to the C—C stretching vibration of the polyethylene molecular chain in the crystal phase, and the direction of the Raman tensor of vibration is the molecular chain axis. The above range can be achieved by applying the raw materials, molecular weight, and manufacturing method within the ranges described later.
fMLH=D a (MD, 25° C.)/D a (MD, 130° C.)) (5) Formula fTLH=D a (TD, 25° C.)/D a (TD, 130° C.)) (6) formula.
 高温下では結晶構造が緩和・溶融する場合、130℃で測定した配向パラメータは25℃で測定した配向パラメータよりも減少する(25℃で測定した配向パラメータ>130℃で測定した配向パラメータ)。また、フィルムの融点が高いサンプルにおいては130℃にて再結晶化が起こり、130℃で測定した配向パラメータは25℃で測定した配向パラメータよりも増加する場合がある。そのため、25℃と130℃の配向パラメータの差が小さく、変化量が0に近いほど高温下での結晶構造の保持性に優れ、収縮率の低減が可能となる。顕微ラマン分光により算出した25℃と130℃における配向パラメータの変化が小さい事が特に好ましく、fMLとfMHの差(fML-fMH・・・(7)式)とfTLとfTHの差(fTL-fTH・・・(8)式)がいずれも0.50以下であることが好ましい。より好ましくは0.40であり、0.20以下がさらに好ましい。fMLとfMHの差(fML-fMH)とfTLとfTLの差(fTL-fTH)の下限は-0.50以上であり、-0.20以上が好ましく、-0.10以上がより好ましく、0.00以上がさらに好ましい。fMLとfMHの差(fML-fMH)とfTLとfTHの差(fTL-fTH)がいずれも0.50以下であると、130℃における結晶構造の緩和が抑制され良好な収縮特性が得られる。-0.50以上であると、高温下における結晶構造の溶融が抑制され優れた強度が得られる。なお、上記範囲は後述する範囲の原料や分子量、製法を適用することにより達成できる。 When the crystal structure relaxes and melts at high temperatures, the orientation parameter measured at 130°C decreases more than the orientation parameter measured at 25°C (orientation parameter measured at 25°C > orientation parameter measured at 130°C). Also, recrystallization occurs at 130°C in samples with high melting points of the film, and the orientation parameter measured at 130°C may increase from the orientation parameter measured at 25°C. Therefore, the smaller the difference between the orientation parameters at 25° C. and 130° C. and the closer the variation is to 0, the better the retention of the crystal structure at high temperatures and the smaller the shrinkage rate. It is particularly preferable that the change in the orientation parameter at 25° C. and 130° C. calculated by microscopic Raman spectroscopy is small, and the difference between fML and fMH (fML−fMH (7)) and the difference between fTL and fTH (fTL−fTH (8) are preferably 0.50 or less. It is more preferably 0.40, and more preferably 0.20 or less. The lower limit of the difference between fML and fMH (fML-fMH) and the difference between fTL and fTL (fTL-fTH) is -0.50 or more, preferably -0.20 or more, more preferably -0.10 or more, and 0 0.00 or more is more preferable. If the difference between fML and fMH (fML-fMH) and the difference between fTL and fTH (fTL-fTH) are both 0.50 or less, the relaxation of the crystal structure at 130° C. is suppressed and good shrinkage properties are obtained. When it is -0.50 or more, melting of the crystal structure is suppressed at high temperatures, and excellent strength can be obtained. The above range can be achieved by applying the raw materials, molecular weight, and manufacturing method within the ranges described later.
 配向パラメータfMH、fTH、fML、fTLが上記範囲を満たすことで、特に優れた強度と収縮特性が得られ、上記範囲は後述する原料設計や製法により制御が可能である。高温下における配向状態を維持した強い構造を形成するために、緩和時間が長い重量平均分子量が0.8×10以上のポリオレフィン樹脂を主原料とし、湿式逐次延伸で高度に配向した構造を形成し、洗浄乾燥後の乾式再延伸工程を高温で行う製膜が好ましい。上記観点から、ポリオレフィン微多孔膜の分子量分布において、緩和時間が長い分子量0.9×10以上の成分がポリオレフィン微多孔膜中に30質量%以上含まれ、緩和時間が短い分子量0.3×106以下の成分は50質量%未満の範囲で含まれていることが好ましい。これにより、高温下においても配向変化が少なく高度に配向した構造が得られ、高強度かつ高温下での低収縮率を両立した、高い安全性を有するポリオレフィン微多孔膜が得られる。 By satisfying the above ranges for the orientation parameters fMH, fTH, fML, and fTL, particularly excellent strength and shrinkage properties can be obtained, and the above ranges can be controlled by raw material design and manufacturing methods, which will be described later. In order to form a strong structure that maintains the oriented state at high temperature, polyolefin resin with a weight average molecular weight of 0.8 x 106 or more with a long relaxation time is used as the main raw material, and a highly oriented structure is formed by wet sequential stretching. However, it is preferable to form a film in which the dry re-stretching step after washing and drying is performed at a high temperature. From the above viewpoint, in the molecular weight distribution of the polyolefin microporous membrane, the polyolefin microporous membrane contains 30% by mass or more of a component with a molecular weight of 0.9 × 10 6 or more with a long relaxation time, and a molecular weight of 0.3 × with a short relaxation time. It is preferable that the component of 10 6 or less is contained in the range of less than 50% by mass. As a result, a highly oriented structure with little change in orientation even at high temperatures can be obtained, and a highly safe polyolefin microporous film having both high strength and low shrinkage at high temperatures can be obtained.
 本発明の実施形態にかかるポリオレフィン微多孔膜の空孔率は、透過性能および電解液含有量の観点から30%以上であることが好ましく、より好ましくは35%以上であり、さらに好ましくは40%以上である。空孔率が30%以上であると透過性、強度および電界液含有量のバランスが良くなり、電池反応の不均一性が解消される。その結果、デンドライトの発生が抑制され従来の電池性能を損ねることなく使用でき、二次電池用セパレータとして好適に用いることができる。また、空孔率を増加することで良好な出力特性が得られるが、突刺強度の低下や収縮率の増加等、電池の安全性が低下する。そのため空孔率は50%以下が好ましく、48%以下がより好ましい。 The porosity of the polyolefin microporous membrane according to the embodiment of the present invention is preferably 30% or more, more preferably 35% or more, and still more preferably 40% from the viewpoint of permeability and electrolyte content. That's it. When the porosity is 30% or more, the balance between permeability, strength and electrolyte content is improved, and non-uniformity in battery reaction is eliminated. As a result, the generation of dendrites is suppressed, and the separator can be used without impairing the performance of conventional batteries, and can be suitably used as a separator for secondary batteries. In addition, although good output characteristics can be obtained by increasing the porosity, the safety of the battery deteriorates, such as a decrease in puncture strength and an increase in shrinkage. Therefore, the porosity is preferably 50% or less, more preferably 48% or less.
 ポリオレフィン微多孔膜の突刺強度は電池内の異物による短絡抑制などの安全性に影響するため高いほど好ましい。膜厚を10μmに換算したポリオレフィン微多孔膜の突刺強度は、2.5N以上が好ましく、3.0N以上がより好ましく、4.0N以上がさらに好ましく、4.3N以上がよりさらに好ましく、5.0N以上が特に好ましい。また、突刺強度を樹脂量で規格化した、フィルムの強さを示す指標である単位目付当たりの突刺強度(目付換算突刺強度)は0.7N/(g/m)以上が好ましく、0.8N/(g/m)以上がより好ましく、0.9N/(g/m)以上が特に好ましい。突刺強度が上記範囲であると、異物等による短絡を抑制し良好な電池の安全性が得られる。突刺強度改善は結晶の配向制御に加えて、原料処方として超高分子量ポリオレフィンを主成分として用い、ラメラ晶をつなぐタイ分子数増加による高強度化の組み合わせが好ましい。また、熱固定工程等における溶融による空孔率低下抑制の観点から低分子量成分が少なく分子量分布がシャープである超高分子量ポリオレフィンを用いることが好ましい。突刺強度は前記fMH、fTH、fML、fTLを特定の範囲とし、後述する範囲の原料や分子量、樹脂濃度、延伸方式を採用することで達成できる。 The higher the puncture strength of the polyolefin microporous membrane, the better, because it affects the safety such as prevention of short-circuiting caused by foreign matter in the battery. The pin puncture strength of the polyolefin microporous membrane converted to a thickness of 10 μm is preferably 2.5 N or more, more preferably 3.0 N or more, still more preferably 4.0 N or more, and even more preferably 4.3 N or more. 0N or more is particularly preferable. In addition, the puncture strength per unit basis weight (converted puncture strength per basis weight), which is an index showing the strength of the film obtained by standardizing the puncture strength with the amount of resin, is preferably 0.7 N/(g/m 2 ) or more, and is preferably 0.7 N/(g/m 2 ) or more. 8 N/(g/m 2 ) or more is more preferable, and 0.9 N/(g/m 2 ) or more is particularly preferable. When the puncture strength is within the above range, short circuits due to foreign matter or the like are suppressed, and good battery safety is obtained. In order to improve the puncture strength, it is preferable to combine the use of ultra-high-molecular-weight polyolefin as the main component in the raw material formulation and the increase in the number of tie molecules that connect the lamellar crystals to increase the strength, in addition to controlling the orientation of the crystals. In addition, from the viewpoint of suppressing a decrease in porosity due to melting in a heat setting step or the like, it is preferable to use an ultrahigh molecular weight polyolefin having a small amount of low molecular weight components and a sharp molecular weight distribution. The puncture strength can be achieved by setting the aforementioned fMH, fTH, fML, and fTL in specific ranges and adopting the raw materials, molecular weight, resin concentration, and stretching method within the ranges described later.
 なお、膜厚を10μmと換算したときの突刺強度とは、膜厚T1(μm)のポリオレフィン微多孔膜において突刺強度がL1(N)であったとき、式:L2=(L1×10)/T1によって算出される突刺強度L2(N)のことを指し、目付換算突刺強度とは実測の突刺強度(L1)を目付G(g/m)で割った値であり、式:L1/Gにより算出される。 The puncture strength when the film thickness is converted to 10 μm is expressed by the formula: L2 = (L1 × 10)/ It refers to the piercing strength L2 (N) calculated by T1, and the weight-converted piercing strength is a value obtained by dividing the actually measured piercing strength (L1) by the weight G (g/m 2 ), and is expressed by the formula: L1/G. Calculated by
 異常発熱による電池の短絡抑制の観点から130℃/1hにおけるMD方向とTD方向の収縮率の合計は30%以下が好ましく、29%以下がより好ましく、28%以下がさらに好ましく、27%以下がよりさらに好ましく、25%以下が特に好ましい。また、アラミドやポリイミドなどの高耐熱コート層を付与する場合における130℃/1hにおけるMD方向とTD方向の収縮率の合計は、33%以下が好ましく、31%以下がより好ましく、30%以下がさらに好ましく、29%以下よりさらに好ましく、28%以下が特に好ましい。収縮率がこの範囲にある場合、電池内部温度の上昇時に寸法変化が少なく絶縁性を保つことができるため、内部短絡の拡大を防止して影響を最小限に抑えることができ高い安全性が得られる。なお、上記範囲は後述する範囲の原料や分子量、製法を適用することにより達成できる。 From the viewpoint of suppressing the short circuit of the battery due to abnormal heat generation, the total shrinkage rate in the MD direction and the TD direction at 130 ° C./1 h is preferably 30% or less, more preferably 29% or less, further preferably 28% or less, and 27% or less. Even more preferably, 25% or less is particularly preferable. Further, the total shrinkage ratio in the MD direction and the TD direction at 130 ° C./1 h when applying a high heat resistant coating layer such as aramid or polyimide is preferably 33% or less, more preferably 31% or less, and 30% or less. More preferably, 29% or less is even more preferable, and 28% or less is particularly preferable. If the shrinkage ratio is within this range, the battery's internal temperature will not change much, and the insulation will be maintained. be done. The above range can be achieved by applying the raw materials, molecular weight, and manufacturing method within the ranges described later.
 電池ではMD方向にテンションがかかっているため、MD方向の収縮率が高いと破膜し短絡につながる。そのため、本発明の実施形態にかかるポリオレフィン微多孔膜は、130℃/1hにおけるMD方向の収縮率が15%以下であることが好ましく、12%以下がより好ましく、11%以下がさらに好ましく、10%以下がよりさらに好ましい。MD方向の収縮率がこの範囲にある場合、電池内部温度上昇時に寸法変化が少なく絶縁性を保つことができ高い安全性が得られる。なお、上記範囲は後述する範囲の原料や分子量、製法を適用することにより達成できる。 Since the battery is under tension in the MD direction, if the shrinkage rate in the MD direction is high, the membrane will break and lead to a short circuit. Therefore, the polyolefin microporous membrane according to the embodiment of the present invention preferably has a shrinkage rate in the MD direction at 130° C./1 h of 15% or less, more preferably 12% or less, further preferably 11% or less. % or less is even more preferable. When the shrinkage ratio in the MD direction is within this range, the dimensional change is small when the internal temperature of the battery rises, and the insulation can be maintained, resulting in high safety. The above range can be achieved by applying the raw materials, molecular weight, and manufacturing method within the ranges described later.
 また、本発明の実施形態にかかるポリオレフィン微多孔膜は、130℃/1hおけるTD方向の収縮率が30%以下であることが好ましく、25%以下がより好ましく、20%以下がさらに好ましい。収縮率がこの範囲にある場合、高温時の形状安定性の悪化を抑制でき局所的に異常発熱した際に内部短絡を抑制し安全性を維持できる。上記熱収縮率は前記fMH、fTH、fML、fTLを特定の範囲とし、後述する原料や樹脂濃度、延伸方式を採用することで達成できる。なお、130℃/1hにおけるMD方向及びTD方向の収縮率は、実施例に記載の方法で測定できる。 In addition, the polyolefin microporous membrane according to the embodiment of the present invention preferably has a shrinkage rate in the TD direction at 130°C/1h of 30% or less, more preferably 25% or less, and even more preferably 20% or less. When the shrinkage ratio is within this range, deterioration of shape stability at high temperatures can be suppressed, and internal short-circuiting can be suppressed when abnormal heat is generated locally, thereby maintaining safety. The above heat shrinkage rate can be achieved by setting the fMH, fTH, fML, and fTL in specific ranges and adopting the raw materials, resin concentration, and stretching method described later. The shrinkage ratios in the MD direction and the TD direction at 130° C./1 h can be measured by the method described in Examples.
 本発明のポリオレフィン微多孔膜において、MD方向の引張破断強度(MD方向における引張破断強度。以下、単に「MD引張強度」とも記す。)は、電池捲回工程における破膜抑制や電池内の異物等による短絡防止の観点から、MD引張強度200MPa以上が好ましく、250MPa以上がより好ましく、280MPa以上がさらに好ましい。 In the polyolefin microporous membrane of the present invention, the tensile breaking strength in the MD direction (tensile breaking strength in the MD direction; hereinafter simply referred to as "MD tensile strength") is effective for suppressing film breakage in the battery winding process and removing foreign matter in the battery. From the viewpoint of short circuit prevention due to the like, the MD tensile strength is preferably 200 MPa or more, more preferably 250 MPa or more, and even more preferably 280 MPa or more.
 MD引張強度とのバランスの観点から、TD方向の引張破断強度(TD方向における引張破断強度。以下、単に「TD引張強度」とも記す)は、TD引張強度が100MPa以上であり、好ましくは160MPa以上、より好ましくは190MPa以上、さらに好ましくは200MPa以上である。TD引張強度が上記範囲内であると、MD引張強度とTD引張強度のバランスが良好となりフィルムの皺やたるみが抑制されるとともに、電池内の異物等によりフィルムが裂けることで生じる短絡を防ぎ安全性が改善される。上記引張強度は後述する原料や樹脂濃度、延伸方式を採用することで達成できる。 From the viewpoint of balance with the MD tensile strength, the tensile breaking strength in the TD direction (tensile breaking strength in the TD direction; hereinafter simply referred to as "TD tensile strength") is 100 MPa or more, preferably 160 MPa or more. , more preferably 190 MPa or more, still more preferably 200 MPa or more. When the TD tensile strength is within the above range, the balance between the MD tensile strength and the TD tensile strength is good, and wrinkles and sagging of the film are suppressed. improved sexuality. The above tensile strength can be achieved by adopting the raw materials, resin concentration, and stretching method, which will be described later.
 また、MD方向およびTD方向の引張(破断)伸度(以下、単に「MD伸度」「TD伸度」とも記す)は、50%以上が好ましく、60%以上がより好ましく、90%以上がさらに好ましく、120%以上がよりさらに好ましく、150%以上が特に好ましい。MD伸度またはTD伸度が50%以上であると、捲回時や電池内の異物などによる短絡を抑制し良好な安全性が得られるため好ましい。また、MD伸度およびTD伸度はいずれも200%以下が好ましく、170%以下がより好ましい。MD伸度およびTD伸度が200%以下であると強度と伸度を両立できる。なお、MD方向およびTD方向の引張強度及び引張伸度は、実施例に記載の方法により測定できる。 In addition, the tensile (breaking) elongation in the MD direction and the TD direction (hereinafter also simply referred to as "MD elongation" and "TD elongation") is preferably 50% or more, more preferably 60% or more, and 90% or more. More preferably, 120% or more is even more preferable, and 150% or more is particularly preferable. When the MD elongation or the TD elongation is 50% or more, short circuits due to foreign matter during winding or in the battery can be suppressed, and good safety can be obtained, which is preferable. Both MD elongation and TD elongation are preferably 200% or less, more preferably 170% or less. When the MD elongation and TD elongation are 200% or less, both strength and elongation can be achieved. The tensile strength and tensile elongation in the MD and TD directions can be measured by the method described in Examples.
 本発明の実施形態にかかるポリオレフィン微多孔膜において、透気度はJIS P 8117(2009)に準拠して測定した値をいう。本明細書では膜厚について特に記載がない限り、「透気度」という語句を「膜厚を10μmとしたときの透気度」の意味で用いる。膜厚T1(μm)のポリオレフィン微多孔膜において測定した透気度(ガーレー値)がp1(sec/100cm)であったとき、式:p2=(p1×10)/T1によって算出される透気度p2(sec/100cm)を、膜厚を10μmとしたときの透気度とする。 In the polyolefin microporous membrane according to the embodiment of the present invention, air permeability is a value measured according to JIS P 8117 (2009). In this specification, the term "air permeability" is used in the sense of "air permeability when the film thickness is 10 µm", unless otherwise specified for the film thickness. When the air permeability (Gurley value) measured in the polyolefin microporous membrane having a thickness of T1 (μm) is p1 (sec/100 cm 3 ), the permeability calculated by the formula: p2=(p1×10)/T1. Let the air permeability p2 (sec/100 cm 3 ) be the air permeability when the film thickness is 10 μm.
 透気度は200sec/100cm以下であることが好ましく、130sec/100cm以下であることがより好ましく、110sec/100cm以下であることがさらに好ましい。透気度が200sec/100cm以下であると良好なイオン透過性が得られ、電気抵抗を低下させることができる。 The air permeability is preferably 200 sec/100 cm 3 or less, more preferably 130 sec/100 cm 3 or less, even more preferably 110 sec/100 cm 3 or less. If the air permeability is 200 sec/100 cm 3 or less, good ion permeability can be obtained and electric resistance can be lowered.
 本発明の実施形態にかかるポリオレフィン微多孔膜は、膜厚の増加に伴い抵抗が増加し、電池の出力特性が低下する。電池の出力特性の観点から、膜厚が12μm以下であることが好ましく、10μm以下であることがより好ましく、5μm以下であることがさらに好ましい。膜厚が薄くなればなるほど強度が低下し安全性が低下するため、安全性の観点から、1μm以上であることが好ましく、3μm以上であることがより好ましい。 In the polyolefin microporous film according to the embodiment of the present invention, the resistance increases as the film thickness increases, and the output characteristics of the battery deteriorate. From the viewpoint of battery output characteristics, the film thickness is preferably 12 μm or less, more preferably 10 μm or less, and even more preferably 5 μm or less. The thinner the film, the lower the strength and the lower the safety. Therefore, from the viewpoint of safety, the thickness is preferably 1 μm or more, more preferably 3 μm or more.
 シャットダウン温度はポリオレフィン微多孔膜を昇温加熱した際に、樹脂部が収縮、融解し孔が閉鎖することで放電、充電を停止する温度であり、後述の方法にて測定される温度である。高エネルギー密度設計のリチウムイオン二次電池に使用される電極は熱安定性が低下する傾向にあるため、電池の短絡後、速やかにシャットダウン(孔閉塞)することが好ましい。本発明の実施形態にかかるポリオレフィン微多孔膜のシャットダウン温度は143℃以下である。好ましくは141℃以下であり、より好ましくは140℃以下であり、さらに好ましくは139℃以下である。本発明により得られる微多孔膜は耐短絡性に優れるとともに、上記シャットダウン温度を有することから、優れた電池安全性が得られる。シャットダウン温度を上記範囲とするには、微多孔膜の原料組成を後述する範囲とすることが好ましい。 The shutdown temperature is the temperature at which the resin part shrinks and melts and the pores close when the polyolefin microporous membrane is heated to stop discharging and charging, and is the temperature measured by the method described later. Since the electrodes used in lithium-ion secondary batteries designed for high energy density tend to have reduced thermal stability, it is preferable to shut down (hole clogging) quickly after the battery is short-circuited. The shutdown temperature of the polyolefin microporous membrane according to the embodiment of the present invention is 143° C. or less. It is preferably 141° C. or lower, more preferably 140° C. or lower, and still more preferably 139° C. or lower. The microporous membrane obtained by the present invention has excellent short-circuit resistance and has the shutdown temperature described above, so that excellent battery safety can be obtained. In order to set the shutdown temperature within the above range, it is preferable to set the raw material composition of the microporous membrane within the range described below.
 [2]ポリオレフィン樹脂
 本発明の実施形態にかかるポリオレフィン微多孔膜における樹脂原料は単一組成であってよく、主原料と副原料を組み合わせた組成物であってよく、2種以上のポリオレフィン樹脂からなるポリオレフィン樹脂混合物(ポリオレフィン樹脂組成物)であってもよい。ポリオレフィン微多孔膜における原料形態は、ポリオレフィン樹脂であることが好ましく、ポリオレフィン樹脂としては、例えばポリエチレン、ポリプロピレン等が挙げられ、単一組成であることがより好ましい。
[2] Polyolefin resin The resin raw material in the polyolefin microporous membrane according to the embodiment of the present invention may be a single composition, or may be a composition in which a main raw material and an auxiliary raw material are combined. It may be a polyolefin resin mixture (polyolefin resin composition). The raw material form of the polyolefin microporous membrane is preferably a polyolefin resin, and examples of the polyolefin resin include polyethylene and polypropylene, and more preferably a single composition.
 ポリオレフィン樹脂はエチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキセン等の単独重合体が好ましく、エチレンの単独重合体(ポリエチレン)が特に好ましい。ポリエチレンはエチレンの単独重合体と他のα-オレフィンを含有する共重合体であってもよい。 The polyolefin resin is preferably a homopolymer of ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, etc., and particularly preferably an ethylene homopolymer (polyethylene). Polyethylene may be a homopolymer of ethylene and a copolymer containing other α-olefins.
 他のα-オレフィンとしてはプロピレン、ブテン-1、ヘキセン-1、ペンテン-1、4-メチルペンテン-1、オクテン、またはそれ以上の炭素数を有するアルケン、酢酸ビニル、メタクリル酸メチル、スチレン等が挙げられる。 Other α-olefins include propylene, butene-1, hexene-1, pentene-1, 4-methylpentene-1, octene, alkenes having more carbon atoms, vinyl acetate, methyl methacrylate, styrene, and the like. mentioned.
 用いるポリオレフィン樹脂の種類としてはポリエチレンが好ましく、密度が0.94g/cmを越えるような高密度ポリエチレン、密度が0.93~0.94g/cmの範囲の中密度ポリエチレン、密度が0.93g/cmより低い低密度ポリエチレン、直鎖状低密度ポリエチレン等が挙げられる。 As the type of polyolefin resin to be used, polyethylene is preferable, and high-density polyethylene having a density exceeding 0.94 g/cm 3 , medium-density polyethylene having a density in the range of 0.93 to 0.94 g/cm 3 , and density of 0.94 g/cm 3 are used. Low density polyethylene lower than 93 g/cm 3 , linear low density polyethylene and the like are included.
 また、ポリオレフィン樹脂は膜強度と収縮バランスの観点から、超高分子量のポリオレフィンを単独または主成分として使用することが好ましく、超高分子量ポリオレフィンは重量平均分子量が8.0×10以上であり、9.0×10以上が好ましく、10×10以上がより好ましく、15×105以上が特に好ましく、成型加工性の観点から100×10以下が好ましい。なお、副原料は主原料により形成されるフィブリル構造や成型加工性を損ねない範囲で添加することが重要である。 In addition, from the viewpoint of film strength and shrinkage balance, it is preferable to use an ultra - high molecular weight polyolefin alone or as a main component of the polyolefin resin. It is preferably 9.0×10 5 or more, more preferably 10×10 5 or more, particularly preferably 15×10 5 or more, and preferably 100×10 5 or less from the viewpoint of moldability. In addition, it is important to add the auxiliary material within a range that does not impair the fibril structure formed by the main material and the moldability.
 重量平均分子量が8.0×10以上であれば、緩和時間が長いため高温下での結晶構造の保持性が改善され、溶融・収縮を抑制するとともに、高温下においても配向状態を維持した強い構造を有し、強度と収縮の両立が可能となり電池の安全性が向上する。また、重量平均分子量が9.0×105以上のポリオレフィン樹脂を用いることでタイ分子数が増加し高強度が得られやすい事に加え、延伸や熱固定工程におけるフィブリルの溶融を抑制し良好な出力特性が得られるとともに、樹脂の緩和速度を下げることで熱固定温度を上げることができ良好な収縮特性が得られ、トレードオフの関係にあるイオン抵抗、強度、収縮が改善される。 If the weight-average molecular weight is 8.0×10 5 or more, the relaxation time is long, so the retention of the crystal structure at high temperatures is improved, and the melting and shrinkage are suppressed, and the orientation state is maintained even at high temperatures. It has a strong structure and can achieve both strength and shrinkage, improving the safety of the battery. In addition, by using a polyolefin resin with a weight-average molecular weight of 9.0×10 5 or more, the number of tie molecules increases, making it easier to obtain high strength. In addition to obtaining good output characteristics, the heat setting temperature can be raised by lowering the relaxation rate of the resin, and good shrinkage characteristics can be obtained.
 上記観点からポリオレフィン微多孔膜の重量平均分子量(Mw)は8.0×10以上が好ましく、9.0×10以上がより好ましく、10×10以上がさらに好ましく、原料の分子量を維持していることが特に好ましい。高温下にける配向状態を維持した強い構造を形成するために、ポリオレフィン微多孔膜の分子量分布における緩和時間が長い9.0×10以上の成分がポリオレフィン微多孔膜中に30質量%以上含まれていることが好ましく、33質量%以上含まれていることがより好ましく、35質量%以上含まれていることさらに好ましく、38質量%以上がさらにより好ましく、40質量%以上がもっと好ましい。高温下での結晶構造の保持性や、延伸や熱固定工程における溶融抑制の観点から、分子量3.0×10以下の成分の含有量は50質量%未満が好ましく、45質量%以下がより好ましく、40質量%以下がさらに好ましく、35質量%以下がよりさらに好ましい。シャットダウン温度の低温下のためには、分子量3.0×10以下の成分の含有量は30質量%以上が好ましく、35質量%以上がより好ましく、40質量%以上がさらに好ましく、45質量%以上が特に好ましい。上記ポリオレフィン微多孔膜の分子量を得るために、前述の原料処方を後述する酸化防止剤の添加や窒素雰囲気下での混錬、および、酸化防止剤の添加と窒素雰囲気下での混錬の組み合わせで製膜を行う事が好ましい。 From the above viewpoint, the weight average molecular weight (Mw) of the polyolefin microporous membrane is preferably 8.0 × 10 5 or more, more preferably 9.0 × 10 5 or more, further preferably 10 × 10 5 or more, and maintains the molecular weight of the raw material. It is particularly preferred that In order to form a strong structure that maintains the orientation state at high temperatures, the polyolefin microporous membrane contains 30% by mass or more of a component with a molecular weight distribution of 9.0 × 10 5 or more that has a long relaxation time. It is preferably contained in an amount of 33% by mass or more, more preferably 35% by mass or more, even more preferably 38% by mass or more, and still more preferably 40% by mass or more. From the viewpoint of retention of the crystal structure at high temperatures and suppression of melting in the stretching and heat setting steps, the content of the component having a molecular weight of 3.0×10 5 or less is preferably less than 50% by mass, more preferably 45% by mass or less. It is preferably 40% by mass or less, more preferably 35% by mass or less. The content of components having a molecular weight of 3.0×10 5 or less is preferably 30% by mass or more, more preferably 35% by mass or more, even more preferably 40% by mass or more, further preferably 45% by mass, for lower shutdown temperatures. The above are particularly preferred. In order to obtain the molecular weight of the polyolefin microporous membrane, the above-described raw material formulation is added to the antioxidant and kneaded under a nitrogen atmosphere, and a combination of the addition of an antioxidant and kneading under a nitrogen atmosphere. It is preferable to form the film with.
 超高分子量ポリオレフィンの分子量分布(重量平均分子量(Mw)/数平均分子量(Mn))は3.0~100の範囲内であることが好ましい。分子量分布が狭いほど系が単一化され均一な微細孔が得られやすいため、分子量分布が狭いほど好ましいが、分布が狭くなるほど成形加工性が低下する。そのため、分子量分布の下限は好ましくは4.0以上、より好ましくは5.0以上、さらに好ましくは6.0以上である。分子量分布が増加すると低分子量成分が増加するため強度の低下や延伸・熱固定における微細なフィブリルの溶融・融着が起こりやすくなるため、上限は好ましくは80以下、より好ましくは50以下、さらに好ましくは20以下、特に好ましくは10以下である。上記範囲とすることで、良好な成形加工性が得られるとともに、系が単一化されるため均一な微細孔が得られる。 The molecular weight distribution (weight average molecular weight (Mw)/number average molecular weight (Mn)) of the ultrahigh molecular weight polyolefin is preferably within the range of 3.0-100. The narrower the molecular weight distribution, the more uniform the system and the easier it is to obtain uniform micropores. Therefore, the lower limit of the molecular weight distribution is preferably 4.0 or higher, more preferably 5.0 or higher, and even more preferably 6.0 or higher. As the molecular weight distribution increases, the amount of low-molecular-weight components increases, resulting in a decrease in strength and the melting and fusion of fine fibrils during stretching and heat setting. is 20 or less, particularly preferably 10 or less. By setting the amount within the above range, good moldability can be obtained, and since the system is unified, uniform micropores can be obtained.
 本発明の実施形態にかかるポリオレフィン微多孔膜の製造工程においては、成形加工性を向上させる目的で可塑剤を添加することが好ましい。ポリオレフィン樹脂と可塑剤との配合割合は成形加工性を損ねない範囲で適宜調整してよいが、ポリオレフィン樹脂と可塑剤の合計を100質量%として、ポリオレフィン樹脂の割合が10~50質量%であることが好ましい。ポリオレフィン樹脂の割合が10質量%以上(可塑剤の割合が90質量%以下)であると、シート状に成形する際に、口金の出口でスウエルやネックインを抑制でき、シートの成形性および製膜性が向上し、ポリオレフィン樹脂の割合が50質量%以下(可塑剤の割合が50質量%以上)では製膜工程の圧力上昇を抑制でき良好な成形加工性が得られる。ポリオレフィン樹脂と可塑剤との合計を100質量%としたときのポリオレフィン樹脂の割合は10質量%以上が好ましく、20質量%以上がより好ましい。 In the manufacturing process of the polyolefin microporous membrane according to the embodiment of the present invention, it is preferable to add a plasticizer for the purpose of improving moldability. The blending ratio of the polyolefin resin and the plasticizer may be appropriately adjusted within a range that does not impair the molding processability. is preferred. When the proportion of the polyolefin resin is 10% by mass or more (the proportion of the plasticizer is 90% by mass or less), it is possible to suppress swelling and neck-in at the outlet of the die when forming a sheet, thereby improving the moldability and the manufacturability of the sheet. The film properties are improved, and when the proportion of the polyolefin resin is 50% by mass or less (the proportion of the plasticizer is 50% by mass or more), the pressure rise in the film forming process can be suppressed, and good moldability can be obtained. The ratio of the polyolefin resin is preferably 10% by mass or more, more preferably 20% by mass or more, when the total of the polyolefin resin and the plasticizer is 100% by mass.
 重量平均分子量(Mw)が90万以上のポリオレフィン樹脂を主成分または単独で用いる場合、製膜工程の圧力や延伸応力の観点からポリオレフィン樹脂の割合は、ポリオレフィン樹脂と可塑剤との合計を100質量%として、35質量%以下が好ましく、30質量%以下がより好ましく、28.5質量%未満がさらに好ましく、25質量%未満がもっと好ましい。 When a polyolefin resin having a weight-average molecular weight (Mw) of 900,000 or more is used as a main component or alone, the ratio of the polyolefin resin from the viewpoint of the pressure and stretching stress in the film forming process is 100 mass of the total of the polyolefin resin and the plasticizer. % is preferably 35% by mass or less, more preferably 30% by mass or less, still more preferably less than 28.5% by mass, and even more preferably less than 25% by mass.
 超高分子量ポリエチレンとは別に本発明の実施形態に用いられる高密度ポリエチレンの、高温ゲルパーミエーションクロマトグラフィー(GPC)測定などで得られる重量平均分子量(Mw)は1×10以下が好ましい。Mwが上記範囲内であると、超高分子量ポリエチレンが形成する構造を阻害しにくく、低融点の結晶形成や溶融時収縮力の低減が可能となりやすい。これにより、機械強度や収縮、シャットダウン特性の両立が可能となる。 The weight-average molecular weight (Mw) obtained by high-temperature gel permeation chromatography (GPC) measurement or the like of the high-density polyethylene used in the embodiment of the present invention, apart from the ultra-high molecular weight polyethylene, is preferably 1×10 5 or less. When Mw is within the above range, the structure formed by the ultra-high molecular weight polyethylene is less likely to be disturbed, and low-melting crystal formation and reduction in shrinkage force during melting are likely to be possible. This makes it possible to achieve both mechanical strength, shrinkage, and shutdown characteristics.
 本発明の実施形態に用いられる高密度ポリエチレンの、示差走査熱量計(DSC)から得られる融点(℃)は132℃以下が好ましい。また、高密度ポリエチレンの融点は127℃以上がより好ましく、130℃以上がさらに好ましく、131℃以上が特に好ましい。高密度ポリエチレンの融点が上記範囲内であると、延伸前構造の融点を適切な範囲で低融点化可能であり、ポリオレフィン微多孔膜にした際、超高分子量ポリエチレンが形成する構造を阻害しにくく、低融点の結晶形成が可能となりやすい。これにより、ポリオレフィン微多孔膜のシャットダウン特性の向上が可能となる。 The melting point (°C) obtained from a differential scanning calorimeter (DSC) of the high-density polyethylene used in the embodiment of the present invention is preferably 132°C or less. Further, the melting point of high-density polyethylene is more preferably 127° C. or higher, more preferably 130° C. or higher, and particularly preferably 131° C. or higher. When the melting point of the high-density polyethylene is within the above range, the melting point of the structure before stretching can be lowered in an appropriate range, and when it is made into a polyolefin microporous membrane, the structure formed by the ultra-high molecular weight polyethylene is hardly hindered. , the formation of low-melting-point crystals is likely to be possible. This makes it possible to improve the shutdown characteristics of the polyolefin microporous membrane.
 本発明の実施形態に用いられる低分子量ポリエチレンは、示差走査熱量計(DSC)から得られる融解熱量ΔH(J/g)が200J/g以上であることが好ましく、210J/g以上がより好ましく、220J/g以上がさらに好ましい。ΔHの上限は特に限定されないが、ポリエチレンの特性上、典型的には260J/g以下である。ΔHが上記範囲内であると、ポリオレフィン微多孔膜中の結晶量を過剰に低下させることなく、低融点の結晶形成が可能となりやすい。これにより、シャットダウン特性と透過性の両立が可能となる。 The low molecular weight polyethylene used in the embodiment of the present invention preferably has a heat of fusion ΔH (J / g) obtained from a differential scanning calorimeter (DSC) of 200 J / g or more, more preferably 210 J / g or more, 220 J/g or more is more preferable. Although the upper limit of ΔH is not particularly limited, it is typically 260 J/g or less due to the properties of polyethylene. When ΔH is within the above range, low-melting-point crystals can easily be formed without excessively reducing the amount of crystals in the polyolefin microporous membrane. This makes it possible to achieve both shutdown characteristics and transparency.
 その他、本発明の実施形態にかかるポリオレフィン微多孔膜には、本発明の効果を損なわない範囲において、酸化防止剤、熱安定剤や帯電防止剤、紫外線吸収剤、さらにはブロッキング防止剤や充填材等の各種添加剤を含有させてもよい。特に、ポリオレフィン樹脂の熱履歴による酸化劣化を抑制する目的で、酸化防止剤を添加することが好ましい。 In addition, the polyolefin microporous membrane according to the embodiment of the present invention may contain an antioxidant, a heat stabilizer, an antistatic agent, an ultraviolet absorber, an antiblocking agent, and a filler within the range that does not impair the effects of the present invention. You may contain various additives, such as. In particular, it is preferable to add an antioxidant for the purpose of suppressing oxidative deterioration due to heat history of the polyolefin resin.
 酸化防止剤としては、例えば、2,6-ジ-t-ブチル-p-クレゾール(BHT:分子量220.4)、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン(例えば、BASF社製“Irganox”(登録商標)1330:分子量775.2)、テトラキス[メチレン-3(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン(例えば、BASF社製“Irganox”(登録商標)1010:分子量1177.7)等から選ばれる1種類以上を用いることが好ましい。 Examples of antioxidants include 2,6-di-t-butyl-p-cresol (BHT: molecular weight 220.4), 1,3,5-trimethyl-2,4,6-tris(3,5- di-t-butyl-4-hydroxybenzyl)benzene (for example, BASF "Irganox" (registered trademark) 1330: molecular weight 775.2), tetrakis[methylene-3(3,5-di-t-butyl-4 -Hydroxyphenyl)propionate]methane (for example, "Irganox" (registered trademark) 1010 manufactured by BASF, molecular weight 1177.7) and the like are preferably used.
 酸化防止剤や熱安定剤の種類および添加量を適宜選択することでポリオレフィン微多孔膜の特性の調整又は増強ができる。 JIS K7210-1(2014)に記載される手法により測定される後述するゲル状シートのMFRが増加しない添加量とすることが好ましく、酸化防止剤の添加量は樹脂量に対して0.5質量%以上が好ましく、0.7質量%以上がより好ましく、1.0質量%以上がさらに好ましく、1.2質量%以上がよりさらに好ましく、1.5質量%以上がもっと好ましい。
目ヤニやスジなどの製膜性の観点から、上限としては3.0質量%以下であり、酸化防止剤の添加と窒素雰囲気下における混錬の組み合わせにより酸化劣化を抑制することが特に好ましい。
The characteristics of the polyolefin microporous membrane can be adjusted or enhanced by appropriately selecting the type and amount of antioxidant and heat stabilizer to be added. It is preferable that the amount added does not increase the MFR of the gel-like sheet described later, which is measured by the method described in JIS K7210-1 (2014), and the amount of antioxidant added is 0.5 mass with respect to the resin amount. % or more is preferable, 0.7 mass % or more is more preferable, 1.0 mass % or more is still more preferable, 1.2 mass % or more is still more preferable, and 1.5 mass % or more is more preferable.
The upper limit is 3.0% by mass or less from the viewpoint of film-forming properties such as drool and streaks, and it is particularly preferable to suppress oxidative deterioration by combining the addition of an antioxidant and kneading in a nitrogen atmosphere.
 また、本発明の実施形態にかかるポリオレフィン微多孔膜の層構成は単層でも積層でもよく、物性バランスの観点から積層が好ましい。上述したポリオレフィン樹脂からなる処方の層を積層して用いる場合、上記層をトータル膜厚中に50質量%以上含有していることが好ましい。 In addition, the layer structure of the polyolefin microporous membrane according to the embodiment of the present invention may be a single layer or a laminate, and a laminate is preferable from the viewpoint of physical property balance. In the case of laminating the layers of the above-described polyolefin resin prescription, it is preferable that the above layers are contained in the total film thickness in an amount of 50% by mass or more.
 [3]ポリオレフィン微多孔膜の製造方法
 次に、本発明の実施形態にかかるポリオレフィン微多孔膜の製造方法を具体的に説明する。本発明の実施形態にかかるポリオレフィン微多孔膜の製造方法は、以下の(a)~(e)の工程を有することが好ましい。
[3] Method for Producing Microporous Polyolefin Film Next, a method for producing a microporous polyolefin film according to an embodiment of the present invention will be specifically described. A method for producing a polyolefin microporous membrane according to an embodiment of the present invention preferably includes the following steps (a) to (e).
 (a)1種又は2種以上のポリオレフィン樹脂と、必要に応じて溶媒とを含むポリマー材料を溶融混練し、ポリオレフィン樹脂溶液を調製する工程
 (b)得られた溶融混合物を押出し、シート状に成型して冷却固化する工程
 (c)得られたシートを、ロール方式またはテンター方式を含む逐次延伸方法により延伸する工程
 (d)その後、得られた延伸フィルムから可塑剤を抽出しフィルムを乾燥する工程
 (e)ロール方式またはテンター方式を含む延伸方工方式により熱処理/再延伸を行う工程。
(a) a step of melt-kneading a polymer material containing one or more polyolefin resins and optionally a solvent to prepare a polyolefin resin solution; (b) extruding the obtained molten mixture into a sheet; (c) stretching the obtained sheet by a sequential stretching method including a roll method or a tenter method; (d) extracting a plasticizer from the obtained stretched film and drying the film; Step (e) A step of heat-treating/re-stretching by a stretching method including a roll method or a tenter method.
 特に、(a)工程では分子量の低下を防止する目的で後述する添加量の酸化防止剤の添加や窒素雰囲気下にて混錬し、(c)縦方向と横方向の湿式逐次延伸を行い、(e)工程はテンター方式により130℃以上の温度で熱処理/再延伸を実施することが特に好ましい。 In particular, in the step (a), for the purpose of preventing a decrease in molecular weight, an antioxidant is added in an amount to be described later and kneaded in a nitrogen atmosphere, and (c) wet sequential stretching is performed in the longitudinal direction and the lateral direction, In the step (e), it is particularly preferable to carry out heat treatment/restretching at a temperature of 130° C. or higher by a tenter method.
 以下、各工程について説明する。 Each step will be explained below.
 (a)ポリオレフィン樹脂溶液の調製工程
 上記ポリマー材料を、可塑剤に加熱溶解させ、ポリオレフィン樹脂溶液を調製する。可塑剤としては、ポリオレフィン樹脂を十分に溶解できる溶剤であれば特に限定されないが、比較的高倍率の延伸を可能とするため、溶剤は室温で液体であることが好ましい。
(a) Step of preparing polyolefin resin solution The polymer material is heated and dissolved in a plasticizer to prepare a polyolefin resin solution. The plasticizer is not particularly limited as long as it is a solvent capable of sufficiently dissolving the polyolefin resin, but the solvent is preferably liquid at room temperature in order to enable stretching at a relatively high magnification.
 溶剤としては、ノナン、デカン、デカリン、パラキシレン、ウンデカン、ドデカン、流動パラフィン等の脂肪族、環式脂肪族又は芳香族の炭化水素、および沸点がこれらに対応する鉱油留分、並びにジブチルフタレート、ジオクチルフタレート等の室温では液状のフタル酸エステルが挙げられる。 Solvents include aliphatic, cycloaliphatic or aromatic hydrocarbons such as nonane, decane, decalin, paraxylene, undecane, dodecane, liquid paraffin, mineral oil fractions with boiling points corresponding to these, and dibutyl phthalate, Phthalic acid esters that are liquid at room temperature, such as dioctyl phthalate, can be mentioned.
 液体溶剤としては、安定なゲル状シートを得るために、流動パラフィンのような不揮発性の液体溶剤を用いるのが好ましい。 As the liquid solvent, it is preferable to use a non-volatile liquid solvent such as liquid paraffin in order to obtain a stable gel-like sheet.
 溶融混練状態では、ポリオレフィン樹脂と混和するが、室温では固体の溶剤を液体溶剤に混合してもよい。このような固体溶剤として、ステアリルアルコール、セリルアルコール、パラフィンワックス等が挙げられる。ただし、固体溶剤のみを使用すると、延伸ムラ等が発生する恐れがある。 In the melt-kneaded state, it is mixed with the polyolefin resin, but the solvent that is solid at room temperature may be mixed with the liquid solvent. Examples of such solid solvents include stearyl alcohol, ceryl alcohol, paraffin wax, and the like. However, if only a solid solvent is used, there is a possibility that stretching unevenness or the like may occur.
 液体溶剤の粘度は40℃において20~200cStであることが好ましい。40℃における粘度を20cSt以上とすれば、ダイからポリオレフィン樹脂溶液を押し出したシートが不均一になりにくい。一方、40℃における粘度を200cSt以下とすれば液体溶剤の除去が容易である。なお、液体溶剤の粘度は、ウベローデ粘度計を用いて40℃で測定した粘度である。 The viscosity of the liquid solvent is preferably 20-200 cSt at 40°C. If the viscosity at 40° C. is 20 cSt or more, the sheet obtained by extruding the polyolefin resin solution from the die is less likely to be uneven. On the other hand, if the viscosity at 40° C. is 200 cSt or less, the liquid solvent can be easily removed. The viscosity of the liquid solvent is measured at 40° C. using an Ubbelohde viscometer.
 (b)押出物の形成およびゲル状シートの形成
 ポリオレフィン樹脂溶液の均一な溶融混練方法は、特に限定されないが、高濃度のポリオレフィン樹脂溶液を調製したい場合、二軸押出機中で行うことが好ましい。必要に応じて、ステアリン酸カルシウム等の金属石鹸類、紫外線吸収剤、光安定剤、帯電防止剤など公知の添加剤も、製膜性を損なうことなく、本発明の効果を損なわない範囲で添加してもよい。特にポリオレフィン樹脂の酸化を防止するために酸化防止剤を添加することが好ましい。
(b) Formation of extrudate and formation of gel-like sheet The method for uniform melt-kneading of the polyolefin resin solution is not particularly limited, but when it is desired to prepare a high-concentration polyolefin resin solution, it is preferably carried out in a twin-screw extruder. . If necessary, known additives such as metallic soaps such as calcium stearate, ultraviolet absorbers, light stabilizers, antistatic agents, etc., may be added to the extent that the effects of the present invention are not impaired without impairing the film formability. may In particular, it is preferable to add an antioxidant to prevent oxidation of the polyolefin resin.
 押出機中では、ポリオレフィン樹脂が完全に溶融する温度で、ポリオレフィン樹脂溶液を均一に混合する。溶融混練温度は、使用するポリオレフィン樹脂によってことなるが、(ポリオレフィン樹脂の融点+10℃)~(ポリオレフィン樹脂の融点+120℃)とするのが好ましい。さらに好ましくは(ポリオレフィン樹脂の融点+20℃)~(ポリオレフィン樹脂の融点+100℃)である。 In the extruder, the polyolefin resin solution is uniformly mixed at a temperature at which the polyolefin resin is completely melted. The melt-kneading temperature varies depending on the polyolefin resin used, but is preferably from (the melting point of the polyolefin resin +10° C.) to (the melting point of the polyolefin resin +120° C.). More preferably, it is (melting point of polyolefin resin +20° C.) to (melting point of polyolefin resin +100° C.).
 ここで、融点とは、JIS K7121(1987)に基づき、DSC(Differential scanning calorimetry)により測定した値をいう(以下、同じ)。例えば、ポリオレフィン系樹脂がポリエチレンの場合、ポリエチレン系樹脂の溶融混練温度は140~250℃の範囲が好ましい。より好ましくは150~230℃であり、特に好ましくは150~200℃である。具体的には、ポリエチレン組成物は約130~140℃の融点を有するため溶融混練温度は140~250℃が好ましい。 Here, the melting point refers to a value measured by DSC (Differential scanning calorimetry) based on JIS K7121 (1987) (hereinafter the same). For example, when the polyolefin-based resin is polyethylene, the melt-kneading temperature of the polyethylene-based resin is preferably in the range of 140 to 250°C. It is more preferably 150 to 230°C, particularly preferably 150 to 200°C. Specifically, since the polyethylene composition has a melting point of about 130 to 140°C, the melt-kneading temperature is preferably 140 to 250°C.
 ポリオレフィン樹脂の劣化を抑制する観点から溶融混練温度は低い方が好ましいが、上述の温度よりも低いとダイから押出された押出物に未溶融物が発生し、後の延伸工程で破膜等を引き起こす原因となる場合がある。また、上述の温度より高いと、ポリオレフィン樹脂の熱分解が激しくなり、得られるポリオレフィン微多孔膜の物性、例えば、強度や空孔率等が悪化する場合がある。また、分解物がチルロールや延伸工程上のロール等に析出し、シートに付着することで外観悪化につながる。そのため、溶融混練温度は上記範囲内で混練することが好ましい。また、二軸押出機のスクリュー回転数 Ns(rpm)に対するポリオレフィン溶液の押出量Q(kg/h)の比であるQ/Nsの値が小さいほど樹脂の混練性が増すため均一な溶液が得られる。しかし、Q/Nsの低下は、せん断発熱が大きく樹脂の劣化が促進され、上述した範囲のフィルム中の分子量成分が得られない。ブリードアウトした可塑剤に低分子量成分が蓄積され、シートに付着することで外観が悪化する。Q/Nsの値が大きいと樹脂の劣化が抑制されるが混練性が足りず、均一な溶液が得られなくなる。そのためQ/Nsは使用する樹脂の分子量や溶解性に合わせて適宜変更するとともに、酸化防止剤の添加や窒素雰囲気下における混錬の組み合わせにより酸化劣化を抑制することが特に好ましい。 From the viewpoint of suppressing deterioration of the polyolefin resin, a lower melt-kneading temperature is preferable, but if the temperature is lower than the above-mentioned temperature, unmelted substances are generated in the extrudate extruded from the die, and film breakage etc. occur in the subsequent stretching process. may cause it. On the other hand, if the temperature is higher than the above temperature, thermal decomposition of the polyolefin resin becomes violent, and the physical properties of the obtained polyolefin microporous membrane, such as strength and porosity, may deteriorate. In addition, the decomposition products are deposited on chill rolls, rolls in the stretching process, etc., and adhere to the sheet, leading to deterioration of the appearance. Therefore, the melt-kneading temperature is preferably kneaded within the above range. In addition, the smaller the value of Q/Ns, which is the ratio of the extrusion rate Q (kg/h) of the polyolefin solution to the screw rotation speed Ns (rpm) of the twin-screw extruder, the kneadability of the resin increases, and a uniform solution can be obtained. be done. However, a decrease in Q/Ns causes a large amount of shear heat generation, which promotes deterioration of the resin and makes it impossible to obtain the molecular weight component in the film within the range described above. Low-molecular-weight components accumulate in the bleeding-out plasticizer and adhere to the sheet, thereby deteriorating the appearance. When the value of Q/Ns is large, deterioration of the resin is suppressed, but the kneadability is insufficient and a uniform solution cannot be obtained. Therefore, it is particularly preferable to appropriately change Q/Ns in accordance with the molecular weight and solubility of the resin to be used, and to suppress oxidative deterioration by a combination of adding an antioxidant and kneading in a nitrogen atmosphere.
 次に、得られた押出物を冷却することによりゲル状シートが得られ、冷却により、溶剤によって分離されたポリオレフィン樹脂のミクロ相を固定化することができる。冷却工程においてゲル状シートを10~50℃まで冷却するのが好ましい。これは、最終冷却温度を結晶化終了温度以下とするためで、高次構造を細かくすることで、その後の延伸において均一延伸が行いやすくなる。そのため、冷却は少なくともゲル化温度以下までは30℃/分以上の速度で行うのが好ましい。 Next, the obtained extrudate is cooled to obtain a gel-like sheet, and the cooling can fix the microphase of the polyolefin resin separated by the solvent. It is preferable to cool the gel-like sheet to 10 to 50° C. in the cooling step. This is because the final cooling temperature is set to the crystallization finish temperature or lower, and by making the higher-order structure finer, it becomes easier to perform uniform stretching in subsequent stretching. Therefore, it is preferable to cool at least at a rate of 30° C./min or more until the gelling temperature or lower.
 一般に冷却速度が遅いと、比較的大きな結晶が形成されるためゲル状シートの高次構造が粗くなり、それを形成するゲル構造も大きなものとなる。対して冷却速度が速いと、小さく均一な結晶が形成されるため、ゲル状シートの高次構造が密となり均一な延伸が可能となる。 In general, when the cooling rate is slow, relatively large crystals are formed, so the higher-order structure of the gel-like sheet becomes coarser, and the gel structure that forms it also becomes larger. On the other hand, when the cooling rate is high, small and uniform crystals are formed, so that the high-order structure of the gel-like sheet becomes dense and uniform stretching becomes possible.
 冷却方法としては、冷風、冷却水、その他の冷却媒体に直接接触させる方法、冷媒で冷却したロールに接触させる方法、キャスティングドラム等を用いる方法等がある。 Cooling methods include direct contact with cold air, cooling water, and other cooling media, contact with rolls cooled with a refrigerant, and the use of casting drums.
 これまでポリオレフィン微多孔膜が単層の場合を説明してきたが、本発明の実施形態にかかるポリオレフィン微多孔膜は、単層に限定されるものではなく、積層体にしてもよい。積層数は特に限定は無く、2層積層であっても3層以上の積層であってもよい。積層部分は、上述したポリオレフィン樹脂の他に、本発明の効果を損なわない程度にそれぞれ所望の樹脂を含んでもよい。 Although the case where the polyolefin microporous membrane is a single layer has been explained so far, the polyolefin microporous membrane according to the embodiment of the present invention is not limited to a single layer, and may be a laminate. The number of layers to be laminated is not particularly limited, and may be a two-layer lamination or a lamination of three or more layers. In addition to the polyolefin resin described above, the laminated portion may contain any desired resin to the extent that the effect of the present invention is not impaired.
 ポリオレフィン微多孔膜を積層体とする方法としては、従来の方法を用いることができる。例えば、所望の樹脂を必要に応じて調製し、これらの樹脂を別々に押出機に供給して所望の温度で溶融させ、ポリマー管あるいはダイ内で合流させて、目的とするそれぞれの積層の厚みでスリット状ダイから押出しを行う等して、積層体を形成する方法がある。 A conventional method can be used as a method of forming a polyolefin microporous membrane into a laminate. For example, the desired resins may be prepared as desired, fed separately to an extruder, melted at the desired temperature, and combined in a polymer tube or die to achieve the desired thickness of each laminate. There is a method of forming a laminate by, for example, extruding from a slit-shaped die.
 (c)延伸工程
 得られたゲル状(積層シートを含む)シートを延伸する。用いられる延伸方法としては、圧延やロール延伸機によるシート搬送方向(MD方向)への一軸延伸、テンターによるシート幅方向(TD方向)への一軸延伸、ロール延伸機とテンター、或いはテンターとテンターとの組み合わせによる逐次二軸延伸や同時二軸テンターによる同時二軸延伸等が挙げられるが、MD方向とTD方向の配向制御の観点から逐次二軸延伸工程が好ましい。
(c) Stretching Step The resulting gel-like (including laminated sheet) sheet is stretched. The stretching method used includes uniaxial stretching in the sheet conveying direction (MD direction) by rolling or a roll stretching machine, uniaxial stretching in the sheet width direction (TD direction) by a tenter, roll stretching machine and tenter, or tenter and tenter. and simultaneous biaxial stretching using a simultaneous biaxial tenter, etc., but the sequential biaxial stretching step is preferred from the viewpoint of orientation control in the MD direction and the TD direction.
 fMLH、fTLHの観点からロール延伸機によるシート搬送方向(MD方向)への一軸延伸は、延伸ロールとニップロール間で0.1MPa以上の圧力をかけることが好ましい。上記範囲で製膜することにより、結晶分子鎖をより配向させることができる。延伸ロールとニップロール間の圧力が0.1MPa未満で製膜すると、ロール上での滑りが発生し、延伸応力がかかりにくくなってしまい十分に結晶分子鎖の配向をすることができない場合がある。 From the viewpoint of fMLH and fTLH, it is preferable to apply a pressure of 0.1 MPa or more between the stretching rolls and the nip rolls in the uniaxial stretching in the sheet conveying direction (MD direction) by the roll stretching machine. By forming the film within the above range, the crystal molecular chains can be more oriented. If the pressure between the stretching rolls and the nip rolls is less than 0.1 MPa, slippage occurs on the rolls, making it difficult to apply stretching stress, and the crystal molecular chains may not be sufficiently oriented.
 ゲル状シートの延伸倍率はMD方向とTD方向の配向パラメータを損ねない範囲で適宜調整してよいが、いずれの方向でも5倍以上に延伸することが好ましく、配向制御の観点からMD方向とTD方向ともに6倍以上がより好ましく、高温下での結晶構造保持性の観点からMD方向の延伸倍率は7倍以上が好ましく、面積倍率は40倍以上が好ましく、より好ましくは45倍以上、さらに好ましくは50倍以上である。 The stretching ratio of the gel-like sheet may be appropriately adjusted within a range that does not impair the orientation parameters in the MD direction and the TD direction. It is more preferably 6 times or more in both directions, and from the viewpoint of maintaining the crystal structure at high temperatures, the stretching ratio in the MD direction is preferably 7 times or more, and the area ratio is preferably 40 times or more, more preferably 45 times or more, and still more preferably. is more than 50 times.
 延伸温度はゲル状シートの融点+10℃以下にすることが好ましく、(ポリオレフィン樹脂の結晶分散温度Tcd)~(ゲル状シートの融点+5℃)の範囲にするのがより好ましい。具体的には、ポリエチレン組成物の場合は約90~110℃の結晶分散温度を有するので、延伸温度は好ましくは100~130℃であり、より好ましくは110~120℃である。結晶分散温度TcdはASTM D 4065(2012)に従って測定した動的粘弾性の温度特性から求める。前記上限を超えると分子の緩和が促進されるため延伸によって十分に分子鎖を配向させることができない。延伸温度が上記範囲内である場合、ポリオレフィン樹脂の延伸による破膜が抑制され、高倍率の延伸を可能にしながら、結晶分子鎖をより配向させることができる。 The stretching temperature is preferably the melting point of the gel sheet + 10°C or less, more preferably in the range of (the crystal dispersion temperature Tcd of the polyolefin resin) to (the melting point of the gel sheet + 5°C). Specifically, since the polyethylene composition has a crystal dispersion temperature of about 90 to 110°C, the stretching temperature is preferably 100 to 130°C, more preferably 110 to 120°C. The crystal dispersion temperature Tcd is obtained from the temperature characteristics of dynamic viscoelasticity measured according to ASTM D 4065 (2012). If the above upper limit is exceeded, the relaxation of the molecules is accelerated, and the molecular chains cannot be sufficiently oriented by stretching. When the stretching temperature is within the above range, film breakage due to stretching of the polyolefin resin is suppressed, and crystal molecular chains can be more oriented while allowing stretching at a high magnification.
 以上のような延伸によりゲルシートの高次構造の開裂が起こり、結晶相が微細化し延伸方向に配向したフィブリル構造が形成されることで、高温下においても結晶構造の保持性に優れ、配向状態を維持した構造を形成し優れた強度と高温収縮耐性を両立した微多孔膜が得られる。そのため本発明の実施形態にかかるポリオレフィン微多孔膜が電池用セパレータに好適となり、本願のポリオレフィン微多孔膜は従来技術に比べ高い電池の安全性改善が可能となる。 As described above, the higher-order structure of the gel sheet is cleaved by stretching, and the crystal phase is refined to form a fibril structure oriented in the stretching direction. It is possible to obtain a microporous membrane that maintains a structure and has both excellent strength and high-temperature shrinkage resistance. Therefore, the polyolefin microporous membranes according to the embodiments of the present invention are suitable for battery separators, and the polyolefin microporous membranes of the present application can greatly improve the safety of batteries compared to the conventional technology.
 (d)可塑剤抽出(洗浄)・乾燥工程
 次に、ゲル状シート中に残留する可塑剤(溶剤)を、洗浄溶剤を用いて除去する。ポリオレフィン樹脂相と溶媒相とは分離しているため、溶剤を除去することによりポリオレフィン微多孔膜が得られる。
(d) Plasticizer Extraction (Washing)/Drying Step Next, the plasticizer (solvent) remaining in the gel sheet is removed using a washing solvent. Since the polyolefin resin phase and the solvent phase are separated, the polyolefin microporous membrane can be obtained by removing the solvent.
 洗浄溶剤としては、例えばペンタン、ヘキサン、ヘプタン等の飽和炭化水素、塩化メチレン、四塩化炭素等の塩素化炭化水素、ジエチルエーテル、ジオキサン等のエーテル類、メチルエチルケトン等のケトン類、三フッ化エタン等の鎖状フルオロカーボン等が挙げられる。 Examples of washing solvents include saturated hydrocarbons such as pentane, hexane and heptane; chlorinated hydrocarbons such as methylene chloride and carbon tetrachloride; ethers such as diethyl ether and dioxane; ketones such as methyl ethyl ketone; and chain fluorocarbons.
 これらの洗浄溶剤は低い表面張力(例えば、25℃で24mN/m以下)を有する。低い表面張力の洗浄溶剤を用いることにより、微多孔を形成する網状構造が洗浄後の乾燥時に気-液界面の表面張力による収縮が抑制され、空孔率および透過性に優れたポリオレフィン微多孔膜が得られる。これらの洗浄溶剤は可塑剤に応じて適宜選択し、単独または混合して用いる。 These cleaning solvents have a low surface tension (for example, 24 mN/m or less at 25°C). By using a cleaning solvent with low surface tension, the network structure that forms the micropores is suppressed from shrinking due to the surface tension of the air-liquid interface during drying after cleaning, resulting in a polyolefin microporous membrane with excellent porosity and permeability. is obtained. These cleaning solvents are appropriately selected according to the plasticizer and used alone or in combination.
 洗浄方法は、ゲル状シートを洗浄溶剤に浸漬し抽出する方法、ゲル状シートに洗浄溶剤をシャワーする方法、またはこれらの組み合わせによる方法等が挙げられる。洗浄溶剤の使用量は洗浄方法により異なるが、一般にゲル状シート100質量部に対して300質量部以上であるのが好ましい。 Examples of the cleaning method include a method of immersing the gel-like sheet in a cleaning solvent for extraction, a method of showering the gel-like sheet with a cleaning solvent, and a combination of these methods. The amount of the cleaning solvent used varies depending on the cleaning method, but generally it is preferably 300 parts by mass or more per 100 parts by mass of the gel-like sheet.
 洗浄温度は15~30℃でよく、必要に応じて80℃以下に加熱する。この時、洗浄溶剤の洗浄効果を高める観点、得られるポリオレフィン微多孔膜の物性(例えば、TD方向および/またはMD方向の物性)が不均一にならないようにする観点、ポリオレフィン微多孔膜の機械的物性および電気的物性を向上させる観点から、ゲル状シートが洗浄溶剤に浸漬している時間は長ければ長いほど良い。 The washing temperature may be 15-30°C, and if necessary, it is heated to 80°C or lower. At this time, from the viewpoint of enhancing the cleaning effect of the cleaning solvent, from the viewpoint of preventing the physical properties of the obtained polyolefin microporous membrane (for example, the physical properties in the TD and / or MD directions) from becoming uneven, and the mechanical properties of the polyolefin microporous membrane From the viewpoint of improving physical properties and electrical properties, the longer the gel-like sheet is immersed in the cleaning solvent, the better.
 上述のような洗浄は、洗浄後のゲル状シート、すなわちポリオレフィン微多孔膜中の残留溶剤が1質量%未満になるまで行うのが好ましい。 The washing as described above is preferably carried out until the residual solvent in the gel-like sheet after washing, that is, the polyolefin microporous membrane is less than 1% by mass.
 その後、乾燥工程でポリオレフィン微多孔膜中の溶剤を乾燥させ除去する。乾燥方法としては、特に限定は無く、金属加熱ロールを用いる方法や熱風を用いる方法等を選択することができる。乾燥温度は40~100℃であることが好ましく、40~80℃がより好ましい。乾燥が不十分であると、後の熱処理でポリオレフィン微多孔膜の空孔率が低下し、透過性が悪化する。 After that, the solvent in the polyolefin microporous membrane is dried and removed in the drying process. The drying method is not particularly limited, and a method using a metal heating roll, a method using hot air, or the like can be selected. The drying temperature is preferably 40-100°C, more preferably 40-80°C. If the drying is insufficient, the porosity of the polyolefin microporous membrane will decrease in the subsequent heat treatment, and the permeability will deteriorate.
 (e)熱処理/再延伸工程
 乾燥したポリオレフィン微多孔膜を少なくとも一軸方向に延伸(再延伸)してもよい。再延伸は、ポリオレフィン微多孔膜を加熱しながら上述の延伸と同様にテンター法等により行うことができる。再延伸は一軸延伸でも二軸延伸でもよい。多段延伸の場合は、同時二軸または逐次延伸を組み合わせることにより行う。
(e) Heat Treatment/Re-stretching Step The dried microporous polyolefin membrane may be stretched (re-stretched) at least uniaxially. The re-stretching can be performed by a tenter method or the like while heating the polyolefin microporous membrane in the same manner as the stretching described above. Re-stretching may be uniaxial stretching or biaxial stretching. In the case of multistage stretching, simultaneous biaxial stretching or sequential stretching is combined.
 再延伸の温度は、ポリオレフィン樹脂組成物の融点以下にすることが好ましく、(ポリオレフィン樹脂組成物のTcd-20℃)~ポリオレフィン樹脂組成物の融点の範囲内にするのがより好ましい。具体的には、ポリエチレン組成物の場合、再延伸の温度は、70~140℃が好ましく、110~140℃がより好ましく、120~140℃がさらに好ましく、130~140℃がよりさらに好ましい。135~140℃がよりさらに好ましい。 The re-stretching temperature is preferably below the melting point of the polyolefin resin composition, and more preferably within the range of (Tcd-20°C of the polyolefin resin composition) to the melting point of the polyolefin resin composition. Specifically, in the case of a polyethylene composition, the re-stretching temperature is preferably 70 to 140.degree. C., more preferably 110 to 140.degree. C., still more preferably 120 to 140.degree. 135 to 140°C is even more preferred.
 特に、本発明の実施形態にかかるポリオレフィン微多孔膜は緩和時間が長い重量平均分子量が0.9×10以上のポリエチレンを主原料とすることで、130℃以上の高い温度において延伸・熱固定が可能であることを見出し、上記温度範囲で後述する倍率で延伸を行う事により、ポリオレフィン分子鎖の配向緩和を抑制し高度に配向した構造が得られ、熱的に安定な構造を形成できる。これにより得られる微多孔膜は、130℃における配向パラメータが高く、25℃と130℃での配向パラメータの差が小さい、目付換算突刺強度と熱収縮率特性を両立した微多孔膜が得られる。 In particular, the polyolefin microporous membrane according to the embodiment of the present invention is made mainly of polyethylene having a weight average molecular weight of 0.9 × 10 6 or more with a long relaxation time, and is stretched and heat set at a high temperature of 130 ° C. or more. It is possible to obtain a highly oriented structure by suppressing the relaxation of the orientation of the polyolefin molecular chain and forming a thermally stable structure. The resulting microporous film has a high orientation parameter at 130° C., a small difference in orientation parameter between 25° C. and 130° C., and a microporous film that satisfies both per unit weight equivalent puncture strength and thermal shrinkage characteristics.
 重量平均分子量が0.9×10未満であると、緩和時間が短いため130℃以上で熱処理をおこなうと空孔率の低下につながる。対して、重量平均分子量が0.9×10以上のポリエチレンは緩和時間が長いため130℃以上の温度において延伸・熱固定を実施しても空孔率の低下を抑制でき、高い温度で熱固定が行えるため、高温下における配向緩和を抑制し高度に配向した構造が得られる。そのため、重量平均分子量が0.9×10以上のポリエチレンを用い130℃より高い温度で熱固定する事が好ましい。 If the weight-average molecular weight is less than 0.9×10 6 , the relaxation time is short, and heat treatment at 130° C. or higher leads to a decrease in porosity. On the other hand, polyethylene with a weight-average molecular weight of 0.9×10 6 or more has a long relaxation time. Since it can be fixed, it is possible to suppress the relaxation of orientation at high temperature and obtain a highly oriented structure. Therefore, it is preferable to use polyethylene having a weight-average molecular weight of 0.9×10 6 or more and to heat-set at a temperature higher than 130°C.
 再延伸の倍率は、一軸延伸の場合、1.01~3.0倍が好ましく、特にTD方向の倍率は1.1~1.2倍が好ましく、1.2~1.7倍がより好ましい。二軸延伸を行う場合、MD方向およびTD方向にそれぞれ1.01~2.0倍延伸するのが好ましい。なお、再延伸の倍率は、MD方向とTD方向で異なっていてもよく、逐次延伸を組み合わせた多段延伸が好ましい。乾式延伸工程はラマン分光を用いて25℃で測定した分子鎖の配向制御に有効であり、上記延伸倍率で乾式延伸を行うことで高い突刺強度が得られる。 In the case of uniaxial stretching, the re-stretching ratio is preferably 1.01 to 3.0 times, particularly preferably 1.1 to 1.2 times, more preferably 1.2 to 1.7 times in the TD direction. . When the film is biaxially stretched, it is preferably stretched 1.01 to 2.0 times in each of the MD and TD directions. Note that the re-stretching ratio may be different in the MD direction and the TD direction, and multi-stage stretching combining successive stretching is preferred. The dry stretching process is effective in controlling the orientation of molecular chains measured at 25° C. using Raman spectroscopy, and high puncture strength can be obtained by dry stretching at the above stretching ratio.
 収縮率及びしわやたるみの観点より、再延伸最大倍率からの緩和率は30%以下が好ましく、25%以下であることがより好ましく、20%以下が更に好ましい。当該緩和率が20%以下であると、均一なフィブリル構造が得られる。 From the viewpoint of shrinkage rate and wrinkles and sagging, the relaxation rate from the maximum re-stretching ratio is preferably 30% or less, more preferably 25% or less, and even more preferably 20% or less. A uniform fibril structure is obtained when the relaxation rate is 20% or less.
 (f)その他の工程
 さらに、その他用途に応じて、ポリオレフィン微多孔膜に親水化処理を施すこともできる。親水化処理は、モノマーグラフト、界面活性剤処理、コロナ放電等により行うことができる。モノマーグラフトは架橋処理後に行うのが好ましい。
(f) Other Steps Further, the polyolefin microporous membrane may be subjected to hydrophilization treatment according to other uses. Hydrophilization treatment can be performed by monomer grafting, surfactant treatment, corona discharge, or the like. Monomer grafting is preferably carried out after the cross-linking treatment.
 ポリオレフィン微多孔膜に対して、α線、β線、γ線、電子線等の電離放射線の照射により架橋処理を施すのが好ましい。電子線の照射の場合、0.1~100Mradの電子線量が好ましく、100~300kVの加速電圧が好ましい。架橋処理によりポリオレフィン微多孔膜のメルトダウン温度が上昇する。 It is preferable to subject the polyolefin microporous membrane to cross-linking treatment by irradiating it with ionizing radiation such as α-rays, β-rays, γ-rays and electron beams. In the case of electron beam irradiation, an electron dose of 0.1 to 100 Mrad is preferred, and an acceleration voltage of 100 to 300 kV is preferred. The cross-linking treatment increases the meltdown temperature of the polyolefin microporous membrane.
 界面活性剤処理の場合、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤又は両イオン系界面活性剤のいずれも使用できるが、ノニオン系界面活性剤が好ましい。界面活性剤を水又はメタノール、エタノール、イソプロピルアルコール等の低級アルコールに溶解してなる溶液中にポリオレフィン微多孔膜を浸漬するか、ポリオレフィン微多孔膜にドクターブレード法により溶液を塗布する。 In the case of surfactant treatment, nonionic surfactants, cationic surfactants, anionic surfactants or amphoteric surfactants can all be used, but nonionic surfactants are preferred. A polyolefin microporous membrane is immersed in a solution of a surfactant dissolved in water or a lower alcohol such as methanol, ethanol, or isopropyl alcohol, or the solution is applied to the polyolefin microporous membrane by a doctor blade method.
 本発明の実施形態にかかるポリオレフィン微多孔膜は、電池用セパレータとして用いた場合のメルトダウン特性や耐熱性を向上する目的で、ポリビニリデンフルオライド、ポリテトラフルオロエチレン等のフッ素系樹脂多孔質体やポリイミド、ポリフェニレンスルフィド等の多孔質体等の表面コーティングやセラミック等の無機コーティング等を行ってもよい。特に本発明により得られるポリオレフィン多孔膜は強度が高く低熱収縮であることから、塗工時の張力制御が容易となり、乾燥工程における収縮が抑制されコート適性に優れる。 The polyolefin microporous membrane according to the embodiment of the present invention is a fluororesin porous material such as polyvinylidene fluoride, polytetrafluoroethylene, etc., for the purpose of improving meltdown characteristics and heat resistance when used as a battery separator. Surface coating of porous materials such as polyimide, polyphenylene sulfide, etc., inorganic coating such as ceramics, etc. may be performed. In particular, since the polyolefin porous membrane obtained by the present invention has high strength and low thermal shrinkage, tension control during coating is facilitated, and shrinkage during the drying process is suppressed, resulting in excellent coatability.
 以上のようにして得られたポリオレフィン微多孔膜は、フィルター、燃料電池用セパレータ、コンデンサー用セパレータ等様々な用途で用いることができるが、特に電池用セパレータとして用いたとき安全性に優れる。よって、当該セパレータは、電気自動車等の高エネルギー密度化、高容量化、および高出力化を必要とする二次電池用の電池用セパレータとして好ましく用いることができる。 The polyolefin microporous membrane obtained as described above can be used in various applications such as filters, separators for fuel cells, and separators for capacitors, and is particularly safe when used as a battery separator. Therefore, the separator can be preferably used as a battery separator for secondary batteries, such as electric vehicles, which require high energy density, high capacity, and high output.
 本発明を実施例によりさらに詳細に説明するが、本発明の実施態様はこれらの実施例に限定されるものではない。なお、本願における評価は、特別な記載が無い限り温度23℃、湿度65%の環境下で評価した。実施例で用いた評価方法、分析方法は、以下の通りである。 Although the present invention will be described in more detail with reference to examples, embodiments of the present invention are not limited to these examples. In addition, the evaluation in this application was performed under an environment of temperature 23° C. and humidity 65% unless otherwise specified. Evaluation methods and analysis methods used in the examples are as follows.
 (1)重量平均分子量(Mw)
 高温ゲルパーミエーションクロマトグラフィー(GPC)によりポリオレフィンの分子量分布測定(重量平均分子量、分子量分布、所定成分の含有量などの測定)を行った。なお、フィルムの分子量分布は延伸後のポリオレフィン微多孔膜を用い、ポリオレフィン原料の分子量分布はポリオレフィン原料を用い、以下の条件で測定を行った。
装置:高温GPC装置(機器No. HT-GPC、Polymer Laboratories製、PL-220)
検出器:示差屈折率検出器RI
ガードカラム:Shodex G-HT
カラム:Shodex HT806M(2本) (φ7.8mm×30cm、昭和電工製)
溶媒:1,2,4-トリクロロベンゼン(TCB、和光純薬製)(0.1% BHT添加)
流速:1.0mL/min
カラム温度:145℃
試料調製:試料5mgに測定溶媒5mLを添加し、160~170℃で約30分加熱攪拌した後、得られた溶液を金属フィルター(孔径0.5um)にてろ過した。
注入量:0.200mL
標準試料:単分散ポリスチレン(東ソー製)(PS)
データ処理:TRC製GPCデータ処理システム。
(1) weight average molecular weight (Mw)
Polyolefin molecular weight distribution measurement (measurement of weight average molecular weight, molecular weight distribution, content of predetermined component, etc.) was performed by high-temperature gel permeation chromatography (GPC). The molecular weight distribution of the film was measured using the polyolefin microporous film after stretching, and the molecular weight distribution of the polyolefin raw material was measured under the following conditions.
Apparatus: high temperature GPC apparatus (Equipment No. HT-GPC, manufactured by Polymer Laboratories, PL-220)
Detector: Differential Refractive Index Detector RI
Guard column: Shodex G-HT
Column: Shodex HT806M (2 columns) (φ7.8 mm × 30 cm, manufactured by Showa Denko)
Solvent: 1,2,4-trichlorobenzene (TCB, manufactured by Wako Pure Chemical Industries) (0.1% BHT added)
Flow rate: 1.0 mL/min
Column temperature: 145°C
Sample preparation: 5 mL of a measurement solvent was added to 5 mg of a sample, and the mixture was heated and stirred at 160 to 170° C. for about 30 minutes, and the resulting solution was filtered through a metal filter (pore size: 0.5 μm).
Injection volume: 0.200 mL
Standard sample: Monodisperse polystyrene (manufactured by Tosoh) (PS)
Data processing: TRC GPC data processing system.
 (2)膜厚(μm)
 ポリオレフィン微多孔膜の50mm×50mmの範囲内における5点の膜厚を接触厚み計、株式会社ミツトヨ製ライトマチックVL-50(10.5mmφ超硬球面測定子、測定荷重0.01N)により測定し、平均値を膜厚(μm)とした。
(2) Film thickness (μm)
The film thickness of the polyolefin microporous film at 5 points within the range of 50 mm × 50 mm was measured with a contact thickness meter, Mitutoyo Co., Ltd. Lightmatic VL-50 (10.5 mmφ super hard spherical probe, measurement load 0.01 N). , and the average value was taken as the film thickness (μm).
 (3)透気度(sec/100cm
 膜厚T(μm)のポリオレフィン微多孔膜に対して、JIS P8117:2009に準拠して、王研式透気度計(旭精工株式会社製、EGO-1T)で25℃の雰囲気下、透気度(秒/100cm)を測定した。また、下記の式により、膜厚を10μmとしたときの透気度(10μm換算)(秒/100cm)を算出した。
(3) Air permeability (sec/100 cm 3 )
In accordance with JIS P8117: 2009, the polyolefin microporous membrane having a thickness of T 1 (μm) is measured in an atmosphere of 25 ° C. with an Oken type air permeability meter (manufactured by Asahi Seiko Co., Ltd., EGO-1T). Air permeability (sec/100 cm 3 ) was measured. Also, the air permeability (converted to 10 μm) (sec/100 cm 3 ) when the film thickness was 10 μm was calculated according to the following formula.
 式:透気度(10μm換算)(秒/100cm)=透気度(秒/100cm)×10(μm)/ポリオレフィン微多孔膜の膜厚(μm)。 Formula: air permeability (converted to 10 μm) (second/100 cm 3 )=air permeability (second/100 cm 3 )×10 (μm)/thickness of polyolefin microporous membrane (μm).
 (4)空孔率(%)
 ポリオレフィン微多孔膜から50mm×50mm角の正方形にサンプルを切り取り、室温25℃に おけるその体積(cm)と質量(g)とを測定した。それらの値と膜密度(g/cm) から、ポリオレフィン微多孔膜の空孔率を次式により算出した。
(4) Porosity (%)
A 50 mm×50 mm square sample was cut from the polyolefin microporous membrane, and its volume (cm 3 ) and mass (g) at room temperature of 25° C. were measured. From these values and the film density (g/cm 3 ), the porosity of the polyolefin microporous film was calculated by the following equation.
 空孔率(%)=(体積-質量/膜密度)/体積×100
 なお、膜密度は0.99g/cmの一定値と仮定して計算した。
Porosity (%) = (volume - mass / film density) / volume x 100
The film density was calculated assuming a constant value of 0.99 g/cm 3 .
 (5)10μm換算突刺強度(N)及び、目付換算突刺強度(N/(g/m))
 突刺強度は、試験速度を2mm/秒としたことを除いて、JIS Z 1707(2019)に準拠して測定した。フォースゲージ(株式会社イマダ製 DS2-20N)を用いて、先端が球面(曲率半径R:0.5mm)の直径1.0mmの針で、ポリオレフィン微多孔膜を25℃の雰囲気下で突刺したときの最大荷重(N)を計測(L1)し、下記式から膜厚10μm換算の突刺強度(L2)を算出した。
式:L2=L1×10(μm)/ポリオレフィン微多孔膜の膜厚(μm)。
(5) 10 μm conversion piercing strength (N) and basis weight conversion piercing strength (N/(g/m 2 ))
The puncture strength was measured according to JIS Z 1707 (2019), except that the test speed was 2 mm/sec. Using a force gauge (DS2-20N manufactured by Imada Co., Ltd.), a needle with a diameter of 1.0 mm and a spherical tip (curvature radius R: 0.5 mm) was used to pierce the polyolefin microporous membrane in an atmosphere of 25 ° C. The maximum load (N) was measured (L1), and the puncture strength (L2) converted to a film thickness of 10 μm was calculated from the following formula.
Formula: L2=L1×10 (μm)/thickness of polyolefin microporous membrane (μm).
 目付換算強度はポリオレフィン微多孔膜を25℃の雰囲気下で突刺したときの最大荷重(N)を計測(L1)し、下記式から目付換算突刺強度(L3)を算出した。
式:L3=L1/ポリオレフィン微多孔膜の目付。
The weight-converted strength was obtained by measuring (L1) the maximum load (N) when the polyolefin microporous membrane was pierced in an atmosphere of 25° C., and calculating the weight-converted piercing strength (L3) from the following formula.
Formula: L3=L1/weight of polyolefin microporous membrane.
 なお、ポリオレフィン微多孔膜の目付は、ポリオレフィン微多孔膜から50mm×50mm角の正方形にサンプルを切り取り、室温25℃に おける質量(g)を測定し、次式により算出した。
式:目付(g/m)=質量(g)/(50(mm)×50(mm))×10
The basis weight of the polyolefin microporous membrane was calculated by the following formula by cutting a 50 mm×50 mm square sample from the polyolefin microporous membrane, measuring the mass (g) at room temperature of 25° C.
Formula: basis weight (g/m 2 ) = mass (g)/(50 (mm) x 50 (mm)) x 10 6 .
 (6)引張破断強度(MPa)
 JIS K7127:1999に準拠し引張試験機(島津オートグラフAGS-J型)を用いて引張試験を行い、サンプル破断時の強度を、試験前のサンプル断面積で除し、引張破断強度(MPa)とした。測定条件は、温度;23±2℃、サンプル形状;幅10mm×長さ50mm、チャック間距離;20mm、引張速度;100mm/minである。なお、幅40×60mmサイズの紙枠中央を20×20mmでくりぬいた紙枠をサンプルホルダーとして使用し、幅10mm×長さ50mmのサンプルをサンプルホルダーで挟み0.4MPaの圧力でチャックした後、サンプルホルダーの両端を切断し測定を行った。以上の測定をMD方向とTD方向について同じフィルム中の異なる箇所で、各3点ずつ測定を実施し、その3点ずつの平均値を各方向の引張破断強度(MD引張破断強度、TD引張破断強度)とした。
(6) Tensile breaking strength (MPa)
JIS K7127: Perform a tensile test using a tensile tester (Shimadzu Autograph AGS-J type) in accordance with 1999, divide the strength at the time of sample breakage by the cross-sectional area of the sample before the test, Tensile breaking strength (MPa) and The measurement conditions are temperature: 23±2° C., sample shape: width 10 mm×length 50 mm, distance between chucks: 20 mm, tensile speed: 100 mm/min. In addition, a paper frame with a width of 40 × 60 mm was hollowed out at the center of the paper frame at 20 × 20 mm as a sample holder. Both ends of the sample holder were cut and measured. The above measurements were performed at three different points in the same film in the MD direction and the TD direction, and the average value of the three points was the tensile breaking strength in each direction (MD tensile breaking strength, TD tensile breaking strength strength).
 (7)引張破断伸度(%)
 引張試験機(島津オートグラフAGS-J型)を用いて引張試験を行い、引張破断伸度は、試験前の試験片の標点間距離L0(mm)、破断時の標点距離L(mm)から以下の式より算出した。測定条件は、温度;23±2℃、サンプル形状;幅10mm×長さ50mm、チャック間距離;20mm、引張速度;100mm/minである。なお、幅40×60mmサイズの紙枠中央を20×20mmでくりぬいた紙枠をサンプルホルダーとして使用し、幅10mm×長さ50mmのサンプルをサンプルホルダーで挟み0.4MPaの圧力でチャックした後、サンプルホルダーの両端を切断し測定を行った。以上の測定をMD方向とTD方向について同じフィルム中の異なる箇所で、各3点ずつ測定を実施し、その3点ずつの平均値を各方向の引張破断伸度(MD引張破断伸度、TD引張破断伸度)とした。
引張破断伸度(%)=((L-L0)/L)×100。
(7) Tensile elongation at break (%)
A tensile test was performed using a tensile tester (Shimadzu Autograph AGS-J type). ) was calculated from the following formula. The measurement conditions are temperature: 23±2° C., sample shape: width 10 mm×length 50 mm, distance between chucks: 20 mm, tensile speed: 100 mm/min. In addition, a paper frame with a width of 40 × 60 mm was hollowed out at the center of the paper frame at 20 × 20 mm as a sample holder. Both ends of the sample holder were cut and measured. The above measurements were performed at three different points in the same film in the MD direction and the TD direction, and the average value of the three points was the tensile elongation at break in each direction (MD tensile elongation at break, TD tensile elongation at break).
Tensile elongation at break (%)=((L−L0)/L)×100.
 (8)130℃/1hの収縮率(%)
 ポリオレフィン微多孔膜を2辺がMD方向に平行となるような5cm×5cmの正方形のサンプルを切り出した。切り出したサンプルのTD方向の中央部でMD方向のサンプル長さを計測し、これをMD収縮前長さ(L1MD)とした。また、MD方向の中央部でTD方向のサンプル長さを計測しこれをTD収縮前長さ(L1TD)とした。次に、槽内温度を130℃としたオーブン内へサンプルを投入して加熱し、投入から1時間後にこれを取り出した。前述のMD収縮前長さを測定した箇所のMD方向長さを測定し、これをMD収縮後長さ(L2MD)とした。また、前述のTD収縮前長さを測定した箇所のTD方向長さを測定し、これをTD収縮後長さ(L2TD)とした。これらの値を用いて、130℃、1時間後の熱収縮率を下記式により算出した。また本測定はサンプル面内の任意の3箇所で行い、その平均値を130℃、1時間後の熱収縮率(%)として算出した。
式 MD方向の130℃、1時間後の熱収縮率(%)=100×(L1MD-L2MD)/L1MD
式 TD方向の130℃、1時間後の熱収縮率(%)=100×(L1TD-L2TD)/L1TD
(8) Shrinkage rate (%) at 130°C/1h
A 5 cm x 5 cm square sample having two sides parallel to the MD direction was cut out of the polyolefin microporous membrane. The sample length in the MD direction was measured at the central portion of the cut sample in the TD direction, and this was defined as the length before MD contraction (L 1MD ). Also, the length of the sample in the TD direction was measured at the center in the MD direction, and this was defined as the TD pre-contraction length (L 1TD ). Next, the sample was placed in an oven with an internal temperature of 130° C., heated, and taken out after 1 hour. The length in the MD direction was measured at the location where the length before MD contraction was measured, and this was defined as the length after MD contraction (L 2MD ). In addition, the length in the TD direction was measured at the location where the length before TD contraction was measured, and this was defined as the length after TD contraction (L 2TD ). Using these values, the thermal shrinkage rate after 1 hour at 130° C. was calculated by the following formula. Further, this measurement was performed at arbitrary three points within the sample surface, and the average value was calculated as the thermal shrinkage rate (%) after 1 hour at 130°C.
Formula 130 ° C in MD direction, thermal shrinkage rate (%) after 1 hour = 100 × (L 1MD - L 2MD ) / L 1MD
Formula Thermal contraction rate (%) after 1 hour at 130°C in the TD direction = 100 x (L 1TD - L 2TD )/L 1TD .
 (9)ラマン分光法
 ポリオレフィン微多孔膜を、2辺がMD方向に平行となるように、2cm×2cmの正方形のサンプルを切り出した。ポリオレフィン微多孔膜の偏光ラマンスペクトルを顕微ラマン分光装置JASCO NRS-5100を用いて次のように測定し、結晶分子鎖の配向パラメータを算出した。
(9) Raman Spectroscopy A 2 cm×2 cm square sample was cut out of the microporous polyolefin membrane so that two sides were parallel to the MD direction. The polarized Raman spectrum of the polyolefin microporous film was measured using a JASCO NRS-5100 microscopic Raman spectrometer as follows, and the orientation parameter of the crystal molecular chains was calculated.
 〈ラマン測定条件〉
・レーザー: 532nm
・グレーティング: 2400 Line/mm
・レンズ: 20×
・スリット: 200×1000μm
・アパーチャ: φ4000μm
1.偏光子を用いてポリオレフィン微多孔膜の機械方向に偏光させたレーザーを試験片に入射させ、散乱光を機械方向に向いた検光子を通して集光した。
2.得られたラマンスペクトルの1130cm-と1060cm-のラマンバンドの比I1130/I1060をラマン配向パラメータと定義し値を算出した。
<Raman measurement conditions>
・Laser: 532nm
・Grating: 2400 Line/mm
・Lens: 20x
・Slit: 200×1000 μm
・Aperture: φ4000μm
1. A laser polarized in the machine direction of the polyolefin microporous membrane using a polarizer was incident on the specimen and the scattered light was collected through an analyzer oriented in the machine direction.
2. The ratio I 1130 /I 1060 of the Raman bands at 1130 cm −1 and 1060 cm −1 in the obtained Raman spectrum was defined as the Raman orientation parameter and the value was calculated.
 なお、偏光子がフィルムの長手方向と平行(0°/0°)方向をMD方向、垂直方向(90°/90°)をTD方向としラマンスペクトルを得た。1130cm-は結晶相中ポリエチレン分子鎖のC-C伸縮振動に帰属するバンドであり、振動のラマンテンソルの方向が分子鎖軸と一致しているため分子鎖の配向状態を知ることができる。配向パラメータの値が大きいほど結晶分子鎖が高度に配向していることを意味する。 The Raman spectrum was obtained with the polarizer having the direction parallel (0°/0°) to the longitudinal direction of the film as the MD direction and the direction (90°/90°) perpendicular to the film as the TD direction. 1130 cm- 1 is a band attributed to the C—C stretching vibration of the polyethylene molecular chain in the crystal phase, and since the direction of the Raman tensor of vibration coincides with the molecular chain axis, the orientation of the molecular chain can be known. A larger value of the orientation parameter means that the crystal molecular chains are highly oriented.
 〈ピークおよび配向パラメータの算出〉
a:ラマンシフトの帯域1100~1170cm-1の範囲におけるラマンバンドの最大強度
b:ラマンシフトの帯域1040~1090cm-1の範囲におけるラマンバンドの最大強度
a(MD、25℃):25℃で測定したMD方向の値
a(TD、25℃):25℃で測定したTD方向の値
(MD、25℃):25℃で測定したTD方向の値 
(TD、25℃):25℃で測定したTD方向の値
a(MD、130℃):加熱ステージを用いて130℃で60min加熱後のMD方向の値
a(TD、130℃):加熱ステージを用いて130℃で60min加熱後のTD方向の値
(MD、130℃):加熱ステージを用いて130℃で60min加熱後のMD方向の値
(TD、130℃):加熱ステージを用いて130℃で60min加熱後のTD方向の値
fMH=Ia(MD、130℃)/ Ib(MD、130℃)    ・・・(1)式
fTH=Ia(TD、130℃)/ Ib(TD、130℃)    ・・・(2)式
fML=Ia(MD、25℃)/I(MD、25℃) ・・・(3)式
fTL=Ia(TD、25℃)/I(TD、25℃) ・・・(4)式
fMLH=Ia(MD、25℃)/Ia(MD、130℃))・・・(5)式
fTLH=Ia(TD、25℃)/Ia(TD、130℃))・・・(6)式
fML-fMH ・・・(7)式
fTL-fTH ・・・(8)式。
<Calculation of peak and orientation parameters>
I a : maximum Raman band intensity I b in the Raman shift band range of 1100 to 1170 cm −1 : Raman band maximum intensity I a in the Raman shift band range of 1040 to 1090 cm −1 (MD, 25° C.): 25 MD value Ia (TD, 25°C) measured in °C: TD value Ib (MD, 25°C) measured at 25°C: TD value measured at 25°C
I b (TD, 25° C.): value in TD measured at 25° C. I a (MD, 130° C.): value in MD after heating at 130° C. for 60 minutes using a heating stage I a (TD, 130° C. ): value I b in the TD direction after heating at 130° C. for 60 minutes using a heating stage (MD, 130° C.): value I b in the MD direction after heating at 130° C. for 60 minutes using a heating stage (TD, 130° C. ): Value in TD direction fMH= Ia (MD, 130°C)/ Ib (MD, 130°C) after heating at 130°C for 60min using a heating stage  (1) Formula fTH= Ia (TD, 130°C)/ Ib (TD, 130°C)  (2) Equation fML= Ia (MD, 25°C)/ Ib (MD, 25°C) (3) Equation fTL= Ia (TD, 25°C)/ Ib (TD, 25°C) °C) (4) Formula fMLH= Ia (MD, 25°C)/ Ia (MD, 130°C)) (5) Formula fTLH= Ia (TD, 25°C)/ Ia ( TD, 130° C.)) Equation (6) fML-fMH Equation (7) fTL-fTH Equation (8).
 なお、(5)、(6)式のIはラマンシフトの帯域1100~1170cm-1の範囲における最大強度と1200cm-1の強度の差であり、I(MD、130℃)はMD方向の130℃で測定、I(TD、130℃)はTD方向の130℃で測定、I(MD、25℃)はTD方向の25℃で測定、Ia(TD、25℃)はTD方向の25℃で測定した値である。 In addition, I a in equations (5) and (6) is the difference between the maximum intensity in the Raman shift band of 1100 to 1170 cm −1 and the intensity at 1200 cm −1 , and I a (MD, 130° C.) is the MD direction. Ia (TD, 130°C) is measured at 130°C in the TD direction, Ia (MD, 25°C) is measured in the TD direction at 25°C, Ia (TD, 25°C) is measured in the TD It is a value measured at 25° C. in the direction.
 また、加熱ステージを用いて130℃にて測定する際には、ポリオレフィン微多孔膜のMD、TD4辺をカプトンテープにて固定して測定した。 In addition, when measuring at 130°C using a heating stage, the polyolefin microporous membrane was fixed on four sides MD and TD with a Kapton tape.
 (10)シャットダウン温度
 ポリオレフィン微多孔膜を5℃/minの昇温速度で加熱しながら、王研式透気度計(旭精工株式会社製、EGO-1T)により透気抵抗度を測定し、透気抵抗度が検出限界である99999秒/100cmAirに到達した温度をシャットダウン温度(℃)とした。
(10) Shutdown temperature While heating the polyolefin microporous membrane at a temperature increase rate of 5 ° C./min, measure the air permeability resistance with an Oken type air permeability meter (Asahi Seiko Co., Ltd., EGO-1T), The temperature at which the permeation resistance reached the detection limit of 99999 sec/100 cm 3 Air was taken as the shutdown temperature (°C).
 測定セルはアルミブロックで構成され、ポリオレフィン微多孔膜の直下に熱電対を有する構造とし、サンプルを5cm×5cm角に切り取り、周囲をОリングで固定しながら昇温測定した。 The measurement cell consisted of an aluminum block and had a structure with a thermocouple directly below the polyolefin microporous membrane. A sample was cut into a 5 cm x 5 cm square, and the temperature was measured while fixing the periphery with an O-ring.
 (11)短絡試験
 短絡耐性の評価は、卓上型精密万能試験機オートグラフAGS-X(株式会社 島津製作所製)を用いて実施した。ポリプロピレン製絶縁体(厚み0.2μm)/負極(リチウムイオン電池用(銅箔(厚み約0.9μm)、活物質:人造黒鉛(粒径約13μm))/セパレータ/500μm径のクロム球(材質:クロム(SUJ-2))/アルミ箔の積層体を作製した。サンプル積層体のアルミニウム箔と負極をコンデンサーとクラッド抵抗器からなる回路にケーブルでつないだ。コンデンサーを約1.5Vに充電し、サンプル積層体中のセパレータ、アルミニウム箔の間に直径約500μmの金属球(材質:クロム(SUJ-2))を置いた。その後、0.3mm/minの条件でプレスし、電池がショートするまでの変移量で耐異物性評価を行った。圧縮荷重変化において、もれ電流値があがりだした点を開始点、金属球を介して上記回路が形成され電流が検知された瞬間を短絡点し変位を測定した。高い変移量でもショートしないサンプルほど耐異物性が良好であり、変移量と耐異物性の関係は下記4段階とした。B以上であれば実用上問題ないが、電池の高エネルギー密度化・高容量化が進むためA以上が好ましい。
S: 変移(mm)/セパレータ厚み(μm)が0.025より大きい
A: 変移(mm)/セパレータ厚み(μm)が0.024より大きく、0.025以下
B: 変移(mm)/セパレータ厚み(μm)が0.020より大きく、0.024以下
C: 変移(mm)/セパレータ厚み(μm)が0.020以下。
(11) Short-circuit test Short-circuit resistance was evaluated using a desktop precision universal testing machine, Autograph AGS-X (manufactured by Shimadzu Corporation). Polypropylene insulator (thickness: 0.2 μm)/negative electrode (for lithium-ion battery (copper foil (thickness: approx. 0.9 μm), active material: artificial graphite (particle diameter: approx. 13 μm))/separator/500 μm diameter chromium ball (material: : Chromium (SUJ-2))/aluminum foil laminate was prepared.The aluminum foil and negative electrode of the sample laminate were connected with a cable to a circuit consisting of a capacitor and a clad resistor.The capacitor was charged to about 1.5 V. , A metal ball (material: chromium (SUJ-2)) with a diameter of about 500 μm was placed between the separator and aluminum foil in the sample laminate.Then, the battery was short-circuited by pressing at a rate of 0.3 mm/min. The starting point is the point where the leakage current value begins to rise, and the short-circuit point is the moment when the above circuit is formed via the metal ball and the current is detected. A sample that does not short-circuit even with a large amount of displacement has better resistance to foreign matter, and the relationship between the amount of displacement and resistance to foreign matter is made into the following four stages. A or higher is preferable because higher energy density and higher capacity will be achieved.
S: Displacement (mm)/separator thickness (μm) is greater than 0.025 A: Displacement (mm)/separator thickness (μm) is greater than 0.024 and 0.025 or less B: Displacement (mm)/separator thickness (μm) is greater than 0.020 and 0.024 or less C: Displacement (mm)/separator thickness (μm) is 0.020 or less.
 [ポリオレフィン系樹脂原料の融点]
 原料のポリオレフィン系樹脂の融点はJIS K7121:1987に基づき、示差走査熱量分析(DSC)法により測定した。アルミパンに6.0mgの試料を封入し、Parking Elmer製 PYRIS Diamond DSCを用いて、窒素雰囲気下、30℃から230℃まで10℃/minで昇温し、30℃から230℃まで10℃/minで昇温(1回目の昇温)後、230℃で5分間保持し、10℃/分の速度で冷却し、再度10℃/分の昇温速度で30℃から230℃まで昇温し(2回目の昇温)、各融解吸熱曲線を得た。2回目の昇温で得られた融解吸熱曲線上のピークトップの温度をポリオレフィン系樹脂原料の融点とした。
[Melting point of polyolefin resin raw material]
The melting point of the raw material polyolefin resin was measured by differential scanning calorimetry (DSC) in accordance with JIS K7121:1987. 6.0 mg of the sample was sealed in an aluminum pan, and the temperature was raised from 30 ° C. to 230 ° C. at a rate of 10 ° C./min under a nitrogen atmosphere using a PYRIS Diamond DSC manufactured by Parking Elmer. After the temperature was raised at 230°C for 5 minutes (first temperature rise), the temperature was maintained at 230°C for 5 minutes, cooled at a rate of 10°C/min, and again heated from 30°C to 230°C at a rate of temperature increase of 10°C/min. (Second heating), each melting endotherm curve was obtained. The temperature of the peak top on the melting endothermic curve obtained in the second heating was taken as the melting point of the polyolefin resin raw material.
 [ポリオレフィン系樹脂原料の融解熱量(ΔH)]
 原料のポリオレフィン系樹脂の融解熱量はJIS K7121:1987に基づき、示差走査熱量分析(DSC)法により測定した。アルミパンに6.0mgの試料を封入し、Parking Elmer製 PYRIS Diamond DSCを用いて、窒素雰囲気下、30℃から230℃まで10℃/minで昇温し、30℃から230℃まで10℃/minで昇温(1回目の昇温)後、230℃で5分間保持し、10℃/分の速度で冷却し、再度10℃/分の昇温速度で30℃から230℃まで昇温し(2回目の昇温)、各融解吸熱曲線を得た。2回目の昇温で得られた融解吸熱曲線上の融解熱量を60℃~160℃まで積分し、ポリオレフィン系樹脂原料のΔH(J/g)を得た。
[Heat of fusion (ΔH) of polyolefin resin raw material]
The heat of fusion of the raw material polyolefin resin was measured by differential scanning calorimetry (DSC) in accordance with JIS K7121:1987. 6.0 mg of the sample was sealed in an aluminum pan, and the temperature was raised from 30 ° C. to 230 ° C. at a rate of 10 ° C./min under a nitrogen atmosphere using a PYRIS Diamond DSC manufactured by Parking Elmer. After the temperature was raised at 230°C for 5 minutes (first temperature rise), the temperature was maintained at 230°C for 5 minutes, cooled at a rate of 10°C/min, and again heated from 30°C to 230°C at a rate of temperature increase of 10°C/min. (Second heating), each melting endotherm curve was obtained. The heat of fusion on the melting endothermic curve obtained in the second temperature rise was integrated from 60° C. to 160° C. to obtain ΔH (J/g) of the polyolefin resin raw material.
 以下に実施例を示して具体的に説明するが、本発明はこれらの実施例によって何ら制限されるものではない。 Examples will be shown and described below, but the present invention is not limited to these examples.
 [実施例1]
 原料としてMwが15×10の超高分子量ポリエチレンを用い、超高分子量ポリエチレン20質量部に流動パラフィン80質量部を加え、さらに超高分子量ポリエチレン20質量部の質量に対して0.5質量部の2,6-ジ-t-ブチル-p-クレゾールと0.7質量部のテトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)-プロピオネート]メタンを酸化防止剤として加えて混合し、ポリエチレン樹脂溶液を調製した。得られたポリエチレン樹脂溶液を二軸押出機に投入し180℃で混練しポリエチレン溶液を調製した。得られたポリエチレン溶液をTダイに供給し、押出物を35℃に制御された冷却ロールで冷却してゲル状シートを形成した。得られたゲル状シートを延伸温度115℃で延伸倍率7.0倍になるようにロール方式で縦延伸を行った。この際、延伸ロールとニップロール間の圧力は0.3Mpaにて行った。引き続いてテンターに導き、延伸温度120℃で延伸倍率7.0倍になるように横延伸を実施した。延伸後の膜を塩化メチレンの洗浄槽内にて洗浄し流動パラフィンを除去した。洗浄した膜を乾燥し、テンター方式で135℃の温度で延伸倍率1.4倍に再横延伸を行いポリオレフィン微多孔膜を得た。
[Example 1]
Ultra high molecular weight polyethylene with Mw of 15×10 5 is used as a raw material, 80 parts by weight of liquid paraffin is added to 20 parts by weight of ultra high molecular weight polyethylene, and 0.5 parts by weight is added to the weight of 20 parts by weight of ultra high molecular weight polyethylene. of 2,6-di-t-butyl-p-cresol and 0.7 parts by mass of tetrakis[methylene-3-(3,5-di-t-butyl-4-hydroxyphenyl)-propionate]methane for antioxidant These were added as agents and mixed to prepare a polyethylene resin solution. The obtained polyethylene resin solution was charged into a twin-screw extruder and kneaded at 180° C. to prepare a polyethylene solution. The resulting polyethylene solution was supplied to a T-die, and the extrudate was cooled with a cooling roll controlled at 35°C to form a gel sheet. The resulting gel-like sheet was longitudinally stretched by a roll system at a stretching temperature of 115° C. at a stretching ratio of 7.0 times. At this time, the pressure between the stretching rolls and the nip rolls was 0.3 Mpa. Subsequently, the film was led to a tenter and laterally stretched at a stretching temperature of 120° C. at a stretching ratio of 7.0 times. The stretched membrane was washed in a methylene chloride washing tank to remove liquid paraffin. The washed membrane was dried and laterally stretched again at a temperature of 135° C. at a stretching ratio of 1.4 times by a tenter method to obtain a polyolefin microporous membrane.
 [実施例2~4]
 原料処方及び製膜条件を表1のとおりに変更した以外は実施例1と同様にして、ポリオレフィン微多孔膜を作製した。
[Examples 2 to 4]
A polyolefin microporous membrane was produced in the same manner as in Example 1, except that the raw material formulation and membrane-forming conditions were changed as shown in Table 1.
 [実施例5]
 原料としてMwが15×10の超高分子量ポリエチレン70質量部とMwが1×10、融点が131.5℃、ΔHが225(J/g)の高密度ポリエチレン30質量部とからなるポリエチレン(PE)混合物の、超高分子量ポリエチレン70質量部に対して0.5質量部の2,6-ジ-t-ブチル-p-クレゾールと0.7質量部のテトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)-プロピオネート]メタンを酸化防止剤として加えポリエチレン混合物を得た。得られた混合物25質量部に流動パラフィン75質量部を加えて二軸押出機に投入し180℃で混練しポリエチレン溶液を調製した。得られたポリエチレン溶液をTダイに供給し、押出物を35℃に制御された冷却ロールで冷却してゲル状シートを形成した。得られたゲル状シートを延伸温度105℃の条件でテンター方式で5×5倍に同時二軸延伸を行った。延伸後の膜を塩化メチレンの洗浄槽内にて洗浄し流動パラフィンを除去した。洗浄した膜を乾燥し、ロール延伸方式で100℃の温度で1.7倍に再縦延伸した後、テンター方式で137℃の温度で延伸倍率1.7倍に再横延伸を行いポリオレフィン微多孔膜を得た。
[Example 5]
Polyethylene consisting of 70 parts by mass of ultra-high molecular weight polyethylene with Mw of 15×10 5 and 30 parts by mass of high-density polyethylene with Mw of 1×10 5 , melting point of 131.5° C., and ΔH of 225 (J/g) as raw materials. (PE) of the mixture, 0.5 parts by weight of 2,6-di-t-butyl-p-cresol and 0.7 parts by weight of tetrakis[methylene-3-(3) with respect to 70 parts by weight of ultra-high molecular weight polyethylene ,5-di-t-butyl-4-hydroxyphenyl)-propionate]methane was added as an antioxidant to obtain a polyethylene mixture. 75 parts by mass of liquid paraffin was added to 25 parts by mass of the obtained mixture, and the mixture was introduced into a twin-screw extruder and kneaded at 180° C. to prepare a polyethylene solution. The resulting polyethylene solution was supplied to a T-die, and the extrudate was cooled with a cooling roll controlled at 35°C to form a gel sheet. The resulting gel-like sheet was simultaneously biaxially stretched 5×5 times by a tenter method at a stretching temperature of 105°C. The stretched membrane was washed in a methylene chloride washing tank to remove liquid paraffin. The washed membrane is dried, longitudinally stretched again to 1.7 times at a temperature of 100°C by a roll stretching method, and then transversely stretched again to a stretching ratio of 1.7 times at a temperature of 137°C by a tenter method. A membrane was obtained.
 [実施例6~8]
 原料処方及び製膜条件を表1のとおりに変更した以外は実施例1と同様にして、ポリオレフィン微多孔膜を作製した。なお、実施例6、7で用いた高密度ポリエチレンは実施例5で用いたものと同じ高密度ポリエチレンを使用した。
[Examples 6 to 8]
A polyolefin microporous membrane was produced in the same manner as in Example 1, except that the raw material formulation and membrane-forming conditions were changed as shown in Table 1. The same high-density polyethylene as used in Example 5 was used as the high-density polyethylene used in Examples 6 and 7.
 [比較例1~2]
 原料処方及び製膜条件を表2のとおりに変更した以外は実施例1と同様にして、ポリオレフィン微多孔膜を作製した。
[Comparative Examples 1 and 2]
A polyolefin microporous membrane was produced in the same manner as in Example 1, except that the raw material formulation and membrane-forming conditions were changed as shown in Table 2.
 得られたポリオレフィン微多孔膜の評価結果は表3、表4に記載のとおりである。なお、表1及び表2中、「UHPE」は超高分子量ポリエチレンを意味し、「HDPE」は高密度ポリエチレンを意味する。 The evaluation results of the obtained polyolefin microporous membrane are as shown in Tables 3 and 4. In Tables 1 and 2, "UHPE" means ultra high molecular weight polyethylene, and "HDPE" means high density polyethylene.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例1~8は、いずれも顕微ラマン分光により算出した高温下での配向パラメータが小さい微多孔膜が得られ優れた強度と低収縮率を両立しており、実施例1~3および5~7は特に良好な強度と低収縮率を達成し、短絡試験に優れた微多孔膜が得られている。対して、高密度ポリエチレンを主成分として用いた比較例1~2は高温下での配向パラメータが大きく強度と低収縮率が劣る。
 
In Examples 1 to 8, a microporous film with a small orientation parameter at high temperature calculated by microscopic Raman spectroscopy is obtained, and both excellent strength and low shrinkage are achieved. No. 7 achieves particularly good strength and low shrinkage, and a microporous membrane excellent in the short-circuit test is obtained. On the other hand, Comparative Examples 1 and 2 using high-density polyethylene as a main component have large orientation parameters at high temperatures and are inferior in strength and low shrinkage.

Claims (14)

  1.  顕微ラマン分光装置を用いて下記(1)、(2)式により算出される130℃で測定したMD方向の配向パラメータ値(fMH)とTD方向の配向パラメータ値(fTH)がいずれも0.00以上、1.70以下であるポリオレフィン微多孔膜。
    fMH = I(MD、130℃)/ I(MD、130℃)  ・・・(1)式
    fTH = I(TD、130℃)/ I(TD、130℃)  ・・・(2)式
     なお、Iはラマンシフトの帯域1100~1170cm-1の範囲におけるラマンバンドの最大強度、Iはラマンシフトの帯域1040~1090cm-1の範囲におけるラマンバンドの最大強度、I(MD、130℃)、 I(MD、130℃)は130℃で測定したMD方向の最大強度、I(TD、130℃)、I(TD、130℃)は130℃で測定したTD方向の最大強度である。
    Both the orientation parameter value (fMH) in the MD direction and the orientation parameter value (fTH) in the TD direction measured at 130° C. calculated by the following formulas (1) and (2) using a microscopic Raman spectrometer are 0.00. A polyolefin microporous membrane having a ratio of 1.70 or less.
    fMH = Ia (MD, 130°C)/ Ib (MD, 130°C)  (1) Formula fTH = Ia (TD, 130°C)/ Ib (TD, 130°C)  (2) where I a is the maximum Raman band intensity in the Raman shift band range of 1100 to 1170 cm -1 and I b is the Raman band maximum intensity in the Raman shift band range of 1040 to 1090 cm -1 , I a (MD, 130°C) and I b (MD, 130° C.) are the maximum intensities in the MD direction measured at 130° C. I a (TD, 130° C.) and I b (TD, 130° C.) are is the maximum intensity in the TD direction measured at .
  2.  顕微ラマン分光装置を用いて算出される値が下記(5)、(6)式を満たす請求項1記載のポリオレフィン微多孔膜。
    fMLH =D(MD、25℃)/D(MD、130℃) ≦ 4 ・・・(5)式
    fTLH =D(TD、25℃)/D(TD、130℃) ≦ 4 ・・・(6)式
     Dはラマンシフトの帯域1100~1170cm-1の範囲における最大強度と1200cm-1の強度の差、D(MD、130℃)はMD方向の130℃で測定、D(TD、130℃)はTD方向の130℃で測定、D(MD、25℃)はTD方向の25℃で測定、D(TD、25℃)はTD方向の25℃で測定した値である。
    2. The polyolefin microporous membrane according to claim 1, wherein the values calculated using a microscopic Raman spectrometer satisfy the following formulas (5) and (6).
    fMLH = Da (MD, 25°C)/Da (MD, 130°C) ≤ 4 (5) Formula fTLH = Da (TD, 25°C) / Da (TD, 130°C) ≤ 4 (6) Formula D a is the difference between the maximum intensity in the Raman shift band 1100 to 1170 cm −1 and the intensity at 1200 cm −1 , D a (MD, 130 ° C) is measured at 130 ° C in the MD direction, D a (TD, 130°C) was measured at 130°C in the TD direction, Da (MD, 25°C) was measured at 25°C in the TD direction, Da (TD, 25°C) was measured at 25°C in the TD direction value.
  3.  顕微ラマン分光装置を用いて算出される値が下記(7)、(8)式を満たす請求項1または2に記載のポリオレフィン微多孔膜。
    0.00≦fML-fMH ≦ 0.50 ・・・(7)式
    0.00≦fTL-fTH ≦ 0.50 ・・・(8)式
     なお、fML、fTLは下記(3)、(4)式により算出される25℃で測定したMD方向の配向パラメータ値(fML)とTD方向の配向パラメータ値(fTL)であり、Iはラマンシフトの帯域1100~1170cm-1の範囲におけるラマンバンドの最大強度、Iはラマンシフトの帯域1040~1090cm-1の範囲におけるラマンバンドの最大強度、I(MD、25℃)、 I(MD、25℃)は25℃で測定したMD方向の最大強度、I(TD、25℃)、I(TD、25℃)は25℃で測定したTD方向の最大強度である。
    fML = I(MD、25℃)/ I(MD、25℃)  ・・・(3)式
    fTL = I(TD、25℃)/ I(TD、25℃)  ・・・(4)式
    3. The polyolefin microporous membrane according to claim 1 or 2, wherein a value calculated using a microscopic Raman spectrometer satisfies the following formulas (7) and (8).
    0.00≤fML-fMH≤0.50 (7) 0.00≤fTL-fTH≤0.50 (8) Note that fML and fTL are the following (3) and (4) is the orientation parameter value (fML) in the MD direction and the orientation parameter value (fTL) in the TD direction measured at 25 ° C. calculated by the formula, and I a is the Raman band in the Raman shift band 1100 to 1170 cm −1 maximum intensity, I b is the maximum intensity of the Raman band in the Raman shift band 1040-1090 cm -1 , I a (MD, 25 °C), Maximum intensity, Ia (TD, 25°C), Ib (TD, 25°C), is the maximum intensity in the TD direction measured at 25°C.
    fML = Ia (MD, 25°C)/ Ib (MD, 25°C)  (3) Formula fTL = Ia (TD, 25°C)/ Ib (TD, 25°C)  ・・・Equation (4)
  4.  MD方向の引張破断強度が200MPa以上である、請求項1~3のいずれか1項に記載のポリオレフィン微多孔膜。 The polyolefin microporous membrane according to any one of claims 1 to 3, which has a tensile strength at break in the MD direction of 200 MPa or more.
  5.  目付換算突刺強度が0.7N/(g/m)以上である、請求項1~4のいずれか1項に記載のポリオレフィン微多孔膜。 5. The polyolefin microporous membrane according to any one of claims 1 to 4, which has a per unit area equivalent puncture strength of 0.7 N/(g/m 2 ) or more.
  6.  MD方向とTD方向の130℃/1hの収縮率の合計が30%以下である、請求項1~5のいずれか1項に記載のポリオレフィン微多孔膜。 The polyolefin microporous membrane according to any one of claims 1 to 5, wherein the total shrinkage rate at 130°C/1h in the MD and TD directions is 30% or less.
  7.  MD方向の130℃/1hの収縮率が15%以下である、請求項1~6のいずれか1項に記載のポリオレフィン微多孔膜。 The polyolefin microporous membrane according to any one of claims 1 to 6, which has a shrinkage rate of 15% or less at 130°C/1h in the MD direction.
  8.  シャットダウン温度が143℃以下である、請求項1~7のいずれか1項に記載のポリオレフィン微多孔膜。 The polyolefin microporous membrane according to any one of claims 1 to 7, which has a shutdown temperature of 143°C or less.
  9.  ポリオレフィン微多孔膜の重量平均分子量が80万以上である、請求項1~8のいずれか1項に記載のポリオレフィン微多孔膜。 The polyolefin microporous membrane according to any one of claims 1 to 8, wherein the polyolefin microporous membrane has a weight average molecular weight of 800,000 or more.
  10.  ポリオレフィン微多孔膜中の分子量3.0×10以下のポリエチレンの含有量が50重量%以下であり、分子量9.0×10以上のポリエチレンの含有量が30%以上である、請求項1~9いずれか1項に記載のポリオレフィン微多孔膜。 Claim 1, wherein the content of polyethylene having a molecular weight of 3.0×10 5 or less in the polyolefin microporous membrane is 50% by weight or less, and the content of polyethylene having a molecular weight of 9.0×10 5 or more is 30% or more. 9. The polyolefin microporous membrane according to any one of items 1 to 9.
  11.  ポリオレフィン微多孔膜の主成分がポリエチレンである、請求項1~10のいずれか1項に記載のポリオレフィン微多孔膜。 The polyolefin microporous membrane according to any one of claims 1 to 10, wherein the main component of the polyolefin microporous membrane is polyethylene.
  12.  少なくとも湿式逐次二軸延伸を含む延伸により得られる、請求項1~11のいずれか1項に記載のポリオレフィン微多孔膜。 The polyolefin microporous membrane according to any one of claims 1 to 11, which is obtained by stretching including at least wet sequential biaxial stretching.
  13.  請求項1~12のいずれか1項に記載のポリオレフィン微多孔膜を用いた電池用セパレータ。 A battery separator using the polyolefin microporous membrane according to any one of claims 1 to 12.
  14.  請求項13に記載の電池用セパレータを用いた二次電池。
     
    A secondary battery using the battery separator according to claim 13 .
PCT/JP2022/007847 2021-03-23 2022-02-25 Microporous polyolefin film, separator for battery, and secondary battery WO2022202095A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022517180A JPWO2022202095A1 (en) 2021-03-23 2022-02-25
CN202280009082.9A CN116724371A (en) 2021-03-23 2022-02-25 Polyolefin microporous membrane, separator for battery, and secondary battery
KR1020237013238A KR20230160224A (en) 2021-03-23 2022-02-25 Polyolefin microporous membrane, battery separator and secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021048316 2021-03-23
JP2021-048316 2021-03-23

Publications (1)

Publication Number Publication Date
WO2022202095A1 true WO2022202095A1 (en) 2022-09-29

Family

ID=83395583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007847 WO2022202095A1 (en) 2021-03-23 2022-02-25 Microporous polyolefin film, separator for battery, and secondary battery

Country Status (4)

Country Link
JP (1) JPWO2022202095A1 (en)
KR (1) KR20230160224A (en)
CN (1) CN116724371A (en)
WO (1) WO2022202095A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09302120A (en) * 1996-05-08 1997-11-25 Tonen Chem Corp Production of finely porous membrane of polyolefin
JP2001002812A (en) * 1999-06-22 2001-01-09 Nitto Denko Corp Preparation of porous film
JP2005112905A (en) * 2003-10-03 2005-04-28 Nitto Denko Corp Porous film
JP2005343957A (en) * 2004-06-01 2005-12-15 Tonen Chem Corp Method for producing polyethylene fine porous film, fine porous film and use of the same
JP2006190507A (en) * 2005-01-04 2006-07-20 Nitto Denko Corp Lithium secondary battery
WO2009078477A1 (en) * 2007-12-14 2009-06-25 Tonen Chemical Corporation A method for removing diluent from an extrudate of a polymer solution
JP2012052085A (en) * 2010-08-05 2012-03-15 Nitto Denko Corp Polyolefin porous film, method and apparatus for producing the same
JP2012144650A (en) * 2011-01-12 2012-08-02 Asahi Kasei E-Materials Corp Polyolefin microporous film
WO2021015268A1 (en) * 2019-07-25 2021-01-28 東レ株式会社 Microporous polyolefin membrane, multilayer body, and nonaqueous electrolyte secondary battery using same
JP2021038379A (en) * 2019-08-28 2021-03-11 東レ株式会社 Porous polyolefin film

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013199545A (en) 2012-03-23 2013-10-03 Asahi Kasei E-Materials Corp Fine porous film and battery separator
JP6671255B2 (en) 2016-07-07 2020-03-25 住友化学株式会社 Non-aqueous electrolyte secondary battery separator, laminated separator for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery member, and non-aqueous electrolyte secondary battery
JP7463704B2 (en) 2018-12-10 2024-04-09 東レ株式会社 Polyolefin microporous membrane, battery separator, and method for producing polyolefin microporous membrane

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09302120A (en) * 1996-05-08 1997-11-25 Tonen Chem Corp Production of finely porous membrane of polyolefin
JP2001002812A (en) * 1999-06-22 2001-01-09 Nitto Denko Corp Preparation of porous film
JP2005112905A (en) * 2003-10-03 2005-04-28 Nitto Denko Corp Porous film
JP2005343957A (en) * 2004-06-01 2005-12-15 Tonen Chem Corp Method for producing polyethylene fine porous film, fine porous film and use of the same
JP2006190507A (en) * 2005-01-04 2006-07-20 Nitto Denko Corp Lithium secondary battery
WO2009078477A1 (en) * 2007-12-14 2009-06-25 Tonen Chemical Corporation A method for removing diluent from an extrudate of a polymer solution
JP2012052085A (en) * 2010-08-05 2012-03-15 Nitto Denko Corp Polyolefin porous film, method and apparatus for producing the same
JP2012144650A (en) * 2011-01-12 2012-08-02 Asahi Kasei E-Materials Corp Polyolefin microporous film
WO2021015268A1 (en) * 2019-07-25 2021-01-28 東レ株式会社 Microporous polyolefin membrane, multilayer body, and nonaqueous electrolyte secondary battery using same
JP2021038379A (en) * 2019-08-28 2021-03-11 東レ株式会社 Porous polyolefin film

Also Published As

Publication number Publication date
KR20230160224A (en) 2023-11-23
CN116724371A (en) 2023-09-08
JPWO2022202095A1 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
EP3098256B1 (en) Polyolefin microporous membrane and method for producing same
JP7395827B2 (en) porous polyolefin film
CN110382605B (en) Polyolefin microporous membrane and battery using the same
JP7207300B2 (en) porous polyolefin film
CN106574070B (en) Microporous olefin film, method for producing same, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2021033735A1 (en) Polyolefin microporous film, layered body, and battery
JP2015208894A (en) Polyolefin-made laminated microporous film
JP7547844B2 (en) Porous Polyolefin Film
JP7380570B2 (en) Polyolefin microporous membrane, battery separator, secondary battery, and manufacturing method of polyolefin microporous membrane
WO2018180713A1 (en) Polyolefin microporous film and battery using same
CN114516982B (en) Polyolefin microporous membrane, separator for battery, and secondary battery
WO2021033733A1 (en) Polyolefin micro porous film, laminate, and battery
JP2022048093A (en) Polyolefin microporous film and battery separator
WO2022202095A1 (en) Microporous polyolefin film, separator for battery, and secondary battery
JP2022151659A (en) Polyolefin microporous film, separator for battery and secondary battery
CN114207004B (en) Polyolefin microporous membrane, separator for battery, and secondary battery
JP7567443B2 (en) Polyolefin microporous membrane and secondary battery
WO2023176880A1 (en) Polyolefin microporous film, non-aqueous electrolyte secondary battery, and filter
WO2023054139A1 (en) Microporous polyolefin membrane, separator for batteries, and secondary battery
WO2023176876A1 (en) Polyolefin microporous membrane, separator for batteries, nonaqueous electrolyte secondary battery and filter
WO2024019069A1 (en) Polyolefin microporous membrane, separator for batteries, and battery
JP2024109529A (en) Polyolefin microporous membranes, battery separators, liquid filters
CN118019787A (en) Polyolefin microporous film, separator for battery, and secondary battery

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022517180

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774893

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280009082.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22774893

Country of ref document: EP

Kind code of ref document: A1