Nothing Special   »   [go: up one dir, main page]

WO2022131342A1 - Terminal device, base station device, and method - Google Patents

Terminal device, base station device, and method Download PDF

Info

Publication number
WO2022131342A1
WO2022131342A1 PCT/JP2021/046589 JP2021046589W WO2022131342A1 WO 2022131342 A1 WO2022131342 A1 WO 2022131342A1 JP 2021046589 W JP2021046589 W JP 2021046589W WO 2022131342 A1 WO2022131342 A1 WO 2022131342A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
setting
handover
rrc
pdcp
Prior art date
Application number
PCT/JP2021/046589
Other languages
French (fr)
Japanese (ja)
Inventor
貴子 堀
昇平 山田
秀和 坪井
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2022570062A priority Critical patent/JPWO2022131342A1/ja
Publication of WO2022131342A1 publication Critical patent/WO2022131342A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/34Reselection control
    • H04W36/36Reselection control by user or terminal equipment
    • H04W36/362Conditional handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/25Maintenance of established connections

Definitions

  • the present invention relates to a terminal device, a base station device, and a method.
  • the present application claims priority with respect to Japanese Patent Application No. 2020-210122 filed in Japan on December 18, 2020, the contents of which are incorporated herein by reference.
  • 3GPP 3rd Generation Partnership Project
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • RAT Radio Access Technology
  • 3GPP technical studies and standardization of E-UTRA extended technology are still underway.
  • E-UTRA is also referred to as LongTermEvolution (LTE: registered trademark), and the extended technology may be referred to as LTE-Advanced (LTE-A) or LTE-Advanced Pro (LTE-A Pro).
  • LTE-A LongTermEvolution
  • LTE-A Pro LTE-Advanced Pro
  • NR New Radio or NR Radio access
  • RAT Radio Access Technology
  • Conditional handover is a technique for improving the robustness of handover by executing a handover procedure by a terminal device when one or a plurality of handover execution conditions are satisfied.
  • conditional handover is being standardized, but further study is required for detailed operation.
  • One aspect of the present invention has been made in view of the above circumstances, and one of the objects is to provide a terminal device, a base station device, and a method capable of efficiently controlling mobility.
  • one aspect of the present invention is a terminal device that communicates with the base station device, and the terminal device includes a receiving unit and a processing unit that receive an RRC message from the base station device, and the processing unit includes a processing unit.
  • the terminal device is set according to the RRC message, the handover failure process is performed based on the fact that the first timer of the terminal device has expired, and at least the first condition is satisfied in the handover failure process. Based on this, for some or all of the wireless bearers, some of the settings of the terminal device are retained, and at least some of the settings are excluded from the source PCell.
  • a process of returning the settings to the settings used in the source PCell is performed, and a process of returning the settings of the terminal device to the settings used in the source PCell is performed based on the fact that at least the first condition is not satisfied in the handover failure process.
  • the first condition includes at least that the terminal device has the first setting and that the conditional handover performed by the terminal device does not involve a key update, and the conditional handover is performed. Is a handover in which the terminal device executes the handover procedure when the conditional handover execution condition set in the terminal device is satisfied.
  • one aspect of the present invention is a base station device that communicates with a terminal device, wherein the base station device includes a transmission unit and a processing unit that transmit an RRC message to the terminal device, and the processing unit is provided.
  • the terminal device is made to set according to the RRC message, and the terminal device is made to perform the handover failure process based on the fact that the first timer of the terminal device has expired, and at least in the handover failure process. Based on the fact that the first condition is satisfied, some of the settings of the terminal device are retained for some or all of the wireless bearers, and at least some of the settings are excluded.
  • the process of returning to the set setting is performed, and the first condition is that the terminal device has the first setting and that the conditional handover performed by the terminal device does not involve key update.
  • the conditional handover is a handover in which the terminal device executes the handover procedure when the conditional handover execution condition set in the terminal device is satisfied.
  • a method of a terminal device that communicates with a base station device wherein the terminal device receives an RRC message from the base station device, sets the terminal device according to the RRC message, and sets the first timer of the terminal device.
  • the handover failure is processed based on the fact that the handover has expired, and based on the fact that at least the first condition is satisfied in the handover failure processing, the terminal device of the terminal device is subjected to a part or all of the wireless bearers.
  • some of the settings are retained, and at least some of the settings other than the above-mentioned settings are returned to the settings used in the source PCell.
  • the process of returning the setting of the terminal device to the setting used in the source PCell is performed, and in the first condition, the first setting is performed in the terminal device.
  • the conditional handover performed by the terminal device does not involve key update, and the conditional handover is when the conditional handover execution condition set in the terminal device is satisfied.
  • This is a handover in which the handover procedure is executed by the terminal device.
  • one aspect of the present invention is a method of a base station device that communicates with a terminal device, wherein the base station device transmits an RRC message to the terminal device, and the terminal device is set according to the RRC message. Based on the fact that the first timer of the terminal device has expired, the terminal device is made to perform the handover failure process, and the handover failure process satisfies at least the first condition. For some or all wireless bearers, the process of retaining some of the settings of the terminal device and returning at least the settings other than some of the settings to the settings used in the source PCell.
  • the processing of returning the setting of the terminal device to the setting used in the source PCell is performed based on the fact that at least the first condition is not satisfied, and the first condition is performed.
  • the condition of includes at least that the first setting is made in the terminal device and that the conditional handover performed by the terminal device does not involve key update, and the conditional handover means the terminal.
  • the terminal device can realize efficient mobility processing.
  • the schematic diagram of the communication system which concerns on embodiment of this invention.
  • the figure of an example of the E-UTRA protocol composition which concerns on embodiment of this invention.
  • the figure of an example of the NR protocol composition which concerns on embodiment of this invention.
  • the figure which shows an example of the flow of the procedure for various setting in RRC which concerns on embodiment of this invention.
  • the block diagram which shows the structure of the terminal apparatus in embodiment of this invention.
  • the block diagram which shows the structure of the base station apparatus in embodiment of this invention.
  • An example of the ASN.1 description contained in the message regarding the resetting of the RRC connection in E-UTRA in the embodiment of the present invention.
  • An example of an ASN.1 description representing a field and / or an information element relating to the setting of a conditional handover in an embodiment of the invention.
  • LTE (and LTE-A, LTE-A Pro) and NR may be defined as different radio access technologies (Radio Access Technology: RAT).
  • RAT Radio Access Technology: RAT
  • NR may also be defined as a technique included in LTE.
  • LTE may also be defined as a technique included in NR.
  • LTE that can be connected to NR by MultiRadio Dual connectivity (MR-DC) may be distinguished from conventional LTE.
  • MR-DC MultiRadio Dual connectivity
  • LTE using 5GC for the core network may be distinguished from conventional LTE using EPC for the core network.
  • EPC EPC for the core network.
  • conventional LTE may be LTE that does not implement the technology standardized after Release 15 in 3GPP.
  • Embodiments of the present invention may be applied to NR, LTE and other RATs.
  • LTE Long Term Evolution
  • NR Long Term Evolution
  • E-UTRA in the embodiment of the present invention may be replaced with the term LTE
  • LTE may be replaced with the term E-UTRA
  • the names of the nodes and entities when the wireless access technique is E-UTRA or NR, the processing in each node and the entity, and the like will be described. It may be used for other wireless access techniques.
  • the name of each node or entity in the embodiment of the present invention may be another name.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present invention.
  • the functions of each node, wireless access technique, core network, interface, etc. described with reference to FIG. 1 are some functions closely related to the embodiment of the present invention, and may have other functions.
  • the E-UTRA100 may be a wireless access technology.
  • the E-UTRA100 may be an air interface between the UE 122 and the eNB 102.
  • the air interface between UE122 and eNB102 may be called the Uu interface.
  • the eNB (E-UTRAN Node B) 102 may be a base station device of the E-UTRA100.
  • the eNB 102 may have the E-UTRA protocol described below.
  • the E-UTRA protocol may be composed of the E-UTRA user plane (User Plane: UP) protocol described later and the E-UTRA control plane (Control Plane: CP) protocol described later.
  • the eNB 102 may terminate the E-UTRA user plane (User Plane: UP) protocol and the E-UTRA control plane (Control Plane: CP) protocol for the UE 122.
  • E-UTRA user plane User Plane: UP
  • E-UTRA control plane Control Plane: CP
  • a radio access network composed of eNB may be called E-UTRAN.
  • EPC (Evolved Packet Core) 104 may be a core network.
  • the interface 112 is an interface between the eNB 102 and the EPC 104 and may be referred to as the S1 interface.
  • the interface 112 may include a control plane interface through which control signals pass and / or a user plane interface through which (and / or) user data passes.
  • the control plane interface of the interface 112 may be terminated by the Mobility Management Entity (MME: not shown) in the EPC 104.
  • MME Mobility Management Entity
  • S-GW serving gateway
  • the control plane interface of interface 112 may be referred to as the S1-MME interface.
  • the user plane interface of interface 112 may be referred to as the S1-U interface.
  • one or more eNB 102s may be connected to the EPC 104 via the interface 112.
  • An interface may exist between multiple eNB 102s connected to the EPC 104 (not shown).
  • the interface between a plurality of eNB 102s connected to the EPC 104 may be called an X2 interface.
  • the NR106 may be a wireless access technology. Further, the NR106 may be an air interface between the UE 122 and the gNB 108. The air interface between UE122 and gNB108 may be called the Uu interface.
  • the gNB (gNodeB) 108 may be a base station device of the NR106.
  • the gNB108 may have the NR protocol described below.
  • the NR protocol may be composed of the NR user plane (User Plane: UP) protocol described later and the NR control plane (Control Plane: CP) protocol described later.
  • the gNB 108 may terminate the NR user plane (User Plane: UP) protocol and the NR control plane (Control Plane: CP) protocol for the UE 122.
  • 5GC110 may be a core network.
  • Interface 116 is an interface between gNB 108 and 5GC 110 and may be referred to as an NG interface.
  • the interface 116 may include a control plane interface through which control signals pass and / or a user plane interface through which user data passes.
  • the control plane interface of the interface 116 may be terminated by the Access and mobility Management Function (AMF: not shown) in the 5GC110.
  • the user plane interface of the interface 116 may be terminated by the User Plane Function (UPF: not shown) in the 5GC110.
  • the control plane interface of interface 116 may be called an NG-C interface.
  • the user plane interface of interface 116 may be called an NG-U interface.
  • one or more gNB108s may be connected to the 5GC110 via the interface 116.
  • An interface may exist between multiple gNB 108s connected to the 5GC110 (not shown).
  • the interface between multiple gNB108s connected to the 5GC110 may be called the Xn interface.
  • the eNB 102 may have a function to connect to the 5GC110.
  • the eNB 102 that has the function of connecting to the 5GC110 may be called ng-eNB.
  • Interface 114 is the interface between eNB 102 and 5GC110 and may be referred to as the NG interface.
  • the interface 114 may include a control plane interface through which control signals pass and / or a user plane interface through which user data passes.
  • the control plane interface of the interface 114 may be terminated by the Access and mobility Management Function (AMF: not shown) in the 5GC110.
  • the user plane interface of the interface 114 may be terminated by the User Plane Function (UPF: not shown) in the 5GC110.
  • the control plane interface of interface 114 may be called an NG-C interface.
  • the user plane interface of interface 114 may be called an NG-U interface.
  • a radio access network composed of ng-eNB or gNB may be referred to as NG-RAN.
  • NG-RAN, E-UTRAN, eNB, ng-eNB, gNB, etc. may be simply referred to as a network.
  • one or more eNB 102s may be connected to the 5GC110 via the interface 114.
  • An interface may exist between multiple eNB 102s connected to the 5GC110 (not shown).
  • the interface between multiple eNB 102s connected to the 5GC110 may be referred to as the Xn interface.
  • the eNB 102 connected to the 5GC110 and the gNB108 connected to the 5GC110 may be connected by the interface 120.
  • the interface 120 between the eNB 102 connected to the 5GC110 and the gNB108 connected to the 5GC110 may be referred to as an Xn interface.
  • GNB108 may have a function to connect to EPC104.
  • the gNB 108 that has the function of connecting to the EPC104 may be called en-gNB.
  • Interface 118 is the interface between gNB 108 and EPC 104 and may be referred to as the S1 interface.
  • the interface 118 may have a user plane interface through which user data passes.
  • the user plane interface of interface 118 may be terminated by S-GW (not shown) in EPC104.
  • the user plane interface of interface 118 may be called the S1-U interface.
  • the eNB 102 connected to the EPC 104 and the gNB 108 connected to the EPC 104 may be connected by the interface 120.
  • the interface 120 between the eNB 102 connected to the EPC 104 and the gNB 108 connected to the EPC 104 may be referred to as the X2 interface.
  • Interface 124 is an interface between EPC104 and 5GC110, and may be an interface through CP only, UP only, or both CP and UP. Further, some or all of the interfaces 114, interface 116, interface 118, interface 120, interface 124, etc. may not exist depending on the communication system provided by the telecommunications carrier or the like.
  • UE122 may be a terminal device capable of receiving notification information and paging messages transmitted from eNB102 and / or gNB108.
  • the UE 122 may be a terminal device capable of wireless connection with the eNB 102 and / or the gNB 108.
  • the UE 122 may be a terminal device capable of wirelessly connecting to the eNB 102 and wirelessly to the gNB 108 at the same time.
  • UE122 may have an E-UTRA protocol and / or an NR protocol.
  • the wireless connection may be a Radio Resource Control (RRC) connection.
  • RRC Radio Resource Control
  • a wireless connection may be made by establishing a wireless bearer (RB: Radio Bearer) between the UE 122 and the eNB 102 and / or the gNB 108.
  • the radio bearer used for CP may be called a signaling radio bearer (SRB: Signaling Radio Bearer).
  • the wireless bearer used for UP may be called a data wireless bearer (DRB Data Radio Bearer).
  • a wireless bearer identifier (Identity: ID) may be assigned to each wireless bearer.
  • the radio bearer identifier for SRB may be referred to as an SRB identifier (SRB Identity or SRB ID).
  • the radio bearer identifier for DRB may be referred to as a DRB identifier (DRB Identity or DRB ID).
  • the UE 122 may be a terminal device that can be connected to the EPC 104 and / or the 5GC110 via the eNB 102 and / or the gNB 108. If the eNB 102 with which the UE 122 communicates and / or the core network to which the gNB 108 is connected is the EPC 104, each DRB established between the UE 122 and the eNB 102 and / or the gNB 108 further goes through each EPS within the EPC 104. (Evolved Packet System) It may be uniquely associated with the bearer. Each EPS bearer may be identified by an EPS bearer identifier (Identity, or ID). Further, the same QoS may be guaranteed for data such as IP packets passing through the same EPS bearer and Ethernet (registered trademark) frames.
  • EPS bearer may be identified by an EPS bearer identifier (Identity, or ID). Further, the same QoS may be guaranteed for data such as IP packets passing through the same EPS
  • each DRB established between the UE 122 and the eNB 102 and / or the gNB 108 is further established in the 5GC110. It may be associated with one of the PDU (Packet Data Unit) sessions. Each PDU session may have one or more QoS flows. Each DRB may be mapped to one or more QoS flows and may not be associated with any QoS flow. Each PDU session may be identified by a PDU session identifier (Identity, Identifier, or ID). Further, each QoS flow may be identified by the QoS flow identifier Identity, Identifier, or ID). Further, the same QoS may be guaranteed for data such as IP packets and Ethernet frames that pass through the same QoS flow.
  • PDU session identifier Identity, Identifier, or ID
  • the EPC104 does not have to have a PDU session and / or a QoS flow.
  • the 5GC110 does not have to have an EPS bearer.
  • the UE122 When the UE122 is connected to the EPC104, the UE122 has information on the EPS bearer, but not in the PDU session and / or QoS flow.
  • the UE122 when the UE122 is connected to the 5GC110, the UE122 has information in the PDU session and / or QoS flow, but does not have to have the EPS bearer information.
  • eNB 102 and / or gNB 108 are also simply referred to as a base station device, and UE 122 is also simply referred to as a terminal device or UE.
  • FIG. 2 is a diagram of an example of the E-UTRA protocol configuration (protocol architecture) according to the embodiment of the present invention.
  • FIG. 3 is a diagram of an example of the NR protocol configuration according to the embodiment of the present invention.
  • the functions of the respective protocols described with reference to FIGS. 2 and / or 3 are some functions closely related to the embodiment of the present invention, and may have other functions.
  • the uplink (UL) may be a link from the terminal device to the base station device.
  • the downlink (downlink: DL) may be a link from the base station device to the terminal device.
  • FIG. 2 (A) is a diagram of the E-UTRA user plane (UP) protocol stack.
  • the E-UTRANUP protocol may be a protocol between UE122 and eNB102. That is, the E-UTRANUP protocol may be a protocol terminated by eNB 102 on the network side.
  • the E-UTRA user plane protocol stack consists of PHY (Physical layer) 200, which is a wireless physical layer (radio physical layer), and MAC (Medium), which is a medium access control layer (medium access control layer).
  • PHY Physical layer
  • MAC Medium
  • medium access control layer medium access control layer
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • packet data convergence protocol layer Packet data convergence protocol layer
  • Figure 3 (A) is a diagram of the NR user plane (UP) protocol stack.
  • the NRUP protocol may be a protocol between UE122 and gNB108. That is, the NRUP protocol may be a protocol terminated by gNB108 on the network side.
  • the E-UTRA user plane protocol stack consists of PHY300, which is a wireless physical layer, MAC302, which is a medium access control layer, RLC304, which is a wireless link control layer, and PDCP306, which is a packet data convergence protocol layer.
  • the service data adaptation protocol layer (service data adaptation protocol layer) SDAP (Service Data Adaptation Protocol) 310 may be configured.
  • FIG. 2B is a diagram of the E-UTRA control plane (CP) protocol configuration.
  • the RRC (Radio Resource Control) 208 which is a radio resource control layer (radio resource control layer)
  • RRC208 may be a protocol terminated by eNB 102 on the network side.
  • the NAS (Non Access Stratum) 210 which is a non-AS (Access Stratum) layer (non-AS layer)
  • NAS210 may be a protocol terminated by MME on the network side.
  • FIG. 3 is a diagram of the NR control plane (CP) protocol configuration.
  • the radio resource control layer RRC308 may be a protocol between UE122 and gNB108. That is, RRC308 may be a protocol terminated by gNB108 on the network side.
  • NAS312 which is a non-AS layer, may be a protocol between UE122 and AMF. That is, NAS312 may be a protocol terminated by AMF on the network side.
  • the AS (Access Stratum) layer may be a layer terminated between UE122 and eNB102 and / or gNB108. That is, the AS layer is a layer containing a part or all of PHY200, MAC202, RLC204, PDCP206, and RRC208, and / or a layer containing a part or all of PHY300, MAC302, RLC304, PDCP306, SDAP310, and RRC308. Good.
  • the E-UTRA protocol and the NR protocol are not distinguished below, and PHY (PHY layer), MAC (MAC layer), RLC (RLC layer), PDCP (PDCP layer), RRC ( The terms RRC layer) and NAS (NAS layer) may be used.
  • PHY PHY
  • MAC MAC layer
  • RLC RLC
  • PDCP PDCP layer
  • RRC RRC
  • NAS NAS layer
  • the SDAP may be an SDAP (SDAP layer) of the NR protocol.
  • the PHY200, MAC202, RLC204, PDCP206, and RRC208 are referred to as the PHY for E-UTRA or the PHY for LTE, E-UTRA, respectively.
  • PHY200, MAC202, RLC204, PDCP206, and RRC208 can be used as E-UTRA PHY or LTE PHY, E-UTRA MAC or LTE MAC, E-UTRA RLC or LTE RLC, E-UTRA PDCP or LTE PDCP, and E-UTRA, respectively. It may be described as RRC or LTE RRC.
  • the PHY300, MAC302, RLC304, PDCP306, and RRC308 are called NR PHY, NR MAC, NR RLC, NR RLC, and NR RRC, respectively.
  • PHY200, MAC302, RLC304, PDCP306, and RRC308 may be described as NRPHY, NRMAC, NRRLC, NRPDCP, NRRRC, etc., respectively.
  • An entity that has some or all of the functions of the MAC layer may be called a MAC entity.
  • An entity that has some or all of the functions of the RLC layer may be called an RLC entity.
  • An entity that has some or all of the functions of the PDCP layer may be called a PDCP entity.
  • An entity that has some or all of the functions of the SDAP layer may be called an SDAP entity.
  • An entity that has some or all of the functions of the RRC layer may be called an RRC entity.
  • the MAC entity, RLC entity, PDCP entity, SDAP entity, and RRC entity may be paraphrased as MAC, RLC, PDCP, SDAP, and RRC, respectively.
  • the data provided from the lower layer to MAC, RLC, PDCP, SDAP and / or the data provided to MAC, RLC, PDCP, SDAP from the lower layer are referred to as MAC PDU (Protocol Data Unit) and RLC, respectively. It may be called PDU, PDCP PDU, SDAP PDU.
  • the data provided from the upper layer to MAC, RLC, PDCP, SDAP and / or the data provided to the upper layer from MAC, RLC, PDCP, SDAP are referred to as MAC SDU (Service Data Unit) and RLC SDU, respectively.
  • MAC SDU Service Data Unit
  • RLC SDU Service Data Unit
  • the segmented RLC SDU may be called the RLC SDU segment.
  • the PHY of the terminal device may have a function of receiving data transmitted from the PHY of the base station device via the downlink (DL) physical channel (Physical Channel).
  • the PHY of the terminal device may have a function of transmitting data to the PHY of the base station device via an uplink (UL) physical channel.
  • the PHY may be connected to the upper MAC by a transport channel.
  • the PHY may pass data to the MAC over the transport channel.
  • the PHY may also be provided with data from the MAC via the transport channel.
  • RNTI Radio Network Temporary Identifier
  • the physical channels used for wireless communication between the terminal device and the base station device may include the following physical channels.
  • PBCH Physical Broadcast CHannel
  • PDCCH Physical Downlink Control CHannel
  • PDSCH Physical Downlink Shared CHannel
  • PUCCH Physical Uplink Control CHannel
  • PUSCH Physical Uplink Shared CHannel
  • PRACH Physical Random Access CHannel
  • PBCH may be used to notify the system information required by the terminal device.
  • PBCH may be used to notify the time index (SSB-Index) within the period of the block of the synchronization signal (also referred to as SS / PBCH block).
  • SSB-Index time index within the period of the block of the synchronization signal
  • PDCCH may be used to transmit (or carry) downlink control information (Downlink Control Information: DCI) in downlink wireless communication (wireless communication from a base station device to a terminal device).
  • DCI Downlink Control Information
  • one or more DCIs (which may be referred to as DCI format) may be defined for the transmission of downlink control information. That is, the field for the downlink control information may be defined as DCI and mapped to the information bit.
  • the PDCCH may be transmitted in the PDCCH candidate (candidate).
  • the terminal device may monitor the set of PDCCH candidates in the serving cell. Monitoring a set of PDCCH candidates may mean attempting to decode the PDCCH according to a DCI format.
  • the DCI format may be used for scheduling PUSCH in the serving cell.
  • PUSCH may be used for sending user data, sending RRC messages described later, and the like.
  • the PUCCH may be used to transmit uplink control information (UCI) in uplink wireless communication (wireless communication from a terminal device to a base station device).
  • the uplink control information may include channel state information (CSI: Channel State Information) used to indicate the state of the downlink channel.
  • the uplink control information may include a scheduling request (SR: Scheduling Request) used for requesting a UL-SCH (UL-SCH: Uplink Shared CHannel) resource.
  • SR Scheduling Request
  • UL-SCH Uplink Shared CHannel
  • the uplink control information may include HARQ-ACK (Hybrid Automatic Repeat request ACK knowledgement).
  • PDSCH may be used for transmission of downlink data (DL-SCH: Downlink Shared CHannel) from the MAC layer. Further, in the case of a downlink, it may be used for transmission of system information (SI: System Information), random access response (RAR: Random Access Response), and the like.
  • SI System Information
  • RAR Random Access Response
  • PUSCH may be used to transmit HARQ-ACK and / or CSI together with uplink data (UL-SCH: Uplink Shared CHannel) or uplink data from the MAC layer.
  • PUSCH may also be used to transmit CSI only, or HARQ-ACK and CSI only. That is, PUSCH may be used to transmit only UCI.
  • PDSCH or PUSCH may also be used to transmit RRC signaling (also referred to as RRC message), and MAC control elements.
  • RRC signaling also referred to as RRC message
  • the RRC signaling transmitted from the base station device may be a signal common to a plurality of terminal devices in the cell.
  • the RRC signaling transmitted from the base station device may be dedicated signaling (also referred to as dedicated signaling) to a certain terminal device. That is, the information unique to the terminal device (UE specific) may be transmitted to a certain terminal device using a dedicated signaling.
  • PUSCH may also be used to transmit UE Capability on the uplink.
  • PRACH may be used to send a random access preamble.
  • PRACH is used to indicate initial connection establishment procedures, handover procedures, connection re-establishment procedures, synchronization (timing adjustment) for uplink transmissions, and requests for PUSCH (UL-SCH) resources. May be used for.
  • the MAC may be referred to as a MAC sublayer.
  • the MAC may have a function of mapping various logical channels (logical channels: Logical Channels) to the corresponding transport channels.
  • the logical channel may be identified by a logical channel identifier (LogicalChannelIdentity or LogicalChannelID).
  • the MAC may be connected to the upper RLC by a logical channel (logical channel).
  • the logical channel may be divided into a control channel for transmitting control information and a traffic channel for transmitting user information, depending on the type of information to be transmitted. Further, the logical channel may be divided into an uplink logical channel and a downlink logical channel.
  • the MAC may have the function of multiplexing MAC SDUs belonging to one or more different logical channels and providing them to the PHY.
  • the MAC may also have the function of demultiplexing the MAC PDU provided by the PHY and providing it to the upper layer via the logical channel to which each MAC SDU belongs.
  • the MAC may have a function of performing error correction through HARQ (Hybrid Automatic Repeat reQuest).
  • the MAC may have a scheduling report (Scheduling Report: SR) function that reports scheduling information.
  • the MAC may have a function of performing priority processing between terminal devices by using dynamic scheduling. Further, the MAC may have a function of performing priority processing between logical channels in one terminal device.
  • the MAC may have a function of prioritizing overlapping resources in one terminal device.
  • E-UTRA MAC may have a function to identify Multimedia Broadcast Multicast Services (MBMS).
  • MBMS Multimedia Broadcast Multicast Services
  • the NR MAC may have a function of identifying a multicast / broadcast service (Multicast Broadcast Service: MBS).
  • MBS Multicast Broadcast Service
  • the MAC may have the ability to select a transport format.
  • MAC has a function to perform intermittent reception (DRX: Discontinuous Reception) and / or intermittent transmission (DTX: Discontinuous Transmission), a function to execute a random access (Random Access: RA) procedure, and a power to notify information on transmittable power.
  • DRX Discontinuous Reception
  • DTX Discontinuous Transmission
  • RA random access
  • the NR MAC may have a headroom report (Power Headroom Report: PHR) function, a buffer status report (Buffer Status Report: BSR) function, etc. to notify the data amount information of the transmission buffer.
  • the NR MAC may have a Bandwidth Adaptation (BA) function.
  • BA Bandwidth Adaptation
  • the MAC PDU format used in E-UTRA MAC and the MAC PDU format used in NR MAC may be different.
  • the MAC PDU may include a MAC control element (MAC control element: MAC CE), which is an element for performing control in the MAC.
  • UL Uplink
  • DL Downlink
  • BCCH Broadcast Control Channel
  • SI System Information
  • PCCH Packet Control Channel
  • PCCH Packet Control Channel
  • CCCH Common Control Channel
  • CCCH may be a logical channel for transmitting control information between the terminal device and the base station device.
  • CCCH may be used when the terminal device does not have an RRC connection.
  • CCCH may also be used between a base station appliance and a plurality of terminal appliances.
  • DCCH Dedicated Control Channel
  • the dedicated control information may be control information dedicated to each terminal device.
  • DCCH may be used when the terminal device has an RRC connection.
  • DTCH (Dedicated Traffic Channel) may be a logical channel for transmitting user data on a one-to-one basis (point-to-point) between a terminal device and a base station device.
  • DTCH may be a logical channel for transmitting dedicated user data.
  • the dedicated user data may be user data dedicated to each terminal device.
  • DTCH may exist on both the uplink and the downlink.
  • MTCH Multicast Traffic Channel
  • MTCH may be a one-to-multipoint downlink channel for transmitting data from a base station device to a terminal device.
  • MTCH may be a logical channel for multicast.
  • MTCH may be used by the terminal device only if the terminal device receives MBMS.
  • MCCH Multicast Control Channel
  • MCCH may be a one-to-multipoint downlink channel for sending MBMS control information for one or more MTCHs from a base station device to a terminal device.
  • MCCH may be a logical channel for multicast.
  • MCCH may be used by a terminal device only when the terminal device receives MBMS or is interested in receiving MBMS.
  • SC-MTCH Single Cell Multicast Traffic Channel
  • SC-PTM Single Cell Point-To-Multipoint
  • SC-MCCH Single Cell Multicast Control Channel
  • SC-MCCH Single Cell Multicast Control Channel
  • SC-MCCH Single Cell Multicast Control Channel
  • SC-MCCH may be a logical channel for multicast.
  • SC-MCCH may be used by the terminal device only when the terminal device receives MBMS using SC-PTM or the terminal device is interested in receiving MBMS using SC-PTM.
  • CCCH may be mapped to UL-SCH (Uplink Shared Channel), which is an uplink transport channel.
  • UL-SCH Uplink Shared Channel
  • DCCH may be mapped to UL-SCH (Uplink Shared Channel), which is an uplink transport channel.
  • UL-SCH Uplink Shared Channel
  • DTCH may be mapped to UL-SCH (Uplink Shared Channel), which is an uplink transport channel.
  • UL-SCH Uplink Shared Channel
  • BCCH may be mapped to BCH (Broadcast Channel) and / or DL-SCH (Downlink Shared Channel), which are downlink transport channels.
  • BCH Broadcast Channel
  • DL-SCH Downlink Shared Channel
  • PCCH may be mapped to PCH (Paging Channel), which is a downlink transport channel.
  • PCH Packet Control Channel
  • CCCH may be mapped to DL-SCH (Downlink Shared Channel), which is a downlink transport channel.
  • DL-SCH Downlink Shared Channel
  • DCCH may be mapped to DL-SCH (Downlink Shared Channel), which is a downlink transport channel.
  • DL-SCH Downlink Shared Channel
  • DTCH may be mapped to DL-SCH (Downlink Shared Channel), which is a downlink transport channel.
  • DL-SCH Downlink Shared Channel
  • MTCH may be mapped to MCH (Multicast Channel), which is a downlink transport channel.
  • MCH Multicast Channel
  • MCCH may be mapped to MCH (Multicast Channel), which is a downlink transport channel.
  • MCH Multicast Channel
  • SC-MTCH may be mapped to DL-SCH (Downlink Shared Channel), which is a downlink transport channel.
  • DL-SCH Downlink Shared Channel
  • SC-MTCH may be mapped to DL-SCH (Downlink Shared Channel), which is a downlink transport channel.
  • DL-SCH Downlink Shared Channel
  • RLC may be referred to as an RLC sublayer.
  • the E-UTRA RLC may have a function of segmenting and / or concatenation the data provided from the PDCP of the upper layer and providing it to the lower layer (lower layer).
  • E-UTRA RLC may have a function of reassembling and re-ordering the data provided from the lower layer and providing it to the upper layer.
  • the NR RLC may have a function of adding a sequence number independent of the sequence number added by the PDCP to the data provided by the PDCP of the upper layer.
  • NR RLC may have the function of segmenting the data provided by PDCP and providing it to the lower layer.
  • NR RLC may have a function of reassembling the data provided from the lower layer and providing it to the upper layer.
  • RLC may have a data retransmission function and / or a retransmission request function (Automatic Repeat reQuest: ARQ).
  • ARQ Automatic Repeat reQuest
  • RLC may have a function to correct errors by ARQ.
  • Control information indicating data that needs to be retransmitted, which is sent from the receiving side of RLC to the transmitting side in order to perform ARQ, may be called a status report.
  • the status report transmission instruction sent from the sender side of RLC to the receiver side may be called a pole.
  • RLC may also have a function to detect data duplication.
  • RLC may also have a data discard function.
  • the RLC may have three modes: transparent mode (TM: Transparent Mode), non-response mode (UM: Unacknowledged Mode), and response mode (AM: Acknowledged Mode).
  • TM transparent mode
  • UM Unacknowledged Mode
  • AM Acknowledged Mode
  • TM the data received from the upper layer is not divided and the RLC header need not be added.
  • the TM RLC entity is a uni-directional entity and may be configured as a transmitting TM RLC entity or as a receiving TM RLC entity.
  • UM data received from the upper layer is divided and / or combined, RLC header is added, etc., but data retransmission control does not have to be performed.
  • the UMRLC entity may be a unidirectional entity or a bi-directional entity.
  • the UMRLC entity may be configured as a sending UMRLC entity or as a receiving UMRLC entity.
  • the UM RLC entity is a bidirectional entity, the UM RRC entity may be configured as a UM RLC entity consisting of a transmitting side and a receiving side.
  • data received from the upper layer may be divided and / or combined, an RLC header may be added, and data retransmission control may be performed.
  • the AMRLC entity is a bidirectional entity and may be configured as an AMRLC consisting of a transmitting side and a receiving side.
  • the data provided to the lower layer by TM and / or the data provided from the lower layer may be referred to as TMDPDU.
  • the data provided to the lower layer by UM and / or the data provided from the lower layer may be referred to as UMD PDU. Further, the data provided to the lower layer by AMD or the data provided from the lower layer may be called AMD PDU.
  • the RLC PDU format used in E-UTRA RLC and the RLC PDU format used in NR RLC may be different.
  • the RLC PDU may include an RLC PDU for data and an RLC PDU for control.
  • the RLC PDU for data may be referred to as an RLC DATA PDU (RLC Data PDU, RLC data PDU).
  • the control RLC PDU may be called an RLC CONTROL PDU (RLC Control PDU, RLC control PDU, RLC control PDU).
  • state variables including the following state variables (A) to (K) may be used.
  • C A pole-state variable used by the sender of the AM RLC entity.
  • the UM receive state variable used by the receiver of the UM RLC entity Indicates the minimum of the UMD PDU sequence numbers that can be reassembled. It can be a state variable named RX_Next_Reassembly.
  • UM reassembly timer state variable used on the receiving side of the UM RLC entity Indicates the value of the sequence number next to the sequence number of the UMD PDU that triggered the reassembly timer. It can be a state variable named RX_Timer_Trigger.
  • K The UM receive state variable used by the receiver of the UM RLC entity. Indicates the value of the sequence number next to the value of the highest sequence number in the received UMD PDU. It may be a state variable named RX_Next_Highest.
  • a counter that counts the number of AMD PDUs sent since the last pole bit transmission. It may be a counter named PDU_WITHOUT_POLL.
  • B A counter that counts the number of bytes of data sent since the last pole bit transmission. It may be a counter named BYTE_WITHOUT_POLL.
  • C A counter that counts the number of times the RLC SDU or RLC SDU segment has been retransmitted. It may be a counter named RETX_COUNT.
  • timer used in an RLC entity a counter containing some or all of the following timers (A) to (C) may be used.
  • B Timer for detecting the loss of RLC PDU used by the receiving side of the AM RLC entity and the receiving UM RLC entity. It may be a timer named t-Reassembly.
  • C A timer used by the receiver of the AM RLC entity to prevent the transmission of status PDUs. It may be a timer named t-StatusProhibit.
  • PDCP may be referred to as a PDCP sublayer.
  • PDCP may have a function to maintain the sequence number.
  • the PDCP may also have a header compression / decompression function for efficiently transmitting user data such as IP packets and Ethernet frames in the wireless section.
  • the protocol used for IP packet header compression / decompression may be called the ROHC (Robust Header Compression) protocol.
  • the protocol used for Ethernet frame header compression / decompression may be called the EHC (Ethernet (registered trademark) Header Compression) protocol.
  • the PDCP may also have a data encryption / decryption function.
  • the PDCP may also have the function of data integrity protection / integrity verification.
  • the data encryption / decryption function and / or the data integrity protection / integrity verification function may be paraphrased as a security function.
  • the PDCP may also have a re-ordering function.
  • the PDCP may also have a PDCP SDU retransmission function.
  • PDCP may have a function of discarding data using a discard timer (discard timer).
  • the PDCP may also have a Duplication function.
  • the PDCP may also have a function of discarding duplicate received data.
  • the PDCP entity is a bidirectional entity and may consist of a transmitting PDCP entity and a receiving PDCP entity.
  • the PDCP PDU format used in E-UTRA PDCP and the PDCP PDU format used in NR PDCP may be different.
  • the PDCP PDU may include a PDCP PDU for data and a PDCP PDU for control.
  • the PDCP PDU for data may be referred to as a PDCP DATA PDU (PDCP Data PDU, PDCP data PDU).
  • the control PDCP PDU may be called a PDCP CONTROL PDU (PDCP Control PDU, PDCP control PDU, PDCP control PDU).
  • the COUNT value may be used when performing encryption or integrity protection processing.
  • the COUNT value may consist of the HFN (Hyper Frame Number), which is a PDCP state variable, and the sequence number (SN: Sequence Number) added to the header of the PDCP PDU.
  • the sequence number may be incremented by 1 each time the sending PDCP entity generates a PDCP DATA PDU.
  • the HFN may be incremented by 1 each time the sequence number reaches the maximum value in the transmit PDCP entity and the receive PDCP entity.
  • some or all of the following state variables (state variables) (A) to (F) may be used.
  • B In this PDCP entity, a state variable indicating the sequence number of the PDCP SDU to be transmitted next. It can be a state variable named Next_PDCP_TX_SN.
  • C A state variable that represents the HFN value used to generate the COUNT value for the PDCP PDU in this PDCP entity. It can be a state variable named TX_HFN.
  • D A state variable that indicates the COUNT value of the PDCP SDU that is expected to be received next in the receiving PDCP entity. It may be a state variable named RX_NEXT.
  • (E) A state variable that indicates the sequence number of the PDCP SDU that is expected to be received next in the receiving PDCP entity. It can be a state variable named Next_PDCP_RX_SN.
  • (F) A state variable that represents the HFN value used to generate the COUNT value for the received PDCP PDU in this PDCP entity. It may be a state variable named RX_HFN.
  • the same security key (encryption key and / or integrity) is used for the uplink direction data and the downlink direction data in each wireless bearer. It is forbidden to use the same COUNT value more than once for the protection key).
  • re-ordering means that the PDCP SDU is stored in the receive buffer (reordering buffer), and the PDCP SDU is placed in the upper layer in the order of the COUNT values obtained from the header information of the PDCP DATA PDU. It may be a process for delivery.
  • reordering if the COUNT value of the received PDCP data PDU is the COUNT value of the first PDCP SDU that has not yet been passed to the upper layer, the stored PDCP SDU is received by the upper layer in the order of the COUNT value. You may perform the process of passing.
  • a PDCP data PDU with a COUNT value smaller than the COUNT value of the received PDCP data PDU cannot be received (PDCP data PDU is lost)
  • the received PDCP data PDU is used as PDCP SDU. It may be converted to and stored in the reordering buffer, all the lost PDCP data PDUs may be received, converted to PDCP SDU, and then passed to the upper layer.
  • a reordering timer (a timer named t-Reordering) may be used to detect the loss of PDCP data PDUs. Further, for reordering, some or all of the following state variables (state variables) (A) to (F) may be used.
  • B A state variable that indicates the sequence number of the PDCP SDU that is expected to be received next in the receiving PDCP entity. It can be a state variable named Next_PDCP_RX_SN.
  • C A state variable representing the HFN value used to generate the COUNT value for the received PDCP PDU in this PDCP entity. It may be a state variable named RX_HFN.
  • E In the received PDCP entity, a state variable indicating the sequence number of the PDCP PDU of the PDCP SDU that was last delivered to the upper layer. It may be a state variable named Last_Submitted_PDCP_RX_SN.
  • DRB Acknowledged Mode Data Radio Bearer
  • DRB UM DRB: Unacknowledged Mode Data Radio Bearer
  • C Unacknowledged Mode in which transmission of PDCP status report is set from the upper layer
  • PDCP You may also trigger a status report.
  • the upper layer requests the re-establishment of the PDCP entity.
  • the upper layer requests PDCP data recovery.
  • the upper layer requests an uplink data switch.
  • the upper layer has reconfigured this PDCP entity to release the DAPS (Dual Active Protocol Stack), and a parameter named daps source release has been set.
  • the receiving PDCP entity may create the PDCP status report.
  • the PDCP control PDU for the PDCP status report contains information on the PDCP SDU waiting to be received, including the COUNT value of the first PDCP PDU waiting to be received that has not been delivered to the upper layer. It may be done by doing.
  • the receiving PDCP entity that created the PDCP status report may submit the created PDCP status report to a lower layer via the sending PDCP entity.
  • the PDCP entity of UMDRB which is set to send the PDCP status report from the upper layer, has requested PDCP data recovery from the upper layer.
  • the PDCP entity of UMDRB that determines that PDCP data recovery is requested from the upper layer creates a PDCP status report in the receiving PDCP entity based on the PDCP data recovery request from the upper layer, and the sending PDCP entity.
  • the created PDCP status report may be submitted to the lower layer via.
  • the lower layer may be the UM RLC entity of the RLC bearer associated with the PDCP entity.
  • the PDCP entity of the UMDRB to which the PDCP status report transmission is set from the upper layer is requested to recover the PDCP data from the upper layer.
  • the DAPS bearer may be a bearer in which one or more RLC entities for the source cell and one or more RLC entities for the target cell are associated with the PDCP entity.
  • the PDCP data recovery described above may be another name meaning that the PDCP is requested to send a status report from the upper layer.
  • ROHC may be paraphrased as the ROHC protocol.
  • ROHC may have a function of compressing and decompressing header information such as IP, UDP, TCP, and RTP.
  • the compressor may have a header compression function that compresses the header information.
  • the decompressor may have a header decompression function to decompress the header information.
  • the compressor may perform header compression using the context possessed by the compressor.
  • the decompression machine may decompress the header using the context possessed by the decompression machine.
  • the context may be paraphrased as a ROHC context.
  • the context in the decompressor may be generated by receiving all the header information from the compressor.
  • the context in the compressor and decompressor may be retained for each IP flow.
  • a context identifier (Context Identifier: CID) may be used to identify the context.
  • Information on the maximum value of the context identifier, profile information indicating the method of header compression / decompression, etc. may be negotiated between the compressor and the decompression machine before header compression / decompression.
  • header information may be classified into static parts and dynamic parts.
  • the static part of the header information in ROHC may be information that hardly changes among the header information of each packet belonging to the IP flow.
  • the static part of the header information in ROHC is, for example, information including a source address, a destination address, a version in an IPv4 header or an IPv6 header, a source port in a UDP header or a TCP header, a destination port, and the like. It's okay.
  • the dynamic part of the header information in ROHC may be information that can change for each packet among the header information of each packet belonging to the IP flow.
  • the dynamic part of the header information in ROHC includes, for example, trahook class in IPv6 header, hop limit, Type of service in IPv4 header, Time to Live, check sum in UDP header, RTP sequence number in RTP header, RTP time stamp, etc. It may be information.
  • the ROHC compressor may have three states: IR (Initialization and Refresh) state, FO (First Order) state, and SO (Second Order) state.
  • IR Initialization and Refresh
  • FO First Order
  • SO Serviced Order
  • the compressor may not compress the header information to be compressed and may send all the header information to the decompressor.
  • FO First Order
  • SO Serviced Order
  • the compressor may compress most of the static part of the header information to be compressed, and send some static part and dynamic part to the decompressor without compression.
  • SO the compression rate of the header is the highest, and only limited information such as the RTP sequence number may be transmitted from the compressor.
  • the ROHC decompressor may have three states: NC (NoContext) state, SC (StaticContext) state, and FC (FullContext) state.
  • NC NoContext
  • SC StaticContext
  • FC FullContext
  • the initial state of the defroster may be NC state.
  • the context is acquired in the NC state and the header is decompressed correctly, the transition to the FC state may be performed. If header decompression fails continuously in the FC state, it may transition to the SC state or NC state.
  • U-mode Unidirectional mode
  • O-mode Bodirectional Optimistic mode
  • R-mode Bidirectional Reliable mode
  • U-mode it is not necessary to use ROHC feedback packets.
  • U-mode the transition from low compression mode to high compression mode in the compressor, that is, the transition from IR state to FO state, and / or the transition from FO state to SO state, and / or from IR state to SO state.
  • the transition may be performed by transmitting a fixed number of packets.
  • the transition from high compression mode to low compression mode in the compressor that is, the transition from SO state to FO state, and / or the transition from FO state to IR state, and / or from SO state to IR.
  • the transition to the state may be performed at regular intervals, so that the information necessary for header decompression may be periodically transmitted to the decompression machine.
  • the decompressor may send a ROHC feedback packet to the compressor to request the compressor to update the context.
  • the compressor may transition from the low compression mode to the high compression mode by receiving the header decompression success notification by the ROHC feedback packet from the decompression machine. Further, in the R-mode, the compressor may transition from the high compression mode to the low compression mode by receiving the context update request by the ROHC feedback packet from the decompression machine.
  • the ROHC processing mode may be started from U-mode. The transition of the processing mode of ROHC may be determined by the defroster.
  • the decompressor may use the ROHC feedback packet to urge the compressor to transition to the processing mode.
  • SDAP is a service data adaptation protocol layer (service data adaptation protocol layer).
  • SDAP maps the downlink QoS flow sent from the 5GC110 to the terminal device via the base station device and the data radio bearer (DRB) (mapping), and / or from the terminal device via the base station device. It may have a function to map the uplink QoS flow sent to the 5GC110 with the DRB. SDAP may also have a function to store mapping rule information. In addition, SDAP may have a function of marking a QoS flow identifier (QoS Flow ID: QFI).
  • QFI QoS flow ID
  • the SDAP PDU may include a data SDAP PDU and a control SDAP PDU.
  • SDAP PDU for data may be called SDAP DATA PDU (SDAP Data PDU, SDAP data PDU).
  • control SDAP PDU may be called an SDAP CONTROL PDU (SDAP Control PDU, SDAP control PDU, SDAP control PDU). Note that there may be one SDAP entity for the terminal device for the PDU session.
  • the RRC may have a broadcast function.
  • the RRC may have a calling (paging) function from EPC104 and / or 5GC110.
  • the RRC may have a call (paging) function from the eNB 102 that connects to the gNB 108 or 5GC100.
  • the RRC may also have an RRC connection management function.
  • the RRC may also have a wireless bearer control function.
  • the RRC may also have a cell group control function.
  • the RRC may also have a mobility control function.
  • the RRC may have a terminal device measurement reporting and a terminal device measurement reporting control function.
  • the RRC may also have a QoS management function.
  • the RRC may also have a function of detecting and recovering a wireless link failure.
  • RRC uses RRC messages for notification, paging, RRC connection management, wireless bearer control, cell group control, mobility control, terminal device measurement reporting and terminal device measurement reporting control, QoS management, detection and recovery of wireless link failures, etc. You may go.
  • the RRC message or parameter used in E-UTRA RRC may be different from the RRC message or parameter used in NR RRC.
  • the RRC message may be sent using the BCCH of the logical channel, the PCCH of the logical channel, the CCCH of the logical channel, or the DCCH of the logical channel. It may be sent or it may be sent using the MCCH of the logical channel.
  • the RRC message sent using BCCH may include, for example, a master information block (MIB), each type of system information block (System Information Block: SIB), and others. RRC message may be included.
  • the RRC message sent using the PCCH may include, for example, a paging message, or may include other RRC messages.
  • RRC messages sent in the uplink (UL) direction using CCCH include, for example, RRC Setup Request message (RRC Setup Request), RRC Resume Request Message (RRC Resume Request), RRC Reestablishment Request Message (RRC Reestablishment Request), and RRC.
  • RRC System Info Request may be included.
  • RRC Connection Request an RRC connection request message
  • RRC Connection Resume Request an RRC connection restart request message
  • RRC Connection reestablishment request message RRC Connection Reestablishment Request
  • RRC messages sent in the downlink (DL) direction using CCCH include, for example, RRC Connection Reject message, RRC Connection Setup message, RRC Connection Reestablishment message, and RRC.
  • a connection reestablishment refusal message (RRC Connection Reestablishment Reject) or the like may be included.
  • RRC reject message (RRC Reject)
  • RRC setup message (RRC Setup)
  • RRC Resume RRC restart message
  • RRC messages sent in the uplink (UL) direction using DCCH include, for example, measurement report message (Measurement Report), RRC connection reconfiguration completion message (RRC Connection Reconfiguration Complete), RRC connection setup completion message (RRC Connection Setup Complete), An RRC connection reestablishment completion message (RRC Connection Reestablishment Complete), a security mode completion message (Security Mode Complete), a UE capability information message (UE Capability Information), and the like may be included.
  • Measurement Report Measurement Report
  • RRC Connection Reconfiguration Complete RRC connection reconfiguration Complete
  • RRC connection setup completion message RRC Connection Setup Complete
  • An RRC connection reestablishment completion message RRC Connection Reestablishment Complete
  • a security mode completion message Security Mode Complete
  • UE Capability Information UE Capability Information
  • measurement report message (Measurement Report), RRC reconfiguration completion message (RRC Reconfiguration Complete), RRC setup completion message (RRC Setup Complete), RRC reestablishment completion message (RRC Reestablishment Complete), RRC resumption completion message (RRC Resume Complete).
  • Security mode completion message (Security Mode Complete), UE capability information message (UE Capability Information), counter check response message (Counter Check Response), and the like may be included. It may also contain other RRC messages.
  • RRC messages sent in the downlink (DL) direction using DCCH include, for example, RRC connection reconfiguration message (RRC Connection Reconfiguration), RRC connection release message (RRC Connection Release), security mode command message (Security Mode Command), and UE capability.
  • Inquiry messages UE Capability Inquiry etc. may be included.
  • RRC reconfiguration message RRC Reconfiguration
  • RRC restart message RRC Resume
  • RRC release message RRC Release
  • RRC reestablishment message RRC Reestablishment
  • security mode command message Security Mode Command
  • UE capability inquiry message UE Capability Inquiry
  • counter check message Counter Check
  • NAS may have an authentication function.
  • NAS may also have the ability to manage mobility.
  • the NAS may also have a security control function.
  • each layer may be included in another layer (layer).
  • the upper layer (not shown) of the AS layer of the terminal device may include an IP layer, a TCP (Transmission Control Protocol) layer above the IP layer, a UDP (User Datagram Protocol) layer, and the like.
  • an Ethernet layer may exist in the upper layer of the AS layer of the terminal device. It may be called an upper layer PDU layer (PDU layer) of the AS layer of the terminal device.
  • the PDU layer may include an IP layer, a TCP layer, a UDP layer, an Ethernet layer, and the like.
  • An application layer may exist in an upper layer such as an IP layer, a TCP layer, a UDP layer, an Ethernet layer, and a PDU layer.
  • the application layer may include SIP (Session Initiation Protocol) and SDP (Session Description Protocol) used in IMS (IP Multimedia Subsystem), which is one of the service networks standardized in 3GPP.
  • the application layer may include RTP (Real-time Transport Protocol) used for media communication and / or RTCP (Real-time Transport Control Protocol) and HTTP (HyperText Transfer Protocol) for media communication control. .. Further, the application layer may include codecs of various media and the like.
  • the RRC layer may be an upper layer of the SDAP layer.
  • the UE 122 connected to the EPC or 5GC may be in the RRC_CONNECTED state when the RRC connection is established (RRC connection has been established).
  • the state in which the RRC connection is established may include the state in which the UE 122 holds a part or all of the UE context described later. Further, the state in which the RRC connection is established may include a state in which the UE 122 can transmit and / or receive unicast data.
  • UE122 may also be in the RRC_INACTIVE state when the RRC connection is suspended. Further, the UE 122 may be in the RRC_INACTIVE state when the UE 122 is connected to the 5GC and the RRC connection is suspended.
  • UE122 may be in the RRC_IDLE state when it is neither in the RRC_CONNECTED state nor in the RRC_INACTIVE state.
  • UE122 If UE122 is connected to EPC, it does not have RRC_INACTIVE status, but E-UTRAN may start hibernation of RRC connection.
  • the UE122 When the UE122 is connected to the EPC, when the RRC connection is suspended, the UE122 may hold the AS context of the UE and the identifier (resume Identity) used for the resume (resume) and transition to the RRC_IDLE state.
  • the RRC layer of UE122 for example, NAS layer
  • UE122 holds the AS context of UE
  • E-UTRAN allows the return of RRC connection (Permit), and UE122 is from the RRC_IDLE state.
  • the reinstatement of the suspended RRC connection may be started.
  • the definition of hibernation may be different between UE122 connected to EPC104 and UE122 connected to 5GC110. Also, when UE122 is connected to the EPC (when it is hibernating in the RRC_IDLE state) and when UE122 is connected to 5GC (when it is hibernating in the RRC_INACTIVE state), the UE122 returns from hibernation. All or part of the procedure may be different.
  • the RRC_CONNECTED state, RRC_INACTIVE state, and RRC_IDLE state may be called the connected state (connected mode), the inactive state (inactive mode), and the idle state (idle mode), respectively, and the RRC connected state (RRC connected mode).
  • RRC inactive state RRC inactive mode
  • RRC idle state RRC idle mode
  • the UE AS context held by UE122 is the current RRC setting, the current security context, the PDCP state including the ROHC (RObust Header Compression) state, and the C-RNTI (Cell Radio) used in the PCell of the connection source (Source). Information may include all or part of a Network Temporary Identifier), a cell identifier, and a physical cell identifier of the PCell of the connection source.
  • the AS context of the UE held by any or all of the eNB 102 and gNB 108 may include the same information as the AS context of the UE held by the UE 122, or the information contained in the AS context of the UE held by the UE 122. May contain different information.
  • the security context is the encryption key at the AS level, NH (Next Hop parameter), NCC (Next Hop Chaining Counter parameter) used to derive the access key for the next hop, the identifier of the selected AS level encryption algorithm, and replay protection. It may be information containing all or part of the counters used for.
  • a cell group may be composed of one special cell (Special Cell: SpCell). Further, the cell group may be composed of one SpCell and one or a plurality of secondary cells (Secondary Cell: S Cell). That is, a cell group may consist of one SpCell and optionally one or more SCells.
  • SpCell When the MAC entity is associated with the master cell group (Master Cell Group: MCG), SpCell may mean the primary cell (Primary Cell: PCell).
  • SpCell may mean a primary SCG cell (Primary SCG Cell: PS Cell).
  • SpCell may mean PCell if the MAC entity is not associated with a cell group.
  • PCell, PSCell and SCell are serving cells.
  • SpCell may support PUCCH transmission and contention-based Random Access, and SpCell may always be activated.
  • the PCell may be a cell used for the RRC connection establishment procedure when the terminal device in the RRC idle state transitions to the RRC connection state.
  • the PCell may also be a cell used in the RRC connection reestablishment procedure in which the terminal device reestablishes the RRC connection. Further, the PCell may be a cell used for a random access procedure at the time of handover.
  • the PSCell may be a cell used for a random access procedure when a secondary node (Secondary Node: SN), which will be described later, is added. Further, the SpCell may be a cell used for a purpose other than the above-mentioned uses.
  • SN secondary Node
  • CA carrier aggregation
  • a cell that provides additional radio resources to SpCell for a terminal device in which CA is set may mean SCell.
  • TAG Timing Advance Group
  • PTAG Primary Timing Advance Group
  • STAG secondary timing advance group
  • a cell group may be added from the base station device to the terminal device.
  • DC is a technology for performing data communication using the radio resources of the cell group configured by the first base station device (first node) and the second base station device (second node). good.
  • MR-DC may be a technique included in DC.
  • the first base station appliance may add a second base station appliance to perform DC.
  • the first base station device may be called a master node (MasterNode: MN).
  • the cell group composed of the master node may be called a master cell group (Master Cell Group: MCG).
  • the second base station device may be called a secondary node (SN).
  • a cell group composed of a secondary node may be called a secondary cell group (SCG).
  • the master node and the secondary node may be configured in the same base station device.
  • the cell group set in the terminal device may be called MCG.
  • the SpCell set in the terminal device may be PCell.
  • MR-DC may be a technique for performing DC using E-UTRA for MCG and NR for SCG. Further, MR-DC may be a technique for performing DC using NR for MCG and E-UTRA for SCG. Further, MR-DC may be a technique for performing DC using NR for both MCG and SCG.
  • E-UTRA-NR Dual Connectivity E-UTRA-NR Dual Connectivity
  • NGEN- NGEN- that uses 5GC for the core network.
  • DC NG-RAN E-UTRA-NR Dual Connectivity
  • NE-DC NR-E-UTRA Dual Connectivity
  • 5GC 5GC for the core network
  • NR-DC NR-NR Dual Connectivity
  • one MAC entity may exist for each cell group.
  • one MAC entity for MCG and one MAC entity for SCG may exist.
  • the MAC entity for MCG in the terminal device may always be established in the terminal device in all states (RRC idle state, RRC connected state, RRC inactive state, etc.).
  • the MAC entity for SCG in the terminal device may be created by the terminal device when the SCG is set in the terminal device.
  • the MAC entity for each cell group of the terminal device may be set by the terminal device receiving an RRC message from the base station device.
  • the MAC entity for MCG may be an E-UTRA MAC entity
  • the MAC entity for SCG may be an NR MAC entity.
  • the MAC entity for MCG may be an NR MAC entity
  • the MAC entity for SCG may be an E-UTRA MAC entity.
  • the MAC entity for MCG and SCG may be both NR MAC entity.
  • the fact that there is one MAC entity for each cell group can be rephrased as having one MAC entity for each SpCell.
  • one MAC entity for each cell group may be paraphrased as one MAC entity for each SpCell.
  • SRB0 to SRB2 may be defined in the SRB of E-UTRA, and other SRBs may be defined.
  • SRB0 to SRB3 may be defined for SRB of NR, and other SRBs may be defined.
  • SRB0 may be an SRB for RRC messages transmitted and / or received using the CCCH of the logical channel.
  • SRB1 may be an SRB for RRC messages and for NAS messages before SRB2 is established.
  • RRC messages transmitted and / or received using SRB1 may include NAS messages that have been piggybacked.
  • DCCH of the logical channel may be used for all RRC messages and NAS messages transmitted and / or received using SRB1.
  • SRB2 may be an SRB for NAS messages and for RRC messages containing logged measurement information.
  • DCCH of the logical channel may be used for all RRC messages and NAS messages transmitted and / or received using SRB2.
  • SRB2 may have a lower priority than SRB1.
  • the SRB3 may be an SRB for transmitting and / or receiving a specific RRC message when EN-DC, NGEN-DC, NR-DC, etc. are set in the terminal device.
  • DCCH of the logical channel may be used for all RRC messages and NAS messages transmitted and / or received using SRB3.
  • other SRBs may be prepared for other uses.
  • the DRB may be a wireless bearer for user data.
  • the logical channel DTCH may be used for RRC messages transmitted and / or received using the DRB.
  • the radio bearer may include an RLC bearer.
  • the RLC bearer may consist of one or two RLC entities and a logical channel.
  • the RLC entity may be a TM RLC entity and / or a transmit RLC entity and a receive RLC entity in the RLC entity in unidirectional UM mode.
  • SRB0 may consist of one RLC bearer.
  • the RLC bearer of SRB0 may consist of RLC entity of TM and logical channel. SRB0 may always be established in the terminal device in all states (RRC idle state, RRC connected state, RRC inactive state, etc.).
  • One SRB1 may be established and / or set in the terminal device by the RRC message received from the base station device when the terminal device transitions from the RRC idle state to the RRC connection state.
  • SRB1 may consist of one PDCP entity and one or more RLC bearers.
  • the RLC bearer of SRB1 may consist of the RLC entity of AM and the logical channel.
  • One SRB2 may be established and / or set in the terminal device by the RRC message received from the base station device by the terminal device in the RRC connected state in which AS security is activated.
  • SRB2 may consist of one PDCP entity and one or more RLC bearers.
  • the SRB2 RLC bearer may consist of an AM RLC entity and a logical channel.
  • the PDCP on the base station device side of SRB1 and SRB2 may be placed on the master node.
  • SRB3 when a secondary node in EN-DC, NGEN-DC, or NR-DC is added, or when the secondary node is changed, the terminal device in the RRC connection state with AS security activated is the base station. One may be established and / or set in the terminal device by the RRC message received from the device.
  • SRB3 may be a direct SRB between the terminal device and the secondary node.
  • SRB3 may consist of one PDCP entity and one or more RLC bearers.
  • the SRB3 RLC bearer may consist of an AM RLC entity and a logical channel.
  • the PDCP on the base station device side of SRB3 may be placed on the secondary node.
  • the DRB may be established and / or set in the terminal device by the RRC message received from the base station device by the terminal device in the RRC connected state in which AS security is activated.
  • the DRB may consist of one PDCP entity and one or more RLC bearers.
  • the RLC bearer of the DRB may consist of an AM or UM RLC entity and a logical channel.
  • the wireless bearer in which the PDCP is placed on the master node may be called the MN terminal (terminated) bearer.
  • the radio bearer in which the PDCP is placed on the secondary node may be called the SN terminated bearer.
  • a wireless bearer in which RLC bearer exists only in MCG may be called MCG bearer.
  • a wireless bearer in which RLC bearer exists only in SCG may be called SCG bearer.
  • a radio bearer in which RLC bearers exist in both MCG and SCG may be called a split bearer.
  • the bearer types of SRB1 and SRB2 established / and / or set in the terminal device may be MN-terminated MCG bearer and / or MN-terminated split bearer.
  • the bearer type of SRB3 established / and / or set in the terminal device may be an SN-terminated SCG bearer.
  • the bearer type of the DRB established / and / or set in the terminal device may be any of all bearer types.
  • the RLC entity established and / or set for the RLC bearer established and / or set in the cell group composed of E-UTRA may be E-UTRA RLC.
  • the RLC entity established and / or set for the RLC bearer established and / or set in the cell group composed of NR may be NR RLC.
  • EN-DC is set for the terminal device
  • the PDCP entity established and / or set for the MN-terminated MCG bearer may be either E-UTRA PDCP or NR PDCP.
  • the PDCP established and / or set may be NR PDCP.
  • the PDCP entity established and / or set for the wireless bearer in all bearer types may be NR PDCP. ..
  • the DRB established and / or set in the terminal device may be associated with one PDU session.
  • One SDAP entity may be established and / or configured for one PDU session in the terminal device.
  • Established and / or set in the terminal device SDAP entity, PDCP entity, RLC entity, and logical channel may be established and / or set by the RRC message received by the terminal device from the base station device.
  • the network configuration in which the master node is eNB102 and EPC104 is the core network may be called E-UTRA / EPC.
  • a network configuration in which the master node is eNB102 and 5GC110 is the core network may be called E-UTRA / 5GC.
  • a network configuration in which the master node is gNB108 and the 5GC110 is the core network may be called NR or NR / 5GC.
  • the above-mentioned master node may refer to a base station device that communicates with a terminal device.
  • the handover may be a process in which the UE 122 in the RRC connected state changes the serving cell.
  • the handover may be performed when the UE 122 receives an RRC message instructing the handover from the eNB 102 and / or gNB 108.
  • the RRC message instructing the handover may be a message regarding the resetting of the RRC connection including the parameter instructing the handover (for example, the information element named MobilityControlInfo or the information element named ReconfigurationWithSync).
  • the above-mentioned information element named MobilityControlInfo may be rephrased as a mobility control setting information element, a mobility control setting, or a mobility control information.
  • the above-mentioned information element named Reconfiguration WithSync may be rephrased as a reconfiguration information element with synchronization or a reconfiguration with synchronization.
  • the RRC message instructing the handover may be a message indicating the movement of another RAT to a cell (for example, MobilityFromEUTRACommand or MobilityFromNRCommand).
  • handover may be paraphrased as reconfiguration with sync.
  • the conditions under which the UE 122 can perform handover include a part or all of the fact that AS security is activated, SRB2 is established, and at least one DRB is established. good.
  • FIG. 4 is a diagram showing an example of a flow of procedures for various settings in the RRC according to the embodiment of the present invention.
  • FIG. 4 is an example of a flow when an RRC message is sent from the base station device (eNB 102 and / or gNB 108) to the terminal device (UE122).
  • the base station device creates an RRC message (step S400).
  • the RRC message may be created in the base station device so that the base station device distributes broadcast information (SI: System Information) and paging information. Further, the RRC message may be created in the base station device so that the base station device can perform processing on a specific terminal device.
  • the process to be performed on a specific terminal device may include, for example, security-related settings, RRC connection resetting, handover to a different RAT, suspension of RRC connection, release of RRC connection, and the like.
  • RRC connection resetting processes include, for example, wireless bearer control (establishment, modification, release, etc.), cell group control (establishment, addition, modification, release, etc.), measurement setting, handover, security key update, etc. May be included.
  • the RRC message may be created in the base station device in order to respond to the RRC message transmitted from the terminal device.
  • the response to the RRC message transmitted from the terminal device may include, for example, a response to an RRC setup request, a response to an RRC reconnection request, a response to an RRC restart request, and the like.
  • RRC messages include parameters for various information notifications and settings. These parameters may be called fields and / or information elements, and may be described using a description method called ASN.1 (Abstract Syntax Notation One). In the embodiment of the present invention, the parameter may be paraphrased as information.
  • the base station device then sends the created RRC message to the terminal device (step S402).
  • the terminal device performs processing when processing such as setting is required according to the received RRC message (step S404).
  • the processed terminal device may send an RRC message for response to the base station device (not shown).
  • the RRC message is not limited to the above example, and may be used for other purposes.
  • the RRC on the master node side is used to transfer RRC messages for SCG side settings (cell group settings, wireless bearer settings, measurement settings, etc.) to and from the terminal device. good.
  • SCG side settings cell group settings, wireless bearer settings, measurement settings, etc.
  • the RRC message of E-UTRA sent and received between eNB102 and UE122 may include the RRC message of NR in the form of a container.
  • the RRC message of NR sent and received between gNB108 and UE122 may include the RRC message of E-UTRA in the form of a container.
  • RRC messages for settings on the SCG side may be sent and received between the master node and the secondary node.
  • the RRC message for E-UTRA transmitted from eNB 102 to UE122 may include the RRC message for NR, and the RRC for NR transmitted from gNB 108 to UE122 may be included.
  • the message may include an RRC message for E-UTRA.
  • FIG. 7 is an example of an ASN.1 description representing a field and / or information element relating to the radio bearer configuration included in the message relating to the reconfiguration of the RRC connection in NR in FIG.
  • FIG. 8 is an example of an ASN.1 description representing a field and / or an information element related to the radio bearer setting included in the message regarding the resetting of the RRC connection in E-UTRA in FIG.
  • ⁇ omitted> and ⁇ omitted> are not a part of the notation of ASN.1 and other information is omitted.
  • ASN.1 does not correctly follow the ASN.1 notation method.
  • the example of ASN.1 describes an example of the parameters of the RRC message in the embodiment of the present invention, and other names and other notations may be used.
  • the example of ASN.1 shows only an example relating to the main information closely related to one embodiment of the present invention in order to avoid complicated explanation.
  • the parameters described in ASN.1 may be referred to as information elements without distinguishing them into fields, information elements, and the like. Further, in the embodiment of the present invention, the fields, information elements, etc.
  • the message regarding the resetting of the RRC connection may be an RRC resetting message in NR or an RRC connection resetting message in E-UTRA.
  • the information element represented by RadioBearerConfig in FIG. 7 may be an information element used for setting, changing, releasing, etc. of wireless bearers such as SRB and DRB.
  • the information element represented by RadioBearerConfig may include a PDCP setting information element described later and an SDAP setting information element.
  • the information element represented by RadioBearerConfig may be paraphrased as a radio bearer setting information element or a radio bearer setting.
  • the information element represented by SRB-ToAddMod included in the information element represented by RadioBearerConfig may be an information element indicating the SRB (signaling radio bearer) setting.
  • the information element represented by SRB-ToAddMod may be paraphrased as an SRB setting information element or an SRB setting.
  • the information element represented by SRB-ToAddModList may be a list of SRB settings.
  • the information element represented by DRB-ToAddMod included in the information element represented by RadioBearerConfig may be an information element indicating a DRB (data radio bearer) setting.
  • the information element represented by DRB-ToAddMod may be paraphrased as a DRB setting information element or a DRB setting.
  • the information element represented by DRB-ToAddModList may be a list of DRB settings.
  • the SRB setting and the DRB setting may be paraphrased as a wireless bearer setting.
  • the field represented by srb-Identity in the SRB setting information element is the SRB identifier (SRB Identity) information of the SRB to be added or changed, and may be an identifier that uniquely identifies the SRB in each terminal device. ..
  • SRB Identity SRB identifier
  • the field represented by srb-Identity in the SRB setting information element may be paraphrased as an SRB identifier field or an SRB identifier. Further, the SRB identifier may be paraphrased as a wireless bearer identifier.
  • the field represented by drb-Identity in the DRB setting information element is the information of the DRB identifier (DRB Identity) of the DRB to be added or changed, and may be an identifier that uniquely identifies the DRB in each terminal device. ..
  • the field represented by drb-Identity in the DRB setting information element may be paraphrased as a DRB identifier field or a DRB identifier.
  • the value of the DRB identifier is an integer value from 1 to 32 in the example of FIG. 7, but another value may be taken.
  • the DRB identifier may be unique within the scope of UE122. Further, the DRB identifier may be paraphrased as a wireless bearer identifier.
  • the field represented by cnAssociation indicates whether the wireless bearer is associated with the field represented by eps-bearerIdentity described later or the information element represented by SDAP-Config described later. It may be the field shown.
  • the field represented by cnAssociation may be paraphrased as a core network association field or a core network association.
  • the field represented by the cnAssociation may include an EPS bearer identifier field (eps-bearerIdentity) described later when the terminal device connects to the EPC104.
  • the field represented by the cnAssociation may include an information element (SDAP-Config) indicating the SDAP setting described later when the terminal device is connected to the core network 5GC110.
  • the field indicated by eps-bearerIdentity may be a field indicating an EPS bearer identifier that identifies the EPS bearer.
  • the field indicated by eps-bearerIdentity may be paraphrased as an EPS bearer identifier field or an EPS bearer identifier field.
  • the information element represented by SDAP-Config may be information related to the setting or resetting of the SDAP entity.
  • the information element represented by SDAP-Config may be rephrased as the SDAP setting information element or the SDAP setting.
  • the field indicated by pdu-session included in the SDAP setting information element may be the PDU session identifier of the PDU session to which the QoS flow mapped to the corresponding radio bearer belongs.
  • the field indicated by pdu-session may be paraphrased as a PDU session identifier field or a PDU session identifier.
  • the PDU session identifier may be the PDU session identifier of the PDU session.
  • the corresponding wireless bearer may be a DRB associated with a DRB identifier in the DRB setting including this SDAP setting field.
  • the field indicated by mappedQoS-FlowsToAdd included in the SDAP setting information element is information indicating a list of QoS flow identifier (QFI: QoSFlowIdentity) fields of the uplink QoS flow to be additionally mapped to the corresponding radio bearer. good.
  • QFI QoSFlowIdentity
  • the field indicated by mappedQoS-FlowsToAdd may be paraphrased as an additional QoS flow field or an additional QoS flow.
  • the above-mentioned QoS flow may be the QoS flow of the PDU session indicated by the PDU session included in the SDAP setting information element.
  • the corresponding wireless bearer may be a DRB associated with a DRB identifier in the DRB setting including this SDAP setting field.
  • the field indicated by mappedQoS-FlowsToRelease included in the SDAP setting information element indicates a list of QoS flow identifier information elements of the QoS flows that release the correspondence among the QoS flows mapped to the corresponding radio bearer. It may be information.
  • the field indicated by mappedQoS-FlowsToRelease may be rephrased as a QoS flow field to be released or a QoS flow to be released.
  • the above-mentioned QoS flow may be the QoS flow of the PDU session indicated by the PDU session included in the SDAP setting information element.
  • the corresponding wireless bearer may be a DRB associated with a DRB identifier in the DRB setting including this SDAP setting field.
  • the SDAP setting information element includes a field indicating whether or not the uplink SDAP header exists in the uplink data transmitted via the corresponding wireless bearer, and the downlink data received via the corresponding wireless bearer. May include a field indicating whether or not the SDAP header for downlink exists, a field indicating whether or not the corresponding radio bearer is the default radio bearer (default DRB), and the like.
  • the corresponding wireless bearer may be a DRB associated with a DRB identifier in the DRB setting including this SDAP setting field.
  • the information element represented by PDCP-Config in the SRB setting information element and the DRB setting information element may be an information element related to the setting of the NR PDCP entity.
  • the information element represented by PDCP-Config may be paraphrased as a PDCP setting information element or a PDCP setting.
  • Information elements related to the setting of the NR PDCP entity include a field indicating the size of the uplink sequence number, a field indicating the size of the downlink sequence number, a field indicating the profile of header compression (ROHC: RObustHeaderCompression), and reordering. (Re-ordering)
  • a field indicating the value of the timer may be included.
  • the information element represented by DRB-ToReleaseList included in the information element represented by RadioBearerConfig may include information indicating one or more DRB identifiers to be released.
  • the information element represented by RadioResourceConfigDedicated in FIG. 8 may be an information element used for setting, changing, releasing, etc. of the wireless bearer.
  • the information element represented by SRB-ToAddMod included in the information element represented by RadioResourceConfigDedicated may be information indicating the SRB (signaling radio bearer) setting.
  • the information element represented by SRB-ToAddMod may be paraphrased as an SRB setting information element or an SRB setting.
  • the information element represented by SRB-ToAddModList may be a list of information indicating the SRB setting.
  • the information element represented by DRB-ToAddMod included in the information element represented by RadioResourceConfigDedicated may be information indicating the DRB (data radio bearer) setting.
  • the information element represented by DRB-ToAddMod may be paraphrased as a DRB setting information element or a DRB setting.
  • the information element represented by DRB-ToAddModList may be a list of information indicating the DRB setting.
  • any one or all of SRB setting and DRB setting may be paraphrased as wireless bearer setting.
  • the field represented by srb-Identity in the SRB setting information element is the SRB identifier (SRB Identity) information of the SRB to be added or changed, and may be an identifier that uniquely identifies the SRB in each terminal device. ..
  • SRB Identity SRB Identity
  • the field represented by srb-Identity in the SRB setting information element may be paraphrased as an SRB identifier field or an SRB identifier. Further, the SRB identifier may be paraphrased as a wireless bearer identifier.
  • the SRB identifier in FIG. 8 may have the same role as the SRB identifier in FIG. 7.
  • the field represented by drb-Identity in the DRB setting is the information of the DRB identifier (DRB Identity) of the DRB to be added or changed, and may be an identifier that uniquely identifies the DRB in each terminal device.
  • the field represented by drb-Identity in the DRB setting information element may be paraphrased as a DRB identifier field or a DRB identifier.
  • the value of the DRB identifier is an integer value from 1 to 32 in the example of FIG. 8, but another value may be taken. Further, the DRB identifier may be paraphrased as a wireless bearer identifier.
  • the DRB identifier in FIG. 8 may have the same role as the DRB identifier in FIG. 7.
  • the field represented by eps-BearerIdentity in the DRB setting information element may be an EPS bearer identifier that uniquely identifies the EPS bearer in each terminal device.
  • the field represented by eps-BearerIdentity may be paraphrased as an EPS bearer identifier field or an EPS bearer identifier field.
  • the value of the EPS bearer identifier is an integer value from 1 to 15 in the example of FIG. 8, but another value may be used.
  • the EPS bearer identifier in FIG. 8 may have the same role as the EPS bearer identifier in FIG. 7. Further, the EPS bearer identifier and the DRB identifier may have a one-to-one correspondence in each terminal device.
  • the information element represented by PDCP-Config may be an information element related to the setting of the E-UTRA PDCP entity.
  • the information element represented by PDCP-Config may be paraphrased as a PDCP setting information element or a PDCP setting.
  • Information elements related to the setting of the E-UTRA PDCP entity include a field indicating the size of the sequence number, a field indicating the profile of header compression (ROHC: RObust Header Compression), and a field indicating the value of the re-ordering timer. May be included.
  • the SRB setting information element shown in FIG. 8 may further include a field related to the E-UTRA RLC entity setting (not shown).
  • the field related to E-UTRA RLC entity setting may be rephrased as RLC setting field or RLC setting.
  • the SRB setting information element shown in FIG. 8 may include an information element related to the logical channel setting (not shown).
  • the information element related to the logical channel setting may be paraphrased as the logical channel setting information element or the logical channel setting.
  • the DRB setting information element shown in FIG. 8 may further include an information element related to the E-UTRA RLC entity setting (not shown).
  • the information element related to the E-UTRA RLC entity setting may be rephrased as the RLC setting information element or the RLC setting.
  • the DRB setting information element shown in FIG. 8 may include a field indicating logical channel identifier (identity: ID) information.
  • a field indicating logical channel identifier (identity: ID) information may be paraphrased as a logical channel identifier field or a logical channel identifier.
  • the DRB setting information element shown in FIG. 8 may include an information element related to the logical channel setting (not shown).
  • the information element related to the logical channel setting may be paraphrased as the logical channel setting information element or the logical channel setting.
  • the logical channel identifier may be associated with the wireless bearer identifier.
  • the information element represented by DRB-ToReleaseList included in the information element represented by RadioResourceConfigDedicated may include information indicating one or more DRB identifiers to be released.
  • the information element related to RLC bearer setting such as the information element related to NR RLC entity setting for each radio bearer, the information element indicating logical channel identifier (identity: ID) information, and the information element related to logical channel setting is RadioBearerConfig in FIG. It may be included in the information element related to the cell group setting instead of the information element represented by (not shown). Information elements related to cell group settings may be included in the message regarding resetting the RRC connection.
  • the information element related to the cell group setting may be paraphrased as a cell group setting information element or a cell group setting.
  • the information element related to the NR RLC entity setting may be paraphrased as the RLC setting information element or the RLC setting.
  • the information element indicating the logical channel identifier information may be paraphrased as a logical channel identifier information element or a logical channel identifier.
  • the information element related to the logical channel setting may be paraphrased as the logical channel setting information element or the logical channel identifier.
  • the logical channel identifier may be associated with the wireless bearer identifier.
  • the fields and information elements described with reference to FIG. 7 or FIG. 8 may be optional. That is, the fields and information elements described with reference to FIG. 7 or FIG. 8 may be included in the message regarding the resetting of the RRC connection as necessary or conditional.
  • the message regarding the resetting of the RRC connection may include a field indicating that the full setting is applied.
  • the field meaning that the full setting is applied may be represented by an information element name such as fullConfig, and may be indicated by using true, enable, etc. to indicate that the full setting is applied.
  • FIG. 5 is a block diagram showing the configuration of the terminal device (UE122) according to the embodiment of the present invention. In order to avoid complicated explanation, FIG. 5 shows only the main components closely related to one embodiment of the present invention.
  • the UE 122 shown in FIG. 5 includes a receiving unit 500 that receives an RRC message or the like from a base station device, a processing unit 502 that performs processing according to parameters included in the received message, and a transmitting unit that transmits an RRC message or the like to the base station device. It consists of 504.
  • the above-mentioned base station apparatus may be eNB 102 or gNB 108.
  • the processing unit 502 may include some or all of the functions of various layers (for example, physical layer, MAC layer, RLC layer, PDCP layer, SDAP layer, RRC layer, and NAS layer).
  • the processing unit 502 includes a physical layer processing unit, a MAC layer processing unit, an RLC layer processing unit, a PDCP layer processing unit, an SDAP processing unit, an RRC layer processing unit, and a part or all of the NAS layer processing unit. It's okay.
  • FIG. 6 is a block diagram showing the configuration of the base station apparatus according to the embodiment of the present invention.
  • FIG. 6 shows only the main components closely related to one embodiment of the present invention.
  • the above-mentioned base station apparatus may be eNB 102 or gNB 108.
  • the base station apparatus shown in FIG. 6 has a transmission unit 600 that transmits an RRC message or the like to the UE 122, and a processing unit that creates an RRC message including parameters and transmits the RRC message to the UE 122 to cause the processing unit 502 of the UE 122 to perform processing. It consists of a receiving unit 604 that receives RRC messages and the like from 602 and UE 122.
  • the processing unit 602 may include some or all of the functions of various layers (for example, physical layer, MAC layer, RLC layer, PDCP layer, SDAP layer, RRC layer, and NAS layer).
  • the processing unit 602 includes a physical layer processing unit, a MAC layer processing unit, an RLC layer processing unit, a PDCP layer processing unit, an SDAP processing unit, an RRC layer processing unit, and a part or all of the NAS layer processing unit. It's okay.
  • the conditional handover may be the conditional handover described in Non-Patent Document 1 and the like.
  • the terminal device may set the conditional handover by receiving the RRC message including the parameter of the conditional handover setting from the base station device.
  • the parameter of the conditional handover setting may include the setting parameter of the target candidate SpCell and the execution condition parameter for executing the handover by applying the setting to the target candidate SpCell.
  • the conditional handover may be a handover in which the terminal device executes the handover procedure when one or more execution conditions are satisfied. It should be noted that conditional handover may be paraphrased as conditional reconfiguration. Further, the conditional handover may be paraphrased as a handover.
  • the RRC message including the conditional handover setting information element may be a message related to the resetting of the RRC connection or an RRC resetting message.
  • UE122 When the handover fails, UE122 returns to the setting used in the handover source (source) (revert back) and performs the RRC re-establishment procedure.
  • the RRC reestablishment procedure UE122 performs a cell search, then in the cell selected by the cell search, sends an RRC reestablishment request message to the base station device and receives a response message (RRC reestablishment message) from the base station device. Then, by sending the response message (RRC reestablishment completion message) to the base station device, the RRC connection is reconnected.
  • the security key is updated and the wireless bearer state variables, timers, etc. are initialized.
  • attemptCondReconfig described later is set in UE122, if the cell selected in the RRC reestablishment process is one of the handover destination (target) candidates for conditional handover, the selected cell is conditional. Perform handover.
  • the state variables, timers, etc. of the wireless bearer are not initialized.
  • the state variable used by the UE 122 at the target before the above-mentioned handover failure when performing the above-mentioned conditional handover since the setting including the state variable at the time of the above-mentioned handover failure has returned to the setting used in the source, the state variable used by the UE 122 at the target before the above-mentioned handover failure when performing the above-mentioned conditional handover.
  • FIG. 9 is an example of an ASN.1 description representing a field and / or an information element relating to the setting of a conditional handover in the embodiment of the present invention.
  • the information element represented by the Conditional Reconfiguration in FIG. 9 may be a target candidate (candidate) SpCell in the conditional handover and an information element indicating the setting of the conditional handover execution condition.
  • the information element represented by ConditionalReconfiguration may be paraphrased as a conditional handover setting information element or a conditional handover setting.
  • the conditional handover setting information element may also be used to change the conditional PSCell.
  • the first cell selected after the handover failure is included in the conditional handover setting information element.
  • it may be a setting indicating that conditional resetting is performed for the candidate SpCells.
  • the field represented by attemptCondReconfig may be paraphrased as an attempt conditional reset field or an attempt conditional reset.
  • the information element represented by CondReconfigToRemoveList included in the conditional handover setting information element may be a list of candidate SpCells to be removed.
  • the information element represented by CondReconfigToRemoveList may be paraphrased as a conditional reset list information element to be deleted or a conditional reset list to be deleted.
  • the conditional reset list information element to be deleted may be a list of information elements represented by CondReconfigId described later.
  • the information element represented by CondReconfigToAddModList included in the conditional handover setting information element may be a list of the settings of the candidate SpCell to be added or changed.
  • the information element represented by CondReconfigToAddModList may be paraphrased as a conditional reset list information element or a conditional reset list.
  • the conditional reset list information element may be a list of information elements represented by CondReconfigToAddMod.
  • the information element represented by CondReconfigToAddMod may be paraphrased as a conditional reset information element or a conditional reset.
  • the field represented by condReconfigId included in the conditional reset information element may be an identifier that identifies the setting of the conditional handover or the conditional PSCell change.
  • the field represented by condReconfigId may be paraphrased as a conditional reset identifier field or a conditional reset identifier field.
  • the field represented by condExecutionCond included in the conditional reset information element may be an execution condition that must be satisfied in order to trigger the execution of the conditional reset.
  • the field represented by condExecutionCond may be paraphrased as a conditional reset execution condition field or a conditional reset execution condition.
  • the reset execution condition field may contain one or more identifiers that identify the measurement setting.
  • the information element represented by condRRCReconfig included in the conditional reset information element is applied when the conditional reset execution condition shown in the conditional reset execution condition field described above is satisfied. It may be an RRC reset message. That is, the information element represented by condRRCReconfig may include a part or all of the information element and / or the field included in the RRC reset message.
  • the information element represented by condRRCReconfig may be paraphrased as a conditional reset information element or a conditional reset. Further, it may be prohibited to include the conditional reset information element in the information element and / or the field of the RRC reset message included in the conditional reset information element.
  • the conditional reset information element described above may include, for example, a part or all of the following settings (A) to (F).
  • A) Cell group setting (may be an information element represented by the name CellGroupConfig).
  • B) Information indicating whether or not the setting is full may be a field represented by fullConfig).
  • C) NAS layer message (may be an information element represented by the name DedicatedNAS-message).
  • D) Key update setting (may be an information element represented by the name MasterKeyUpdate).
  • Measurement settings may be information elements represented by the name MeasConfig).
  • F Wireless bearer setting.
  • the above-mentioned cell group setting information may include, for example, a part or all of the following settings (1) to (6).
  • Cell group identifier may be an information element represented by the name CellGroupId.
  • RLC bearer setting may be an information element represented by the name RLC-BearerConfig).
  • MAC layer setting of cell group may be an information element represented by the name MAC-CellGroupConfig).
  • Cell group physical (PHY) layer setting may be an information element represented by the name PhysicalCellGroupConfig).
  • SpCell setting may be an information element represented by the name SpCellConfig).
  • SCell information may be an information element represented by the name SCellConfig).
  • the SpCell setting in (5) may include a reset information element with synchronization.
  • the reset information element with synchronization included in the SpCell setting of (5) may include the physical cell identifier of the target candidate SpCell (may be an information element represented by the name PhysCellId).
  • the above-mentioned wireless bearer setting may include a part or all of the following settings (1) to (3).
  • Security setting (may be an information element represented by the name SecurityConfig).
  • the security setting in (3) includes information on the integrity protection algorithm and encryption algorithm for SRB and / or DRB (which may be an information element represented by the name SecurityAlgorithmConfig), and / or the key for MCG. It may contain information (which may be a field named keyToUse) indicating which key of the SCG key is to be used.
  • the above candidate SpCell may be paraphrased as a target candidate SpCell. Further, SpCell may be paraphrased as Cell, PCell or PSCell.
  • An example of processing of the terminal device in the embodiment of the present invention will be described with reference to FIG.
  • An example of the processing of the terminal device according to the embodiment of the present invention, which will be described with reference to FIG. 10, is an example of a problem-solving method in the above-mentioned handover failure.
  • FIG. 10 is a diagram showing an example of processing of a terminal device according to an embodiment of the present invention.
  • the receiver 500 of the UE 122 may receive the RRC message from the base station device.
  • the processing unit 502 of the UE 122 may set the UE 122 according to the RRC message received from the base station device. (Step S1000)
  • step S1000 for example, when the RRC message received from the base station apparatus includes the first synchronized reset information element, the above-mentioned first synchronized reset information element is the conditional handover setting information. If it is not an information element contained in the element, the processing unit 502 of the UE 122 applies the above-mentioned first synchronized reset information element to the first SpCell according to the above-mentioned first synchronized reset information element. On the other hand, the handover procedure may be started.
  • the above-mentioned first synchronized reset information element is included in the conditional handover setting information element. If it is not an information element, it may be an unconditional handover or a normal handover. If the RRC message received from the base station device does not include the above-mentioned first synchronization reset information element, it is not necessary to start the handover procedure for the above-mentioned first SpCell. (Step S1002)
  • step S1000 for example, when the RRC message received from the base station apparatus includes a conditional handover setting information element, the processing unit 502 of the UE 122 sets the UE 122 according to the above-mentioned conditional handover setting information element.
  • the above-mentioned handover setting information element may include a conditional reset list information element.
  • the above-mentioned conditional reset list information element may include the first to Nth conditional reset information elements (where N is a positive integer).
  • the processing unit 502 of the UE122 has the following (A). Processing including the above may be performed.
  • m described above may be an integer greater than or equal to 1 and an integer smaller than or equal to N.
  • the m-th synchronization included in the above-mentioned m-th conditional reset-information element by applying the m-th conditional reset-information element included in the above-mentioned m-th conditional reset-information element.
  • the handover procedure may be started for the mth SpCell according to the additional reset information element.
  • the above-mentioned handover for the mth SpCell may be rephrased as the above-mentioned conditional handover for the mth SpCell. Further, when the above-mentioned m-th conditional resetting execution condition is not satisfied, the processing unit 502 of the UE 122 does not have to perform the above-mentioned processing (A). (Step S1002)
  • the above-mentioned first SpCell and the above-mentioned mth SpCell may be the same cell. Further, in step S1002, the processing unit 502 of the UE 122 may activate the first timer for the above-mentioned first SpCell when performing a handover with respect to the above-mentioned first SpCell. Further, in step S1002, when the processing unit 502 of the UE 122 performs a handover with respect to the above-mentioned mth SpCell, the above-mentioned first timer may be activated for the above-mentioned mth SpCell.
  • the processing unit 502 of the UE 122 applies to the above-mentioned first timer included in the above-mentioned first synchronized reset information element when activating the above-mentioned first timer for the above-mentioned first SpCell.
  • the value may be applied to the first timer described above.
  • the processing unit 502 of the UE 122 is applied to the above-mentioned first timer included in the above-mentioned mth synchronized resetting information element when the above-mentioned first timer for the above-mentioned mth SpCell is activated.
  • the value to be applied may be applied to the first timer described above.
  • the above-mentioned first timer may be a timer used for detecting a handover failure or the like.
  • the first timer described above is a timer that starts when an RRC message instructing a handover is received and stops when a random access to the corresponding (handover destination) SpCell is successful. Is also good. Further, when the above-mentioned first timer expires, it may be considered that the handover has failed. Further, the above-mentioned first timer may be a timer named T304.
  • the processing unit 502 of the UE 122 may perform a handover failure procedure. It should be noted that the handover failure may be paraphrased as the synchronization reset setting failure. (Step S1004)
  • the processing unit 502 of UE122 confirms whether the first setting is made in UE122.
  • the above-mentioned first setting may be the above-mentioned attempt conditional resetting. That is, the above-mentioned first setting means that if the first cell selected after the handover fails is one of the candidate SpCells included in the conditional handover setting information element, the candidate SpCell is conditionally reset. It may be a setting indicating that the above is to be performed.
  • the RRC message received in step S1000 that the first setting described above has been made includes (or contains) a conditional handover setting information element including an attempt conditional reset field. In other words.
  • the processing unit 502 of UE122 may confirm whether the handover of UE122 in step S1002 was accompanied by the security key update.
  • the RRC reset message or RRC reset information element applied to the handover in step S1002 contained the above-mentioned parameters related to the key update setting that the handover of UE122 in step S1002 was accompanied by the security key update ( Or it is included), in other words.
  • the RRC reset message or RRC reset information element applied to the handover in step S1002 that the handover of UE122 in step S1002 did not involve the security key update includes the above-mentioned parameters related to the key update setting. In other words, it was not (or was not included).
  • the handover in step S1002 may be the above-mentioned normal handover, that is, the handover to the first SpCell according to the above-mentioned first synchronization reset information element. Further, the handover in step S1002 may be the above-mentioned conditional handover, that is, the handover to the m-th SpCell according to the above-mentioned m-th conditional resetting information element. Further, the handover of UE 122 in step S1002 may be paraphrased as a previous handover, a handover, a previous reset with synchronization, a reset with synchronization, or the like.
  • the handover of the UE 122 in step S1002 may be paraphrased into another term as long as it is a term meaning the handover that caused the expiration of the first timer in step S1002.
  • the above-mentioned parameter related to the key update setting may be an information element represented by the name of MasterKeyUpdate and / or a field represented by the name of masterKeyUpdate.
  • security key update may be paraphrased as key update.
  • the processing unit 502 of the UE 122 performs a process including a part or all of the following (A) to (C) based on the fact that at least the above-mentioned first condition is satisfied. It's okay.
  • C Reestablish some entities for some or all of the radio bearers established and / or configured in UE122.
  • a part or all of the radio bearers established and / or set in UE122 are SRB and / or DRB established and / or set in UE122. It may be a part or all of them.
  • some settings are some or all of the state variables and / or timers and / or parameters and / or counters in the PDCP entity and / or RLC entity and / or radio bearer. May include.
  • retaining the setting may mean maintaining the setting immediately before the expiration of the above-mentioned first timer without returning the setting to the setting used in the source PCell. ..
  • some entities may include RLC entities. Further, the above (C) may be paraphrased as reestablishing the RLC entity for SRB.
  • the processing unit 502 of the UE 122 performs a process including a part or all of the following (D) to (F) based on the fact that at least the above-mentioned first condition is satisfied. You can go.
  • (D) Some of the settings of UE122 are retained.
  • (E) Revert back the settings of the UE 122 except for at least some of the above settings (settings held in (D) above) to be used in the source PCell.
  • (F) Reestablish some entities.
  • some settings are some or all of the state variables and / or timers and / or parameters and / or counters in the PDCP entity and / or RLC entity and / or radio bearer.
  • holding the setting may mean not returning the setting to the setting used in the source PCell, but maintaining the setting just before the first timer mentioned above expires. ..
  • some entities may include an RLC entity.
  • the above-mentioned first condition in the handover failure procedure in step S1004 is that the above-mentioned first setting is made in UE122 and / or the handover of UE122 in step S1002 is accompanied by a security key update.
  • the conditions may include things that were not done.
  • the above-mentioned first condition is at least a condition that the above-mentioned first setting is made in UE122 and that the handover of UE122 in step S1002 is not accompanied by the security key update. May be there.
  • the processes (A) and (B) described above source the UE122 setting for some or all of the wireless bearers established and / or set in the UE122.
  • the process may be to apply the settings of the target PCell (or the settings used by the target PCell) to some of the settings.
  • some settings of the target PCell after returning the UE122 setting to the setting used in the source PCell, some settings of the target PCell ( Alternatively, it may be a process of applying the settings (used in the target PCell).
  • the processing unit 502 of the UE 122 performs a process of returning the setting of the UE 122 to the setting used in the source PCell based on the fact that at least the first condition described above is not satisfied. May be.
  • the fact that the above-mentioned first condition is not satisfied means that the above-mentioned first setting is made in UE122 and that the handover of UE122 in step S1002 is not accompanied by key update. Some or all may not be applicable.
  • step S1004 the fact that the above-mentioned first condition is not satisfied may be rephrased as another (else) condition for satisfying the above-mentioned first condition.
  • the processing unit 502 of the UE 122 may further perform a process including a part or all of the following processes (F) to (G).
  • the above-mentioned information regarding the handover failure is stored in the variable related to the wireless link failure of the UE 122.
  • (G) Invokes the procedure for reestablishing the RRC connection.
  • the variable related to the wireless link failure in (F) above may be a variable named VarRLF-Report.
  • the above-mentioned procedure for reestablishing the RRC connection in (G) may be an RRC reestablishment procedure.
  • the RRC reestablishment procedure may include a procedure in which the terminal device selects the cell in which the RRC connection is to be reestablished, sends an RRC reestablishment request message to the base station device, and receives an RRC reestablishment message from the base station device. ..
  • the processing unit 502 of the UE 122 includes at least a part or all of the following conditions (1) to (4). Used in the target PCell (or in the target PCell) to configure some of the UE122 for some or all of the radio bearers established and / or configured in the UE122 based on the above. ) You may perform the process of applying the settings. (1) The above-mentioned first setting is made in the UE 122. (2) The handover of UE122 in step S1002 did not involve key update. (3) The selected cell is one of the candidate SpCells for conditional handover.
  • the conditional handover for the selected cell described above does not involve key update.
  • the radio bearers established and / or set in the UE 122 described above are some or all of the SRBs and / or DRBs established and / or set in the UE 122. good.
  • some of the above settings may include some or all of the state variables and / or timers and / or parameters and / or counters in the PDCP entity and / or RLC entity and / or radio bearer.
  • the handover failure process in step S1004 may be performed based on the fact that at least some or all of the following conditions (H) to (I) are not satisfied.
  • H A DAPS (Dual Active Protocol Stack) bearer is set.
  • I No radio link failure has been detected in the source PCell.
  • the DAPS bearer in (H) described above may be the DAPS bearer described in Non-Patent Document 1 and the like.
  • a DAPS bearer may be a radio bearer that has some or all of the radio (AS) protocol on both the source and target because it uses both source and target resources during the DAPS handover.
  • the above-mentioned source may be the source PCell. Further, the above-mentioned source may be a source base station device. Further, the above-mentioned target may be the target PCell. Further, the above-mentioned target may be a target base station device.
  • the "UE122 setting" when returning the UE122 setting to the setting used in the source PCell may be said to include the state variables and parameters of each radio bearer. Further, in the embodiment of the invention, even if the "UE122 setting" when returning the setting of the UE122 to the setting used in the source PCell includes the state variables and parameters of each radio bearer unless otherwise specified. good.
  • Cell, PCell, SpCell, PSCell, MCG, SCG, and cell group may be paraphrased with each other.
  • the radio bearers in the above description may be DRBs, SRBs, DRBs and SRBs, respectively.
  • SCG SpCell may be paraphrased as "PS Cell”.
  • A may be paraphrased as B
  • B may include the meaning of paraphrasing B as A in addition to paraphrasing A as B.
  • C may be D
  • C C may be E
  • D may be E
  • F may be G
  • G G may be H
  • F H
  • condition "A” and the condition "B” are contradictory, the condition “B” may be expressed as the “other” condition of the condition "A”. good.
  • a terminal device that communicates with a base station device, wherein the terminal device includes a receiving unit and a processing unit that receive an RRC message from the base station device, and the processing unit follows the RRC message.
  • the setting is made in the terminal device, the handover failure process is performed based on the expiration of the first timer of the terminal device, and at least the first condition is satisfied in the handover failure process. Then, for some or all of the wireless bearers, some of the settings of the terminal device are retained, and at least the settings other than some of the settings are returned to the settings used in the source PCell.
  • Processing is performed, and in the handover failure processing, at least based on the fact that the first condition is not satisfied, the setting of the terminal device is returned to the setting used in the source PCell, and the first condition is performed.
  • the condition of includes at least that the first setting is made in the terminal device and that the conditional handover performed by the terminal device does not involve key update, and the conditional handover means the terminal. This is a handover in which the terminal device executes the handover procedure when the conditional handover execution condition set in the device is satisfied.
  • a base station device that communicates with a terminal device, wherein the base station device includes a transmission unit and a processing unit that transmit an RRC message to the terminal device, and the processing unit follows the RRC message.
  • the terminal device is made to set, and based on the fact that the first timer of the terminal device has expired, the terminal device is made to perform the handover failure process, and at least the first condition is set in the handover failure process. Based on the fact that some or all of the wireless bearers are satisfied, some of the settings of the terminal device are retained, and at least some of the settings other than the above are used in the source PCell.
  • the process of returning to the set setting is performed, and the setting of the terminal device is returned to the setting used in the source PCell based on the fact that at least the first condition is not satisfied in the handover failure process.
  • the process is performed, and the first condition includes at least that the first setting is made in the terminal device and that the conditional handover performed by the terminal device does not involve key update.
  • the conditional handover is a handover in which the terminal device executes the handover procedure when the conditional handover execution condition set in the terminal device is satisfied.
  • a method of a terminal device that communicates with a base station device wherein the terminal device receives an RRC message from the base station device, sets the terminal device according to the RRC message, and sets the terminal device.
  • the handover failure process is performed, and in the handover failure process, a part or all of the radios are based on the fact that at least the first condition is satisfied. For the bearer, some of the settings of the terminal device are retained, and at least the settings other than some of the settings are returned to the settings used in the source PCell, and the handover failure occurs.
  • the process of returning the setting of the terminal device to the setting used in the source PCell is performed, and the first condition is the terminal device.
  • the first setting is made in, and at least the conditional handover performed by the terminal device is not accompanied by the key update, and the conditional handover is the conditional handover set in the terminal device. This is a handover in which the terminal device executes the handover procedure when the handover execution condition is satisfied.
  • a method of a base station device that communicates with a terminal device, wherein the base station device sends an RRC message to the terminal device, causes the terminal device to make settings according to the RRC message, and causes the terminal device to perform settings. Based on the fact that the first timer has expired, the terminal device is made to perform the handover failure processing, and a part or all of the handover failure processing is based on the fact that at least the first condition is satisfied.
  • the wireless bearer is made to retain some of the settings of the terminal device and return the settings excluding at least some of the settings to the settings used in the source PCell, and the handover is performed.
  • the process of returning the setting of the terminal device to the setting used in the source PCell is performed, and the first condition is set to the first condition.
  • the conditional handover is set in the terminal device, at least including that the first setting is made in the terminal device and that the conditional handover performed by the terminal device is not accompanied by a key update. This is a handover in which the terminal device executes the handover procedure when the conditional handover execution condition is satisfied.
  • the first setting according to (1) to (4) is the case where the cell first selected after the handover failure is one of the target candidate SpCells included in the conditional handover setting. , It is a setting indicating that conditional resetting is performed for the target candidate SpCell.
  • the program operating on the apparatus controls the Central Processing Unit (CPU) and the like to operate the computer so as to realize the functions of the above-described embodiment related to the one aspect of the present invention. It may be a program.
  • the program or the information handled by the program is temporarily read into volatile memory such as Random Access Memory (RAM) at the time of processing, or stored in non-volatile memory such as flash memory or Hard Disk Drive (HDD), and is required.
  • RAM Random Access Memory
  • HDD Hard Disk Drive
  • a part of the apparatus in the above-described embodiment may be realized by a computer.
  • the program for realizing this control function is recorded on a recording medium that can be read by the computer, and the program recorded on this recording medium is read by the computer system and executed. May be good.
  • the "computer system” as used herein is a computer system built into the device, and includes hardware such as an operating system and peripheral devices.
  • the "recording medium that can be read by a computer” may be any of a semiconductor recording medium, an optical recording medium, a magnetic recording medium, and the like.
  • a "recording medium that can be read by a computer” is a communication line that dynamically holds a program for a short time, like a communication line when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. It may also include a program that holds a program for a certain period of time, such as a volatile memory inside a computer system that is a server or a client in that case. Further, the above program may be for realizing a part of the above-mentioned functions, and may be further realized by combining the above-mentioned functions with a program already recorded in the computer system. ..
  • each functional block or feature of the device used in the above-described embodiment can be implemented or executed in an electric circuit, that is, typically an integrated circuit or a plurality of integrated circuits.
  • Electrical circuits designed to perform the functions described herein are general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or others.
  • Programmable Logic Devices Discrete Gate or Transistor Logic, Discrete Hardware Components, or Combinations thereof.
  • the general purpose processor may be a microprocessor or instead the processor may be a conventional processor, controller, microprocessor, or steady machine.
  • the general-purpose processor or each of the circuits described above may be composed of a digital circuit or an analog circuit.
  • an integrated circuit technology that replaces the current integrated circuit appears due to advances in semiconductor technology, it is also possible to use an integrated circuit based on this technology.
  • the invention of the present application is not limited to the above-described embodiment.
  • an example of the device has been described, but the present invention is not limited to this, and the present invention is not limited to this, and the stationary or non-movable electronic device installed indoors and outdoors, for example, an AV device, a kitchen device, and the like. It can be applied to terminal devices or communication devices such as cleaning / washing equipment, air conditioning equipment, office equipment, vending machines, and other living equipment.
  • One aspect of the present invention is used in, for example, a communication system, a communication device (for example, a mobile phone device, a base station device, a wireless LAN device, or a sensor device), an integrated circuit (for example, a communication chip), a program, or the like. be able to.
  • a communication device for example, a mobile phone device, a base station device, a wireless LAN device, or a sensor device
  • an integrated circuit for example, a communication chip
  • a program or the like.
  • E-UTRA 102 eNB 104 EPC 106 NR 108 gNB 110 5GC 112, 114, 116, 118, 120, 124 interfaces 122 UE 200, 300 PHY 202, 302 MAC 204, 304 RLC 206, 306 PDCP 208, 308 RRC 310 SDAP 210, 312 NAS 500, 604 receiver 502, 602 Processing unit 504, 600 transmitter

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This terminal device receives an RRC message from a base station device, configures the settings of the terminal device in accordance with the RRC message, and performs handover failure processing on the basis of the expiration of a first timer of the terminal device. In the handover failure processing, processing is performed to, on the basis of the fulfillment of at least a first condition, maintain a portion of the settings, among the settings of the terminal device, with respect to some or all wireless bearers, and to restore the settings, other than at least said portion of the settings, to the settings that were being used by a resource PCell.

Description

端末装置、基地局装置、および、方法Terminal equipment, base station equipment, and methods
 本発明は、端末装置、基地局装置、および、方法に関する。
 本願は、2020年12月18日に日本に出願された特願2020-210122号について優先権を主張し、その内容をここに援用する。
The present invention relates to a terminal device, a base station device, and a method.
The present application claims priority with respect to Japanese Patent Application No. 2020-210122 filed in Japan on December 18, 2020, the contents of which are incorporated herein by reference.
 セルラ移動通信システムの標準化プロジェクトである、第3世代パートナーシッププロジェクト(3rd Generation Partnership Project: 3GPP)において、無線アクセス、コアネットワーク、サービス等を含む、セルラ移動通信システムの技術検討及び規格策定が行われている。 In the 3rd Generation Partnership Project (3GPP), which is a standardization project for cellular mobile communication systems, technical studies and standard development of cellular mobile communication systems including wireless access, core networks, services, etc. are being conducted. There is.
 例えば、E-UTRA(Evolved Universal Terrestrial Radio Access)は、3GPPにおいて、第3.9世代および第4世代向けセルラ移動通信システム向け無線アクセス技術(Radio Access Technology: RAT)として、技術検討及び規格策定が開始された。現在も3GPPにおいて、E-UTRAの拡張技術の技術検討及び規格策定が行われている。なお、E-UTRAは、Long Term Evolution(LTE: 登録商標)とも称し、拡張技術をLTE-Advanced(LTE-A)、LTE-Advanced Pro(LTE-A Pro)と称する事もある。(非特許文献2等) For example, E-UTRA (Evolved Universal Terrestrial Radio Access) has started technical examination and standard development as a wireless access technology (Radio Access Technology: RAT) for cellular mobile communication systems for 3.9G and 4th generation in 3GPP. rice field. At 3GPP, technical studies and standardization of E-UTRA extended technology are still underway. In addition, E-UTRA is also referred to as LongTermEvolution (LTE: registered trademark), and the extended technology may be referred to as LTE-Advanced (LTE-A) or LTE-Advanced Pro (LTE-A Pro). (Non-Patent Document 2 etc.)
 また、NR(New Radio、またはNR Radio access)は、3GPPにおいて、第5世代(5th Generation: 5G)向けセルラ移動通信システム向け無線アクセス技術(Radio Access Technology: RAT)として、技術検討及び規格策定が開始された。現在も3GPPにおいて、NRの拡張技術の技術検討及び規格策定が行われている。(非特許文献1等) In addition, NR (New Radio or NR Radio access) is a radio access technology (Radio Access Technology: RAT) for cellular mobile communication systems for the 5th generation (5th Generation: 5G) in 3GPP, and technical studies and standard formulation are underway. It was started. At 3GPP, technical studies and standardization of NR extended technology are still underway. (Non-Patent Document 1 etc.)
 NRの拡張技術の1つとして、既存のNRのモビリティ技術を拡張する仕組みが検討されている。NRのモビリティ技術の拡張の一つに、条件つきハンドオーバがある。条件付きハンドオーバとは1つ又は複数のハンドオーバ実行条件が満たされた時に、端末装置によりハンドオーバ手順を実行する事により、ハンドオーバの堅牢性を改善する技術である。 As one of the NR expansion technologies, a mechanism to expand the existing NR mobility technology is being considered. One of the extensions of NR's mobility technology is conditional handover. Conditional handover is a technique for improving the robustness of handover by executing a handover procedure by a terminal device when one or a plurality of handover execution conditions are satisfied.
 条件付きハンドオーバの動作は規格化されつつあるが、詳細動作については更なる検討が必要である。 The operation of conditional handover is being standardized, but further study is required for detailed operation.
 本発明の一態様は、上記した事情に鑑みてなされたもので、モビリティを効率的に制御することができる端末装置、基地局装置、および、方法を提供することを目的の一つとする。 One aspect of the present invention has been made in view of the above circumstances, and one of the objects is to provide a terminal device, a base station device, and a method capable of efficiently controlling mobility.
 上記の目的を達成するために、本発明の一態様は、以下のような手段を講じた。すなわち本発明の一態様は、基地局装置と通信する端末装置であって、前記端末装置は、前記基地局装置からRRCメッセージを受信する受信部と、処理部と、を備え、前記処理部は、前記RRCメッセージに従って前記端末装置に設定を行い、前記端末装置の第1のタイマーが満了した事に基づいて、ハンドオーバ失敗の処理を行い、前記ハンドオーバ失敗の処理において、少なくとも第1の条件を満たしている事に基づいて、一部又は全ての無線ベアラに対し、前記端末装置の設定のうち、一部の設定を保持し、少なくとの前記一部の設定を除く設定をソースPCellで使用されていた設定に戻す処理を行い、前記ハンドオーバ失敗の処理において、少なくとも前記第1の条件を満たしていない事に基づいて、前記端末装置の設定を前記ソースPCellで使用されていた設定に戻す処理を行い、前記第1の条件には、前記端末装置に第1の設定が行われている事、及び前記端末装置が行った条件付きハンドオーバが鍵更新を伴わない事を少なくとも含み、前記条件付きハンドオーバとは、前記端末装置に設定されている条件付きハンドオーバ実行条件が満たされた時に、端末装置によりハンドオーバ手順を実行するハンドオーバである。 In order to achieve the above object, one aspect of the present invention has taken the following measures. That is, one aspect of the present invention is a terminal device that communicates with the base station device, and the terminal device includes a receiving unit and a processing unit that receive an RRC message from the base station device, and the processing unit includes a processing unit. , The terminal device is set according to the RRC message, the handover failure process is performed based on the fact that the first timer of the terminal device has expired, and at least the first condition is satisfied in the handover failure process. Based on this, for some or all of the wireless bearers, some of the settings of the terminal device are retained, and at least some of the settings are excluded from the source PCell. A process of returning the settings to the settings used in the source PCell is performed, and a process of returning the settings of the terminal device to the settings used in the source PCell is performed based on the fact that at least the first condition is not satisfied in the handover failure process. The first condition includes at least that the terminal device has the first setting and that the conditional handover performed by the terminal device does not involve a key update, and the conditional handover is performed. Is a handover in which the terminal device executes the handover procedure when the conditional handover execution condition set in the terminal device is satisfied.
 また本発明の一態様は、端末装置と通信を行う基地局装置であって、前記基地局装置は前記端末装置にRRCメッセージを送信する送信部と、処理部と、を備え、前記処理部は、前記RRCメッセージに従って前記端末装置に設定を行わせ、前記端末装置の第1のタイマーが満了した事に基づいて、前記端末装置にハンドオーバ失敗の処理を行わせ、前記ハンドオーバ失敗の処理において、少なくとも第1の条件を満たしている事に基づいて、一部又は全ての無線ベアラに対し、前記端末装置の設定のうち、一部の設定を保持し、少なくとの前記一部の設定を除く設定をソースPCellで使用されていた設定に戻す処理を行わせ、前記ハンドオーバ失敗の処理において、少なくとも前記第1の条件を満たしていない事に基づいて、前記端末装置の設定を前記ソースPCellで使用されていた設定に戻す処理を行わせ、前記第1の条件には、前記端末装置に第1の設定が行われている事、及び前記端末装置が行った条件付きハンドオーバが鍵更新を伴わない事を少なくとも含み、前記条件付きハンドオーバとは、前記端末装置に設定されている条件付きハンドオーバ実行条件が満たされた時に、端末装置によりハンドオーバ手順を実行するハンドオーバである。 Further, one aspect of the present invention is a base station device that communicates with a terminal device, wherein the base station device includes a transmission unit and a processing unit that transmit an RRC message to the terminal device, and the processing unit is provided. , The terminal device is made to set according to the RRC message, and the terminal device is made to perform the handover failure process based on the fact that the first timer of the terminal device has expired, and at least in the handover failure process. Based on the fact that the first condition is satisfied, some of the settings of the terminal device are retained for some or all of the wireless bearers, and at least some of the settings are excluded. Is returned to the setting used in the source PCell, and the setting of the terminal device is used in the source PCell based on the fact that at least the first condition is not satisfied in the handover failure processing. The process of returning to the set setting is performed, and the first condition is that the terminal device has the first setting and that the conditional handover performed by the terminal device does not involve key update. The conditional handover is a handover in which the terminal device executes the handover procedure when the conditional handover execution condition set in the terminal device is satisfied.
 基地局装置と通信する端末装置の方法であって、前記端末装置は、前記基地局装置からRRCメッセージを受信し、前記RRCメッセージに従って前記端末装置に設定を行い、前記端末装置の第1のタイマーが満了した事に基づいて、ハンドオーバ失敗の処理を行い、前記ハンドオーバ失敗の処理において、少なくとも第1の条件を満たしている事に基づいて、一部又は全ての無線ベアラに対し、前記端末装置の設定のうち、一部の設定を保持し、少なくとの前記一部の設定を除く設定をソースPCellで使用されていた設定に戻す処理を行い、前記ハンドオーバ失敗の処理において、少なくとも前記第1の条件を満たしていない事に基づいて、前記端末装置の設定を前記ソースPCellで使用されていた設定に戻す処理を行い、前記第1の条件には、前記端末装置に第1の設定が行われている事、及び前記端末装置が行った条件付きハンドオーバが鍵更新を伴わない事を少なくとも含み、前記条件付きハンドオーバとは、前記端末装置に設定されている条件付きハンドオーバ実行条件が満たされた時に、端末装置によりハンドオーバ手順を実行するハンドオーバである。 A method of a terminal device that communicates with a base station device, wherein the terminal device receives an RRC message from the base station device, sets the terminal device according to the RRC message, and sets the first timer of the terminal device. The handover failure is processed based on the fact that the handover has expired, and based on the fact that at least the first condition is satisfied in the handover failure processing, the terminal device of the terminal device is subjected to a part or all of the wireless bearers. Among the settings, some of the settings are retained, and at least some of the settings other than the above-mentioned settings are returned to the settings used in the source PCell. Based on the fact that the condition is not satisfied, the process of returning the setting of the terminal device to the setting used in the source PCell is performed, and in the first condition, the first setting is performed in the terminal device. At least, the conditional handover performed by the terminal device does not involve key update, and the conditional handover is when the conditional handover execution condition set in the terminal device is satisfied. , This is a handover in which the handover procedure is executed by the terminal device.
 また本発明の一態様は、端末装置と通信を行う基地局装置の方法であって、前記基地局装置は前記端末装置にRRCメッセージを送信し、前記RRCメッセージに従って前記端末装置に設定を行わせ、前記端末装置の第1のタイマーが満了した事に基づいて、前記端末装置にハンドオーバ失敗の処理を行わせ、前記ハンドオーバ失敗の処理において、少なくとも第1の条件を満たしている事に基づいて、一部又は全ての無線ベアラに対し、前記端末装置の設定のうち、一部の設定を保持し、少なくとの前記一部の設定を除く設定をソースPCellで使用されていた設定に戻す処理を行わせ、前記ハンドオーバ失敗の処理において、少なくとも前記第1の条件を満たしていない事に基づいて、前記端末装置の設定を前記ソースPCellで使用されていた設定に戻す処理を行わせ、前記第1の条件には、前記端末装置に第1の設定が行われている事、及び前記端末装置が行った条件付きハンドオーバが鍵更新を伴わない事を少なくとも含み、前記条件付きハンドオーバとは、前記端末装置に設定されている条件付きハンドオーバ実行条件が満たされた時に、端末装置によりハンドオーバ手順を実行するハンドオーバである。 Further, one aspect of the present invention is a method of a base station device that communicates with a terminal device, wherein the base station device transmits an RRC message to the terminal device, and the terminal device is set according to the RRC message. Based on the fact that the first timer of the terminal device has expired, the terminal device is made to perform the handover failure process, and the handover failure process satisfies at least the first condition. For some or all wireless bearers, the process of retaining some of the settings of the terminal device and returning at least the settings other than some of the settings to the settings used in the source PCell. In the processing of the handover failure, the processing of returning the setting of the terminal device to the setting used in the source PCell is performed based on the fact that at least the first condition is not satisfied, and the first condition is performed. The condition of includes at least that the first setting is made in the terminal device and that the conditional handover performed by the terminal device does not involve key update, and the conditional handover means the terminal. This is a handover in which the terminal device executes the handover procedure when the conditional handover execution condition set in the device is satisfied.
 なお、これらの包括的または具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム、または、記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。 It should be noted that these comprehensive or specific embodiments may be realized in a system, an apparatus, a method, an integrated circuit, a computer program, or a recording medium, and the system, an apparatus, a method, an integrated circuit, a computer program, and a recording medium may be realized. It may be realized by any combination of.
 本発明の一態様によれば、端末装置は、効率的なモビリティ処理を実現することができる。 According to one aspect of the present invention, the terminal device can realize efficient mobility processing.
本発明の実施の形態に係る通信システムの概略図。The schematic diagram of the communication system which concerns on embodiment of this invention. 本発明の実施の形態に係るE-UTRAプロトコル構成の一例の図。The figure of an example of the E-UTRA protocol composition which concerns on embodiment of this invention. 本発明の実施形態に係るNRプロトコル構成の一例の図。The figure of an example of the NR protocol composition which concerns on embodiment of this invention. 本発明の実施の形態に係るRRCにおける、各種設定のための手順のフローの一例を示す図。The figure which shows an example of the flow of the procedure for various setting in RRC which concerns on embodiment of this invention. 本発明の実施の形態における端末装置の構成を示すブロック図。The block diagram which shows the structure of the terminal apparatus in embodiment of this invention. 本発明の実施の形態における基地局装置の構成を示すブロック図。The block diagram which shows the structure of the base station apparatus in embodiment of this invention. 本発明の実施の形態におけるNRでのRRCコネクションの再設定に関するメッセージに含まれるASN.1記述の一例。An example of the ASN.1 description contained in the message relating to the reconfiguration of the RRC connection in NR according to the embodiment of the present invention. 本発明の実施の形態におけるE-UTRAでのRRCコネクションの再設定に関するメッセージに含まれるASN.1記述の一例。An example of the ASN.1 description contained in the message regarding the resetting of the RRC connection in E-UTRA in the embodiment of the present invention. 本発明の実施の形態における条件付きハンドオーバの設定に関するフィールド、及び/又は情報要素を表すASN.1記述の一例。An example of an ASN.1 description representing a field and / or an information element relating to the setting of a conditional handover in an embodiment of the invention. 本発明の実施の形態における、端末装置の処理の一例を示す図。The figure which shows an example of the processing of the terminal apparatus in embodiment of this invention.
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 LTE(およびLTE-A、LTE-A Pro)とNRは、異なる無線アクセス技術(Radio Access Technology: RAT)として定義されてよい。またNRは、LTEに含まれる技術として定義されてもよい。またLTEは、NRに含まれる技術として定義されてもよい。また、NRとMulti Radio Dual connectivity(MR-DC)で接続可能なLTEは、従来のLTEと区別されてよい。また、コアネットワークに5GCを用いるLTEは、コアネットワークにEPCを用いる従来のLTEと区別されてよい。なお従来のLTEとは、3GPPにおけるリリース15以降に規格化された技術を実装していないLTEの事であって良い。本発明の実施形態はNR、LTEおよび他のRATに適用されてよい。以下の説明では、LTEおよびNRに関連する用語を用いて説明するが、本発明の実施形態は他の用語を用いる他の技術において適用されてもよい。また本発明の実施形態でのE-UTRAという用語は、LTEという用語に置き換えられて良いし、LTEという用語はE-UTRAという用語に置き換えられて良い。 LTE (and LTE-A, LTE-A Pro) and NR may be defined as different radio access technologies (Radio Access Technology: RAT). NR may also be defined as a technique included in LTE. LTE may also be defined as a technique included in NR. In addition, LTE that can be connected to NR by MultiRadio Dual connectivity (MR-DC) may be distinguished from conventional LTE. In addition, LTE using 5GC for the core network may be distinguished from conventional LTE using EPC for the core network. Note that conventional LTE may be LTE that does not implement the technology standardized after Release 15 in 3GPP. Embodiments of the present invention may be applied to NR, LTE and other RATs. In the following description, terms related to LTE and NR will be used, but embodiments of the present invention may be applied in other techniques using other terms. Further, the term E-UTRA in the embodiment of the present invention may be replaced with the term LTE, and the term LTE may be replaced with the term E-UTRA.
 なお、本発明の実施の形態において、無線アクセス技術がE-UTRA又はNRである場合の各ノードやエンティティの名称、及び各ノードやエンティティにおける処理等について説明するが、本発明の実施の形態は他の無線アクセス技術に用いられて良い。本発明の実施の形態における各ノードやエンティティの名称は、別の名称であって良い。 In the embodiment of the present invention, the names of the nodes and entities when the wireless access technique is E-UTRA or NR, the processing in each node and the entity, and the like will be described. It may be used for other wireless access techniques. The name of each node or entity in the embodiment of the present invention may be another name.
 図1は本発明の実施の形態に係る通信システムの概略図である。なお図1を用いて説明する各ノード、無線アクセス技術、コアネットワーク、インタフェース等の機能は、本発明の実施形態に密接に関わる一部の機能であり、他の機能を持って良い。 FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present invention. The functions of each node, wireless access technique, core network, interface, etc. described with reference to FIG. 1 are some functions closely related to the embodiment of the present invention, and may have other functions.
 E-UTRA100は無線アクセス技術であって良い。またE-UTRA100は、UE122とeNB102との間のエアインタフェース(air interface)であって良い。UE122とeNB102との間のエアインタフェースをUuインタフェースと呼んで良い。eNB(E-UTRAN Node B)102は、E-UTRA100の基地局装置であって良い。eNB102は、後述のE-UTRAプロトコルを持って良い。E-UTRAプロトコルは、後述のE-UTRAユーザプレーン(User Plane: UP)プロトコル、及び後述のE-UTRA制御プレーン(Control Plane: CP)プロトコルから構成されても良い。eNB102は、UE122に対し、E-UTRAユーザプレーン(User Plane: UP)プロトコル、及びE-UTRA制御プレーン(Control Plane: CP)プロトコルを終端して良い。eNBで構成される無線アクセスネットワークをE-UTRANと呼んでもよい。 E-UTRA100 may be a wireless access technology. The E-UTRA100 may be an air interface between the UE 122 and the eNB 102. The air interface between UE122 and eNB102 may be called the Uu interface. The eNB (E-UTRAN Node B) 102 may be a base station device of the E-UTRA100. The eNB 102 may have the E-UTRA protocol described below. The E-UTRA protocol may be composed of the E-UTRA user plane (User Plane: UP) protocol described later and the E-UTRA control plane (Control Plane: CP) protocol described later. The eNB 102 may terminate the E-UTRA user plane (User Plane: UP) protocol and the E-UTRA control plane (Control Plane: CP) protocol for the UE 122. A radio access network composed of eNB may be called E-UTRAN.
 EPC(Evolved Packet Core)104は、コア網であって良い。インタフェース112はeNB102とEPC104の間のインタフェース(interface)であり、S1インタフェースと呼ばれて良い。インタフェース112には、制御信号が通る制御プレーンインタフェース、及び/又は(and/or)ユーザデータが通るユーザプレーンインタフェースが存在して良い。インタフェース112の制御プレーンインタフェースはEPC104内のMobility Management Entity(MME: 不図示)で終端して良い。インタフェース112のユーザプレーンインタフェースはEPC104内のサービングゲートウェイ(S-GW:不図示)で終端して良い。インタフェース112の制御プレーンインタフェースをS1-MMEインタフェースと呼んで良い。インタフェース112のユーザプレーンインタフェースをS1-Uインタフェースと呼んで良い。 EPC (Evolved Packet Core) 104 may be a core network. The interface 112 is an interface between the eNB 102 and the EPC 104 and may be referred to as the S1 interface. The interface 112 may include a control plane interface through which control signals pass and / or a user plane interface through which (and / or) user data passes. The control plane interface of the interface 112 may be terminated by the Mobility Management Entity (MME: not shown) in the EPC 104. The user plane interface of interface 112 may be terminated by a serving gateway (S-GW: not shown) in EPC104. The control plane interface of interface 112 may be referred to as the S1-MME interface. The user plane interface of interface 112 may be referred to as the S1-U interface.
 なお、1つ又は複数のeNB102がEPC104にインタフェース112を介して接続されて良い。EPC104に接続する複数のeNB102の間に、インタフェースが存在して良い(不図示)。EPC104に接続する複数のeNB102間のインタフェースを、X2インタフェースと呼んで良い。 Note that one or more eNB 102s may be connected to the EPC 104 via the interface 112. An interface may exist between multiple eNB 102s connected to the EPC 104 (not shown). The interface between a plurality of eNB 102s connected to the EPC 104 may be called an X2 interface.
 NR106は無線アクセス技術であって良い。またNR106は、UE122とgNB108との間のエアインタフェース(air interface)であって良い。UE122とgNB108との間のエアインタフェースをUuインタフェースと呼んで良い。gNB(g Node B)108は、NR106の基地局装置であって良い。gNB108は、後述のNRプロトコルを持って良い。NRプロトコルは、後述のNRユーザプレーン(User Plane: UP)プロトコル、及び後述のNR制御プレーン(Control Plane: CP)プロトコルから構成されて良い。gNB108は、UE122に対し、NRユーザプレーン(User Plane: UP)プロトコル、及びNR制御プレーン(Control Plane: CP)プロトコルを終端して良い。 NR106 may be a wireless access technology. Further, the NR106 may be an air interface between the UE 122 and the gNB 108. The air interface between UE122 and gNB108 may be called the Uu interface. The gNB (gNodeB) 108 may be a base station device of the NR106. The gNB108 may have the NR protocol described below. The NR protocol may be composed of the NR user plane (User Plane: UP) protocol described later and the NR control plane (Control Plane: CP) protocol described later. The gNB 108 may terminate the NR user plane (User Plane: UP) protocol and the NR control plane (Control Plane: CP) protocol for the UE 122.
 5GC110は、コア網であって良い。インタフェース116はgNB108と5GC110の間のインタフェース(interface)であり、NGインタフェースと呼ばれて良い。インタフェース116には、制御信号が通る制御プレーンインタフェース、及び/又はユーザデータが通るユーザプレーンインタフェースが存在して良い。インタフェース116の制御プレーンインタフェースは5GC110内のAccess and mobility Management Function(AMF:不図示)で終端して良い。インタフェース116のユーザプレーンインタフェースは5GC110内のUser Plane Function(UPF:不図示)で終端して良い。インタフェース116の制御プレーンインタフェースをNG-Cインタフェースと呼んで良い。インタフェース116のユーザプレーンインタフェースをNG-Uインタフェースと呼んで良い。 5GC110 may be a core network. Interface 116 is an interface between gNB 108 and 5GC 110 and may be referred to as an NG interface. The interface 116 may include a control plane interface through which control signals pass and / or a user plane interface through which user data passes. The control plane interface of the interface 116 may be terminated by the Access and mobility Management Function (AMF: not shown) in the 5GC110. The user plane interface of the interface 116 may be terminated by the User Plane Function (UPF: not shown) in the 5GC110. The control plane interface of interface 116 may be called an NG-C interface. The user plane interface of interface 116 may be called an NG-U interface.
 なお、1つ又は複数のgNB108が5GC110にインタフェース116を介して接続されて良い。5GC110に接続する複数のgNB108の間に、インタフェースが存在して良い(不図示)。5GC110に接続する複数のgNB108間のインタフェースをXnインタフェースと呼んで良い。 Note that one or more gNB108s may be connected to the 5GC110 via the interface 116. An interface may exist between multiple gNB 108s connected to the 5GC110 (not shown). The interface between multiple gNB108s connected to the 5GC110 may be called the Xn interface.
 eNB102は5GC110に接続する機能を持って良い。5GC110に接続する機能をもつeNB102を、ng-eNBと呼んで良い。インタフェース114はeNB102と5GC110の間のインタフェースで、NGインタフェースと呼ばれて良い。インタフェース114には、制御信号が通る制御プレーンインタフェース、及び/又はユーザデータが通るユーザプレーンインタフェースが存在して良い。インタフェース114の制御プレーンインタフェースは5GC110内のAccess and mobility Management Function(AMF:不図示)で終端して良い。インタフェース114のユーザプレーンインタフェースは5GC110内のUser Plane Function(UPF:不図示)で終端して良い。インタフェース114の制御プレーンインタフェースをNG-Cインタフェースと呼んで良い。インタフェース114のユーザプレーンインタフェースをNG-Uインタフェースと呼んで良い。ng-eNBまたはgNBで構成される無線アクセスネットワークをNG-RANと称してもよい。NG-RAN、E-UTRAN, eNB, ng-eNBおよびgNBなどを単にネットワークと称してもよい。 The eNB 102 may have a function to connect to the 5GC110. The eNB 102 that has the function of connecting to the 5GC110 may be called ng-eNB. Interface 114 is the interface between eNB 102 and 5GC110 and may be referred to as the NG interface. The interface 114 may include a control plane interface through which control signals pass and / or a user plane interface through which user data passes. The control plane interface of the interface 114 may be terminated by the Access and mobility Management Function (AMF: not shown) in the 5GC110. The user plane interface of the interface 114 may be terminated by the User Plane Function (UPF: not shown) in the 5GC110. The control plane interface of interface 114 may be called an NG-C interface. The user plane interface of interface 114 may be called an NG-U interface. A radio access network composed of ng-eNB or gNB may be referred to as NG-RAN. NG-RAN, E-UTRAN, eNB, ng-eNB, gNB, etc. may be simply referred to as a network.
 なお、1つ又は複数のeNB102が5GC110にインタフェース114を介して接続されて良い。5GC110に接続する複数のeNB102の間に、インタフェースが存在して良い(不図示)。5GC110に接続する複数のeNB102の間のインタフェースを、Xnインタフェースと呼んで良い。また5GC110に接続するeNB102と、5GC110に接続するgNB108は、インタフェース120で接続されて良い。5GC110に接続するeNB102と、5GC110に接続するgNB108の間のインタフェース120は、Xnインタフェースと呼ばれて良い。 Note that one or more eNB 102s may be connected to the 5GC110 via the interface 114. An interface may exist between multiple eNB 102s connected to the 5GC110 (not shown). The interface between multiple eNB 102s connected to the 5GC110 may be referred to as the Xn interface. Further, the eNB 102 connected to the 5GC110 and the gNB108 connected to the 5GC110 may be connected by the interface 120. The interface 120 between the eNB 102 connected to the 5GC110 and the gNB108 connected to the 5GC110 may be referred to as an Xn interface.
 gNB108はEPC104に接続する機能を持って良い。EPC104に接続する機能をもつgNB108を、en-gNBと呼んで良い。インタフェース118はgNB108とEPC104の間のインタフェースで、S1インタフェースと呼ばれて良い。インタフェース118には、ユーザデータが通るユーザプレーンインタフェースが存在して良い。インタフェース118のユーザプレーンインタフェースはEPC104内のS-GW(不図示)で終端して良い。インタフェース118のユーザプレーンインタフェースをS1-Uインタフェースと呼んで良い。またEPC104に接続するeNB102と、EPC104に接続するgNB108は、インタフェース120で接続されて良い。EPC104に接続するeNB102と、EPC104に接続するgNB108の間のインタフェース120はX2インタフェースと呼ばれて良い。 GNB108 may have a function to connect to EPC104. The gNB 108 that has the function of connecting to the EPC104 may be called en-gNB. Interface 118 is the interface between gNB 108 and EPC 104 and may be referred to as the S1 interface. The interface 118 may have a user plane interface through which user data passes. The user plane interface of interface 118 may be terminated by S-GW (not shown) in EPC104. The user plane interface of interface 118 may be called the S1-U interface. Further, the eNB 102 connected to the EPC 104 and the gNB 108 connected to the EPC 104 may be connected by the interface 120. The interface 120 between the eNB 102 connected to the EPC 104 and the gNB 108 connected to the EPC 104 may be referred to as the X2 interface.
 インタフェース124はEPC104と5GC110間のインタフェースであり、CPのみ、又はUPのみ、又はCP及びUP両方を通すインタフェースであって良い。また、インタフェース114、インタフェース116、インタフェース118、インタフェース120、及びインタフェース124等のうちの一部又は全てのインタフェースは、通信事業者等が提供する通信システムに応じて存在しない場合があって良い。 Interface 124 is an interface between EPC104 and 5GC110, and may be an interface through CP only, UP only, or both CP and UP. Further, some or all of the interfaces 114, interface 116, interface 118, interface 120, interface 124, etc. may not exist depending on the communication system provided by the telecommunications carrier or the like.
 UE122はeNB102、及び/又はgNB108から送信される報知情報や、ページングメッセージを受信する事が可能な端末装置であって良い。またUE122は、eNB102、及び/又はgNB108との無線接続が可能な端末装置であって良い。またUE122は、eNB102との無線接続、及びgNB108と無線接続を同時に行う事が可能な端末装置であって良い。UE122はE-UTRAプロトコル、及び/又はNRプロトコルを持って良い。なお、無線接続とは、Radio Resource Control(RRC)接続であって良い。 UE122 may be a terminal device capable of receiving notification information and paging messages transmitted from eNB102 and / or gNB108. The UE 122 may be a terminal device capable of wireless connection with the eNB 102 and / or the gNB 108. The UE 122 may be a terminal device capable of wirelessly connecting to the eNB 102 and wirelessly to the gNB 108 at the same time. UE122 may have an E-UTRA protocol and / or an NR protocol. The wireless connection may be a Radio Resource Control (RRC) connection.
 UE122が、eNB102、及び/又はgNB108と通信する場合、UE122と、eNB102、及び/又はgNB108との間に無線ベアラ(RB: Radio Bearer)を確立する事により、無線接続を行って良い。CPに用いられる無線ベアラは、シグナリング無線ベアラ(SRB: Signaling Radio Bearer)と呼ばて良い。またUPに用いられる無線ベアラは、データ無線ベアラ(DRB Data Radio Bearer)と呼ばれて良い。各無線ベアラには、無線ベアラ識別子(Identity: ID)が割り当てられて良い。SRB用無線ベアラ識別子は、SRB識別子(SRB Identity、またはSRB ID)と呼ばれて良い。DRB用無線ベアラ識別子は、DRB識別子(DRB Identity、またはDRB ID)と呼ばれて良い。 When the UE 122 communicates with the eNB 102 and / or the gNB 108, a wireless connection may be made by establishing a wireless bearer (RB: Radio Bearer) between the UE 122 and the eNB 102 and / or the gNB 108. The radio bearer used for CP may be called a signaling radio bearer (SRB: Signaling Radio Bearer). The wireless bearer used for UP may be called a data wireless bearer (DRB Data Radio Bearer). A wireless bearer identifier (Identity: ID) may be assigned to each wireless bearer. The radio bearer identifier for SRB may be referred to as an SRB identifier (SRB Identity or SRB ID). The radio bearer identifier for DRB may be referred to as a DRB identifier (DRB Identity or DRB ID).
 またUE122は、eNB102及び/又はgNB108を介して、EPC104、及び/又は5GC110との接続が可能な端末装置であって良い。UE122が通信を行うeNB102、及び/又はgNB108の接続先コア網がEPC104である場合、UE122と、eNB102、及び/又はgNB108との間に確立された各DRBは、更にEPC104内を経由する各EPS(Evolved Packet System)ベアラと一意に紐づけられて良い。各EPSベアラは、EPSベアラ識別子(Identity、またはID)で識別されて良い。また同一のEPSベアラを通るIPパケットや、イーサネット(登録商標)フレーム等のデータには同一のQoSが保証されて良い。 The UE 122 may be a terminal device that can be connected to the EPC 104 and / or the 5GC110 via the eNB 102 and / or the gNB 108. If the eNB 102 with which the UE 122 communicates and / or the core network to which the gNB 108 is connected is the EPC 104, each DRB established between the UE 122 and the eNB 102 and / or the gNB 108 further goes through each EPS within the EPC 104. (Evolved Packet System) It may be uniquely associated with the bearer. Each EPS bearer may be identified by an EPS bearer identifier (Identity, or ID). Further, the same QoS may be guaranteed for data such as IP packets passing through the same EPS bearer and Ethernet (registered trademark) frames.
 また、UE122が通信を行うeNB102、及び/又はgNB108の接続先コア網が5GC110である場合、UE122と、eNB102、及び/又はgNB108との間に確立された各DRBは、更に5GC110内に確立されるPDU(Packet Data Unit)セッションの一つに紐づけられて良い。各PDUセッションには、一つ又は複数のQoSフローが存在して良い。各DRBは、一つ又は複数のQoSフローと対応付け(map)されて良いし、どのQoSフローと対応づけられなくて良い。各PDUセッションは、PDUセッション識別子(Identity、Identifier、またはID)で識別されて良い。また各QoSフローは、QoSフロー識別子Identity、Identifier、またはID)で識別されて良い。また同一のQoSフローを通るIPパケットや、イーサネットフレーム等のデータに同一のQoSが保証されて良い。 Further, when the connection destination core network of the eNB 102 and / or the gNB 108 with which the UE 122 communicates is 5GC110, each DRB established between the UE 122 and the eNB 102 and / or the gNB 108 is further established in the 5GC110. It may be associated with one of the PDU (Packet Data Unit) sessions. Each PDU session may have one or more QoS flows. Each DRB may be mapped to one or more QoS flows and may not be associated with any QoS flow. Each PDU session may be identified by a PDU session identifier (Identity, Identifier, or ID). Further, each QoS flow may be identified by the QoS flow identifier Identity, Identifier, or ID). Further, the same QoS may be guaranteed for data such as IP packets and Ethernet frames that pass through the same QoS flow.
 EPC104には、PDUセッション及び/又はQoSフローは存在しなくて良い。また5GC110にはEPSベアラは存在しなくて良い。UE122がEPC104と接続している際、UE122はEPSベアラの情報を持つが、PDUセッション及び/又はQoSフローの内の情報は持たなくて良い。またUE122が5GC110と接続している際、UE122はPDUセッション及び/又はQoSフローの内の情報を持つが、EPSベアラの情報は持たなくて良い。 The EPC104 does not have to have a PDU session and / or a QoS flow. Also, the 5GC110 does not have to have an EPS bearer. When the UE122 is connected to the EPC104, the UE122 has information on the EPS bearer, but not in the PDU session and / or QoS flow. Also, when the UE122 is connected to the 5GC110, the UE122 has information in the PDU session and / or QoS flow, but does not have to have the EPS bearer information.
 なお、以下の説明において、eNB102および/またはgNB108を単に基地局装置とも称し、UE122を単に端末装置又はUEとも称する。 In the following description, eNB 102 and / or gNB 108 are also simply referred to as a base station device, and UE 122 is also simply referred to as a terminal device or UE.
 図2は本発明の実施形態に係るE-UTRAプロトコル構成(protocol architecture)の一例の図である。また図3は本発明の実施形態に係るNRプロトコル構成の一例の図である。なお図2及び/又は図3を用いて説明する各プロトコルの機能は、本発明の実施形態に密接に関わる一部の機能であり、他の機能を持っていて良い。なお、本発明の実施の形態において、上りリンク(uplink: UL)とは端末装置から基地局装置へのリンクであって良い。また本発明の各実施の形態において、下りリンク(downlink: DL)とは基地局装置から端末装置へのリンクであって良い。 FIG. 2 is a diagram of an example of the E-UTRA protocol configuration (protocol architecture) according to the embodiment of the present invention. Further, FIG. 3 is a diagram of an example of the NR protocol configuration according to the embodiment of the present invention. It should be noted that the functions of the respective protocols described with reference to FIGS. 2 and / or 3 are some functions closely related to the embodiment of the present invention, and may have other functions. In the embodiment of the present invention, the uplink (UL) may be a link from the terminal device to the base station device. Further, in each embodiment of the present invention, the downlink (downlink: DL) may be a link from the base station device to the terminal device.
 図2(A)はE-UTRAユーザプレーン(UP)プロトコルスタックの図である。図2(A)に示す通り、E-UTRAN UPプロトコルは、UE122とeNB102の間のプロトコルであって良い。即ちE-UTRANUPプロトコルは、ネットワーク側ではeNB102で終端するプロトコルであって良い。図2(A)に示す通り、E-UTRAユーザプレーンプロトコルスタックは、無線物理層(無線物理レイヤ)であるPHY(Physical layer)200、媒体アクセス制御層(媒体アクセス制御レイヤ)であるMAC(Medium Access Control)202、無線リンク制御層(無線リンク制御レイヤ)であるRLC(Radio Link Control)204、及びパケットデータ収束プロトコル層(パケットデータ収束プロトコルレイヤ)である、PDCP(Packet Data Convergence Protocol)206から構成されて良い。 Figure 2 (A) is a diagram of the E-UTRA user plane (UP) protocol stack. As shown in FIG. 2 (A), the E-UTRANUP protocol may be a protocol between UE122 and eNB102. That is, the E-UTRANUP protocol may be a protocol terminated by eNB 102 on the network side. As shown in Fig. 2 (A), the E-UTRA user plane protocol stack consists of PHY (Physical layer) 200, which is a wireless physical layer (radio physical layer), and MAC (Medium), which is a medium access control layer (medium access control layer). From Access Control) 202, RLC (Radio Link Control) 204, which is a wireless link control layer (wireless link control layer), and PDCP (Packet Data Convergence Protocol) 206, which is a packet data convergence protocol layer (packet data convergence protocol layer). May be configured.
 図3(A)はNRユーザプレーン(UP)プロトコルスタックの図である。図3(A)に示す通り、NRUPプロトコルは、UE122とgNB108の間のプロトコルであって良い。即ちNR UPプロトコルは、ネットワーク側ではgNB108で終端するプロトコルであって良い。図3(A)に示す通り、E-UTRAユーザプレーンプロトコルスタックは、無線物理層であるPHY300、媒体アクセス制御層であるMAC302、無線リンク制御層であるRLC304、パケットデータ収束プロトコル層である、PDCP306、及びサービスデータ適応プロトコル層(サービスデータ適応プロトコルレイヤ)SDAP(Service Data Adaptation Protocol)310であるから構成されて良い。 Figure 3 (A) is a diagram of the NR user plane (UP) protocol stack. As shown in FIG. 3 (A), the NRUP protocol may be a protocol between UE122 and gNB108. That is, the NRUP protocol may be a protocol terminated by gNB108 on the network side. As shown in FIG. 3A, the E-UTRA user plane protocol stack consists of PHY300, which is a wireless physical layer, MAC302, which is a medium access control layer, RLC304, which is a wireless link control layer, and PDCP306, which is a packet data convergence protocol layer. , And the service data adaptation protocol layer (service data adaptation protocol layer) SDAP (Service Data Adaptation Protocol) 310 may be configured.
 図2(B)はE-UTRA制御プレーン(CP)プロトコル構成の図である。図2(B)に示す通り、E-UTRAN CPプロトコルにおいて、無線リソース制御層(無線リソース制御レイヤ)であるRRC(Radio Resource Control)208は、UE122とeNB102の間のプロトコルであって良い。即ちRRC208は、ネットワーク側ではeNB102で終端するプロトコルであって良い。またE-UTRAN CPプロトコルにおいて、非AS(Access Stratum)層(非ASレイヤ)であるNAS(Non Access Stratum)210は、UE122とMMEとの間のプロトコルであって良い。即ちNAS210は、ネットワーク側ではMMEで終端するプロトコルであって良い。 Figure 2 (B) is a diagram of the E-UTRA control plane (CP) protocol configuration. As shown in FIG. 2B, in the E-UTRAN CP protocol, the RRC (Radio Resource Control) 208, which is a radio resource control layer (radio resource control layer), may be a protocol between UE 122 and eNB 102. That is, RRC208 may be a protocol terminated by eNB 102 on the network side. Further, in the E-UTRAN CP protocol, the NAS (Non Access Stratum) 210, which is a non-AS (Access Stratum) layer (non-AS layer), may be a protocol between UE 122 and MME. That is, NAS210 may be a protocol terminated by MME on the network side.
 図3(B)はNR制御プレーン(CP)プロトコル構成の図である。図3(B)に示す通り、NR CPプロトコルにおいて、無線リソース制御層であるRRC308は、UE122とgNB108の間のプロトコルであって良い。即ちRRC308は、ネットワーク側ではgNB108で終端するプロトコルであって良い。またE-UTRAN CPプロトコルにおいて、非AS層であるNAS312は、UE122とAMFとの間のプロトコルであって良い。即ちNAS312は、ネットワーク側ではAMFで終端するプロトコルであって良い。 Figure 3 (B) is a diagram of the NR control plane (CP) protocol configuration. As shown in FIG. 3B, in the NRCP protocol, the radio resource control layer RRC308 may be a protocol between UE122 and gNB108. That is, RRC308 may be a protocol terminated by gNB108 on the network side. Further, in the E-UTRAN CP protocol, NAS312, which is a non-AS layer, may be a protocol between UE122 and AMF. That is, NAS312 may be a protocol terminated by AMF on the network side.
 なおAS(Access Stratum)層とは、UE122とeNB102及び/又はgNB108との間で終端する層であって良い。即ちAS層とは、PHY200、MAC202、RLC204、PDCP206、及びRRC208の一部又は全てを含む層、及び/又はPHY300、MAC302、RLC304、PDCP306、SDAP310、及びRRC308の一部又は全てを含む層であって良い。 The AS (Access Stratum) layer may be a layer terminated between UE122 and eNB102 and / or gNB108. That is, the AS layer is a layer containing a part or all of PHY200, MAC202, RLC204, PDCP206, and RRC208, and / or a layer containing a part or all of PHY300, MAC302, RLC304, PDCP306, SDAP310, and RRC308. Good.
 なお本発明の実施の形態において、以下E-UTRAのプロトコルとNRのプロトコルを区別せず、PHY(PHY層)、MAC(MAC層)、RLC(RLC層)、PDCP(PDCP層)、RRC(RRC層)、NAS(NAS層)と言う用語を用いる場合がある。この場合、PHY(PHY層)、MAC(MAC層)、RLC(RLC層)、PDCP(PDCP層)、RRC(RRC層)、NAS(NAS層)は其々E-UTRAプロトコルのPHY(PHY層)、MAC(MAC層)、RLC(RLC層)、PDCP(PDCP層)、RRC(RRC層)、NAS(NAS層)であって良いし、NRプロトコルの、PHY(PHY層)、MAC(MAC層)、RLC(RLC層)、PDCP(PDCP層)、RRC(RRC層)、NAS(NAS層)であって良い。またSDAP(SDAP層)は、NRプロトコルのSDAP(SDAP層)であって良い。 In the embodiment of the present invention, the E-UTRA protocol and the NR protocol are not distinguished below, and PHY (PHY layer), MAC (MAC layer), RLC (RLC layer), PDCP (PDCP layer), RRC ( The terms RRC layer) and NAS (NAS layer) may be used. In this case, the PHY (PHY layer), MAC (MAC layer), RLC (RLC layer), PDCP (PDCP layer), RRC (RRC layer), and NAS (NAS layer) are the PHY (PHY layer) of the E-UTRA protocol. ), MAC (MAC layer), RLC (RLC layer), PDCP (PDCP layer), RRC (RRC layer), NAS (NAS layer), and NR protocol, PHY (PHY layer), MAC (MAC) Layer), RLC (RLC layer), PDCP (PDCP layer), RRC (RRC layer), NAS (NAS layer) may be used. The SDAP (SDAP layer) may be an SDAP (SDAP layer) of the NR protocol.
 また本発明の実施の形態において、以下E-UTRAのプロトコルとNRのプロトコルを区別する場合、PHY200、MAC202、RLC204、PDCP206、及びRRC208を、それぞれE-UTRA用PHY又はLTE用PHY、E-UTRA用MAC又はLTE用MAC、E-UTRA用RLC又はLTE用RLC、E-UTRA用PDCP又はLTE用PDCP、及びE-UTRA用RRC又はLTE用RRCと呼ぶ事もある。またPHY200、MAC202、RLC204、PDCP206、及びRRC208を、それぞれE-UTRA PHY又はLTE PHY、E-UTRA MAC又はLTE MAC、E-UTRA RLC又はLTE RLC、E-UTRA PDCP又はLTE PDCP、及びE-UTRA RRC又はLTE RRCなどと記述する場合もある。また、E-UTRAのプロトコルとNRのプロトコルを区別する場合、PHY300、MAC302、RLC304、PDCP306、RRC308を、それぞれNR用PHY、NR用MAC、NR用RLC、NR用RLC、及びNR用RRCと呼ぶ事もある。またPHY200、MAC302、RLC304、PDCP306、及びRRC308を、それぞれNR PHY、NR MAC、NR RLC、NR PDCP、NR RRCなどと記述する場合もある。 Further, in the embodiment of the present invention, when the E-UTRA protocol and the NR protocol are distinguished below, the PHY200, MAC202, RLC204, PDCP206, and RRC208 are referred to as the PHY for E-UTRA or the PHY for LTE, E-UTRA, respectively. MAC or LTE MAC, E-UTRA RLC or LTE RLC, E-UTRA PDCP or LTE PDCP, and E-UTRA RRC or LTE RRC. In addition, PHY200, MAC202, RLC204, PDCP206, and RRC208 can be used as E-UTRA PHY or LTE PHY, E-UTRA MAC or LTE MAC, E-UTRA RLC or LTE RLC, E-UTRA PDCP or LTE PDCP, and E-UTRA, respectively. It may be described as RRC or LTE RRC. When distinguishing between the E-UTRA protocol and the NR protocol, the PHY300, MAC302, RLC304, PDCP306, and RRC308 are called NR PHY, NR MAC, NR RLC, NR RLC, and NR RRC, respectively. There are also things. In addition, PHY200, MAC302, RLC304, PDCP306, and RRC308 may be described as NRPHY, NRMAC, NRRLC, NRPDCP, NRRRC, etc., respectively.
 E-UTRA及び/又はNRのAS層におけるエンティティ(entity)について説明する。MAC層の機能の一部又は全てを持つエンティティの事をMACエンティティと呼んで良い。RLC層の機能の一部又は全てを持つエンティティの事をRLCエンティティと呼んで良い。PDCP層の機能の一部又は全てを持つエンティティの事をPDCPエンティティと呼んで良い。SDAP層の機能の一部又は全てを持つエンティティの事をSDAPエンティティと呼んで良い。RRC層の機能の一部又は全てを持つエンティティの事をRRCエンティティと呼んで良い。MACエンティティ、RLCエンティティ、PDCPエンティティ、SDAPエンティティ、RRCエンティティを、其々MAC、RLC、PDCP、SDAP、RRCと言い換えて良い。 Explain the entity in the AS layer of E-UTRA and / or NR. An entity that has some or all of the functions of the MAC layer may be called a MAC entity. An entity that has some or all of the functions of the RLC layer may be called an RLC entity. An entity that has some or all of the functions of the PDCP layer may be called a PDCP entity. An entity that has some or all of the functions of the SDAP layer may be called an SDAP entity. An entity that has some or all of the functions of the RRC layer may be called an RRC entity. The MAC entity, RLC entity, PDCP entity, SDAP entity, and RRC entity may be paraphrased as MAC, RLC, PDCP, SDAP, and RRC, respectively.
 なお、MAC、RLC、PDCP、SDAPから下位層に提供されるデータ、及び/又はMAC、RLC、PDCP、SDAPに下位層から提供されるデータの事を、それぞれMAC PDU(Protocol Data Unit)、RLC PDU、PDCP PDU、SDAP PDUと呼んで良い。また、MAC、RLC、PDCP、SDAPに上位層から提供されるデータ、及び/又はMAC、RLC、PDCP、SDAPから上位層に提供するデータの事を、それぞれMAC SDU(Service Data Unit)、RLC SDU、PDCP SDU、SDAP SDUと呼んで良い。また、セグメントされたRLC SDUの事をRLC SDUセグメントと呼んで良い。 The data provided from the lower layer to MAC, RLC, PDCP, SDAP and / or the data provided to MAC, RLC, PDCP, SDAP from the lower layer are referred to as MAC PDU (Protocol Data Unit) and RLC, respectively. It may be called PDU, PDCP PDU, SDAP PDU. In addition, the data provided from the upper layer to MAC, RLC, PDCP, SDAP and / or the data provided to the upper layer from MAC, RLC, PDCP, SDAP are referred to as MAC SDU (Service Data Unit) and RLC SDU, respectively. , PDCP SDU, SDAP SDU. Also, the segmented RLC SDU may be called the RLC SDU segment.
 PHYの機能の一例について説明する。端末装置のPHYは基地局装置のPHYから、下りリンク(Downlink: DL)物理チャネル(Physical Channel)を介して伝送されたデータを受信する機能を有して良い。端末装置のPHYは基地局装置のPHYに対し、上りリンク(Uplink: UL)物理チャネルを介してデータを送信する機能を有して良い。PHYは上位のMACと、トランスポートチャネル(Transport Channel)で接続されて良い。PHYはトランスポートチャネルを介してMACにデータを受け渡して良い。またPHYはトランスポートチャネルを介してMACからデータを提供されて良い。PHYにおいて、様々な制御情報を識別するために、RNTI(Radio Network Temporary Identifier)が用いられて良い。 An example of the PHY function will be explained. The PHY of the terminal device may have a function of receiving data transmitted from the PHY of the base station device via the downlink (DL) physical channel (Physical Channel). The PHY of the terminal device may have a function of transmitting data to the PHY of the base station device via an uplink (UL) physical channel. The PHY may be connected to the upper MAC by a transport channel. The PHY may pass data to the MAC over the transport channel. The PHY may also be provided with data from the MAC via the transport channel. In the PHY, RNTI (Radio Network Temporary Identifier) may be used to identify various control information.
 ここで、物理チャネルについて説明する。 Here, the physical channel will be described.
 端末装置と基地局装置との無線通信に用いられる物理チャネルには、以下の物理チャネルが含まれてよい。 The physical channels used for wireless communication between the terminal device and the base station device may include the following physical channels.
  PBCH(物理報知チャネル:Physical Broadcast CHannel)
  PDCCH(物理下りリンク制御チャネル:Physical Downlink Control CHannel)
  PDSCH(物理下りリンク共用チャネル:Physical Downlink Shared CHannel)
  PUCCH(物理上りリンク制御チャネル:Physical Uplink Control CHannel)
  PUSCH(物理上りリンク共用チャネル:Physical Uplink Shared CHannel)
  PRACH(物理ランダムアクセスチャネル:Physical Random Access CHannel)
PBCH (Physical Broadcast CHannel)
PDCCH (Physical Downlink Control CHannel)
PDSCH (Physical Downlink Shared CHannel)
PUCCH (Physical Uplink Control CHannel)
PUSCH (Physical Uplink Shared CHannel)
PRACH (Physical Random Access CHannel)
 PBCHは、端末装置が必要とするシステム情報を報知するために用いられて良い。 PBCH may be used to notify the system information required by the terminal device.
 また、NRにおいて、PBCHは、同期信号のブロック(SS/PBCHブロックとも称する)の周期内の時間インデックス(SSB-Index)を報知するために用いられてよい。 Further, in NR, PBCH may be used to notify the time index (SSB-Index) within the period of the block of the synchronization signal (also referred to as SS / PBCH block).
 PDCCHは、下りリンクの無線通信(基地局装置から端末装置への無線通信)において、下りリンク制御情報(Downlink Control Information: DCI)を送信する(または運ぶ)ために用いられて良い。ここで、下りリンク制御情報の送信に対して、一つまたは複数のDCI(DCIフォーマットと称してもよい)が定義されて良い。すなわち、下りリンク制御情報に対するフィールドがDCIとして定義され、情報ビットへマップされて良い。PDCCHは、PDCCH候補(candidate)において送信されて良い。端末装置は、サービングセルにおいてPDCCH候補のセットをモニタして良い。PDCCH候補のセットをモニタするとは、あるDCIフォーマットに応じてPDCCHのデコードを試みることを意味して良い。DCIフォーマットは、サービングセルにおけるPUSCHのスケジューリングのために用いられてもよい。PUSCHは、ユーザデータの送信や、後述するRRCメッセージの送信などのために使われてよい。 PDCCH may be used to transmit (or carry) downlink control information (Downlink Control Information: DCI) in downlink wireless communication (wireless communication from a base station device to a terminal device). Here, one or more DCIs (which may be referred to as DCI format) may be defined for the transmission of downlink control information. That is, the field for the downlink control information may be defined as DCI and mapped to the information bit. The PDCCH may be transmitted in the PDCCH candidate (candidate). The terminal device may monitor the set of PDCCH candidates in the serving cell. Monitoring a set of PDCCH candidates may mean attempting to decode the PDCCH according to a DCI format. The DCI format may be used for scheduling PUSCH in the serving cell. PUSCH may be used for sending user data, sending RRC messages described later, and the like.
 PUCCHは、上りリンクの無線通信(端末装置から基地局装置への無線通信)において、上りリンク制御情報(Uplink Control Information: UCI)を送信するために用いられてよい。ここで、上りリンク制御情報には、下りリンクのチャネルの状態を示すために用いられるチャネル状態情報(CSI: Channel State Information)が含まれてもよい。また、上りリンク制御情報には、UL-SCH(UL-SCH: Uplink Shared CHannel)リソースを要求するために用いられるスケジューリング要求(SR: Scheduling Request)が含まれてもよい。また、上りリンク制御情報には、HARQ-ACK(Hybrid Automatic Repeat request ACKnowledgement)が含まれてもよい。 PUCCH may be used to transmit uplink control information (UCI) in uplink wireless communication (wireless communication from a terminal device to a base station device). Here, the uplink control information may include channel state information (CSI: Channel State Information) used to indicate the state of the downlink channel. Further, the uplink control information may include a scheduling request (SR: Scheduling Request) used for requesting a UL-SCH (UL-SCH: Uplink Shared CHannel) resource. Further, the uplink control information may include HARQ-ACK (Hybrid Automatic Repeat request ACK knowledgement).
 PDSCHは、MAC層からの下りリンクデータ(DL-SCH: Downlink Shared CHannel)の送信に用いられてよい。また、下りリンクの場合にはシステム情報(SI: System Information)やランダムアクセス応答(RAR: Random Access Response)などの送信に用いられて良い。 PDSCH may be used for transmission of downlink data (DL-SCH: Downlink Shared CHannel) from the MAC layer. Further, in the case of a downlink, it may be used for transmission of system information (SI: System Information), random access response (RAR: Random Access Response), and the like.
 PUSCHは、MAC層からの上りリンクデータ(UL-SCH: Uplink Shared CHannel)または上りリンクデータと共にHARQ-ACKおよび/またはCSIを送信するために用いられてもよい。またPUSCHは、CSIのみ、または、HARQ-ACKおよびCSIのみを送信するために用いられてもよい。すなわちPUSCHは、UCIのみを送信するために用いられてもよい。また、PDSCHまたはPUSCHは、RRCシグナリング(RRCメッセージとも称する)、およびMACコントロールエレメントを送信するために用いられてもよい。ここで、PDSCHにおいて、基地局装置から送信されるRRCシグナリングは、セル内における複数の端末装置に対して共通のシグナリングであってもよい。また、基地局装置から送信されるRRCシグナリングは、ある端末装置に対して専用のシグナリング(dedicated signalingとも称する)であってもよい。すなわち、端末装置固有(UEスペシフィック)の情報は、ある端末装置に対して専用のシグナリングを用いて送信されてもよい。また、PUSCHは、上りリンクにおいてUEの能力(UE Capability)の送信に用いられてもよい。 PUSCH may be used to transmit HARQ-ACK and / or CSI together with uplink data (UL-SCH: Uplink Shared CHannel) or uplink data from the MAC layer. PUSCH may also be used to transmit CSI only, or HARQ-ACK and CSI only. That is, PUSCH may be used to transmit only UCI. PDSCH or PUSCH may also be used to transmit RRC signaling (also referred to as RRC message), and MAC control elements. Here, in PDSCH, the RRC signaling transmitted from the base station device may be a signal common to a plurality of terminal devices in the cell. Further, the RRC signaling transmitted from the base station device may be dedicated signaling (also referred to as dedicated signaling) to a certain terminal device. That is, the information unique to the terminal device (UE specific) may be transmitted to a certain terminal device using a dedicated signaling. PUSCH may also be used to transmit UE Capability on the uplink.
 PRACHは、ランダムアクセスプリアンブルを送信するために用いられてもよい。PRACHは、初期コネクション確立(initial connection establishment)プロシージャ、ハンドオーバプロシージャ、コネクション再確立(connection re-establishment)プロシージャ、上りリンク送信に対する同期(タイミング調整)、およびPUSCH(UL-SCH)リソースの要求を示すために用いられてもよい。 PRACH may be used to send a random access preamble. PRACH is used to indicate initial connection establishment procedures, handover procedures, connection re-establishment procedures, synchronization (timing adjustment) for uplink transmissions, and requests for PUSCH (UL-SCH) resources. May be used for.
 MACの機能の一例について説明する。MACは、MAC副層(サブレイヤ)と呼ばれて良い。MACは、多様な論理チャネル(ロジカルチャネル: Logical Channel)を、対応するトランスポートチャネルに対してマッピングを行う機能を持って良い。論理チャネルは、論理チャネル識別子(Logical Channel Identity、又はLogical Channel ID)によって識別されて良い。MACは上位のRLCと、論理チャネル(ロジカルチャネル)で接続されて良い。論理チャネルは、伝送される情報の種類によって、制御情報を伝送する制御チャネルと、ユ-ザ情報を伝送するトラフィックチャネルに分けられて良い。また論理チャネルは、上りリンク論理チャネルと、下りリンク論理チャネルに分けられて良い。MACは、一つ又は複数の異なる論理チャネルに所属するMAC SDUを多重化(multiplexing)して、PHYに提供する機能を持って良い。またMACは、PHYから提供されたMAC PDUを逆多重化(demultiplexing)し、各MAC SDUが所属する論理チャネルを介して上位レイヤに提供する機能を持って良い。またMACは、HARQ(Hybrid Automatic Repeat reQuest)を通して誤り訂正を行う機能を持って良い。またMACは、スケジューリング情報(scheduling information)をレポートする、スケジューリングレポート(Scheduling Report: SR)機能を持って良い。MACは、動的スケジューリングを用いて、端末装置間の優先処理を行う機能を持って良い。またMACは、一つの端末装置内の論理チャネル間の優先処理を行う機能を持って良い。MACは、一つの端末装置内でオーバーラップしたリソースの優先処理を行う機能を持って良い。E-UTRA MACはMultimedia Broadcast Multicast Services(MBMS)を識別する機能を持って良い。またNR MACは、マルチキャスト/ブロードキャストサービス(Multicast Broadcast Service: MBS)を識別する機能を持って良い。MACは、トランスポートフォーマットを選択する機能を持って良い。MACは、間欠受信(DRX: Discontinuous Reception)及び/又は間欠送信(DTX: Discontinuous Transmission)を行う機能、ランダムアクセス(Random Access: RA)手順を実行する機能、送信可能電力の情報を通知する、パワーヘッドルームレポート(Power Headroom Report: PHR)機能、送信バッファのデータ量情報を通知する、バッファステータスレポート(Buffer Status Report: BSR)機能、などを持って良い。NR MACは帯域適応(Bandwidth Adaptation: BA)機能を持って良い。またE-UTRA MACで用いられるMAC PDUフォーマットとNR MACで用いられるMAC PDUフォーマットは異なって良い。またMAC PDUには、MACにおいて制御を行うための要素である、MAC制御要素(MACコントロールエレメント: MAC CE)が含まれて良い。 An example of the MAC function will be explained. The MAC may be referred to as a MAC sublayer. The MAC may have a function of mapping various logical channels (logical channels: Logical Channels) to the corresponding transport channels. The logical channel may be identified by a logical channel identifier (LogicalChannelIdentity or LogicalChannelID). The MAC may be connected to the upper RLC by a logical channel (logical channel). The logical channel may be divided into a control channel for transmitting control information and a traffic channel for transmitting user information, depending on the type of information to be transmitted. Further, the logical channel may be divided into an uplink logical channel and a downlink logical channel. The MAC may have the function of multiplexing MAC SDUs belonging to one or more different logical channels and providing them to the PHY. The MAC may also have the function of demultiplexing the MAC PDU provided by the PHY and providing it to the upper layer via the logical channel to which each MAC SDU belongs. In addition, the MAC may have a function of performing error correction through HARQ (Hybrid Automatic Repeat reQuest). In addition, the MAC may have a scheduling report (Scheduling Report: SR) function that reports scheduling information. The MAC may have a function of performing priority processing between terminal devices by using dynamic scheduling. Further, the MAC may have a function of performing priority processing between logical channels in one terminal device. The MAC may have a function of prioritizing overlapping resources in one terminal device. E-UTRA MAC may have a function to identify Multimedia Broadcast Multicast Services (MBMS). In addition, the NR MAC may have a function of identifying a multicast / broadcast service (Multicast Broadcast Service: MBS). The MAC may have the ability to select a transport format. MAC has a function to perform intermittent reception (DRX: Discontinuous Reception) and / or intermittent transmission (DTX: Discontinuous Transmission), a function to execute a random access (Random Access: RA) procedure, and a power to notify information on transmittable power. It may have a headroom report (Power Headroom Report: PHR) function, a buffer status report (Buffer Status Report: BSR) function, etc. to notify the data amount information of the transmission buffer. The NR MAC may have a Bandwidth Adaptation (BA) function. Also, the MAC PDU format used in E-UTRA MAC and the MAC PDU format used in NR MAC may be different. Further, the MAC PDU may include a MAC control element (MAC control element: MAC CE), which is an element for performing control in the MAC.
 E-UTRA及び/又はNRで用いられる、上りリンク(UL: Uplink)、及び/又は下りリンク(DL:Downlink)用論理チャネルについて説明する。 The logical channel for uplink (UL: Uplink) and / or downlink (DL: Downlink) used in E-UTRA and / or NR will be described.
 BCCH(Broadcast Control Channel)は、システム情報(SI: System Information)等の、制御情報を報知(broadcast)するための下りリンク論理チャネルであって良い。 BCCH (Broadcast Control Channel) may be a downlink logical channel for broadcasting control information such as system information (SI: System Information).
 PCCH(Paging Control Channel)は、ページング(Paging)メッセージを運ぶための下りリンク論理チャネルであって良い。 PCCH (Paging Control Channel) may be a downlink logical channel for carrying a paging message.
 CCCH(Common Control Channel)は、端末装置と基地局装置との間で制御情報を送信するための論理チャネルであって良い。CCCHは、端末装置が、RRC接続を有しない場合に用いられて良い。またCCCHは基地局装置と複数の端末装置との間で使われて良い。 CCCH (Common Control Channel) may be a logical channel for transmitting control information between the terminal device and the base station device. CCCH may be used when the terminal device does not have an RRC connection. CCCH may also be used between a base station appliance and a plurality of terminal appliances.
 DCCH(Dedicated Control Channel)は、端末装置と基地局装置との間で、1対1(point-to-point)の双方向(bi-directional)で、専用制御情報を送信するための論理チャネルであって良い。専用制御情報とは、各端末装置専用の制御情報であって良い。DCCHは、端末装置が、RRC接続を有する場合に用いられて良い。 DCCH (Dedicated Control Channel) is a logical channel for transmitting dedicated control information in a one-to-point bi-directional manner between a terminal device and a base station device. It's okay to have it. The dedicated control information may be control information dedicated to each terminal device. DCCH may be used when the terminal device has an RRC connection.
 DTCH(Dedicated Traffic Channel)は、端末装置と基地局装置との間で、1対1(point-to-point)で、ユーザデータを送信するための論理チャネルであって良い。DTCHは専用ユーザデータを送信するための論理チャネルであって良い。専用ユーザデータとは、各端末装置専用のユーザデータであって良い。DTCHは上りリンク、下りリンク両方に存在して良い。 DTCH (Dedicated Traffic Channel) may be a logical channel for transmitting user data on a one-to-one basis (point-to-point) between a terminal device and a base station device. DTCH may be a logical channel for transmitting dedicated user data. The dedicated user data may be user data dedicated to each terminal device. DTCH may exist on both the uplink and the downlink.
 MTCH(Multicast Traffic Channel)は、基地局装置から端末装置に対し、データを送信するための1対多(point-to-multipoint)の下りリンクチャネルであって良い。MTCHはマルチキャスト用論理チャネルであって良い。MTCHは、端末装置がMBMSを受信する場合にのみ、該当端末装置によって使われて良い。 MTCH (Multicast Traffic Channel) may be a one-to-multipoint downlink channel for transmitting data from a base station device to a terminal device. MTCH may be a logical channel for multicast. MTCH may be used by the terminal device only if the terminal device receives MBMS.
 MCCH(Multicast Control Channel)は、基地局装置から端末装置へ、一つ又は複数のMTCHに対するMBMS制御情報を送るための、1対多(point-to-multipoint)の下りリンクチャネルであって良い。MCCHはマルチキャスト用論理チャネルであって良い。MCCHは端末装置がMBMSを受信する、又は端末装置がMBMSを受信する事に興味がある時にのみ、該当端末装置によって使われて良い。 MCCH (Multicast Control Channel) may be a one-to-multipoint downlink channel for sending MBMS control information for one or more MTCHs from a base station device to a terminal device. MCCH may be a logical channel for multicast. MCCH may be used by a terminal device only when the terminal device receives MBMS or is interested in receiving MBMS.
 SC-MTCH(Single Cell Multicast Traffic Channel)は、基地局装置から端末装置に対し、SC-PTMを用いてデータを送信するための1対多(point-to-multipoint)の下りリンクチャネルであって良い。SC-MTCHはマルチキャスト用論理チャネルであって良い。SC-MTCHは、端末装置がSC-PTM(Single Cell Point-To-Multipoint)を用いてMBMSを受信する場合にのみ、該当端末装置によって使われて良い。 SC-MTCH (Single Cell Multicast Traffic Channel) is a one-to-multipoint downlink channel for transmitting data from a base station device to a terminal device using SC-PTM. good. SC-MTCH may be a logical channel for multicast. SC-MTCH may be used by the terminal device only when the terminal device receives MBMS using SC-PTM (Single Cell Point-To-Multipoint).
 SC-MCCH(Single Cell Multicast Control Channel)は、基地局装置から端末装置へ、一つ又は複数のSC-MTCHに対するMBMS制御情報を送るための、1対多(point-to-multipoint)の下りリンクチャネルであって良い。SC-MCCHはマルチキャスト用論理チャネルであって良い。SC-MCCHは端末装置がSC-PTMを用いてMBMSを受信する、又は端末装置がSC-PTMを用いてMBMSを受信する事に興味がある時にのみ、該当端末装置によって使われて良い。 SC-MCCH (Single Cell Multicast Control Channel) is a one-to-multipoint downlink for sending MBMS control information for one or more SC-MTCHs from a base station device to a terminal device. It can be a channel. SC-MCCH may be a logical channel for multicast. SC-MCCH may be used by the terminal device only when the terminal device receives MBMS using SC-PTM or the terminal device is interested in receiving MBMS using SC-PTM.
 E-UTRA及び/又はNRにおける上りリンクの、論理チャネルとトランスポートチャネルのマッピングについて説明する。 Explain the mapping between the logical channel and the transport channel of the uplink in E-UTRA and / or NR.
 CCCHは、上りリンクトランスポートチャネルである、UL-SCH(Uplink Shared Channel)にマップされて良い。 CCCH may be mapped to UL-SCH (Uplink Shared Channel), which is an uplink transport channel.
 DCCHは、上りリンクトランスポートチャネルである、UL-SCH(Uplink Shared Channel)にマップされて良い。 DCCH may be mapped to UL-SCH (Uplink Shared Channel), which is an uplink transport channel.
 DTCHは、上りリンクトランスポートチャネルである、UL-SCH(Uplink Shared Channel)にマップされて良い。 DTCH may be mapped to UL-SCH (Uplink Shared Channel), which is an uplink transport channel.
 E-UTRA及び/又はNRにおける下りリンクの、論理チャネルとトランスポートチャネルのマッピングについて説明する。 Explain the mapping between the logical channel and the transport channel of the downlink in E-UTRA and / or NR.
 BCCHは、下りリンクトランスポートチャネルであるBCH(Broadcast Channel)、及び/又はDL-SCH(Downlink Shared Channel)にマップされて良い。 BCCH may be mapped to BCH (Broadcast Channel) and / or DL-SCH (Downlink Shared Channel), which are downlink transport channels.
 PCCHは、下りリンクトランスポートチャネルであるPCH(Paging Channel)にマップされて良い。 PCCH may be mapped to PCH (Paging Channel), which is a downlink transport channel.
 CCCHは、下りリンクトランスポートチャネルであるDL-SCH(Downlink Shared Channel)にマップされて良い。 CCCH may be mapped to DL-SCH (Downlink Shared Channel), which is a downlink transport channel.
 DCCHは、下りリンクトランスポートチャネルであるDL-SCH(Downlink Shared Channel)にマップされて良い。 DCCH may be mapped to DL-SCH (Downlink Shared Channel), which is a downlink transport channel.
 DTCHは、下りリンクトランスポートチャネルであるDL-SCH(Downlink Shared Channel)にマップされて良い。 DTCH may be mapped to DL-SCH (Downlink Shared Channel), which is a downlink transport channel.
 MTCHは、下りリンクトランスポートチャネルであるMCH(Multicast Channel)にマップされて良い。 MTCH may be mapped to MCH (Multicast Channel), which is a downlink transport channel.
 MCCHは、下りリンクトランスポートチャネルであるMCH(Multicast Channel)にマップされて良い。 MCCH may be mapped to MCH (Multicast Channel), which is a downlink transport channel.
 SC-MTCHは、下りリンクトランスポートチャネルであるDL-SCH(Downlink Shared Channel)にマップされて良い。 SC-MTCH may be mapped to DL-SCH (Downlink Shared Channel), which is a downlink transport channel.
 SC-MTCHは、下りリンクトランスポートチャネルであるDL-SCH(Downlink Shared Channel)にマップされて良い。 SC-MTCH may be mapped to DL-SCH (Downlink Shared Channel), which is a downlink transport channel.
 RLCの機能の一例について説明する。RLCは、RLC副層(サブレイヤ)と呼ばれて良い。E-UTRA RLCは、上位レイヤのPDCPから提供されたデータを、分割(Segmentation)及び/又は結合(Concatenation)し、下位層(下位レイヤ)に提供する機能を持って良い。E-UTRA RLCは、下位レイヤから提供されたデータに対し、再組立て(reassembly)及びリオーダリング(re-ordering)を行い、上位レイヤに提供する機能を持って良い。NR RLCは、上位レイヤのPDCPから提供されたデータに、PDCPで付加されたシーケンス番号とは独立したシーケンス番号を付加する機能を持って良い。またNR RLCは、PDCPから提供されたデータ分割(Segmentation)し、下位レイヤに提供する機能を持って良い。またNR RLCは、下位レイヤから提供されたデータに対し、再組立て(reassembly)を行い、上位レイヤに提供する機能を持って良い。またRLCは、データの再送機能及び/又は再送要求機能(Automatic Repeat reQuest: ARQ)を持って良い。またRLCは、ARQによりエラー訂正を行う機能を持って良い。ARQを行うために、RLCの受信側から送信側に送られる、再送が必要なデータを示す制御情報を、ステータスレポートと言って良い。またRLCの送信側から受信側に送られる、ステータスレポート送信指示の事をポール(poll)と言って良い。またRLCは、データ重複の検出を行う機能を持って良い。またRLCはデータ破棄の機能を持って良い。RLCには、トランスパレントモード(TM: Transparent Mode)、非応答モード(UM: Unacknowledged Mode)、応答モード(AM: Acknowledged Mode)の3つのモードがあって良い。TMでは上位層から受信したデータの分割は行わず、RLCヘッダの付加は行わなくて良い。TM RLCエンティティは単方向(uni-directional)のエンティティであって、送信(transmitting)TM RLCエンティティとして、又は受信(receiving)TM RLCエンティティとして設定されて良い。UMでは上位層から受信したデータの分割及び/又は結合、RLCヘッダの付加等は行うが、データの再送制御は行わなくて良い。UM RLCエンティティは単方向のエンティティであっても良いし双方向(bi-directional)のエンティティであっても良い。UM RLCエンティティが単方向のエンティティである場合、UM RLCエンティティは送信UM RLCエンティティとして、又は受信UMRLCエンティティとして設定されて良い。UM RLCエンティティが双方向のエンティティである場合、UM RRCエンティティは送信(transmitting)サイド及び受信(receiving)サイドから構成されるUM RLCエンティティとして設定されて良い。AMでは上位層から受信したデータの分割及び/又は結合、RLCヘッダの付加、データの再送制御等を行って良い。AM RLCエンティティは双方向のエンティティであって、送信(transmitting)サイド及び受信(receiving)サイドから構成されるAM RLCとして設定されて良い。なお、TMで下位層に提供するデータ、及び/又は下位層から提供されるデータの事をTMD PDUと呼んで良い。またUMで下位層に提供するデータ、及び/又は下位層から提供されるデータの事をUMD PDUと呼んで良い。またAMで下位層に提供するデータ、又は下位層から提供されるデータの事をAMD PDUと呼んで良い。E-UTRA RLCで用いられるRLC PDUフォーマットとNR RLCで用いられるRLC PDUフォーマットは異なって良い。またRLC PDUには、データ用RLC PDUと制御用RLC PDUがあって良い。データ用RLC PDUを、RLC DATA PDU(RLC Data PDU、RLCデータPDU)と呼んで良い。また制御用RLC PDUを、RLC CONTROL PDU(RLC Control PDU、RLCコントロールPDU、RLC制御PDU)と呼んで良い。 An example of RLC functions will be explained. RLC may be referred to as an RLC sublayer. The E-UTRA RLC may have a function of segmenting and / or concatenation the data provided from the PDCP of the upper layer and providing it to the lower layer (lower layer). E-UTRA RLC may have a function of reassembling and re-ordering the data provided from the lower layer and providing it to the upper layer. The NR RLC may have a function of adding a sequence number independent of the sequence number added by the PDCP to the data provided by the PDCP of the upper layer. In addition, NR RLC may have the function of segmenting the data provided by PDCP and providing it to the lower layer. Further, NR RLC may have a function of reassembling the data provided from the lower layer and providing it to the upper layer. In addition, RLC may have a data retransmission function and / or a retransmission request function (Automatic Repeat reQuest: ARQ). In addition, RLC may have a function to correct errors by ARQ. Control information indicating data that needs to be retransmitted, which is sent from the receiving side of RLC to the transmitting side in order to perform ARQ, may be called a status report. Also, the status report transmission instruction sent from the sender side of RLC to the receiver side may be called a pole. RLC may also have a function to detect data duplication. RLC may also have a data discard function. The RLC may have three modes: transparent mode (TM: Transparent Mode), non-response mode (UM: Unacknowledged Mode), and response mode (AM: Acknowledged Mode). In TM, the data received from the upper layer is not divided and the RLC header need not be added. The TM RLC entity is a uni-directional entity and may be configured as a transmitting TM RLC entity or as a receiving TM RLC entity. In UM, data received from the upper layer is divided and / or combined, RLC header is added, etc., but data retransmission control does not have to be performed. The UMRLC entity may be a unidirectional entity or a bi-directional entity. If the UMRLC entity is a unidirectional entity, the UMRLC entity may be configured as a sending UMRLC entity or as a receiving UMRLC entity. If the UM RLC entity is a bidirectional entity, the UM RRC entity may be configured as a UM RLC entity consisting of a transmitting side and a receiving side. In AM, data received from the upper layer may be divided and / or combined, an RLC header may be added, and data retransmission control may be performed. The AMRLC entity is a bidirectional entity and may be configured as an AMRLC consisting of a transmitting side and a receiving side. The data provided to the lower layer by TM and / or the data provided from the lower layer may be referred to as TMDPDU. Further, the data provided to the lower layer by UM and / or the data provided from the lower layer may be referred to as UMD PDU. Further, the data provided to the lower layer by AMD or the data provided from the lower layer may be called AMD PDU. The RLC PDU format used in E-UTRA RLC and the RLC PDU format used in NR RLC may be different. Further, the RLC PDU may include an RLC PDU for data and an RLC PDU for control. The RLC PDU for data may be referred to as an RLC DATA PDU (RLC Data PDU, RLC data PDU). Further, the control RLC PDU may be called an RLC CONTROL PDU (RLC Control PDU, RLC control PDU, RLC control PDU).
 RLCエンティティにおいて用いられる状態変数の一例について説明する。RLCエンティティにおいて、次の(A)から(K)の状態変数(ステート変数)を含む状態変数の一部又は全てが使われて良い。
  (A) AM RLCエンティティの送信側で使われる応答ステート変数。次にポジティブ応答を受信する事になるRLC SDUのシーケンス番号の値を示す。TX_Next_Ackという名称のステート変数であって良い。
  (B) AM RLCエンティティの送信側で使われる送信ステート変数。次に新しく作られるAMD PDUにアサインされるシーケンス番号の値を示す。TX_Nextという名称のステート変数であって良い。
  (C) AM RLCエンティティの送信側で使われるポールステート変数。本ステート変数がセットされる際に下位レイヤに提出されるAMD PDUのうちで最も大きなシーケンス番号をの値を示す。POLL_SNという名称のステート変数であって良い。
  (D) AM RLCエンティティの受信側で使われる受信ステート変数。順序通りでの受信が成功したRLC SDUの最後のシーケンス番号に続く値を示す。RX_Nextという名称のステート変数であって良い。
  (E) AM RLCエンティティの受信側で使われるリアセンブリタイマーステート変数。リアセンブリタイマーを起動させたAMD PDUのシーケンス番号の次のシーケンス番号の値を示す。RX_Next_Status_Triggerという名称のステート変数であって良い。
  (F) AM RLCエンティティの受信側で使われる最大STATUS送信ステート変数。ステータスPDUを作成する必要がある際に、受信成功したAMD PDUとして報告するAMD PDUのシーケンス番号の値を示す。RX_Highest_Statusという名称のステート変数であって良い。
  (G) AM RLCエンティティの受信側で使われる最高受信ステート変数。受信したAMD PDUの中での最も高いシーケンス番号の値の次のシーケンス番号の値を示す。RX_Next_Highestという名称のステート変数であって良い。
  (H) UM RLCエンティティの送信側で使われる送信ステート変数。次に新しく作られるUMD PDUがセグメントされる場合にアサインされるシーケンス番号の値を示す。TX_Nextという名称のステート変数であって良い。
  (I) UM RLCエンティティの受信側で使われるUM受信ステート変数。リアセンブリが考えられるUMD PDUのシーケンス番号うちの最小値を示す。RX_Next_Reassemblyという名称のステート変数であって良い。
  (J) UM RLCエンティティの受信側で使われるUMリアセンブリタイマーステート変数。リアセンブリタイマーを起動させたUMD PDUのシーケンス番号の次のシーケンス番号の値を示す。RX_Timer_Triggerという名称のステート変数であって良い。
  (K) UM RLCエンティティの受信側で使われるUM受信ステート変数。受信したUMD PDUの中での最も高いシーケンス番号の値の次のシーケンス番号の値を示す。RX_Next_Highestという名称のステート変数であって良い。
An example of a state variable used in an RLC entity will be described. In the RLC entity, some or all of the state variables including the following state variables (A) to (K) may be used.
(A) Response state variable used by the sender of the AM RLC entity. Next, the value of the sequence number of the RLC SDU that will receive the positive response is shown. It can be a state variable named TX_Next_Ack.
(B) Send state variable used by the sender of the AM RLC entity. Next, the value of the sequence number assigned to the newly created AMD PDU is shown. It can be a state variable named TX_Next.
(C) A pole-state variable used by the sender of the AM RLC entity. Indicates the value of the highest sequence number among the AMD PDUs submitted to the lower layer when this state variable is set. It can be a state variable named POLL_SN.
(D) Receive state variable used by the receiver of the AM RLC entity. Indicates the value following the last sequence number of the RLC SDU that was successfully received in order. It may be a state variable named RX_Next.
(E) Reassembly timer state variable used on the receiving side of the AM RLC entity. Indicates the value of the sequence number next to the sequence number of the AMD PDU that triggered the reassembly timer. It may be a state variable named RX_Next_Status_Trigger.
(F) Maximum STATUS transmit state variable used on the receiving side of the AM RLC entity. Indicates the value of the AMD PDU sequence number to report as a successfully received AMD PDU when a status PDU needs to be created. It may be a state variable named RX_Highest_Status.
(G) The highest receive state variable used by the receiver of the AM RLC entity. Indicates the sequence number value next to the highest sequence number value in the received AMD PDU. It may be a state variable named RX_Next_Highest.
(H) Send state variable used by the sender of the UM RLC entity. Next, the value of the sequence number assigned when the newly created UMD PDU is segmented is shown. It can be a state variable named TX_Next.
(I) The UM receive state variable used by the receiver of the UM RLC entity. Indicates the minimum of the UMD PDU sequence numbers that can be reassembled. It can be a state variable named RX_Next_Reassembly.
(J) UM reassembly timer state variable used on the receiving side of the UM RLC entity. Indicates the value of the sequence number next to the sequence number of the UMD PDU that triggered the reassembly timer. It can be a state variable named RX_Timer_Trigger.
(K) The UM receive state variable used by the receiver of the UM RLC entity. Indicates the value of the sequence number next to the value of the highest sequence number in the received UMD PDU. It may be a state variable named RX_Next_Highest.
 RLCエンティティにおいて用いられるカウンターの一例について説明する。RLCエンティティにおいて、次の(A)から(C)のカウンターの一部又は全てを含むカウンターが使われて良い。
  (A) 最後のポールビット送信以降に送られたAMD PDUの数をカウントするカウンター。PDU_WITHOUT_POLLという名称のカウンターであって良い。
  (B) 最後のポールビット送信以降に送られたデータのバイト数をカウントするカウンター。BYTE_WITHOUT_POLLという名称のカウンターであって良い。
  (C) RLC SDU又はRLC SDUセグメントが再送された回数をカウントするカウンター。RETX_COUNTという名称のカウンターであって良い。
An example of a counter used in an RLC entity will be described. In the RLC entity, a counter containing some or all of the following counters (A) to (C) may be used.
(A) A counter that counts the number of AMD PDUs sent since the last pole bit transmission. It may be a counter named PDU_WITHOUT_POLL.
(B) A counter that counts the number of bytes of data sent since the last pole bit transmission. It may be a counter named BYTE_WITHOUT_POLL.
(C) A counter that counts the number of times the RLC SDU or RLC SDU segment has been retransmitted. It may be a counter named RETX_COUNT.
 RLCエンティティにおいて用いられるタイマーの一例について説明する。RLCエンティティにおいて、次の(A)から(C)のタイマーの一部又は全てを含むカウンターが使われて良い。
  (A) AM RLCエンティティの送信側で使われる、ポールを再送するためのタイマー。t-PollRetransmitという名称のタイマーであって良い。
  (B) AM RLCエンティティの受信側及び受信UM RLCエンティティで使われる、RLC PDUのロス(loss)を検出するためのタイマー。t-Reassemblyという名称のタイマーであって良い。
  (C) AM RLCエンティティの受信側で使われる、ステータスPDUの送信を禁止するためのタイマー。t-StatusProhibitという名称のタイマーであって良い。
An example of a timer used in an RLC entity will be described. In the RLC entity, a counter containing some or all of the following timers (A) to (C) may be used.
(A) A timer used by the sender of the AM RLC entity to resend the pole. It may be a timer named t-PollRetransmit.
(B) Timer for detecting the loss of RLC PDU used by the receiving side of the AM RLC entity and the receiving UM RLC entity. It may be a timer named t-Reassembly.
(C) A timer used by the receiver of the AM RLC entity to prevent the transmission of status PDUs. It may be a timer named t-StatusProhibit.
 PDCPの機能の一例について説明する。PDCPは、PDCP副層(サブレイヤ)と呼ばれて良い。PDCPは、シーケンス番号のメンテナンスを行う機能を持って良い。またPDCPは、IPパケット(IP Packet)や、イーサネットフレーム等のユーザデータを無線区間で効率的に伝送するための、ヘッダ圧縮・解凍機能を持ってもよい。IPパケットのヘッダ圧縮・解凍に用いられるプロトコルをROHC(Robust Header Compression)プロトコルと呼んで良い。またイーサネットフレームヘッダ圧縮・解凍に用いられるプロトコルをEHC(Ethernet(登録商標)Header Compression)プロトコルと呼んで良い。また、PDCPは、デ-タの暗号化・復号化の機能を持ってもよい。また、PDCPは、デ-タの完全性保護・完全性検証の機能を持ってもよい。デ-タの暗号化・復号化の機能及び/又はデ-タの完全性保護・完全性検証の機能を、セキュリティ機能と言い換えて良い。またPDCPは、リオーダリング(re-ordering)の機能を持って良い。またPDCPは、PDCP SDUの再送機能を持って良い。またPDCPは、破棄タイマー(discard timer)を用いたデータ破棄を行う機能を持って良い。またPDCPは、多重化(Duplication)機能を持って良い。またPDCPは、重複受信したデータを破棄する機能を持って良い。PDCPエンティティは双方向のエンティティであって、送信(transmitting)PDCPエンティティ、及び受信(receiving)PDCPエンティティから構成されて良い。またE-UTRA PDCPで用いられるPDCP PDUフォーマットとNR PDCPで用いられるPDCP PDUフォーマットは異なって良い。またPDCP PDUには、データ用PDCP PDUと制御用PDCP PDUがあって良い。データ用PDCP PDUを、PDCP DATA PDU(PDCP Data PDU、PDCPデータPDU)と呼んで良い。また制御用PDCP PDUを、PDCP CONTROL PDU(PDCP Control PDU、PDCPコントロールPDU、PDCP制御PDU)と呼んで良い。 An example of the PDCP function will be explained. PDCP may be referred to as a PDCP sublayer. PDCP may have a function to maintain the sequence number. The PDCP may also have a header compression / decompression function for efficiently transmitting user data such as IP packets and Ethernet frames in the wireless section. The protocol used for IP packet header compression / decompression may be called the ROHC (Robust Header Compression) protocol. The protocol used for Ethernet frame header compression / decompression may be called the EHC (Ethernet (registered trademark) Header Compression) protocol. The PDCP may also have a data encryption / decryption function. The PDCP may also have the function of data integrity protection / integrity verification. The data encryption / decryption function and / or the data integrity protection / integrity verification function may be paraphrased as a security function. The PDCP may also have a re-ordering function. The PDCP may also have a PDCP SDU retransmission function. In addition, PDCP may have a function of discarding data using a discard timer (discard timer). The PDCP may also have a Duplication function. The PDCP may also have a function of discarding duplicate received data. The PDCP entity is a bidirectional entity and may consist of a transmitting PDCP entity and a receiving PDCP entity. Also, the PDCP PDU format used in E-UTRA PDCP and the PDCP PDU format used in NR PDCP may be different. Further, the PDCP PDU may include a PDCP PDU for data and a PDCP PDU for control. The PDCP PDU for data may be referred to as a PDCP DATA PDU (PDCP Data PDU, PDCP data PDU). Further, the control PDCP PDU may be called a PDCP CONTROL PDU (PDCP Control PDU, PDCP control PDU, PDCP control PDU).
 PDCPにおいて、暗号化、又は完全性保護の処理を行う際、COUNT値を用いて良い。COUNT値は、PDCPの状態変数であるHFN(Hyper Frame Number)と、PDCP PDUのヘッダに付加されるシーケンス番号(SN: Sequence Number)から構成されて良い。シーケンス番号は、送信PDCPエンティティでPDCP DATA PDUが生成される度に、1加算されて良い。HFNは、送信PDCPエンティティ、及び受信PDCPエンティティでシーケンス番号が最大値に達する度に、1加算されて良い。また、送信PDCPエンティティ、及び受信PDCPエンティティでCOUNT値を管理するために、次の(A)から(F)の状態変数(ステート変数)の一部又は全てが使われて良い。
  (A)次に送信されるPDCP SDUのCOUNT値を示すステート変数。TX_NEXTという名称のステート変数であって良い。
  (B)本PDCPエンティティにおいて、次に送信されるPDCP SDUのシーケンス番号を示すステート変数。Next_PDCP_TX_SNという名称のステート変数であって良い。
  (C)本PDCPエンティティにおいて、PDCP PDUのCOUNT値を生成するために使われるHFN値を表すステート変数。TX_HFNという名称のステート変数であって良い。
  (D)受信PDCPエンティティにおいて、次に受信する事が期待(expect)されるPDCP SDUのCOUNT値を示すステート変数。RX_NEXTという名称のステート変数であって良い。
  (E)受信PDCPエンティティにおいて、次に受信する事が期待(expect)されるPDCP SDUのシーケンス番号を示すステート変数。Next_PDCP_RX_SNという名称のステート変数であって良い。
  (F)本PDCPエンティティにおいて、受信したPDCP PDUに対するCOUNT値を生成するために使われるHFN値を表すステート変数。RX_HFNという名称のステート変数であって良い。
In PDCP, the COUNT value may be used when performing encryption or integrity protection processing. The COUNT value may consist of the HFN (Hyper Frame Number), which is a PDCP state variable, and the sequence number (SN: Sequence Number) added to the header of the PDCP PDU. The sequence number may be incremented by 1 each time the sending PDCP entity generates a PDCP DATA PDU. The HFN may be incremented by 1 each time the sequence number reaches the maximum value in the transmit PDCP entity and the receive PDCP entity. Further, in order to manage the COUNT value in the sending PDCP entity and the receiving PDCP entity, some or all of the following state variables (state variables) (A) to (F) may be used.
(A) A state variable that indicates the COUNT value of the PDCP SDU to be sent next. It may be a state variable named TX_NEXT.
(B) In this PDCP entity, a state variable indicating the sequence number of the PDCP SDU to be transmitted next. It can be a state variable named Next_PDCP_TX_SN.
(C) A state variable that represents the HFN value used to generate the COUNT value for the PDCP PDU in this PDCP entity. It can be a state variable named TX_HFN.
(D) A state variable that indicates the COUNT value of the PDCP SDU that is expected to be received next in the receiving PDCP entity. It may be a state variable named RX_NEXT.
(E) A state variable that indicates the sequence number of the PDCP SDU that is expected to be received next in the receiving PDCP entity. It can be a state variable named Next_PDCP_RX_SN.
(F) A state variable that represents the HFN value used to generate the COUNT value for the received PDCP PDU in this PDCP entity. It may be a state variable named RX_HFN.
 なお、LTE及びNRでは、リプレイ保護等の目的で、各無線ベアラにおいて、アップリンク方向のデータ、及びダウンリンク方向のデータ其々に対し、同一のセキュリティ鍵(暗号化鍵、及び/又は完全性保護鍵)に、同じCOUNT値を2回以上使用する事を禁じている。 In LTE and NR, for the purpose of replay protection, etc., the same security key (encryption key and / or integrity) is used for the uplink direction data and the downlink direction data in each wireless bearer. It is forbidden to use the same COUNT value more than once for the protection key).
 また、PDCPにおいて、リオーダリング(re-ordering)とは、PDCP SDUを受信バッファ(リオーダリングバッファ)に格納し、PDCP DATA PDUのヘッダ情報から得られるCOUNT値の順番通りにPDCP SDUを上位レイヤに引き渡すための処理であって良い。リオーダリングにおいて、受け取ったPDCPデータPDUのCOUNT値が、まだ上位レイヤに受け渡していない最初のPDCP SDUのCOUNT値である場合に、格納されているPDCP SDUをCOUNT値の順番通りに上位レイヤに受け渡す処理を行って良い。すなわちリオーダリングにおいて、受信したPDCPデータPDUのCOUNT値より小さいCOUNT値を持つPDCPデータPDUが受信できていない(PDCPデータPDUがロスしている)場合には、その受信したPDCPデータPDUをPDCP SDUに変換してリオーダリングバッファに格納し、ロスしているPDCPデータPDUを全て受信し、PDCP SDUに変換されてから、上位レイヤに受け渡す処理を行って良い。リオーダリングにおいて、PDCPデータPDUのロスを検出するために、リオーダリングタイマー(t-Reorderingという名称のタイマー)が使われて良い。また、リオーダリングのために、次の(A)から(F)の状態変数(ステート変数)のうちの一部又は全てが使われて良い。
  (A)受信PDCPエンティティにおいて、次に受信する事が期待(expect)されるPDCP SDUのCOUNT値を示すステート変数。RX_NEXTという名称のステート変数であって良い。
  (B)受信PDCPエンティティにおいて、次に受信する事が期待(expect)されるPDCP SDUのシーケンス番号を示すステート変数。Next_PDCP_RX_SNという名称のステート変数であって良い。
  (C)本PDCPエンティティにおいて、受信したPDCP PDUに対するCOUNT値を生成するために使われるHFN値を表すステート変数。RX_HFNという名称のステート変数であって良い。
  (D)受信PDCPエンティティにおいて、上位層に配信していない受信待ちのPDCP SDUのうち最初のPDCP PDUのCOUNT値を示すステート変数。RX_DELIVという名称のステート変数であって良い。
  (E)受信PDCPエンティティにおいて、最後に上位層に配信したPDCP SDUのPDCP PDUのシーケンス番号を示すステート変数。Last_Submitted_PDCP_RX_SNという名称のステート変数であって良い。
  (F)受信PDCPエンティティにおいて、リオーダリングタイマーを開始させたPDCP PDUのCOUNT値の次のCOUNT値を示すステート変数。RX_REORDという名称のステート変数、又はReordering_PDCP_RX_COUNTという名称のステート変数であって良い。
In PDCP, re-ordering means that the PDCP SDU is stored in the receive buffer (reordering buffer), and the PDCP SDU is placed in the upper layer in the order of the COUNT values obtained from the header information of the PDCP DATA PDU. It may be a process for delivery. In reordering, if the COUNT value of the received PDCP data PDU is the COUNT value of the first PDCP SDU that has not yet been passed to the upper layer, the stored PDCP SDU is received by the upper layer in the order of the COUNT value. You may perform the process of passing. That is, in reordering, if a PDCP data PDU with a COUNT value smaller than the COUNT value of the received PDCP data PDU cannot be received (PDCP data PDU is lost), the received PDCP data PDU is used as PDCP SDU. It may be converted to and stored in the reordering buffer, all the lost PDCP data PDUs may be received, converted to PDCP SDU, and then passed to the upper layer. In reordering, a reordering timer (a timer named t-Reordering) may be used to detect the loss of PDCP data PDUs. Further, for reordering, some or all of the following state variables (state variables) (A) to (F) may be used.
(A) A state variable that indicates the COUNT value of the PDCP SDU that is expected to be received next in the receiving PDCP entity. It may be a state variable named RX_NEXT.
(B) A state variable that indicates the sequence number of the PDCP SDU that is expected to be received next in the receiving PDCP entity. It can be a state variable named Next_PDCP_RX_SN.
(C) A state variable representing the HFN value used to generate the COUNT value for the received PDCP PDU in this PDCP entity. It may be a state variable named RX_HFN.
(D) In the received PDCP entity, a state variable indicating the COUNT value of the first PDCP PDU among the PDCP SDUs waiting to be received that have not been delivered to the upper layer. It may be a state variable named RX_DELIV.
(E) In the received PDCP entity, a state variable indicating the sequence number of the PDCP PDU of the PDCP SDU that was last delivered to the upper layer. It may be a state variable named Last_Submitted_PDCP_RX_SN.
(F) In the received PDCP entity, a state variable that indicates the COUNT value next to the COUNT value of the PDCP PDU that started the reordering timer. It may be a state variable named RX_REORD or a state variable named Reordering_PDCP_RX_COUNT.
 PDCPにおけるステータスレポーティング(Status Reporting)について説明する。上位レイヤよりPDCPステータスレポートの送信が設定された、Acknowledged ModeのRLCを用いるDRB(AM DRB: Acknowledged Mode Data Radio Bearer)において、受信PDCPエンティティは次の(A)から(D)の何れか条件を満たす時、PDCPステータスレポートを起動(trigger)しても良い。また、上位レイヤよりPDCPステータスレポートの送信が設定された、Unacknowledged ModeのRLCを用いるDRB(UM DRB: Unacknowledged Mode Data Radio Bearer) において、受信PDCPエンティティは次の(C)の条件を満たす時、PDCPステータスレポートを起動(trigger)しても良い。
  (A)上位レイヤがPDCPエンティティの再確立(re-establishment)を要求する。
  (B)上位レイヤがPDCPデータリカバリを要求する。
  (C)上位レイヤがアップリンクデータスイッチを要求する。
  (D)上位レイヤがDAPS(Dual Active Protocol Stack)を解放するためにこのPDCPエンティティを再設定し、かつdaps source releaseという名称のパラメータが設定されている。
Status reporting in PDCP will be described. In DRB (AM DRB: Acknowledged Mode Data Radio Bearer) using RLC of Acknowledged Mode in which transmission of PDCP status report is set from the upper layer, the receiving PDCP entity satisfies one of the following conditions (A) to (D). When met, you may trigger the PDCP status report. In addition, in DRB (UM DRB: Unacknowledged Mode Data Radio Bearer) using RLC of Unacknowledged Mode in which transmission of PDCP status report is set from the upper layer, when the receiving PDCP entity meets the following conditions (C), PDCP You may also trigger a status report.
(A) The upper layer requests the re-establishment of the PDCP entity.
(B) The upper layer requests PDCP data recovery.
(C) The upper layer requests an uplink data switch.
(D) The upper layer has reconfigured this PDCP entity to release the DAPS (Dual Active Protocol Stack), and a parameter named daps source release has been set.
 PDCPステータスレポートの送信が起動された場合、受信PDCPエンティティはPDCPステータスレポートの作成を行って良い。PDCPステータスレポートの作成は、PDCPステータスレポート用のPDCP制御PDUに、上位層に配信していない受信待ちのPDCP SDUのうち最初のPDCP PDUのCOUNT値を含む、受信待ちのPDCP SDUの情報を格納する事により行われて良い。PDCPステータスレポートを作成した受信PDCPエンティティは、送信PDCPエンティティを経由して、作成したPDCPステータスレポートを下位レイヤに提出して良い。 When sending the PDCP status report is activated, the receiving PDCP entity may create the PDCP status report. To create a PDCP status report, the PDCP control PDU for the PDCP status report contains information on the PDCP SDU waiting to be received, including the COUNT value of the first PDCP PDU waiting to be received that has not been delivered to the upper layer. It may be done by doing. The receiving PDCP entity that created the PDCP status report may submit the created PDCP status report to a lower layer via the sending PDCP entity.
 なお、本発明の実施の形態において、上位レイヤよりPDCPステータスレポートの送信が設定されたUM DRBのPDCPエンティティは、上位レイヤからPDCPデータリカバリを要求された事を判断して良い。上位レイヤからPDCPデータリカバリを要求された事を判断したUM DRBのPDCPエンティティは、上位レイヤからPDCPデータリカバリを要求された事に基づいて、受信PDCPエンティティにおいてPDCPステータスレポートを作成し、送信PDCPエンティティを経由して、作成したPDCPステータスレポートを下位レイヤに提出しても良い。なお、下位レイヤとは、PDCPエンティティに紐づいているRLCベアラのUM RLCエンティティであって良い。なお、本発明の実施の形態において、UM DRBがDAPSベアラで無い場合にのみ、上位レイヤよりPDCPステータスレポートの送信が設定されたUM DRBのPDCPエンティティは、上位レイヤからPDCPデータリカバリを要求された事を判断して良い。DAPSベアラとは、PDCPエンティティにソースセル用の1つ又は複数のRLCエンティティと、ターゲットセル用の1つ又は複数のRLCエンティティが紐づいているベアラであって良い。また上述のPDCPデータリカバリは、上位レイヤよりPDCPにステータスレポートの送信を要求する事を意味する他の名称であって良い。 In the embodiment of the present invention, it may be determined that the PDCP entity of UMDRB, which is set to send the PDCP status report from the upper layer, has requested PDCP data recovery from the upper layer. The PDCP entity of UMDRB that determines that PDCP data recovery is requested from the upper layer creates a PDCP status report in the receiving PDCP entity based on the PDCP data recovery request from the upper layer, and the sending PDCP entity. The created PDCP status report may be submitted to the lower layer via. The lower layer may be the UM RLC entity of the RLC bearer associated with the PDCP entity. In the embodiment of the present invention, only when the UMDRB is not a DAPS bearer, the PDCP entity of the UMDRB to which the PDCP status report transmission is set from the upper layer is requested to recover the PDCP data from the upper layer. You can judge the matter. The DAPS bearer may be a bearer in which one or more RLC entities for the source cell and one or more RLC entities for the target cell are associated with the PDCP entity. Further, the PDCP data recovery described above may be another name meaning that the PDCP is requested to send a status report from the upper layer.
 ROHCについて説明する。本発明の実施の形態において、ROHCをROHCプロトコルと言い換えて良い。ROHCは、IP、UDP、TCP、RTPなどのヘッダ情報を圧縮(compress)する機能及び解凍(decompress)する機能を持って良い。ROHCにおいて、圧縮機(compressor)がヘッダ情報を圧縮するヘッダ圧縮機能を持って良い。またROHCにおいて、解凍機(decompressor)がヘッダ情報を解凍するヘッダ解凍機能を持って良い。圧縮機は、圧縮機が保有するコンテキストを用いてヘッダ圧縮を行って良い。解凍機は解凍機が保有するコンテキストを用いてヘッダ解凍を行って良い。本発明の実施の形態において、コンテキストをROHCコンテキストと言い換えて良い。解凍機におけるコンテキストは、圧縮機から全てのヘッダ情報を受信する事により生成されて良い。圧縮機及び解凍機におけるコンテキストはIPフロー毎に保有されて良い。コンテキストを識別するために、コンテキスト識別子(Context Identifier: CID)が用いられて良い。コンテキスト識別子の最大値の情報、ヘッダ圧縮・解凍の方法を示すプロファイル(profile)の情報などは、ヘッダ圧縮・解凍を行う前に、圧縮機と解凍機の間で折衝(negotiate)されて良い。 Explain ROHC. In embodiments of the present invention, ROHC may be paraphrased as the ROHC protocol. ROHC may have a function of compressing and decompressing header information such as IP, UDP, TCP, and RTP. In ROHC, the compressor may have a header compression function that compresses the header information. Also, in ROHC, the decompressor may have a header decompression function to decompress the header information. The compressor may perform header compression using the context possessed by the compressor. The decompression machine may decompress the header using the context possessed by the decompression machine. In embodiments of the present invention, the context may be paraphrased as a ROHC context. The context in the decompressor may be generated by receiving all the header information from the compressor. The context in the compressor and decompressor may be retained for each IP flow. A context identifier (Context Identifier: CID) may be used to identify the context. Information on the maximum value of the context identifier, profile information indicating the method of header compression / decompression, etc. may be negotiated between the compressor and the decompression machine before header compression / decompression.
 ROHCにおいてヘッダ情報は、静的部分(static parts)と動的部分(dynamic parts)に分類されて良い。ROHCにおけるヘッダ情報の静的部分とは、IPフローに所属する各パケットのヘッダ情報のうち、殆ど変化しない情報であって良い。ROHCにおけるヘッダ情報の静的部分は例えば、IPv4ヘッダやIPv6ヘッダにおける送信元(source)アドレス、宛先(destination)アドレス、バージョン、UDPヘッダやTCPヘッダにおける送信元ポート、宛先ポートなどを含む情報であって良い。またROHCにおけるヘッダ情報の動的部分とは、IPフローに所属する各パケットのヘッダ情報のうち、パケット毎に変化し得る情報であって良い。ROHCにおけるヘッダ情報の動的部分は例えば、IPv6ヘッダにおけるトラフッククラス、ホップリミット、IPv4ヘッダにおけるType of service、Time to Live、UDPヘッダにおけるチェックサム、RTPヘッダにおけるRTPシーケンス番号、RTPタイムスタンプなどを含む情報であって良い。 In ROHC, header information may be classified into static parts and dynamic parts. The static part of the header information in ROHC may be information that hardly changes among the header information of each packet belonging to the IP flow. The static part of the header information in ROHC is, for example, information including a source address, a destination address, a version in an IPv4 header or an IPv6 header, a source port in a UDP header or a TCP header, a destination port, and the like. It's okay. Further, the dynamic part of the header information in ROHC may be information that can change for each packet among the header information of each packet belonging to the IP flow. The dynamic part of the header information in ROHC includes, for example, trahook class in IPv6 header, hop limit, Type of service in IPv4 header, Time to Live, check sum in UDP header, RTP sequence number in RTP header, RTP time stamp, etc. It may be information.
 ROHCの圧縮機にはIR(Initialization and Refresh)ステート、FO(First Order)ステート、SO(Second Order)ステートの3つのステートが存在して良い。IRステートが用いられる場合、圧縮機は圧縮対象となるヘッダ情報を圧縮せず、全てのヘッダ情報を解凍機へ送信して良い。FOステートが用いられる場合、圧縮機は圧縮対象ヘッダ情報のうち、静的部分のほとんどを圧縮し、一部の静的部分と動的部分は圧縮せずに解凍機へと送信して良い。SOステートが用いられる場合、ヘッダの圧縮率が最高となり、圧縮機からはRTPシーケンス番号等の限られた情報のみを送信して良い。 The ROHC compressor may have three states: IR (Initialization and Refresh) state, FO (First Order) state, and SO (Second Order) state. When the IR state is used, the compressor may not compress the header information to be compressed and may send all the header information to the decompressor. When the FO state is used, the compressor may compress most of the static part of the header information to be compressed, and send some static part and dynamic part to the decompressor without compression. When the SO state is used, the compression rate of the header is the highest, and only limited information such as the RTP sequence number may be transmitted from the compressor.
 ROHCの解凍機にはNC(No Context)ステート、SC(Static Context)ステート、FC(Full Context)ステートの3つのステートが存在して良い。解凍機の初期状態はNCステートであって良い。NCステートにおいてコンテキストを取得し、正しくヘッダ解凍が行われる状態となった場合、FCステートへと遷移して良い。またFCステートにおいて連続的にヘッダ解凍が失敗した場合、SCステートやNCステートに遷移して良い。 The ROHC decompressor may have three states: NC (NoContext) state, SC (StaticContext) state, and FC (FullContext) state. The initial state of the defroster may be NC state. When the context is acquired in the NC state and the header is decompressed correctly, the transition to the FC state may be performed. If header decompression fails continuously in the FC state, it may transition to the SC state or NC state.
 ROHCの処理モードには、U-mode(Unidirectional mode)、O-mode(Bidirectional Optimistic mode)、R-mode(Bidirectional Reliable mode)の3つのモードが存在して良い。U-modeでは、ROHCフィードバックパケットを使用しなくて良い。U-modeにおいて、圧縮機における低圧縮モードから高圧縮モードへの遷移、即ちIRステートからFOステートへの遷移、及び/又はFOステートからSOステートへの遷移、及び/又はIRステートからSOステートへの遷移は、一定数のパケットを送信することで実施されて良い。また、U-modeにおいて、圧縮機における高圧縮モードから低圧縮モードへの遷移、即ちSOステートからFOステートへの遷移、及び/又はFOステートからIRステートへの遷移、及び/又はSOステートからIRステートへの遷移は、は一定周期毎に実施する事により、ヘッダ解凍に必要な情報を定期的に解凍機へ送信して良い。O-modeでは、解凍機が圧縮機にROHCフィードバックパケットを送信する事により、圧縮機にコンテキストの更新要求を行って良い。R-modeにおいて、圧縮機は、解凍機よりROHCフィードバックパケットよるヘッダ解凍成功通知を受け取る事により、低圧縮モードから高圧縮モードへ遷移して良い。またR-modeにおいて、圧縮機は、解凍機よりROHCフィードバックパケットよるコンテキスト更新要求を受け取る事により、高圧縮モードから低圧縮モードへ遷移して良い。ROHCの処理モードはU-modeから開始されて良い。ROHCの処理モードの遷移は、解凍機が決定して良い。解凍機はROHCフィードバックパケットを用いて、圧縮機へ処理モードの遷移を促して良い。 There may be three ROHC processing modes: U-mode (Unidirectional mode), O-mode (Bidirectional Optimistic mode), and R-mode (Bidirectional Reliable mode). In U-mode, it is not necessary to use ROHC feedback packets. In U-mode, the transition from low compression mode to high compression mode in the compressor, that is, the transition from IR state to FO state, and / or the transition from FO state to SO state, and / or from IR state to SO state. The transition may be performed by transmitting a fixed number of packets. Also, in U-mode, the transition from high compression mode to low compression mode in the compressor, that is, the transition from SO state to FO state, and / or the transition from FO state to IR state, and / or from SO state to IR. The transition to the state may be performed at regular intervals, so that the information necessary for header decompression may be periodically transmitted to the decompression machine. In O-mode, the decompressor may send a ROHC feedback packet to the compressor to request the compressor to update the context. In R-mode, the compressor may transition from the low compression mode to the high compression mode by receiving the header decompression success notification by the ROHC feedback packet from the decompression machine. Further, in the R-mode, the compressor may transition from the high compression mode to the low compression mode by receiving the context update request by the ROHC feedback packet from the decompression machine. The ROHC processing mode may be started from U-mode. The transition of the processing mode of ROHC may be determined by the defroster. The decompressor may use the ROHC feedback packet to urge the compressor to transition to the processing mode.
 SDAPの機能の一例について説明する。SDAPは、サービスデータ適応プロトコル層(サービスデータ適応プロトコルレイヤ)である。SDAPは、5GC110から基地局装置を介して端末装置に送られるダウンリンクのQoSフローとデータ無線ベアラ(DRB)との対応付け(マッピング:mapping)、及び/又は端末装置から基地局装置を介して5GC110に送られるアップリンクのQoSフローと、DRBとのマッピングを行う機能を持って良い。またSDAPはマッピングルール情報を格納する機能を持って良い。またSDAPはQoSフロー識別子(QoS Flow ID: QFI)のマーキングを行う機能を持って良い。なお、SDAP PDUには、データ用SDAP PDUと制御用SDAP PDUがあって良い。データ用SDAP PDUをSDAP DATA PDU(SDAP Data PDU、SDAPデータPDU)と呼んで良い。また制御用SDAP PDUをSDAP CONTROL PDU(SDAP Control PDU、SDAPコントロールPDU、SDAP制御PDU)と呼んで良い。なお端末装置のSDAPエンティティは、PDUセッションに対して一つ存在して良い。 An example of SDAP functions will be explained. SDAP is a service data adaptation protocol layer (service data adaptation protocol layer). SDAP maps the downlink QoS flow sent from the 5GC110 to the terminal device via the base station device and the data radio bearer (DRB) (mapping), and / or from the terminal device via the base station device. It may have a function to map the uplink QoS flow sent to the 5GC110 with the DRB. SDAP may also have a function to store mapping rule information. In addition, SDAP may have a function of marking a QoS flow identifier (QoS Flow ID: QFI). The SDAP PDU may include a data SDAP PDU and a control SDAP PDU. SDAP PDU for data may be called SDAP DATA PDU (SDAP Data PDU, SDAP data PDU). Further, the control SDAP PDU may be called an SDAP CONTROL PDU (SDAP Control PDU, SDAP control PDU, SDAP control PDU). Note that there may be one SDAP entity for the terminal device for the PDU session.
 RRCの機能の一例について説明する。RRCは、報知(ブロードキャスト:broadcast)機能を持って良い。RRCは、EPC104及び/又は5GC110からの呼び出し(ページング:Paging)機能を持って良い。RRCは、gNB108又は5GC100に接続するeNB102からの呼び出し(ページング:Paging)機能を持って良い。またRRCは、RRC接続管理機能を持って良い。またRRCは、無線ベアラ制御機能を持って良い。またRRCは、セルグループ制御機能を持って良い。またRRCは、モビリティ(mobility)制御機能を持って良い。またRRCは端末装置測定レポーティング及び端末装置測定レポーティング制御機能を持って良い。またRRCは、QoS管理機能を持って良い。またRRCは、無線リンク失敗の検出及び復旧の機能を持って良い。RRCは、RRCメッセージを用いて、報知、ページング、RRC接続管理、無線ベアラ制御、セルグループ制御、モビィティ制御、端末装置測定レポーティング及び端末装置測定レポーティング制御、QoS管理、無線リンク失敗の検出及び復旧等を行って良い。なお、E-UTRA RRCで用いられるRRCメッセージやパラメータは、NR RRCで用いられるRRCメッセージやパラメータと異なって良い。 An example of the function of RRC will be explained. The RRC may have a broadcast function. The RRC may have a calling (paging) function from EPC104 and / or 5GC110. The RRC may have a call (paging) function from the eNB 102 that connects to the gNB 108 or 5GC100. The RRC may also have an RRC connection management function. The RRC may also have a wireless bearer control function. The RRC may also have a cell group control function. The RRC may also have a mobility control function. Further, the RRC may have a terminal device measurement reporting and a terminal device measurement reporting control function. The RRC may also have a QoS management function. The RRC may also have a function of detecting and recovering a wireless link failure. RRC uses RRC messages for notification, paging, RRC connection management, wireless bearer control, cell group control, mobility control, terminal device measurement reporting and terminal device measurement reporting control, QoS management, detection and recovery of wireless link failures, etc. You may go. The RRC message or parameter used in E-UTRA RRC may be different from the RRC message or parameter used in NR RRC.
 RRCメッセージは、論理チャネルのBCCHを用いて送られて良いし、論理チャネルのPCCHを用いて送られて良いし、論理チャネルのCCCHを用いて送られて良いし、論理チャネルのDCCHを用いて送られて良いし、論理チャネルのMCCHを用いて送られて良い。 The RRC message may be sent using the BCCH of the logical channel, the PCCH of the logical channel, the CCCH of the logical channel, or the DCCH of the logical channel. It may be sent or it may be sent using the MCCH of the logical channel.
 BCCHを用いて送られるRRCメッセージには、例えばマスター情報ブロック(Master Information Block: MIB)が含まれて良いし、各タイプのシステム情報ブロック(System Information Block: SIB)が含まれて良いし、他のRRCメッセージが含まれて良い。PCCHを用いて送られるRRCメッセージには、例えばページングメッセージが含まれて良いし、他のRRCメッセージが含まれて良い。 The RRC message sent using BCCH may include, for example, a master information block (MIB), each type of system information block (System Information Block: SIB), and others. RRC message may be included. The RRC message sent using the PCCH may include, for example, a paging message, or may include other RRC messages.
 CCCHを用いてアップリンク(UL)方向送られるRRCメッセージには、例えばRRCセットアップ要求メッセージ(RRC Setup Request)、RRC再開要求メッセージ(RRC Resume Request)、RRC再確立要求メッセージ(RRC Reestablishment Request)、RRCシステム情報要求メッセージ(RRC System Info Request)などが含まれて良い。また例えばRRC接続要求メッセージ(RRC Connection Request)、RRCコネクション再開要求メッセージ(RRC Connection Resume Request)、RRC接続再確立要求メッセージ(RRC Connection Reestablishment Request)などが含まれて良い。また他のRRCメッセージが含まれて良い。 RRC messages sent in the uplink (UL) direction using CCCH include, for example, RRC Setup Request message (RRC Setup Request), RRC Resume Request Message (RRC Resume Request), RRC Reestablishment Request Message (RRC Reestablishment Request), and RRC. A system information request message (RRC System Info Request) may be included. Further, for example, an RRC connection request message (RRC Connection Request), an RRC connection restart request message (RRC Connection Resume Request), an RRC connection reestablishment request message (RRC Connection Reestablishment Request), and the like may be included. It may also contain other RRC messages.
 CCCHを用いてダウンリンク(DL)方向送られるRRCメッセージには、例えばRRC接続拒絶メッセージ(RRC Connection Reject)、RRC接続セットアップメッセージ(RRC Connection Setup)、RRCコネクション再確立メッセージ(RRC Connection Reestablishment)、RRCコネクション再確立拒絶メッセージ(RRC Connection Reestablishment Reject)などが含まれて良い。また例えばRRC拒絶メッセージ(RRC Reject)、RRCセットアップメッセージ(RRC Setup)、RRC再開メッセージ(RRC Resume)などが含まれて良い。また他のRRCメッセージが含まれて良い。 RRC messages sent in the downlink (DL) direction using CCCH include, for example, RRC Connection Reject message, RRC Connection Setup message, RRC Connection Reestablishment message, and RRC. A connection reestablishment refusal message (RRC Connection Reestablishment Reject) or the like may be included. Further, for example, an RRC reject message (RRC Reject), an RRC setup message (RRC Setup), an RRC restart message (RRC Resume), and the like may be included. It may also contain other RRC messages.
 DCCHを用いてアップリンク(UL)方向送られるRRCメッセージには、例えば測定報告メッセージ(Measurement Report)、RRCコネクション再設定完了メッセージ(RRC Connection Reconfiguration Complete)、RRC接続セットアップ完了メッセージ(RRC Connection SetupComplete)、RRC接続再確立完了メッセージ(RRC Connection Reestablishment Complete)、セキュリティモード完了メッセージ(Security Mode Complete)、UE能力情報メッセージ(UE Capability Information)などが含まれて良い。また例えば測定報告メッセージ(Measurement Report)、RRC再設定完了メッセージ(RRC Reconfiguration Complete)、RRCセットアップ完了メッセージ(RRC Setup Complete)、RRC再確立完了メッセージ(RRC Reestablishment Complete)、RRC再開完了メッセージ(RRC Resume Complete)、セキュリティモード完了メッセージ(Security Mode Complete)、UE能力情報メッセージ(UE Capability Information)、カウンターチェック応答メッセージ(Counter Check Response)などが含まれて良い。また他のRRCメッセージが含まれて良い。 RRC messages sent in the uplink (UL) direction using DCCH include, for example, measurement report message (Measurement Report), RRC connection reconfiguration completion message (RRC Connection Reconfiguration Complete), RRC connection setup completion message (RRC Connection Setup Complete), An RRC connection reestablishment completion message (RRC Connection Reestablishment Complete), a security mode completion message (Security Mode Complete), a UE capability information message (UE Capability Information), and the like may be included. Also, for example, measurement report message (Measurement Report), RRC reconfiguration completion message (RRC Reconfiguration Complete), RRC setup completion message (RRC Setup Complete), RRC reestablishment completion message (RRC Reestablishment Complete), RRC resumption completion message (RRC Resume Complete). ), Security mode completion message (Security Mode Complete), UE capability information message (UE Capability Information), counter check response message (Counter Check Response), and the like may be included. It may also contain other RRC messages.
 DCCHを用いてダウンリンク(DL)方向送られるRRCメッセージには、例えばRRC接続再設定メッセージ(RRC Connection Reconfiguration)、RRC接続解放メッセージ(RRC ConnectionRelease)、セキュリティモードコマンドメッセージ(Security Mode Command)、UE能力照会メッセージ(UE Capability Enquiry)などが含まれて良い。また例えRRC再設定メッセージ(RRC Reconfiguration)、RRC再開メッセージ(RRC Resume)、RRC解放メッセージ(RRC Release)、RRC再確立メッセージ(RRC Reestablishment)、セキュリティモードコマンドメッセージ(Security Mode Command)、UE能力照会メッセージ(UE Capability Enquiry)、カウンターチェックメッセージ(Counter Check)などが含まれて良い。また他のRRCメッセージが含まれて良い。 RRC messages sent in the downlink (DL) direction using DCCH include, for example, RRC connection reconfiguration message (RRC Connection Reconfiguration), RRC connection release message (RRC Connection Release), security mode command message (Security Mode Command), and UE capability. Inquiry messages (UE Capability Inquiry) etc. may be included. Also, for example, RRC reconfiguration message (RRC Reconfiguration), RRC restart message (RRC Resume), RRC release message (RRC Release), RRC reestablishment message (RRC Reestablishment), security mode command message (Security Mode Command), UE capability inquiry message. (UE Capability Inquiry), counter check message (Counter Check), etc. may be included. It may also contain other RRC messages.
 NASの機能の一例について説明する。NASは、認証機能を持って良い。またNASは、モビリティ(mobility)管理を行う機能を持って良い。またNASは、セキュリティ制御の機能を持って良い。 An example of NAS functions will be explained. NAS may have an authentication function. NAS may also have the ability to manage mobility. The NAS may also have a security control function.
 前述のPHY、MAC、RLC、PDCP、SDAP、RRC、NASの機能は一例であり、各機能の一部あるいは全てが実装されなくてもよい。また、各層(各レイヤ)の機能の一部あるいは全部が他の層(レイヤ)に含まれてもよい。 The above-mentioned PHY, MAC, RLC, PDCP, SDAP, RRC, and NAS functions are examples, and some or all of the functions may not be implemented. Further, a part or all of the functions of each layer (each layer) may be included in another layer (layer).
 なお、端末装置のAS層の上位層(不図示)にはIPレイヤ、及びIPレイヤより上のTCP(Transmission Control Protocol)レイヤ、UDP(User Datagram Protocol)レイヤ、などが存在して良い。また端末装置のAS層の上位層には、イーサネット層が存在して良い。端末装置のAS層の上位層PDU層(PDUレイヤ)と呼んで良い。PDUレイヤにはIPレイヤ、TCPレイヤ、UDPレイヤ、イーサネットレイヤ等が含まれて良い。IPレイヤ、TCPレイヤ、UDPレイヤ、イーサネットレイヤ、PDUレイヤ等の上位層に、アプリケーションレイヤが存在して良い。アプリケーションレイヤには、3GPPにおいて規格化されているサービス網の一つである、IMS(IP Multimedia Subsystem)で用いられるSIP(Session Initiation Protocol)やSDP(Session Description Protocol)が含まれて良い。またアプリケーション層にはメディア通信に用いられるRTP(Real-time Transport Protocol)、及び/又はメディア通信制御にRTCP(Real-time Transport Control Protocol)、HTTP(HyperText Transfer Protocol)等のプロトコルが含まれて良い。またアプリケーションレイヤには、各種メディアのコーデック等が含まれて良い。またRRCレイヤはSDAPレイヤの上位レイヤであって良い。 Note that the upper layer (not shown) of the AS layer of the terminal device may include an IP layer, a TCP (Transmission Control Protocol) layer above the IP layer, a UDP (User Datagram Protocol) layer, and the like. Further, an Ethernet layer may exist in the upper layer of the AS layer of the terminal device. It may be called an upper layer PDU layer (PDU layer) of the AS layer of the terminal device. The PDU layer may include an IP layer, a TCP layer, a UDP layer, an Ethernet layer, and the like. An application layer may exist in an upper layer such as an IP layer, a TCP layer, a UDP layer, an Ethernet layer, and a PDU layer. The application layer may include SIP (Session Initiation Protocol) and SDP (Session Description Protocol) used in IMS (IP Multimedia Subsystem), which is one of the service networks standardized in 3GPP. The application layer may include RTP (Real-time Transport Protocol) used for media communication and / or RTCP (Real-time Transport Control Protocol) and HTTP (HyperText Transfer Protocol) for media communication control. .. Further, the application layer may include codecs of various media and the like. The RRC layer may be an upper layer of the SDAP layer.
 次にLTE及びNRにおけるUE122の状態遷移について説明する。EPC、又は5GCに接続するUE122は、RRC接続が設立されている(RRC connection has been established)とき、UE122はRRC_CONNECTED状態であってよい。RRC接続が設立されている状態とは、UE122が、後述のUEコンテキストの一部又は全てを保持している状態を含んで良い。またRRC接続が設立されている状態とは、UE122がユニキャストデータを送信、及び/又は受信できる状態を含んで良い。またUE122は、RRC接続が休止(サスペンド:suspend)しているとき、UE122はRRC_INACTIVE状態であってよい。また、UE122がRRC_INACTIVE状態になるのは、UE122が5GCに接続している場合で、RRC接続が休止しているときであって良い。UE122が、RRC_CONNECTED状態でも、RRC_INACTIVE状態でも無いとき、UE122はRRC_IDLE状態であってよい。 Next, the state transition of UE122 in LTE and NR will be explained. The UE 122 connected to the EPC or 5GC may be in the RRC_CONNECTED state when the RRC connection is established (RRC connection has been established). The state in which the RRC connection is established may include the state in which the UE 122 holds a part or all of the UE context described later. Further, the state in which the RRC connection is established may include a state in which the UE 122 can transmit and / or receive unicast data. UE122 may also be in the RRC_INACTIVE state when the RRC connection is suspended. Further, the UE 122 may be in the RRC_INACTIVE state when the UE 122 is connected to the 5GC and the RRC connection is suspended. UE122 may be in the RRC_IDLE state when it is neither in the RRC_CONNECTED state nor in the RRC_INACTIVE state.
 なお、UE122がEPCに接続している場合、RRC_INACTIVE状態を持たないが、E-UTRANによってRRC接続の休止が開始されてもよい。UE122がEPCに接続している場合、RRC接続が休止されるとき、UE122はUEのASコンテキストと復帰(リジューム:resume)に用いる識別子(resume Identity)を保持してRRC_IDLE状態に遷移して良い。UE122のRRCレイヤの上位レイヤ(例えばNASレイヤ)は、UE122がUEのASコンテキストを保持しており、かつE-UTRANによってRRC接続の復帰が許可(Permit)されており、かつUE122がRRC_IDLE状態からRRC_CONNECTED状態に遷移する必要があるとき、休止されたRRC接続の復帰を開始してもよい。 If UE122 is connected to EPC, it does not have RRC_INACTIVE status, but E-UTRAN may start hibernation of RRC connection. When the UE122 is connected to the EPC, when the RRC connection is suspended, the UE122 may hold the AS context of the UE and the identifier (resume Identity) used for the resume (resume) and transition to the RRC_IDLE state. In the upper layer of the RRC layer of UE122 (for example, NAS layer), UE122 holds the AS context of UE, and E-UTRAN allows the return of RRC connection (Permit), and UE122 is from the RRC_IDLE state. When it is necessary to transition to the RRC_CONNECTED state, the reinstatement of the suspended RRC connection may be started.
 EPC104に接続するUE122と、5GC110に接続するUE122とで、休止の定義が異なってよい。また、UE122がEPCに接続している場合(RRC_IDLE状態で休止している場合)と、UE122が5GCに接続している場合(RRC_INACTIVE状態で休止している場合)とで、UE122が休止から復帰する手順のすべてあるいは一部が異なってよい。 The definition of hibernation may be different between UE122 connected to EPC104 and UE122 connected to 5GC110. Also, when UE122 is connected to the EPC (when it is hibernating in the RRC_IDLE state) and when UE122 is connected to 5GC (when it is hibernating in the RRC_INACTIVE state), the UE122 returns from hibernation. All or part of the procedure may be different.
 なお、RRC_CONNECTED状態、RRC_INACTIVE状態、RRC_IDLE状態の事をそれぞれ、接続状態(connected mode)、不活性状態(inactive mode)、アイドル状態(idle mode)と呼んで良いし、RRC接続状態(RRC connected mode)、RRC不活性状態(RRC inactive mode)、RRCアイドル状態(RRC idle mode)と呼んで良い。 The RRC_CONNECTED state, RRC_INACTIVE state, and RRC_IDLE state may be called the connected state (connected mode), the inactive state (inactive mode), and the idle state (idle mode), respectively, and the RRC connected state (RRC connected mode). , RRC inactive state (RRC inactive mode), RRC idle state (RRC idle mode) may be called.
 UE122が保持するUEのASコンテキストは、現在のRRC設定、現在のセキュリティコンテキスト、ROHC(RObust Header Compression)状態を含むPDCP状態、接続元(Source)のPCellで使われていたC-RNTI(Cell Radio Network Temporary Identifier)、セル識別子(cell Identity)、接続元のPCellの物理セル識別子、のすべてあるいは一部を含む情報であってよい。なお、eNB102およびgNB108の内のいずれかまたは全ての保持するUEのASコンテキストは、UE122が保持するUEのASコンテキストと同じ情報を含んでもよいし、UE122が保持するUEのASコンテキストに含まれる情報とは異なる情報が含まれてもよい。 The UE AS context held by UE122 is the current RRC setting, the current security context, the PDCP state including the ROHC (RObust Header Compression) state, and the C-RNTI (Cell Radio) used in the PCell of the connection source (Source). Information may include all or part of a Network Temporary Identifier), a cell identifier, and a physical cell identifier of the PCell of the connection source. The AS context of the UE held by any or all of the eNB 102 and gNB 108 may include the same information as the AS context of the UE held by the UE 122, or the information contained in the AS context of the UE held by the UE 122. May contain different information.
 セキュリティコンテキストとは、ASレベルにおける暗号鍵、NH(Next Hop parameter)、次ホップのアクセス鍵導出に用いられるNCC(Next Hop Chaining Counter parameter)、選択されたASレベルの暗号化アルゴリズムの識別子、リプレイ保護のために用いられるカウンター、のすべてあるいは一部を含む情報であってよい。 The security context is the encryption key at the AS level, NH (Next Hop parameter), NCC (Next Hop Chaining Counter parameter) used to derive the access key for the next hop, the identifier of the selected AS level encryption algorithm, and replay protection. It may be information containing all or part of the counters used for.
 端末装置に対し基地局装置から設定される、セルグループ(Cell Group)について説明する。セルグループは、1つのスペシャルセル(Special Cell: SpCell)で構成されて良い。またセルグループは、1つのSpCellと、1つ又は複数のセカンダリセル(Secondary Cell: SCell)から構成されて良い。即ちセルグループは、1つのSpCellと、必要に応じて(optionally)1つ又は複数のSCellから構成されて良い。なおMACエンティティがマスターセルグループ(Master Cell Group: MCG)に関連付けられている場合、SpCellはプライマリセル(Primary Cell: PCell)を意味して良い。またMACエンティティがセカンダリセルグループ(Secondary Cell Group: SCG)に関連付けられている場合、SpCellはプライマリSCGセル(Primary SCG Cell: PSCell)を意味して良い。またMACエンティティがセルグループに関連付けられていない場合、SpCellはPCellを意味して良い。PCell、PSCellおよびSCellはサービングセルである。SpCellはPUCCH送信およびコンテンション基準ランダムアクセス(contention-based Random Access)をサポートして良いし、またSpCellは常に活性化されても良い。PCellはRRCアイドル状態の端末装置がRRC接続状態に遷移する際の、RRC接続確立手順に用いられるセルであって良い。またPCellは、端末装置がRRC接続の再確立を行う、RRC接続再確立手順に用いられるセルであって良い。またPCellは、ハンドオーバの際のランダムアクセス手順に用いられるセルであって良い。PSCellは、後述するセカンダリノード(Secondary Node: SN)追加の際に、ランダムアクセス手順に用いられるセルであって良い。またSpCellは、上述の用途以外の用途に用いられるセルであって良い。なお、セルグループがSpCell及び1つ以上のSCellから構成される場合、このセルグループにはキャリアアグリゲーション(carrier aggregation: CA)が設定されていると言って良い。また、CAが設定されている端末装置に対して、SpCellに対して追加の無線リソースを提供しているセルはSCellを意味して良い。 The cell group set by the base station device for the terminal device will be explained. A cell group may be composed of one special cell (Special Cell: SpCell). Further, the cell group may be composed of one SpCell and one or a plurality of secondary cells (Secondary Cell: S Cell). That is, a cell group may consist of one SpCell and optionally one or more SCells. When the MAC entity is associated with the master cell group (Master Cell Group: MCG), SpCell may mean the primary cell (Primary Cell: PCell). When the MAC entity is associated with a secondary cell group (Secondary Cell Group: SCG), SpCell may mean a primary SCG cell (Primary SCG Cell: PS Cell). Also, SpCell may mean PCell if the MAC entity is not associated with a cell group. PCell, PSCell and SCell are serving cells. SpCell may support PUCCH transmission and contention-based Random Access, and SpCell may always be activated. The PCell may be a cell used for the RRC connection establishment procedure when the terminal device in the RRC idle state transitions to the RRC connection state. The PCell may also be a cell used in the RRC connection reestablishment procedure in which the terminal device reestablishes the RRC connection. Further, the PCell may be a cell used for a random access procedure at the time of handover. The PSCell may be a cell used for a random access procedure when a secondary node (Secondary Node: SN), which will be described later, is added. Further, the SpCell may be a cell used for a purpose other than the above-mentioned uses. When a cell group is composed of SpCell and one or more SCells, it can be said that carrier aggregation (CA) is set in this cell group. Further, a cell that provides additional radio resources to SpCell for a terminal device in which CA is set may mean SCell.
 RRCによって設定されているサービングセルのグループで、その中の上りリンクが設定されているセルに対し同じタイミング参照セル(timing reference cell)および同じタイミングアドバンスの値を使用しているセルグループの事をタイミングアドバンスグループ(Timing Advance Group: TAG)と呼んで良い。またMACエンティティのSpCellを含むTAGはプライマリタイミングアドバンスグループ(Primary Timing Advance Group: PTAG)を意味して良い。また上記PTAG以外のTAGはセカンダリタイミングアドバンスグループ(Secondary Timing Advance Group: STAG)を意味して良い。 Timing of serving cell groups set by RRC that use the same timing reference cell and the same timing advance value for the cells in which the uplink is set. It may be called an advance group (Timing Advance Group: TAG). Further, the TAG including the SpCell of the MAC entity may mean the Primary Timing Advance Group (PTAG). Further, a TAG other than the above PTAG may mean a secondary timing advance group (STAG).
 またDual Connectivity(DC)や、Multi-Radio Dual Connectivity(MR-DC)が行われる場合、端末装置対し基地局装置からセルグループの追加が行われて良い。DCとは、第1の基地局装置(第1のノード)と第2の基地局装置(第2のノード)がそれぞれ構成するセルグループの無線リソースを利用してデータ通信を行う技術であって良い。MR-DCはDCに含まれる技術であって良い。DCを行うために、第1の基地局装置が第2の基地局装置を追加して良い。第1の基地局装置の事をマスターノード(Master Node: MN)と呼んで良い。またマスターノードが構成するセルグループをマスターセルグループ(Master Cell Group: MCG)と呼んで良い。第2の基地局装置の事をセカンダリノード(Secondary Node: SN)と呼んで良い。またセカンダリノードが構成するセルグループをセカンダリセルグループ(Secondary Cell Group: SCG)と呼んで良い。なお、マスターノードとセカンダリノードは同じ基地局装置内に構成されていても良い。 When Dual Connectivity (DC) or Multi-Radio Dual Connectivity (MR-DC) is performed, a cell group may be added from the base station device to the terminal device. DC is a technology for performing data communication using the radio resources of the cell group configured by the first base station device (first node) and the second base station device (second node). good. MR-DC may be a technique included in DC. The first base station appliance may add a second base station appliance to perform DC. The first base station device may be called a master node (MasterNode: MN). Further, the cell group composed of the master node may be called a master cell group (Master Cell Group: MCG). The second base station device may be called a secondary node (SN). A cell group composed of a secondary node may be called a secondary cell group (SCG). The master node and the secondary node may be configured in the same base station device.
 また、DCが設定されていない場合において、端末装置に設定されるセルグループの事をMCGと呼んで良い。また、DCが設定されていない場合において、端末装置に設定されるSpCellはPCellであって良い。 Also, when DC is not set, the cell group set in the terminal device may be called MCG. Further, when DC is not set, the SpCell set in the terminal device may be PCell.
 なお、MR-DCとは、MCGにE-UTRA,SCGにNRを用いたDCを行う技術であって良い。またMR-DCとは、MCGにNR,SCGにE-UTRAを用いたDCを行う技術であっても良い。またMR-DCとは、MCG及びSCGの両方にNRを用いたDCを行う技術であっても良い。MCGにE-UTRA,SCGにNRを用いるMR-DCの例として、コア網にEPCを用いるEN-DC(E-UTRA-NR Dual Connectivity)があって良いし、コア網に5GCを用いるNGEN-DC(NG-RAN E-UTRA-NR Dual Connectivity)があって良い。またMCGにNR,SCGにE-UTRAを用いるMR-DCの例として、コア網に5GCを用いるNE-DC(NR-E-UTRA Dual Connectivity)があって良い。またMCG及びSCGの両方にNRを用いるMR-DCの例として、コア網に5GCを用いるNR-DC(NR-NR Dual Connectivity)があって良い。 MR-DC may be a technique for performing DC using E-UTRA for MCG and NR for SCG. Further, MR-DC may be a technique for performing DC using NR for MCG and E-UTRA for SCG. Further, MR-DC may be a technique for performing DC using NR for both MCG and SCG. As an example of MR-DC that uses E-UTRA for MCG and NR for SCG, there may be EN-DC (E-UTRA-NR Dual Connectivity) that uses EPC for the core network, and NGEN- that uses 5GC for the core network. There may be DC (NG-RAN E-UTRA-NR Dual Connectivity). Further, as an example of MR-DC using NR for MCG and E-UTRA for SCG, NE-DC (NR-E-UTRA Dual Connectivity) using 5GC for the core network may be used. Further, as an example of MR-DC that uses NR for both MCG and SCG, there may be NR-DC (NR-NR Dual Connectivity) that uses 5GC for the core network.
 なお端末装置において、MACエンティティは各セルグループに対して1つ存在して良い。例えば端末装置にDC又はMR-DCが設定される場合において、MCGに対する1つのMACエンティティ、及びSCGに対する1つのMACエンティティが存在して良い。端末装置におけるMCGに対するMACエンティティは、全ての状態(RRCアイドル状態、RRC接続状態、及びRRC不活性状態など)の端末装置において、常に確立されていて良い。また端末装置におけるSCGに対するMACエンティティは、端末装置にSCGが設定される際、端末装置によってクリエイト(create)されて良い。また端末装置の各セルグループに対するMACエンティティは、端末装置が基地局装置からRRCメッセージを受け取る事により設定が行われて良い。EN-DC、及びNGEN-DCにおいて、MCGに対するMACエンティティはE-UTRA MACエンティティであっても良く、SCGに対するMACエンティティはNR MACエンティティであって良い。また、NE-DCにおいて、MCGに対するMACエンティティはNR MACエンティティであっても良く、SCGに対するMACエンティティはE-UTRA MACエンティティであって良い。またNR-DCにおいて、MCG及びSCGに対するMACエンティティは共にNR MACエンティティであって良い。なお、MACエンティティが各セルグループに対して1つ存在する事を、MACエンティティは各SpCellに対して1つ存在すると言い換えて良い。また、各セルグループに対する1つのMACエンティティを、各SpCellに対する1つのMACエンティティと言い換えて良い。 In the terminal device, one MAC entity may exist for each cell group. For example, when DC or MR-DC is set in the terminal device, one MAC entity for MCG and one MAC entity for SCG may exist. The MAC entity for MCG in the terminal device may always be established in the terminal device in all states (RRC idle state, RRC connected state, RRC inactive state, etc.). Further, the MAC entity for SCG in the terminal device may be created by the terminal device when the SCG is set in the terminal device. Further, the MAC entity for each cell group of the terminal device may be set by the terminal device receiving an RRC message from the base station device. In EN-DC and NGEN-DC, the MAC entity for MCG may be an E-UTRA MAC entity, and the MAC entity for SCG may be an NR MAC entity. Further, in NE-DC, the MAC entity for MCG may be an NR MAC entity, and the MAC entity for SCG may be an E-UTRA MAC entity. Further, in NR-DC, the MAC entity for MCG and SCG may be both NR MAC entity. In addition, the fact that there is one MAC entity for each cell group can be rephrased as having one MAC entity for each SpCell. Also, one MAC entity for each cell group may be paraphrased as one MAC entity for each SpCell.
 無線ベアラについて説明する。E-UTRAのSRBにはSRB0からSRB2が定義されて良いし、これ以外のSRBが定義されて良い。NRのSRBにはSRB0からSRB3が定義されてよいし、これ以外のSRBが定義されて良い。SRB0は、論理チャネルのCCCHを用いて送信、及び/又は受信が行われる、RRCメッセージのためのSRBであってよい。SRB1は、RRCメッセージのため、及びSRB2の確立前のNASメッセージのためのSRBであって良い。SRB1を用いて送信、及び/又は受信が行われるRRCメッセージには、ピギーバックされたNASメッセージが含まれて良い。SRB1を用いて送信、及び/又は受信される全てのRRCメッセージやNASメッセージには、論理チャネルのDCCHが用いられて良い。SRB2は、NASメッセージのため、及び記録測定情報(logged measurement information)を含むRRCメッセージのためのSRBであってよい。SRB2を用いて送信、及び/又は受信される全てのRRCメッセージやNASメッセージには、論理チャネルのDCCHが用いられて良い。また、SRB2はSRB1よりも低い優先度であってよい。SRB3は、端末装置に、EN-DC,NGEN-DC、NR-DCなどが設定されているときの特定のRRCメッセージを送信、及び/又は受信するためのSRBであって良い。SRB3を用いて送信、及び/又は受信される全てのRRCメッセージやNASメッセージには、論理チャネルのDCCHが用いられて良い。また、その他の用途のために他のSRBが用意されてもよい。DRBは、ユーザデータのための無線ベアラであって良い。DRBを用いて送信、及び/又は受信が行われるRRCメッセージには、論理チャネルのDTCHが用いられても良い。 Explain the wireless bearer. SRB0 to SRB2 may be defined in the SRB of E-UTRA, and other SRBs may be defined. SRB0 to SRB3 may be defined for SRB of NR, and other SRBs may be defined. SRB0 may be an SRB for RRC messages transmitted and / or received using the CCCH of the logical channel. SRB1 may be an SRB for RRC messages and for NAS messages before SRB2 is established. RRC messages transmitted and / or received using SRB1 may include NAS messages that have been piggybacked. DCCH of the logical channel may be used for all RRC messages and NAS messages transmitted and / or received using SRB1. SRB2 may be an SRB for NAS messages and for RRC messages containing logged measurement information. DCCH of the logical channel may be used for all RRC messages and NAS messages transmitted and / or received using SRB2. Also, SRB2 may have a lower priority than SRB1. The SRB3 may be an SRB for transmitting and / or receiving a specific RRC message when EN-DC, NGEN-DC, NR-DC, etc. are set in the terminal device. DCCH of the logical channel may be used for all RRC messages and NAS messages transmitted and / or received using SRB3. Also, other SRBs may be prepared for other uses. The DRB may be a wireless bearer for user data. The logical channel DTCH may be used for RRC messages transmitted and / or received using the DRB.
 端末装置における無線ベアラについて説明する。無線ベアラにはRLCベアラが含まれて良い。RLCベアラは1つ又は2つのRLCエンティティと論理チャネルで構成されて良い。RLCベアラにRLCエンティティが2つ存在する場合のRLCエンティティはTM RLCエンティティ、及び/又は単方向UMモードのRLCエンティティにおける、送信RLCエンティティ及び受信RLCエンティティであって良い。SRB0は1つのRLCベアラから構成されて良い。SRB0のRLCベアラはTMのRLCエンティティ、及び論理チャネルから構成されて良い。SRB0は全ての状態(RRCアイドル状態、RRC接続状態、及びRRC不活性状態など)の端末装置において、常に確立されていて良い。SRB1は端末装置がRRCアイドル状態からRRC接続状態に遷移する際、基地局装置から受信するRRCメッセージにより、端末装置に1つ確立及び/又は設定されて良い。SRB1は1つのPDCPエンティティ、及び1つ又は複数のRLCベアラから構成されて良い。SRB1のRLCベアラはAMのRLCエンティティ、及び論理チャネルから構成されて良い。SRB2はASセキュリティが活性化されたRRC接続状態の端末装置が基地局装置から受信するRRCメッセージにより、端末装置に1つ確立及び/又は設定されて良い。SRB2は1つのPDCPエンティティ、及び1つ又は複数のRLCベアラから構成されて良い。SRB2のRLCベアラはAMのRLCエンティティ、及び論理チャネルから構成されて良い。なお、SRB1及びSRB2の基地局装置側のPDCPはマスターノードに置かれて良い。SRB3はEN-DC、又はNGEN-DC、又はNR-DCにおけるセカンダリノードが追加される際、又はセカンダリノードが変更される際に、ASセキュリティが活性化されたRRC接続状態の端末装置が基地局装置から受信するRRCメッセージにより、端末装置に1つ確立及び/又は設定されて良い。SRB3は端末装置とセカンダリノードとの間のダイレクトSRBであって良い。SRB3は1つのPDCPエンティティ、及び1つ又は複数のRLCベアラから構成されて良い。SRB3のRLCベアラはAMのRLCエンティティ、及び論理チャネルから構成されて良い。SRB3の基地局装置側のPDCPはセカンダリノードに置かれて良い。DRBはASセキュリティが活性化されたRRC接続状態の端末装置が基地局装置から受信するRRCメッセージにより、端末装置に1つ又は複数確立及び/又は設定されて良い。DRBは1つのPDCPエンティティ、及び1つ又は複数のRLCベアラから構成されて良い。DRBのRLCベアラはAM又はUMのRLCエンティティ、及び論理チャネルから構成されて良い。 The wireless bearer in the terminal device will be explained. The radio bearer may include an RLC bearer. The RLC bearer may consist of one or two RLC entities and a logical channel. When there are two RLC entities in the RLC bearer, the RLC entity may be a TM RLC entity and / or a transmit RLC entity and a receive RLC entity in the RLC entity in unidirectional UM mode. SRB0 may consist of one RLC bearer. The RLC bearer of SRB0 may consist of RLC entity of TM and logical channel. SRB0 may always be established in the terminal device in all states (RRC idle state, RRC connected state, RRC inactive state, etc.). One SRB1 may be established and / or set in the terminal device by the RRC message received from the base station device when the terminal device transitions from the RRC idle state to the RRC connection state. SRB1 may consist of one PDCP entity and one or more RLC bearers. The RLC bearer of SRB1 may consist of the RLC entity of AM and the logical channel. One SRB2 may be established and / or set in the terminal device by the RRC message received from the base station device by the terminal device in the RRC connected state in which AS security is activated. SRB2 may consist of one PDCP entity and one or more RLC bearers. The SRB2 RLC bearer may consist of an AM RLC entity and a logical channel. The PDCP on the base station device side of SRB1 and SRB2 may be placed on the master node. In SRB3, when a secondary node in EN-DC, NGEN-DC, or NR-DC is added, or when the secondary node is changed, the terminal device in the RRC connection state with AS security activated is the base station. One may be established and / or set in the terminal device by the RRC message received from the device. SRB3 may be a direct SRB between the terminal device and the secondary node. SRB3 may consist of one PDCP entity and one or more RLC bearers. The SRB3 RLC bearer may consist of an AM RLC entity and a logical channel. The PDCP on the base station device side of SRB3 may be placed on the secondary node. The DRB may be established and / or set in the terminal device by the RRC message received from the base station device by the terminal device in the RRC connected state in which AS security is activated. The DRB may consist of one PDCP entity and one or more RLC bearers. The RLC bearer of the DRB may consist of an AM or UM RLC entity and a logical channel.
 なお、MR-DCにおいて、マスターノードにPDCPが置かれる無線ベアラの事を、MN終端(ターミネティド:terminated)ベアラと呼んで良い。また、MR-DCにおいて、セカンダリノードにPDCPが置かれる無線ベアラの事を、SN終端(ターミネティド:terminated)ベアラと呼んで良い。なお、MR-DCにおいて、RLCベアラがMCGにのみ存在する無線ベアラの事を、MCGベアラ(MCG bearer)と呼んで良い。また、MR-DCにおいて、RLCベアラがSCGにのみ存在する無線ベアラの事を、SCGベアラ(SCG bearer)と呼んで良い。またDCにおいて、RLCベアラがMCG及びSCG両方に存在する無線ベアラの事をスプリットベアラ(split bearer)と呼んで良い。 In MR-DC, the wireless bearer in which the PDCP is placed on the master node may be called the MN terminal (terminated) bearer. Also, in MR-DC, the radio bearer in which the PDCP is placed on the secondary node may be called the SN terminated bearer. In MR-DC, a wireless bearer in which RLC bearer exists only in MCG may be called MCG bearer. Further, in MR-DC, a wireless bearer in which RLC bearer exists only in SCG may be called SCG bearer. In DC, a radio bearer in which RLC bearers exist in both MCG and SCG may be called a split bearer.
 端末装置にMR-DCが設定される場合、端末装置に確立/及び又は設定されるSRB1及びSRB2のベアラタイプは、MN終端MCGベアラ及び/又はMN終端スプリットベアラであって良い。また端末装置にMR-DCが設定される場合、端末装置に確立/及び又は設定されるSRB3のベアラタイプは、SN終端SCGベアラであって良い。また端末装置にMR-DCが設定される場合、端末装置に確立/及び又は設定されるDRBのベアラタイプは、全てのベアラタイプのうちの何れかであって良い。 When MR-DC is set in the terminal device, the bearer types of SRB1 and SRB2 established / and / or set in the terminal device may be MN-terminated MCG bearer and / or MN-terminated split bearer. When MR-DC is set in the terminal device, the bearer type of SRB3 established / and / or set in the terminal device may be an SN-terminated SCG bearer. When MR-DC is set in the terminal device, the bearer type of the DRB established / and / or set in the terminal device may be any of all bearer types.
 E-UTRAで構成されるセルグループに確立及び/又は設定されるRLCベアラに対し、確立及び/又は設定されるRLCエンティティは、E-UTRA RLCであって良い。またNRで構成されるセルグループに確立及び/又は設定されるRLCベアラに対し、確立及び/又は設定されるRLCエンティティは、NR RLCであって良い。端末装置にEN-DCが設定され場合、MN終端MCGベアラに対し確立及び/又は設定されるPDCPエンティティは、E-UTRA PDCP又はNR PDCPの何れかであって良い。また端末装置にEN-DCが設定される場合、その他のベアラタイプの無線ベアラ、即ちMN終端スプリットベアラ、MN終端SCGベアラ、SN終端MCGベアラ、SN終端スプリットベアラ、及びSN終端SCGベアラ、に対して確立及び/又は設定されるPDCPは、NR PDCPであって良い。また端末装置にNGEN-DC、又はNE-DC、又はNR-DCが設定される場合、全てのベアラタイプにおける無線ベアラに対して確立及び/又は設定されるPDCPエンティティは、NR PDCPであって良い。 The RLC entity established and / or set for the RLC bearer established and / or set in the cell group composed of E-UTRA may be E-UTRA RLC. The RLC entity established and / or set for the RLC bearer established and / or set in the cell group composed of NR may be NR RLC. When EN-DC is set for the terminal device, the PDCP entity established and / or set for the MN-terminated MCG bearer may be either E-UTRA PDCP or NR PDCP. Also, when EN-DC is configured on the terminal device, for other bearer type radio bearers, namely MN-terminated split bearer, MN-terminated SCG bearer, SN-terminated MCG bearer, SN-terminated split bearer, and SN-terminated SCG bearer. The PDCP established and / or set may be NR PDCP. When NGEN-DC, NE-DC, or NR-DC is set for the terminal device, the PDCP entity established and / or set for the wireless bearer in all bearer types may be NR PDCP. ..
 なおNRにおいて、端末装置に確立及び/又は設定されるDRBは1つのPDUセッションに紐づけられ良い。端末装置において1つのPDUセッションに対し、1つのSDAPエンティティが確立及び/又は設定されて良い。端末装置に確立及び/又は設定SDAPエンティティ、PDCPエンティティ、RLCエンティティ、及び論理チャネルは、端末装置が基地局装置から受信するRRCメッセージにより確立及び/又は設定されて良い。 In NR, the DRB established and / or set in the terminal device may be associated with one PDU session. One SDAP entity may be established and / or configured for one PDU session in the terminal device. Established and / or set in the terminal device SDAP entity, PDCP entity, RLC entity, and logical channel may be established and / or set by the RRC message received by the terminal device from the base station device.
 なお、MR-DCが設定されるか否かに関わらず、マスターノードがeNB102でEPC104をコア網とするネットワーク構成をE-UTRA/EPCと呼んで良い。またマスターノードがeNB102で5GC110をコア網とするネットワーク構成をE-UTRA/5GCと呼んで良い。またマスターノードがgNB108で5GC110をコア網とするネットワーク構成をNR、又はNR/5GCと呼んで良い。MR-DCが設定されない場合において、上述のマスターノードとは、端末装置と通信を行う基地局装置の事を指して良い。 Regardless of whether MR-DC is set or not, the network configuration in which the master node is eNB102 and EPC104 is the core network may be called E-UTRA / EPC. A network configuration in which the master node is eNB102 and 5GC110 is the core network may be called E-UTRA / 5GC. A network configuration in which the master node is gNB108 and the 5GC110 is the core network may be called NR or NR / 5GC. When MR-DC is not set, the above-mentioned master node may refer to a base station device that communicates with a terminal device.
 次にLTE及びNRにおけるハンドオーバについて説明する。ハンドオーバとはRRC接続状態のUE122がサービングセルを変更する処理であって良い。ハンドオーバは、UE122がeNB102、及び/又はgNB108より、ハンドオーバを指示するRRCメッセージを受信した時に行われて良い。ハンドオーバを指示するRRCメッセージとは、ハンドオーバを指示するパラメータ(例えばMobilityControlInfoという名称の情報要素、又はReconfigurationWithSyncという名称の情報要素)を含むRRCコネクションの再設定に関するメッセージの事であって良い。なお上述のMobilityControlInfoという名称の情報要素の事を、モビリティ制御設定情報要素、又はモビリティ制御設定、又はモビリティ制御情報と言い換えて良い。なお上述のReconfigurationWithSyncという名称の情報要素の事を同期付再設定情報要素、又は同期付再設定と言い換えて良い。またハンドオーバを指示するRRCメッセージとは、他のRATのセルへの移動を示すメッセージ(例えばMobilityFromEUTRACommand、又はMobilityFromNRCommand)の事であって良い。またハンドオーバの事を同期付再設定(reconfiguration withsync)と言い換えて良い。またUE122がハンドオーバを行う事ができる条件に、ASセキュリティが活性化されている時、SRB2が確立されている時、少なくとも一つのDRBが確立している事のうちの一部又は全てを含んで良い。 Next, the handover in LTE and NR will be described. The handover may be a process in which the UE 122 in the RRC connected state changes the serving cell. The handover may be performed when the UE 122 receives an RRC message instructing the handover from the eNB 102 and / or gNB 108. The RRC message instructing the handover may be a message regarding the resetting of the RRC connection including the parameter instructing the handover (for example, the information element named MobilityControlInfo or the information element named ReconfigurationWithSync). The above-mentioned information element named MobilityControlInfo may be rephrased as a mobility control setting information element, a mobility control setting, or a mobility control information. The above-mentioned information element named Reconfiguration WithSync may be rephrased as a reconfiguration information element with synchronization or a reconfiguration with synchronization. The RRC message instructing the handover may be a message indicating the movement of another RAT to a cell (for example, MobilityFromEUTRACommand or MobilityFromNRCommand). In addition, handover may be paraphrased as reconfiguration with sync. In addition, the conditions under which the UE 122 can perform handover include a part or all of the fact that AS security is activated, SRB2 is established, and at least one DRB is established. good.
 端末装置と基地局装置との間で送受信される、RRCメッセージのフローについて説明する。図4は、本発明の実施の形態に係るRRCにおける、各種設定のための手順(procedure)のフローの一例を示す図である。図4は、基地局装置(eNB102、及び/又はgNB108)から端末装置(UE122)にRRCメッセージが送られる場合のフローの一例である。 The flow of RRC messages sent and received between the terminal device and the base station device will be explained. FIG. 4 is a diagram showing an example of a flow of procedures for various settings in the RRC according to the embodiment of the present invention. FIG. 4 is an example of a flow when an RRC message is sent from the base station device (eNB 102 and / or gNB 108) to the terminal device (UE122).
 図4において、基地局装置はRRCメッセージを作成する(ステップS400)。基地局装置におけるRRCメッセージの作成は、基地局装置が報知情報(SI: System Information)やページング情報を配信するため行われて良い。また基地局装置におけるRRCメッセージの作成は、基地局装置が特定の端末装置に対して処理を行わせるために行われて良い。特定の端末装置に対して行わせる処理は、例えばセキュリティに関する設定、RRC接続の再設定、異なるRATへのハンドオーバ、RRC接続の休止、RRC接続の解放などの処理を含んで良い。RRC接続の再設定処理には、例えば無線ベアラの制御(確立、変更、解放など)、セルグループの制御(確立、追加、変更、解放など)、メジャメント設定、ハンドオーバ、セキュリティ鍵更新、などの処理が含まれて良い。また基地局装置におけるRRCメッセージの作成は、端末装置から送信されたRRCメッセージへの応答のために行われて良い。端末装置から送信されたRRCメッセージへの応答は、例えばRRCセットアップ要求への応答、RRC再接続要求への応答、RRC再開要求への応答などを含んで良い。RRCメッセージには各種情報通知や設定のためのパラメータが含まれる。これらのパラメータは、フィールド及び/又は情報要素呼ばれて良く、ASN.1(Abstract Syntax Notation One)という記述方式を用いて記述されて良い。なお本発明の実施の形態において、パラメータを情報と言い換える事もある。 In Fig. 4, the base station device creates an RRC message (step S400). The RRC message may be created in the base station device so that the base station device distributes broadcast information (SI: System Information) and paging information. Further, the RRC message may be created in the base station device so that the base station device can perform processing on a specific terminal device. The process to be performed on a specific terminal device may include, for example, security-related settings, RRC connection resetting, handover to a different RAT, suspension of RRC connection, release of RRC connection, and the like. RRC connection resetting processes include, for example, wireless bearer control (establishment, modification, release, etc.), cell group control (establishment, addition, modification, release, etc.), measurement setting, handover, security key update, etc. May be included. Further, the RRC message may be created in the base station device in order to respond to the RRC message transmitted from the terminal device. The response to the RRC message transmitted from the terminal device may include, for example, a response to an RRC setup request, a response to an RRC reconnection request, a response to an RRC restart request, and the like. RRC messages include parameters for various information notifications and settings. These parameters may be called fields and / or information elements, and may be described using a description method called ASN.1 (Abstract Syntax Notation One). In the embodiment of the present invention, the parameter may be paraphrased as information.
 図4において、次に基地局装置は、作成したRRCメッセージを端末装置に送信する(ステップS402)。次に端末装置は受信した上述のRRCメッセージに従って、設定などの処理が必要な場合には処理を行う(ステップS404)。処理を行った端末装置は、基地局装置に対し、応答のためのRRCメッセージを送信して良い(不図示)。 In FIG. 4, the base station device then sends the created RRC message to the terminal device (step S402). Next, the terminal device performs processing when processing such as setting is required according to the received RRC message (step S404). The processed terminal device may send an RRC message for response to the base station device (not shown).
 RRCメッセージは、上述の例に限らず、他の目的に使われて良い。 The RRC message is not limited to the above example, and may be used for other purposes.
 なおMR-DCにおいて、マスターノード側のRRCが、SCG側の設定(セルグループ設定、無線ベアラ設定、測定設定など)のためのRRCメッセージを、端末装置との間で転送するのに用いられて良い。例えばEN-DC、又はNGEN-DCにおいて、eNB102とUE122との間で送受信されるE-UTRAのRRCメッセージに、NRのRRCメッセージがコンテナの形で含まれて良い。またNE-DCにおいて、gNB108とUE122との間で送受信されるNRのRRCメッセージに、E-UTRAのRRCメッセージがコンテナの形で含まれて良い。SCG側の設定のためのRRCメッセージは、マスターノードとセカンダリノードの間で送受信されて良い。 In MR-DC, the RRC on the master node side is used to transfer RRC messages for SCG side settings (cell group settings, wireless bearer settings, measurement settings, etc.) to and from the terminal device. good. For example, in EN-DC or NGEN-DC, the RRC message of E-UTRA sent and received between eNB102 and UE122 may include the RRC message of NR in the form of a container. Further, in NE-DC, the RRC message of NR sent and received between gNB108 and UE122 may include the RRC message of E-UTRA in the form of a container. RRC messages for settings on the SCG side may be sent and received between the master node and the secondary node.
 なお、MR-DCを利用する場合に限らず、eNB102からUE122に送信されるE-UTRA用RRCメッセージに、NR用RRCメッセージが含まれていて良いし、gNB108からUE122に送信されるNR用RRCメッセージに、E-UTRA用RRCメッセージが含まれていて良い。 Not limited to using MR-DC, the RRC message for E-UTRA transmitted from eNB 102 to UE122 may include the RRC message for NR, and the RRC for NR transmitted from gNB 108 to UE122 may be included. The message may include an RRC message for E-UTRA.
 RRCコネクションの再設定に関するRRCメッセージに含まれる、パラメータの一例を説明する。図7は、図4において、NRでのRRCコネクションの再設定に関するメッセージに含まれる、無線ベアラ設定に関するフィールド、及び/又は情報要素を表すASN.1記述の一例である。また図8は、図4において、E-UTRAでのRRCコネクションの再設定に関するメッセージに含まれる、無線ベアラ設定に関するフィールド、及び/又は情報要素を表すASN.1記述の一例である。図7、図8に限らず、本発明の実施の形態におけるASN.1の例で、<略>及び<中略>とは、ASN.1の表記の一部ではなく、他の情報を省略している事を示す。なお<略>又は<中略>という記載の無い所でも、情報要素が省略されていて良い。なお本発明の実施の形態においてASN.1の例はASN.1表記方法に正しく従ったものではない。本発明の実施の形態においてASN.1の例は、本発明の実施形態におけるRRCメッセージのパラメータの一例を表記したものであり、他の名称や他の表記が用いられて良い。またASN.1の例は、説明が煩雑になることを避けるために、本発明の一形態と密接に関連する主な情報に関する例のみを示す。なお、ASN.1で記述されるパラメータを、フィールド、情報要素等に区別せず、全て情報要素と言う場合がある。また本発明の実施の形態において、RRCメッセージに含まれる、ASN.1で記述されるフィールド、情報要素等を、情報と言い換えても良く、パラメータと言い換えても良い。なおRRCコネクションの再設定に関するメッセージとは、NRにおけるRRC再設定メッセージであって良いし、E-UTRAにおけるRRCコネクション再設定メッセージであって良い。 An example of the parameters included in the RRC message regarding the resetting of the RRC connection will be explained. FIG. 7 is an example of an ASN.1 description representing a field and / or information element relating to the radio bearer configuration included in the message relating to the reconfiguration of the RRC connection in NR in FIG. Further, FIG. 8 is an example of an ASN.1 description representing a field and / or an information element related to the radio bearer setting included in the message regarding the resetting of the RRC connection in E-UTRA in FIG. Not limited to FIGS. 7 and 8, in the example of ASN.1 in the embodiment of the present invention, <omitted> and <omitted> are not a part of the notation of ASN.1 and other information is omitted. Show that you are. Information elements may be omitted even where there is no description of <omitted> or <omitted>. In the embodiment of the present invention, the example of ASN.1 does not correctly follow the ASN.1 notation method. In the embodiment of the present invention, the example of ASN.1 describes an example of the parameters of the RRC message in the embodiment of the present invention, and other names and other notations may be used. Further, the example of ASN.1 shows only an example relating to the main information closely related to one embodiment of the present invention in order to avoid complicated explanation. The parameters described in ASN.1 may be referred to as information elements without distinguishing them into fields, information elements, and the like. Further, in the embodiment of the present invention, the fields, information elements, etc. described in ASN.1 included in the RRC message may be paraphrased as information or may be paraphrased as parameters. The message regarding the resetting of the RRC connection may be an RRC resetting message in NR or an RRC connection resetting message in E-UTRA.
 図7においてRadioBearerConfigで表される情報要素は、SRB、DRB等の無線ベアラの設定、変更、解放等に使われる情報要素であって良い。RadioBearerConfigで表される情報要素は、後述のPDCP設定情報要素や、SDAP設定情報要素を含んで良い。RadioBearerConfigで表される情報要素を、無線ベアラ設定情報要素、又は無線ベアラ設定と言い換えて良い。RadioBearerConfigで表される情報要素に含まれる、SRB-ToAddModで表される情報要素は、SRB(シグナリング無線ベアラ)設定を示す情報要素であって良い。SRB-ToAddModで表される情報要素を、SRB設定情報要素、又はSRB設定と言い換えて良い。またSRB-ToAddModListで表される情報要素は、SRB設定のリストであって良い。RadioBearerConfigで表される情報要素に含まれる、DRB-ToAddModで表される情報要素は、DRB(データ無線ベアラ)設定を示す情報要素であって良い。DRB-ToAddModで表される情報要素を、DRB設定情報要素、又はDRB設定と言い換えて良い。DRB-ToAddModListで表される情報要素は、DRB設定のリストであって良い。なお、SRB設定、及びDRB設定を、無線ベアラ設定と言い換えても良い。 The information element represented by RadioBearerConfig in FIG. 7 may be an information element used for setting, changing, releasing, etc. of wireless bearers such as SRB and DRB. The information element represented by RadioBearerConfig may include a PDCP setting information element described later and an SDAP setting information element. The information element represented by RadioBearerConfig may be paraphrased as a radio bearer setting information element or a radio bearer setting. The information element represented by SRB-ToAddMod included in the information element represented by RadioBearerConfig may be an information element indicating the SRB (signaling radio bearer) setting. The information element represented by SRB-ToAddMod may be paraphrased as an SRB setting information element or an SRB setting. The information element represented by SRB-ToAddModList may be a list of SRB settings. The information element represented by DRB-ToAddMod included in the information element represented by RadioBearerConfig may be an information element indicating a DRB (data radio bearer) setting. The information element represented by DRB-ToAddMod may be paraphrased as a DRB setting information element or a DRB setting. The information element represented by DRB-ToAddModList may be a list of DRB settings. The SRB setting and the DRB setting may be paraphrased as a wireless bearer setting.
 SRB設定情報要素の中の、srb-Identityで表されるフィールドは、追加又は変更するSRBのSRB識別子(SRB Identity)の情報であり、各端末装置においてSRBを一意に識別する識別子であって良い。SRB設定情報要素の中の、srb-Identityで表されるフィールドの事を、SRB識別子フィールド、またはSRB識別子と言い換えて良い。またSRB識別子を無線ベアラ識別子と言い換えて良い。 The field represented by srb-Identity in the SRB setting information element is the SRB identifier (SRB Identity) information of the SRB to be added or changed, and may be an identifier that uniquely identifies the SRB in each terminal device. .. The field represented by srb-Identity in the SRB setting information element may be paraphrased as an SRB identifier field or an SRB identifier. Further, the SRB identifier may be paraphrased as a wireless bearer identifier.
 DRB設定情報要素の中の、drb-Identityで表されるフィールドは、追加又は変更するDRBのDRB識別子(DRB Identity)の情報であり、各端末装置においてDRBを一意に識別する識別子であって良い。DRB設定情報要素の中の、drb-Identityで表されるフィールドの事を、DRB識別子フィールド、またはDRB識別子と言い換えて良い。DRB識別子の値は図7の例では1から32の整数値としているが、別の値を取って良い。DCの場合、DRB識別子は、UE122のスコープ内で固有であって良い。またDRB識別子を無線ベアラ識別子と言い換えて良い。 The field represented by drb-Identity in the DRB setting information element is the information of the DRB identifier (DRB Identity) of the DRB to be added or changed, and may be an identifier that uniquely identifies the DRB in each terminal device. .. The field represented by drb-Identity in the DRB setting information element may be paraphrased as a DRB identifier field or a DRB identifier. The value of the DRB identifier is an integer value from 1 to 32 in the example of FIG. 7, but another value may be taken. For DCs, the DRB identifier may be unique within the scope of UE122. Further, the DRB identifier may be paraphrased as a wireless bearer identifier.
 DRB設定情報要素の中の、cnAssociationで表されるフィールドは、無線ベアラが後述のeps-bearerIdentityで表されるフィールドに関連付くか、後述のSDAP-Configで表される情報要素に関連付けられるかを示すフィールドであって良い。cnAssociationで表されるフィールドを、コア網関連付けフィールド又はコア網関連付けと言い換えて良い。cnAssociationで表されるフィールドは、端末装置がEPC104と接続する場合に後述するEPSベアラ識別子フィールド(eps-bearerIdentity)を含んで良い。またcnAssociationで表されるフィールドは、端末装置がコア網5GC110と接続する場合に後述するSDAP設定を示す情報要素(SDAP-Config)を含んで良い。eps-bearerIdentityで示されるフィールドは、EPSベアラを特定すするEPSベアラ識別子を示すフィールドであって良い。eps-bearerIdentityで示されるフィールドを、EPSベアラ識別子フィールド又はEPSベアラ識別子と言い換えて良い。 In the DRB setting information element, the field represented by cnAssociation indicates whether the wireless bearer is associated with the field represented by eps-bearerIdentity described later or the information element represented by SDAP-Config described later. It may be the field shown. The field represented by cnAssociation may be paraphrased as a core network association field or a core network association. The field represented by the cnAssociation may include an EPS bearer identifier field (eps-bearerIdentity) described later when the terminal device connects to the EPC104. Further, the field represented by the cnAssociation may include an information element (SDAP-Config) indicating the SDAP setting described later when the terminal device is connected to the core network 5GC110. The field indicated by eps-bearerIdentity may be a field indicating an EPS bearer identifier that identifies the EPS bearer. The field indicated by eps-bearerIdentity may be paraphrased as an EPS bearer identifier field or an EPS bearer identifier field.
 SDAP-Configで表される情報要素は、SDAPエンティティの設定又は再設定に関する情報であっても良い。SDAP-Configで表される情報要素を、SDAP設定情報要素又はSDAP設定と言い換えて良い。 The information element represented by SDAP-Config may be information related to the setting or resetting of the SDAP entity. The information element represented by SDAP-Config may be rephrased as the SDAP setting information element or the SDAP setting.
 SDAP設定情報要素に含まれる、pdu-sessionで示されるフィールドは、該当無線ベアラにマップ(map)されるQoSフローが所属するPDUセッションのPDUセッション識別子であって良い。pdu-sessionで示されるフィールドを、PDUセッション識別子フィールド又はPDUセッション識別子と言い換えて良い。PDUセッション識別子とはPDUセッションのPDUセッション識別子であって良い。また該当無線ベアラとは、本SDAP設定フィールドを含むDRB設定の、DRB識別子に紐づくDRBの事であって良い。 The field indicated by pdu-session included in the SDAP setting information element may be the PDU session identifier of the PDU session to which the QoS flow mapped to the corresponding radio bearer belongs. The field indicated by pdu-session may be paraphrased as a PDU session identifier field or a PDU session identifier. The PDU session identifier may be the PDU session identifier of the PDU session. The corresponding wireless bearer may be a DRB associated with a DRB identifier in the DRB setting including this SDAP setting field.
 SDAP設定情報要素に含まれる、mappedQoS-FlowsToAddで示されるフィールドは、該当無線ベアラに追加でマップさせる、アップリンクQoSフローの、QoSフロー識別子(QFI: QoSFlow Identity)フィールドのリストを示す情報であって良い。mappedQoS-FlowsToAddで示されるフィールドを、追加するQoSフローフィールド又は追加するQoSフローと言い換えて良い。上述のQoSフローは本SDAP設定情報要素に含まれるPDUセッションが示すPDUセッションのQoSフローであって良い。また該当無線ベアラとは、本SDAP設定フィールドを含むDRB設定の、DRB識別子に紐づくDRBの事であって良い。 The field indicated by mappedQoS-FlowsToAdd included in the SDAP setting information element is information indicating a list of QoS flow identifier (QFI: QoSFlowIdentity) fields of the uplink QoS flow to be additionally mapped to the corresponding radio bearer. good. The field indicated by mappedQoS-FlowsToAdd may be paraphrased as an additional QoS flow field or an additional QoS flow. The above-mentioned QoS flow may be the QoS flow of the PDU session indicated by the PDU session included in the SDAP setting information element. The corresponding wireless bearer may be a DRB associated with a DRB identifier in the DRB setting including this SDAP setting field.
 また、SDAP設定情報要素に含まれる、mappedQoS-FlowsToReleaseで示されるフィールドは、該当無線ベアラにマップしているQoSフローのうち、対応関係を解放するQoSフローの、QoSフロー識別子情報要素のリストを示す情報であって良い。mappedQoS-FlowsToReleaseで示されるフィールドを、解放するQoSフローフィールド又は解放するQoSフローと言い換えて良い。上述のQoSフローは本SDAP設定情報要素に含まれるPDUセッションが示すPDUセッションのQoSフローであって良い。また該当無線ベアラとは、本SDAP設定フィールドを含むDRB設定の、DRB識別子に紐づくDRBの事であって良い。 In addition, the field indicated by mappedQoS-FlowsToRelease included in the SDAP setting information element indicates a list of QoS flow identifier information elements of the QoS flows that release the correspondence among the QoS flows mapped to the corresponding radio bearer. It may be information. The field indicated by mappedQoS-FlowsToRelease may be rephrased as a QoS flow field to be released or a QoS flow to be released. The above-mentioned QoS flow may be the QoS flow of the PDU session indicated by the PDU session included in the SDAP setting information element. The corresponding wireless bearer may be a DRB associated with a DRB identifier in the DRB setting including this SDAP setting field.
 またSDAP設定情報要素には、この他に、該当無線ベアラを介して送信するアップリンクデータにアップリンク用SDAPヘッダが存在するか否かを示すフィールド、該当無線ベアラを介して受信するダウンリンクデータにダウンリンク用SDAPヘッダが存在するか否か事を示すフィールド、該当無線ベアラがデフォルト無線ベアラ(デフォルトDRB)であるか否かを示すフィールドなどが含まれて良い。また該当無線ベアラとは、本SDAP設定フィールドを含むDRB設定の、DRB識別子に紐づくDRBの事であって良い。 In addition to this, the SDAP setting information element includes a field indicating whether or not the uplink SDAP header exists in the uplink data transmitted via the corresponding wireless bearer, and the downlink data received via the corresponding wireless bearer. May include a field indicating whether or not the SDAP header for downlink exists, a field indicating whether or not the corresponding radio bearer is the default radio bearer (default DRB), and the like. The corresponding wireless bearer may be a DRB associated with a DRB identifier in the DRB setting including this SDAP setting field.
 また、SRB設定情報要素、及びDRB設定情報要素の中の、PDCP-Configで表される情報要素は、NR PDCPエンティティの設定に関する情報要素であっても良い。PDCP-Configで表される情報要素を、PDCP設定情報要素又はPDCP設定と言い換えて良い。NR PDCPエンティティの設定に関する情報要素には、アップリンク用シーケンス番号のサイズを示すフィールド、ダウンリンク用シーケンス番号のサイズを示すフィールド、ヘッダ圧縮(ROHC: RObust Header Compression)のプロファイルを示すフィールド、リオーダリング(re-ordering)タイマーの値を示すフィールドなどが含まれて良い。 Further, the information element represented by PDCP-Config in the SRB setting information element and the DRB setting information element may be an information element related to the setting of the NR PDCP entity. The information element represented by PDCP-Config may be paraphrased as a PDCP setting information element or a PDCP setting. Information elements related to the setting of the NR PDCP entity include a field indicating the size of the uplink sequence number, a field indicating the size of the downlink sequence number, a field indicating the profile of header compression (ROHC: RObustHeaderCompression), and reordering. (Re-ordering) A field indicating the value of the timer may be included.
 RadioBearerConfigで表される情報要素に含まれる、DRB-ToReleaseListで表される情報要素は、解放する1つ以上のDRB識別子を示す情報を含んで良い。 The information element represented by DRB-ToReleaseList included in the information element represented by RadioBearerConfig may include information indicating one or more DRB identifiers to be released.
 図8においてRadioResourceConfigDedicatedで表される情報要素は、無線ベアラの設定、変更、解放等に使われる情報要素であって良い。RadioResourceConfigDedicatedで表される情報要素に含まれる、SRB-ToAddModで表される情報要素は、SRB(シグナリング無線ベアラ)設定を示す情報であっても良い。SRB-ToAddModで表される情報要素を、SRB設定情報要素又はSRB設定と言い換えて良い。SRB-ToAddModListで表される情報要素はSRB設定を示す情報のリストであって良い。RadioResourceConfigDedicatedで表される情報要素に含まれる、DRB-ToAddModで表される情報要素は、DRB(データ無線ベアラ)設定を示す情報であって良い。DRB-ToAddModで表される情報要素を、DRB設定情報要素又はDRB設定と言い換えて良い。DRB-ToAddModListで表される情報要素は、DRB設定を示す情報のリストであって良い。なお、SRB設定、及びDRB設定のうちの何れか、または全ての事を、無線ベアラ設定と言い換えても良い。 The information element represented by RadioResourceConfigDedicated in FIG. 8 may be an information element used for setting, changing, releasing, etc. of the wireless bearer. The information element represented by SRB-ToAddMod included in the information element represented by RadioResourceConfigDedicated may be information indicating the SRB (signaling radio bearer) setting. The information element represented by SRB-ToAddMod may be paraphrased as an SRB setting information element or an SRB setting. The information element represented by SRB-ToAddModList may be a list of information indicating the SRB setting. The information element represented by DRB-ToAddMod included in the information element represented by RadioResourceConfigDedicated may be information indicating the DRB (data radio bearer) setting. The information element represented by DRB-ToAddMod may be paraphrased as a DRB setting information element or a DRB setting. The information element represented by DRB-ToAddModList may be a list of information indicating the DRB setting. In addition, any one or all of SRB setting and DRB setting may be paraphrased as wireless bearer setting.
 SRB設定情報要素の中の、srb-Identityで表されるフィールドは、追加又は変更するSRBのSRB識別子(SRB Identity)の情報であり、各端末装置においてSRBを一意に識別する識別子であって良い。SRB設定情報要素の中の、srb-Identityで表されるフィールドの事を、SRB識別子フィールド、またはSRB識別子と言い換えて良い。またSRB識別子を無線ベアラ識別子と言い換えて良い。図8のSRB識別子は、図7のSRB識別子と、同一の役割をもって良い。 The field represented by srb-Identity in the SRB setting information element is the SRB identifier (SRB Identity) information of the SRB to be added or changed, and may be an identifier that uniquely identifies the SRB in each terminal device. .. The field represented by srb-Identity in the SRB setting information element may be paraphrased as an SRB identifier field or an SRB identifier. Further, the SRB identifier may be paraphrased as a wireless bearer identifier. The SRB identifier in FIG. 8 may have the same role as the SRB identifier in FIG. 7.
 DRB設定の中の、drb-Identityで表されるフィールドは、追加又は変更するDRBのDRB識別子(DRB Identity)の情報であり、各端末装置においてDRBを一意に識別する識別子であって良い。DRB設定情報要素の中の、drb-Identityで表されるフィールドの事を、DRB識別子フィールド、またはDRB識別子と言い換えて良い。DRB識別子の値は、図8の例では1から32の整数値としているが、別の値を取って良い。またDRB識別子を無線ベアラ識別子と言い換えて良い。図8のDRB識別子は、図7のDRB識別子と、同一の役割をもって良い。 The field represented by drb-Identity in the DRB setting is the information of the DRB identifier (DRB Identity) of the DRB to be added or changed, and may be an identifier that uniquely identifies the DRB in each terminal device. The field represented by drb-Identity in the DRB setting information element may be paraphrased as a DRB identifier field or a DRB identifier. The value of the DRB identifier is an integer value from 1 to 32 in the example of FIG. 8, but another value may be taken. Further, the DRB identifier may be paraphrased as a wireless bearer identifier. The DRB identifier in FIG. 8 may have the same role as the DRB identifier in FIG. 7.
 DRB設定情報要素の中の、eps-BearerIdentityで表されるフィールドは、各端末装置においてEPSベアラを一意に識別するEPSベアラ識別子であって良い。eps-BearerIdentityで表されるフィールドを、EPSベアラ識別子フィールド又はEPSベアラ識別子と言い換えて良い。EPSベアラ識別子の値は、図8の例では1から15の整数値としているが、別の値を取って良い。図8のEPSベアラ識別子は、図7のEPSベアラ識別子と、同一の役割をもって良い。またEPSベアラ識別子と、DRB識別子とは各端末装置において、1対1に対応して良い。 The field represented by eps-BearerIdentity in the DRB setting information element may be an EPS bearer identifier that uniquely identifies the EPS bearer in each terminal device. The field represented by eps-BearerIdentity may be paraphrased as an EPS bearer identifier field or an EPS bearer identifier field. The value of the EPS bearer identifier is an integer value from 1 to 15 in the example of FIG. 8, but another value may be used. The EPS bearer identifier in FIG. 8 may have the same role as the EPS bearer identifier in FIG. 7. Further, the EPS bearer identifier and the DRB identifier may have a one-to-one correspondence in each terminal device.
 またSRB設定情報要素、及びDRB設定情報要素の中の、PDCP-Configで表される情報要素はE-UTRA PDCPエンティティの設定に関する情報要素であって良い。PDCP-Configで表される情報要素をPDCP設定情報要素又はPDCP設定と言い換えて良い。E-UTRA PDCPエンティティの設定に関する情報要素には、シーケンス番号のサイズを示すフィールド、ヘッダ圧縮(ROHC: RObust Header Compression)のプロファイルを示すフィールド、リオーダリング(re-ordering)タイマーの値を示すフィールドなどが含まれて良い。 Further, among the SRB setting information element and the DRB setting information element, the information element represented by PDCP-Config may be an information element related to the setting of the E-UTRA PDCP entity. The information element represented by PDCP-Config may be paraphrased as a PDCP setting information element or a PDCP setting. Information elements related to the setting of the E-UTRA PDCP entity include a field indicating the size of the sequence number, a field indicating the profile of header compression (ROHC: RObust Header Compression), and a field indicating the value of the re-ordering timer. May be included.
 また図8に示すSRB設定情報要素には、更にE-UTRA RLCエンティティ設定に関するフィールドを含んで良い(不図示)。E-UTRA RLCエンティティ設定に関するフィールドの事を、RLC設定フィールド又はRLC設定と言い換えて良い。また、図8に示すSRB設定情報要素には、論理チャネル設定に関する情報要素を含んで良い(不図示)。論理チャネル設定に関する情報要素を、論理チャネル設定情報要素又は論理チャネル設定と言い換えて良い。 Further, the SRB setting information element shown in FIG. 8 may further include a field related to the E-UTRA RLC entity setting (not shown). The field related to E-UTRA RLC entity setting may be rephrased as RLC setting field or RLC setting. Further, the SRB setting information element shown in FIG. 8 may include an information element related to the logical channel setting (not shown). The information element related to the logical channel setting may be paraphrased as the logical channel setting information element or the logical channel setting.
 また図8に示すDRB設定情報要素には、更にE-UTRA RLCエンティティ設定に関する情報要素を含んでも良い(不図示)。E-UTRA RLCエンティティ設定に関する情報要素の事を、RLC設定情報要素又はRLC設定と言い換えて良い。また、図8に示すDRB設定情報要素には、論理チャネル識別子(identity: ID)情報を示すフィールドが含まれて良い。論理チャネル識別子(identity: ID)情報を示すフィールドを、論理チャネル識別子フィールド又は論理チャネル識別子と言い換えて良い。また、図8に示すDRB設定情報要素には、論理チャネル設定に関する情報要素を含んで良い(不図示)。論理チャネル設定に関する情報要素を、論理チャネル設定情報要素又は論理チャネル設定と言い換えて良い。なお論理チャネル識別子は無線ベアラ識別子に紐づいて良い。 Further, the DRB setting information element shown in FIG. 8 may further include an information element related to the E-UTRA RLC entity setting (not shown). The information element related to the E-UTRA RLC entity setting may be rephrased as the RLC setting information element or the RLC setting. Further, the DRB setting information element shown in FIG. 8 may include a field indicating logical channel identifier (identity: ID) information. A field indicating logical channel identifier (identity: ID) information may be paraphrased as a logical channel identifier field or a logical channel identifier. Further, the DRB setting information element shown in FIG. 8 may include an information element related to the logical channel setting (not shown). The information element related to the logical channel setting may be paraphrased as the logical channel setting information element or the logical channel setting. The logical channel identifier may be associated with the wireless bearer identifier.
 RadioResourceConfigDedicatedで表される情報要素に含まれる、DRB-ToReleaseListで表される情報要素は、解放する一つ以上のDRB識別子を示す情報を含んで良い。 The information element represented by DRB-ToReleaseList included in the information element represented by RadioResourceConfigDedicated may include information indicating one or more DRB identifiers to be released.
 なおNRにおいて、各無線ベアラに対するNR RLCエンティティ設定に関する情報要素、論理チャネル識別子(identity: ID)情報を示す情報要素、論理チャネル設定に関する情報要素等のRLCベアラ設定に関する情報要素は、図7におけるRadioBearerConfigで表される情報要素ではなく、セルグループ設定に関する情報要素に含まれて良い(不図示)。セルグループ設定に関する情報要素は、RRCコネクションの再設定に関するメッセージに含まれて良い。セルグループ設定に関する情報要素を、セルグループ設定情報要素、又はセルグループ設定と言い換えて良い。NR RLCエンティティ設定に関する情報要素を、RLC設定情報要素、又はRLC設定と言い換えて良い。論理チャネル識別子情報を示す情報要素を、論理チャネル識別子情報要素又は論理チャネル識別子と言い換えて良い。論理チャネル設定に関する情報要素を、論理チャネル設定情報要素又は論理チャネル識別子と言い換えて良い。なお論理チャネル識別子は無線ベアラ識別子に紐づいて良い。 In NR, the information element related to RLC bearer setting such as the information element related to NR RLC entity setting for each radio bearer, the information element indicating logical channel identifier (identity: ID) information, and the information element related to logical channel setting is RadioBearerConfig in FIG. It may be included in the information element related to the cell group setting instead of the information element represented by (not shown). Information elements related to cell group settings may be included in the message regarding resetting the RRC connection. The information element related to the cell group setting may be paraphrased as a cell group setting information element or a cell group setting. The information element related to the NR RLC entity setting may be paraphrased as the RLC setting information element or the RLC setting. The information element indicating the logical channel identifier information may be paraphrased as a logical channel identifier information element or a logical channel identifier. The information element related to the logical channel setting may be paraphrased as the logical channel setting information element or the logical channel identifier. The logical channel identifier may be associated with the wireless bearer identifier.
 また図7又は図8を用いて説明した一部、又は全てのフィールドや情報要素は、オプショナルであって良い。即ち図7又は図8を用いて説明したフィールドや情報要素は必要や条件に応じてRRCコネクションの再設定に関するメッセージに含まれて良い。またRRCコネクションの再設定に関するメッセージには、無線ベアラの設定に関する情報要素の他に、フル設定が適用される事を意味するフィールドなどが含まれて良い。フル設定が適用される事を意味するフィールドは、fullConfigなどの情報要素名で表されても良く、true、enableなどを用いてフル設定が適用される事を示して良い。 Further, some or all fields and information elements described with reference to FIG. 7 or FIG. 8 may be optional. That is, the fields and information elements described with reference to FIG. 7 or FIG. 8 may be included in the message regarding the resetting of the RRC connection as necessary or conditional. In addition to the information element related to the wireless bearer setting, the message regarding the resetting of the RRC connection may include a field indicating that the full setting is applied. The field meaning that the full setting is applied may be represented by an information element name such as fullConfig, and may be indicated by using true, enable, etc. to indicate that the full setting is applied.
 以上の説明をベースとして、本発明の様々な実施の形態を説明する。なお、以下の説明で省略される各処理については上記で説明した各処理が適用されてよい。 Based on the above description, various embodiments of the present invention will be described. In addition, each process described above may be applied to each process omitted in the following description.
 図5は本発明の実施の形態における端末装置(UE122)の構成を示すブロック図である。なお、説明が煩雑になることを避けるために、図5では、本発明の一形態と密接に関連する主な構成部のみを示す。 FIG. 5 is a block diagram showing the configuration of the terminal device (UE122) according to the embodiment of the present invention. In order to avoid complicated explanation, FIG. 5 shows only the main components closely related to one embodiment of the present invention.
 図5に示すUE122は、基地局装置よりRRCメッセージ等を受信する受信部500、及び受信したメッセージに含まれるパラメータに従って処理を行う処理部502、および基地局装置にRRCメッセージ等を送信する送信部504から成る。上述の基地局装置とは、eNB102であっても良いし、gNB108であっても良い。また、処理部502には様々な層(例えば、物理層、MAC層、RLC層、PDCP層、SDAP層、RRC層、およびNAS層)の機能の一部または全部が含まれてよい。すなわち、処理部502には、物理層処理部、MAC層処理部、RLC層処理部、PDCP層処理部、SDAP処理部、RRC層処理部、およびNAS層処理部の一部または全てが含まれてよい。 The UE 122 shown in FIG. 5 includes a receiving unit 500 that receives an RRC message or the like from a base station device, a processing unit 502 that performs processing according to parameters included in the received message, and a transmitting unit that transmits an RRC message or the like to the base station device. It consists of 504. The above-mentioned base station apparatus may be eNB 102 or gNB 108. In addition, the processing unit 502 may include some or all of the functions of various layers (for example, physical layer, MAC layer, RLC layer, PDCP layer, SDAP layer, RRC layer, and NAS layer). That is, the processing unit 502 includes a physical layer processing unit, a MAC layer processing unit, an RLC layer processing unit, a PDCP layer processing unit, an SDAP processing unit, an RRC layer processing unit, and a part or all of the NAS layer processing unit. It's okay.
 図6は本発明の実施の形態における基地局装置の構成を示すブロック図である。なお、説明が煩雑になることを避けるために、図6では、本発明の一形態と密接に関連する主な構成部のみを示す。上述の基地局装置とは、eNB102であっても良いし、gNB108であっても良い。 FIG. 6 is a block diagram showing the configuration of the base station apparatus according to the embodiment of the present invention. In addition, in order to avoid complicated explanation, FIG. 6 shows only the main components closely related to one embodiment of the present invention. The above-mentioned base station apparatus may be eNB 102 or gNB 108.
 図6に示す基地局装置は、UE122へRRCメッセージ等を送信する送信部600、及びパラメータを含むRRCメッセージを作成し、UE122に送信する事により、UE122の処理部502に処理を行わせる処理部602、およびUE122からRRCメッセージ等を受信する受信部604から成る。また、処理部602には様々な層(例えば、物理層、MAC層、RLC層、PDCP層、SDAP層、RRC層、およびNAS層)の機能の一部または全部が含まれてよい。すなわち、処理部602には、物理層処理部、MAC層処理部、RLC層処理部、PDCP層処理部、SDAP処理部、RRC層処理部、およびNAS層処理部の一部または全部が含まれてよい。 The base station apparatus shown in FIG. 6 has a transmission unit 600 that transmits an RRC message or the like to the UE 122, and a processing unit that creates an RRC message including parameters and transmits the RRC message to the UE 122 to cause the processing unit 502 of the UE 122 to perform processing. It consists of a receiving unit 604 that receives RRC messages and the like from 602 and UE 122. In addition, the processing unit 602 may include some or all of the functions of various layers (for example, physical layer, MAC layer, RLC layer, PDCP layer, SDAP layer, RRC layer, and NAS layer). That is, the processing unit 602 includes a physical layer processing unit, a MAC layer processing unit, an RLC layer processing unit, a PDCP layer processing unit, an SDAP processing unit, an RRC layer processing unit, and a part or all of the NAS layer processing unit. It's okay.
 本発明の実施の形態における、条件付きハンドオーバ(Conditional Handover:CHO)について説明する。条件付きハンドオーバとは、非特許文献1等に記載の条件付きハンドオーバであって良い。端末装置は、基地局装置から条件付きハンドオーバ設定のパラメータを含むRRCメッセージを受信する事により、条件付きハンドオーバの設定が行われても良い。条件付きハンドオーバ設定のパラメータには、ターゲット候補SpCellの設定パラメータと、そのターゲット候補SpCellへの設定を適用してハンドオーバを実行するための実行条件パラメータが含まれて良い。条件付きハンドオーバとは、1つ又は複数の実行条件が満たされた時に、端末装置によりハンドオーバ手順を実行するハンドオーバであって良い。なお、条件付きハンドオーバを、条件付き再設定(Conditional Reconfiguration)と言い換えても良い。また条件付きハンドオーバを、ハンドオーバと言い換えても良い。なお、条件付きハンドオーバ設定情報要素を含むRRCメッセージとは、RRCコネクションの再設定に関するメッセージ又はRRC再設定メッセージであって良い。 Conditional Handover (CHO) in the embodiment of the present invention will be described. The conditional handover may be the conditional handover described in Non-Patent Document 1 and the like. The terminal device may set the conditional handover by receiving the RRC message including the parameter of the conditional handover setting from the base station device. The parameter of the conditional handover setting may include the setting parameter of the target candidate SpCell and the execution condition parameter for executing the handover by applying the setting to the target candidate SpCell. The conditional handover may be a handover in which the terminal device executes the handover procedure when one or more execution conditions are satisfied. It should be noted that conditional handover may be paraphrased as conditional reconfiguration. Further, the conditional handover may be paraphrased as a handover. The RRC message including the conditional handover setting information element may be a message related to the resetting of the RRC connection or an RRC resetting message.
 本発明の実施の形態における、ハンドオーバ失敗処理について説明する。ハンドオーバ失敗の際、UE122はハンドオーバ元(ソース)で使用されていた設定に戻り(revert back)、RRC再確立手順を行う。RRC再確立手順において、UE122はセルサーチを行い、その後セルサーチで選択されたセルにおいて、RRC再確立要求メッセージを基地局装置に送信し、基地局装置から応答メッセージ(RRC再確立メッセージ)を受信し、その応答メッセージ(RRC再確立完了メッセージ)を基地局装置に送信する事で、RRC接続の再接続が行われる。RRC再確立手順においてセキュリティ鍵は更新され、無線ベアラの状態変数、タイマー等は初期化される。しかし、UE122に後述のattemptCondReconfigが設定されている場合、RRC再確立処理において選択されたセルが条件付きハンドオーバのハンドオーバ先(ターゲット)候補の一つであった場合、その選択されたセルにおいて条件付きハンドオーバを行う。条件付きハンドオーバを行う際、この条件付きハンドオーバが鍵更新を伴わない場合、無線ベアラの状態変数、タイマー等は初期化されない。上述のハンドオーバ失敗の際に状態変数を含む設定が、ソースで使用されていた設定に戻っているため、上述の条件付きハンドオーバを行う際、UE122が上述のハンドオーバ失敗前にターゲットで使用した状態変数と同一の状態変数の値が使われる可能性がある。従って、同一のセキュリティ鍵に同一のCOUNT値が2度使われる課題があると共に、RLCエンティティにおいて、異なるデータを同一のデータと見なして処理する課題がある。 The handover failure process in the embodiment of the present invention will be described. When the handover fails, UE122 returns to the setting used in the handover source (source) (revert back) and performs the RRC re-establishment procedure. In the RRC reestablishment procedure, UE122 performs a cell search, then in the cell selected by the cell search, sends an RRC reestablishment request message to the base station device and receives a response message (RRC reestablishment message) from the base station device. Then, by sending the response message (RRC reestablishment completion message) to the base station device, the RRC connection is reconnected. In the RRC re-establishment procedure, the security key is updated and the wireless bearer state variables, timers, etc. are initialized. However, when attemptCondReconfig described later is set in UE122, if the cell selected in the RRC reestablishment process is one of the handover destination (target) candidates for conditional handover, the selected cell is conditional. Perform handover. When performing a conditional handover, if this conditional handover is not accompanied by a key update, the state variables, timers, etc. of the wireless bearer are not initialized. Since the setting including the state variable at the time of the above-mentioned handover failure has returned to the setting used in the source, the state variable used by the UE 122 at the target before the above-mentioned handover failure when performing the above-mentioned conditional handover. The same state variable value as may be used. Therefore, there is a problem that the same COUNT value is used twice for the same security key, and there is a problem that different data are regarded as the same data and processed in the RLC entity.
 図9は、本発明の実施の形態における、条件付きハンドオーバの設定に関するフィールド、及び/又は情報要素を表すASN.1記述の一例である。図9においてConditionalReconfigurationで表される情報要素は、条件付きハンドオーバにおけるターゲット候補(candidate)SpCellと、条件付きハンドオーバ実行条件の設定を示す情報要素であって良い。ConditionalReconfigurationで表される情報要素を、条件付きハンドオーバ設定情報要素、又は条件付きハンドオーバ設定と言い換えて良い。条件付きハンドオーバ設定情報要素は条件付きPSCell変更にも使われて良い。 FIG. 9 is an example of an ASN.1 description representing a field and / or an information element relating to the setting of a conditional handover in the embodiment of the present invention. The information element represented by the Conditional Reconfiguration in FIG. 9 may be a target candidate (candidate) SpCell in the conditional handover and an information element indicating the setting of the conditional handover execution condition. The information element represented by ConditionalReconfiguration may be paraphrased as a conditional handover setting information element or a conditional handover setting. The conditional handover setting information element may also be used to change the conditional PSCell.
 図9において、条件付きハンドオーバ設定情報要素に含まれる、attemptCondReconfigで表されるフィールドは、本フィールドが存在する場合、ハンドオーバ失敗の後で最初に選択したセルが、条件付きハンドオーバ設定情報要素に含まれる候補SpCellの1つである場合、候補SpCellに対し、条件付き再設定を行う事を示す設定であって良い。attemptCondReconfigで表されるフィールドを、アテンプト(attempt)条件付き再設定フィールド、又はアテンプト条件付き再設定と言い換えて良い。 In FIG. 9, in the field represented by attemptCondReconfig included in the conditional handover setting information element, if this field exists, the first cell selected after the handover failure is included in the conditional handover setting information element. When it is one of the candidate SpCells, it may be a setting indicating that conditional resetting is performed for the candidate SpCells. The field represented by attemptCondReconfig may be paraphrased as an attempt conditional reset field or an attempt conditional reset.
 図9において、条件付きハンドオーバ設定情報要素に含まれる、CondReconfigToRemoveListで表される情報要素は、削除(remove)される候補(candidate)SpCellのリストであって良い。CondReconfigToRemoveListで表される情報要素を、削除する条件付き再設定リスト情報要素、又は削除する条件付き再設定リストと言い換えても良い。削除する条件付き再設定リスト情報要素は、後述するCondReconfigIdで表される情報要素のリストであって良い。 In FIG. 9, the information element represented by CondReconfigToRemoveList included in the conditional handover setting information element may be a list of candidate SpCells to be removed. The information element represented by CondReconfigToRemoveList may be paraphrased as a conditional reset list information element to be deleted or a conditional reset list to be deleted. The conditional reset list information element to be deleted may be a list of information elements represented by CondReconfigId described later.
 図9において、条件付きハンドオーバ設定情報要素に含まれる、CondReconfigToAddModListで表される情報要素は、追加又は変更される候補SpCellの設定のリストであって良い。CondReconfigToAddModListで表される情報要素を、条件付き再設定リスト情報要素、又は条件付き再設定リストと言い換えて良い。また、条件付き再設定リスト情報要素は、CondReconfigToAddModで表される情報要素のリストであって良い。CondReconfigToAddModで表される情報要素を、条件付き再設定情報要素、又は条件付き再設定と言い換えて良い。 In FIG. 9, the information element represented by CondReconfigToAddModList included in the conditional handover setting information element may be a list of the settings of the candidate SpCell to be added or changed. The information element represented by CondReconfigToAddModList may be paraphrased as a conditional reset list information element or a conditional reset list. Further, the conditional reset list information element may be a list of information elements represented by CondReconfigToAddMod. The information element represented by CondReconfigToAddMod may be paraphrased as a conditional reset information element or a conditional reset.
 図9において、条件付き再設定情報要素に含まれる、condReconfigIdで表されるフィールドは、条件付きハンドオーバ又は条件付きPSCell変更の設定を識別する識別子であって良い。condReconfigIdで表されるフィールドを、条件付き再設定識別子フィールド、又は条件付き再設定識別子と言い換えて良い。 In FIG. 9, the field represented by condReconfigId included in the conditional reset information element may be an identifier that identifies the setting of the conditional handover or the conditional PSCell change. The field represented by condReconfigId may be paraphrased as a conditional reset identifier field or a conditional reset identifier field.
 図9において、条件付き再設定情報要素に含まれる、condExecutionCondで表されるフィールドは、条件付き再設定の実行をトリガ(trigger)するために満たす必要のある、実行条件であって良い。condExecutionCondで表されるフィールドを、条件付き再設定実行条件フィールド、又は条件付き再設定実行条件と言い換えて良い。再設定実行条件フィールドには、メジャメント設定を識別する識別子が1つ又は複数含まれて良い。 In FIG. 9, the field represented by condExecutionCond included in the conditional reset information element may be an execution condition that must be satisfied in order to trigger the execution of the conditional reset. The field represented by condExecutionCond may be paraphrased as a conditional reset execution condition field or a conditional reset execution condition. The reset execution condition field may contain one or more identifiers that identify the measurement setting.
 図9において、条件付き再設定情報要素に含まれる、condRRCReconfigで表される情報要素は、上述の条件付き再設定実行条件フィールドに示される、条件付き再設定実行条件が満たされた際に適用される、RRC再設定メッセージであって良い。即ちcondRRCReconfigで表される情報要素は、RRC再設定メッセージに含まれる情報要素及び/又はフィールドの一部又は全てを含んで良い。condRRCReconfigで表される情報要素を、条件付き再設定情報要素、又は条件付き再設定と言い換えて良い。また条件付き再設定情報要素に含まれるRRC再設定メッセージの情報要素及び/又はフィールドに、条件付き再設定情報要素を含める事は禁止されて良い。 In FIG. 9, the information element represented by condRRCReconfig included in the conditional reset information element is applied when the conditional reset execution condition shown in the conditional reset execution condition field described above is satisfied. It may be an RRC reset message. That is, the information element represented by condRRCReconfig may include a part or all of the information element and / or the field included in the RRC reset message. The information element represented by condRRCReconfig may be paraphrased as a conditional reset information element or a conditional reset. Further, it may be prohibited to include the conditional reset information element in the information element and / or the field of the RRC reset message included in the conditional reset information element.
 上述の条件付き再設定情報要素は、例えば下記の(A)から(F)の設定の一部または全てを含んでよい。
  (A)セルグループ設定(CellGroupConfigという名称で表される情報要素であっても良い)。
  (B)フル設定であるか否かを示す情報(fullConfigで表されるフィールドであっても良い)。
  (C)NAS層のメッセージ(DedicatedNAS-messageという名称で表される情報要素であっても良い)。
  (D)鍵更新設定(MasterKeyUpdateという名称で表される情報要素であっても良い)。
  (E)測定設定(MeasConfigという名称で表される情報要素であっても良い)。
  (F)無線ベアラ設定。
The conditional reset information element described above may include, for example, a part or all of the following settings (A) to (F).
(A) Cell group setting (may be an information element represented by the name CellGroupConfig).
(B) Information indicating whether or not the setting is full (may be a field represented by fullConfig).
(C) NAS layer message (may be an information element represented by the name DedicatedNAS-message).
(D) Key update setting (may be an information element represented by the name MasterKeyUpdate).
(E) Measurement settings (may be information elements represented by the name MeasConfig).
(F) Wireless bearer setting.
 また上述のセルグループの設定情報は、例えば下記の(1)から(6)の設定の一部または全てを含んでよい。
  (1)セルグループの識別子(CellGroupIdという名称で表される情報要素であっても良い)。
  (2)RLCベアラ設定(RLC-BearerConfigという名称で表される情報要素であっても良い)。
  (3)セルグループのMACレイヤ設定(MAC-CellGroupConfigという名称で表される情報要素であっても良い)。
  (4)セルグループの物理(PHY)レイヤ設定(PhysicalCellGroupConfigという名称で表される情報要素であっても良い)。
  (5)SpCell設定(SpCellConfigという名称で表される情報要素であっても良い)。
  (6)SCellの情報(SCellConfigという名称で表される情報要素であっても良い)。
 なお、(5)のSpCell設定は、同期付再設定情報要素を含んで良い。(5)のSpCell設定に含まれる同期付再設定情報要素は、ターゲット候補SpCellの物理セル識別子(PhysCellIdという名称で表される情報要素であっても良い)を含んで良い。
Further, the above-mentioned cell group setting information may include, for example, a part or all of the following settings (1) to (6).
(1) Cell group identifier (may be an information element represented by the name CellGroupId).
(2) RLC bearer setting (may be an information element represented by the name RLC-BearerConfig).
(3) MAC layer setting of cell group (may be an information element represented by the name MAC-CellGroupConfig).
(4) Cell group physical (PHY) layer setting (may be an information element represented by the name PhysicalCellGroupConfig).
(5) SpCell setting (may be an information element represented by the name SpCellConfig).
(6) SCell information (may be an information element represented by the name SCellConfig).
The SpCell setting in (5) may include a reset information element with synchronization. The reset information element with synchronization included in the SpCell setting of (5) may include the physical cell identifier of the target candidate SpCell (may be an information element represented by the name PhysCellId).
 また、上述の無線ベアラの設定は、下記の(1)から(3)の設定の一部または全てを含んで良い。
  (1)SRB設定
  (2)DRB設定
  (3)セキュリティ設定(SecurityConfigという名称で表される情報要素であっても良い)。
 (3)のセキュリティ設定は、SRB及び/又はDRBに対する整合性保護のアルゴリズムおよび暗号化のアルゴリズムに関する情報(SecurityAlgorithmConfigという名称で表される情報要素であっても良い)、及び/又はMCG用鍵とSCG用鍵の何れの鍵を用いるかを示す情報(keyToUseという名称で示されるフィールドであって良い)を含んで良い。
Further, the above-mentioned wireless bearer setting may include a part or all of the following settings (1) to (3).
(1) SRB setting (2) DRB setting (3) Security setting (may be an information element represented by the name SecurityConfig).
The security setting in (3) includes information on the integrity protection algorithm and encryption algorithm for SRB and / or DRB (which may be an information element represented by the name SecurityAlgorithmConfig), and / or the key for MCG. It may contain information (which may be a field named keyToUse) indicating which key of the SCG key is to be used.
 なお、上述の候補SpCellをターゲット候補SpCellと言い換えて良い。またSpCellをCell又はPCell又はPSCellと言い換えて良い。 The above candidate SpCell may be paraphrased as a target candidate SpCell. Further, SpCell may be paraphrased as Cell, PCell or PSCell.
 図10を用いて本発明の実施の形態における、端末装置の処理の一例を説明する。図10を用いて説明する、本発明の実施の形態の端末装置の処理の一例は、上述のハンドオーバ失敗における課題解決方法の一例である。 An example of processing of the terminal device in the embodiment of the present invention will be described with reference to FIG. An example of the processing of the terminal device according to the embodiment of the present invention, which will be described with reference to FIG. 10, is an example of a problem-solving method in the above-mentioned handover failure.
 図10は本発明の実施の形態における、端末装置の処理の一例を示す図である。UE122の受信部500は、基地局装置よりRRCメッセージを受信して良い。UE122の処理部502は基地局装置より受信したRRCメッセージに従って、UE122に設定を行って良い。(ステップS1000) FIG. 10 is a diagram showing an example of processing of a terminal device according to an embodiment of the present invention. The receiver 500 of the UE 122 may receive the RRC message from the base station device. The processing unit 502 of the UE 122 may set the UE 122 according to the RRC message received from the base station device. (Step S1000)
 ステップS1002におけるハンドオーバ手順開始の一例を説明する。ステップS1000において、例えば、基地局装置より受信したRRCメッセージに第1の同期付再設定情報要素が含まれている場合で、上述の第1の同期付再設定情報要素が、条件付きハンドオーバ設定情報要素に含まれる情報要素ではない場合、UE122の処理部502は、上述の第1の同期付再設定情報要素を適用し、上述の第1の同期付再設定情報要素に従って、第1のSpCellに対しハンドオーバ手順を開始して良い。上述の、基地局装置より受信したRRCメッセージに第1の同期付再設定情報要素が含まれている場合で、上述の第1の同期付再設定情報要素が、条件付きハンドオーバ設定情報要素に含まれる情報要素ではない場合、とは、条件付きではないハンドオーバ、又はノーマル(normal)ハンドオーバの場合であって良い。なお、基地局装置より受信したRRCメッセージに上述の第1の同期付再設定情報要素が含まれていない場合には、上述の第1のSpCellに対するハンドオーバ手順を開始しなくて良い。(ステップS1002) An example of starting the handover procedure in step S1002 will be described. In step S1000, for example, when the RRC message received from the base station apparatus includes the first synchronized reset information element, the above-mentioned first synchronized reset information element is the conditional handover setting information. If it is not an information element contained in the element, the processing unit 502 of the UE 122 applies the above-mentioned first synchronized reset information element to the first SpCell according to the above-mentioned first synchronized reset information element. On the other hand, the handover procedure may be started. When the above-mentioned RRC message received from the base station apparatus includes the first synchronized reset information element, the above-mentioned first synchronized reset information element is included in the conditional handover setting information element. If it is not an information element, it may be an unconditional handover or a normal handover. If the RRC message received from the base station device does not include the above-mentioned first synchronization reset information element, it is not necessary to start the handover procedure for the above-mentioned first SpCell. (Step S1002)
 ステップS1002におけるハンドオーバ手順開始の別の一例を説明する。ステップS1000において、例えば、基地局装置より受信したRRCメッセージに、条件付きハンドオーバ設定情報要素が含まれていた場合には、UE122の処理部502は上述の条件付きハンドオーバ設定情報要素に従ってUE122に設定を行って良い。ここで上述のハンドオーバ設定情報要素は、条件付き再設定リスト情報要素を含んで良い。また上述の条件付き再設定リスト情報要素は、第1から第Nまでの条件付き再設定情報要素を含んで良い(ただしNは正の整数とする)。ある時点で、UE122に設定されている、第mの条件付き再設定情報要素に含まれる、第mの条件付き再設定実行条件を満たした場合、UE122の処理部502は、以下の(A)を含む処理を行って良い。ここで上述のmは、1より大きい又は等しい整数、かつNより小さい又は等しい整数であって良い。
  (A)上述の第mの条件付き再設定情報要素に含まれる、第mの条件付き再設定情報要素を適用し、上述の第mの条件付き再設定情報要素に含まれる、第mの同期付再設定情報要素に従って、第mのSpCellに対しハンドオーバ手順を開始して良い。
 なお、上述の第mのSpCellに対するハンドオーバを、上述の第mのSpCellに対する条件付きハンドオーバと言い換えて良い。また、上述の第mの条件付き再設定実行条件を満たしていない場合、UE122の処理部502は、上述の(A)の処理を行わなくて良い。(ステップS1002)
Another example of starting the handover procedure in step S1002 will be described. In step S1000, for example, when the RRC message received from the base station apparatus includes a conditional handover setting information element, the processing unit 502 of the UE 122 sets the UE 122 according to the above-mentioned conditional handover setting information element. You can go. Here, the above-mentioned handover setting information element may include a conditional reset list information element. Further, the above-mentioned conditional reset list information element may include the first to Nth conditional reset information elements (where N is a positive integer). At a certain point, when the mth conditional resetting execution condition included in the mth conditional resetting information element set in the UE122 is satisfied, the processing unit 502 of the UE122 has the following (A). Processing including the above may be performed. Here, m described above may be an integer greater than or equal to 1 and an integer smaller than or equal to N.
(A) The m-th synchronization included in the above-mentioned m-th conditional reset-information element by applying the m-th conditional reset-information element included in the above-mentioned m-th conditional reset-information element. The handover procedure may be started for the mth SpCell according to the additional reset information element.
The above-mentioned handover for the mth SpCell may be rephrased as the above-mentioned conditional handover for the mth SpCell. Further, when the above-mentioned m-th conditional resetting execution condition is not satisfied, the processing unit 502 of the UE 122 does not have to perform the above-mentioned processing (A). (Step S1002)
 ステップS1002において、上述の第1のSpCellと上述の第mのSpCellは同じセルであって良い。またステップS1002において、UE122の処理部502は、上述の第1のSpCellに対しハンドオーバを行う際、上述の第1のSpCellに対し、第1のタイマーを起動して良い。またステップS1002において、UE122の処理部502は、上述の第mのSpCellに対しハンドオーバを行う際、上述の第mのSpCellに対し、上述の第1のタイマーを起動して良い。UE122の処理部502は、上述の第1のSpCellに対する、上述の第1のタイマーを起動する際、上述の第1の同期付再設定情報要素に含まれる、上述の第1のタイマーに適用する値を、上述の第1のタイマーに適用して良い。またUE122の処理部502は、上述の第mのSpCellに対する、上述の第1のタイマーを起動する際、上述の第mの同期付再設定情報要素に含まれる、上述の第1のタイマーに適用する値を、上述の第1のタイマーに適用して良い。なお、上述の第1のタイマーとは、ハンドオーバ失敗を検出するため等に使うタイマーであっても良い。また、上述の第1のタイマーとは、ハンドオーバを指示するRRCメッセージを受信した際などに開始し、対応する(ハンドオーバ先の)SpCellへのランダムアクセスが成功した際などに停止するタイマーであっても良い。また上述の第1のタイマーが満了した場合には、ハンドオーバが失敗したと見なされても良い。また、上述の第1のタイマーとは、T304という名称のタイマーであって良い。 In step S1002, the above-mentioned first SpCell and the above-mentioned mth SpCell may be the same cell. Further, in step S1002, the processing unit 502 of the UE 122 may activate the first timer for the above-mentioned first SpCell when performing a handover with respect to the above-mentioned first SpCell. Further, in step S1002, when the processing unit 502 of the UE 122 performs a handover with respect to the above-mentioned mth SpCell, the above-mentioned first timer may be activated for the above-mentioned mth SpCell. The processing unit 502 of the UE 122 applies to the above-mentioned first timer included in the above-mentioned first synchronized reset information element when activating the above-mentioned first timer for the above-mentioned first SpCell. The value may be applied to the first timer described above. Further, the processing unit 502 of the UE 122 is applied to the above-mentioned first timer included in the above-mentioned mth synchronized resetting information element when the above-mentioned first timer for the above-mentioned mth SpCell is activated. The value to be applied may be applied to the first timer described above. The above-mentioned first timer may be a timer used for detecting a handover failure or the like. The first timer described above is a timer that starts when an RRC message instructing a handover is received and stops when a random access to the corresponding (handover destination) SpCell is successful. Is also good. Further, when the above-mentioned first timer expires, it may be considered that the handover has failed. Further, the above-mentioned first timer may be a timer named T304.
 上述の第1のタイマーが満了した場合、UE122の処理部502は、ハンドオーバ失敗手順を行っても良い。なお、ハンドオーバ失敗を同期付再設定失敗と言い換えて良い。(ステップS1004) When the above-mentioned first timer expires, the processing unit 502 of the UE 122 may perform a handover failure procedure. It should be noted that the handover failure may be paraphrased as the synchronization reset setting failure. (Step S1004)
 ステップS1004のハンドオーバ失敗手順において、UE122の処理部502は、UE122に第1の設定が行われているかを確認する。上述の第1の設定とは、上述のアテンプト条件付き再設定であって良い。即ち上述の第1の設定とは、ハンドオーバが失敗した後で最初に選択したセルが、条件付きハンドオーバ設定情報要素に含まれる候補SpCellの1つである場合、候補SpCellに対し、条件付き再設定を行う事を示す設定であって良い。また上述の第1の設定が行われている事を、ステップS1000で受信したRRCメッセージに、アテンプト条件付き再設定フィールドを含む条件付きハンドオーバ設定情報要素が含まれていた(又は含まれている)と言い換えて良い。またUE122の処理部502は、ステップS1002におけるUE122のハンドオーバが、セキュリティ鍵更新を伴っていたかを確認して良い。ステップS1002におけるUE122のハンドオーバが、セキュリティ鍵更新を伴っていた事を、ステップS1002におけるハンドオーバに適用されたRRC再設定メッセージ又はRRC再設定情報要素に、上述の鍵更新設定に関するパラメータが含まれていた(又は含まれている)、と言い換えて良い。またステップS1002におけるUE122のハンドオーバが、セキュリティ鍵更新を伴っていなかった事を、ステップS1002におけるハンドオーバに適用されたRRC再設定メッセージ又はRRC再設定情報要素に、上述の鍵更新設定に関するパラメータが含まれていなかった(又は含まれていない)、と言い換えて良い。なおステップS1002におけるハンドオーバは、上述のノーマルハンドオーバ、即ち上述の第1の同期付再設定情報要素に従った、第1のSpCellに対するハンドオーバであって良い。またステップS1002におけるハンドオーバは、上述の条件付きハンドオーバ、即ち上述の第mの条件付き再設定情報要素に従った、第mのSpCellに対するハンドオーバであっても良い。またステップS1002におけるUE122のハンドオーバを、前のハンドオーバ、又はハンドオーバ、又は前の同期付再設定、又は同期付再設定などに言い換えて良い。またステップS1002におけるUE122のハンドオーバを、ステップS1002において、第1のタイマーの満了を起こしたハンドオーバを意味する用語であれば、他の用語に言い換えて良い。上述の鍵更新設定に関するパラメータとは、MasterKeyUpdateという名称で表される情報要素、及び/又はmasterKeyUpdateという名称で表されるフィールドであって良い。なお、セキュリティ鍵更新を、鍵更新と言い換えて良い。 In the handover failure procedure of step S1004, the processing unit 502 of UE122 confirms whether the first setting is made in UE122. The above-mentioned first setting may be the above-mentioned attempt conditional resetting. That is, the above-mentioned first setting means that if the first cell selected after the handover fails is one of the candidate SpCells included in the conditional handover setting information element, the candidate SpCell is conditionally reset. It may be a setting indicating that the above is to be performed. In addition, the RRC message received in step S1000 that the first setting described above has been made includes (or contains) a conditional handover setting information element including an attempt conditional reset field. In other words. Further, the processing unit 502 of UE122 may confirm whether the handover of UE122 in step S1002 was accompanied by the security key update. The RRC reset message or RRC reset information element applied to the handover in step S1002 contained the above-mentioned parameters related to the key update setting that the handover of UE122 in step S1002 was accompanied by the security key update ( Or it is included), in other words. In addition, the RRC reset message or RRC reset information element applied to the handover in step S1002 that the handover of UE122 in step S1002 did not involve the security key update includes the above-mentioned parameters related to the key update setting. In other words, it was not (or was not included). The handover in step S1002 may be the above-mentioned normal handover, that is, the handover to the first SpCell according to the above-mentioned first synchronization reset information element. Further, the handover in step S1002 may be the above-mentioned conditional handover, that is, the handover to the m-th SpCell according to the above-mentioned m-th conditional resetting information element. Further, the handover of UE 122 in step S1002 may be paraphrased as a previous handover, a handover, a previous reset with synchronization, a reset with synchronization, or the like. Further, the handover of the UE 122 in step S1002 may be paraphrased into another term as long as it is a term meaning the handover that caused the expiration of the first timer in step S1002. The above-mentioned parameter related to the key update setting may be an information element represented by the name of MasterKeyUpdate and / or a field represented by the name of masterKeyUpdate. Note that security key update may be paraphrased as key update.
 ステップS1004のハンドオーバ失敗手順において、UE122の処理部502は、少なくとも上述の第1の条件を満たしている事に基づいて、次の(A)から(C)の一部又は全てを含む処理を行って良い。
  (A)UE122に確立及び/又は設定されている無線ベアラのうちの一部又は全てに対し、UE122の設定のうちの、一部の設定を保持する。
  (B)UE122の設定のうちの、少なくとも上述の一部の設定(上述の(A)で保持した設定)を除く設定を、ソースPCellで使用されていた設定に戻す(revert back)。
  (C)UE122に確立及び/又は設定されている無線ベアラのうちの一部又は全てに対し、一部のエンティティを再確立する。
 なお、上述の(A)及び(C)において、UE122に確立及び/又は設定されている無線ベアラのうちの一部又は全てとは、UE122に確立及び/又は設定されているSRB及び/又はDRBのうちの一部又は全てであって良い。また上述の(A)において、一部の設定とは、PDCPエンティティ及び/又はRLCエンティティ及び/又は無線ベアラにおける、状態変数及び/又はタイマー及び/又はパラメータ及び/又はカウンターのうちの一部又は全てを含んで良い。また上述の(A)において、設定を保持する事とは、設定をソースPCellで使用されていた設定に戻さず、上述の第1のタイマーが満了する直前の設定を維持する事であって良い。また上述の(C)において、一部のエンティティはRLCエンティティを含んで良い。また上述の(C)を、SRBに対し、RLCエンティティを再確立すると言い換えて良い。
In the handover failure procedure of step S1004, the processing unit 502 of the UE 122 performs a process including a part or all of the following (A) to (C) based on the fact that at least the above-mentioned first condition is satisfied. It's okay.
(A) For some or all of the radio bearers established and / or set in the UE 122, some of the settings of the UE 122 are retained.
(B) Revert back the settings of the UE 122 except for at least some of the above settings (settings held in (A) above) to be used in the source PCell.
(C) Reestablish some entities for some or all of the radio bearers established and / or configured in UE122.
In addition, in the above-mentioned (A) and (C), a part or all of the radio bearers established and / or set in UE122 are SRB and / or DRB established and / or set in UE122. It may be a part or all of them. Also, in (A) above, some settings are some or all of the state variables and / or timers and / or parameters and / or counters in the PDCP entity and / or RLC entity and / or radio bearer. May include. Further, in the above-mentioned (A), retaining the setting may mean maintaining the setting immediately before the expiration of the above-mentioned first timer without returning the setting to the setting used in the source PCell. .. Further, in (C) above, some entities may include RLC entities. Further, the above (C) may be paraphrased as reestablishing the RLC entity for SRB.
 またステップS1004のハンドオーバ失敗手順において、UE122の処理部502は、少なくとも上述の第1の条件を満たしている事に基づいて、次の(D)から(F)の一部又は全てを含む処理を行って良い。
  (D)UE122の設定のうちの、一部の設定を保持する。
  (E)UE122の設定のうちの、少なくとも上述の一部の設定(上述の(D)で保持した設定)を除く設定を、ソースPCellで使用されていた設定に戻す(revert back)。
  (F)一部のエンティティを再確立する。
 上述の(D)において、一部の設定とは、PDCPエンティティ及び/又はRLCエンティティ及び/又は無線ベアラにおける、状態変数及び/又はタイマー及び/又はパラメータ及び/又はカウンターのうちの一部又は全てを含んで良い。また上述の(D)において、設定を保持する事とは、設定をソースPCellで使用されていた設定に戻さず、上述の第1のタイマーが満了する直前の設定を維持する事であって良い。また上述の(F)において、一部のエンティティはRLCエンティティを含んで良い。
Further, in the handover failure procedure of step S1004, the processing unit 502 of the UE 122 performs a process including a part or all of the following (D) to (F) based on the fact that at least the above-mentioned first condition is satisfied. You can go.
(D) Some of the settings of UE122 are retained.
(E) Revert back the settings of the UE 122 except for at least some of the above settings (settings held in (D) above) to be used in the source PCell.
(F) Reestablish some entities.
In (D) above, some settings are some or all of the state variables and / or timers and / or parameters and / or counters in the PDCP entity and / or RLC entity and / or radio bearer. May be included. Further, in the above-mentioned (D), holding the setting may mean not returning the setting to the setting used in the source PCell, but maintaining the setting just before the first timer mentioned above expires. .. Further, in the above-mentioned (F), some entities may include an RLC entity.
 なお、ステップS1004のハンドオーバ失敗手順における、上述の第1の条件とは、UE122に上述の第1の設定が行われている事、及び/又はステップS1002におけるUE122のハンドオーバが、セキュリティ鍵更新を伴っていなかった事、を含む条件であって良い。また、上述の第1の条件とは、UE122に上述の第1の設定が行われている事、及びステップS1002におけるUE122のハンドオーバが、セキュリティ鍵更新を伴っていなかった事、を少なくとも含む条件であっても良い。 The above-mentioned first condition in the handover failure procedure in step S1004 is that the above-mentioned first setting is made in UE122 and / or the handover of UE122 in step S1002 is accompanied by a security key update. The conditions may include things that were not done. Further, the above-mentioned first condition is at least a condition that the above-mentioned first setting is made in UE122 and that the handover of UE122 in step S1002 is not accompanied by the security key update. May be there.
 また、ステップS1004のハンドオーバ失敗手順において、上述の(A)及び(B)の処理は、UE122に確立及び/又は設定されている無線ベアラのうちの一部又は全てに対し、UE122の設定をソースPCellで使用されていた設定に戻した後、一部の設定に、ターゲットPCellの(又はターゲットPCellで使用されていた)設定を適用する処理であっても良い。また、ステップS1004のハンドオーバ失敗手順において、上述の(D)及び(E)の処理は、UE122の設定をソースPCellで使用されていた設定に戻した後、一部の設定に、ターゲットPCellの(又はターゲットPCellで使用されていた)設定を適用する処理であっても良い。 Further, in the handover failure procedure in step S1004, the processes (A) and (B) described above source the UE122 setting for some or all of the wireless bearers established and / or set in the UE122. After returning to the settings used by PCell, the process may be to apply the settings of the target PCell (or the settings used by the target PCell) to some of the settings. Further, in the handover failure procedure in step S1004, in the above-mentioned processes (D) and (E), after returning the UE122 setting to the setting used in the source PCell, some settings of the target PCell ( Alternatively, it may be a process of applying the settings (used in the target PCell).
 また、ステップS1004のハンドオーバ失敗手順において、UE122の処理部502は、少なくとも上述の第1の条件を満たしていない事に基づいて、UE122の設定をソースPCellで使用されていた設定に戻す処理を行っても良い。上述の第1の条件を満たしていない事とは、UE122に上述の第1の設定が行われている事、及びステップS1002におけるUE122のハンドオーバが、鍵更新を伴っていなかった事、のうちの一部又は全てが該当しない事であって良い。 Further, in the handover failure procedure in step S1004, the processing unit 502 of the UE 122 performs a process of returning the setting of the UE 122 to the setting used in the source PCell based on the fact that at least the first condition described above is not satisfied. May be. The fact that the above-mentioned first condition is not satisfied means that the above-mentioned first setting is made in UE122 and that the handover of UE122 in step S1002 is not accompanied by key update. Some or all may not be applicable.
 またステップS1004のハンドオーバ失敗手順において、上述の第1の条件を満たしていない事を、上述の第1の条件を満たしている事に対する、その他(else)の条件と言い換えて良い。 Further, in the handover failure procedure of step S1004, the fact that the above-mentioned first condition is not satisfied may be rephrased as another (else) condition for satisfying the above-mentioned first condition.
 なお、ステップS1004のハンドオーバ失敗処理の後に、UE122の処理部502は更に、以下の(F)から(G)の処理うちの一部又は全てを含む処理を行っても良い。
  (F)UE122の無線リンク失敗に関する変数に、上述のハンドオーバ失敗に関する情報を格納する。
  (G)RRC接続の再確立手順を起動する。
 上述の(F)の無線リンク失敗に関する変数とは、VarRLF-Reportという名称の変数であって良い。また上述の(G)のRRC接続の再確立手順とは、RRC再確立手順であって良い。RRC再確立手順は、端末装置がRRC接続の再確立を行うセルを選択し、基地局装置に対しRRC再確立要求メッセージを送信し、基地局装置からRRC再確立メッセージを受け取る手順を含んで良い。
After the handover failure process in step S1004, the processing unit 502 of the UE 122 may further perform a process including a part or all of the following processes (F) to (G).
(F) The above-mentioned information regarding the handover failure is stored in the variable related to the wireless link failure of the UE 122.
(G) Invokes the procedure for reestablishing the RRC connection.
The variable related to the wireless link failure in (F) above may be a variable named VarRLF-Report. Further, the above-mentioned procedure for reestablishing the RRC connection in (G) may be an RRC reestablishment procedure. The RRC reestablishment procedure may include a procedure in which the terminal device selects the cell in which the RRC connection is to be reestablished, sends an RRC reestablishment request message to the base station device, and receives an RRC reestablishment message from the base station device. ..
 ステップS1004のハンドオーバ失敗処理後(不図示)における、上述のRRC再接続手順において、UE122の処理部502は、少なくとも以下の(1)から(4)の条件のうちの一部又は全てを含む条件に該当する事に基づいて、UE122に確立及び/又は設定されている無線ベアラのうちの一部又は全てに対し、UE122の一部の設定に、ターゲットPCellの(又はターゲットPCellで使用されていた)設定を適用する処理を行って良い。
  (1)UE122に上述の第1の設定が行われている。
  (2)ステップS1002におけるUE122のハンドオーバが、鍵更新を伴っていなかった。
  (3)選択したセルが条件付きハンドオーバの候補SpCellの1つである。
  (4)上述の選択したセルに対する条件付きハンドオーバに鍵更新が伴わない。
 なお、上述のUE122に確立及び/又は設定されている無線ベアラのうちの一部又は全てとは、UE122に確立及び/又は設定されているSRB及び又はDRBのうちの一部又は全てであって良い。また上述の一部の設定とは、PDCPエンティティ及び/又はRLCエンティティ及び/又は無線ベアラにおける、状態変数及び/又はタイマー及び/又はパラメータ及び/又はカウンターのうちの一部又は全てを含んで良い。
In the above-mentioned RRC reconnection procedure after the handover failure process in step S1004 (not shown), the processing unit 502 of the UE 122 includes at least a part or all of the following conditions (1) to (4). Used in the target PCell (or in the target PCell) to configure some of the UE122 for some or all of the radio bearers established and / or configured in the UE122 based on the above. ) You may perform the process of applying the settings.
(1) The above-mentioned first setting is made in the UE 122.
(2) The handover of UE122 in step S1002 did not involve key update.
(3) The selected cell is one of the candidate SpCells for conditional handover.
(4) The conditional handover for the selected cell described above does not involve key update.
Note that some or all of the radio bearers established and / or set in the UE 122 described above are some or all of the SRBs and / or DRBs established and / or set in the UE 122. good. Also, some of the above settings may include some or all of the state variables and / or timers and / or parameters and / or counters in the PDCP entity and / or RLC entity and / or radio bearer.
 なお、上述のステップS1004のハンドオーバ失敗処理は、少なくとも以下の(H)から(I)の条件のうちの一部又は全てを含む条件に該当しない事に基づいて、行われて良い。
  (H)DAPS(Dual Active Protocol Stack)ベアラが設定されている。
  (I)ソースPCellにおける無線リンク失敗が検出されていない。
 上述の(H)におけるDAPSベアラとは、非特許文献1等に記載のDAPSベアラであって良い。DAPSベアラとはDAPSハンドオーバの間、ソースとターゲット両方のリソースを用いるため、ソースとターゲット両方に無線(AS)プロトコルの一部又は全てを持つ無線ベアラであって良い。なお、上述のソースは、ソースPCellであって良い。また上述のソースは、ソース基地局装置であっても良い。また、上述のターゲットは、ターゲットPCellであって良い。また上述のターゲットは、ターゲット基地局装置であっても良い。
The handover failure process in step S1004 may be performed based on the fact that at least some or all of the following conditions (H) to (I) are not satisfied.
(H) A DAPS (Dual Active Protocol Stack) bearer is set.
(I) No radio link failure has been detected in the source PCell.
The DAPS bearer in (H) described above may be the DAPS bearer described in Non-Patent Document 1 and the like. A DAPS bearer may be a radio bearer that has some or all of the radio (AS) protocol on both the source and target because it uses both source and target resources during the DAPS handover. The above-mentioned source may be the source PCell. Further, the above-mentioned source may be a source base station device. Further, the above-mentioned target may be the target PCell. Further, the above-mentioned target may be a target base station device.
 発明の実施の形態において、UE122の設定をソースPCellで使用されていた設定に戻す場合の「UE122の設定」は、各無線ベアラの状態変数とパラメータを含む、とされて良い。また発明の実施の形態において、UE122の設定をソースPCellで使用されていた設定に戻す場合の「UE122の設定」は、特に言及しない限り各無線ベアラの状態変数とパラメータを含む、とされても良い。 In the embodiment of the invention, the "UE122 setting" when returning the UE122 setting to the setting used in the source PCell may be said to include the state variables and parameters of each radio bearer. Further, in the embodiment of the invention, even if the "UE122 setting" when returning the setting of the UE122 to the setting used in the source PCell includes the state variables and parameters of each radio bearer unless otherwise specified. good.
 発明の実施の形態において、Cell、PCell、SpCell、PSCell、MCG、SCG、セルグループは、互いに言い換えられて良い。 In the embodiment of the invention, Cell, PCell, SpCell, PSCell, MCG, SCG, and cell group may be paraphrased with each other.
 このように、本発明の実施の形態では、ハンドオーバ失敗後の処理において、状態変数等を適宜メンテナンスする事により、セキュリティ課題等を回避し、端末装置のハンドオーバ時に効率的な通信を行うことができる。 As described above, in the embodiment of the present invention, it is possible to avoid security problems and perform efficient communication at the time of handover of the terminal device by appropriately maintaining the state variables and the like in the processing after the handover failure. ..
 上記説明における無線ベアラは其々、DRBであって良いし、SRBであって良いし、DRB及びSRBであって良い。 The radio bearers in the above description may be DRBs, SRBs, DRBs and SRBs, respectively.
 また上記説明において、「紐づける」、「対応付ける」、「関連付ける」等の表現は、互いに換言されてもよい。 Further, in the above explanation, expressions such as "associate", "associate", and "associate" may be paraphrased with each other.
 また上記説明において、「前記~」を「上述の~」と言い換えてよい。 Further, in the above explanation, "the above" may be paraphrased as "the above".
 また上記説明において、「SCGのSpCell」を「PSCell」と言い換えてよい。 Also, in the above explanation, "SCG SpCell" may be paraphrased as "PS Cell".
 また上記説明における各処理の例、又は各処理のフローの例において、ステップの一部または全ては実行されなくても良い。また上記説明における各処理の例、又は各処理のフローの例において、ステップの順番は異なっても良い。また上記説明における各処理の例、又は各処理のフローの例において、各ステップ内の一部または全ての処理は実行されなくても良い。また上記説明における各処理の例、又は各処理のフローの例において、各ステップ内の処理の順番は異なっても良い。また上記説明において「Aである事に基づいてBを行う」は、「Bを行う」と言い換えられても良い。即ち「Bを行う」事は「Aである事」と独立して実行されても良い。 Further, in the example of each process in the above description or the example of the flow of each process, some or all of the steps may not be executed. Further, in the example of each process in the above description or the example of the flow of each process, the order of the steps may be different. Further, in the example of each process in the above description or the example of the flow of each process, some or all the processes in each step may not be executed. Further, in the example of each process in the above description or the example of the flow of each process, the order of the processes in each step may be different. Further, in the above description, "doing B based on being A" may be paraphrased as "doing B". That is, "doing B" may be executed independently of "being A".
 なお、上記説明において、「AをBと言い換えてよい」は、AをBと言い換えることに加え、BをAと言い換える意味も含んでよい。また上記説明において、「CはDであって良い」と「CはEであって良い」とが記載されている場合には、「DはEであって良い」事を含んでも良い。また上記説明において、「FはGであって良い」と「GはHであって良い」とが記載されている場合には、「FはHであっても良い」事を含んでも良い。 In the above explanation, "A may be paraphrased as B" may include the meaning of paraphrasing B as A in addition to paraphrasing A as B. Further, in the above description, when "C may be D" and "C may be E" are described, "D may be E" may be included. Further, in the above description, when "F may be G" and "G may be H" are described, "F may be H" may be included.
 また上記説明において、「A」という条件と、「B」という条件が、相反する条件の場合には、「B」という条件は、「A」という条件の「その他」の条件として表現されても良い。 Further, in the above description, when the condition "A" and the condition "B" are contradictory, the condition "B" may be expressed as the "other" condition of the condition "A". good.
 以下、本発明の実施形態における、端末装置、基地局装置、方法の種々の態様について説明する。 Hereinafter, various aspects of the terminal device, the base station device, and the method in the embodiment of the present invention will be described.
 (1)基地局装置と通信する端末装置であって、前記端末装置は、前記基地局装置からRRCメッセージを受信する受信部と、処理部と、を備え、前記処理部は、前記RRCメッセージに従って前記端末装置に設定を行い、前記端末装置の第1のタイマーが満了した事に基づいて、ハンドオーバ失敗の処理を行い、前記ハンドオーバ失敗の処理において、少なくとも第1の条件を満たしている事に基づいて、一部又は全ての無線ベアラに対し、前記端末装置の設定のうち、一部の設定を保持し、少なくとの前記一部の設定を除く設定をソースPCellで使用されていた設定に戻す処理を行い、前記ハンドオーバ失敗の処理において、少なくとも前記第1の条件を満たしていない事に基づいて、前記端末装置の設定を前記ソースPCellで使用されていた設定に戻す処理を行い、前記第1の条件には、前記端末装置に第1の設定が行われている事、及び前記端末装置が行った条件付きハンドオーバが鍵更新を伴わない事を少なくとも含み、前記条件付きハンドオーバとは、前記端末装置に設定されている条件付きハンドオーバ実行条件が満たされた時に、端末装置によりハンドオーバ手順を実行するハンドオーバである。 (1) A terminal device that communicates with a base station device, wherein the terminal device includes a receiving unit and a processing unit that receive an RRC message from the base station device, and the processing unit follows the RRC message. The setting is made in the terminal device, the handover failure process is performed based on the expiration of the first timer of the terminal device, and at least the first condition is satisfied in the handover failure process. Then, for some or all of the wireless bearers, some of the settings of the terminal device are retained, and at least the settings other than some of the settings are returned to the settings used in the source PCell. Processing is performed, and in the handover failure processing, at least based on the fact that the first condition is not satisfied, the setting of the terminal device is returned to the setting used in the source PCell, and the first condition is performed. The condition of includes at least that the first setting is made in the terminal device and that the conditional handover performed by the terminal device does not involve key update, and the conditional handover means the terminal. This is a handover in which the terminal device executes the handover procedure when the conditional handover execution condition set in the device is satisfied.
 (2)端末装置と通信を行う基地局装置であって、前記基地局装置は前記端末装置にRRCメッセージを送信する送信部と、処理部と、を備え、前記処理部は、前記RRCメッセージに従って前記端末装置に設定を行わせ、前記端末装置の第1のタイマーが満了した事に基づいて、前記端末装置にハンドオーバ失敗の処理を行わせ、前記ハンドオーバ失敗の処理において、少なくとも第1の条件を満たしている事に基づいて、一部又は全ての無線ベアラに対し、前記端末装置の設定のうち、一部の設定を保持し、少なくとの前記一部の設定を除く設定をソースPCellで使用されていた設定に戻す処理を行わせ、前記ハンドオーバ失敗の処理において、少なくとも前記第1の条件を満たしていない事に基づいて、前記端末装置の設定を前記ソースPCellで使用されていた設定に戻す処理を行わせ、前記第1の条件には、前記端末装置に第1の設定が行われている事、及び前記端末装置が行った条件付きハンドオーバが鍵更新を伴わない事を少なくとも含み、前記条件付きハンドオーバとは、前記端末装置に設定されている条件付きハンドオーバ実行条件が満たされた時に、端末装置によりハンドオーバ手順を実行するハンドオーバである。 (2) A base station device that communicates with a terminal device, wherein the base station device includes a transmission unit and a processing unit that transmit an RRC message to the terminal device, and the processing unit follows the RRC message. The terminal device is made to set, and based on the fact that the first timer of the terminal device has expired, the terminal device is made to perform the handover failure process, and at least the first condition is set in the handover failure process. Based on the fact that some or all of the wireless bearers are satisfied, some of the settings of the terminal device are retained, and at least some of the settings other than the above are used in the source PCell. The process of returning to the set setting is performed, and the setting of the terminal device is returned to the setting used in the source PCell based on the fact that at least the first condition is not satisfied in the handover failure process. The process is performed, and the first condition includes at least that the first setting is made in the terminal device and that the conditional handover performed by the terminal device does not involve key update. The conditional handover is a handover in which the terminal device executes the handover procedure when the conditional handover execution condition set in the terminal device is satisfied.
 (3)基地局装置と通信する端末装置の方法であって、前記端末装置は、前記基地局装置からRRCメッセージを受信し、前記RRCメッセージに従って前記端末装置に設定を行い、
 前記端末装置の第1のタイマーが満了した事に基づいて、ハンドオーバ失敗の処理を行い、前記ハンドオーバ失敗の処理において、少なくとも第1の条件を満たしている事に基づいて、一部又は全ての無線ベアラに対し、前記端末装置の設定のうち、一部の設定を保持し、少なくとの前記一部の設定を除く設定をソースPCellで使用されていた設定に戻す処理を行い、前記ハンドオーバ失敗の処理において、少なくとも前記第1の条件を満たしていない事に基づいて、前記端末装置の設定を前記ソースPCellで使用されていた設定に戻す処理を行い、前記第1の条件には、前記端末装置に第1の設定が行われている事、及び前記端末装置が行った条件付きハンドオーバが鍵更新を伴わない事を少なくとも含み、前記条件付きハンドオーバとは、前記端末装置に設定されている条件付きハンドオーバ実行条件が満たされた時に、端末装置によりハンドオーバ手順を実行するハンドオーバである。
(3) A method of a terminal device that communicates with a base station device, wherein the terminal device receives an RRC message from the base station device, sets the terminal device according to the RRC message, and sets the terminal device.
Based on the expiration of the first timer of the terminal device, the handover failure process is performed, and in the handover failure process, a part or all of the radios are based on the fact that at least the first condition is satisfied. For the bearer, some of the settings of the terminal device are retained, and at least the settings other than some of the settings are returned to the settings used in the source PCell, and the handover failure occurs. In the process, based on the fact that at least the first condition is not satisfied, the process of returning the setting of the terminal device to the setting used in the source PCell is performed, and the first condition is the terminal device. The first setting is made in, and at least the conditional handover performed by the terminal device is not accompanied by the key update, and the conditional handover is the conditional handover set in the terminal device. This is a handover in which the terminal device executes the handover procedure when the handover execution condition is satisfied.
 (4)端末装置と通信を行う基地局装置の方法であって、前記基地局装置は前記端末装置にRRCメッセージを送信し、前記RRCメッセージに従って前記端末装置に設定を行わせ、前記端末装置の第1のタイマーが満了した事に基づいて、前記端末装置にハンドオーバ失敗の処理を行わせ、前記ハンドオーバ失敗の処理において、少なくとも第1の条件を満たしている事に基づいて、一部又は全ての無線ベアラに対し、前記端末装置の設定のうち、一部の設定を保持し、少なくとの前記一部の設定を除く設定をソースPCellで使用されていた設定に戻す処理を行わせ、前記ハンドオーバ失敗の処理において、少なくとも前記第1の条件を満たしていない事に基づいて、前記端末装置の設定を前記ソースPCellで使用されていた設定に戻す処理を行わせ、前記第1の条件には、前記端末装置に第1の設定が行われている事、及び前記端末装置が行った条件付きハンドオーバが鍵更新を伴わない事を少なくとも含み、前記条件付きハンドオーバとは、前記端末装置に設定されている条件付きハンドオーバ実行条件が満たされた時に、端末装置によりハンドオーバ手順を実行するハンドオーバである。 (4) A method of a base station device that communicates with a terminal device, wherein the base station device sends an RRC message to the terminal device, causes the terminal device to make settings according to the RRC message, and causes the terminal device to perform settings. Based on the fact that the first timer has expired, the terminal device is made to perform the handover failure processing, and a part or all of the handover failure processing is based on the fact that at least the first condition is satisfied. The wireless bearer is made to retain some of the settings of the terminal device and return the settings excluding at least some of the settings to the settings used in the source PCell, and the handover is performed. In the failure process, at least based on the fact that the first condition is not satisfied, the process of returning the setting of the terminal device to the setting used in the source PCell is performed, and the first condition is set to the first condition. The conditional handover is set in the terminal device, at least including that the first setting is made in the terminal device and that the conditional handover performed by the terminal device is not accompanied by a key update. This is a handover in which the terminal device executes the handover procedure when the conditional handover execution condition is satisfied.
 (5)前記(1)から(4)に記載の第1の設定とは、ハンドオーバ失敗の後で最初に選択したセルが、前記条件付きハンドオーバ設定に含まれるターゲット候補SpCellの1つである場合、前記ターゲット候補SpCellに対し、条件付き再設定を行う事を示す設定である。 (5) The first setting according to (1) to (4) is the case where the cell first selected after the handover failure is one of the target candidate SpCells included in the conditional handover setting. , It is a setting indicating that conditional resetting is performed for the target candidate SpCell.
 本発明の一態様に関わる装置で動作するプログラムは、本発明の一態様に関わる上述した実施形態の機能を実現するように、Central Processing Unit(CPU)等を制御してコンピュ-タを機能させるプログラムであっても良い。プログラムあるいはプログラムによって取り扱われる情報は、処理時に一時的にRandom Access Memory(RAM)などの揮発性メモリに読み込まれ、あるいはフラッシュメモリなどの不揮発性メモリやHard Disk Drive(HDD)に格納され、必要に応じてCPUによって読み出し、修正・書き込みが行なわれる。 The program operating on the apparatus according to one aspect of the present invention controls the Central Processing Unit (CPU) and the like to operate the computer so as to realize the functions of the above-described embodiment related to the one aspect of the present invention. It may be a program. The program or the information handled by the program is temporarily read into volatile memory such as Random Access Memory (RAM) at the time of processing, or stored in non-volatile memory such as flash memory or Hard Disk Drive (HDD), and is required. The CPU reads, corrects, and writes accordingly.
 なお、上述した実施形態における装置の一部、をコンピュ-タで実現するようにしてもよい。その場合、この制御機能を実現するためのプログラムをコンピュ-タが読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュ-タシステムに読み込ませ、実行することによって実現してもよい。ここでいう「コンピュ-タシステム」とは、装置に内蔵されたコンピュ-タシステムであって、オペレ-ティングシステムや周辺機器等のハ-ドウェアを含むものとする。また、「コンピュ-タが読み取り可能な記録媒体」とは、半導体記録媒体、光記録媒体、磁気記録媒体等のいずれであってもよい。 It should be noted that a part of the apparatus in the above-described embodiment may be realized by a computer. In that case, the program for realizing this control function is recorded on a recording medium that can be read by the computer, and the program recorded on this recording medium is read by the computer system and executed. May be good. The "computer system" as used herein is a computer system built into the device, and includes hardware such as an operating system and peripheral devices. Further, the "recording medium that can be read by a computer" may be any of a semiconductor recording medium, an optical recording medium, a magnetic recording medium, and the like.
 さらに「コンピュ-タが読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュ-タシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュ-タシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。 Furthermore, a "recording medium that can be read by a computer" is a communication line that dynamically holds a program for a short time, like a communication line when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. It may also include a program that holds a program for a certain period of time, such as a volatile memory inside a computer system that is a server or a client in that case. Further, the above program may be for realizing a part of the above-mentioned functions, and may be further realized by combining the above-mentioned functions with a program already recorded in the computer system. ..
 また、上述した実施形態に用いた装置の各機能ブロック、または諸特徴は、電気回路、すなわち典型的には集積回路あるいは複数の集積回路で実装または実行され得る。本明細書で述べられた機能を実行するように設計された電気回路は、汎用用途プロセッサ、デジタルシグナルプロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、またはその他のプログラマブル論理デバイス、ディスクリートゲートまたはトランジスタロジック、ディスクリートハードウェア部品、またはこれらを組み合わせたものを含んでよい。汎用用途プロセッサは、マイクロプロセッサであってもよいし、代わりにプロセッサは従来型のプロセッサ、コントロ-ラ、マイクロコントロ-ラ、またはステ-トマシンであってもよい。汎用用途プロセッサ、または前述した各回路は、デジタル回路で構成されていてもよいし、アナログ回路で構成されていてもよい。また、半導体技術の進歩により現在の集積回路に代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。 Further, each functional block or feature of the device used in the above-described embodiment can be implemented or executed in an electric circuit, that is, typically an integrated circuit or a plurality of integrated circuits. Electrical circuits designed to perform the functions described herein are general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or others. Programmable Logic Devices, Discrete Gate or Transistor Logic, Discrete Hardware Components, or Combinations thereof. The general purpose processor may be a microprocessor or instead the processor may be a conventional processor, controller, microprocessor, or steady machine. The general-purpose processor or each of the circuits described above may be composed of a digital circuit or an analog circuit. In addition, when an integrated circuit technology that replaces the current integrated circuit appears due to advances in semiconductor technology, it is also possible to use an integrated circuit based on this technology.
 なお、本願発明は上述の実施形態に限定されるものではない。実施形態では、装置の一例を記載したが、本願発明は、これに限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、たとえば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などの端末装置もしくは通信装置に適用出来る。 The invention of the present application is not limited to the above-described embodiment. In the embodiment, an example of the device has been described, but the present invention is not limited to this, and the present invention is not limited to this, and the stationary or non-movable electronic device installed indoors and outdoors, for example, an AV device, a kitchen device, and the like. It can be applied to terminal devices or communication devices such as cleaning / washing equipment, air conditioning equipment, office equipment, vending machines, and other living equipment.
 以上、この発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本発明の一態様は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。 As described above, the embodiment of the present invention has been described in detail with reference to the drawings, but the specific configuration is not limited to this embodiment, and design changes and the like within a range not deviating from the gist of the present invention are also included. Further, one aspect of the present invention can be variously modified within the scope of the claims, and the technical aspects of the present invention can also be obtained by appropriately combining the technical means disclosed in the different embodiments. Included in the range. Further, the elements described in the above-described embodiment include a configuration in which elements having the same effect are replaced with each other.
 本発明の一態様は、例えば、通信システム、通信機器(例えば、携帯電話装置、基地局装置、無線LAN装置、或いはセンサーデバイス)、集積回路(例えば、通信チップ)、又はプログラム等において、利用することができる。 One aspect of the present invention is used in, for example, a communication system, a communication device (for example, a mobile phone device, a base station device, a wireless LAN device, or a sensor device), an integrated circuit (for example, a communication chip), a program, or the like. be able to.
100 E-UTRA
102 eNB
104 EPC
106 NR
108 gNB
110 5GC
112、114、116,118、120、124 インタフェース
122 UE
200、300 PHY
202、302 MAC
204、304 RLC
206、306 PDCP
208、308 RRC
310 SDAP
210、312 NAS
500、604 受信部
502、602 処理部
504、600 送信部
100 E-UTRA
102 eNB
104 EPC
106 NR
108 gNB
110 5GC
112, 114, 116, 118, 120, 124 interfaces
122 UE
200, 300 PHY
202, 302 MAC
204, 304 RLC
206, 306 PDCP
208, 308 RRC
310 SDAP
210, 312 NAS
500, 604 receiver
502, 602 Processing unit
504, 600 transmitter

Claims (6)

  1.  基地局装置と通信する端末装置であって、
     前記端末装置は、前記基地局装置からRRCメッセージを受信する受信部と、処理部と、を備え、
     前記処理部は、前記RRCメッセージに従って前記端末装置に設定を行い、
     前記端末装置の第1のタイマーが満了した事に基づいて、ハンドオーバ失敗の処理を行い、
     前記ハンドオーバ失敗の処理において、少なくとも第1の条件を満たしている事に基づいて、一部又は全ての無線ベアラに対し、前記端末装置の設定のうち、一部の設定を保持し、少なくとの前記一部の設定を除く設定をソースPCellで使用されていた設定に戻す処理を行い、
     前記ハンドオーバ失敗の処理において、少なくとも前記第1の条件を満たしていない事に基づいて、前記端末装置の設定を前記ソースPCellで使用されていた設定に戻す処理を行い、
     前記第1の条件には、前記端末装置に第1の設定が行われている事、及び前記端末装置が行った条件付きハンドオーバが鍵更新を伴わない事を少なくとも含み、
     前記条件付きハンドオーバとは、前記端末装置に設定されている条件付きハンドオーバ実行条件が満たされた時に、端末装置によりハンドオーバ手順を実行するハンドオーバである、
     端末装置。
    A terminal device that communicates with a base station device.
    The terminal device includes a receiving unit for receiving an RRC message from the base station device and a processing unit.
    The processing unit sets the terminal device according to the RRC message, and sets the terminal device.
    Based on the fact that the first timer of the terminal device has expired, the handover failure process is performed.
    Based on the fact that at least the first condition is satisfied in the handover failure processing, some or all of the wireless bearers retain some of the settings of the terminal device, and at least. Perform the process to return the settings except some of the above settings to the settings used in the source PCell.
    In the handover failure process, a process of returning the setting of the terminal device to the setting used in the source PCell is performed based on the fact that at least the first condition is not satisfied.
    The first condition includes at least that the first setting is made in the terminal device and that the conditional handover performed by the terminal device does not involve key update.
    The conditional handover is a handover in which the terminal device executes a handover procedure when the conditional handover execution condition set in the terminal device is satisfied.
    Terminal device.
  2.  前記第1の設定とは、ハンドオーバ失敗の後で最初に選択したセルが、前記条件付きハンドオーバ設定に含まれるターゲット候補SpCellの1つである場合、前記ターゲット候補SpCellに対し、条件付き再設定を行う事を示す設定である、
     請求項1に記載の端末装置。
    The first setting means that if the first cell selected after the handover failure is one of the target candidate SpCells included in the conditional handover setting, the target candidate SpCell is conditionally reset. It is a setting that indicates what to do,
    The terminal device according to claim 1.
  3.  端末装置と通信を行う基地局装置であって、
     前記基地局装置は前記端末装置にRRCメッセージを送信する送信部と、処理部と、を備え、
     前記処理部は、前記RRCメッセージに従って前記端末装置に設定を行わせ、
     前記端末装置の第1のタイマーが満了した事に基づいて、前記端末装置にハンドオーバ失敗の処理を行わせ、
     前記ハンドオーバ失敗の処理において、少なくとも第1の条件を満たしている事に基づいて、一部又は全ての無線ベアラに対し、前記端末装置の設定のうち、一部の設定を保持し、少なくとの前記一部の設定を除く設定をソースPCellで使用されていた設定に戻す処理を行わせ、
     前記ハンドオーバ失敗の処理において、少なくとも前記第1の条件を満たしていない事に基づいて、前記端末装置の設定を前記ソースPCellで使用されていた設定に戻す処理を行わせ、
     前記第1の条件には、前記端末装置に第1の設定が行われている事、及び前記端末装置が行った条件付きハンドオーバが鍵更新を伴わない事を少なくとも含み、
     前記条件付きハンドオーバとは、前記端末装置に設定されている条件付きハンドオーバ実行条件が満たされた時に、端末装置によりハンドオーバ手順を実行するハンドオーバである、
     基地局装置。
    A base station device that communicates with a terminal device.
    The base station device includes a transmission unit for transmitting an RRC message to the terminal device and a processing unit.
    The processing unit causes the terminal device to make settings according to the RRC message.
    Based on the fact that the first timer of the terminal device has expired, the terminal device is made to process the handover failure.
    Based on the fact that at least the first condition is satisfied in the handover failure processing, some or all of the wireless bearers retain some of the settings of the terminal device, and at least. Perform the process to return the settings other than some of the above settings to the settings used in the source PCell.
    In the handover failure process, the process of returning the setting of the terminal device to the setting used in the source PCell is performed based on the fact that at least the first condition is not satisfied.
    The first condition includes at least that the first setting is made in the terminal device and that the conditional handover performed by the terminal device does not involve key update.
    The conditional handover is a handover in which the terminal device executes a handover procedure when the conditional handover execution condition set in the terminal device is satisfied.
    Base station equipment.
  4.  前記第1の設定とは、ハンドオーバ失敗の後で最初に選択したセルが、前記条件付きハンドオーバ設定に含まれるターゲット候補SpCellの1つである場合、前記ターゲット候補SpCellに対し、条件付き再設定を行う事を示す設定である、
     請求項3に記載の基地局装置。
    The first setting means that if the first cell selected after the handover failure is one of the target candidate SpCells included in the conditional handover setting, the target candidate SpCell is conditionally reset. It is a setting that indicates what to do,
    The base station apparatus according to claim 3.
  5.  基地局装置と通信する端末装置の方法であって、
     前記端末装置は、前記基地局装置からRRCメッセージを受信し、
     前記RRCメッセージに従って前記端末装置に設定を行い、
     前記端末装置の第1のタイマーが満了した事に基づいて、ハンドオーバ失敗の処理を行い、
     前記ハンドオーバ失敗の処理において、少なくとも第1の条件を満たしている事に基づいて、一部又は全ての無線ベアラに対し、前記端末装置の設定のうち、一部の設定を保持し、少なくとの前記一部の設定を除く設定をソースPCellで使用されていた設定に戻す処理を行い、
     前記ハンドオーバ失敗の処理において、少なくとも前記第1の条件を満たしていない事に基づいて、前記端末装置の設定を前記ソースPCellで使用されていた設定に戻す処理を行い、
     前記第1の条件には、前記端末装置に第1の設定が行われている事、及び前記端末装置が行った条件付きハンドオーバが鍵更新を伴わない事を少なくとも含み、
     前記条件付きハンドオーバとは、前記端末装置に設定されている条件付きハンドオーバ実行条件が満たされた時に、端末装置によりハンドオーバ手順を実行するハンドオーバである、
     方法。
    It is a method of a terminal device that communicates with a base station device.
    The terminal device receives an RRC message from the base station device and receives an RRC message.
    Set the terminal device according to the RRC message, and set it.
    Based on the fact that the first timer of the terminal device has expired, the handover failure process is performed.
    Based on the fact that at least the first condition is satisfied in the handover failure processing, some or all of the wireless bearers retain some of the settings of the terminal device, and at least. Perform the process to return the settings except some of the above settings to the settings used in the source PCell.
    In the handover failure process, a process of returning the setting of the terminal device to the setting used in the source PCell is performed based on the fact that at least the first condition is not satisfied.
    The first condition includes at least that the first setting is made in the terminal device and that the conditional handover performed by the terminal device does not involve key update.
    The conditional handover is a handover in which the terminal device executes a handover procedure when the conditional handover execution condition set in the terminal device is satisfied.
    Method.
  6.  前記第1の設定とは、ハンドオーバ失敗の後で最初に選択したセルが、前記条件付きハンドオーバ設定に含まれるターゲット候補SpCellの1つである場合、前記ターゲット候補SpCellに対し、条件付き再設定を行う事を示す設定である、
     請求項5に記載の方法。
    The first setting means that if the first cell selected after the handover failure is one of the target candidate SpCells included in the conditional handover setting, the target candidate SpCell is conditionally reset. It is a setting that indicates what to do,
    The method according to claim 5.
PCT/JP2021/046589 2020-12-18 2021-12-16 Terminal device, base station device, and method WO2022131342A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022570062A JPWO2022131342A1 (en) 2020-12-18 2021-12-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020210122 2020-12-18
JP2020-210122 2020-12-18

Publications (1)

Publication Number Publication Date
WO2022131342A1 true WO2022131342A1 (en) 2022-06-23

Family

ID=82059508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046589 WO2022131342A1 (en) 2020-12-18 2021-12-16 Terminal device, base station device, and method

Country Status (2)

Country Link
JP (1) JPWO2022131342A1 (en)
WO (1) WO2022131342A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024094056A1 (en) * 2022-11-01 2024-05-10 夏普株式会社 Information reporting method and user equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHARP: "Correction of reconfiguration with sync failure procedure for the UE configured with attemptCondReconfig", 3GPP DRAFT; R2-2010206, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. electronic; 20201102 - 20201113, 23 October 2020 (2020-10-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051942887 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024094056A1 (en) * 2022-11-01 2024-05-10 夏普株式会社 Information reporting method and user equipment

Also Published As

Publication number Publication date
JPWO2022131342A1 (en) 2022-06-23

Similar Documents

Publication Publication Date Title
WO2022085640A1 (en) Terminal device, base station device, and method
WO2021065903A1 (en) Terminal device, and communication method
EP4224914A1 (en) Terminal device, communication method, and base station device
WO2021221009A1 (en) Terminal device, method, and integrated circuit
WO2022131342A1 (en) Terminal device, base station device, and method
WO2022085664A1 (en) Terminal device, base station device, and method
WO2022080300A1 (en) Terminal device and method
WO2022085663A1 (en) Method and integrated circuit
WO2022080419A1 (en) Terminal device, base station device, and method
WO2022080306A1 (en) Terminal device, base station device, and method
US20230247687A1 (en) Terminal apparatus, base station apparatus, and method
US20230309185A1 (en) Terminal apparatus, base station apparatus, and method
WO2022138567A1 (en) Terminal device, base station device, and method
WO2022080339A1 (en) Terminal device and method
WO2022080304A1 (en) Terminal device, base station device, and method
WO2022080301A1 (en) Terminal device and method
JP7494064B2 (en) Terminal device, base station device, method, and integrated circuit
WO2022255279A1 (en) Terminal device, base station device, and method
WO2022255293A1 (en) Terminal device, base station device, and method
WO2022255303A1 (en) Terminal device, base station device, and method
WO2022255288A1 (en) Terminal device, base station device, and method
WO2022255305A1 (en) Terminal device, base station device, and method
WO2023276947A1 (en) Terminal device, base station device, and method
WO2022080341A1 (en) Terminal device, base station device, and method
WO2023008043A1 (en) Terminal device, method, and integrated circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906702

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022570062

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21906702

Country of ref document: EP

Kind code of ref document: A1