Nothing Special   »   [go: up one dir, main page]

WO2022118559A1 - Light emission medical apparatus - Google Patents

Light emission medical apparatus Download PDF

Info

Publication number
WO2022118559A1
WO2022118559A1 PCT/JP2021/038866 JP2021038866W WO2022118559A1 WO 2022118559 A1 WO2022118559 A1 WO 2022118559A1 JP 2021038866 W JP2021038866 W JP 2021038866W WO 2022118559 A1 WO2022118559 A1 WO 2022118559A1
Authority
WO
WIPO (PCT)
Prior art keywords
window
shaft
tubular member
light
medical device
Prior art date
Application number
PCT/JP2021/038866
Other languages
French (fr)
Japanese (ja)
Inventor
弘規 ▲高▼田
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2022566781A priority Critical patent/JPWO2022118559A1/ja
Publication of WO2022118559A1 publication Critical patent/WO2022118559A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/02Holding devices, e.g. on the body
    • A61M25/04Holding devices, e.g. on the body in the body, e.g. expansible
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light

Definitions

  • the present invention relates to a light irradiation medical device for irradiating tissues such as cancer cells with light in internal lumens such as blood vessels and gastrointestinal tracts.
  • a photosensitizer is administered into the body by intravenous injection or intraperitoneal administration, and the photosensitizer is accumulated in the target tissue such as cancer cells, resulting in light of a specific wavelength.
  • the photosensitizer is excited by irradiating with. When the excited photosensitizer returns to the ground state, energy transformation occurs, generating reactive oxygen species.
  • the target tissue can be removed by the active oxygen species attacking the target tissue. Further, in ablation (tissue cauterization) using laser light, the target tissue is irradiated with laser light and cauterized.
  • an optical fiber is arranged in the catheter tube to irradiate the target tissue with light.
  • Patent Document 1 discloses a device including a balloon catheter having a specified treatment window that supplies irradiation to a specified area.
  • the device includes a central channel and an outer sleeve.
  • the central channel is transparent into which the fiber optic probe can be inserted.
  • the outer sleeve is an outer sleeve having a proximal end and a distal end used to inflate the balloon, further comprising an inflatable balloon in the vicinity of the distal end, wherein the balloon is treated at both ends. It is coated with a reflective material to define the window.
  • Patent Document 2 discloses an ablation device including a shaft, a balloon, a first lumen, a second lumen, a light guide material, a diffusion member, and a tubular member.
  • the balloon is provided on the tip end side of the shaft and is elastically inflatable.
  • the first lumen is formed along the shaft and is for allowing fluid to flow into the balloon.
  • the second lumen is formed along the shaft and is for draining the fluid from the balloon.
  • the light guide material is provided along the shaft and guides the laser beam into the balloon.
  • the diffusing member reflects or diffuses the laser light emitted from the light guide material in the balloon in a direction intersecting the first direction in which the light guide material is extended.
  • the tubular member is provided in the balloon and surrounds the diffusion member, and has a reflective layer on the inner surface side thereof that reflects or blocks the laser light reflected or diffused by the diffusion member, and the laser light is transmitted. It has a transmission window that allows light to pass through to the outside of the reflective layer.
  • Patent Document 3 discloses that a photosensitizer is administered using a delivery device in photodynamic therapy for treating a prostate disorder.
  • the delivery device includes a channel inside which the guide wire is insertably received.
  • the activation energy is delivered utilizing an irradiation device that includes an energy source and a channel within which a guide wire can be inserted and received.
  • the guide wire is used to position the delivery device and / or the irradiation device.
  • Patent Document 3 also discloses that the irradiation device can be slid, that is, rotated in the lateral direction along the guide wire.
  • the irradiation position of light is determined by the treatment window provided on the balloon. Therefore, in order to change the irradiation position after expanding the balloon and fixing it in the body, it is necessary to contract the balloon and then move or rotate the catheter to the distal side or the proximal side, which is complicated. there were.
  • the light irradiation position is determined by the transmission window provided in the tubular member connected to the light guide material (optical fiber). Therefore, in order to adjust the irradiation position, it is necessary to move or rotate the light guide material to the distal side or the proximal side, and this operation may damage the light guide material.
  • an object of the present invention is to provide a light irradiation medical device capable of adjusting the irradiation position and irradiation range of the emitted light while preventing damage to the optical fiber.
  • One embodiment of the light irradiation medical device of the present invention that has achieved the above object is a shaft having a first end and a second end in the longitudinal direction, and a cavity extending in the longitudinal direction.
  • a first cylinder that is arranged in the cavity of the shaft and is rotatable around a rotation axis parallel to the longitudinal direction of the shaft, and has a first window provided in a part of the peripheral wall at the distal portion.
  • a second window which is arranged in the lumen of the member and the first cylindrical member, is rotatable around a rotation axis parallel to the longitudinal direction of the shaft, and has a second window on a part of the peripheral wall at the distal portion.
  • a two-cylindrical member and a light guide device arranged in the cavity of the second tubular member and movable in the longitudinal axis direction of the shaft are provided, and the light guide device is an optical fiber extending in the longitudinal axis direction.
  • the optical fiber has a core and a clad that covers the radial outer side of the core, and has a non-existent portion of the clad in a part of the distal portion of the core, and is a light guide device.
  • the gist is that the emitted light from the cylinder passes through the first window and the second window.
  • the irradiation position of the emitted light can be adjusted by adjusting the positions where the first window and the second window overlap in the circumferential direction and the longitudinal axis direction of the shaft.
  • the irradiation range of the emitted light can be adjusted by adjusting how the first window and the second window overlap. Since the irradiation position and range can be adjusted without rotating the light guide device in this way, damage to the optical fiber can be prevented.
  • the first window may be longer than the second window in the circumferential direction of the shaft. Further, the first window may be longer than the second window in the longitudinal axis direction of the shaft.
  • the first tubular member may be made of a material having a lower emission light passage than the first window
  • the second tubular member may be made of a material having a lower emission light passage than the second window.
  • a first transparent member that transmits emitted light may be arranged in the first window.
  • a second transparent member that transmits emitted light may be arranged in the second window.
  • the length of the first window and the second window in the longitudinal axis direction of the shaft may be larger than the length in the circumferential direction of the shaft, respectively.
  • the first window and the second window may be provided within a range of a quarter length of the entire circumference of the shaft in the circumferential direction of the shaft, respectively.
  • the first window and the second window may be longer than the non-existent portion of the clad.
  • An expansion portion that expands outward in the radial direction of the shaft may be further provided at the distal portion of the shaft.
  • the extension may be a balloon, a basket with multiple elastic wires, or a self-expandable stent.
  • the first cylindrical member and the second tubular member may each have a first section in which a reinforcing material containing metal is arranged.
  • the first tubular member is located distal to the first section of the first tubular member and further has a second section in which no reinforcing material is arranged, and the second tubular member is a second tubular member. It is located on the distal side of the first section of the above and further has a second section in which no reinforcing material is arranged, the first window is arranged in the second section of the first tubular member, and the first tubular member.
  • the second window may not be arranged in the first section of the second tubular member, and may not be arranged in the second section of the second tubular member.
  • the first tubular member is located proximal to the first section of the first tubular member and further has a third section composed of metal pipes
  • the second tubular member is the second cylinder. It may further have a third section, which is located proximal to the first section of the shaped member and is composed of a metal pipe.
  • a support portion for supporting the distal portion of the light guide device may be further provided at the distal end portion of the shaft.
  • a reflective material that refracts the emitted light from the core toward the second window may be arranged on the inner surface of the second tubular member.
  • the light guide device may have a protective tube that covers the optical fiber and has light transmission.
  • the first cylindrical member has a position display portion indicating the position of the first window at its distal end
  • the second tubular member has a position display portion indicating the position of the second window at its distal end. You may be doing it.
  • the light guide device may not rotate about an axis parallel to the longitudinal axis of the shaft with respect to the shaft.
  • the irradiation position of the emitted light can be adjusted by adjusting the position where the first window and the second window overlap in the circumferential direction and the longitudinal axis direction of the shaft.
  • the irradiation range of the emitted light can be adjusted by adjusting how the first window and the second window overlap. Since the irradiation position and range can be adjusted without rotating the light guide device in this way, damage to the optical fiber can be prevented.
  • FIG. 1 shows an enlarged cross-sectional view of the distal side of the light irradiation medical device shown in FIG.
  • FIG. 2 shows a sectional view taken along line III-III of the light irradiation medical device shown in FIG.
  • a cross-sectional view showing a modified example of the light irradiation medical device shown in FIG. 3 is shown.
  • a cross-sectional view showing another modification of the light irradiation medical device shown in FIG. 3 is shown.
  • a perspective view of the first cylindrical member shown in FIG. 1 is shown.
  • the perspective view of the 2nd cylindrical member shown in FIG. 1 is shown.
  • a perspective view showing a modified example of the first tubular member shown in FIG. 6 is shown.
  • a perspective view showing a modified example of the second tubular member shown in FIG. 7 is shown.
  • FIG. 8 shows a perspective view showing a modified example of the first tubular member shown in FIG.
  • a perspective view showing a modified example of the second tubular member shown in FIG. 9 is shown.
  • a cross-sectional view (partial side view) showing a modified example of the light irradiation medical device shown in FIG. 2 is shown.
  • a cross-sectional view showing another modification of the light irradiation medical device shown in FIG. 2 is shown.
  • One embodiment of the light irradiation medical device of the present invention is a shaft having a first end and a second end in the longitudinal axis direction, a shaft having a lumen extending in the longitudinal axis direction, and the inside of the shaft.
  • a second cylindrical member which is located in the cavity of the member, is rotatable around a rotation axis parallel to the longitudinal axis of the shaft, and has a second window on a part of the peripheral wall at the distal end.
  • the light guide device is arranged in the lumen of the two cylindrical members and is movable in the longitudinal axis direction of the shaft, and the light guide device has an optical fiber extending in the longitudinal axis direction. It has a core and a clad that covers the radial outer side of the core, and has a non-existent part of the clad in a part of the distal portion of the core, and the emitted light from the light guide device is the first. It has a gist in that it passes through the window and the second window.
  • the irradiation position of the emitted light can be adjusted by adjusting the positions where the first window and the second window overlap in the circumferential direction and the longitudinal axis direction of the shaft.
  • the irradiation range of the emitted light can be adjusted by adjusting how the first window and the second window overlap. Since the irradiation position and range can be adjusted without rotating the light guide device in this way, damage to the optical fiber can be prevented.
  • the light irradiation medical device is used in PDT and optical ablation to irradiate a treated portion, which is a target tissue such as a cancer cell, with light of a specific wavelength in an internal lumen such as a blood vessel or a digestive tract.
  • the light irradiation medical device may be delivered to the treatment unit alone, or may be used together with a delivery catheter or an endoscope.
  • endoscopic treatment a light-irradiated medical device is placed in the body through the forceps channel of the endoscope and delivered to the treatment site.
  • the light irradiation medical device may be simply referred to as a device.
  • FIG. 1 shows a side view (partial sectional view) of a light irradiation medical device according to an embodiment of the present invention.
  • FIG. 2 shows an enlarged cross-sectional view of the distal side of the device shown in FIG.
  • FIG. 3 represents a III-III cross-sectional view of the apparatus shown in FIG.
  • the light irradiation medical device 1 includes a shaft 2, a first cylindrical member 10, a second tubular member 20, and a light guide device 30.
  • the distal side of the device 1 refers to the first end side of the shaft 2 in the longitudinal axis direction x and the treatment target side.
  • the proximal side of the device 1 is the second end side of the shaft 2 in the longitudinal axis direction x and refers to the hand side of the user (operator).
  • the proximal side may be referred to as a proximal portion and the distal side may be referred to as a distal portion.
  • each member constituting the device 1 has biocompatibility.
  • the shaft 2 has a longitudinal axis direction x, a radial direction y, and a circumferential direction p.
  • the shaft 2 has a first end and a second end in the longitudinal axis direction x, and has a lumen 3 extending in the longitudinal axis direction x.
  • the first end may correspond to the distal end of the shaft 2 and the second end may correspond to the proximal end of the shaft 2.
  • the shaft 2 has a tubular structure for arranging the first tubular member 10, the second tubular member 20, and the light guide device 30 in the lumen 3. Further, since the shaft 2 is inserted into the body, it preferably has flexibility.
  • the shaft 2 is, for example, a polyolefin resin (for example, polyethylene or polypropylene), a polyamide resin (for example, nylon), a polyester resin (for example, PET), an aromatic polyether ketone resin (for example, PEEK), a polyether polyamide resin, or a polyurethane. It can be composed of a synthetic resin such as a resin, a polyimide resin, a fluororesin (for example, PTFE, PFA, ETFE), or a metal such as stainless steel, carbon steel, or nickel-titanium alloy. These may be used alone or in combination of two or more.
  • a synthetic resin such as a resin, a polyimide resin, a fluororesin (for example, PTFE, PFA, ETFE), or a metal such as stainless steel, carbon steel, or nickel-titanium alloy. These may be used alone or in combination of two or more.
  • the shaft 2 preferably contains a light-transmitting material.
  • the light-transmitting material include (meth) acrylic resin (for example, polymethylmethacrylate (PMMA)), polycarbonate resin (for example, polydiethylene glycol bisallyl carbonate (PC)), and polystyrene-based resin (for example, both methylmethacrylate and styrene).
  • acrylic resin for example, polymethylmethacrylate (PMMA)
  • polycarbonate resin for example, polydiethylene glycol bisallyl carbonate (PC)
  • polystyrene-based resin for example, both methylmethacrylate and styrene
  • synthetic resins such as polymerized resin (MS), acrylic nitrile styrene resin (SAN)), polyamide resin (for example, nylon), and polyolefin resin.
  • the shaft 2 preferably contains a light diffusing material.
  • the light from the light guide device 30 is appropriately diffused when passing through the shaft 2, so that the target tissue can be evenly irradiated with the light.
  • the light diffusible material include inorganic particles such as titanium oxide, barium sulfate and calcium carbonate, and organic particles such as crosslinked acrylic particles and crosslinked styrene particles.
  • a first handle 71 for the operator to grip the device 1 is connected to the proximal portion of the shaft 2.
  • a fluid feeder may be connected to the first handle 71.
  • the fluid feeder is for supplying fluid to the inside of the balloon 41 through the lumen 3, and examples thereof include a syringe.
  • the first tubular member 10 is arranged in the lumen 3 of the shaft 2 and is rotatable around a rotation axis parallel to the longitudinal axis direction x.
  • a first window 12 is provided on a part of the peripheral wall at the distal portion of the first tubular member 10.
  • the second tubular member 20 is arranged in the lumen 11 of the first tubular member 10 and is rotatable around a rotation axis parallel to the longitudinal axis direction x of the shaft 2.
  • a second window 22 is provided on a part of the peripheral wall at the distal portion of the second tubular member 20.
  • the light guide device 30 is arranged in the lumen 21 of the second tubular member 20 and is movable in the longitudinal axis direction x of the shaft 2.
  • the light guide device 30 has an optical fiber 31 extending in the longitudinal direction x of the shaft 2.
  • the optical fiber 31 has a core 32 and a clad 33 that covers the radial outer side of the core 32, and has a clad non-existent portion 34 in a part of the distal portion of the core 32.
  • the emitted light from the light guide device 30 passes through the first window 12 and the second window 22.
  • the irradiation position of the emitted light can be adjusted by adjusting the positions where the first window 12 and the second window 22 overlap in the longitudinal axis direction x and the circumferential direction p of the shaft 2.
  • the irradiation range of the emitted light can be adjusted by adjusting the way in which the first window 12 and the second window 22 overlap. Since the irradiation position and range can be adjusted without rotating the light guide device 30 in this way, damage to the optical fiber 31 can be prevented.
  • a guide wire can be inserted into the lumen 21 of the second tubular member 20 before the light guide device 30 is inserted.
  • the guide wire is used to deliver the shaft 2 to the target tissue. That is, the device 1 may include a guide wire that extends in the longitudinal axis direction x of the shaft 2 and can be inserted into the lumen 21 of the second tubular member 20. The guide wire may be removed before the light guide device 30 is inserted into the lumen 21 of the second tubular member 20.
  • the optical fiber 31 of the light guide device 30 is a transmission line that transmits an optical signal to the target tissue.
  • the connector 35 provided at the proximal end of the light guide device 30 is connected to a light source such as a semiconductor laser.
  • the optical fiber 31 has a core 32 and a clad 33 that covers the radial outer side of the core 32, and has a clad non-existent portion 34 in a part of the distal portion of the core 32.
  • the material constituting the core 32 and the clad 33 is not particularly limited, and glass such as plastic, quartz glass, and fluoride glass can be used.
  • the non-existent portion 34 of the clad refers to a portion where the clad 33 does not exist at least in a part of the circumferential direction of the core 32, and is a light emitting area of the optical fiber 31.
  • the non-existent portion 34 of the clad may be simply referred to as a portion 34.
  • the side irradiation type device 1 can be configured.
  • the position where the non-existing portion 34 of the clad is provided in the longitudinal axis direction x of the shaft 2 is not particularly limited as long as it is a part of the distal portion of the core 32, but is provided at the portion including the distal end 32a of the core 32. It is preferable to have. This facilitates the formation of the portion 34 and also enhances the flexibility at the distal end of the light guide 30.
  • the position of the distal end 34a of the portion 34 coincides with the position of the distal end 32a of the core 32. This eliminates the difficult step of forming the portion 34 while leaving the clad 33 of the portion including the distal end of the optical fiber 31, so that the step of forming the light emitting area of the optical fiber 31 can be facilitated.
  • the non-existent portion 34 of the clad can be formed by peeling the clad 33, for example, by etching or polishing. It is more preferable to roughen the outer surface of the portion 34 by a method such as sanding. This makes it possible to improve the light diffusivity.
  • the light guide device 30 does not rotate about an axis parallel to the longitudinal axis direction x of the shaft 2 with respect to the shaft 2. As a result, it is not necessary to rotate the optical fiber 31 when adjusting the light irradiation position, so that damage to the optical fiber 31 can be prevented.
  • the first tubular member 10 is formed in a cylindrical shape having a distal portion and a proximal portion.
  • the first tubular member 10 can have one or more lumens 11. In order to reduce the outer diameter of the first tubular member 10, it is preferable that the first tubular member 10 is provided with only one lumen 11.
  • the second tubular member 20 is formed in a cylindrical shape having a distal portion and a proximal portion.
  • the second tubular member 20 can have one or more lumens 21. In order to reduce the outer diameter of the second tubular member 20, it is preferable that the second tubular member 20 is provided with only one lumen 21.
  • the first tubular member 10 and the second tubular member 20 are, for example, a polyolefin resin (for example, polyethylene or polypropylene), a polyamide resin (for example, nylon), a polyester resin (for example, PET), or an aromatic polyether ketone resin (for example).
  • a polyolefin resin for example, polyethylene or polypropylene
  • a polyamide resin for example, nylon
  • a polyester resin for example, PET
  • aromatic polyether ketone resin for example
  • synthetic resins such as PEEK
  • polyether polyamide resin polyurethane resin
  • polyimide resin polyimide resin
  • fluororesin for example, PTFE, PFA, ETFE
  • metals such as stainless steel, carbon steel, and nickel-titanium alloy.
  • the constituent materials of the shaft 2, the first cylindrical member 10, and the second tubular member 20 may be the same or different from each other.
  • the first tubular member 10 is made of a material having a lower permeability of emitted light than the first window 12.
  • the second tubular member 20 is made of a material having a lower permeability of emitted light than the second window 22.
  • the emitted light is less likely to pass through the portion of each tubular member without a window than the portion with a window, so that the irradiation position and irradiation range of the emitted light can be adjusted by the window.
  • a mode of opening the window and a mode of arranging a transparent member in the window can be mentioned.
  • the first window 12 and the second window 22 are opened, respectively, the inside and outside of the first cylindrical member 10 communicate with each other by the first window 12, and the second window 22 communicates with the inside and outside.
  • the inside and outside of the tubular member 20 may communicate with each other. Since the non-existent portion 34 of the clad can be exposed to the outside when the first window 12 and the second window 22 are overlapped with each other, light is easily emitted directly from the portion 34.
  • the opening of the window means that no other member is arranged in the window.
  • FIG. 4 is a cross-sectional view showing a modified example of the device 1 shown in FIG.
  • the first transparent member 13 that transmits the emitted light is arranged in the first window 12.
  • the second transparent member 23 that transmits the emitted light is arranged in the second window 22. This makes it possible to prevent liquids such as body fluids from entering the shaft 2.
  • the first transparent member 13 is arranged in the entire first window 12.
  • the second transparent member 23 is arranged in the entire second window 22. This makes it possible to enhance the effect of preventing the liquid from entering the shaft 2.
  • FIG. 5 is a cross-sectional view showing a modified example of the device 1 shown in FIG.
  • the first transparent member 13 may be arranged in the first window 12, and the second window 22 may be open. That is, the second transparent member 23 may not be arranged in the second window 22.
  • the first window 12 may be open (that is, the first transparent member 13 is not arranged), and the second transparent member 23 may be arranged in the second window 22. Even if a transparent member is provided on either the first window 12 or the second window 22, the liquid infiltration prevention effect can be obtained.
  • the first transparent member 13 may have a higher transmittance than the portion of the first tubular member 10 without the first window 12. Further, the second transparent member 23 may have a higher transmittance than the portion of the second tubular member 20 without the second window 22.
  • PMMA polymethylmethacrylate
  • Resins eg, polydiethylene glycol bisallyl carbonate (PC)
  • polystyrene-based resins eg, methylmethacrylate / styrene copolymer resin (MS), acrylic nitrile styrene resin (SAN)
  • polyamide resins eg, nylon
  • polyolefin resins etc. It can be composed of the synthetic resin of. These may be used alone or in combination of two or more.
  • the constituent materials of the first transparent member 13 and the second transparent member 23 may be the same or different from each other.
  • One or more first windows 12 can be provided for one first cylindrical member 10. Further, one or a plurality of second windows 22 can be provided for one second tubular member 20. In order to facilitate the adjustment of the irradiation position of the emitted light, only one first window 12 is provided in one first cylindrical member 10, and one second window 22 is provided in one second tubular member 20. It is preferable that only one is provided.
  • the first window 12 is arranged on the proximal side of the distal end 10a of the first tubular member 10.
  • the distal end 12a of the first window 12 may be located within 10 cm of the distal end 10a.
  • the second window 22 is preferably arranged proximal to the distal end 20a of the second tubular member 20.
  • the distal end 22a of the second window 22 may be located within 10 cm of the distal end 20a.
  • FIG. 6 shows a perspective view showing the overall configuration of the first tubular member 10 shown in FIG. 1
  • FIG. 7 shows a perspective view showing the overall configuration of the second tubular member 20 shown in FIG. 1.
  • the first window 12 is provided only in a part of the circumferential direction p of the shaft 2. That is, it is preferable that the first window 12 is not provided in the entire circumferential direction p of the shaft 2.
  • the first window 12 is more preferably provided within a half circumference of the shaft 2, and further preferably within a quarter length of the entire circumference of the shaft 2.
  • the second window 22 is provided only in a part of the circumferential direction p of the shaft 2.
  • the second window 22 is not provided in the entire circumferential direction p of the shaft 2. It is more preferable that the second window 22 is provided within the range of half the circumference of the shaft 2. It is more preferable that the shaft 2 is provided within a quarter length of the entire circumference. This makes it possible to selectively irradiate the emitted light in the circumferential direction of the shaft 2.
  • the length of the longitudinal axis direction x of the shaft 2 is larger than the length of the circumferential direction p of the shaft 2.
  • the length of the shaft 2 in the longitudinal axis direction x of the second window 22 is larger than the length of the circumferential direction p of the shaft 2. This makes it easier to irradiate the treated portion such as a lesion extending in the longitudinal axis direction of the biological tube wall.
  • the first window 12 is longer than the non-existent portion 34 of the clad in the longitudinal axis direction x of the shaft 2. Further, in the longitudinal direction x, it is preferable that the second window 22 is longer than the non-existent portion 34 of the clad. As a result, the emitted light can be emitted from a wide range in the longitudinal axis direction x. For the same reason, when the expansion portion 40 is the balloon 41, it is preferable that the first window 12 and the second window 22 are longer than the straight pipe portion 43a of the balloon 41 in the longitudinal direction x, respectively.
  • the shape of the first window 12 or the second window 22 when the tubular member is viewed from the radial direction is not particularly limited, but may be a circular shape, an oval shape, a polygonal shape, or a shape obtained by combining these. ..
  • the oval shape includes an elliptical shape, an egg shape, and a rectangular shape with rounded corners. The same applies to the following description.
  • the shape of the first window 12 and the shape of the second window 22 may be the same or different from each other. Further, the shape of the first window 12 and the shape of the second window 22 may be similar.
  • the sizes of the first window 12 and the second window 22 may be the same or different from each other.
  • the first window 12 is longer than the second window 22 in the longitudinal axis direction x of the shaft 2. Further, as shown in FIG. 3, it is preferable that the first window 12 is longer than the second window 22 in the circumferential direction p of the shaft 2. This makes it easier for the emitted light that has passed through the first window 12 to pass through the second window 22, so that irradiation can be performed efficiently.
  • a reflective material that refracts the emitted light from the core 32 toward the second window 22 is arranged on the inner surface of the second tubular member 20. It is more preferable that the reflective material is arranged on the inner peripheral wall surface of the second tubular member 20.
  • a method of coating the inner surface of the second tubular member 20 with a coating agent containing a reflective material can be mentioned. Since the emitted light is easily collected due to the presence of the reflective material, the emitted light can be efficiently irradiated.
  • the material of the reflective material include aluminum, gold, silver, copper, tin, titanium dioxide, tantalum pentoxide, aluminum oxide, silicon dioxide, magnesium fluoride or a combination thereof.
  • the first cylindrical member 10 may be composed of the resin tube 14 over the entire longitudinal axis direction. This makes it easier to form the first tubular member 10. Further, in order to facilitate the formation of the second tubular member 20, as shown in FIG. 7, the second tubular member 20 may be composed of the resin tube 24 over the entire longitudinal axis direction.
  • FIG. 8 shows a perspective view showing a modified example of the first tubular member 10 shown in FIG.
  • FIG. 9 shows a perspective view showing a modified example of the second tubular member 20 shown in FIG. 7.
  • the first tubular member 10 has a first section 10A in which the reinforcing member 15 containing metal is arranged.
  • the second tubular member 20 has a first section 20A in which the reinforcing member 25 containing metal is arranged.
  • the first section 10A extends in the longitudinal axis direction of the first tubular member 10
  • the first section 20A extends in the longitudinal axis direction of the second tubular member 20.
  • the reinforcing material may be formed in layers, or may be a single wire or stranded wire arranged in a specific pattern, braided, or wound in a coil shape. As a result, the strength and torque of the shaft 2 can be increased.
  • the first section may be formed by arranging a reinforcing material on the outer surface, the inner surface, or the wall of the resin tube.
  • the cross-sectional shape of the wire rod constituting the reinforcing material may be, for example, a circular shape, an oval shape, a polygonal shape, or a shape in which these are combined.
  • the material constituting the reinforcing material the description of the metal constituting the shaft 2 can be referred to.
  • the type of reinforcing material arrangement pattern is not particularly limited, and the number of coil turns and the density are not particularly limited.
  • the mesh structure and the coil may be formed at a constant density over the entire longitudinal axis direction of each tubular member, or may be formed at different densities depending on the position of the tubular member in the longitudinal axis direction.
  • the first cylindrical member 10 may be a coil member 16 formed by spirally winding one or a plurality of wire rods.
  • the second tubular member 20 may be a coil member 26 formed by spirally winding one or a plurality of wire rods.
  • the first section may be formed from the wire rod that functions as a reinforcing material in this way.
  • the first section can be formed by twisting a plurality of wires and forming a coreless coil.
  • the coil member is preferably a multi-layer coil in which a plurality of coils are stacked.
  • the multi-layer coil can be formed, for example, by winding a first wire around a core material to form a base coil, and then winding a second wire on the base coil.
  • the first tubular member 10 further has a second section 10B located distal to the first section 10A and to which the reinforcing member 15 is not arranged, and the first window 12 has. It is preferable that they are arranged in the second section 10B and not in the first section 10A.
  • the second tubular member 20 further has a second section 20B located on the distal side of the first section 20A and on which the reinforcing member 25 is not arranged, and has a second window. It is preferable that 22 is arranged in the second section 20B and not in the first section 20A.
  • the reinforcing material can enhance the torque transmission of the tubular member. Since no reinforcing material is arranged in the second section, it becomes easy to form a window.
  • the second section can be composed of, for example, a resin tube.
  • FIG. 10 shows a perspective view showing a modified example of the first tubular member 10 shown in FIG. 8, and FIG. 11 shows a perspective view showing a modified example of the second tubular member 20 shown in FIG.
  • the first tubular member 10 is located proximal to the first section 10A and further has a third section 10C composed of a metal pipe 17.
  • the second tubular member 20 is located proximal to the first section 20A and further has a third section 20C composed of a metal pipe 27. preferable.
  • the rigidity of the tubular member can be gradually increased toward the hand side.
  • a plurality of annular grooves or spiral grooves may be formed on the outer surface thereof.
  • the groove is preferably formed on the outer surface on the distal side of the center in the longitudinal axis direction of the pipe.
  • a second handle 72 for the operator to grip is connected to the proximal portion of the first tubular member 10.
  • a third handle 73 for the operator to grip is connected to the proximal portion of the second tubular member 20.
  • the first cylindrical member 10 has a position display portion 18 indicating the position of the first window 12 at its distal end.
  • the second tubular member 20 has a position display portion 28 indicating the position of the second window 22 at its distal end. Since it is easy to grasp the position of the window by using the position display portion as a clue, it is possible to reliably irradiate the treatment target portion such as a lesion with the emitted light.
  • the position display unit examples include scales, letters, numbers, symbols, and figures.
  • the scale is an axis extending along the longitudinal direction or the circumferential direction of the tubular member provided with the position display portion, and at least one of a straight line, a curve, a diagonal line, and a point intersecting the axis. It may be a combination.
  • the position display unit 18 of the first cylindrical member 10 and the position display unit 28 of the second tubular member 20 may have different types of figures.
  • the position display portion may be a colored portion of the outer surface of the tubular member, or may be a portion in which a dye such as a pigment is mixed with the resin constituting the tubular member.
  • Only one position display unit may be provided for one cylindrical member, or a plurality of position display units may be provided.
  • the position display portions are provided on both sides of the window in the longitudinal axis direction of the tubular member. This makes it easier to grasp the position of the window in the longitudinal axis direction of the tubular member.
  • the position display unit may be provided at a position overlapping the window in the longitudinal axis direction of the tubular member. Further, the position display units may be provided on both sides of the window in the circumferential direction. This makes it easier to grasp the position of the window in the circumferential direction of the tubular member.
  • the position display unit indicating the position of the first window 12 or the second window 22 may be provided in the proximal portion of the device 1.
  • a position display unit indicating the position of the first window 12 may be provided on the second handle 72
  • a position display unit indicating the position of the second window 22 may be provided on the third handle 73.
  • a position display portion indicating the position of the first window 12 is provided in the proximal portion of the first tubular member 10
  • a position display portion indicating the position of the second window 22 is provided in the proximal portion of the second tubular member 20. It may be provided.
  • the light guide device 30 has a protective cylinder 36 that covers the optical fiber 31 and has light transmission.
  • the protective cylinder 36 makes it possible to reinforce the optical fiber 31, improve the light diffusivity, and reduce uneven irradiation.
  • the protective cylinder 36 is a tubular member extending in the longitudinal axis direction of the optical fiber 31.
  • the protective cylinder 36 covers the entire longitudinal direction of the optical fiber 31.
  • damage, deformation, and breakage of the core 32 can be suppressed over the entire optical fiber 31.
  • the protective cylinder 36 covers the entire circumferential direction of the optical fiber 31.
  • the distal end 36a of the protective tube 36 is preferably located distal to the distal end of the optical fiber 31, and more preferably located distal to the distal end 32a of the core 32. preferable. This makes it possible to prevent deformation or damage at the distal end of the optical fiber 31.
  • the protective cylinder 36 may have light transmittance, but is preferably made of resin.
  • the resin constituting the protective cylinder 36 include a polyamide resin, a polyester resin, a polyurethane resin, a polyolefin resin, a fluororesin, a vinyl chloride resin, a silicone resin, and a natural rubber. Only one of these may be used, or two or more thereof may be used in combination. Of these, polyamide-based resins, polyester-based resins, polyurethane-based resins, polyolefin-based resins, and fluorine-based resins are preferably used.
  • a light diffusing material of inorganic particles such as titanium oxide, barium sulfate and calcium carbonate, and organic particles such as crosslinked acrylic particles and crosslinked styrene particles can be added to the resin constituting the protective cylinder 36. .. Since the light emitted from the non-existent portion 34 of the clad can be further diffused, the irradiation unevenness can be reduced.
  • the protective cylinder 36 preferably has an inner diameter of a certain size in the longitudinal axis direction of the optical fiber 31 so that the optical fiber 31 can be easily inserted into the lumen 37 of the protective cylinder 36.
  • the outer diameter of the protective cylinder 36 is set so that the light guide device 30 can easily move in the longitudinal axis direction of the optical fiber 31 in the lumen 3 of the shaft 2.
  • the protective cylinder 36 may have an outer diameter that decreases toward the distal end, or may have an outer diameter of a certain size in the longitudinal axis direction of the optical fiber 31.
  • the non-existent portion 34 of the clad is preferably covered with the protective cylinder 36, and the portion 34 is more preferably covered with the protective cylinder 36 over the entire longitudinal axis direction of the optical fiber 31.
  • the range corresponding to the portion 34 of the core 32 is protected, so that damage, deformation, and breakage of the core 32 in that range can be suppressed.
  • a resin chip may be provided at the distal end of the protective cylinder 36.
  • the resin chip can be formed into, for example, a hemispherical shape, a semi-oval spherical shape, a columnar shape, or a polygonal columnar shape. It is preferable that a part of the resin chip is arranged in the lumen 37 of the protective cylinder 36.
  • the resin chip may have a plug shape inserted into the lumen 37.
  • the constituent material of the resin chip the description of the constituent material of the protective cylinder 36 can be referred to.
  • the distal portion of the shaft 2 is further provided with an expansion portion 40 that expands outward in the radial direction y of the shaft 2.
  • expansion unit 40 By expanding the expansion unit 40, it becomes easier to fix the device 1 in the body, for example, to the wall of the biological tube, so that it is possible to prevent the device 1 from being displaced in the body.
  • FIG. 12 shows a cross-sectional view (partial side view) showing a modified example of the device 1 shown in FIG. 2
  • FIG. 13 shows a cross-sectional view showing another modified example of the device 1 shown in FIG.
  • the expansion portion 40 is preferably a balloon, a basket with a plurality of elastic wires, or a stent
  • the expansion portion 40 is a balloon 41 (FIG. 2), a basket 45 with a plurality of elastic wires (FIG. 12), and the expansion portion 40.
  • it is more preferably a self-expandable stent 49 (FIG. 13).
  • the expansion portion 40 is a balloon 41, even if the expansion portion 40 comes into contact with the living tube wall, the position in the body can be fixed without damaging the living tube wall. Further, since the expansion portion 40 is a basket or a stent, the wire rod constituting the basket or the stent can easily bite into the wall of the living tube, so that the device 1 can be firmly fixed in the body.
  • the outer shape of the self-expandable stent 49 is schematically shown in FIG.
  • the balloon 41 has a distal side fixing portion 42 fixed to the shaft 2, an expansion portion 43 not fixed to the shaft 2, and a proximity fixed to the shaft 2. It may have a position side fixing portion 44.
  • the shaft 2 is composed of an inner tube 4 and an outer tube 5.
  • the inner tube 4 extends from the distal end of the outer tube 5 and penetrates the balloon 41 in the longitudinal axis direction x of the shaft 2. Is preferable. As a result, the balloon 41 is joined to the shaft 2.
  • the expansion portion 40 is a balloon 41
  • a fluid feeder (not shown) is connected to the proximal portion of the shaft 2.
  • the balloon 41 is configured such that a pressure fluid is supplied from the fluid feeder to the inside of the balloon 41 through the shaft 2.
  • the balloon 41 expands, and when the pressure fluid is pulled out, the balloon 41 contracts.
  • the outer surface of the balloon 41 comes into contact with the wall of a biological tube such as a blood vessel or a digestive tract, so that the shaft 2 can be fixed inside the body.
  • the shaft 2 may have a plurality of lumens 3.
  • the shaft 2 has a first lumen 3a through which a first tubular member 10, a second tubular member 20, and a light guide device 30 are inserted, and a second lumen 3b communicating with the inside of a balloon 41.
  • the first lumen 3a having the above functions as an insertion passage for the light guide device 30, and the second lumen 3b functions as a passage for the pressure fluid.
  • the shaft 2 is composed of an inner tube 4 and an outer tube 5
  • the lumen of the inner tube 4 is the first lumen 3a
  • the space between the inner tube 4 and the outer tube 5 is the second lumen 3b. good.
  • the inflated portion 43 of the balloon 41 may have a straight pipe portion 43a and a tapered portion 43b formed in the distal portion and the proximal portion of the straight pipe portion 43a, respectively.
  • the balloon 41 is preferably made of resin.
  • the resin constituting the balloon 41 include polyamide-based resin, polyester-based resin, polyurethane-based resin, polyolefin-based resin, vinyl chloride-based resin, silicone-based resin, and natural rubber. Only one of these may be used, or two or more thereof may be used in combination. Of these, polyamide-based resins, polyester-based resins, and polyurethane-based resins are preferably used. An elastomer resin can be used from the viewpoint of thinning the balloon 41 and flexibility.
  • the type of fluid supplied into the balloon 41 is not particularly limited, but for example, a liquid such as physiological saline, a contrast medium, or a mixed solution thereof, or a gas such as air, nitrogen, or carbon dioxide can be used. It is preferable that a gas is supplied into the balloon 41 in order to facilitate the transmission of the emitted light.
  • the basket 45 is formed by binding a plurality of elastic wires 46 at a first binding portion and a second binding portion proximal to the first binding portion.
  • the elastic wire 46 may be bent or spirally twisted between the first binding portion and the second binding portion.
  • the basket is generally used for catching foreign substances such as stones, but in the device 1, it is used for fixing the position of the device 1 in the body.
  • the elastic wire 46 is a wire having elasticity, and is preferably composed of a shape memory alloy or a shape memory resin.
  • the elastic wire 46 is a single wire or twist made of, for example, stainless steel such as SUS304 or SUS316, platinum, nickel, cobalt, chromium, titanium, tungsten, aluminum, gold, silver, Ni—Ti alloy, Co—Cr alloy or the like. It may be a metal wire rod.
  • the number of elastic wires 46 is not particularly limited and can be selected according to the inner diameter of the living tube wall and the like.
  • the elastic wire is fixed to the shaft 2.
  • Distal ends or proximal ends of the plurality of elastic wires 46 are arranged apart in the circumferential direction p, and the distal ends or proximal ends of the elastic wires are brazed or bonded to the shaft 2, or the elastic wires.
  • the elastic wire can be fixed to the shaft 2 by covering the distal end portion or the proximal end portion of the above with a tubular connector and crimping the connector.
  • the distal end of the elastic wire 46 is fixed to the shaft 2 by the first connector 47
  • the proximal end of the elastic wire 46 is fixed to the shaft 2 by the second connector 48.
  • the first connector 47 may also serve as the support portion 50.
  • the stent is a structure that can be expanded in diameter and is composed of a mesh structure such as a mesh, and includes a plurality of columns. Stents can be formed from patterns of interconnected structural elements that stretch, for example, circumferentially and axially.
  • the stent is a coil type made of one linear metal or polymer material, a type made by cutting out a metal tube or a tube made of a polymer material with a laser, etc., a type assembled by welding a linear part, Examples include a type made by weaving a plurality of linear metals.
  • Stents can be classified into balloon expansion type and self-expansion type from the viewpoint of expansion mechanism.
  • a stent is attached on the outer surface of the balloon and transported to the treatment site such as a lesion, and the stent is expanded at the treatment site using the balloon.
  • the stent is transported to the lesion by a catheter having a member that suppresses expansion, and the stent expands by itself by removing the member that suppresses expansion at the treatment site.
  • the stent is preferably a self-expanding stent. Since it is not necessary to provide a balloon inside the self-expanding type, the diameter in the reduced diameter state can be made smaller than that of the balloon expanding type.
  • the description of the constituent material of the elastic wire 46 of the basket 45 can be referred to.
  • the dilated portion 40 is a self-expandable stent 49 as shown in FIG. 13, it is preferable that the proximal end portion of the self-expandable stent 49 is fixed to the distal end portion of the shaft 2.
  • the device 1 can be fixed in the body without the stent obstructing the emission of light.
  • the distal end is not fixed to the distal end of the shaft 2.
  • the shaft 2 can be fixed in the body by bringing the distal end of the stent into contact with the living tube wall.
  • the stent can be fixed to the shaft 2 in the same manner as the elastic wire of the basket is fixed to the shaft 2.
  • multiple struts are placed so as to be spaced apart in the circumferential direction p and brazed or glued to the shaft 2, or covered with a tubular connector over the proximal end of the struts.
  • a method such as crimping the connector can be adopted.
  • the device 1 When the expansion unit 40 is a basket or a stent, it is preferable that the device 1 further has a third tubular member (not shown) capable of accommodating the expansion unit 40 in the lumen.
  • a third tubular member (not shown) capable of accommodating the expansion unit 40 in the lumen.
  • the expansion portion 40 may be arranged at a position overlapping the non-existent portion 34 of the clad in the longitudinal axis direction x. As shown in FIG. 13, the extension portion 40 may be arranged distal to the non-existent portion 34 of the clad in the longitudinal axis direction x.
  • the expansion portion 40 When the expansion portion 40 is provided at a position overlapping the non-existing portion 34 of the clad in the longitudinal axis direction x, it is preferable that the expansion portion 40 contains a light transmitting material. In that case, it is more preferable that both the portion of the shaft 2 covered by the expansion portion 40 and the expansion portion 40 are made of a light-transmitting material.
  • the portion 34 When the portion 34 is located inside the expansion portion 40, the target tissue can be efficiently irradiated with light at the position corresponding to the balloon 41.
  • the description of the shaft 2 can be referred to.
  • the expansion portion 40 When the expansion portion 40 is provided at a position overlapping the non-existing portion 34 of the clad in the longitudinal axis direction x, it is preferable that the expansion portion 40 contains a light diffusing material. In that case, it is more preferable that both the portion of the shaft 2 covered by the expansion portion 40 and the expansion portion 40 are made of a light diffusing material. As a result, the target tissue can be evenly irradiated with light.
  • the light diffusing material the description of the material of the shaft 2 can be referred to.
  • a support portion 50 for supporting the distal portion of the light guide device 30 is further provided at the distal end portion of the shaft 2.
  • the support portion 50 can suppress the hanging of the distal portion of the light guide device 30 due to gravity. As a result, it becomes easy to perform the rotation operation of the first tubular member 10, the rotation operation of the second tubular member 20, and the movement operation of the light guide device 30 in the longitudinal axis direction x.
  • the support portion 50 may be provided outside the radial direction y of the shaft 2, or may be arranged in the lumen 3 of the shaft 2 as shown in FIG. .. In order to reliably support the light guide device 30 with the support portion 50, a part of the support portion 50 may be arranged on the distal side of the distal end 2a of the shaft 2 as shown in FIG.
  • the support portion 50 can be formed in a cylindrical shape. As shown in FIG. 13, the cylindrical support portion 50 may have a constant inner diameter in the longitudinal axis direction x. As shown in FIGS. 1 and 2, the cylindrical support portion 50 may have a different inner diameter depending on the position in the longitudinal axis direction x. For example, the tubular support portion 50 is located on the distal side of the large diameter portion 51 that supports the shaft 2 and the large diameter portion 51 to support the light guide device 30 and is larger than the large diameter portion 51. It may have a small diameter portion 52 having a small inner diameter. As a result, the effect of suppressing the sagging of the light guide device 30 due to gravity can be further enhanced. For the same reason, the tubular support portion 50 may be formed in a tapered shape in which the inner diameter decreases toward the distal side.
  • the description of the material constituting the shaft 2 can be referred to.
  • the distal end 50a of the support portion 50 is from the distal end 40a of the expansion portion 40. Is preferably located on the distal side. Further, as shown in FIG. 13, when the expansion portion 40 is located distal to the non-existent portion 34 of the clad in the longitudinal direction x, the distal end 50a of the support portion 50 is far from the expansion portion 40. It may be located proximal to the position end 40a.
  • Each member constituting the device 1 may be provided with a radiation opaque marker.
  • the first marker 61 may be arranged at the distal portion of the shaft 2.
  • the position of the shaft 2 can be specified under fluoroscopy, so that the shaft 2 can be aligned with the position of the tissue to be irradiated.
  • the second marker 62 may be arranged on the protective cylinder 36 on the distal side of the distal end of the core 32.
  • the third marker 63 may be arranged on the protective cylinder 36 on the proximal side of the proximal end of the non-existent portion 34 of the clad.
  • the radiation opaque markers are arranged on both sides of the non-existent portion 34 of the clad that becomes the light emitting area in the longitudinal axis direction of the protective cylinder 36, so that the position of the light emitting area can be more easily specified under fluoroscopy.
  • a fourth marker 64 may be further arranged on the proximal side of the shaft 2 with respect to the first marker 61. This makes it easier to identify the position of the longitudinal axis direction x under fluoroscopy.
  • the fifth marker 65 is arranged at the distal portion of the first tubular member 10, and it is more preferable that the fifth marker 65 is arranged on the distal side of the first window 12. Further, it is preferable that the sixth marker 66 is arranged at the distal portion of the first tubular member 10 and proximal to the first window 12. This makes it easier to grasp the position of the first window 12 in the longitudinal axis direction of the first tubular member 10, and thus makes it easier to specify the position of the light emitting area under fluoroscopy.
  • the seventh marker 67 is arranged at the distal portion of the second tubular member 20, and it is more preferable that the seventh marker 67 is arranged on the distal side of the second window 22. Further, the eighth marker 68 may be arranged at the distal portion of the second tubular member 20 and proximal to the second window 22. This makes it easier to grasp the position of the second window 22 in the longitudinal axis direction of the second tubular member 20.
  • the distal end of the second marker 62 and the fifth marker are arranged in order from the distal side to the proximal side. It is preferred that the distal end of the marker 65, the distal end of the seventh marker 67, and the distal end of the first marker 61 are located. By locating the markers in this way, it becomes easy to grasp the positions of the shaft 2, the non-existent portion 34 of the clad, and the first window 12.
  • the third marker 63 is sequentially provided from the proximal side to the distal side for the same reason as described above. It is preferable that the proximal end of the marker 66, the proximal end of the sixth marker 66, the proximal end of the eighth marker 68, and the proximal end of the fourth marker 64 are located.
  • the shape of the marker is not particularly limited and may be annular or rod-shaped.
  • the marker may have a coil shape or may have a C-shaped cross section having a slit in the ring. If the marker is annular or coiled, it will be easier to attach the marker. When the marker is rod-shaped or coil-shaped, it becomes easy to place the marker in the lumen of each member.
  • the marker is preferably composed of a material containing a metal material such as platinum, gold, silver, tungsten, tantalum, iridium, palladium and alloys thereof.
  • the marker may be a metal marker composed of the above-mentioned metal material, or may be a resin marker composed of the above-mentioned metal material.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Anesthesiology (AREA)
  • Pulmonology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

A light emission medical apparatus (1) is provided with: a shaft (2) having an inner cavity extending in the longitudinal direction (x); a first tubular member (10) that is disposed in the inner cavity, is rotatable about a rotational axis parallel to the longitudinal direction (x), and has a first window (12) provided in a circumferential wall of a distal portion; a second tubular member (20) that is disposed in an inner cavity of the first tubular member (10), is rotatable about the rotational axis parallel to the longitudinal direction (x), and has a second window (22) in a circumferential wall of a distal portion; and a light guiding device (30) that is disposed in an inner cavity of the second tubular member (20) and is movable in the longitudinal direction (x). The light guiding device (30) has an optical fiber and has a cladding absent portion (34) on a portion of a distal portion of a core of the optical fiber, and light emitted from the light guiding device (30) passes through the first window (12) and the second window (22).

Description

光照射医療装置Light irradiation medical device
 本発明は、血管や消化管等の体内管腔において、がん細胞等の組織に光を照射するための光照射医療装置に関するものである。 The present invention relates to a light irradiation medical device for irradiating tissues such as cancer cells with light in internal lumens such as blood vessels and gastrointestinal tracts.
 光線力学的療法(Photodynamic Therapy:PDT)では、光増感剤を静脈注射や腹腔内投与で体内に投与し、がん細胞等の対象組織に光増感剤を集積させ、特定の波長の光を照射することにより光増感剤を励起させる。励起された光増感剤が基底状態に戻るときにエネルギー転換が生じ、活性酸素種を発生させる。活性酸素種が対象組織を攻撃することにより、対象組織を除去することができる。また、レーザー光を用いたアブレーション(組織焼灼)では、対象組織にレーザー光を照射し、焼灼することが行われる。 In photodynamic therapy (PDT), a photosensitizer is administered into the body by intravenous injection or intraperitoneal administration, and the photosensitizer is accumulated in the target tissue such as cancer cells, resulting in light of a specific wavelength. The photosensitizer is excited by irradiating with. When the excited photosensitizer returns to the ground state, energy transformation occurs, generating reactive oxygen species. The target tissue can be removed by the active oxygen species attacking the target tissue. Further, in ablation (tissue cauterization) using laser light, the target tissue is irradiated with laser light and cauterized.
 PDTや光アブレーションで使用する光照射医療装置では、対象組織に光を照射するためにカテーテル管内に光ファイバーが配置される。 In the light irradiation medical device used for PDT and photoablation, an optical fiber is arranged in the catheter tube to irradiate the target tissue with light.
 特許文献1には、規定された領域に照射を供給する、規定された処置ウィンドウを有するバルーンカテーテルを含む装置が開示されている。この装置は、中央チャネルと、外部スリーブとを含んでいる。中央チャネルは、光ファイバープローブが挿入され得る透明なものである。外部スリーブは、該バルーンを膨張させるために用いる、近位端と遠位端とを有する外部スリーブであって、該遠位端近傍に膨張可能バルーンをさらに含み、該バルーンが両端部において、処置ウィンドウを規定するために反射材料でコーティングされている。 Patent Document 1 discloses a device including a balloon catheter having a specified treatment window that supplies irradiation to a specified area. The device includes a central channel and an outer sleeve. The central channel is transparent into which the fiber optic probe can be inserted. The outer sleeve is an outer sleeve having a proximal end and a distal end used to inflate the balloon, further comprising an inflatable balloon in the vicinity of the distal end, wherein the balloon is treated at both ends. It is coated with a reflective material to define the window.
 特許文献2には、シャフトと、バルーンと、第1ルーメンと、第2ルーメンと、導光材と、拡散部材と、管状部材と、を具備するアブレーションデバイスが開示されている。バルーンは、上記シャフトの先端側に設けられており、弾性的に膨張可能である。第1ルーメンは、上記シャフトに沿って形成されており、上記バルーンへ流体を流入させるためのものである。第2ルーメンは、上記シャフトに沿って形成されており、上記バルーンから流体を流出させるためのものである。導光材は、上記シャフトに沿って設けられており、上記バルーン内へレーザー光を導く。拡散部材は、上記バルーン内において上記導光材から出射されるレーザー光を上記導光材が延出された第1方向と交差する方向へ反射又は拡散させる。管状部材は上記バルーン内に設けられて上記拡散部材を囲繞しており、その内面側に上記拡散部材により反射又は拡散されたレーザー光を反射又は遮断する反射層を有し、かつ当該レーザー光を当該反射層の外側へ透過させる透過窓を有する。 Patent Document 2 discloses an ablation device including a shaft, a balloon, a first lumen, a second lumen, a light guide material, a diffusion member, and a tubular member. The balloon is provided on the tip end side of the shaft and is elastically inflatable. The first lumen is formed along the shaft and is for allowing fluid to flow into the balloon. The second lumen is formed along the shaft and is for draining the fluid from the balloon. The light guide material is provided along the shaft and guides the laser beam into the balloon. The diffusing member reflects or diffuses the laser light emitted from the light guide material in the balloon in a direction intersecting the first direction in which the light guide material is extended. The tubular member is provided in the balloon and surrounds the diffusion member, and has a reflective layer on the inner surface side thereof that reflects or blocks the laser light reflected or diffused by the diffusion member, and the laser light is transmitted. It has a transmission window that allows light to pass through to the outside of the reflective layer.
 特許文献3には、前立腺障害を治療するための光線力学的療法において、光線感作物質が送達装置を利用して投与されることが開示されている。送達装置は、その内部にガイドワイヤーを挿入可能に受け入れるチャネルを含んでいる。活性化エネルギーは、エネルギー源と、その内部にガイドワイヤーを挿入可能に受け入れるチャネルとを含んだ照射装置を利用して送達される。ガイドワイヤーは、送達装置及び/又は照射装置を位置決めするのに利用される。また、特許文献3には照射装置をガイドワイヤーに沿って側面方向に滑らせる、すなわち回転させることができることも開示されている。 Patent Document 3 discloses that a photosensitizer is administered using a delivery device in photodynamic therapy for treating a prostate disorder. The delivery device includes a channel inside which the guide wire is insertably received. The activation energy is delivered utilizing an irradiation device that includes an energy source and a channel within which a guide wire can be inserted and received. The guide wire is used to position the delivery device and / or the irradiation device. Further, Patent Document 3 also discloses that the irradiation device can be slid, that is, rotated in the lateral direction along the guide wire.
特表2001-505443号公報Japanese Patent Publication No. 2001-505443 特開2015-77168号公報Japanese Unexamined Patent Publication No. 2015-77168 特表2007-521890号公報Special Table 2007-521890
 上記特許文献1に記載の装置では、バルーンに設けられた処置ウィンドウによって光の照射位置が決定される。このため、一旦、バルーンを拡張して体内に固定した後に照射位置を変更するには、バルーンを収縮させた上でカテーテルを遠位側または近位側に移動、あるいは回転させる必要があり煩雑であった。特許文献2に記載の装置では、導光材(光ファイバー)に接続された管状部材に設けられている透過窓によって光の照射位置が決定される。このため、照射位置を調整するためには、導光材を遠位側または近位側に移動、あるいは回転させる必要があり、この動作により導光材が損傷するおそれがあった。特許文献3に記載の照射装置も回転させることが可能であるため、照射装置が損傷するおそれがあった。そこで、本発明は、光ファイバーの損傷を防ぎながら、射出光の照射位置や照射範囲を調整することができる光照射医療装置を提供することを目的とするものである。 In the device described in Patent Document 1, the irradiation position of light is determined by the treatment window provided on the balloon. Therefore, in order to change the irradiation position after expanding the balloon and fixing it in the body, it is necessary to contract the balloon and then move or rotate the catheter to the distal side or the proximal side, which is complicated. there were. In the apparatus described in Patent Document 2, the light irradiation position is determined by the transmission window provided in the tubular member connected to the light guide material (optical fiber). Therefore, in order to adjust the irradiation position, it is necessary to move or rotate the light guide material to the distal side or the proximal side, and this operation may damage the light guide material. Since the irradiation device described in Patent Document 3 can also be rotated, there is a risk that the irradiation device will be damaged. Therefore, an object of the present invention is to provide a light irradiation medical device capable of adjusting the irradiation position and irradiation range of the emitted light while preventing damage to the optical fiber.
 上記目的を達成し得た本発明の光照射医療装置の一実施態様は、長手軸方向に第1端と第2端を有するシャフトであって、長手軸方向に延在している内腔を有するシャフトと、シャフトの内腔に配置され、シャフトの長手軸方向に平行な回転軸周りに回転可能であり、遠位部の周壁の一部に第1窓が設けられている第1筒状部材と、第1筒状部材の内腔に配置され、シャフトの長手軸方向に平行な回転軸周りに回転可能であり、遠位部の周壁の一部に第2窓が設けられている第2筒状部材と、第2筒状部材の内腔に配置され、シャフトの長手軸方向に移動可能な導光装置と、を備え、導光装置は、長手軸方向に延在している光ファイバーを有し、光ファイバーは、コアと、コアの径方向外方を被覆するクラッドとを有し、かつ、コアの遠位部の一部にクラッドの非存在部を有しており、導光装置からの射出光が第1窓および第2窓を通過する点に要旨を有する。上記光照射医療装置によれば、シャフトの周方向および長手軸方向において第1窓と第2窓が重なる位置を調整することで射出光の照射位置を調整することができる。第1窓と第2窓の重なり方を調整することで射出光の照射範囲を調整することができる。このように導光装置を回転させなくても照射位置や範囲の調整が可能であるため、光ファイバーの損傷を防ぐことができる。 One embodiment of the light irradiation medical device of the present invention that has achieved the above object is a shaft having a first end and a second end in the longitudinal direction, and a cavity extending in the longitudinal direction. A first cylinder that is arranged in the cavity of the shaft and is rotatable around a rotation axis parallel to the longitudinal direction of the shaft, and has a first window provided in a part of the peripheral wall at the distal portion. A second window, which is arranged in the lumen of the member and the first cylindrical member, is rotatable around a rotation axis parallel to the longitudinal direction of the shaft, and has a second window on a part of the peripheral wall at the distal portion. A two-cylindrical member and a light guide device arranged in the cavity of the second tubular member and movable in the longitudinal axis direction of the shaft are provided, and the light guide device is an optical fiber extending in the longitudinal axis direction. The optical fiber has a core and a clad that covers the radial outer side of the core, and has a non-existent portion of the clad in a part of the distal portion of the core, and is a light guide device. The gist is that the emitted light from the cylinder passes through the first window and the second window. According to the light irradiation medical device, the irradiation position of the emitted light can be adjusted by adjusting the positions where the first window and the second window overlap in the circumferential direction and the longitudinal axis direction of the shaft. The irradiation range of the emitted light can be adjusted by adjusting how the first window and the second window overlap. Since the irradiation position and range can be adjusted without rotating the light guide device in this way, damage to the optical fiber can be prevented.
 シャフトの周方向において、第1窓は第2窓よりも長くてもよい。また、シャフトの長手軸方向において、第1窓は第2窓よりも長くてもよい。 The first window may be longer than the second window in the circumferential direction of the shaft. Further, the first window may be longer than the second window in the longitudinal axis direction of the shaft.
 第1筒状部材は第1窓よりも射出光の通過性が低い材料から構成され、第2筒状部材は第2窓よりも射出光の通過性が低い材料から構成されていてもよい。第1窓には射出光を透過する第1透明部材が配置されていてもよい。また、第2窓には射出光を透過する第2透明部材が配置されていてもよい。 The first tubular member may be made of a material having a lower emission light passage than the first window, and the second tubular member may be made of a material having a lower emission light passage than the second window. A first transparent member that transmits emitted light may be arranged in the first window. Further, a second transparent member that transmits emitted light may be arranged in the second window.
 第1窓と第2窓はそれぞれシャフトの長手軸方向の長さがシャフトの周方向の長さよりも大きくてもよい。第1窓と第2窓はそれぞれシャフトの周方向においてシャフト全周の4分の1の長さの範囲内に設けられていてもよい。シャフトの長手軸方向において、第1窓および第2窓はクラッドの非存在部よりも長くてもよい。 The length of the first window and the second window in the longitudinal axis direction of the shaft may be larger than the length in the circumferential direction of the shaft, respectively. The first window and the second window may be provided within a range of a quarter length of the entire circumference of the shaft in the circumferential direction of the shaft, respectively. In the longitudinal axis direction of the shaft, the first window and the second window may be longer than the non-existent portion of the clad.
 シャフトの遠位部にシャフトの径方向外方に向かって拡張する拡張部がさらに設けられていてもよい。拡張部は、バルーン、複数の弾性ワイヤを備えたバスケット、または自己拡張型ステントであってもよい。 An expansion portion that expands outward in the radial direction of the shaft may be further provided at the distal portion of the shaft. The extension may be a balloon, a basket with multiple elastic wires, or a self-expandable stent.
 第1筒状部材と第2筒状部材はそれぞれ金属を含む補強材が配置されている第1区間を有していてもよい。第1筒状部材は第1筒状部材の第1区間よりも遠位側に位置し、補強材が配置されていない第2区間をさらに有し、第2筒状部材は第2筒状部材の第1区間よりも遠位側に位置し、補強材が配置されていない第2区間をさらに有し、第1窓は第1筒状部材の第2区間に配され、第1筒状部材の第1区間には配されておらず、第2窓は第2筒状部材の第2区間に配され、第2筒状部材の第1区間には配されていなくてもよい。第1筒状部材は第1筒状部材の第1区間よりも近位側に位置し、金属製のパイプから構成されている第3区間をさらに有し、第2筒状部材は第2筒状部材の第1区間よりも近位側に位置し、金属製のパイプから構成されている第3区間をさらに有していてもよい。 The first cylindrical member and the second tubular member may each have a first section in which a reinforcing material containing metal is arranged. The first tubular member is located distal to the first section of the first tubular member and further has a second section in which no reinforcing material is arranged, and the second tubular member is a second tubular member. It is located on the distal side of the first section of the above and further has a second section in which no reinforcing material is arranged, the first window is arranged in the second section of the first tubular member, and the first tubular member. The second window may not be arranged in the first section of the second tubular member, and may not be arranged in the second section of the second tubular member. The first tubular member is located proximal to the first section of the first tubular member and further has a third section composed of metal pipes, the second tubular member is the second cylinder. It may further have a third section, which is located proximal to the first section of the shaped member and is composed of a metal pipe.
 シャフトの遠位端部に、導光装置の遠位部を支持する支持部がさらに設けられていてもよい。第2筒状部材の内面にコアからの射出光を第2窓に向かって屈折させる反射材が配置されていてもよい。導光装置は光ファイバーを覆いかつ光透過性を有する保護筒を有していてもよい。第1筒状部材はその遠位端部に第1窓の位置を示す位置表示部を有し、第2筒状部材はその遠位端部に第2窓の位置を示す位置表示部を有していてもよい。導光装置はシャフトに対してシャフトの長手軸方向に平行な軸周りに回転しないものでもよい。 A support portion for supporting the distal portion of the light guide device may be further provided at the distal end portion of the shaft. A reflective material that refracts the emitted light from the core toward the second window may be arranged on the inner surface of the second tubular member. The light guide device may have a protective tube that covers the optical fiber and has light transmission. The first cylindrical member has a position display portion indicating the position of the first window at its distal end, and the second tubular member has a position display portion indicating the position of the second window at its distal end. You may be doing it. The light guide device may not rotate about an axis parallel to the longitudinal axis of the shaft with respect to the shaft.
 上記光照射医療装置によれば、シャフトの周方向および長手軸方向において第1窓と第2窓が重なる位置を調整することで射出光の照射位置を調整することができる。第1窓と第2窓の重なり方を調整することで射出光の照射範囲を調整することができる。このように導光装置を回転させなくても照射位置や範囲の調整が可能であるため、光ファイバーの損傷を防ぐことができる。 According to the light irradiation medical device, the irradiation position of the emitted light can be adjusted by adjusting the position where the first window and the second window overlap in the circumferential direction and the longitudinal axis direction of the shaft. The irradiation range of the emitted light can be adjusted by adjusting how the first window and the second window overlap. Since the irradiation position and range can be adjusted without rotating the light guide device in this way, damage to the optical fiber can be prevented.
本発明の一実施形態に係る光照射医療装置の側面図(一部断面図)を表す。The side view (partial sectional view) of the light irradiation medical apparatus which concerns on one Embodiment of this invention is shown. 図1に示した光照射医療装置の遠位側を拡大した断面図を表す。FIG. 1 shows an enlarged cross-sectional view of the distal side of the light irradiation medical device shown in FIG. 図2に示した光照射医療装置のIII-III断面図を表す。FIG. 2 shows a sectional view taken along line III-III of the light irradiation medical device shown in FIG. 図3に示した光照射医療装置の変形例を示す断面図を表す。A cross-sectional view showing a modified example of the light irradiation medical device shown in FIG. 3 is shown. 図3に示した光照射医療装置の他の変形例を示す断面図を表す。A cross-sectional view showing another modification of the light irradiation medical device shown in FIG. 3 is shown. 図1に示した第1筒状部材の斜視図を表す。A perspective view of the first cylindrical member shown in FIG. 1 is shown. 図1に示した第2筒状部材の斜視図を表す。The perspective view of the 2nd cylindrical member shown in FIG. 1 is shown. 図6に示した第1筒状部材の変形例を示す斜視図を表す。A perspective view showing a modified example of the first tubular member shown in FIG. 6 is shown. 図7に示した第2筒状部材の変形例を示す斜視図を表す。A perspective view showing a modified example of the second tubular member shown in FIG. 7 is shown. 図8に示した第1筒状部材の変形例を示す斜視図を表す。FIG. 8 shows a perspective view showing a modified example of the first tubular member shown in FIG. 図9に示した第2筒状部材の変形例を示す斜視図を表す。A perspective view showing a modified example of the second tubular member shown in FIG. 9 is shown. 図2に示した光照射医療装置の変形例を示す断面図(一部側面図)を表す。A cross-sectional view (partial side view) showing a modified example of the light irradiation medical device shown in FIG. 2 is shown. 図2に示した光照射医療装置の他の変形例を示す断面図を表す。A cross-sectional view showing another modification of the light irradiation medical device shown in FIG. 2 is shown.
 以下、下記実施の形態に基づき本発明をより具体的に説明するが、本発明はもとより下記実施の形態によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。なお、各図面において、便宜上、ハッチングや部材符号等を省略する場合もあるが、かかる場合、明細書や他の図面を参照するものとする。また、図面における種々部材の寸法は、本発明の特徴の理解に資することを優先しているため、実際の寸法とは異なる場合がある。 Hereinafter, the present invention will be described in more detail based on the following embodiments, but the present invention is not limited by the following embodiments as well as the present invention, and appropriate changes are made to the extent that it can meet the purposes of the preceding and the following. In addition, it is of course possible to carry out, and all of them are included in the technical scope of the present invention. In each drawing, hatching, member reference numerals, and the like may be omitted for convenience, but in such cases, the specification and other drawings shall be referred to. Further, the dimensions of the various members in the drawings may differ from the actual dimensions because the priority is given to contributing to the understanding of the features of the present invention.
 本発明の光照射医療装置の一実施態様は、長手軸方向に第1端と第2端を有するシャフトであって、長手軸方向に延在している内腔を有するシャフトと、シャフトの内腔に配置され、シャフトの長手軸方向に平行な回転軸周りに回転可能であり、遠位部の周壁の一部に第1窓が設けられている第1筒状部材と、第1筒状部材の内腔に配置され、シャフトの長手軸方向に平行な回転軸周りに回転可能であり、遠位部の周壁の一部に第2窓が設けられている第2筒状部材と、第2筒状部材の内腔に配置され、シャフトの長手軸方向に移動可能な導光装置と、を備え、導光装置は、長手軸方向に延在している光ファイバーを有し、光ファイバーは、コアと、コアの径方向外方を被覆するクラッドとを有し、かつ、コアの遠位部の一部にクラッドの非存在部を有しており、導光装置からの射出光が第1窓および第2窓を通過する点に要旨を有する。上記光照射医療装置によれば、シャフトの周方向および長手軸方向において第1窓と第2窓が重なる位置を調整することで射出光の照射位置を調整することができる。第1窓と第2窓の重なり方を調整することで射出光の照射範囲を調整することができる。このように導光装置を回転させなくても照射位置や範囲の調整が可能であるため、光ファイバーの損傷を防ぐことができる。 One embodiment of the light irradiation medical device of the present invention is a shaft having a first end and a second end in the longitudinal axis direction, a shaft having a lumen extending in the longitudinal axis direction, and the inside of the shaft. A first cylindrical member that is placed in the cavity and is rotatable around a rotation axis parallel to the longitudinal direction of the shaft and has a first window on a part of the peripheral wall at the distal end, and a first cylindrical member. A second cylindrical member, which is located in the cavity of the member, is rotatable around a rotation axis parallel to the longitudinal axis of the shaft, and has a second window on a part of the peripheral wall at the distal end. The light guide device is arranged in the lumen of the two cylindrical members and is movable in the longitudinal axis direction of the shaft, and the light guide device has an optical fiber extending in the longitudinal axis direction. It has a core and a clad that covers the radial outer side of the core, and has a non-existent part of the clad in a part of the distal portion of the core, and the emitted light from the light guide device is the first. It has a gist in that it passes through the window and the second window. According to the light irradiation medical device, the irradiation position of the emitted light can be adjusted by adjusting the positions where the first window and the second window overlap in the circumferential direction and the longitudinal axis direction of the shaft. The irradiation range of the emitted light can be adjusted by adjusting how the first window and the second window overlap. Since the irradiation position and range can be adjusted without rotating the light guide device in this way, damage to the optical fiber can be prevented.
 光照射医療装置は、PDTや光アブレーションにおいて血管や消化管等の体内管腔で、がん細胞等の対象組織である処置部に対して特定の波長の光を照射するために用いられる。光照射医療装置は、単独で処置部まで送達されるものであってもよく、送達用のカテーテルや内視鏡と共に用いられてもよい。内視鏡を用いた治療では、内視鏡の鉗子チャンネルを通じて光照射医療装置が体内に配置され、処置部まで送達される。以下では光照射医療装置を単に装置と称することがある。 The light irradiation medical device is used in PDT and optical ablation to irradiate a treated portion, which is a target tissue such as a cancer cell, with light of a specific wavelength in an internal lumen such as a blood vessel or a digestive tract. The light irradiation medical device may be delivered to the treatment unit alone, or may be used together with a delivery catheter or an endoscope. In endoscopic treatment, a light-irradiated medical device is placed in the body through the forceps channel of the endoscope and delivered to the treatment site. Hereinafter, the light irradiation medical device may be simply referred to as a device.
 図1~図3を参照しながら、装置の基本構成について説明する。図1は、本発明の一実施形態に係る光照射医療装置の側面図(一部断面図)を表す。図2は、図1に示した装置の遠位側を拡大した断面図を表す。図3は、図2に示した装置のIII-III断面図を表す。光照射医療装置1は、シャフト2と、第1筒状部材10と、第2筒状部材20と、導光装置30と、を備えている。 The basic configuration of the device will be described with reference to FIGS. 1 to 3. FIG. 1 shows a side view (partial sectional view) of a light irradiation medical device according to an embodiment of the present invention. FIG. 2 shows an enlarged cross-sectional view of the distal side of the device shown in FIG. FIG. 3 represents a III-III cross-sectional view of the apparatus shown in FIG. The light irradiation medical device 1 includes a shaft 2, a first cylindrical member 10, a second tubular member 20, and a light guide device 30.
 本発明において、装置1の遠位側とは、シャフト2の長手軸方向xの第1端側であって処置対象側を指す。装置1の近位側とは、シャフト2の長手軸方向xの第2端側であって使用者(術者)の手元側を指す。各部材をその長手軸方向で二等分割したときの近位側を近位部、遠位側を遠位部と称することがある。 In the present invention, the distal side of the device 1 refers to the first end side of the shaft 2 in the longitudinal axis direction x and the treatment target side. The proximal side of the device 1 is the second end side of the shaft 2 in the longitudinal axis direction x and refers to the hand side of the user (operator). When each member is divided into two equal parts in the longitudinal axis direction, the proximal side may be referred to as a proximal portion and the distal side may be referred to as a distal portion.
 装置1を構成する各部材の材料は生体適合性を有することが望ましい。 It is desirable that the material of each member constituting the device 1 has biocompatibility.
 シャフト2は長手軸方向xと径方向yと周方向pを有している。シャフト2は、長手軸方向xに第1端と第2端を有しており、長手軸方向xに延在している内腔3を有している。第1端はシャフト2の遠位端に相当し、第2端はシャフト2の近位端に相当してもよい。内腔3に第1筒状部材10、第2筒状部材20、導光装置30を配置するために、シャフト2は管状構造を有している。また、シャフト2は体内に挿入されるものであるため、好ましくは可撓性を有している。 The shaft 2 has a longitudinal axis direction x, a radial direction y, and a circumferential direction p. The shaft 2 has a first end and a second end in the longitudinal axis direction x, and has a lumen 3 extending in the longitudinal axis direction x. The first end may correspond to the distal end of the shaft 2 and the second end may correspond to the proximal end of the shaft 2. The shaft 2 has a tubular structure for arranging the first tubular member 10, the second tubular member 20, and the light guide device 30 in the lumen 3. Further, since the shaft 2 is inserted into the body, it preferably has flexibility.
 シャフト2は、例えば、ポリオレフィン樹脂(例えば、ポリエチレンやポリプロピレン)、ポリアミド樹脂(例えば、ナイロン)、ポリエステル樹脂(例えば、PET)、芳香族ポリエーテルケトン樹脂(例えば、PEEK)、ポリエーテルポリアミド樹脂、ポリウレタン樹脂、ポリイミド樹脂、フッ素樹脂(例えば、PTFE、PFA、ETFE)等の合成樹脂や、ステンレス鋼、炭素鋼、ニッケルチタン合金等の金属から構成することができる。これらは一種のみを単独で用いてもよく、二種以上を組み合わせて用いてもよい。 The shaft 2 is, for example, a polyolefin resin (for example, polyethylene or polypropylene), a polyamide resin (for example, nylon), a polyester resin (for example, PET), an aromatic polyether ketone resin (for example, PEEK), a polyether polyamide resin, or a polyurethane. It can be composed of a synthetic resin such as a resin, a polyimide resin, a fluororesin (for example, PTFE, PFA, ETFE), or a metal such as stainless steel, carbon steel, or nickel-titanium alloy. These may be used alone or in combination of two or more.
 シャフト2は、光透過性の材料を含んでいることが好ましい。これにより、シャフト2内に導光装置30(より好ましくは光ファイバー31のクラッドの非存在部34)を配置したときに、対象組織に対して効率よく光を照射することができる。光透過性の材料としては、(メタ)アクリル樹脂(例えば、ポリメチルメタクリレート(PMMA))、ポリカーボネート樹脂(例えば、ポリジエチレングリコールビスアリルカーボネート(PC))、ポリスチレン系樹脂(例えば、メチルメタクリレート・スチレン共重合樹脂(MS)、アクリロニトリルスチレン樹脂(SAN))、ポリアミド樹脂(例えば、ナイロン)、ポリオレフィン樹脂等の合成樹脂を挙げることができる。 The shaft 2 preferably contains a light-transmitting material. As a result, when the light guide device 30 (more preferably, the non-existent portion 34 of the clad of the optical fiber 31) is arranged in the shaft 2, the target tissue can be efficiently irradiated with light. Examples of the light-transmitting material include (meth) acrylic resin (for example, polymethylmethacrylate (PMMA)), polycarbonate resin (for example, polydiethylene glycol bisallyl carbonate (PC)), and polystyrene-based resin (for example, both methylmethacrylate and styrene). Examples thereof include synthetic resins such as polymerized resin (MS), acrylic nitrile styrene resin (SAN)), polyamide resin (for example, nylon), and polyolefin resin.
 シャフト2は、光拡散性の材料を含んでいることが好ましい。これにより、導光装置30からの光がシャフト2の通過時に適度に拡散されるため、対象組織に対して光をムラなく照射することができる。光拡散性の材料としては、酸化チタン、硫酸バリウム、炭酸カルシウム等の無機系粒子、架橋アクリル系粒子、架橋スチレン系粒子等の有機系粒子が挙げられる。 The shaft 2 preferably contains a light diffusing material. As a result, the light from the light guide device 30 is appropriately diffused when passing through the shaft 2, so that the target tissue can be evenly irradiated with the light. Examples of the light diffusible material include inorganic particles such as titanium oxide, barium sulfate and calcium carbonate, and organic particles such as crosslinked acrylic particles and crosslinked styrene particles.
 図1に示すように、シャフト2の近位部には、術者が装置1を把持するための第1ハンドル71が接続されていることが好ましい。シャフト2の遠位部に後述する拡張部40が設けられ、拡張部40がバルーン41である場合、第1ハンドル71には流体供給器が接続されてもよい。流体供給器は内腔3を通じてバルーン41の内部に流体を供給するためものであり、例えばシリンジが挙げられる。 As shown in FIG. 1, it is preferable that a first handle 71 for the operator to grip the device 1 is connected to the proximal portion of the shaft 2. When an expansion portion 40 described later is provided at the distal portion of the shaft 2 and the expansion portion 40 is a balloon 41, a fluid feeder may be connected to the first handle 71. The fluid feeder is for supplying fluid to the inside of the balloon 41 through the lumen 3, and examples thereof include a syringe.
 第1筒状部材10は、シャフト2の内腔3に配置され、長手軸方向xに平行な回転軸周りに回転可能なものである。第1筒状部材10の遠位部の周壁の一部には第1窓12が設けられている。第2筒状部材20は、第1筒状部材10の内腔11に配置され、シャフト2の長手軸方向xに平行な回転軸周りに回転可能なものである。第2筒状部材20の遠位部の周壁の一部には第2窓22が設けられている。導光装置30は、第2筒状部材20の内腔21に配置され、シャフト2の長手軸方向xに移動可能なものである。導光装置30は、シャフト2の長手軸方向xに延在している光ファイバー31を有する。光ファイバー31は、コア32と、コア32の径方向外方を被覆するクラッド33とを有し、かつ、コア32の遠位部の一部にクラッドの非存在部34を有している。導光装置30からの射出光は第1窓12および第2窓22を通過する。第1筒状部材10と第2筒状部材20を移動させて第1窓12と第2窓22を重ならせることで、導光装置30からの射出光を通過させることができる。シャフト2の長手軸方向xおよび周方向pにおいて第1窓12と第2窓22が重なる位置を調整することで射出光の照射位置を調整することができる。第1窓12と第2窓22の重なり方を調整することで射出光の照射範囲を調整することができる。このように導光装置30を回転させなくても照射位置や範囲の調整が可能であるため、光ファイバー31の損傷を防ぐことができる。 The first tubular member 10 is arranged in the lumen 3 of the shaft 2 and is rotatable around a rotation axis parallel to the longitudinal axis direction x. A first window 12 is provided on a part of the peripheral wall at the distal portion of the first tubular member 10. The second tubular member 20 is arranged in the lumen 11 of the first tubular member 10 and is rotatable around a rotation axis parallel to the longitudinal axis direction x of the shaft 2. A second window 22 is provided on a part of the peripheral wall at the distal portion of the second tubular member 20. The light guide device 30 is arranged in the lumen 21 of the second tubular member 20 and is movable in the longitudinal axis direction x of the shaft 2. The light guide device 30 has an optical fiber 31 extending in the longitudinal direction x of the shaft 2. The optical fiber 31 has a core 32 and a clad 33 that covers the radial outer side of the core 32, and has a clad non-existent portion 34 in a part of the distal portion of the core 32. The emitted light from the light guide device 30 passes through the first window 12 and the second window 22. By moving the first cylindrical member 10 and the second tubular member 20 to overlap the first window 12 and the second window 22, the emitted light from the light guide device 30 can be passed through. The irradiation position of the emitted light can be adjusted by adjusting the positions where the first window 12 and the second window 22 overlap in the longitudinal axis direction x and the circumferential direction p of the shaft 2. The irradiation range of the emitted light can be adjusted by adjusting the way in which the first window 12 and the second window 22 overlap. Since the irradiation position and range can be adjusted without rotating the light guide device 30 in this way, damage to the optical fiber 31 can be prevented.
 第2筒状部材20の内腔21には、導光装置30を挿通する前にガイドワイヤーを挿通することができる。ガイドワイヤーはシャフト2を対象組織まで送達するために用いられる。すなわち、装置1は、シャフト2の長手軸方向xに延在し且つ第2筒状部材20の内腔21に挿通可能なガイドワイヤーを含んでいてもよい。なお、導光装置30を第2筒状部材20の内腔21に挿通する前にガイドワイヤーを抜去してもよい。 A guide wire can be inserted into the lumen 21 of the second tubular member 20 before the light guide device 30 is inserted. The guide wire is used to deliver the shaft 2 to the target tissue. That is, the device 1 may include a guide wire that extends in the longitudinal axis direction x of the shaft 2 and can be inserted into the lumen 21 of the second tubular member 20. The guide wire may be removed before the light guide device 30 is inserted into the lumen 21 of the second tubular member 20.
 導光装置30の光ファイバー31は対象組織まで光信号を送信する伝送路である。導光装置30の近位端に設けられたコネクタ35は、半導体レーザー等の光源に接続される。光ファイバー31は、コア32と、コア32の径方向外方を被覆するクラッド33とを有し、かつ、コア32の遠位部の一部にクラッドの非存在部34を有している。コア32およびクラッド33を構成する材料は特に限定されず、プラスチック、石英ガラス、フッ化物ガラス等のガラスを用いることができる。 The optical fiber 31 of the light guide device 30 is a transmission line that transmits an optical signal to the target tissue. The connector 35 provided at the proximal end of the light guide device 30 is connected to a light source such as a semiconductor laser. The optical fiber 31 has a core 32 and a clad 33 that covers the radial outer side of the core 32, and has a clad non-existent portion 34 in a part of the distal portion of the core 32. The material constituting the core 32 and the clad 33 is not particularly limited, and glass such as plastic, quartz glass, and fluoride glass can be used.
 クラッドの非存在部34は、コア32の周方向の少なくとも一部でクラッド33が存在していない部分を指し、光ファイバー31の発光エリアとなる。以下では、クラッドの非存在部34を単に部分34と称することがある。このような部分34を設けることによって、側面照射型の装置1を構成することができる。 The non-existent portion 34 of the clad refers to a portion where the clad 33 does not exist at least in a part of the circumferential direction of the core 32, and is a light emitting area of the optical fiber 31. In the following, the non-existent portion 34 of the clad may be simply referred to as a portion 34. By providing such a portion 34, the side irradiation type device 1 can be configured.
 シャフト2の長手軸方向xにおいてクラッドの非存在部34が設けられる位置はコア32の遠位部の一部であれば特に制限されないが、コア32の遠位端32aを含む部分に設けられていることが好ましい。これにより部分34を形成しやすくなり、導光装置30の遠位端部での柔軟性も高めることができる。 The position where the non-existing portion 34 of the clad is provided in the longitudinal axis direction x of the shaft 2 is not particularly limited as long as it is a part of the distal portion of the core 32, but is provided at the portion including the distal end 32a of the core 32. It is preferable to have. This facilitates the formation of the portion 34 and also enhances the flexibility at the distal end of the light guide 30.
 図2に示すように、部分34の遠位端34aの位置は、コア32の遠位端32aの位置と一致していることが好ましい。これにより、光ファイバー31の遠位端を含む部分のクラッド33を残しながら部分34を形成するという難しい工程が不要になるため、光ファイバー31の発光エリアの形成工程を容易にすることができる。 As shown in FIG. 2, it is preferable that the position of the distal end 34a of the portion 34 coincides with the position of the distal end 32a of the core 32. This eliminates the difficult step of forming the portion 34 while leaving the clad 33 of the portion including the distal end of the optical fiber 31, so that the step of forming the light emitting area of the optical fiber 31 can be facilitated.
 クラッドの非存在部34は、例えばエッチングや研磨によってクラッド33を剥離させることで形成することができる。やすり掛けなどの方法により部分34の外側表面を荒らすことがより好ましい。これにより、光拡散性を向上させることができる。 The non-existent portion 34 of the clad can be formed by peeling the clad 33, for example, by etching or polishing. It is more preferable to roughen the outer surface of the portion 34 by a method such as sanding. This makes it possible to improve the light diffusivity.
 導光装置30は、シャフト2に対してシャフト2の長手軸方向xに平行な軸周りに回転しないことが好ましい。これにより、光の照射位置を調整するときに光ファイバー31を回転させずに済むため、光ファイバー31の損傷を防ぐことができる。 It is preferable that the light guide device 30 does not rotate about an axis parallel to the longitudinal axis direction x of the shaft 2 with respect to the shaft 2. As a result, it is not necessary to rotate the optical fiber 31 when adjusting the light irradiation position, so that damage to the optical fiber 31 can be prevented.
 第1筒状部材10は遠位部と近位部を有する筒状に形成されている。第1筒状部材10は、一または複数の内腔11を有することができる。第1筒状部材10の外径を小さくするためには、第1筒状部材10には内腔11が1つのみ設けられることが好ましい。 The first tubular member 10 is formed in a cylindrical shape having a distal portion and a proximal portion. The first tubular member 10 can have one or more lumens 11. In order to reduce the outer diameter of the first tubular member 10, it is preferable that the first tubular member 10 is provided with only one lumen 11.
 第2筒状部材20は遠位部と近位部を有する筒状に形成されている。第2筒状部材20は、一または複数の内腔21を有することができる。第2筒状部材20の外径を小さくするためには、第2筒状部材20には内腔21が1つのみ設けられることが好ましい。 The second tubular member 20 is formed in a cylindrical shape having a distal portion and a proximal portion. The second tubular member 20 can have one or more lumens 21. In order to reduce the outer diameter of the second tubular member 20, it is preferable that the second tubular member 20 is provided with only one lumen 21.
 第1筒状部材10および第2筒状部材20は、例えば、ポリオレフィン樹脂(例えば、ポリエチレンやポリプロピレン)、ポリアミド樹脂(例えば、ナイロン)、ポリエステル樹脂(例えば、PET)、芳香族ポリエーテルケトン樹脂(例えば、PEEK)、ポリエーテルポリアミド樹脂、ポリウレタン樹脂、ポリイミド樹脂、フッ素樹脂(例えば、PTFE、PFA、ETFE)等の合成樹脂や、ステンレス鋼、炭素鋼、ニッケルチタン合金等の金属から構成することができる。これらは一種のみを単独で用いてもよく、二種以上を組み合わせて用いてもよい。シャフト2と第1筒状部材10と第2筒状部材20の構成材料は同じであってもよく、互いに異なっていてもよい。 The first tubular member 10 and the second tubular member 20 are, for example, a polyolefin resin (for example, polyethylene or polypropylene), a polyamide resin (for example, nylon), a polyester resin (for example, PET), or an aromatic polyether ketone resin (for example). For example, it may be composed of synthetic resins such as PEEK), polyether polyamide resin, polyurethane resin, polyimide resin, fluororesin (for example, PTFE, PFA, ETFE), and metals such as stainless steel, carbon steel, and nickel-titanium alloy. can. These may be used alone or in combination of two or more. The constituent materials of the shaft 2, the first cylindrical member 10, and the second tubular member 20 may be the same or different from each other.
 第1筒状部材10は、第1窓12よりも射出光の通過性が低い材料から構成されていることが好ましい。また、第2筒状部材20は、第2窓22よりも射出光の通過性が低い材料から構成されていることが好ましい。これにより、各筒状部材のうち窓が無い部分では、窓がある部分よりも射出光が通過しにくくなるため、窓によって射出光の照射位置や照射範囲を調整することができる。筒状部材において窓が無い部分に比べて窓での射出光の通過性を高めるためには、例えば窓を開口させる態様や窓に透明部材を配置する態様が挙げられる。 It is preferable that the first tubular member 10 is made of a material having a lower permeability of emitted light than the first window 12. Further, it is preferable that the second tubular member 20 is made of a material having a lower permeability of emitted light than the second window 22. As a result, the emitted light is less likely to pass through the portion of each tubular member without a window than the portion with a window, so that the irradiation position and irradiation range of the emitted light can be adjusted by the window. In order to improve the passability of the emitted light in the window as compared with the portion of the tubular member having no window, for example, a mode of opening the window and a mode of arranging a transparent member in the window can be mentioned.
 図1~図3に示すように、第1窓12と第2窓22がそれぞれ開口しており、第1窓12によって第1筒状部材10の内外が連通し、第2窓22によって第2筒状部材20の内外が連通していてもよい。第1窓12と第2窓22を重ならせたときにクラッドの非存在部34を外部に露出させることができるため、部分34から光が直接射出されやすくなる。ここで窓が開口しているとは、窓内に他の部材が配置されていないことを意味する。 As shown in FIGS. 1 to 3, the first window 12 and the second window 22 are opened, respectively, the inside and outside of the first cylindrical member 10 communicate with each other by the first window 12, and the second window 22 communicates with the inside and outside. The inside and outside of the tubular member 20 may communicate with each other. Since the non-existent portion 34 of the clad can be exposed to the outside when the first window 12 and the second window 22 are overlapped with each other, light is easily emitted directly from the portion 34. Here, the opening of the window means that no other member is arranged in the window.
 図4は、図3に示した装置1の変形例を示す断面図である。図4に示すように、第1窓12には、射出光を透過する第1透明部材13が配置されていることが好ましい。また、第2窓22には、射出光を透過する第2透明部材23が配置されていることが好ましい。これにより、シャフト2内への体液等の液体の浸入を防ぐことができる。図4に示すように、第1透明部材13は第1窓12内の全体に配置されていることが好ましい。また、第2透明部材23は第2窓22内の全体に配置されていることが好ましい。これによりシャフト2内への液体の浸入防止効果を高めることができる。 FIG. 4 is a cross-sectional view showing a modified example of the device 1 shown in FIG. As shown in FIG. 4, it is preferable that the first transparent member 13 that transmits the emitted light is arranged in the first window 12. Further, it is preferable that the second transparent member 23 that transmits the emitted light is arranged in the second window 22. This makes it possible to prevent liquids such as body fluids from entering the shaft 2. As shown in FIG. 4, it is preferable that the first transparent member 13 is arranged in the entire first window 12. Further, it is preferable that the second transparent member 23 is arranged in the entire second window 22. This makes it possible to enhance the effect of preventing the liquid from entering the shaft 2.
 図5は、図3に示した装置1の変形例を示す断面図である。図5に示すように、第1窓12に第1透明部材13が配置され、第2窓22が開口していてもよい。つまり、第2窓22に第2透明部材23が配置されていなくてもよい。図示していないが、第1窓12が開口しており(つまり第1透明部材13が配置されず)、第2窓22には第2透明部材23が配置されていてもよい。第1窓12と第2窓22のいずれか一方に透明部材を設けても、液体の浸入防止効果を得ることができる。 FIG. 5 is a cross-sectional view showing a modified example of the device 1 shown in FIG. As shown in FIG. 5, the first transparent member 13 may be arranged in the first window 12, and the second window 22 may be open. That is, the second transparent member 23 may not be arranged in the second window 22. Although not shown, the first window 12 may be open (that is, the first transparent member 13 is not arranged), and the second transparent member 23 may be arranged in the second window 22. Even if a transparent member is provided on either the first window 12 or the second window 22, the liquid infiltration prevention effect can be obtained.
 第1透明部材13は、第1筒状部材10のうち第1窓12が無い部分と比べて高い透過率を有していればよい。また、第2透明部材23は、第2筒状部材20のうち第2窓22が無い部分と比べて高い透過率を有していればよい。第1透明部材13および第2透明部材23を構成する材料としては、第1筒状部材10を構成する樹脂のほか、例えば、(メタ)アクリル樹脂(例えば、ポリメチルメタクリレート(PMMA))、ポリカーボネート樹脂(例えば、ポリジエチレングリコールビスアリルカーボネート(PC))、ポリスチレン系樹脂(例えば、メチルメタクリレート・スチレン共重合樹脂(MS)、アクリロニトリルスチレン樹脂(SAN))、ポリアミド樹脂(例えば、ナイロン)、ポリオレフィン樹脂等の合成樹脂から構成することができる。これらは一種のみを単独で用いてもよく、二種以上を組み合わせて用いてもよい。第1透明部材13と第2透明部材23の構成材料はそれぞれ同じであってもよく、互いに異なっていてもよい。 The first transparent member 13 may have a higher transmittance than the portion of the first tubular member 10 without the first window 12. Further, the second transparent member 23 may have a higher transmittance than the portion of the second tubular member 20 without the second window 22. As the material constituting the first transparent member 13 and the second transparent member 23, in addition to the resin constituting the first tubular member 10, for example, (meth) acrylic resin (for example, polymethylmethacrylate (PMMA)), polycarbonate. Resins (eg, polydiethylene glycol bisallyl carbonate (PC)), polystyrene-based resins (eg, methylmethacrylate / styrene copolymer resin (MS), acrylic nitrile styrene resin (SAN)), polyamide resins (eg, nylon), polyolefin resins, etc. It can be composed of the synthetic resin of. These may be used alone or in combination of two or more. The constituent materials of the first transparent member 13 and the second transparent member 23 may be the same or different from each other.
 一の第1筒状部材10に対して、一または複数の第1窓12を設けることができる。また、一の第2筒状部材20に対して、一または複数の第2窓22を設けることができる。射出光の照射位置を調整しやすくするためには、一の第1筒状部材10に第1窓12は1つのみ設けられ、一の第2筒状部材20には第2窓22が1つのみ設けられていることが好ましい。 One or more first windows 12 can be provided for one first cylindrical member 10. Further, one or a plurality of second windows 22 can be provided for one second tubular member 20. In order to facilitate the adjustment of the irradiation position of the emitted light, only one first window 12 is provided in one first cylindrical member 10, and one second window 22 is provided in one second tubular member 20. It is preferable that only one is provided.
 第1窓12は、第1筒状部材10の遠位端10aよりも近位側に配されていることが好ましい。例えば、第1窓12の遠位端12aを、遠位端10aから10cm以内の範囲に位置させてもよい。第2窓22は、第2筒状部材20の遠位端20aよりも近位側に配されていることが好ましい。例えば、第2窓22の遠位端22aを、遠位端20aから10cm以内の範囲に位置させてもよい。 It is preferable that the first window 12 is arranged on the proximal side of the distal end 10a of the first tubular member 10. For example, the distal end 12a of the first window 12 may be located within 10 cm of the distal end 10a. The second window 22 is preferably arranged proximal to the distal end 20a of the second tubular member 20. For example, the distal end 22a of the second window 22 may be located within 10 cm of the distal end 20a.
 図6は、図1に示した第1筒状部材10の全体構成を示す斜視図を表し、図7は、図1に示した第2筒状部材20の全体構成を示す斜視図を表す。図6に示すように、第1窓12は、シャフト2の周方向pの一部にのみ設けられていることが好ましい。すなわち、第1窓12は、シャフト2の周方向pの全体には設けられていないことが好ましい。第1窓12はシャフト2の半周の範囲内に設けられていることがより好ましく、シャフト2の全周の4分の1の長さの範囲内に設けられていることがさらに好ましい。図7に示すように、第2窓22は、シャフト2の周方向pの一部にのみ設けられていることが好ましい。すなわち、第2窓22は、シャフト2の周方向pの全体には設けられていないことが好ましい。第2窓22はシャフト2の半周の範囲内に設けられていることがより好ましい。シャフト2の全周の4分の1の長さの範囲内に設けられていることがさらに好ましい。これにより、シャフト2の周方向で選択的に射出光の照射が可能となる。 FIG. 6 shows a perspective view showing the overall configuration of the first tubular member 10 shown in FIG. 1, and FIG. 7 shows a perspective view showing the overall configuration of the second tubular member 20 shown in FIG. 1. As shown in FIG. 6, it is preferable that the first window 12 is provided only in a part of the circumferential direction p of the shaft 2. That is, it is preferable that the first window 12 is not provided in the entire circumferential direction p of the shaft 2. The first window 12 is more preferably provided within a half circumference of the shaft 2, and further preferably within a quarter length of the entire circumference of the shaft 2. As shown in FIG. 7, it is preferable that the second window 22 is provided only in a part of the circumferential direction p of the shaft 2. That is, it is preferable that the second window 22 is not provided in the entire circumferential direction p of the shaft 2. It is more preferable that the second window 22 is provided within the range of half the circumference of the shaft 2. It is more preferable that the shaft 2 is provided within a quarter length of the entire circumference. This makes it possible to selectively irradiate the emitted light in the circumferential direction of the shaft 2.
 図6に示すように、第1窓12はシャフト2の長手軸方向xの長さがシャフト2の周方向pの長さよりも大きいことが好ましい。また図7に示すように、第2窓22はシャフト2の長手軸方向xの長さがシャフト2の周方向pの長さよりも大きいことが好ましい。これにより、生体管壁の長手軸方向に延在している病変等の処置部を照射しやすくなる。 As shown in FIG. 6, in the first window 12, it is preferable that the length of the longitudinal axis direction x of the shaft 2 is larger than the length of the circumferential direction p of the shaft 2. Further, as shown in FIG. 7, it is preferable that the length of the shaft 2 in the longitudinal axis direction x of the second window 22 is larger than the length of the circumferential direction p of the shaft 2. This makes it easier to irradiate the treated portion such as a lesion extending in the longitudinal axis direction of the biological tube wall.
 図2に示すように、シャフト2の長手軸方向xにおいて、第1窓12はクラッドの非存在部34よりも長いことが好ましい。また長手軸方向xにおいて、第2窓22はクラッドの非存在部34よりも長いことが好ましい。これにより長手軸方向xの広範囲から射出光を射出することができる。同様の理由から、拡張部40がバルーン41である場合、長手軸方向xにおいて、第1窓12および第2窓22はそれぞれバルーン41の直管部43aよりも長いことが好ましい。 As shown in FIG. 2, it is preferable that the first window 12 is longer than the non-existent portion 34 of the clad in the longitudinal axis direction x of the shaft 2. Further, in the longitudinal direction x, it is preferable that the second window 22 is longer than the non-existent portion 34 of the clad. As a result, the emitted light can be emitted from a wide range in the longitudinal axis direction x. For the same reason, when the expansion portion 40 is the balloon 41, it is preferable that the first window 12 and the second window 22 are longer than the straight pipe portion 43a of the balloon 41 in the longitudinal direction x, respectively.
 筒状部材をその半径方向から見たときの第1窓12または第2窓22の形状は特に限定されないが、円形状、長円形状、多角形状、またはこれらを組み合わせた形状とすることができる。長円形状には楕円形状、卵形状、角丸長方形状が含まれる。以降の説明でも同様である。第1窓12の形状と第2窓22の形状はそれぞれ同じであってもよく、互いに異なっていてもよい。また、第1窓12の形状と第2窓22の形状は相似であってもよい。第1窓12と第2窓22の大きさは同じであってもよく、互いに異なっていてもよい。 The shape of the first window 12 or the second window 22 when the tubular member is viewed from the radial direction is not particularly limited, but may be a circular shape, an oval shape, a polygonal shape, or a shape obtained by combining these. .. The oval shape includes an elliptical shape, an egg shape, and a rectangular shape with rounded corners. The same applies to the following description. The shape of the first window 12 and the shape of the second window 22 may be the same or different from each other. Further, the shape of the first window 12 and the shape of the second window 22 may be similar. The sizes of the first window 12 and the second window 22 may be the same or different from each other.
 図2に示すようにシャフト2の長手軸方向xにおいて、第1窓12は第2窓22よりも長いことが好ましい。また、図3に示すようにシャフト2の周方向pにおいて第1窓12は第2窓22よりも長いことが好ましい。これにより第1窓12を通過した射出光が第2窓22を通過しやすくなるため、効率よく照射を行うことができる。 As shown in FIG. 2, it is preferable that the first window 12 is longer than the second window 22 in the longitudinal axis direction x of the shaft 2. Further, as shown in FIG. 3, it is preferable that the first window 12 is longer than the second window 22 in the circumferential direction p of the shaft 2. This makes it easier for the emitted light that has passed through the first window 12 to pass through the second window 22, so that irradiation can be performed efficiently.
 第2筒状部材20の内面に、コア32からの射出光を第2窓22に向かって屈折させる反射材が配置されていることが好ましい。第2筒状部材20の内周壁面上に反射材が配置されていることがより好ましい。第2筒状部材20に反射材を配置する態様としては、例えば、第2筒状部材20の内面に反射材を含むコート剤をコーティングする方法が挙げられる。反射材の存在により射出光が集光されやすくなるため、効率よく射出光の照射を行うことができる。反射材の材料としては、例えば、アルミニウム、金、銀、銅、スズ、二酸化チタン、五酸化タンタル、酸化アルミニウム、二酸化ケイ素、フッ化マグネシウムまたはこれらの組み合わせが挙げられる。 It is preferable that a reflective material that refracts the emitted light from the core 32 toward the second window 22 is arranged on the inner surface of the second tubular member 20. It is more preferable that the reflective material is arranged on the inner peripheral wall surface of the second tubular member 20. As an embodiment of arranging the reflective material on the second tubular member 20, for example, a method of coating the inner surface of the second tubular member 20 with a coating agent containing a reflective material can be mentioned. Since the emitted light is easily collected due to the presence of the reflective material, the emitted light can be efficiently irradiated. Examples of the material of the reflective material include aluminum, gold, silver, copper, tin, titanium dioxide, tantalum pentoxide, aluminum oxide, silicon dioxide, magnesium fluoride or a combination thereof.
 図6に示すように、第1筒状部材10は長手軸方向全体にわたって樹脂チューブ14から構成されていてもよい。これにより、第1筒状部材10を形成しやすくなる。また、第2筒状部材20を形成しやすくするために、図7に示すように、第2筒状部材20が長手軸方向全体にわたって樹脂チューブ24から構成されてもよい。 As shown in FIG. 6, the first cylindrical member 10 may be composed of the resin tube 14 over the entire longitudinal axis direction. This makes it easier to form the first tubular member 10. Further, in order to facilitate the formation of the second tubular member 20, as shown in FIG. 7, the second tubular member 20 may be composed of the resin tube 24 over the entire longitudinal axis direction.
 図8は、図6に示した第1筒状部材10の変形例を示す斜視図を表す。図9は、図7に示した第2筒状部材20の変形例を示す斜視図を表す。図8に示すように、第1筒状部材10は金属を含む補強材15が配置されている第1区間10Aを有していることが好ましい。図9に示すように、第2筒状部材20は金属を含む補強材25が配置されている第1区間20Aを有していることが好ましい。このように補強材を配置することで手元側のトルクを窓側に伝達しやすくなる。その結果、周方向pでの窓の位置を調整しやすくなり、周方向pでの選択的な照射が行いやすくなる。第1区間10Aは、第1筒状部材10の長手軸方向に延在し、第1区間20Aは第2筒状部材20の長手軸方向に延在していることが好ましい。 FIG. 8 shows a perspective view showing a modified example of the first tubular member 10 shown in FIG. FIG. 9 shows a perspective view showing a modified example of the second tubular member 20 shown in FIG. 7. As shown in FIG. 8, it is preferable that the first tubular member 10 has a first section 10A in which the reinforcing member 15 containing metal is arranged. As shown in FIG. 9, it is preferable that the second tubular member 20 has a first section 20A in which the reinforcing member 25 containing metal is arranged. By arranging the reinforcing material in this way, it becomes easy to transmit the torque on the hand side to the window side. As a result, it becomes easy to adjust the position of the window in the circumferential direction p, and it becomes easy to perform selective irradiation in the circumferential direction p. It is preferable that the first section 10A extends in the longitudinal axis direction of the first tubular member 10, and the first section 20A extends in the longitudinal axis direction of the second tubular member 20.
 補強材は、層状に形成されていてもよく、単線または撚線の線材を特定のパターンで配置、編組、またはコイル状に巻回したものであってもよい。これにより、シャフト2の強度やトルク性を高めることができる。なお、樹脂チューブの外面上、内面上、または壁内に補強材を配置することによって第1区間を形成してもよい。 The reinforcing material may be formed in layers, or may be a single wire or stranded wire arranged in a specific pattern, braided, or wound in a coil shape. As a result, the strength and torque of the shaft 2 can be increased. The first section may be formed by arranging a reinforcing material on the outer surface, the inner surface, or the wall of the resin tube.
 補強材を構成する線材の断面の形状は、例えば、円形状、長円形状、多角形状、またはこれらを組み合わせた形状であってもよい。補強材を構成する材料としては、シャフト2を構成する金属の説明を参照することができる。補強材の配置パターンの種類は特に制限されず、コイルの巻き数や密度も特に制限されない。網目構造やコイルは各筒状部材の長手軸方向の全体にわたって一定の密度で形成されていてもよく、筒状部材の長手軸方向の位置によって異なる密度で形成されていてもよい。 The cross-sectional shape of the wire rod constituting the reinforcing material may be, for example, a circular shape, an oval shape, a polygonal shape, or a shape in which these are combined. As the material constituting the reinforcing material, the description of the metal constituting the shaft 2 can be referred to. The type of reinforcing material arrangement pattern is not particularly limited, and the number of coil turns and the density are not particularly limited. The mesh structure and the coil may be formed at a constant density over the entire longitudinal axis direction of each tubular member, or may be formed at different densities depending on the position of the tubular member in the longitudinal axis direction.
 図8に示すように、第1区間10Aにおいて、第1筒状部材10は、一または複数の線材がらせん状に巻回されて形成されているコイル部材16であってもよい。また、図9に示すように、第1区間20Aにおいて、第2筒状部材20は、一または複数の線材がらせん状に巻回されて形成されているコイル部材26であってもよい。このように補強材として機能する線材から第1区間を構成してもよい。第1区間は、複数の線材を撚り合わせて芯のないコイルにより形成することができる。コイル部材は、コイルが複数重ねられている複層コイルであることが好ましい。複層コイルは、例えば、芯材に第1の線材を巻きつけてベースのコイルを形成した後、ベースのコイルの上にさらに第2の線材を巻きつけることで形成することができる。 As shown in FIG. 8, in the first section 10A, the first cylindrical member 10 may be a coil member 16 formed by spirally winding one or a plurality of wire rods. Further, as shown in FIG. 9, in the first section 20A, the second tubular member 20 may be a coil member 26 formed by spirally winding one or a plurality of wire rods. The first section may be formed from the wire rod that functions as a reinforcing material in this way. The first section can be formed by twisting a plurality of wires and forming a coreless coil. The coil member is preferably a multi-layer coil in which a plurality of coils are stacked. The multi-layer coil can be formed, for example, by winding a first wire around a core material to form a base coil, and then winding a second wire on the base coil.
 図8に示すように、第1筒状部材10は、第1区間10Aよりも遠位側に位置し且つ補強材15が配置されていない第2区間10Bをさらに有し、第1窓12は第2区間10Bに配され且つ第1区間10Aには配されていないことが好ましい。また、図9に示すように、第2筒状部材20は、第1区間20Aよりも遠位側に位置し且つ補強材25が配置されていない第2区間20Bをさらに有し、第2窓22は第2区間20Bに配され且つ第1区間20Aには配されていないことが好ましい。補強材により、筒状部材のトルク伝達性を高めることができる。第2区間には補強材が配置されていないため、窓を形成しやすくなる。第2区間は、例えば樹脂チューブから構成することができる。 As shown in FIG. 8, the first tubular member 10 further has a second section 10B located distal to the first section 10A and to which the reinforcing member 15 is not arranged, and the first window 12 has. It is preferable that they are arranged in the second section 10B and not in the first section 10A. Further, as shown in FIG. 9, the second tubular member 20 further has a second section 20B located on the distal side of the first section 20A and on which the reinforcing member 25 is not arranged, and has a second window. It is preferable that 22 is arranged in the second section 20B and not in the first section 20A. The reinforcing material can enhance the torque transmission of the tubular member. Since no reinforcing material is arranged in the second section, it becomes easy to form a window. The second section can be composed of, for example, a resin tube.
 図10は、図8に示した第1筒状部材10の変形例を示す斜視図を表し、図11は、図9に示した第2筒状部材20の変形例を示す斜視図を表す。図10に示すように、第1筒状部材10は、第1区間10Aよりも近位側に位置し、金属製のパイプ17から構成されている第3区間10Cをさらに有していることが好ましい。図11に示すように、第2筒状部材20は、第1区間20Aよりも近位側に位置し、金属製のパイプ27から構成されている第3区間20Cをさらに有していることが好ましい。これにより、手元側に向かって筒状部材の剛性を段階的に高めることができる。 FIG. 10 shows a perspective view showing a modified example of the first tubular member 10 shown in FIG. 8, and FIG. 11 shows a perspective view showing a modified example of the second tubular member 20 shown in FIG. As shown in FIG. 10, the first tubular member 10 is located proximal to the first section 10A and further has a third section 10C composed of a metal pipe 17. preferable. As shown in FIG. 11, the second tubular member 20 is located proximal to the first section 20A and further has a third section 20C composed of a metal pipe 27. preferable. As a result, the rigidity of the tubular member can be gradually increased toward the hand side.
 パイプの可撓性を高めるために、その外側表面には複数の環状の溝やらせん状の溝が形成されていてもよい。溝はパイプの長手軸方向の中央よりも遠位側の外面に形成されていることが好ましい。 In order to increase the flexibility of the pipe, a plurality of annular grooves or spiral grooves may be formed on the outer surface thereof. The groove is preferably formed on the outer surface on the distal side of the center in the longitudinal axis direction of the pipe.
 図1に示すように、第1筒状部材10の近位部には術者が把持するための第2ハンドル72が接続されていることが好ましい。また、第2筒状部材20の近位部には術者が把持するための第3ハンドル73が接続されていることが好ましい。このようなハンドルを用いることで、第1筒状部材10または第2筒状部材20を、長手軸方向xと、長手軸方向xに平行な方向を回転軸とする回転操作が行いやすくなる。 As shown in FIG. 1, it is preferable that a second handle 72 for the operator to grip is connected to the proximal portion of the first tubular member 10. Further, it is preferable that a third handle 73 for the operator to grip is connected to the proximal portion of the second tubular member 20. By using such a handle, it becomes easy to perform a rotation operation of the first cylindrical member 10 or the second tubular member 20 with the direction parallel to the longitudinal axis direction x and the direction parallel to the longitudinal axis direction x as the rotation axis.
 図6に示すように、第1筒状部材10は、その遠位端部に第1窓12の位置を示す位置表示部18を有していることが好ましい。図7に示すように第2筒状部材20は、その遠位端部に第2窓22の位置を示す位置表示部28を有していることが好ましい。位置表示部を手掛かりに窓の位置を把握しやすくなるため、病変等の処置対象部に対して確実に射出光を照射することができる。 As shown in FIG. 6, it is preferable that the first cylindrical member 10 has a position display portion 18 indicating the position of the first window 12 at its distal end. As shown in FIG. 7, it is preferable that the second tubular member 20 has a position display portion 28 indicating the position of the second window 22 at its distal end. Since it is easy to grasp the position of the window by using the position display portion as a clue, it is possible to reliably irradiate the treatment target portion such as a lesion with the emitted light.
 位置表示部としては、目盛り、文字、数字、記号、図形等が挙げられる。目盛りは、位置表示部が設けられる筒状部材の長手軸方向または周方向に沿って延びている軸線と、軸線に対して交差している直線、曲線、斜線、点の少なくともいずれか1つとの組み合わせであってもよい。図6~図7に示すように第1筒状部材10の位置表示部18と第2筒状部材20の位置表示部28は互いに異なる種類の図形であってもよい。 Examples of the position display unit include scales, letters, numbers, symbols, and figures. The scale is an axis extending along the longitudinal direction or the circumferential direction of the tubular member provided with the position display portion, and at least one of a straight line, a curve, a diagonal line, and a point intersecting the axis. It may be a combination. As shown in FIGS. 6 to 7, the position display unit 18 of the first cylindrical member 10 and the position display unit 28 of the second tubular member 20 may have different types of figures.
 位置表示部は、筒状部材の外面のうち着色された部分であってもよいし、筒状部材を構成する樹脂に顔料等の色素が混合された部分であってもよい。 The position display portion may be a colored portion of the outer surface of the tubular member, or may be a portion in which a dye such as a pigment is mixed with the resin constituting the tubular member.
 位置表示部は、1つの筒状部材に対して1つのみ設けられていてもよく、複数設けられていてもよい。 Only one position display unit may be provided for one cylindrical member, or a plurality of position display units may be provided.
 位置表示部は、筒状部材の長手軸方向において窓の両側に設けられていることが好ましい。これにより、筒状部材の長手軸方向で窓の位置を把握しやすくなる。 It is preferable that the position display portions are provided on both sides of the window in the longitudinal axis direction of the tubular member. This makes it easier to grasp the position of the window in the longitudinal axis direction of the tubular member.
 位置表示部は、筒状部材の長手軸方向において窓と重なる位置に設けられていてもよい。また、位置表示部は、周方向において窓の両側に設けられていてもよい。これにより、筒状部材の周方向で窓の位置を把握しやすくなる。 The position display unit may be provided at a position overlapping the window in the longitudinal axis direction of the tubular member. Further, the position display units may be provided on both sides of the window in the circumferential direction. This makes it easier to grasp the position of the window in the circumferential direction of the tubular member.
 第1窓12または第2窓22の位置を示す位置表示部は、装置1の近位部に設けられていてもよい。例えば、第1窓12の位置を示す位置表示部が第2ハンドル72に設けられ、第2窓22の位置を示す位置表示部が第3ハンドル73に設けられていてもよい。あるいは第1窓12の位置を示す位置表示部が第1筒状部材10の近位部に設けられ、第2窓22の位置を示す位置表示部が第2筒状部材20の近位部に設けられていてもよい。 The position display unit indicating the position of the first window 12 or the second window 22 may be provided in the proximal portion of the device 1. For example, a position display unit indicating the position of the first window 12 may be provided on the second handle 72, and a position display unit indicating the position of the second window 22 may be provided on the third handle 73. Alternatively, a position display portion indicating the position of the first window 12 is provided in the proximal portion of the first tubular member 10, and a position display portion indicating the position of the second window 22 is provided in the proximal portion of the second tubular member 20. It may be provided.
 図2に示すように、導光装置30は、光ファイバー31を覆いかつ光透過性を有する保護筒36を有することが好ましい。保護筒36により、光ファイバー31の補強、光拡散性の向上および照射ムラの低減が可能となる。 As shown in FIG. 2, it is preferable that the light guide device 30 has a protective cylinder 36 that covers the optical fiber 31 and has light transmission. The protective cylinder 36 makes it possible to reinforce the optical fiber 31, improve the light diffusivity, and reduce uneven irradiation.
 保護筒36は、光ファイバー31の長手軸方向に延在している筒状の部材である。光ファイバー31を保護するために、保護筒36は光ファイバー31の長手軸方向全体を覆っていることが好ましい。これにより、光ファイバー31全体にわたってコア32の損傷、変形、折れを抑制することができる。同様の理由から、保護筒36は光ファイバー31の周方向全体を覆っていることが好ましい。保護筒36の遠位端36aは、光ファイバー31の遠位端よりも遠位側に位置していることが好ましく、コア32の遠位端32aよりも遠位側に位置していることがより好ましい。これにより、光ファイバー31の遠位端部での変形や損傷を防ぐことができる。 The protective cylinder 36 is a tubular member extending in the longitudinal axis direction of the optical fiber 31. In order to protect the optical fiber 31, it is preferable that the protective cylinder 36 covers the entire longitudinal direction of the optical fiber 31. As a result, damage, deformation, and breakage of the core 32 can be suppressed over the entire optical fiber 31. For the same reason, it is preferable that the protective cylinder 36 covers the entire circumferential direction of the optical fiber 31. The distal end 36a of the protective tube 36 is preferably located distal to the distal end of the optical fiber 31, and more preferably located distal to the distal end 32a of the core 32. preferable. This makes it possible to prevent deformation or damage at the distal end of the optical fiber 31.
 保護筒36は光透過性を有していればよいが、樹脂から構成されていることが好ましい。保護筒36を構成する樹脂としては、ポリアミド系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、ポリオレフィン系樹脂、フッ素系樹脂、塩化ビニル系樹脂、シリコーン系樹脂、天然ゴム等が挙げられる。これらは1種のみを用いてもよく、2種以上を併用してもよい。中でも、ポリアミド系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、ポリオレフィン系樹脂、フッ素系樹脂が好適に用いられる。 The protective cylinder 36 may have light transmittance, but is preferably made of resin. Examples of the resin constituting the protective cylinder 36 include a polyamide resin, a polyester resin, a polyurethane resin, a polyolefin resin, a fluororesin, a vinyl chloride resin, a silicone resin, and a natural rubber. Only one of these may be used, or two or more thereof may be used in combination. Of these, polyamide-based resins, polyester-based resins, polyurethane-based resins, polyolefin-based resins, and fluorine-based resins are preferably used.
 保護筒36を構成する樹脂には、酸化チタン、硫酸バリウム、炭酸カルシウム等の無機系粒子、架橋アクリル系粒子、架橋スチレン系粒子等の有機系粒子の光拡散性の材料を添加することができる。クラッドの非存在部34から射出される光をさらに拡散させることができるため、照射ムラを減らすことができる。 A light diffusing material of inorganic particles such as titanium oxide, barium sulfate and calcium carbonate, and organic particles such as crosslinked acrylic particles and crosslinked styrene particles can be added to the resin constituting the protective cylinder 36. .. Since the light emitted from the non-existent portion 34 of the clad can be further diffused, the irradiation unevenness can be reduced.
 保護筒36の内腔37に光ファイバー31を挿入しやすいように、保護筒36は、光ファイバー31の長手軸方向において一定の大きさの内径を有していることが好ましい。 The protective cylinder 36 preferably has an inner diameter of a certain size in the longitudinal axis direction of the optical fiber 31 so that the optical fiber 31 can be easily inserted into the lumen 37 of the protective cylinder 36.
 シャフト2の内腔3で導光装置30が光ファイバー31の長手軸方向に移動しやすいように保護筒36の外径が設定されていることが好ましい。保護筒36は、遠位端に向かって外径が小さくなっていてもよく、光ファイバー31の長手軸方向において一定の大きさの外径を有していてもよい。 It is preferable that the outer diameter of the protective cylinder 36 is set so that the light guide device 30 can easily move in the longitudinal axis direction of the optical fiber 31 in the lumen 3 of the shaft 2. The protective cylinder 36 may have an outer diameter that decreases toward the distal end, or may have an outer diameter of a certain size in the longitudinal axis direction of the optical fiber 31.
 クラッドの非存在部34は、保護筒36に覆われていることが好ましく、部分34は光ファイバー31の長手軸方向の全体にわたって保護筒36に覆われていることがより好ましい。これにより、コア32のうち部分34に相当する範囲が保護されるため、その範囲にあるコア32の損傷、変形、折れを抑制することができる。 The non-existent portion 34 of the clad is preferably covered with the protective cylinder 36, and the portion 34 is more preferably covered with the protective cylinder 36 over the entire longitudinal axis direction of the optical fiber 31. As a result, the range corresponding to the portion 34 of the core 32 is protected, so that damage, deformation, and breakage of the core 32 in that range can be suppressed.
 図示していないが、保護筒36の遠位端部に樹脂チップが設けられていてもよい。これにより保護筒36の内腔37に配置された放射線不透過マーカーが、導光装置30の遠位端面側から脱落しにくくなる。樹脂チップは、例えば、半球状、半長円球状、円柱状、多角柱状に形成することができる。樹脂チップの一部が、保護筒36の内腔37に配置されていることが好ましい。樹脂チップは内腔37に差し込まれている栓形状であってもよい。樹脂チップの構成材料としては、保護筒36の構成材料の説明を参照することができる。 Although not shown, a resin chip may be provided at the distal end of the protective cylinder 36. As a result, the radiation opaque marker arranged in the lumen 37 of the protective cylinder 36 is less likely to fall off from the distal end surface side of the light guide device 30. The resin chip can be formed into, for example, a hemispherical shape, a semi-oval spherical shape, a columnar shape, or a polygonal columnar shape. It is preferable that a part of the resin chip is arranged in the lumen 37 of the protective cylinder 36. The resin chip may have a plug shape inserted into the lumen 37. As the constituent material of the resin chip, the description of the constituent material of the protective cylinder 36 can be referred to.
 図1~図2に示すように、シャフト2の遠位部に、シャフト2の径方向yの外方に向かって拡張する拡張部40がさらに設けられていることが好ましい。拡張部40を拡張させることによって体内、例えば生体管壁に装置1を固定しやすくなるため、体内での装置1の位置ずれを防ぐことができる。 As shown in FIGS. 1 to 2, it is preferable that the distal portion of the shaft 2 is further provided with an expansion portion 40 that expands outward in the radial direction y of the shaft 2. By expanding the expansion unit 40, it becomes easier to fix the device 1 in the body, for example, to the wall of the biological tube, so that it is possible to prevent the device 1 from being displaced in the body.
 図12は図2に示した装置1の変形例を示す断面図(一部側面図)を表し、図13は図2に示した装置1の他の変形例を示す断面図を表す。拡張部40は、バルーン、複数の弾性ワイヤを備えたバスケット、またはステントであることが好ましく、拡張部40は、バルーン41(図2)、複数の弾性ワイヤを備えたバスケット45(図12)、または自己拡張型ステント49(図13)であることがより好ましい。拡張部40がバルーン41であることにより、拡張部40が生体管壁と接触しても生体管壁を傷つけずに体内での位置を固定することができる。また、拡張部40がバスケットまたはステントであることにより、バスケットまたはステントを構成する線材が生体管壁に食い込みやすくなるため、装置1を体内に強固に固定することができる。なお、図13において自己拡張型ステント49の外形は模式的に示されている。 FIG. 12 shows a cross-sectional view (partial side view) showing a modified example of the device 1 shown in FIG. 2, and FIG. 13 shows a cross-sectional view showing another modified example of the device 1 shown in FIG. The expansion portion 40 is preferably a balloon, a basket with a plurality of elastic wires, or a stent, and the expansion portion 40 is a balloon 41 (FIG. 2), a basket 45 with a plurality of elastic wires (FIG. 12), and the expansion portion 40. Alternatively, it is more preferably a self-expandable stent 49 (FIG. 13). Since the expansion portion 40 is a balloon 41, even if the expansion portion 40 comes into contact with the living tube wall, the position in the body can be fixed without damaging the living tube wall. Further, since the expansion portion 40 is a basket or a stent, the wire rod constituting the basket or the stent can easily bite into the wall of the living tube, so that the device 1 can be firmly fixed in the body. The outer shape of the self-expandable stent 49 is schematically shown in FIG.
 図2のように、バルーン41は遠位側から順に、シャフト2に固定されている遠位側固定部42と、シャフト2に固定されていない膨張部43と、シャフト2に固定されている近位側固定部44とを有していてもよい。シャフト2は内管4と外管5から構成され、シャフト2の遠位部では、内管4が外管5の遠位端から延出してバルーン41をシャフト2の長手軸方向xに貫通していることが好ましい。これにより、シャフト2にバルーン41が接合される。 As shown in FIG. 2, in order from the distal side, the balloon 41 has a distal side fixing portion 42 fixed to the shaft 2, an expansion portion 43 not fixed to the shaft 2, and a proximity fixed to the shaft 2. It may have a position side fixing portion 44. The shaft 2 is composed of an inner tube 4 and an outer tube 5. At the distal portion of the shaft 2, the inner tube 4 extends from the distal end of the outer tube 5 and penetrates the balloon 41 in the longitudinal axis direction x of the shaft 2. Is preferable. As a result, the balloon 41 is joined to the shaft 2.
 拡張部40がバルーン41である場合、シャフト2の近位部には流体供給器(図示せず)が接続されていることが好ましい。バルーン41は、シャフト2を通じて流体供給器からバルーン41の内部に圧力流体が供給されるように構成される。バルーン41の内部に圧力流体を供給するとバルーン41が拡張し、圧力流体を引き抜くとバルーン41が収縮する。バルーン41を拡張させるとバルーン41の外面が血管や消化管等の生体管壁と接触するため、シャフト2を体内に固定することができる。 When the expansion portion 40 is a balloon 41, it is preferable that a fluid feeder (not shown) is connected to the proximal portion of the shaft 2. The balloon 41 is configured such that a pressure fluid is supplied from the fluid feeder to the inside of the balloon 41 through the shaft 2. When the pressure fluid is supplied to the inside of the balloon 41, the balloon 41 expands, and when the pressure fluid is pulled out, the balloon 41 contracts. When the balloon 41 is expanded, the outer surface of the balloon 41 comes into contact with the wall of a biological tube such as a blood vessel or a digestive tract, so that the shaft 2 can be fixed inside the body.
 拡張部40がバルーン41である場合、シャフト2は複数の内腔3を有していてもよい。図2では、シャフト2は、第1筒状部材10、第2筒状部材20および導光装置30が挿通される第1内腔3aと、バルーン41内に連通している第2内腔3bと、を有している第1内腔3aは導光装置30の挿通路、第2内腔3bは圧力流体の流路として機能する。シャフト2が内管4と外管5から構成され、内管4の内腔が第1内腔3aであり、内管4と外管5の間の空間が第2内腔3bであってもよい。 When the expansion portion 40 is a balloon 41, the shaft 2 may have a plurality of lumens 3. In FIG. 2, the shaft 2 has a first lumen 3a through which a first tubular member 10, a second tubular member 20, and a light guide device 30 are inserted, and a second lumen 3b communicating with the inside of a balloon 41. The first lumen 3a having the above functions as an insertion passage for the light guide device 30, and the second lumen 3b functions as a passage for the pressure fluid. Even if the shaft 2 is composed of an inner tube 4 and an outer tube 5, the lumen of the inner tube 4 is the first lumen 3a, and the space between the inner tube 4 and the outer tube 5 is the second lumen 3b. good.
 バルーン41の膨張部43は、直管部43aと、直管部43aの遠位部および近位部に各々形成されているテーパー部43bとを有していてもよい。直管部43aの外面を生体管壁に接触させることで、シャフト2を体内に固定することができる。 The inflated portion 43 of the balloon 41 may have a straight pipe portion 43a and a tapered portion 43b formed in the distal portion and the proximal portion of the straight pipe portion 43a, respectively. By bringing the outer surface of the straight tube portion 43a into contact with the living tube wall, the shaft 2 can be fixed inside the body.
 バルーン41は樹脂から構成されていることが好ましい。バルーン41を構成する樹脂としては、ポリアミド系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、ポリオレフィン系樹脂、塩化ビニル系樹脂、シリコーン系樹脂、天然ゴム等が挙げられる。これらは1種のみを用いてもよく、2種以上を併用してもよい。なかでも、ポリアミド系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂が好適に用いられる。バルーン41の薄膜化や柔軟性の点からはエラストマー樹脂を用いることができる。 The balloon 41 is preferably made of resin. Examples of the resin constituting the balloon 41 include polyamide-based resin, polyester-based resin, polyurethane-based resin, polyolefin-based resin, vinyl chloride-based resin, silicone-based resin, and natural rubber. Only one of these may be used, or two or more thereof may be used in combination. Of these, polyamide-based resins, polyester-based resins, and polyurethane-based resins are preferably used. An elastomer resin can be used from the viewpoint of thinning the balloon 41 and flexibility.
 バルーン41内に供給される流体の種類は特に限定されないが、例えば、生理食塩水、造影剤、またはこれらの混合液等の液体や、空気、窒素、炭酸ガス等の気体を用いることができる。射出光を透過しやすくするためには、バルーン41内に気体が供給されることが好ましい。 The type of fluid supplied into the balloon 41 is not particularly limited, but for example, a liquid such as physiological saline, a contrast medium, or a mixed solution thereof, or a gas such as air, nitrogen, or carbon dioxide can be used. It is preferable that a gas is supplied into the balloon 41 in order to facilitate the transmission of the emitted light.
 図12に示すように、バスケット45は、複数の弾性ワイヤ46が第1結束部と、該第1結束部よりも近位側の第2結束部において結束されて形成されているものである。バスケット45では、第1結束部と第2結束部の間で弾性ワイヤ46が折り曲げられたり、らせん状にねじり合わされたりしてもよい。バスケットは一般には結石などの異物の捕捉に用いられるが、装置1では体内での装置1の位置固定のために使用される。 As shown in FIG. 12, the basket 45 is formed by binding a plurality of elastic wires 46 at a first binding portion and a second binding portion proximal to the first binding portion. In the basket 45, the elastic wire 46 may be bent or spirally twisted between the first binding portion and the second binding portion. The basket is generally used for catching foreign substances such as stones, but in the device 1, it is used for fixing the position of the device 1 in the body.
 弾性ワイヤ46は、弾性を有する線材であり、形状記憶合金または形状記憶樹脂から構成されることが好ましい。弾性ワイヤ46は例えば、SUS304、SUS316等のステンレス鋼、白金、ニッケル、コバルト、クロム、チタン、タングステン、アルミニウム、金、銀、Ni-Ti合金、Co-Cr合金等から構成されている単線または撚線の金属線材であってもよい。 The elastic wire 46 is a wire having elasticity, and is preferably composed of a shape memory alloy or a shape memory resin. The elastic wire 46 is a single wire or twist made of, for example, stainless steel such as SUS304 or SUS316, platinum, nickel, cobalt, chromium, titanium, tungsten, aluminum, gold, silver, Ni—Ti alloy, Co—Cr alloy or the like. It may be a metal wire rod.
 弾性ワイヤ46の本数は特に限定されず、生体管壁の内径等に応じて選択することができる。 The number of elastic wires 46 is not particularly limited and can be selected according to the inner diameter of the living tube wall and the like.
 第1結束部および第2結束部では、弾性ワイヤがシャフト2に固定されていることが好ましい。複数の弾性ワイヤ46の遠位端部または近位端部を周方向pに離して配置し、弾性ワイヤの遠位端部または近位端部をシャフト2にロウ付けまたは接着する、あるいは弾性ワイヤの遠位端部または近位端部の上から筒状の接続具を被せて、接続具をかしめる等の方法で、弾性ワイヤをシャフト2に固定することができる。図12では第1接続具47によって弾性ワイヤ46の遠位端部がシャフト2に固定され、第2接続具48によって弾性ワイヤ46の近位端部がシャフト2に固定されている。なお第1接続具47が支持部50を兼ねていてもよい。 In the first binding portion and the second binding portion, it is preferable that the elastic wire is fixed to the shaft 2. Distal ends or proximal ends of the plurality of elastic wires 46 are arranged apart in the circumferential direction p, and the distal ends or proximal ends of the elastic wires are brazed or bonded to the shaft 2, or the elastic wires. The elastic wire can be fixed to the shaft 2 by covering the distal end portion or the proximal end portion of the above with a tubular connector and crimping the connector. In FIG. 12, the distal end of the elastic wire 46 is fixed to the shaft 2 by the first connector 47, and the proximal end of the elastic wire 46 is fixed to the shaft 2 by the second connector 48. The first connector 47 may also serve as the support portion 50.
 ステントは、例えばメッシュなどの網目構造で構成されている拡径可能な構造体であり、複数の支柱を含んでいる。ステントは、例えば周方向および軸方向に伸縮する、相互に連結している構造要素のパターンから形成することができる。ステントは、1本の線状の金属もしくは高分子材料からなるコイル状のタイプ、金属チューブや高分子材料からなるチューブをレーザーなどで切り抜き加工したタイプ、線状の部位を溶接し組み立てたタイプ、複数の線状金属を織って作ったタイプ等が挙げられる。 The stent is a structure that can be expanded in diameter and is composed of a mesh structure such as a mesh, and includes a plurality of columns. Stents can be formed from patterns of interconnected structural elements that stretch, for example, circumferentially and axially. The stent is a coil type made of one linear metal or polymer material, a type made by cutting out a metal tube or a tube made of a polymer material with a laser, etc., a type assembled by welding a linear part, Examples include a type made by weaving a plurality of linear metals.
 ステントは、拡張機構の観点からバルーン拡張型と自己拡張型に分類することができる。バルーン拡張型では、バルーン外面上にステントを装着して病変等の処置部まで搬送し、バルーンを用いて処置部でステントを拡張させる。自己拡張型では、拡張を抑制する部材を有するカテーテルでステントを病変部に搬送し、処置部で拡張を抑制する部材を取り外すことによりステントが自ら拡張する。ステントは、自己拡張型ステントであることが好ましい。自己拡張型では内部にバルーンを設けなくてもよいことから、バルーン拡張型に比べて縮径状態の径を小さくすることができる。 Stents can be classified into balloon expansion type and self-expansion type from the viewpoint of expansion mechanism. In the balloon expansion type, a stent is attached on the outer surface of the balloon and transported to the treatment site such as a lesion, and the stent is expanded at the treatment site using the balloon. In the self-expanding type, the stent is transported to the lesion by a catheter having a member that suppresses expansion, and the stent expands by itself by removing the member that suppresses expansion at the treatment site. The stent is preferably a self-expanding stent. Since it is not necessary to provide a balloon inside the self-expanding type, the diameter in the reduced diameter state can be made smaller than that of the balloon expanding type.
 ステントの構成材料としては、バスケット45の弾性ワイヤ46の構成材料の説明を参照することができる。 As the constituent material of the stent, the description of the constituent material of the elastic wire 46 of the basket 45 can be referred to.
 図13に示すように拡張部40が自己拡張型ステント49である場合、自己拡張型ステント49の近位端部がシャフト2の遠位端部に固定されていることが好ましい。ステントが光の射出を阻害しない状態で装置1を体内に固定することができる。 When the dilated portion 40 is a self-expandable stent 49 as shown in FIG. 13, it is preferable that the proximal end portion of the self-expandable stent 49 is fixed to the distal end portion of the shaft 2. The device 1 can be fixed in the body without the stent obstructing the emission of light.
 拡張部40が自己拡張型ステント49であり、遠位端部が近位端部よりも拡張可能である場合、遠位端部がシャフト2の遠位端部に固定されていないことが好ましい。ステントの遠位端部を生体管壁に接触させることで、シャフト2を体内に固定することができる。 When the dilated portion 40 is a self-expandable stent 49 and the distal end is more expandable than the proximal end, it is preferred that the distal end is not fixed to the distal end of the shaft 2. The shaft 2 can be fixed in the body by bringing the distal end of the stent into contact with the living tube wall.
 ステントのシャフト2への固定は、バスケットの弾性ワイヤのシャフト2への固定と同様の方法で行うことができる。ステントの近位端部において、複数の支柱を周方向pに離隔するように配置し、シャフト2にロウ付けまたは接着する、あるいは支柱の近位端部の上から筒状の接続具を被せて、接続具をかしめる等の方法を採用することができる。 The stent can be fixed to the shaft 2 in the same manner as the elastic wire of the basket is fixed to the shaft 2. At the proximal end of the stent, multiple struts are placed so as to be spaced apart in the circumferential direction p and brazed or glued to the shaft 2, or covered with a tubular connector over the proximal end of the struts. , A method such as crimping the connector can be adopted.
 拡張部40がバスケットまたはステントである場合、装置1は、内腔に拡張部40を収容可能な第3筒状部材(図示せず)をさらに有することが好ましい。これにより、装置1が、内視鏡の鉗子口から鉗子チャンネル内を通って病変等の処置部の近くに搬送されるまでの間に、バスケットまたはステントが拡張することで内視鏡内の鉗子口、鉗子チャンネル内、異物以外の体内組織等を傷付けることを防止することができる。 When the expansion unit 40 is a basket or a stent, it is preferable that the device 1 further has a third tubular member (not shown) capable of accommodating the expansion unit 40 in the lumen. As a result, the forceps in the endoscope are expanded by the basket or the stent until the device 1 is transported from the forceps opening of the endoscope through the forceps channel to the vicinity of the treatment site such as a lesion. It is possible to prevent damage to the mouth, the forceps channel, internal tissues other than foreign substances, and the like.
 図1~図2に示すように長手軸方向xで拡張部40はクラッドの非存在部34と重なる位置に配置されていてもよい。図13に示すように長手軸方向xで拡張部40はクラッドの非存在部34よりも遠位側に配置されていてもよい。 As shown in FIGS. 1 to 2, the expansion portion 40 may be arranged at a position overlapping the non-existent portion 34 of the clad in the longitudinal axis direction x. As shown in FIG. 13, the extension portion 40 may be arranged distal to the non-existent portion 34 of the clad in the longitudinal axis direction x.
 長手軸方向xで拡張部40がクラッドの非存在部34と重なる位置に設けられている場合、拡張部40は光透過性の材料を含んでいることが好ましい。その場合、シャフト2のうち拡張部40に覆われている部分と拡張部40の両方が光透過性の材料から構成されていることがより好ましい。拡張部40の内部に部分34が位置したときに、バルーン41に対応する位置で対象組織に対して効率よく光を照射することができる。光透過性の材料としてはシャフト2の説明を参照することができる。 When the expansion portion 40 is provided at a position overlapping the non-existing portion 34 of the clad in the longitudinal axis direction x, it is preferable that the expansion portion 40 contains a light transmitting material. In that case, it is more preferable that both the portion of the shaft 2 covered by the expansion portion 40 and the expansion portion 40 are made of a light-transmitting material. When the portion 34 is located inside the expansion portion 40, the target tissue can be efficiently irradiated with light at the position corresponding to the balloon 41. As the light transmissive material, the description of the shaft 2 can be referred to.
 長手軸方向xで拡張部40がクラッドの非存在部34と重なる位置に設けられている場合、拡張部40は光拡散性の材料を含んでいることが好ましい。その場合、シャフト2のうち拡張部40に覆われている部分と拡張部40の両方が光拡散性の材料から構成されていることがより好ましい。これにより、対象組織に対して光をムラなく照射することができる。光拡散性の材料としては、シャフト2の材料の説明を参照することができる。 When the expansion portion 40 is provided at a position overlapping the non-existing portion 34 of the clad in the longitudinal axis direction x, it is preferable that the expansion portion 40 contains a light diffusing material. In that case, it is more preferable that both the portion of the shaft 2 covered by the expansion portion 40 and the expansion portion 40 are made of a light diffusing material. As a result, the target tissue can be evenly irradiated with light. As the light diffusing material, the description of the material of the shaft 2 can be referred to.
 シャフト2の遠位端部に、導光装置30の遠位部を支持する支持部50がさらに設けられていることが好ましい。支持部50により、導光装置30の遠位部の重力による垂れ下がりを抑制することができる。その結果、第1筒状部材10の回転操作、第2筒状部材20の回転操作、導光装置30の長手軸方向xへの移動操作が行いやすくなる。 It is preferable that a support portion 50 for supporting the distal portion of the light guide device 30 is further provided at the distal end portion of the shaft 2. The support portion 50 can suppress the hanging of the distal portion of the light guide device 30 due to gravity. As a result, it becomes easy to perform the rotation operation of the first tubular member 10, the rotation operation of the second tubular member 20, and the movement operation of the light guide device 30 in the longitudinal axis direction x.
 図1~図2に示すように、支持部50はシャフト2の径方向yの外方に設けられていてもよく、図13に示すようにシャフト2の内腔3に配置されていてもよい。支持部50で導光装置30を確実に支持するために、図2のように支持部50の一部がシャフト2の遠位端2aよりも遠位側に配置されていてもよい。 As shown in FIGS. 1 to 2, the support portion 50 may be provided outside the radial direction y of the shaft 2, or may be arranged in the lumen 3 of the shaft 2 as shown in FIG. .. In order to reliably support the light guide device 30 with the support portion 50, a part of the support portion 50 may be arranged on the distal side of the distal end 2a of the shaft 2 as shown in FIG.
 支持部50は筒状に形成することができる。図13に示すように、筒状の支持部50は、長手軸方向xにおいて一定の内径を有していてもよい。図1~図2に示すように、筒状の支持部50は長手軸方向xの位置によって異なる内径を有していてもよい。例えば、筒状の支持部50は、シャフト2を支持している大径部51と、大径部51よりも遠位側に位置して導光装置30を支持し且つ大径部51よりも内径が小さい小径部52と、を有していてもよい。これにより、導光装置30の重力による垂れ下がりの抑制効果を一層高めることができる。同様の理由から、筒状の支持部50は、遠位側に向かって内径が小さくなっているテーパー状に形成されていてもよい。 The support portion 50 can be formed in a cylindrical shape. As shown in FIG. 13, the cylindrical support portion 50 may have a constant inner diameter in the longitudinal axis direction x. As shown in FIGS. 1 and 2, the cylindrical support portion 50 may have a different inner diameter depending on the position in the longitudinal axis direction x. For example, the tubular support portion 50 is located on the distal side of the large diameter portion 51 that supports the shaft 2 and the large diameter portion 51 to support the light guide device 30 and is larger than the large diameter portion 51. It may have a small diameter portion 52 having a small inner diameter. As a result, the effect of suppressing the sagging of the light guide device 30 due to gravity can be further enhanced. For the same reason, the tubular support portion 50 may be formed in a tapered shape in which the inner diameter decreases toward the distal side.
 支持部50を構成する材料としては、シャフト2を構成する材料の説明を参照することができる。 As the material constituting the support portion 50, the description of the material constituting the shaft 2 can be referred to.
 図1~図2に示すように、長手軸方向xで拡張部40がクラッドの非存在部34と重なる位置にある場合、支持部50の遠位端50aが拡張部40の遠位端40aよりも遠位側に位置していることが好ましい。また、図13に示すように、長手軸方向xで拡張部40がクラッドの非存在部34よりも遠位側に位置している場合、支持部50の遠位端50aが拡張部40の遠位端40aよりも近位側に位置していてもよい。このように拡張部40と支持部50の位置関係を設定することにより、支持部50によって導光装置30を確実に支持することができる。 As shown in FIGS. 1 to 2, when the extension portion 40 overlaps with the non-existent portion 34 of the clad in the longitudinal direction x, the distal end 50a of the support portion 50 is from the distal end 40a of the expansion portion 40. Is preferably located on the distal side. Further, as shown in FIG. 13, when the expansion portion 40 is located distal to the non-existent portion 34 of the clad in the longitudinal direction x, the distal end 50a of the support portion 50 is far from the expansion portion 40. It may be located proximal to the position end 40a. By setting the positional relationship between the expansion portion 40 and the support portion 50 in this way, the light guide device 30 can be reliably supported by the support portion 50.
 装置1を構成する各部材には放射線不透過のマーカーが設けられていてもよい。例えば、シャフト2の遠位部に第1マーカー61が配置されていてもよい。これにより、X線透視下でシャフト2の位置を特定することができるため、シャフト2を照射対象の組織の位置に合わせることができる。 Each member constituting the device 1 may be provided with a radiation opaque marker. For example, the first marker 61 may be arranged at the distal portion of the shaft 2. As a result, the position of the shaft 2 can be specified under fluoroscopy, so that the shaft 2 can be aligned with the position of the tissue to be irradiated.
 コア32の遠位端よりも遠位側において保護筒36に第2マーカー62が配置されていてもよい。これにより、第2マーカー62の取り付けの際に発生してしまう応力によるコア32の変形や損傷を防ぎつつ、X線透視下で光ファイバー31の発光エリアとなるクラッドの非存在部34の位置を特定しやすくなる。 The second marker 62 may be arranged on the protective cylinder 36 on the distal side of the distal end of the core 32. As a result, while preventing deformation and damage of the core 32 due to stress generated when the second marker 62 is attached, the position of the non-existent portion 34 of the clad that becomes the light emitting area of the optical fiber 31 under fluoroscopy is specified. It will be easier to do.
 第2マーカー62に加えて、クラッドの非存在部34の近位端よりも近位側であって保護筒36に第3マーカー63が配置されていてもよい。これにより、保護筒36の長手軸方向において発光エリアとなるクラッドの非存在部34の両側に放射線不透過マーカーが配置されるため、X線透視下で発光エリアの位置をより特定しやすくなる。 In addition to the second marker 62, the third marker 63 may be arranged on the protective cylinder 36 on the proximal side of the proximal end of the non-existent portion 34 of the clad. As a result, the radiation opaque markers are arranged on both sides of the non-existent portion 34 of the clad that becomes the light emitting area in the longitudinal axis direction of the protective cylinder 36, so that the position of the light emitting area can be more easily specified under fluoroscopy.
 シャフト2の第1マーカー61よりも近位側には、さらに第4マーカー64が配置されていてもよい。これにより、X線透視下で長手軸方向xの位置をより一層特定しやすくなる。 A fourth marker 64 may be further arranged on the proximal side of the shaft 2 with respect to the first marker 61. This makes it easier to identify the position of the longitudinal axis direction x under fluoroscopy.
 第1筒状部材10の遠位部に第5マーカー65が配置されていることが好ましく、第5マーカー65は第1窓12よりも遠位側に配置されていることがより好ましい。また、第1筒状部材10の遠位部であって第1窓12よりも近位側に第6マーカー66が配置されていることが好ましい。これにより、第1筒状部材10の長手軸方向における第1窓12の位置を把握しやすくなるため、X線透視下での発光エリアの位置を特定しやすくなる。 It is preferable that the fifth marker 65 is arranged at the distal portion of the first tubular member 10, and it is more preferable that the fifth marker 65 is arranged on the distal side of the first window 12. Further, it is preferable that the sixth marker 66 is arranged at the distal portion of the first tubular member 10 and proximal to the first window 12. This makes it easier to grasp the position of the first window 12 in the longitudinal axis direction of the first tubular member 10, and thus makes it easier to specify the position of the light emitting area under fluoroscopy.
 第2筒状部材20の遠位部に第7マーカー67が配置されていることが好ましく、第7マーカー67は第2窓22よりも遠位側に配置されていることがより好ましい。また、第2筒状部材20の遠位部であって第2窓22よりも近位側に第8マーカー68が配置されていてもよい。これにより第2筒状部材20の長手軸方向における第2窓22の位置を把握しやすくなる。 It is preferable that the seventh marker 67 is arranged at the distal portion of the second tubular member 20, and it is more preferable that the seventh marker 67 is arranged on the distal side of the second window 22. Further, the eighth marker 68 may be arranged at the distal portion of the second tubular member 20 and proximal to the second window 22. This makes it easier to grasp the position of the second window 22 in the longitudinal axis direction of the second tubular member 20.
 装置1に第1マーカー61、第2マーカー62、第5マーカー65、第7マーカー67が設けられる場合、遠位側から近位側に向かって順に、第2マーカー62の遠位端、第5マーカー65の遠位端、第7マーカー67の遠位端、第1マーカー61の遠位端が位置していることが好ましい。このようにマーカー同士を位置させることにより、シャフト2、クラッドの非存在部34および第1窓12の位置を把握しやすくなる。装置1に第3マーカー63、第4マーカー64、第6マーカー66、第8マーカー68が設けられる場合、上記と同様の理由から、近位側から遠位側に向かって順に、第3マーカー63の近位端、第6マーカー66の近位端、第8マーカー68の近位端、第4マーカー64の近位端が位置していることが好ましい。 When the device 1 is provided with the first marker 61, the second marker 62, the fifth marker 65, and the seventh marker 67, the distal end of the second marker 62 and the fifth marker are arranged in order from the distal side to the proximal side. It is preferred that the distal end of the marker 65, the distal end of the seventh marker 67, and the distal end of the first marker 61 are located. By locating the markers in this way, it becomes easy to grasp the positions of the shaft 2, the non-existent portion 34 of the clad, and the first window 12. When the third marker 63, the fourth marker 64, the sixth marker 66, and the eighth marker 68 are provided in the device 1, the third marker 63 is sequentially provided from the proximal side to the distal side for the same reason as described above. It is preferable that the proximal end of the marker 66, the proximal end of the sixth marker 66, the proximal end of the eighth marker 68, and the proximal end of the fourth marker 64 are located.
 マーカーの形状は特に制限されず、環状や棒状であってもよい。マーカーはコイル形状を有していてもよく、リングにスリットが入った断面C字の形状であってもよい。マーカーが環状またはコイル状の場合、マーカーを取り付けやすくなる。マーカーが棒状やコイル形状である場合、各部材の内腔にマーカーを配置しやすくなる。 The shape of the marker is not particularly limited and may be annular or rod-shaped. The marker may have a coil shape or may have a C-shaped cross section having a slit in the ring. If the marker is annular or coiled, it will be easier to attach the marker. When the marker is rod-shaped or coil-shaped, it becomes easy to place the marker in the lumen of each member.
 マーカーは、例えば、白金、金、銀、タングステン、タンタル、イリジウム、パラジウムおよびそれらの合金等の金属材料を含む材料から好ましく構成される。マーカーは、上記金属材料から構成されている金属マーカーであってもよく、上記金属材料を含んで構成されている樹脂マーカーであってもよい。 The marker is preferably composed of a material containing a metal material such as platinum, gold, silver, tungsten, tantalum, iridium, palladium and alloys thereof. The marker may be a metal marker composed of the above-mentioned metal material, or may be a resin marker composed of the above-mentioned metal material.
 本願は、2020年12月1日に出願された日本国特許出願第2020-199449号に基づく優先権の利益を主張するものである。2020年12月1日に出願された日本国特許出願第2020-199449号の明細書の全内容が、本願に参考のため援用される。 This application claims the benefit of priority based on Japanese Patent Application No. 2020-199449 filed on December 1, 2020. The entire contents of the specification of Japanese Patent Application No. 2020-199449 filed on December 1, 2020 are incorporated herein by reference.
1:光照射医療装置
2:シャフト、3:内腔、4:内管、5:外管
10:第1筒状部材、10A:第1区間、10B:第2区間、10C:第3区間、11:内腔、12:第1窓、13:第1透明部材、17:パイプ、18:位置表示部
20:第2筒状部材、20A:第1区間、20B:第2区間、20C:第3区間、21:内腔、22:第2窓、23:第2透明部材、27:パイプ、28:位置表示部
30:導光装置、31:光ファイバー、32:コア、33:クラッド、34:クラッドの非存在部
36:保護筒
40:拡張部、41:バルーン、45:バスケット、49:自己拡張型ステント
50:支持部
x:シャフトの長手軸方向、y:シャフトの径方向、p:シャフトの周方向
1: Light irradiation medical device 2: Shaft, 3: Inner cavity, 4: Inner pipe, 5: Outer pipe 10: First tubular member, 10A: First section, 10B: Second section, 10C: Third section, 11: Cavity, 12: 1st window, 13: 1st transparent member, 17: Pipe, 18: Position display unit 20: 2nd tubular member, 20A: 1st section, 20B: 2nd section, 20C: 1st 3 sections, 21: lumen, 22: second window, 23: second transparent member, 27: pipe, 28: position display unit 30: light guide device, 31: optical fiber, 32: core, 33: clad, 34: Non-existent part of clad 36: Protective cylinder 40: Expansion part, 41: Balloon, 45: Basket, 49: Self-expanding stent 50: Support part x: Longitudinal axis direction of shaft, y: Radial direction of shaft, p: Shaft Circumferential direction

Claims (19)

  1.  長手軸方向に第1端と第2端を有するシャフトであって、該長手軸方向に延在している内腔を有するシャフトと、
     前記シャフトの前記内腔に配置され、前記シャフトの前記長手軸方向に平行な回転軸周りに回転可能であり、遠位部の周壁の一部に第1窓が設けられている第1筒状部材と、
     前記第1筒状部材の内腔に配置され、前記シャフトの前記長手軸方向に平行な回転軸周りに回転可能であり、遠位部の周壁の一部に第2窓が設けられている第2筒状部材と、
     前記第2筒状部材の内腔に配置され、前記長手軸方向に移動可能な導光装置と、を備え、
     前記導光装置は、前記長手軸方向に延在している光ファイバーを有し、
     前記光ファイバーは、コアと、該コアの径方向外方を被覆するクラッドとを有し、かつ、前記コアの遠位部の一部にクラッドの非存在部を有しており、
     前記導光装置からの射出光が前記第1窓および前記第2窓を通過する光照射医療装置。
    A shaft having a first end and a second end in the longitudinal direction and having a lumen extending in the longitudinal direction.
    A first cylinder that is located in the lumen of the shaft, is rotatable about a axis of rotation parallel to the longitudinal axis of the shaft, and has a first window on a portion of the peripheral wall at the distal end. Members and
    A second window is provided in a part of the peripheral wall of the distal portion, which is arranged in the lumen of the first cylindrical member and is rotatable around a rotation axis parallel to the longitudinal axis direction of the shaft. 2 tubular members and
    A light guide device arranged in the lumen of the second tubular member and movable in the longitudinal axis direction is provided.
    The light guide has an optical fiber extending in the longitudinal direction and has an optical fiber.
    The optical fiber has a core and a clad that covers the radial outer side of the core, and has a non-existent portion of the clad in a part of the distal portion of the core.
    A light irradiation medical device in which light emitted from the light guide device passes through the first window and the second window.
  2.  前記シャフトの周方向において、前記第1窓は前記第2窓よりも長い請求項1に記載の光照射医療装置。 The light irradiation medical device according to claim 1, wherein the first window is longer than the second window in the circumferential direction of the shaft.
  3.  前記シャフトの長手軸方向において、前記第1窓は前記第2窓よりも長い請求項1または2に記載の光照射医療装置。 The light irradiation medical device according to claim 1 or 2, wherein the first window is longer than the second window in the longitudinal axis direction of the shaft.
  4.  前記第1筒状部材は、前記第1窓よりも前記射出光の通過性が低い材料から構成され、
     前記第2筒状部材は、前記第2窓よりも前記射出光の通過性が低い材料から構成されている請求項1~3のいずれか一項に記載の光照射医療装置。
    The first cylindrical member is made of a material having a lower permeability of emitted light than the first window.
    The light irradiation medical device according to any one of claims 1 to 3, wherein the second tubular member is made of a material having a lower transmittance of emitted light than the second window.
  5.  前記第1窓には、前記射出光を透過する第1透明部材が配置されている請求項1~4のいずれか一項に記載の光照射医療装置。 The light irradiation medical device according to any one of claims 1 to 4, wherein a first transparent member that transmits the emitted light is arranged in the first window.
  6.  前記第2窓には、前記射出光を透過する第2透明部材が配置されている請求項1~5のいずれか一項に記載の光照射医療装置。 The light irradiation medical device according to any one of claims 1 to 5, wherein a second transparent member that transmits the emitted light is arranged in the second window.
  7.  前記第1窓と前記第2窓はそれぞれ前記シャフトの長手軸方向の長さが前記シャフトの周方向の長さよりも大きい請求項1~6のいずれか一項に記載の光照射医療装置。 The light irradiation medical device according to any one of claims 1 to 6, wherein the length of the first window and the second window in the longitudinal axis direction of the shaft is larger than the length in the circumferential direction of the shaft, respectively.
  8.  前記第1窓と前記第2窓はそれぞれ前記シャフトの周方向において前記シャフト全周の4分の1の長さの範囲内に設けられている請求項1~7のいずれか一項に記載の光照射医療装置。 The invention according to any one of claims 1 to 7, wherein the first window and the second window are provided within a range of a quarter length of the entire circumference of the shaft in the circumferential direction of the shaft, respectively. Light irradiation medical device.
  9.  前記シャフトの遠位部に、前記シャフトの径方向外方に向かって拡張する拡張部がさらに設けられている請求項1~8のいずれか一項に記載の光照射医療装置。 The light irradiation medical device according to any one of claims 1 to 8, further comprising an expansion portion extending outward in the radial direction of the shaft at the distal portion of the shaft.
  10.  前記拡張部は、バルーン、複数の弾性ワイヤを備えたバスケット、または自己拡張型ステントである請求項9に記載の光照射医療装置。 The light irradiation medical device according to claim 9, wherein the expansion portion is a balloon, a basket provided with a plurality of elastic wires, or a self-expandable stent.
  11.  前記第1筒状部材と前記第2筒状部材はそれぞれ、金属を含む補強材が配置されている第1区間を有している請求項1~10のいずれか一項に記載の光照射医療装置。 The light irradiation medical treatment according to any one of claims 1 to 10, wherein each of the first tubular member and the second tubular member has a first section in which a reinforcing material containing metal is arranged. Device.
  12.  前記第1筒状部材は、前記第1筒状部材の前記第1区間よりも遠位側に位置し、前記補強材が配置されていない第2区間をさらに有し、
     前記第2筒状部材は、前記第2筒状部材の前記第1区間よりも遠位側に位置し、前記補強材が配置されていない第2区間をさらに有し、
     前記第1窓は、前記第1筒状部材の前記第2区間に配され、前記第1筒状部材の前記第1区間には配されておらず、
     前記第2窓は、前記第2筒状部材の前記第2区間に配され、前記第2筒状部材の前記第1区間には配されていない請求項11に記載の光照射医療装置。
    The first cylindrical member is located distal to the first section of the first tubular member and further has a second section in which the reinforcing material is not arranged.
    The second tubular member is located distal to the first section of the second tubular member and further has a second section in which the reinforcing material is not arranged.
    The first window is arranged in the second section of the first tubular member, and is not arranged in the first section of the first tubular member.
    The light irradiation medical device according to claim 11, wherein the second window is arranged in the second section of the second tubular member and is not arranged in the first section of the second tubular member.
  13.  前記第1筒状部材は、前記第1筒状部材の前記第1区間よりも近位側に位置し、金属製のパイプから構成されている第3区間をさらに有し、
     前記第2筒状部材は、前記第2筒状部材の前記第1区間よりも近位側に位置し、金属製のパイプから構成されている第3区間をさらに有している請求項11または12に記載の光照射医療装置。
    The first tubular member is located proximal to the first section of the first tubular member and further has a third section made of a metal pipe.
    Claim 11 or claim 11, wherein the second tubular member is located proximal to the first section of the second tubular member and further has a third section made of a metal pipe. 12. The light irradiation medical device according to 12.
  14.  前記シャフトの遠位端部に、前記導光装置の遠位部を支持する支持部がさらに設けられている請求項1~13のいずれか一項に記載の光照射医療装置。 The light irradiation medical device according to any one of claims 1 to 13, wherein a support portion for supporting the distal portion of the light guide device is further provided at the distal end portion of the shaft.
  15.  前記シャフトの前記長手軸方向において、前記第1窓および前記第2窓は、前記クラッドの非存在部よりも長い請求項1~14のいずれか一項に記載の光照射医療装置。 The light irradiation medical device according to any one of claims 1 to 14, wherein the first window and the second window are longer than the non-existent portion of the clad in the longitudinal axis direction of the shaft.
  16.  前記第2筒状部材の内面に、前記コアからの射出光を前記第2窓に向かって屈折させる反射材が配置されている請求項1~15のいずれか一項に記載の光照射医療装置。 The light irradiation medical device according to any one of claims 1 to 15, wherein a reflective material that refracts the light emitted from the core toward the second window is arranged on the inner surface of the second tubular member. ..
  17.  前記導光装置は、前記光ファイバーを覆いかつ光透過性を有する保護筒を有する請求項1~16のいずれか一項に記載の光照射医療装置。 The light irradiation medical device according to any one of claims 1 to 16, wherein the light guide device has a protective cylinder that covers the optical fiber and has light transmission.
  18.  前記第1筒状部材は、その遠位端部に前記第1窓の位置を示す位置表示部を有し、
     前記第2筒状部材は、その遠位端部に前記第2窓の位置を示す位置表示部を有している請求項1~17のいずれか一項に記載の光照射医療装置。
    The first cylindrical member has a position display portion indicating the position of the first window at its distal end.
    The light irradiation medical device according to any one of claims 1 to 17, wherein the second tubular member has a position display portion indicating the position of the second window at its distal end.
  19.  前記導光装置は、前記シャフトに対して前記シャフトの長手軸方向に平行な軸周りに回転しない請求項1~18のいずれか一項に記載の光照射医療装置。 The light irradiation medical device according to any one of claims 1 to 18, wherein the light guide device does not rotate about an axis parallel to the longitudinal axis direction of the shaft with respect to the shaft.
PCT/JP2021/038866 2020-12-01 2021-10-21 Light emission medical apparatus WO2022118559A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022566781A JPWO2022118559A1 (en) 2020-12-01 2021-10-21

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-199449 2020-12-01
JP2020199449 2020-12-01

Publications (1)

Publication Number Publication Date
WO2022118559A1 true WO2022118559A1 (en) 2022-06-09

Family

ID=81853108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038866 WO2022118559A1 (en) 2020-12-01 2021-10-21 Light emission medical apparatus

Country Status (2)

Country Link
JP (1) JPWO2022118559A1 (en)
WO (1) WO2022118559A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024177102A1 (en) * 2023-02-21 2024-08-29 古河電気工業株式会社 Light diffusion device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01135901U (en) * 1988-03-11 1989-09-18
US5409483A (en) * 1993-01-22 1995-04-25 Jeffrey H. Reese Direct visualization surgical probe
JPH0736101U (en) * 1993-12-20 1995-07-04 株式会社モリテックス Optical fiber laser light guide diffusion probe
JPH10286309A (en) * 1997-04-15 1998-10-27 Terumo Corp Medical tube
JPH11509436A (en) * 1995-06-07 1999-08-24 アベラ レーザー システムズ,インコーポレイテッド Optical fiber catheter and method
JP2001505443A (en) * 1996-05-17 2001-04-24 キュウエルティー フォトセラピュウティクス,インコーポレイテッド Balloon catheter for photodynamic therapy
JP2005237827A (en) * 2004-02-27 2005-09-08 Terumo Corp Catheter for treatment and treatment apparatus
WO2020144799A1 (en) * 2019-01-10 2020-07-16 オリンパス株式会社 Phototherapy apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01135901U (en) * 1988-03-11 1989-09-18
US5409483A (en) * 1993-01-22 1995-04-25 Jeffrey H. Reese Direct visualization surgical probe
JPH0736101U (en) * 1993-12-20 1995-07-04 株式会社モリテックス Optical fiber laser light guide diffusion probe
JPH11509436A (en) * 1995-06-07 1999-08-24 アベラ レーザー システムズ,インコーポレイテッド Optical fiber catheter and method
JP2001505443A (en) * 1996-05-17 2001-04-24 キュウエルティー フォトセラピュウティクス,インコーポレイテッド Balloon catheter for photodynamic therapy
JPH10286309A (en) * 1997-04-15 1998-10-27 Terumo Corp Medical tube
JP2005237827A (en) * 2004-02-27 2005-09-08 Terumo Corp Catheter for treatment and treatment apparatus
WO2020144799A1 (en) * 2019-01-10 2020-07-16 オリンパス株式会社 Phototherapy apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024177102A1 (en) * 2023-02-21 2024-08-29 古河電気工業株式会社 Light diffusion device

Also Published As

Publication number Publication date
JPWO2022118559A1 (en) 2022-06-09

Similar Documents

Publication Publication Date Title
WO2021033465A1 (en) Medical light irradiation apparatus
EP2174685B1 (en) Catheter
JP4680907B2 (en) Devices and methods across chronic total occlusion
KR20030037233A (en) Catheter for radiation therapy
WO2020071023A1 (en) Light irradiating medical device
WO2022118559A1 (en) Light emission medical apparatus
JP7308123B2 (en) Light irradiation device and light irradiation system
WO2023047711A1 (en) Light-irradiating medical device
JP6879945B2 (en) catheter
JP2024002761A (en) Light irradiation medical device
JP2016116815A (en) Indwelling implement delivery device
WO2022123920A1 (en) Light emission medical apparatus
WO2022158075A1 (en) Light-emitting medical apparatus
JP2024002762A (en) Light irradiation medical device
WO2023047709A1 (en) Light irradiating medical device
WO2023281918A1 (en) Light-emitting medical apparatus
WO2022181133A1 (en) Light irradiation device for endoscope
WO2023281917A1 (en) Light-emitting medical apparatus
JP2023047482A (en) Light irradiation medical device
JP7516982B2 (en) catheter
WO2023047710A1 (en) Light irradiating medical device, and method for manufacturing light irradiating medical device
JP2023009440A (en) Light irradiation medical device
JP7346134B2 (en) Catheter and light irradiation system
JP7060454B2 (en) Medical tube
JP2024136907A (en) Light irradiation medical device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900315

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022566781

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21900315

Country of ref document: EP

Kind code of ref document: A1