Nothing Special   »   [go: up one dir, main page]

WO2022102787A1 - Method of producing astrocytes from pluripotent stem cells - Google Patents

Method of producing astrocytes from pluripotent stem cells Download PDF

Info

Publication number
WO2022102787A1
WO2022102787A1 PCT/JP2021/042096 JP2021042096W WO2022102787A1 WO 2022102787 A1 WO2022102787 A1 WO 2022102787A1 JP 2021042096 W JP2021042096 W JP 2021042096W WO 2022102787 A1 WO2022102787 A1 WO 2022102787A1
Authority
WO
WIPO (PCT)
Prior art keywords
pluripotent stem
cells
neurog2
stem cells
gene
Prior art date
Application number
PCT/JP2021/042096
Other languages
French (fr)
Japanese (ja)
Inventor
治久 井上
孝之 近藤
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to JP2022562230A priority Critical patent/JPWO2022102787A1/ja
Publication of WO2022102787A1 publication Critical patent/WO2022102787A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/30Nerves; Brain; Eyes; Corneal cells; Cerebrospinal fluid; Neuronal stem cells; Neuronal precursor cells; Glial cells; Oligodendrocytes; Schwann cells; Astroglia; Astrocytes; Choroid plexus; Spinal cord tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/02Muscle relaxants, e.g. for tetanus or cramps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material

Definitions

  • the present invention relates to a method for producing astrocytes from pluripotent stem cells.
  • the present invention also relates to astrocytes obtained by this method.
  • the present invention relates to a cell preparation containing the above astrocytes.
  • Astrocytes are the cell type with the largest number of cells in the brain. Unlike nerve cells, it does not show electrical activity, so it has long been thought to be a "glue" -like entity that only fills the area around nerve cells. However, it is now clear that astrocytes are cells that play a variety of functions essential for maintaining homeostasis of the brain, such as regulation of synaptic transmission, immune response, and regulation of cerebral blood flow including the blood-brain barrier. ing.
  • Efforts have already been made to induce differentiation of astrocytes from pluripotent stem cells in order to elucidate the physiological functions of astrocytes and analyze the pathophysiology of related diseases. There are also reports from multiple groups on how to induce astrocytes differentiation from human iPS cells.
  • Non-Patent Document 1 a method of inducing astrocyte differentiation by culturing human pluripotent stem cells in the presence of a nerve differentiation-inducing factor and mimicking neurogenesis during the embryonic period was reported (Non-Patent Document 1). In this method, it takes several months (3 to 6 months) to obtain astrocytes because glial cells are generated after nerve cells are generated.
  • Non-Patent Document 2 discloses that astrocytes were obtained in 4 to 7 weeks by forcibly expressing NFIA or NFIA + SOX9 in human pluripotent stem cells using a CRISPER / Cas9 gene editing system.
  • Non-Patent Document 3 discloses that astrocytes were obtained in about 90 days by this method.
  • An object of the present invention is to provide a method for rapidly and highly efficiently producing astrocytes from pluripotent stem cells.
  • NEUROG2 gene Neurogenin 2 gene
  • the NEUROG2 gene is a gene that can induce differentiation of the cells into cerebral cortical neurons with almost 100% efficiency by forcibly expressing them in mouse pluripotent stem cells for 3 days or longer and in human pluripotent stem cells for 5 days or longer.
  • Patent Document 1 The present inventor has found that the nerve cell population obtained by this method contains a very small amount of cells having a glial-like morphology. Then, the present invention was completed by examining in detail the relationship between the expression period of the NEUROG2 gene and the appearance frequency of the glial-like cells.
  • the present invention includes the following.
  • [1] A method for producing astrocytes from pluripotent stem cells, wherein the following steps: (1) A step of expressing the NEUROG2 gene in pluripotent stem cells for less than 3 days. How to include.
  • [2] The method according to [1], wherein the expression period of the NEUROG2 gene is 8 hours or more.
  • [3] After the step (1), (2) A step of culturing the pluripotent stem cells without inducing the expression of the NEUROG2 gene.
  • the method according to [1] or [2] which comprises.
  • step (2) is a step of culturing in the presence of a factor that promotes WNT signaling.
  • the factor that promotes WNT signaling is one or more selected from the group consisting of BMP4 (bone morphogenetic protein 4), CNTF (Ciliary neurotrophic factor), and FBS (fetal bovine serum) [11].
  • BMP4 bone morphogenetic protein 4
  • CNTF Ciliary neurotrophic factor
  • FBS fetal bovine serum
  • the method described in. [13] The method according to any one of [1] to [12], wherein the pluripotent stem cell is a human induced pluripotent stem cell.
  • the human induced pluripotent stem cells are derived from a disease patient with an astrocyte abnormality.
  • the astrocyte produced by the method according to any one of [1] to [14].
  • astrocytes can be produced from pluripotent stem cells in a significantly shorter period than before and with high efficiency close to 100%.
  • the cells obtained by the method of the present invention can also be used as a cell preparation for the treatment of neurodegenerative diseases.
  • FIG. 1 shows a protocol for a method for producing astrocytes according to this embodiment.
  • the arrow indicates the timeline.
  • the medium conditions are shown above the timeline, and the Culture plate conditions (culture size and coating conditions) are shown below the timeline.
  • “NB” represents Neurobasal plus medium supplemented with B27 plus supplement
  • “AM” represents DMEM / F12 medium supplemented with N2 supplement, BMP4, CNTF, and FBS.
  • FIG. 2 shows immunostaining (green) of astrocyte marker GFAP on Day 12 and Day 18 against iAstrocytes produced from four types of NEUROG2-iPSC (HC1A, HC6B, N117E11, AD2S1) according to the method of FIG.
  • NEUROG2-iPSC H1A, HC6B, N117E11, AD2S1
  • FIG. 3 shows various astrocyte markers (GFAP, S100B, AQP4) and housekeeping genes (GAPDH,) for iAstrocytes produced from various types of NEUROG2-iPSC using the method of FIG. It is a graph which shows the result of having analyzed the transcription level of ACTB).
  • FIG. 3 represents the original iPS cell line name.
  • the leftmost shows the expression level in cells in which HC6B derived from a healthy person was cultured in a DOX-containing medium for 5 days to induce differentiation into nerve cells (iN).
  • FIG. 4 is a graph showing the results of analysis of the expression of nerve cell markers (TUBB3, MAP2, and SYN1) in the cells of FIG.
  • FIG. 5 is a diagram showing a protocol for an experiment in which NEUROG2-iPSC is cultured in a medium containing DOX for 2 days (Condition A), 3 days (Condition B), 4 days (Condition C), or 5 days (Condition D). .. “NB” and “AM” are synonymous with FIG. FIG.
  • FIG. 6 represents a typical image obtained by phase contrast microscopy for Day 8 cells obtained according to the protocol of FIG.
  • Conditions A to D show the same culture conditions as in FIG.
  • FIG. 7A represents a typical image obtained by immunostaining GFAP on iAstrocytes prepared from NEUROG2-HC1A according to the protocol of FIG.
  • FIG. 7B is a chart showing the results (calcium oscillation) of measuring the intracellular Ca ion concentration over time in the iAstrocyte shown in FIG. 7A.
  • the vertical axis is the signal intensity indicating the Ca ion concentration.
  • FIG. 8 is a chart showing the results of simultaneously recording the intracellular calcium ion concentration at 29 sites different from those in FIG.
  • FIG. 9 shows a co-immunostochemical image of GFAP immunostaining and DAPI staining for iAstrocytes obtained from iPS cells (A266) derived from Alexander disease patients and iPS cells (HC1A) derived from healthy subjects using the method shown in FIG. Represents A-E) and CD44 immunostaining image (F-K).
  • B is an enlarged image of the area surrounded by a square in A.
  • D and E are partially enlarged images of C.
  • FIG. 10 shows a Western blot showing the expression of GFAP protein in iAstrocyte.
  • hc1 and hc6 indicate astrocytes (Day 18) produced under the conditions of Example 1 from HC1A and HC6B, which are iPS cells derived from healthy subjects, respectively. Arrows indicate bands of GFAP protein.
  • FIG. 11 shows the effect of the expression period of the NEUROG2 gene on the induction efficiency of iAstrocyte.
  • hc1 and hc6 are the same as in FIG.
  • the error bar indicates the SD value.
  • the NEUROG2 gene means a gene generally known in the present art as the Neurogenin 2 gene.
  • the official genetic symbol is NEUROG2.
  • the structure of the nucleic acid encoding the NEUROG2 protein is exemplified in NCBI Accession Number: NM_024019 (human) or NM_009718 (mouse).
  • astrocytes can be defined as cells expressing one or more astrocyte marker genes, and examples of the marker genes include GFAP, S100B, Aquaporine4 (AQP4) and the like.
  • cells in which calcium oscillation is observed can also be referred to as functionally mature astrocytes.
  • Calcium oscillation in astrocytes is basically a spontaneous fluctuation of individual cells alone, but as it matures, it laterally adheres to surrounding astrocytes through intercellular adhesion or signal transduction by extracellular paracrine.
  • Directional oscillation propagation occurs. It is known that this lateral signal propagation (oscillation propagation) forms a network and plays an important role in the regulation of nerve cell activity and the control of vasoconstriction.
  • Producing astrocytes in the present invention means obtaining a cell population containing astrocytes, preferably containing 50%, 60%, 70%, 80%, 90%, or 95% or more of astrocytes. Is to obtain an astrocyte population.
  • the pluripotent stem cell is a stem cell having pluripotency capable of differentiating into a wide variety of cells existing in a living body and also having a proliferative ability, and is not particularly limited thereto.
  • embryonic stem (ES) cells embryonic stem (ntES) cells derived from cloned embryos obtained by nuclear transplantation, sperm stem cells (GS cells), embryonic germ cells (EG cells), artificial pluripotent stems (iPS).
  • GS cells sperm stem cells
  • EG cells embryonic germ cells
  • iPS artificial pluripotent stems
  • Cells, cultured fibroblasts, pluripotent cells derived from bone marrow stem cells (Muse cells), etc. are included.
  • ES cells are pluripotent and self-replicating stem cells established from the inner cell mass of early mammalian embryos (eg, blastocysts) such as humans and mice.
  • ES cells are embryo-derived stem cells derived from the inner cell mass of the scutellum vesicle, which is the embryo after the morula at the 8-cell stage of the fertilized egg, and have the ability to differentiate into all the cells that make up the adult, so-called polymorphism. It has the ability and the ability to proliferate by self-replication.
  • Human ES cell lines for example, WA01 (H1) and WA09 (H9) are obtained from the WiCell Research Institute, and KhES-1, KhES-2 and KhES-3 are obtained from the Institute for Frontier Medical Sciences, Kyoto University (Kyoto, Japan). It is possible.
  • sperm stem cells are testis-derived pluripotent stem cells, which are the origin cells for spermatogenesis. Similar to ES cells, these cells can be induced to differentiate into various lineages of cells, and have properties such as the ability to produce chimeric mice when transplanted into mouse blastocysts (M. Kanatsu-Shinohara et al. (M. Kanatsu-Shinohara et al.). 2003) Biol. Reprod., 69: 612-616; K. Shinohara et al. (2004), Cell, 119: 1001-1012).
  • Embryonic germ cells are cells with pluripotency similar to ES cells, which are established from primordial germ cells in the embryonic period.
  • Induced pluripotent stem (iPS) cells are made by introducing specific reprogramming factors into somatic cells in the form of DNA, RNA or protein, and are pluripotent and self-replicating proliferative bodies.
  • Cell-derived artificial stem cells K. Takahashi and S. Yamanaka (2006) Cell, 126: 663-676; K. Takahashi et al. (2007), Cell, 131: 861-872; J. Yu et al . (2007), Science, 318: 1917-1920; Nakagawa, M. et al., Nat. Biotechnol. 26: 101-106 (2008); International release WO 2007/069666).
  • Initialization factors include, for example, Oct3 / 4, Sox2, Sox1, Sox3, Sox15, Sox17, Klf4, Klf2, c-Myc, N-Myc, L-Myc, Nanog, Lin28, Fbx15, ERas, ECAT15-2, Tcl1. , Beta-catenin, Lin28b, Sall1, Sall4, Esrrb, Nr5a2, Tbx3 or Glis1 and the like can be exemplified.
  • iPS cells are used as pluripotent stem cells in the present invention
  • the embodiment in which human iPS cells are used is even more suitable.
  • Astrocytes produced from iPS cells derived from patients with diseases associated with astrocyte abnormalities are useful as model cells for the disease.
  • astrocytes produced by the method of the present invention can be used as an active ingredient of a cell preparation.
  • a cell preparation containing astrocytes produced from iPS cells of a healthy person or astrocytes produced from iPS cells modified to express a protein having a therapeutic effect is particularly suitable.
  • Such a cell product will be described in more detail in the section ⁇ Cell product> below.
  • the step (1) of the present invention is a step of directing the differentiation of pluripotent stem cells into astrocytes.
  • the NEUROG2 gene is expressed in pluripotent stem cells for a period shorter than the period required for the direction of differentiation into nerve cells, thereby directing the differentiation into astrocytes.
  • the period for expressing the NEUROG2 gene may be less than 3 days, preferably 8 hours or more and less than 3 days, more preferably 8 hours or more and 60 hours or less, still more preferably 24 hours or more and 60 hours or less, and particularly preferably 36 hours. Hours or more and 60 hours or less, most preferably 36 hours or more and 48 hours or less.
  • the NEUROG2 gene to be forcibly expressed may be either an endogenous NEUROG2 gene or an exogenous NEUROG2 gene, but an exogenous gene is preferable because of its ease of expression regulation.
  • a vector such as a virus containing a nucleic acid encoding NEUROG2, a plasmid, an artificial chromosome, or the like may be expressed by introducing it into pluripotent stem cells using a technique such as lipofection, liposome, or microinjection. Further, in step (1), cells into which the exogenous NEUROG2 gene has already been introduced may be used.
  • virus vector examples include a retro virus vector, a lentivirus vector, an adenovirus vector, an adeno-associated virus vector, and a Sendai virus vector.
  • artificial chromosome vectors include human artificial chromosomes (HAC), yeast artificial chromosomes (YAC), and bacterial artificial chromosomes (BAC, PAC).
  • plasmid vector a plasmid for mammalian cells can be used.
  • the above vector transposons before and after this expression cassette in order to excise the sequence encoding the NEUROG2 gene incorporated into the chromosome as needed. It may have a sequence.
  • the transposon sequence is not particularly limited, but piggyBac is exemplified as a suitable one.
  • These vectors can contain regulatory sequences such as promoters, enhancers, ribosome binding sequences, terminators, polyadenylation sites, etc. so that the NEUROG2 gene can be expressed.
  • the pluripotent stem cell may contain a "nucleic acid encoding NEUROG2" functionally conjugated to an inducible promoter.
  • an inducible promoter include a drug-responsive promoter, and a suitable example thereof is the Tet-on promoter (tetO sequence having seven consecutive tetcycline responses), which is one of the tetracycline-responsive promoters. CMV minimal promoter with sequence (TRE)).
  • the promoter is a promoter that is activated by supplying tetracycline or a derivative thereof under the expression of a reverse tetracycline-regulated transactivator (rtTA: a fusion protein with reverse tetR (rTetR) and VP16AD). Therefore, when inducing the expression of the gene using a tetracycline-responsive promoter, it is preferable to use a vector having a mode of expressing the activator. Doxycycline (DOX) can be preferably used as the derivative of the tetracycline.
  • DOX Doxycycline
  • Expression-inducing systems using drug-responsive promoters other than the above include an expression-inducing system using an estrogen-responsive promoter (eg WO2006 / 129735) and RheoSwitch mammalian-inducible using a promoter induced by RSL1.
  • Expression system New England Biolabs
  • Q-mate system using a promoter induced by cumate
  • Cumate-induced expression system National Research Council (NRC)
  • ecdison responsive sequences examples thereof include a GenoStat-induced expression system (Upstate cell signaling solutions) using a promoter.
  • an expression vector having an expression-inducing system based on a drug-responsive promoter as shown above that is, a drug-responsive inducing vector
  • a drug capable of inducing activation of the promoter for example, the tetracycline responsiveness
  • the expression of NEUROG2 can be maintained by continuing to add tetracycline or DOX) to the medium for a desired period of time. Then, by removing the drug from the medium (for example, replacing it with a medium containing no such drug), it is possible to stop the expression of the gene.
  • NEUROG2 can be expressed in pluripotent stem cells by adding DOX to the medium.
  • the amount of DOX added here is not particularly limited, but is 0.01 to 100 ⁇ g / ml, preferably 0.1 to 10 ⁇ g / ml, and more preferably 1 to 5 ⁇ g / ml.
  • the basal medium or the basal medium to which the neurotrophic factor is added can be used.
  • Such basic media include Neurobasal Medium (Life Technologies), Glassgow's Minimal Essential Medium (GMEM) medium, IMDM medium, Medium 199 medium, Eagle's Minimum Essential Medium (EMEM) medium, ⁇ MEM medium, Dulbecco's modified Medium (GMEM) medium.
  • GMEM Neurobasal Medium
  • GMEM Glassgow's Minimal Essential Medium
  • IMDM IMDM medium
  • Medium 199 medium Medium
  • EMEM Eagle's Minimum Essential Medium
  • ⁇ MEM medium Dulbecco's modified Medium
  • Medium Ham's F12 medium, RPMI1640 medium, Fischer's medium, and a mixed medium thereof are included.
  • the basal medium may contain serum or may be serum-free. If necessary, the medium may be, for example, B27 supplement (Invitrogen), B27Plus supplement (Invitrogen), Knockout Serum Replacement (KSR) (FBS serum substitute during ES cell culture), N2 supplement (Invitrogen), albumin, transferase. , Apotransferase, fatty acids, insulin, collagen precursors, trace elements, 2-mercaptoethanol, 3'-thiolglycerol, etc.
  • serum substitutes may contain one or more serum substitutes, lipids, amino acids, L-glutamine, Glutamax ( Invitrogen), non-essential amino acids, vitamins, growth factors, low molecular weight compounds, antibiotics, antioxidants, pyruvate, buffers, inorganic salts, selenic acid, progesterone and putresin, even if they contain one or more substances good.
  • Neurobasal Medium containing B27 supplement or a mixed medium of DMEM and F12 containing insulin, apotransferrin, selenic acid, progesterone and putrescine can be preferably used as the basic medium.
  • the culture temperature in the step (1) of the present invention is not particularly limited, but is about 30 to 40 ° C., preferably about 37 ° C., and the culture is carried out in an atmosphere of CO 2 -containing air, and the CO 2 concentration is preferable. Is about 2-5%.
  • the culture vessel is coated with extracellular matrix, as in the conventional method.
  • the extracellular matrix that can be used in the step (1) is not particularly limited as long as it is usually used for adhesive culture, and is, for example, poly-L-lysine, matrigel, vitronectin and a synthetic peptide derived from vitronectin, human type I. Examples thereof include collagen-like recombinant peptides, gelatin, laminin, collagen, and fibronectin.
  • the step (2) is a step in which the cells that have been directed to differentiate into astrocytes in the step (1) differentiate into astrocytes. Specifically, it is a step of culturing the cells without substantially expressing NEUROG2 (for example, without inducing the expression of NEUROG2).
  • the culture of step (2) may be carried out either in vivo or under conditions in the medium (in vitro). From the viewpoint of ease of controlling the differentiation rate, the in vitro culture step is preferable.
  • a medium containing a factor that promotes WNT signaling can be preferably used as the medium of the step (2).
  • Factors that promote WNT signaling promote differentiation into astrocytes, and the addition of such factors can increase the efficiency of astrocyte production.
  • Factors that promote WNT signaling include, but are limited to, BMP4 (bone morphogenetic protein 4), CNTF (Ciliary neurotrophic factor), and FBS (fetal bovine serum). It's not something.
  • the medium of step (2) may contain serum, and Knockout Serum Replacement (KSR) (serum substitute for FBS during ES cell culture), N2 supplement (Invitrogen), B27 supplement (Invitrogen), albumin, transferase, It may contain one or more serum substitutes exemplified by apotransferase, fatty acids, insulin, collagen precursors, trace elements, 2-mercaptoethanol, 3'-thiolglycerol and the like. In the present invention, it is a preferred embodiment to include a serum substitute, preferably a serum substitute for nerve cells such as N2 supplements.
  • KSR Knockout Serum Replacement
  • the medium of step (2) is Glutamax (Invitrogen), lipids, amino acids, L-glutamine, non-essential amino acids, vitamins, growth factors, low molecular weight compounds, antibiotics, antioxidants, pyruvic acid, buffers, inorganic salts. , Serenic acid, progesterone and putrecin and the like may also contain one or more substances.
  • subculture may be performed so as to have a low cell density.
  • An example of such low cell density may be a cell density of 2 ⁇ 10 4 to 10 ⁇ 10 4 cells / cm 2 per 48-well plate, preferably 5 ⁇ 10 4 cells / cm 2 cells per 48-well plate. Density. Culturing at low cell densities is preferred as it can reduce the likelihood that neurons will adhere to astrocytes and continue to survive (even under naturally non-adherable substrates).
  • the coating of the culture vessel may be gradually changed from one having a high affinity with cells to one having a low affinity with cells, and finally. May be uncoated.
  • PMSC PolyLlysine, Matrigel, Synthemax (Vitronectin-derived synthetic peptide, Corning), and Cellnest (human type I collagen-like recombinant peptide, Fujifilm)) coating (eg, Day1 to Day5), and then A gelatin-coated culture vessel (Day 6 to Day 12) may be used, and then an uncoated culture vessel may be used.
  • the uncoated culture vessel may be used after Day11, Day12, Day13, and Day14.
  • the culture period of step (2) is preferably 10 to 20 days, more preferably 10 to 16 days.
  • the culture temperature in the step (2) is not particularly limited, but is about 30 to 40 ° C, preferably about 37 ° C. Further, it is preferable that the culture is carried out in an atmosphere of CO 2 containing air, and the CO 2 concentration may be about 2 to 5%.
  • NEUROG2 is expressed in the step (1) for less than 3 days, preferably 2 days, and then administered in vivo without culturing in a medium (in vivo embodiment), astrocytes are generated in vivo. Is thought to occur. Therefore, such an in vivo aspect is also included in the present invention.
  • the present invention provides astrocytes produced by the method of the present invention.
  • the astrocyte may be referred to as induced Astrocyte (iAstrocyte) in order to distinguish it from naturally occurring astrocytes.
  • nerve cells that have been induced to differentiate from pluripotent stem cells may be referred to as induced neurons (iN).
  • the iAstrocyte according to the present invention is different from naturally-derived astrocytes in that a gene is introduced.
  • it is an iAstrocyte produced from human iPS cells.
  • the present invention provides a cell preparation containing astrocyte (iAstrocyte) produced by the method of the present invention as an active ingredient.
  • the cell preparation of the present invention containing iAstrocyte is effective for the treatment of neurodegenerative diseases, preferably neurodegenerative diseases associated with astrocyte abnormalities.
  • Neurodegenerative diseases associated with astrosite abnormalities include Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis (ALS), spinal cerebral degeneration, polyline atrophy, and progressive hepatic palsy. Examples include primary degenerative types of nerve cells such as frontotemporal dementia, Huntington's disease, and spastic vs. paralysis, and primary degenerative types of astrosite such as Alexander's disease. Of these, it can be particularly suitably used for the treatment of Alexander disease, Alzheimer's disease and ALS.
  • Alexander disease is a rare hereditary neurodegenerative disease characterized by the presence of rosental fibers composed of glial fibrous acidic protein (GFAP), ⁇ B-crystallin, heat shock protein, etc. in astrocytes. Abnormal aggregates consisting of mutant GFAP or overexpressed GFAP are thought to be involved in Alexander's pathology. Clinically, it is classified into cerebral dominant type (type 1), medulla oblongata / spinal cord dominant type (type 2), and intermediate type (type 3) based on clinical symptoms and MRI imaging findings. Missense mutations in GFAP or deletions or insertions of several bases have been observed in 97% of Alexander's diseases, and genetic testing has been used as a definitive diagnostic method in recent years. Research is progressing on the elucidation of the pathophysiology of Alexander disease, but it is still insufficient.
  • GFAP glial fibrous acidic protein
  • ⁇ B-crystallin ⁇ B-crystallin
  • heat shock protein etc.
  • the cell preparation of the present invention can be used as a transplant therapeutic agent for treating the neurodegenerative disease.
  • iAstrocyte is produced as a parenteral preparation such as an injection, a suspension, and an infusion by mixing with a pharmaceutically acceptable carrier according to conventional means.
  • Pharmaceutically acceptable carriers that may be included in the parenteral preparation include, for example, isotonic solutions containing saline, glucose and other adjuvants (eg, D-sorbitol, D-mannitol, sodium chloride solution, etc.).
  • An aqueous solution for injection can be mentioned.
  • the preparation may be, for example, a buffer (eg, phosphate buffer, sodium acetate buffer), a soothing agent (eg, benzalconium chloride, prokine hydrochloride, etc.), a stabilizer (eg, human serum albumin, polyethylene glycol). Etc.), preservatives, antioxidants, etc. may be blended.
  • a buffer eg, phosphate buffer, sodium acetate buffer
  • a soothing agent eg, benzalconium chloride, prokine hydrochloride, etc.
  • a stabilizer eg, human serum albumin, polyethylene glycol. Etc.
  • preservatives, antioxidants, etc. may be blended.
  • iAstrocyte When formulating iAstrocyte as an aqueous suspension, add iAstrocyte to the above aqueous solution so that the content is 1 ⁇ 10 5 to 1 ⁇ 10 8 cells / ml, preferably 1 ⁇ 10 6 to 1 ⁇ 10 8
  • iAstrocyte transplantation can be performed by injecting the above suspension into lesions such as the cerebrum, medulla oblongata, and spinal cord.
  • the number of cells to be administered can be appropriately changed depending on the degree of lesion, etc., but for example, in the case of a patient with human Alexander disease, 1 ⁇ 10 5 to 1 ⁇ 10 8 cells, preferably 1 ⁇ 10 6 to 1 ⁇ 10 8 cells. Can be administered.
  • the cell preparation may contain cells immediately after undergoing the step (1) as an active ingredient.
  • the cells immediately after the step (1) can be differentiated into astrocytes in vivo and exert a therapeutic effect. Be expected.
  • the above transplantation treatment and drug therapy can be used in combination.
  • a concomitant drug for example, when the target disease is Alexander disease, it can be used in combination with an antiepileptic drug currently used as a symptomatic treatment for Alexander disease.
  • Such combination drugs can be used, for example, in the dosage and administration route usually used for the treatment of Alexander's disease.
  • NEUROG2-iPSC an iPS cell line in which a human NEUROG2 gene controlled by a Tet-on promoter is introduced into iPS cells established from a healthy subject or patient using piggyBac transposon.
  • NEUROG2-iPSC the exogenous NEUROG2 gene is inserted into the genome.
  • piggyBac transposon was used because the construct used in Patent Document 1 was available, and it has been confirmed that similar results can be obtained even with a transient expression system that is not inserted into the genome.
  • Table 1 shows the iPS cell lines used to prepare NEUROG2-iPSC and their origins.
  • NEUROG2-iPSC was cultured according to the conditions shown in FIG. 1 to produce astrocytes.
  • the start date of induction of differentiation into astrocytes that is, the start date of induction of expression of NEUROG2 may be set to Day 0, and the number of days thereafter may be represented by Day.
  • NEUROG2 The expression of NEUROG2 was induced by adding DOX to the medium at 2 ⁇ g / ml for 2 days from Day 0 to Day 2 unless otherwise specified.
  • NB medium Neurosporasal plus medium containing 0.5% B27 plus supplement
  • AM medium 1% N2 supplement, 10 ng / ml BMP4, 10 ng / ml CNTF, 2% FBS
  • DMEM / F12 medium containing was used.
  • Y-27632 was added for a predetermined period to 10 ⁇ M in order to reduce damage caused by medium replacement.
  • a PMSC-coated 48-well or 96-well plate was used for Day 0 to Day 5, and a gelatin-coated 6-well plate was used for Day 5 to Day 12.
  • NEUROG2-iPSC was seeded at 30 ⁇ 10 4 cells / cm 2 per 48-well plate, and the first passage was performed at the timing of changing the type of culture plate (Day 5). On Day 5, seeds were seeded at 5 ⁇ 10 4 cells / cm 2 per 48-well plate. After that, in addition to the timing of changing the type of the culture plate (Day 12), passage was appropriately performed according to the rate of cell proliferation.
  • Example 1 Production of astrocytes NEUROG2-iPSC produced from three iPS cell lines (HC1A, HC6B, N117E11) derived from healthy subjects and one iPS cell line (AD2S1) derived from familial Alzheimer's disease patients.
  • H1A, HC6B, N117E11 iPS cell lines derived from healthy subjects
  • AD2S1 iPS cell line derived from familial Alzheimer's disease patients.
  • GFAP immunostaining green
  • DAPI nuclear staining
  • the results are shown in FIG. With either NEUROG2-iPSC, only some cells were GFAP-positive on Day 12, but almost all cells were GFAP-positive on Day 18 (95% or more).
  • NEUROG2 when NEUROG2 was expressed in pluripotent stem cells for only 2 days, it rapidly differentiated into astrocytes from about 10 to 16 days after that. Furthermore, the GFAP-positive cells on Day 18 had a thicker cytoplasm and extended multiple protrusions than the GFAP-positive cells on Day 12, and were morphologically mature as astrocytes. Therefore, when NEUROG2 is expressed in pluripotent stem cells for a period shorter than the period required for nerve cell differentiation induction (for example, 2 days), it takes only 18 days from the start of NEUROG2 expression induction, which is much shorter than before. , Almost all cells have been shown to differentiate into morphologically mature astrocytes. In this example, the astrocytes obtained by forced expression of NEUROG2 may be referred to as "iAstrocyte" hereafter.
  • iAstrocytes were produced from NEUROG2-iPSC (Alex1-Alex3) derived from Alexander disease patients using the same method.
  • iN was also produced from HC6B NEUROG2-iPSC as a negative control.
  • the iN was produced by extending the period of culturing in a DOX-containing medium from 2 days to 5 days, and then culturing in a DOX-free NB medium (not AM medium).
  • the results of collecting each cell on Day 12 and analyzing the transcription levels of the astrosite marker genes (GFAP, S100B, and AQP4) and the housekeeping genes (GAPDH and ACTB) are shown in FIG.
  • the results of analyzing the transcription levels of MAP2 and SYN1) are shown in FIG.
  • the numerical value of the expression level on the vertical axis is a numerical value calibrated with the GAPDH expression level of FIG. 3 as 1.
  • NEUROG2 not only in pluripotent stem cells derived from healthy subjects but also in pluripotent stem cells derived from patients with neurodegenerative diseases caused by neurodegenerative and glia degeneration. It was shown that astrocytes can be induced to differentiate in days.
  • Example 2 Examination of NEUROG2 forced expression period (1)
  • NEUROG2-iPSC HC1A, HC6B
  • AD2S1, AD2EL NEUROG2-iPSC
  • DOX-containing medium 2, 3, 4, and 5 days.
  • the cells were cultured until Day 8 (Fig. 5, Condition AD).
  • a phase-contrast microscope observation was performed at the time of Day 8, and a typical phase-contrast microscope image obtained under each condition is shown in FIG.
  • Condition A cultured in Dox-containing medium for 2 days, iN (cells extending neurites) was hardly found.
  • iN was observed in Condition B with a culture period of 3 days in Dox-containing medium, the number of iN increased further in Condition C, and almost all cells extended long neurites in Condition D. It was iN.
  • the forced expression period of NEUROG2 suitable for inducing differentiation into astrocytes is less than 3 days, most preferably about 2 days.
  • Example 3 Examination of calcium oscillation
  • a phenomenon in which the Ca ion concentration in the astrocytes changes autonomously and regularly is observed, and neurotransmitter / regulatory factors such as glutamate, ATP, and serine are detected. It has been shown to regulate nearby astrocytes by releasing in a calcium concentration-dependent manner. Therefore, the presence or absence of calcium oscillation was analyzed as an index of the functional maturity of iAstrocyte.
  • iAstrocyte (Fig. 7A) obtained by culturing in DOX medium for 2 days, the Fluo-8AM body was incorporated into the cells and the intracellular Ca ion concentration was continuously recorded as the upper and lower fluorescence intensities and measured over time. .. The results are shown in FIG. 7B. As shown in FIG. 7B, it was confirmed that the Ca ion concentration changed up and down autonomously and regularly in the iAstrocyte, and calcium oscillation occurred.
  • FIG. 8 shows the results of recording calcium oscillations at multiple points at the same time.
  • the vertical axis of FIG. 8 represents the number assigned to each measurement site (ROI: Region of Interests). From this result, it can be seen that calcium oscillation occurs in various places in the iAstrocyte culture system. Furthermore, at the measurement sites 5, 6, 8, 9, 11-14, and 16 (particularly, 5, 6, and 12), the calcium concentration is high for about 190 seconds from the start of measurement. It was observed that the rising timings (vertical red dotted line in FIG. 8) tended to match.
  • astrocytes are known to form a network by propagating lateral calcium oscillations.
  • calcium oscillations were synchronized between multiple cells in iAstrocytes produced by this differentiation induction method. This result indicates that a communication network is formed between iAstrocytes.
  • the iAstrocyte produced by the method according to the present invention can spontaneously perform calcium oscillation and can also form an intercellular network via the oscillation. This indicates that the method according to the present invention can produce morphologically and functionally mature iAstrocytes.
  • Example 4 Production of cell model of neurodegenerative disease with astrocyte abnormality The presence or absence of GFAP-positive aggregates was examined for iAstrocytes produced from iPS cells (A266 strain) derived from Alexander disease patients. GFAP or CD44 was immunostained on Day 18 iAstrocytes produced from two types of NEUROG2-iPSC (A226, HC1A) by the method of Example 1. The results are shown in FIG.
  • GFAP-positive intracellular aggregates were observed in iAstrocytes produced from healthy subject-derived iPSC (HC1A) (Fig. 9A, B).
  • iAstrocytes produced from iPSC (A226) derived from Alexander disease patients GFAP-positive intracellular aggregates were frequently observed (Fig. 9C-E). That is, it was shown that astrocytes produced from iPSCs derived from Alexander disease patients by the method according to the present invention frequently spontaneously generate GFAP-positive intracellular aggregates characteristic of Alexander disease patients. Since the GFAP-positive intracellular aggregate is considered to contribute significantly to the onset of Alexander disease, it is considered that the astrocytes produced by the method according to the present invention can be a cell model of Alexander disease. ..
  • CD44 is a surface antigen marker expressed in glial progenitor cells and astrocytes. Whether it is an iAstrocyte (Fig. 9F-H) manufactured from a healthy person-derived iPSC (HC1A) or an iAstrocyte (Fig. 9I-K) manufactured from an Alexander disease patient-derived iPSC (A226), CD44 is present on the membrane surface. It was found to be distributed. This result suggests that astrocyte lineage differentiation is progressing in both iAstrocyte derived from healthy subjects and iAstrocyte derived from Alexander disease patients.
  • the production method according to the present invention can produce model cells for diseases associated with astrocyte abnormalities (for example, Alexander disease).
  • Example 5 Expression of GFAP protein in iAstrocyte It was confirmed by Western blot analysis that iAstrocyte expressed GFAP protein. Proteins were extracted (0.5 ⁇ g / ⁇ L) from cells on Day 18 of iAstrocytes produced under the conditions of Example 1 from healthy person-derived iPS cells HC1A and HC6B according to a conventional method, and a glass capillary electrophoresis device Wes (Protein simple) was used. Analyzed using. As the antibody, an antibody prepared using the full length of the human GFAP recombinant protein as an immunogen was used. The results are shown in FIG. It was confirmed that all iAstrocytes express GFAP.
  • Example 6 Examination of NEUROG2 forced expression period (2)
  • NEUROG2 forced expression period (2)
  • HC1A and HC6B which are iPS cells derived from healthy subjects, iAstrocytes were induced by shaking the culture period in a DOX-containing medium from 8 hours to 72 hours in the same manner as in Example 2.
  • the results are shown in FIG. It was clarified that astrocyte induction is possible even with expression at 8 hours.
  • the GFAP positive rate was substantially 0% when NEUROG2 was not forcibly expressed (data not shown).
  • morphologically and functionally mature astrocytes can be produced from pluripotent stem cells in a significantly shorter period of time than before and with high efficiency close to 100%.
  • the astrocytes produced by the method of the present invention are useful as model cells for analyzing the physiological function and role of astrocytes in pathological conditions, and as therapeutic agents (cell preparations) for diseases associated with astrocyte abnormalities.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Neurology (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Neurosurgery (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Psychology (AREA)
  • Virology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Psychiatry (AREA)
  • Hospice & Palliative Care (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Orthopedic Medicine & Surgery (AREA)

Abstract

The present invention provides a method of producing astrocytes from pluripotent stem cells, said method comprising a step for expressing NEUROG2 gene in the pluripotent stem cells for less than three days.

Description

多能性幹細胞からアストロサイトを製造する方法How to make astrocytes from pluripotent stem cells
 本発明は、多能性幹細胞からアストロサイトを製造する方法に関する。本発明はまた、当該方法によって得られたアストロサイトに関する。さらに、本発明は、上記アストロサイトを含む細胞製剤に関する。 The present invention relates to a method for producing astrocytes from pluripotent stem cells. The present invention also relates to astrocytes obtained by this method. Furthermore, the present invention relates to a cell preparation containing the above astrocytes.
 アストロサイトは、脳内で最も細胞数が多い細胞種である。神経細胞と異なり電気活性を示さないため、神経細胞の周りを埋めているに過ぎない「にかわ(Glue)」のような存在と長きにわたって考えられていた。しかしながら現在では、アストロサイトはシナプス伝達調節、免疫応答、及び血液脳関門を含めた脳血流の調整など、脳の恒常性維持に欠かせない多様な機能を担う細胞であることが明らかとなっている。 Astrocytes are the cell type with the largest number of cells in the brain. Unlike nerve cells, it does not show electrical activity, so it has long been thought to be a "glue" -like entity that only fills the area around nerve cells. However, it is now clear that astrocytes are cells that play a variety of functions essential for maintaining homeostasis of the brain, such as regulation of synaptic transmission, immune response, and regulation of cerebral blood flow including the blood-brain barrier. ing.
 アストロサイトの生理機能の解明や関連疾患の病態解析を行うために、多能性幹細胞からアストロサイトを分化誘導する取り組みが既に行われている。ヒトiPS細胞からアストロサイトを分化誘導する方法についても、複数のグループの報告が存在する。 Efforts have already been made to induce differentiation of astrocytes from pluripotent stem cells in order to elucidate the physiological functions of astrocytes and analyze the pathophysiology of related diseases. There are also reports from multiple groups on how to induce astrocytes differentiation from human iPS cells.
 まず最初に、ヒト多能性幹細胞を神経分化誘導因子の存在下で培養し、胎生期の神経発生を模倣することでアストロサイトを分化誘導する方法が報告された(非特許文献1)。この方法では、神経細胞が生じた後にグリア細胞が生じるため、アストロサイトを得るまでに数か月(3~6ヶ月)を要する。 First, a method of inducing astrocyte differentiation by culturing human pluripotent stem cells in the presence of a nerve differentiation-inducing factor and mimicking neurogenesis during the embryonic period was reported (Non-Patent Document 1). In this method, it takes several months (3 to 6 months) to obtain astrocytes because glial cells are generated after nerve cells are generated.
 続いて、ヒト多能性幹細胞に、アストロサイトで比較的特異性が高いとされる転写因子(例として、NFIA、あるいはNFI1及びSOX9)を強制発現させることで、より短期間でアストロサイトを分化誘導する方法が報告された(例として、非特許文献2)。非特許文献2では、ヒト多能性幹細胞にCRISPER/Cas9遺伝子編集システムを用いてNFIA又はNFIA+SOX9を強制発現させることにより、4~7週間でアストロサイトが得られたことを開示している。 Subsequently, human pluripotent stem cells are forcibly expressed with transcription factors (eg, NFIA, or NFI1 and SOX9) that are considered to be relatively specific for astrocytes, thereby differentiating astrocytes in a shorter period of time. A method for inducing has been reported (for example, Non-Patent Document 2). Non-Patent Document 2 discloses that astrocytes were obtained in 4 to 7 weeks by forcibly expressing NFIA or NFIA + SOX9 in human pluripotent stem cells using a CRISPER / Cas9 gene editing system.
 さらに、ヒト多能性幹細胞からサイトカイン等の化合物を用いて誘導した神経幹細胞にNFIA遺伝子を一過性に発現させることで(具体的には5日間)、アストロサイトへの運命付けを行えることが報告された(非特許文献3)。非特許文献3では、この方法により、約90日でアストロサイトが得られたことが開示されている。 Furthermore, by transiently expressing the NFIA gene in neural stem cells derived from human pluripotent stem cells using compounds such as cytokines (specifically, for 5 days), it is possible to fate astrocytes. Reported (Non-Patent Document 3). Non-Patent Document 3 discloses that astrocytes were obtained in about 90 days by this method.
 このように、これまでの方法では、アストロサイトの分化誘導に4週間~数ヶ月という長期間を要するのが一般的であった。さらに、分化効率も必ずしも高くはなく、これらのことが、アストロサイトの生理機能や病態解析、更には細胞製剤としての利用を非常に困難にしていた。 Thus, with the conventional methods, it generally took a long period of 4 weeks to several months to induce the differentiation of astrocytes. Furthermore, the differentiation efficiency is not always high, which makes it extremely difficult to analyze the physiological function and pathological condition of astrocytes, and to use them as cell preparations.
特開2019-58192号公報Japanese Unexamined Patent Publication No. 2019-58192
 本発明の課題は、多能性幹細胞から迅速且つ高効率でアストロサイトを製造する方法を提供することである。 An object of the present invention is to provide a method for rapidly and highly efficiently producing astrocytes from pluripotent stem cells.
 本発明者らは上記課題を解決すべく鋭意検討を行った結果、多能性幹細胞にNeurogenin 2遺伝子(以下NEUROG2遺伝子と称する)を短期間(具体的には、神経細胞の分化誘導に必要な期間よりも短い期間)だけ強制発現させると、当該発現開始からわずか18日後にはほぼアストロサイトからなる細胞集団が得られることを見出し、本発明を完成するに至った。 As a result of diligent studies to solve the above problems, the present inventors are required to apply the Neurogenin 2 gene (hereinafter referred to as NEUROG2 gene) to pluripotent stem cells for a short period of time (specifically, to induce differentiation of nerve cells). It was found that when forced expression was performed only for a period shorter than the period), a cell population consisting approximately of astrocytes was obtained only 18 days after the start of the expression, and the present invention was completed.
 NEUROG2遺伝子は、マウス多能性幹細胞では3日間以上、ヒト多能性幹細胞では5日間以上強制発現させることにより、前記細胞をほぼ100%の高効率で大脳皮質神経細胞へと分化誘導できる遺伝子である(特許文献1)。本発明者は、この方法によって得られた神経細胞集団の中に、グリア様形態を有する細胞がごく微量に含まれることを見出した。そして、NEUROG2遺伝子の発現期間と前記グリア様細胞の出現頻度との関係を詳細に検討することで、本発明を完成させた。 The NEUROG2 gene is a gene that can induce differentiation of the cells into cerebral cortical neurons with almost 100% efficiency by forcibly expressing them in mouse pluripotent stem cells for 3 days or longer and in human pluripotent stem cells for 5 days or longer. There is (Patent Document 1). The present inventor has found that the nerve cell population obtained by this method contains a very small amount of cells having a glial-like morphology. Then, the present invention was completed by examining in detail the relationship between the expression period of the NEUROG2 gene and the appearance frequency of the glial-like cells.
 すなわち、本発明は、以下を包含する。
[1] 多能性幹細胞からアストロサイトを製造する方法であって、下記工程:
(1)多能性幹細胞において、NEUROG2遺伝子を3日間未満発現させる工程、
を含む方法。
[2] NEUROG2遺伝子の発現期間が8時間以上である、[1]に記載の方法。
[3] 前記工程(1)の後に、
(2)NEUROG2遺伝子の発現誘導を行わずに前記多能性幹細胞を培養する工程、
を含む、[1]または[2]に記載の方法。
[4] 前記NEUROG2遺伝子が誘導型プロモーターに制御される遺伝子であって、前記工程(1)が前記プロモーターを活性化してNEUROG2を発現させる工程である、[1]~[3]のいずれかに記載の方法。
[5] 前記誘導型プロモーターが薬剤応答性プロモーターである、[4]に記載の方法。
[6] 前記工程(1)が、前記薬剤応答性プロモーターを活性化する薬剤の存在下で前記多能性幹細胞を培養する工程であり、前記工程(2)が、前記薬剤の非存在下で前記多能性幹細胞を培養する工程である、[5]に記載の方法。
[7] 工程(2)の培養期間が10日間~20日間である、[6]に記載の方法。
[8] 工程(2)の培養期間が10日間~16日間である、[6]に記載の方法。
[9] 前記NEUROG2遺伝子が、トランスポゾンを用いて前記多能性幹細胞に導入された遺伝子である、[1]~[8]のいずれかに記載の方法。
[10] 前記トランスポゾンがpiggyBacトランスポゾンである、[9]に記載の方法。
[11] 工程(2)が、WNTシグナル伝達を促進する因子の存在下で培養する工程である、[6]~[10]のいずれかに記載の方法。
[12] 前記WNTシグナル伝達を促進する因子が、BMP4(bone morphogenetic protein 4)、CNTF(Ciliary neurotrophic factor)、及びFBS(fetal bovine serum)からなる群から選択される1つ以上である、[11]に記載の方法。
[13] 前記多能性幹細胞がヒト人工多能性幹細胞である、[1]~[12]のいずれかに記載の方法。
[14] 前記ヒト人工多能性幹細胞が、アストロサイトの異常を伴う疾患患者由来である、[13]に記載の方法。
[15] [1]~[14]のいずれかに記載の方法で製造されたアストロサイト。
[16] [15]に記載のアストロサイトを有効成分として含む、細胞製剤。
That is, the present invention includes the following.
[1] A method for producing astrocytes from pluripotent stem cells, wherein the following steps:
(1) A step of expressing the NEUROG2 gene in pluripotent stem cells for less than 3 days.
How to include.
[2] The method according to [1], wherein the expression period of the NEUROG2 gene is 8 hours or more.
[3] After the step (1),
(2) A step of culturing the pluripotent stem cells without inducing the expression of the NEUROG2 gene.
The method according to [1] or [2], which comprises.
[4] Any of [1] to [3], wherein the NEUROG2 gene is a gene regulated by an inducible promoter, and the step (1) is a step of activating the promoter to express NEUROG2. The method described.
[5] The method according to [4], wherein the inducible promoter is a drug-responsive promoter.
[6] The step (1) is a step of culturing the pluripotent stem cells in the presence of a drug that activates the drug-responsive promoter, and the step (2) is a step of culturing the pluripotent stem cells in the absence of the drug. The method according to [5], which is a step of culturing the pluripotent stem cells.
[7] The method according to [6], wherein the culture period of the step (2) is 10 to 20 days.
[8] The method according to [6], wherein the culture period of the step (2) is 10 to 16 days.
[9] The method according to any one of [1] to [8], wherein the NEUROG2 gene is a gene introduced into the pluripotent stem cell using a transposon.
[10] The method according to [9], wherein the transposon is a piggyBac transposon.
[11] The method according to any one of [6] to [10], wherein step (2) is a step of culturing in the presence of a factor that promotes WNT signaling.
[12] The factor that promotes WNT signaling is one or more selected from the group consisting of BMP4 (bone morphogenetic protein 4), CNTF (Ciliary neurotrophic factor), and FBS (fetal bovine serum) [11]. ] The method described in.
[13] The method according to any one of [1] to [12], wherein the pluripotent stem cell is a human induced pluripotent stem cell.
[14] The method according to [13], wherein the human induced pluripotent stem cells are derived from a disease patient with an astrocyte abnormality.
[15] The astrocyte produced by the method according to any one of [1] to [14].
[16] A cell preparation containing the astrocyte according to [15] as an active ingredient.
 本発明によれば、従来よりも大幅に短い期間で、且つ、100%に近い高効率で、多能性幹細胞からアストロサイトを製造することができる。また本発明の方法で得られた細胞は、神経変性疾患の治療のための細胞製剤とすることもできる。 According to the present invention, astrocytes can be produced from pluripotent stem cells in a significantly shorter period than before and with high efficiency close to 100%. The cells obtained by the method of the present invention can also be used as a cell preparation for the treatment of neurodegenerative diseases.
図1は、本実施例によるアストロサイトの製造方法のプロトコールを示す。図1において矢印はタイムラインを示す。タイムラインの上に培地条件を、タイムラインの下にCulture plate条件(cultureサイズとcoating条件)を示す。“NB”は、B27 plus supplementを添加したNeurobasal plus培地、“AM”は、N2 supplement、BMP4、CNTF、FBS を添加したDMEM/F12培地を表す。FIG. 1 shows a protocol for a method for producing astrocytes according to this embodiment. In FIG. 1, the arrow indicates the timeline. The medium conditions are shown above the timeline, and the Culture plate conditions (culture size and coating conditions) are shown below the timeline. “NB” represents Neurobasal plus medium supplemented with B27 plus supplement, and “AM” represents DMEM / F12 medium supplemented with N2 supplement, BMP4, CNTF, and FBS. 図2は、4種類のNEUROG2-iPSC(HC1A、HC6B、N117E11、AD2S1)から図1の方法に従って製造したiAstrocyteに対し、Day12とDay18に、アストロサイトのマーカーであるGFAPの免疫染色(緑色)とDAPIによる核染色(灰色)を行って得られた代表的なイメージを示す。Day12の左側の画像で観察された染色細胞(四角で囲んで示す)を拡大して示したのが、Day12の右側の画像である。同様にDay18の左側の画像で観察された染色細胞(四角で囲んで示す)を拡大して示したのが、Day18の右側の画像である。FIG. 2 shows immunostaining (green) of astrocyte marker GFAP on Day 12 and Day 18 against iAstrocytes produced from four types of NEUROG2-iPSC (HC1A, HC6B, N117E11, AD2S1) according to the method of FIG. A typical image obtained by performing nuclear staining (gray) with DAPI is shown. The image on the right side of Day 12 is a magnified view of the stained cells (shown in a square) observed in the image on the left side of Day 12. Similarly, the image on the right side of Day 18 is an enlarged view of the stained cells (shown in a square) observed in the image on the left side of Day 18. 図3は、様々な種類のNEUROG2-iPSCから図1の方法を用いて製造したiAstrocyteに対し、Day12の時点で、種々のアストロサイトのマーカー(GFAP、S100B、AQP4)及びハウスキーピング遺伝子(GAPDH、ACTB)の転写レベルを解析した結果を示すグラフである。図3の横軸は、元のiPS細胞株名を表す。図3の全てのマーカーのグラフについて、一番左は健常人由来のHC6BをDOX含有培地で5日間培養して神経細胞(iN)に分化誘導した細胞における発現量を示す。FIG. 3 shows various astrocyte markers (GFAP, S100B, AQP4) and housekeeping genes (GAPDH,) for iAstrocytes produced from various types of NEUROG2-iPSC using the method of FIG. It is a graph which shows the result of having analyzed the transcription level of ACTB). The horizontal axis in FIG. 3 represents the original iPS cell line name. For the graphs of all the markers in FIG. 3, the leftmost shows the expression level in cells in which HC6B derived from a healthy person was cultured in a DOX-containing medium for 5 days to induce differentiation into nerve cells (iN). 図4は、図3の細胞について神経細胞のマーカー(TUBB3、MAP2、及びSYN1)の発現を解析した結果を示すグラフである。FIG. 4 is a graph showing the results of analysis of the expression of nerve cell markers (TUBB3, MAP2, and SYN1) in the cells of FIG. 図5は、NEUROG2-iPSCをDOX含有培地で2日間(Condition A)、3日間(Condition B)、4日間(Condition C)、または5日間(Condition D)培養する実験のプロトコールを示す図である。“NB”、“AM”は図1と同義である。FIG. 5 is a diagram showing a protocol for an experiment in which NEUROG2-iPSC is cultured in a medium containing DOX for 2 days (Condition A), 3 days (Condition B), 4 days (Condition C), or 5 days (Condition D). .. “NB” and “AM” are synonymous with FIG. 図6は、図5のプロトコールに従って得られたDay8の細胞に対し、位相差顕微鏡観察により得られた典型的なイメージを表す。Condition A~Dは図5と同じ培養条件を示す。FIG. 6 represents a typical image obtained by phase contrast microscopy for Day 8 cells obtained according to the protocol of FIG. Conditions A to D show the same culture conditions as in FIG. 図7Aは、NEUROG2-HC1Aから図1のプロトコールに従って製造したiAstrocyteについて、GFAPの免疫染色を行って得られた典型的なイメージを表す。図7Bは、図7Aに示されるiAstrocyteにおいて、細胞内Caイオン濃度を経時的に計測した結果(カルシウムオシレーション)を示すチャートである。図7Bにおいて、縦軸はCaイオン濃度を示すシグナル強度である。FIG. 7A represents a typical image obtained by immunostaining GFAP on iAstrocytes prepared from NEUROG2-HC1A according to the protocol of FIG. FIG. 7B is a chart showing the results (calcium oscillation) of measuring the intracellular Ca ion concentration over time in the iAstrocyte shown in FIG. 7A. In FIG. 7B, the vertical axis is the signal intensity indicating the Ca ion concentration. 図8は、図7の培養系において、細胞内カルシウムイオン濃度を図7とは異なる部位29カ所で同時に記録(多点同時記録)した結果を表すチャートである。図8において横軸は時間であり、縦軸は各測定部位(ROI:Region of Interests)に付された番号を示す。FIG. 8 is a chart showing the results of simultaneously recording the intracellular calcium ion concentration at 29 sites different from those in FIG. 7 (simultaneous recording at multiple points) in the culture system of FIG. 7. In FIG. 8, the horizontal axis represents time, and the vertical axis indicates the number assigned to each measurement site (ROI: Region of Interests). 図9は、アレキサンダー病患者由来のiPS細胞(A266)と健常者由来のiPS細胞(HC1A)から図1の方法を用いて得られたiAstrocyteに対する、GFAP免疫染色とDAPI染色の共免疫染色イメージ(A-E)と、CD44免疫染色イメージ(F-K)を表す。Bは、Aにおいて四角で囲った領域の拡大イメージである。同様に、D及びEはCの一部拡大イメージである。また、HはGの、GはFの一部拡大イメージであり、KはJの、JはIの一部拡大イメージである。スケールバーは100μmを表す。FIG. 9 shows a co-immunostochemical image of GFAP immunostaining and DAPI staining for iAstrocytes obtained from iPS cells (A266) derived from Alexander disease patients and iPS cells (HC1A) derived from healthy subjects using the method shown in FIG. Represents A-E) and CD44 immunostaining image (F-K). B is an enlarged image of the area surrounded by a square in A. Similarly, D and E are partially enlarged images of C. Also, H is a partially enlarged image of G, G is a partially enlarged image of F, K is a partially enlarged image of J, and J is a partially enlarged image of I. The scale bar represents 100 μm. 図10は、iAstrocyteにおけるGFAPタンパク質の発現を示すウェスタンブロット像を示す。hc1及びhc6は、それぞれ健常者由来iPS細胞であるHC1A及びHC6Bから、実施例1の条件で製造したアストロサイト(Day 18)を示す。矢印はGFAPタンパク質のバンドを示す。FIG. 10 shows a Western blot showing the expression of GFAP protein in iAstrocyte. hc1 and hc6 indicate astrocytes (Day 18) produced under the conditions of Example 1 from HC1A and HC6B, which are iPS cells derived from healthy subjects, respectively. Arrows indicate bands of GFAP protein. 図11は、iAstrocyteの誘導効率に及ぼすNEUROG2遺伝子の発現期間の効果を示す。hc1及びhc6は、図10と同様である。生細胞の総数(=DAPI陽性)に対するiAstrocyte (=GFAP陽性)の割合を算出した(n=3)。エラーバーはSD値を示す。FIG. 11 shows the effect of the expression period of the NEUROG2 gene on the induction efficiency of iAstrocyte. hc1 and hc6 are the same as in FIG. The ratio of iAstrocyte (= GFAP positive) to the total number of living cells (= DAPI positive) was calculated (n = 3). The error bar indicates the SD value.
<NEUROG2遺伝子>
 本発明においてNEUROG2遺伝子とは、Neurogenin 2遺伝子として本技術分野で一般的に知られている遺伝子を意味する。公式の遺伝子シンボルはNEUROG2である。NEUROG2タンパク質をコードする核酸の構造は、NCBIのアクッセッション番号: NM_024019(ヒト)又はNM_009718(マウス)において例示されている。
<NEUROG2 gene>
In the present invention, the NEUROG2 gene means a gene generally known in the present art as the Neurogenin 2 gene. The official genetic symbol is NEUROG2. The structure of the nucleic acid encoding the NEUROG2 protein is exemplified in NCBI Accession Number: NM_024019 (human) or NM_009718 (mouse).
<アストロサイト>
 本発明においてアストロサイトとは、一以上のアストロサイトのマーカー遺伝子を発現している細胞と定義することができ、前記マーカー遺伝子としては、GFAP、S100B、Aquaporine4(AQP4)等が挙げられる。さらに、前記定義を満たすことに加えて、カルシウムオシレーションが認められる細胞を、機能的に成熟したアストロサイトと呼ぶこともできる。アストロサイトにおけるカルシウムオシレーションは、基本的には個々の細胞単独で自発的に生じる揺らぎであるが、成熟に伴って周囲のアストロサイトと細胞間接着あるいは細胞外パラクリンによるシグナル伝達を介して、横方向のオシレーション伝播が生じる。この横方向のシグナル伝播(オシレーション伝播)がネットワークを形成し、神経細胞活動の調節や血管収縮制御に重要な働きをすることが知られている。
<Astrocyte>
In the present invention, astrocytes can be defined as cells expressing one or more astrocyte marker genes, and examples of the marker genes include GFAP, S100B, Aquaporine4 (AQP4) and the like. Furthermore, in addition to satisfying the above definition, cells in which calcium oscillation is observed can also be referred to as functionally mature astrocytes. Calcium oscillation in astrocytes is basically a spontaneous fluctuation of individual cells alone, but as it matures, it laterally adheres to surrounding astrocytes through intercellular adhesion or signal transduction by extracellular paracrine. Directional oscillation propagation occurs. It is known that this lateral signal propagation (oscillation propagation) forms a network and plays an important role in the regulation of nerve cell activity and the control of vasoconstriction.
 本発明においてアストロサイトを製造するとは、アストロサイトを含有する細胞集団を得ることを意味し、好ましくは、アストロサイトを50%、60%、70%、80%、90%、又は95%以上含有する細胞集団を得ることである。 Producing astrocytes in the present invention means obtaining a cell population containing astrocytes, preferably containing 50%, 60%, 70%, 80%, 90%, or 95% or more of astrocytes. Is to obtain an astrocyte population.
<多能性幹細胞>
 本発明において、多能性幹細胞とは、生体に存在する多種多様な細胞に分化可能である多能性を有し、かつ、増殖能をも併せもつ幹細胞であり、それには、特に限定されないが、例えば胚性幹(ES)細胞、核移植により得られるクローン胚由来の胚性幹(ntES)細胞、精子幹細胞(GS細胞)、胚性生殖細胞(EG細胞)、人工多能性幹(iPS)細胞、培養線維芽細胞や骨髄幹細胞由来の多能性細胞(Muse細胞)などが含まれる。
<Pluripotent stem cells>
In the present invention, the pluripotent stem cell is a stem cell having pluripotency capable of differentiating into a wide variety of cells existing in a living body and also having a proliferative ability, and is not particularly limited thereto. For example, embryonic stem (ES) cells, embryonic stem (ntES) cells derived from cloned embryos obtained by nuclear transplantation, sperm stem cells (GS cells), embryonic germ cells (EG cells), artificial pluripotent stems (iPS). ) Cells, cultured fibroblasts, pluripotent cells derived from bone marrow stem cells (Muse cells), etc. are included.
 ES細胞は、ヒトやマウスなどの哺乳動物の初期胚(例えば胚盤胞)の内部細胞塊から樹立された、多能性と自己複製による増殖能を有する幹細胞である。ES細胞は、受精卵の8細胞期、桑実胚後の胚である胚盤胞の内部細胞塊に由来する胚由来の幹細胞であり、成体を構成するあらゆる細胞に分化する能力、いわゆる分化多能性と、自己複製による増殖能とを有している。ヒトES細胞株は、例えばWA01(H1)およびWA09(H9)は、WiCell Research Instituteから、KhES-1、KhES-2およびKhES-3は、京都大学再生医科学研究所(京都、日本)から入手可能である。 ES cells are pluripotent and self-replicating stem cells established from the inner cell mass of early mammalian embryos (eg, blastocysts) such as humans and mice. ES cells are embryo-derived stem cells derived from the inner cell mass of the scutellum vesicle, which is the embryo after the morula at the 8-cell stage of the fertilized egg, and have the ability to differentiate into all the cells that make up the adult, so-called polymorphism. It has the ability and the ability to proliferate by self-replication. Human ES cell lines, for example, WA01 (H1) and WA09 (H9) are obtained from the WiCell Research Institute, and KhES-1, KhES-2 and KhES-3 are obtained from the Institute for Frontier Medical Sciences, Kyoto University (Kyoto, Japan). It is possible.
 精子幹細胞は、精巣由来の多能性幹細胞であり、精子形成のための起源となる細胞である。この細胞は、ES細胞と同様に、種々の系列の細胞に分化誘導可能であり、例えばマウス胚盤胞に移植するとキメラマウスを作出できるなどの性質をもつ(M. Kanatsu-Shinohara et al. (2003) Biol. Reprod., 69:612-616; K. Shinohara et al. (2004), Cell, 119:1001-1012)。 Sperm stem cells are testis-derived pluripotent stem cells, which are the origin cells for spermatogenesis. Similar to ES cells, these cells can be induced to differentiate into various lineages of cells, and have properties such as the ability to produce chimeric mice when transplanted into mouse blastocysts (M. Kanatsu-Shinohara et al. (M. Kanatsu-Shinohara et al.). 2003) Biol. Reprod., 69: 612-616; K. Shinohara et al. (2004), Cell, 119: 1001-1012).
 胚性生殖細胞は、胎生期の始原生殖細胞から樹立される、ES細胞と同様な多能性をもつ細胞である。 Embryonic germ cells are cells with pluripotency similar to ES cells, which are established from primordial germ cells in the embryonic period.
 人工多能性幹(iPS)細胞は、特定の初期化因子を、DNA、RNA又はタンパク質の形態で体細胞に導入することによって作製される、分化多能性と自己複製による増殖能を有する体細胞由来の人工の幹細胞である(K. Takahashi and S. Yamanaka (2006) Cell, 126:663-676; K. Takahashi et al. (2007), Cell, 131:861-872; J. Yu et al. (2007), Science, 318:1917-1920; Nakagawa, M.ら,Nat. Biotechnol. 26:101-106 (2008);国際公開WO 2007/069666)。初期化因子として、例えば、Oct3/4、Sox2、Sox1、Sox3、Sox15、Sox17、Klf4、Klf2、c-Myc、N-Myc、L-Myc、Nanog、Lin28、Fbx15、ERas、ECAT15-2、Tcl1、beta-catenin、Lin28b、Sall1、Sall4、Esrrb、Nr5a2、Tbx3またはGlis1等を例示することができる。 Induced pluripotent stem (iPS) cells are made by introducing specific reprogramming factors into somatic cells in the form of DNA, RNA or protein, and are pluripotent and self-replicating proliferative bodies. Cell-derived artificial stem cells (K. Takahashi and S. Yamanaka (2006) Cell, 126: 663-676; K. Takahashi et al. (2007), Cell, 131: 861-872; J. Yu et al . (2007), Science, 318: 1917-1920; Nakagawa, M. et al., Nat. Biotechnol. 26: 101-106 (2008); International release WO 2007/069666). Initialization factors include, for example, Oct3 / 4, Sox2, Sox1, Sox3, Sox15, Sox17, Klf4, Klf2, c-Myc, N-Myc, L-Myc, Nanog, Lin28, Fbx15, ERas, ECAT15-2, Tcl1. , Beta-catenin, Lin28b, Sall1, Sall4, Esrrb, Nr5a2, Tbx3 or Glis1 and the like can be exemplified.
 本発明における多能性幹細胞としてiPS細胞を使用する態様は好適であり、ヒトiPS細胞を使用する態様は更に好適である。アストロサイトの異常を伴う疾患(例えばアレキサンダー病)の患者に由来するiPS細胞から製造したアストロサイトは、該疾患のモデル細胞として有用である。 The embodiment in which iPS cells are used as pluripotent stem cells in the present invention is suitable, and the embodiment in which human iPS cells are used is even more suitable. Astrocytes produced from iPS cells derived from patients with diseases associated with astrocyte abnormalities (eg Alexander's disease) are useful as model cells for the disease.
 既に述べたように、本発明の方法により製造されたアストロサイトを、細胞製剤の有効成分とすることも可能である。その観点から、健常人のiPS細胞から製造したアストロサイト、又は治療効果を有するタンパク質を発現するように改変されたiPS細胞から製造したアストロサイトを含む細胞製剤は特に好適である。そのような細胞製剤については、下記の<細胞製剤>の項でより詳細に述べる。 As already described, astrocytes produced by the method of the present invention can be used as an active ingredient of a cell preparation. From this point of view, a cell preparation containing astrocytes produced from iPS cells of a healthy person or astrocytes produced from iPS cells modified to express a protein having a therapeutic effect is particularly suitable. Such a cell product will be described in more detail in the section <Cell product> below.
<工程(1)>
 本発明の工程(1)は、多能性幹細胞に対し、アストロサイトへの分化の方向付けを行う工程である。工程(1)では、多能性幹細胞においてNEUROG2遺伝子を、神経細胞への分化の方向付けに必要な期間よりも短い期間だけ発現させることで、アストロサイトへの分化の方向付けを行う。当該NEUROG2遺伝子を発現させる期間は、3日間未満であってよく、好ましくは8時間以上3日間未満、より好ましくは8時間以上60時間以下、さらに好ましくは24時間以上60時間以下、特に好ましくは36時間以上60時間以下、最も好ましくは36時間以上48時間以下である。
<Process (1)>
The step (1) of the present invention is a step of directing the differentiation of pluripotent stem cells into astrocytes. In step (1), the NEUROG2 gene is expressed in pluripotent stem cells for a period shorter than the period required for the direction of differentiation into nerve cells, thereby directing the differentiation into astrocytes. The period for expressing the NEUROG2 gene may be less than 3 days, preferably 8 hours or more and less than 3 days, more preferably 8 hours or more and 60 hours or less, still more preferably 24 hours or more and 60 hours or less, and particularly preferably 36 hours. Hours or more and 60 hours or less, most preferably 36 hours or more and 48 hours or less.
 NEUROG2遺伝子の強制発現は、自体公知の方法を用いて行うことができ、特に限定されない。強制発現させるNEUROG2遺伝子は、内在性のNEUROG2遺伝子であっても、外来性のNEUROG2遺伝子であってもよいが、発現調節の容易さから、外来性遺伝子が好ましい。1態様として例えば、NEUROG2をコードする核酸を含むウイルス、プラスミド、人工染色体などのベクターを、リポフェクション、リポソーム、マイクロインジェクションなどの手法を用いて多能性幹細胞に導入することで発現させてもよい。また、工程(1)では、既に外来性NEUROG2遺伝子が導入された細胞を用いてもよい。 Forced expression of the NEUROG2 gene can be performed using a method known per se, and is not particularly limited. The NEUROG2 gene to be forcibly expressed may be either an endogenous NEUROG2 gene or an exogenous NEUROG2 gene, but an exogenous gene is preferable because of its ease of expression regulation. As one embodiment, for example, a vector such as a virus containing a nucleic acid encoding NEUROG2, a plasmid, an artificial chromosome, or the like may be expressed by introducing it into pluripotent stem cells using a technique such as lipofection, liposome, or microinjection. Further, in step (1), cells into which the exogenous NEUROG2 gene has already been introduced may be used.
 ウイルスベクターとしては、レトロウイルスベクター、レンチウイルスベクター、アデノウイルスベクター、アデノ随伴ウイルスベクター、センダイウイルスベクターなどが例示される。また、人工染色体ベクターとしては、例えばヒト人工染色体(HAC)、酵母人工染色体(YAC)、細菌人工染色体(BAC、PAC)などが例示される。さらにプラスミドベクターとしては、哺乳動物細胞用プラスミドを使用することができる。 Examples of the virus vector include a retro virus vector, a lentivirus vector, an adenovirus vector, an adeno-associated virus vector, and a Sendai virus vector. Examples of artificial chromosome vectors include human artificial chromosomes (HAC), yeast artificial chromosomes (YAC), and bacterial artificial chromosomes (BAC, PAC). Further, as the plasmid vector, a plasmid for mammalian cells can be used.
 他の態様として上記ベクターは、染色体内に取り込まれたNEUROG2遺伝子をコードする配列を必要に応じて切除するために、この発現カセット(プロモーター、遺伝子配列およびターミネーターを含む遺伝子発現単位)の前後にトランスポゾン配列を有していてもよい。トランスポゾン配列として特に限定されないが、好適なものとしてpiggyBacが例示される。 In another embodiment, the above vector transposons before and after this expression cassette (gene expression unit including promoter, gene sequence and terminator) in order to excise the sequence encoding the NEUROG2 gene incorporated into the chromosome as needed. It may have a sequence. The transposon sequence is not particularly limited, but piggyBac is exemplified as a suitable one.
 これらのベクターは、NEUROG2遺伝子が発現可能なように、プロモーター、エンハンサ、リボゾーム結合配列、ターミネーター、ポリアデニル化サイトなどの制御配列を含むことができる。 These vectors can contain regulatory sequences such as promoters, enhancers, ribosome binding sequences, terminators, polyadenylation sites, etc. so that the NEUROG2 gene can be expressed.
 多能性幹細胞においてNEUROG2遺伝子を発現させるために、該多能性幹細胞が、誘導型プロモーターに機能的に接合した“NEUROG2をコードする核酸”を含んでいてもよい。それによって、多能性幹細胞においてNEUROG2遺伝子を所望の時期に発現させることができる。そのような誘導型プロモーターとしては、薬剤応答性プロモーターを挙げることができ、その好適な例として、テトラサイクリン応答性プロモーターの1つである、Tet-onプロモーター(tetO 配列が7回連続したテトサイクリン応答配列(TRE)を有するCMV最小プロモーター)を挙げることができる。該プロモーターは、リバーステトラサイクリン制御性トランス活性化因子(rtTA : reverse tetR (rTetR)およびVP16ADとの融合タンパク質)の発現下において、テトラサイクリン又はその誘導体が供給されることにより活性化されるプロモーターである。よってテトラサイクリン応答性プロモーターを用いて前記遺伝子の発現誘導を行う場合には、前記活性化因子を発現する様式を併せ持つベクターを用いると好適である。前記テトラサイクリンの誘導体としては、ドキシサイクリン(DOX)を好適に用いることができる。 In order to express the NEUROG2 gene in a pluripotent stem cell, the pluripotent stem cell may contain a "nucleic acid encoding NEUROG2" functionally conjugated to an inducible promoter. Thereby, the NEUROG2 gene can be expressed in pluripotent stem cells at a desired time. Examples of such an inducible promoter include a drug-responsive promoter, and a suitable example thereof is the Tet-on promoter (tetO sequence having seven consecutive tetcycline responses), which is one of the tetracycline-responsive promoters. CMV minimal promoter with sequence (TRE)). The promoter is a promoter that is activated by supplying tetracycline or a derivative thereof under the expression of a reverse tetracycline-regulated transactivator (rtTA: a fusion protein with reverse tetR (rTetR) and VP16AD). Therefore, when inducing the expression of the gene using a tetracycline-responsive promoter, it is preferable to use a vector having a mode of expressing the activator. Doxycycline (DOX) can be preferably used as the derivative of the tetracycline.
 また、上記以外の薬剤応答性プロモーターを用いた発現誘導系としては、エストロゲン応答性プロモーターを用いた発現誘導システム(例として、WO2006/129735)、RSL1によって誘導されるプロモーターを用いたRheoSwitch哺乳類誘導性発現システム(New England Biolabs社)、cumateによって誘導されるプロモーターを用いたQ-mateシステム(Krackeler Scientific社)、又はCumate誘導性発現システム(National Research Council (NRC)社)、及びエクジソン応答性配列を有するプロモーターを用いたGenoStat誘導性発現システム(Upstate cell signaling solutions社)等を挙げることができる。 Expression-inducing systems using drug-responsive promoters other than the above include an expression-inducing system using an estrogen-responsive promoter (eg WO2006 / 129735) and RheoSwitch mammalian-inducible using a promoter induced by RSL1. Expression system (New England Biolabs), Q-mate system using a promoter induced by cumate (Krackeler Scientific), or Cumate-induced expression system (National Research Council (NRC)), and ecdison responsive sequences. Examples thereof include a GenoStat-induced expression system (Upstate cell signaling solutions) using a promoter.
 上記に示されるような薬剤応答性プロモーターに基づく発現誘導システムを備えた発現ベクター(すなわち、薬剤応答性誘導ベクター)を用いる場合、当該プロモーターの活性化を誘導し得る薬剤(例えば、前記テトラサイクリン応答性プロモーターを含むベクターの場合には、テトラサイクリン又はDOX)を培地に所望の期間添加し続けることで、NEUROG2の発現を維持することができる。そして培地から当該薬剤を除去すること(例えば該薬剤を含まない培地に置換する)ことで、前記遺伝子の発現を停止させることが可能である。 When an expression vector having an expression-inducing system based on a drug-responsive promoter as shown above (that is, a drug-responsive inducing vector) is used, a drug capable of inducing activation of the promoter (for example, the tetracycline responsiveness) is used. In the case of a vector containing a promoter, the expression of NEUROG2 can be maintained by continuing to add tetracycline or DOX) to the medium for a desired period of time. Then, by removing the drug from the medium (for example, replacing it with a medium containing no such drug), it is possible to stop the expression of the gene.
 よって、薬剤応答性プロモーターとしてTet-onプロモーターを使用する場合には、DOXを培地に添加することにより、多能性幹細胞においてNEUROG2を発現させることができる。ここでのDOXの添加量は特に限定されるものではないが、0.01~100μg/mlであり、好適には0.1~10μg/mlであり、更に好適には1~5μg/mlである。 Therefore, when the Tet-on promoter is used as the drug-responsive promoter, NEUROG2 can be expressed in pluripotent stem cells by adding DOX to the medium. The amount of DOX added here is not particularly limited, but is 0.01 to 100 μg / ml, preferably 0.1 to 10 μg / ml, and more preferably 1 to 5 μg / ml.
 本発明において工程(1)で用いられる培地としては、基本培地のみ、又は、神経栄養因子を添加した基本培地を用いることができる。そのような基本培地としては、Neurobasal Medium(ライフテクノロジーズ)、Glasgow's Minimal Essential Medium(GMEM)培地、IMDM培地、Medium 199培地、Eagle's Minimum Essential Medium (EMEM)培地、αMEM培地、Dulbecco's modified Eagle's Medium (DMEM)培地、Ham's F12培地、RPMI 1640培地、Fischer's培地、及びこれらの混合培地などが包含される。 As the medium used in the step (1) in the present invention, only the basal medium or the basal medium to which the neurotrophic factor is added can be used. Such basic media include Neurobasal Medium (Life Technologies), Glassgow's Minimal Essential Medium (GMEM) medium, IMDM medium, Medium 199 medium, Eagle's Minimum Essential Medium (EMEM) medium, αMEM medium, Dulbecco's modified Medium (GMEM) medium. Medium, Ham's F12 medium, RPMI1640 medium, Fischer's medium, and a mixed medium thereof are included.
 基本培地には、血清が含有されていてもよいし、あるいは無血清でもよい。必要に応じて、培地は、例えば、B27サプリメント(Invitrogen)、B27Plusサプリメント(Invitrogen)、Knockout Serum Replacement(KSR)(ES細胞培養時のFBSの血清代替物)、N2サプリメント(Invitrogen)、アルブミン、トランスフェリン、アポトランスフェリン、脂肪酸、インスリン、コラーゲン前駆体、微量元素、2-メルカプトエタノール、3'-チオールグリセロールなどの1つ以上の血清代替物を含んでもよいし、脂質、アミノ酸、L-グルタミン、Glutamax(Invitrogen)、非必須アミノ酸、ビタミン、増殖因子、低分子化合物、抗生物質、抗酸化剤、ピルビン酸、緩衝剤、無機塩類、セレン酸、プロゲステロンおよびプトレシンなどの1つ以上の物質も含有してもよい。 The basal medium may contain serum or may be serum-free. If necessary, the medium may be, for example, B27 supplement (Invitrogen), B27Plus supplement (Invitrogen), Knockout Serum Replacement (KSR) (FBS serum substitute during ES cell culture), N2 supplement (Invitrogen), albumin, transferase. , Apotransferase, fatty acids, insulin, collagen precursors, trace elements, 2-mercaptoethanol, 3'-thiolglycerol, etc. may contain one or more serum substitutes, lipids, amino acids, L-glutamine, Glutamax ( Invitrogen), non-essential amino acids, vitamins, growth factors, low molecular weight compounds, antibiotics, antioxidants, pyruvate, buffers, inorganic salts, selenic acid, progesterone and putresin, even if they contain one or more substances good.
 このうち、B27サプリメントを含有するNeurobasal Medium、又はインスリン、アポトランスフェリン、セレン酸、プロゲステロン及びプトレシンを含有するDMEMおよびF12の混合培地を基本培地として好適に用いることができる。 Of these, Neurobasal Medium containing B27 supplement or a mixed medium of DMEM and F12 containing insulin, apotransferrin, selenic acid, progesterone and putrescine can be preferably used as the basic medium.
 本発明の工程(1)における培養温度は、特に限定されないが、約30~40℃、好ましくは約37℃であり、CO2含有空気の雰囲気下で培養が行われ、CO2濃度は、好ましくは約2~5%である。 The culture temperature in the step (1) of the present invention is not particularly limited, but is about 30 to 40 ° C., preferably about 37 ° C., and the culture is carried out in an atmosphere of CO 2 -containing air, and the CO 2 concentration is preferable. Is about 2-5%.
 工程(1)では、定法と同様に、培養容器は細胞外マトリックスで被覆されていることが好ましい。工程(1)で使用できる細胞外マトリックスは、接着培養に通常用いられるものであれば特に限定されることはなく、例えば、ポリ-L-リシン、マトリゲル、ビトロネクチンおよびビトロネクチン由来合成ペプチド、ヒトI型コラーゲン様リコンビナントペプチド、ゼラチン、ラミニン、コラーゲン、及びフィブロネクチン等が挙げられる。 In step (1), it is preferable that the culture vessel is coated with extracellular matrix, as in the conventional method. The extracellular matrix that can be used in the step (1) is not particularly limited as long as it is usually used for adhesive culture, and is, for example, poly-L-lysine, matrigel, vitronectin and a synthetic peptide derived from vitronectin, human type I. Examples thereof include collagen-like recombinant peptides, gelatin, laminin, collagen, and fibronectin.
<工程(2)>
 工程(2)は、工程(1)でアストロサイトへの分化の方向付けが行われた細胞が、アストロサイトに分化する工程である。具体的には、NEUROG2を実質的に発現させないで(例えば、NEUROG2の発現誘導を行わずに)前記細胞を培養する工程である。工程(2)の培養は、生体内(in vivo)または培地中条件下(in vitro)のいずれで行われてもよい。分化速度の制御のし易さからは、in vitroの培養工程であることが好ましい。
<Process (2)>
The step (2) is a step in which the cells that have been directed to differentiate into astrocytes in the step (1) differentiate into astrocytes. Specifically, it is a step of culturing the cells without substantially expressing NEUROG2 (for example, without inducing the expression of NEUROG2). The culture of step (2) may be carried out either in vivo or under conditions in the medium (in vitro). From the viewpoint of ease of controlling the differentiation rate, the in vitro culture step is preferable.
 工程(2)の培地としては、WNTシグナル伝達を促進する因子を含有する培地を好適に使用することができる。WNTシグナル伝達を促進する因子はアストロサイトへの分化を促進するので、そのような因子を添加することにより、アストロサイトの製造効率を上げることができる。本発明で好適に使用できるWNTシグナル伝達を促進する因子としては、BMP4(bone morphogenetic protein 4)、CNTF(Ciliary neurotrophic factor)、及びFBS(fetal bovine serum)を挙げることができるが、それらに限定されるものではない。 As the medium of the step (2), a medium containing a factor that promotes WNT signaling can be preferably used. Factors that promote WNT signaling promote differentiation into astrocytes, and the addition of such factors can increase the efficiency of astrocyte production. Factors that promote WNT signaling that can be suitably used in the present invention include, but are limited to, BMP4 (bone morphogenetic protein 4), CNTF (Ciliary neurotrophic factor), and FBS (fetal bovine serum). It's not something.
 工程(2)の培地は血清を含んでも良く、また、Knockout Serum Replacement (KSR)(ES細胞培養時のFBSの血清代替物)、N2サプリメント(Invitrogen)、B27サプリメント(Invitrogen)、アルブミン、トランスフェリン、アポトランスフェリン、脂肪酸、インスリン、コラーゲン前駆体、微量元素、2-メルカプトエタノール、3'-チオールグリセロールなどに例示される1つ以上の血清代替物を含んでもよい。本発明において血清代替品、好ましくはN2サプリメント等の神経細胞用の血清代替品を含むことは、好適な態様である。 The medium of step (2) may contain serum, and Knockout Serum Replacement (KSR) (serum substitute for FBS during ES cell culture), N2 supplement (Invitrogen), B27 supplement (Invitrogen), albumin, transferase, It may contain one or more serum substitutes exemplified by apotransferase, fatty acids, insulin, collagen precursors, trace elements, 2-mercaptoethanol, 3'-thiolglycerol and the like. In the present invention, it is a preferred embodiment to include a serum substitute, preferably a serum substitute for nerve cells such as N2 supplements.
 更に工程(2)の培地は、Glutamax(Invitrogen)、脂質、アミノ酸、L-グルタミン、非必須アミノ酸、ビタミン、増殖因子、低分子化合物、抗生物質、抗酸化剤、ピルビン酸、緩衝剤、無機塩類、セレン酸、プロゲステロンおよびプトレシンなどの1つ以上の物質も含有してもよい。 Furthermore, the medium of step (2) is Glutamax (Invitrogen), lipids, amino acids, L-glutamine, non-essential amino acids, vitamins, growth factors, low molecular weight compounds, antibiotics, antioxidants, pyruvic acid, buffers, inorganic salts. , Serenic acid, progesterone and putrecin and the like may also contain one or more substances.
 工程(2)をin vitroで行う際は、低細胞密度となるように継代を行ってもよい。当該低細胞密度の例としては、48ウェルプレートあたり2×104~10×104細胞/cm2の細胞密度であってよく、好ましくは48ウェルプレートあたり5×104細胞/cm2の細胞密度である。低細胞密度での培養は、神経細胞が(本来接着不可の基質下であっても)アストロサイト上に接着して生存し続ける可能性を軽減し得るため、好ましい。 When the step (2) is performed in vitro, subculture may be performed so as to have a low cell density. An example of such low cell density may be a cell density of 2 × 10 4 to 10 × 10 4 cells / cm 2 per 48-well plate, preferably 5 × 10 4 cells / cm 2 cells per 48-well plate. Density. Culturing at low cell densities is preferred as it can reduce the likelihood that neurons will adhere to astrocytes and continue to survive (even under naturally non-adherable substrates).
 また、これに関連して、工程(2)をin vitroで行う際は、培養容器の被覆を細胞との親和性が高いものから低いものへと段階的に変化させてもよく、最終的には非被覆としてもよい。例えば、最初はPMSC(Poly L lysine、Matrigel、Synthemax(ビトロネクチン由来合成ペプチド、Corning社)、及びCellnest(ヒトI型コラーゲン様リコンビナントペプチド、Fujifilm社))被覆(例として、Day1~Day5)、次にゼラチン被覆の培養容器(Day6~Day12)を使用し、その後は非被覆の培養容器を使用してもよい。非被覆の培養容器は、Day11、Day12、Day13、Day14以降使用してもよい。 In connection with this, when the step (2) is performed in vitro, the coating of the culture vessel may be gradually changed from one having a high affinity with cells to one having a low affinity with cells, and finally. May be uncoated. For example, first PMSC (PolyLlysine, Matrigel, Synthemax (Vitronectin-derived synthetic peptide, Corning), and Cellnest (human type I collagen-like recombinant peptide, Fujifilm)) coating (eg, Day1 to Day5), and then A gelatin-coated culture vessel (Day 6 to Day 12) may be used, and then an uncoated culture vessel may be used. The uncoated culture vessel may be used after Day11, Day12, Day13, and Day14.
 工程(2)の培養期間は好ましくは10日間~20日間であり、より好ましくは10日間~16日間である。 The culture period of step (2) is preferably 10 to 20 days, more preferably 10 to 16 days.
 工程(2)における培養温度は、特に限定されないが、約30~40℃、好ましくは約37℃である。また、CO2含有空気の雰囲気下で培養が行われることが好ましく、CO2濃度は、約2~5%であってよい。 The culture temperature in the step (2) is not particularly limited, but is about 30 to 40 ° C, preferably about 37 ° C. Further, it is preferable that the culture is carried out in an atmosphere of CO 2 containing air, and the CO 2 concentration may be about 2 to 5%.
 なお工程(1)でNEUROG2を3日間未満、好ましくは2日間発現させた後に、培地中で培養することなく生体内へ投与した場合にも(in vivoの態様)、生体内でアストロサイトの生成が起こると考えられる。よってそのようなin vivoの態様も本発明に包含される。 Even when NEUROG2 is expressed in the step (1) for less than 3 days, preferably 2 days, and then administered in vivo without culturing in a medium (in vivo embodiment), astrocytes are generated in vivo. Is thought to occur. Therefore, such an in vivo aspect is also included in the present invention.
<iAstrocyte>
 更に本発明は、本発明の方法により作製されたアストロサイトを提供する。当該アストロサイトは、天然由来のアストロサイトと区別する意味で、induced Astrocyte(iAstrocyte)と呼ぶ場合がある。同様に、多能性幹細胞から分化誘導された神経細胞を、induced neuron(iN)と呼ぶ場合がある。
<IAstrocyte>
Further, the present invention provides astrocytes produced by the method of the present invention. The astrocyte may be referred to as induced Astrocyte (iAstrocyte) in order to distinguish it from naturally occurring astrocytes. Similarly, nerve cells that have been induced to differentiate from pluripotent stem cells may be referred to as induced neurons (iN).
 本発明に係るiAstrocyteは、遺伝子導入されている点において天然由来のアストロサイトとは異なっている。好ましくは、ヒトiPS細胞から製造されたiAstrocyteである。 The iAstrocyte according to the present invention is different from naturally-derived astrocytes in that a gene is introduced. Preferably, it is an iAstrocyte produced from human iPS cells.
<細胞製剤>
 さらに本発明は、本発明の方法により製造されたアストロサイト(iAstrocyte)を有効成分として含む細胞製剤を提供する。iAstrocyteを含む本発明の細胞製剤は、神経変性疾患、好ましくはアストロサイトの異常を伴う神経変性疾患の治療に有効である。アストロサイトの異常を伴う神経変性疾患としては、アルツハイマー病、パーキンソン病、筋萎縮性側索硬化症(Amyotrophic lateral sclerosis;ALS)、脊髄小脳変性症、多系統萎縮症、進行性核上性麻痺、前頭側頭型認知症、ハンチントン病、痙性対麻痺等の神経細胞1次変性型、アレキサンダー病等のアストロサイト1次変性型が挙げられる。このうち、特にアレキサンダー病、アルツハイマー病およびALSの治療に好適に用いることができる。
<Cell product>
Furthermore, the present invention provides a cell preparation containing astrocyte (iAstrocyte) produced by the method of the present invention as an active ingredient. The cell preparation of the present invention containing iAstrocyte is effective for the treatment of neurodegenerative diseases, preferably neurodegenerative diseases associated with astrocyte abnormalities. Neurodegenerative diseases associated with astrosite abnormalities include Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis (ALS), spinal cerebral degeneration, polyline atrophy, and progressive hepatic palsy. Examples include primary degenerative types of nerve cells such as frontotemporal dementia, Huntington's disease, and spastic vs. paralysis, and primary degenerative types of astrosite such as Alexander's disease. Of these, it can be particularly suitably used for the treatment of Alexander disease, Alzheimer's disease and ALS.
 アレキサンダー病は、グリア線維性酸性蛋白(GFAP)、αB-クリスタリン、熱ショック蛋白などから構成されるローゼンタル線維をアストロサイト内に認めることを特徴とする稀な遺伝性神経変性疾患である。変異GFAPあるいは過剰発現したGFAPからなる異常凝集体がアレキサンダーの病態に関与していると考えられている。臨床的には臨床症状及びMRI画像所見より大脳優位型(1型)、延髄・脊髄優位型(2型)、中間型(3型)に分類される。アレキサンダー病の97%においてGFAPのミスセンス変異あるいは数塩基欠失や挿入が認められ、近年では遺伝子検査が確定診断法として用いられている。アレキサンダー病の病態の解明については研究が進みつつあるが未だ十分ではない。 Alexander disease is a rare hereditary neurodegenerative disease characterized by the presence of rosental fibers composed of glial fibrous acidic protein (GFAP), αB-crystallin, heat shock protein, etc. in astrocytes. Abnormal aggregates consisting of mutant GFAP or overexpressed GFAP are thought to be involved in Alexander's pathology. Clinically, it is classified into cerebral dominant type (type 1), medulla oblongata / spinal cord dominant type (type 2), and intermediate type (type 3) based on clinical symptoms and MRI imaging findings. Missense mutations in GFAP or deletions or insertions of several bases have been observed in 97% of Alexander's diseases, and genetic testing has been used as a definitive diagnostic method in recent years. Research is progressing on the elucidation of the pathophysiology of Alexander disease, but it is still insufficient.
 本発明の細胞製剤は、前記神経変性疾患を治療するため移植療法剤として利用することができる。iAstrocyteは、常套手段にしたがって医薬上許容される担体と混合するなどして、注射剤、懸濁剤、点滴剤等の非経口製剤として製造される。当該非経口製剤に含まれ得る医薬上許容される担体としては、例えば、生理食塩水、ブドウ糖やその他の補助薬を含む等張液(例えば、D-ソルビトール、D-マンニトール、塩化ナトリウム溶液など)など注射用の水性液を挙げることができる。当該製剤は、例えば、緩衝剤(例えば、リン酸塩緩衝液、酢酸ナトリウム緩衝液)、無痛化剤(例えば、塩化ベンザルコニウム、塩酸プロカインなど)、安定剤(例えば、ヒト血清アルブミン、ポリエチレングリコールなど)、保存剤、酸化防止剤などと配合してもよい。iAstrocyteを水性懸濁液剤として製剤化する場合、上記水性液に1×105~1×108細胞/ml、好ましくは1×106~1×108細胞/mlとなるように、iAstrocyteを懸濁させればよい。iAstrocyteの移植は、上記懸濁液を例えば大脳、延髄、脊髄等の病変部に注入することにより行うことができる。投与される細胞数は病変の程度等により適宜変更され得るが、例えば、ヒトアレキサンダー病の患者の場合、1×105~1×108細胞、好ましくは1×106~1×108細胞を投与することができる。 The cell preparation of the present invention can be used as a transplant therapeutic agent for treating the neurodegenerative disease. iAstrocyte is produced as a parenteral preparation such as an injection, a suspension, and an infusion by mixing with a pharmaceutically acceptable carrier according to conventional means. Pharmaceutically acceptable carriers that may be included in the parenteral preparation include, for example, isotonic solutions containing saline, glucose and other adjuvants (eg, D-sorbitol, D-mannitol, sodium chloride solution, etc.). An aqueous solution for injection can be mentioned. The preparation may be, for example, a buffer (eg, phosphate buffer, sodium acetate buffer), a soothing agent (eg, benzalconium chloride, prokine hydrochloride, etc.), a stabilizer (eg, human serum albumin, polyethylene glycol). Etc.), preservatives, antioxidants, etc. may be blended. When formulating iAstrocyte as an aqueous suspension, add iAstrocyte to the above aqueous solution so that the content is 1 × 10 5 to 1 × 10 8 cells / ml, preferably 1 × 10 6 to 1 × 10 8 cells / ml. It may be suspended. iAstrocyte transplantation can be performed by injecting the above suspension into lesions such as the cerebrum, medulla oblongata, and spinal cord. The number of cells to be administered can be appropriately changed depending on the degree of lesion, etc., but for example, in the case of a patient with human Alexander disease, 1 × 10 5 to 1 × 10 8 cells, preferably 1 × 10 6 to 1 × 10 8 cells. Can be administered.
 また、本発明における異なる実施態様として、前記細胞製剤は、工程(1)を経た直後の細胞を有効成分として含むものであってもよい。当該細胞製剤を前述の方法に従って大脳、延髄、脊髄等の病変部に注入することにより、前記工程(1)を経た直後の細胞が生体内でアストロサイトへと分化し、治療効果を奏することが期待される。 Further, as a different embodiment of the present invention, the cell preparation may contain cells immediately after undergoing the step (1) as an active ingredient. By injecting the cell preparation into lesions such as the cerebrum, medulla oblongata, and spinal cord according to the above-mentioned method, the cells immediately after the step (1) can be differentiated into astrocytes in vivo and exert a therapeutic effect. Be expected.
 上記移植治療と薬物療法とを併用することができる。併用薬としては、例えば対象疾患がアレキサンダー病の場合には、例えば、現在アレキサンダー病の対症療法として使用されている抗てんかん薬と併用することができる。このような併用薬は、例えば、アレキサンダー病の治療に通常使用される投与量・投与経路で使用することができる。 The above transplantation treatment and drug therapy can be used in combination. As a concomitant drug, for example, when the target disease is Alexander disease, it can be used in combination with an antiepileptic drug currently used as a symptomatic treatment for Alexander disease. Such combination drugs can be used, for example, in the dosage and administration route usually used for the treatment of Alexander's disease.
 以下に実施例を挙げて本発明をより具体的に説明するが、本発明がこれらに限定されないことは言うまでもない。 The present invention will be described in more detail with reference to examples below, but it goes without saying that the present invention is not limited thereto.
 最初に、本実施例で使用した細胞および主たる手法について説明する。
<細胞>
 本実施例では、アストロサイトに分化誘導する多能性幹細胞として、健常者または患者から樹立したiPS細胞に、Tet-on promoterに制御されるヒトNEUROG2遺伝子をpiggyBac transposonを用いて導入したiPS細胞株(以下NEUROG2-iPSCと呼ぶ)を使用した。前記NEUROG2-iPSCでは、前記外来性NEUROG2遺伝子はゲノムに挿入されている。なお、piggyBac transposonを用いたのは特許文献1で使用したコンストラクトが利用可能だったからであり、ゲノムに挿入されないtransientな発現系でも同様の結果が得られることを確認している。NEUROG2-iPSC作成に用いたiPS細胞株とその由来を表1に示す。
First, the cells used in this example and the main method will be described.
<Cell>
In this example, as pluripotent stem cells that induce differentiation into astrosites, an iPS cell line in which a human NEUROG2 gene controlled by a Tet-on promoter is introduced into iPS cells established from a healthy subject or patient using piggyBac transposon. (Hereinafter referred to as NEUROG2-iPSC) was used. In the NEUROG2-iPSC, the exogenous NEUROG2 gene is inserted into the genome. It should be noted that piggyBac transposon was used because the construct used in Patent Document 1 was available, and it has been confirmed that similar results can be obtained even with a transient expression system that is not inserted into the genome. Table 1 shows the iPS cell lines used to prepare NEUROG2-iPSC and their origins.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本実施例では、特に断りがない限り、図1に示される条件に従ってNEUROG2-iPSCを培養してアストロサイトを製造した。本実施例では、アストロサイトへの分化誘導開始日、すなわち、NEUROG2の発現誘導開始日をDay0とし、以降の経時日数をDayで表す場合がある。 In this example, unless otherwise specified, NEUROG2-iPSC was cultured according to the conditions shown in FIG. 1 to produce astrocytes. In this embodiment, the start date of induction of differentiation into astrocytes, that is, the start date of induction of expression of NEUROG2 may be set to Day 0, and the number of days thereafter may be represented by Day.
 NEUROG2の発現誘導は、特にことわらない限りDay0~Day2の2日間、培地にDOXを2μg/mlとなるように添加することで行った。NEUROG2の発現誘導期間中はNB培地(0.5% B27 plus supplementを含むNeurobasal plus medium)を使用し、以降はAM培地(1% N2 supplement、10 ng/ml BMP4、10 ng/ml CNTF、2% FBSを含むDMEM/F12培地)を使用した。また、培地交換等によるダメージ軽減のために、Y-27632を10μMとなるよう所定の期間添加した。 The expression of NEUROG2 was induced by adding DOX to the medium at 2 μg / ml for 2 days from Day 0 to Day 2 unless otherwise specified. NB medium (Neurobasal plus medium containing 0.5% B27 plus supplement) is used during the expression induction period of NEUROG2, and AM medium (1% N2 supplement, 10 ng / ml BMP4, 10 ng / ml CNTF, 2% FBS) is used thereafter. DMEM / F12 medium containing) was used. In addition, Y-27632 was added for a predetermined period to 10 μM in order to reduce damage caused by medium replacement.
 培養プレートは、Day0~Day5はPMSCコートした48ウェル又は96ウェルプレート、Day5~Day12はゼラチンコートした6ウェルプレートを用いた。 As the culture plate, a PMSC-coated 48-well or 96-well plate was used for Day 0 to Day 5, and a gelatin-coated 6-well plate was used for Day 5 to Day 12.
 Day0では、NEUROG2-iPSCを48ウェルプレートあたり30×104細胞/cm2となるように播種し、最初の継代は培養プレートの種類を変えるタイミング(Day5)で行った。Day5では、48ウェルプレートあたり5×104細胞/cm2となるように播種した。以降は、培養プレートの種類を変えるタイミング(Day12)に加えて、細胞増殖の速度に応じて適宜継代した。 On Day 0, NEUROG2-iPSC was seeded at 30 × 10 4 cells / cm 2 per 48-well plate, and the first passage was performed at the timing of changing the type of culture plate (Day 5). On Day 5, seeds were seeded at 5 × 10 4 cells / cm 2 per 48-well plate. After that, in addition to the timing of changing the type of the culture plate (Day 12), passage was appropriately performed according to the rate of cell proliferation.
 Day 12~Day 18において、アッセイを行うために細胞を収集した。 From Day 12 to Day 18, cells were collected for assay.
実施例1:アストロサイトの製造
 健常者に由来する3種類のiPS細胞株(HC1A、HC6B、N117E11)及び家族性アルツハイマー病患者に由来する1種類のiPS細胞株(AD2S1)から製造したNEUROG2-iPSCを、図1に記載した条件で培養してアストロサイトに分化誘導した。Day12またはDay18に、GFAPの免疫染色(緑色)と核染色(DAPI、灰色)を行った。結果を図2に示す。いずれのNEUROG2-iPSCを用いた場合でも、Day12では一部の細胞のみがGFAP陽性であったが、Day18にはほぼすべての細胞がGFAP陽性になった(95%以上)。このことから、多能性幹細胞にNEUROG2を2日間だけ発現させると、その後約10日後から16日後にかけて、アストロサイトへと急速に分化することが明らかとなった。さらに、Day18のGFAP陽性細胞はDay12のGFAP陽性細胞と比べて、細胞質が肥厚し、複数の突起を伸展させており、アストロサイトとして形態的に成熟していた。
 よって、多能性幹細胞にNEUROG2を神経細胞分化誘導に必要な期間よりも短い期間(例として2日間)だけ発現させると、NEUROG2の発現誘導開始から僅か18日という従来よりも非常に短い期間で、ほぼすべての細胞が形態的に成熟したアストロサイトに分化することが示された。本実施例では以降、NEUROG2の強制発現によって得られるアストロサイトを、“iAstrocyte”と呼ぶ場合がある。
Example 1: Production of astrocytes NEUROG2-iPSC produced from three iPS cell lines (HC1A, HC6B, N117E11) derived from healthy subjects and one iPS cell line (AD2S1) derived from familial Alzheimer's disease patients. Was cultured under the conditions shown in FIG. 1 to induce differentiation into astrocytes. On Day 12 or Day 18, GFAP immunostaining (green) and nuclear staining (DAPI, gray) were performed. The results are shown in FIG. With either NEUROG2-iPSC, only some cells were GFAP-positive on Day 12, but almost all cells were GFAP-positive on Day 18 (95% or more). From this, it was clarified that when NEUROG2 was expressed in pluripotent stem cells for only 2 days, it rapidly differentiated into astrocytes from about 10 to 16 days after that. Furthermore, the GFAP-positive cells on Day 18 had a thicker cytoplasm and extended multiple protrusions than the GFAP-positive cells on Day 12, and were morphologically mature as astrocytes.
Therefore, when NEUROG2 is expressed in pluripotent stem cells for a period shorter than the period required for nerve cell differentiation induction (for example, 2 days), it takes only 18 days from the start of NEUROG2 expression induction, which is much shorter than before. , Almost all cells have been shown to differentiate into morphologically mature astrocytes. In this example, the astrocytes obtained by forced expression of NEUROG2 may be referred to as "iAstrocyte" hereafter.
 次に、同じ方法を用いて、アレキサンダー病患者由来NEUROG2-iPSC(Alex1‐Alex3)からiAstrocyteを製造した。さらに、陰性コントロールとして、HC6B NEUROG2-iPSCからiNも製造した。当該iNは、図1において、DOX含有培地で培養する期間を2日間から5日間に延長し、以降は(AM培地でなく)DOX不含のNB培地で培養することにより製造した。Day12で各細胞を回収し、アストロサイトのマーカー遺伝子(GFAP、S100B、及びAQP4)及びハウスキーピング遺伝子(GAPDH及びACTB)の転写レベルを解析した結果を図3に、神経細胞のマーカー遺伝子(TUBB3、MAP2、及びSYN1)の転写レベルを解析した結果を図4に示す。なお図3と図4において、縦軸の発現量の数値は、図3のGAPDH発現量を1として校正した数値である。 Next, iAstrocytes were produced from NEUROG2-iPSC (Alex1-Alex3) derived from Alexander disease patients using the same method. In addition, iN was also produced from HC6B NEUROG2-iPSC as a negative control. In FIG. 1, the iN was produced by extending the period of culturing in a DOX-containing medium from 2 days to 5 days, and then culturing in a DOX-free NB medium (not AM medium). The results of collecting each cell on Day 12 and analyzing the transcription levels of the astrosite marker genes (GFAP, S100B, and AQP4) and the housekeeping genes (GAPDH and ACTB) are shown in FIG. The results of analyzing the transcription levels of MAP2 and SYN1) are shown in FIG. In FIGS. 3 and 4, the numerical value of the expression level on the vertical axis is a numerical value calibrated with the GAPDH expression level of FIG. 3 as 1.
 図3に示されるように、iNではいずれのアストサイトマーカーの発現も検出されなかったが、iAstrocyteでは、いずれの細胞株に由来する場合にも、GFAPとS100Bの発現が認められた。AQP4の発現量については細胞間でのばらつきが大きく、特にアレキサンダー病患者由来iAstrocyteでは発現が検出されないものもあった(Alex12、Alex3)。この結果は、アストロサイトの機能異常を伴うアレキサンダー病の病態と関連している可能性が考えられる。一方、GAPDHとACTBの発現量は、iNとiAstrocyte間でも、細胞株の由来が異なるiAstrocyte間でも、大きな差は認められなかった。 As shown in FIG. 3, expression of none of the astosite markers was detected in iN, but expression of GFAP and S100B was observed in iAstrocyte regardless of the cell line. The expression level of AQP4 varied widely among cells, and in some cases, expression was not detected in iAstrocytes derived from Alexander disease patients (Alex12, Alex3). This result may be related to the pathophysiology of Alexander disease with astrocyte dysfunction. On the other hand, the expression levels of GAPDH and ACTB did not differ significantly between iN and iAstrocyte, or between iAstrocytes from different cell lines.
 これに対し、神経細胞マーカーの発現は、iNでは非常に顕著に認められたが、iAstrocyteでは非常に低レベルか(TUBB3、MAP2)、検出限界以下(SYN1)であった(図4)。 On the other hand, the expression of neuronal markers was very prominent in iN, but was very low in iAstrocyte (TUBB3, MAP2) or below the detection limit (SYN1) (Fig. 4).
 これらの結果より、健常者由来の多能性幹細胞だけでなく、神経変性およびグリア変性に起因する神経変性疾患患者由来の多能性幹細胞に対しても、NEUROG2の強制発現により、わずか12~18日でアストロサイトを分化誘導できることが示された。 From these results, it is only 12-18 by forced expression of NEUROG2 not only in pluripotent stem cells derived from healthy subjects but also in pluripotent stem cells derived from patients with neurodegenerative diseases caused by neurodegenerative and glia degeneration. It was shown that astrocytes can be induced to differentiate in days.
実施例2:NEUROG2強制発現期間の検討(1)
 多能性幹細胞を神経細胞でなくアストロサイトに分化誘導するための、NEUROG2の適切な強制発現期間について検討した。
 健常者由来NEUROG2-iPSC(HC1A、HC6B)および家族性アルツハイマー病患者由来NEUROG2-iPSC(AD2S1、AD2EL)に対し、DOX含有培地で培養する期間を2日間、3日間、4日間、5日間と変えてDay 8まで培養した(図5、Condition A-D)。Day8の時点で位相差顕微鏡観察を行い、各条件において得られた典型的な位相差顕微鏡イメージを図6に示す。
Example 2: Examination of NEUROG2 forced expression period (1)
We investigated the appropriate forced expression period of NEUROG2 to induce differentiation of pluripotent stem cells into astrocytes instead of neurons.
For NEUROG2-iPSC (HC1A, HC6B) derived from healthy subjects and NEUROG2-iPSC (AD2S1, AD2EL) derived from familial Alzheimer's disease patients, the period of culturing in DOX-containing medium was changed to 2, 3, 4, and 5 days. The cells were cultured until Day 8 (Fig. 5, Condition AD). A phase-contrast microscope observation was performed at the time of Day 8, and a typical phase-contrast microscope image obtained under each condition is shown in FIG.
 Dox含有培地で2日間培養したCondition Aでは、iN(神経突起を伸展させている細胞)は殆ど見当たらなかった。これに対し、Dox含有培地での培養期間が3日間のCondition BではiNが認められるようになり、Condition CではiN数がさらに増加し、Condition Dではほぼすべての細胞が長い神経突起を伸展させたiNであった。 In Condition A cultured in Dox-containing medium for 2 days, iN (cells extending neurites) was hardly found. On the other hand, iN was observed in Condition B with a culture period of 3 days in Dox-containing medium, the number of iN increased further in Condition C, and almost all cells extended long neurites in Condition D. It was iN.
 よって、NEUROG2の強制発現期間が3日間未満であれば、iNに分化する細胞の割合は十分に少なく、さらに2日間では、iNには実質的に分化しないことが示された。 Therefore, it was shown that if the forced expression period of NEUROG2 is less than 3 days, the proportion of cells that differentiate into iN is sufficiently small, and in 2 days, it does not substantially differentiate into iN.
 従って、アストロサイトへの分化誘導に適したNEUROG2の強制発現期間は3日間未満であり、最も好ましくは2日間程度であることが明らかになった。 Therefore, it was clarified that the forced expression period of NEUROG2 suitable for inducing differentiation into astrocytes is less than 3 days, most preferably about 2 days.
実施例3:カルシウムオシレーションの検討
 次に、本発明に係る方法で製造されたアストロサイトの機能性について検討した。機能的に成熟したアストロサイトでは、アストロサイト内のCaイオン濃度が自律的且つ規則的に上下に変化する現象(カルシウムオシレーション)が認められ、グルタミン酸、ATP、セリン等の神経伝達・調節因子をカルシウム濃度依存的に放出することで近傍のシナプス伝達を調節することが示されている。よって、iAstrocyteの機能的成熟度の指標として、カルシウムオシレーションの有無を解析した。
Example 3: Examination of calcium oscillation Next, the functionality of astrocytes produced by the method according to the present invention was examined. In functionally mature astrocytes, a phenomenon (calcium oscillation) in which the Ca ion concentration in the astrocytes changes autonomously and regularly is observed, and neurotransmitter / regulatory factors such as glutamate, ATP, and serine are detected. It has been shown to regulate nearby astrocytes by releasing in a calcium concentration-dependent manner. Therefore, the presence or absence of calcium oscillation was analyzed as an index of the functional maturity of iAstrocyte.
 DOX培地で2日間培養して得られたDay18 iAstrocyte(図7A)について、Fluo-8AM体を細胞内に取り込ませて細胞内Caイオン濃度を蛍光強度の上下として連続記録しながら経時的に計測した。結果を図7Bに表す。図7Bに示されるように、前記iAstrocyte内ではCaイオン濃度が自律的且つ規則的に上下に変化しており、カルシウムオシレーションが生じていることが確認された。 For Day18 iAstrocyte (Fig. 7A) obtained by culturing in DOX medium for 2 days, the Fluo-8AM body was incorporated into the cells and the intracellular Ca ion concentration was continuously recorded as the upper and lower fluorescence intensities and measured over time. .. The results are shown in FIG. 7B. As shown in FIG. 7B, it was confirmed that the Ca ion concentration changed up and down autonomously and regularly in the iAstrocyte, and calcium oscillation occurred.
 続いて、カルシウムオシレーションを多点同時で記録した結果を図8に示す。図8の縦軸は各測定部位(ROI:Region of Interests)に付された番号を表す。この結果より、iAstrocyte培養系の様々な場所でカルシウムオシレーションが生じていることがわかる。さらに、測定部位5番、6番、8番、9番、11~14番、16番(特に、5番、6番と12番)では、測定開始から約190秒間に渡って、カルシウム濃度が上昇するタイミング(図8の垂直方向の赤点線)が一致している傾向が認められた。 Subsequently, Fig. 8 shows the results of recording calcium oscillations at multiple points at the same time. The vertical axis of FIG. 8 represents the number assigned to each measurement site (ROI: Region of Interests). From this result, it can be seen that calcium oscillation occurs in various places in the iAstrocyte culture system. Furthermore, at the measurement sites 5, 6, 8, 9, 11-14, and 16 (particularly, 5, 6, and 12), the calcium concentration is high for about 190 seconds from the start of measurement. It was observed that the rising timings (vertical red dotted line in FIG. 8) tended to match.
 上記<アストロサイト>の項で述べたように、アストロサイトは、横方向のカルシウムオシレーションの伝播によりネットワークを形成することが知られている。上記で述べたように本分化誘導法で作製されたiAstrocyteにおいても、多細胞間でカルシウムオシレーションが同期していることが観察された。この結果は、iAstrocyte間で情報伝達ネットワークが形成されていることを示している。 As described in the above section <Astrocytes>, astrocytes are known to form a network by propagating lateral calcium oscillations. As described above, it was also observed that calcium oscillations were synchronized between multiple cells in iAstrocytes produced by this differentiation induction method. This result indicates that a communication network is formed between iAstrocytes.
 よって、本発明に係る方法で製造されたiAstrocyteは、カルシウムオシレーションを自発的に行うことができ、さらに、当該オシレーションを介した細胞間ネットワークも形成できることが明らかになった。これは、本発明に係る方法により、形態的且つ機能的に成熟したiAstrocyteを製造することができることを示している。 Therefore, it was clarified that the iAstrocyte produced by the method according to the present invention can spontaneously perform calcium oscillation and can also form an intercellular network via the oscillation. This indicates that the method according to the present invention can produce morphologically and functionally mature iAstrocytes.
実施例4:アストロサイトの異常を伴う神経変性疾患の細胞モデルの製造
 アレキサンダー病患者由来iPS細胞(A266株)から製造したiAstrocyteについて、GFAP陽性凝集体の有無を検討した。2種類のNEUROG2-iPSC(A226、HC1A)から実施例1の方法で製造したDay18のiAstrocyteに対し、GFAPまたはCD44について免疫染色を行った。結果を図9に示す。
Example 4: Production of cell model of neurodegenerative disease with astrocyte abnormality The presence or absence of GFAP-positive aggregates was examined for iAstrocytes produced from iPS cells (A266 strain) derived from Alexander disease patients. GFAP or CD44 was immunostained on Day 18 iAstrocytes produced from two types of NEUROG2-iPSC (A226, HC1A) by the method of Example 1. The results are shown in FIG.
 健常者由来iPSC(HC1A)から製造したiAstrocyteでは、GFAP陽性の細胞内凝集体は認められなかった(図9A、B)。これに対し、アレキサンダー病患者由来iPSC(A226)から製造したiAstrocyteでは、GFAP陽性の細胞内凝集体が高頻度で認められた(図9C-E)。すなわち、アレキサンダー病患者由来iPSCから本発明に係る方法で製造したアストロサイトでは、アレキサンダー病患者に特徴的なGFAP陽性細胞内凝集体が高頻度で自発的に生じることが示された。当該GFAP陽性細胞内凝集体は、アレキサンダー病の発症に大きく寄与していると考えられていることから、本発明に係る方法で製造したアストロサイトは、アレキサンダー病の細胞モデルになり得ると考えられる。 No GFAP-positive intracellular aggregates were observed in iAstrocytes produced from healthy subject-derived iPSC (HC1A) (Fig. 9A, B). In contrast, in iAstrocytes produced from iPSC (A226) derived from Alexander disease patients, GFAP-positive intracellular aggregates were frequently observed (Fig. 9C-E). That is, it was shown that astrocytes produced from iPSCs derived from Alexander disease patients by the method according to the present invention frequently spontaneously generate GFAP-positive intracellular aggregates characteristic of Alexander disease patients. Since the GFAP-positive intracellular aggregate is considered to contribute significantly to the onset of Alexander disease, it is considered that the astrocytes produced by the method according to the present invention can be a cell model of Alexander disease. ..
 なおCD44はグリア前駆細胞及びアストロサイトで発現する表面抗原マーカーである。健常者由来iPSC(HC1A)から製造したiAstrocyte(図9F-H)であっても、アレキサンダー病患者由来iPSC(A226)から製造したiAstrocyte(図9I-K)であっても、CD44が膜表面に分布していることが認められた。この結果から、健常者由来のiAstrocyteであっても、アレキサンダー病患者由来のiAstrocyteであっても、アストロサイト系譜分化が進んでいることが示唆された。 CD44 is a surface antigen marker expressed in glial progenitor cells and astrocytes. Whether it is an iAstrocyte (Fig. 9F-H) manufactured from a healthy person-derived iPSC (HC1A) or an iAstrocyte (Fig. 9I-K) manufactured from an Alexander disease patient-derived iPSC (A226), CD44 is present on the membrane surface. It was found to be distributed. This result suggests that astrocyte lineage differentiation is progressing in both iAstrocyte derived from healthy subjects and iAstrocyte derived from Alexander disease patients.
 従って、本発明に係る製造方法により、アストロサイトの異常を伴う疾患(例えばアレキサンダー病)のモデル細胞が作製できることが示された。 Therefore, it was shown that the production method according to the present invention can produce model cells for diseases associated with astrocyte abnormalities (for example, Alexander disease).
実施例5:iAstrocyteにおけるGFAPタンパク質の発現
 iAstrocyteがGFAPタンパク質を発現していることを、ウェスタンブロット解析でも確認した。
 健常者由来iPS細胞であるHC1A、HC6Bから実施例1の条件で製造したiAstrocyteのDay18における細胞から定法に従ってタンパク質を抽出し(0.5 μg/μL)し、ガラスキャピラリー泳動装置Wes(Protein simple社)を用いて解析した。抗体としては、ヒトGFAPリコンビナント蛋白全長を免疫原として調製された抗体を用いた。結果を図10に示す。いずれのiAstrocyteもGFAPを発現していることが確認された。
Example 5: Expression of GFAP protein in iAstrocyte It was confirmed by Western blot analysis that iAstrocyte expressed GFAP protein.
Proteins were extracted (0.5 μg / μL) from cells on Day 18 of iAstrocytes produced under the conditions of Example 1 from healthy person-derived iPS cells HC1A and HC6B according to a conventional method, and a glass capillary electrophoresis device Wes (Protein simple) was used. Analyzed using. As the antibody, an antibody prepared using the full length of the human GFAP recombinant protein as an immunogen was used. The results are shown in FIG. It was confirmed that all iAstrocytes express GFAP.
実施例6:NEUROG2強制発現期間の検討(2)
 多能性幹細胞をアストロサイトに分化誘導するために必要なNEUROG2の強制発現期間について検討した。
 健常者由来iPS細胞であるHC1A、HC6Bから、実施例2と同様にして、DOX含有培地で培養する期間を8時間~72時間まで振って、iAstrocyteを誘導した。Day 18でGFAP免疫染色とDAPI核染色を行い、生細胞の総数(=DAPI陽性)に対するiAstrocyte (=GFAP陽性)の割合を算出した。結果を図11に示す。8時間の発現でもアストロサイト誘導が可能であることが明らかとなった。48時間程度が最適で、48時間を超えると誘導効率が下がる場合があることが認められた。36-60時間程度が特に誘導効率が高いことが示唆された。なお、NEUROG2を強制発現させなかった場合のGFAP陽性率は実質的に0%であった(データは示さず)。
Example 6: Examination of NEUROG2 forced expression period (2)
We investigated the forced expression period of NEUROG2 required to induce differentiation of pluripotent stem cells into astrocytes.
From HC1A and HC6B, which are iPS cells derived from healthy subjects, iAstrocytes were induced by shaking the culture period in a DOX-containing medium from 8 hours to 72 hours in the same manner as in Example 2. On Day 18, GFAP immunostaining and DAPI nuclear staining were performed, and the ratio of iAstrocyte (= GFAP positive) to the total number of living cells (= DAPI positive) was calculated. The results are shown in FIG. It was clarified that astrocyte induction is possible even with expression at 8 hours. It was found that about 48 hours is optimal, and that the induction efficiency may decrease after 48 hours. It was suggested that the induction efficiency was particularly high in about 36-60 hours. The GFAP positive rate was substantially 0% when NEUROG2 was not forcibly expressed (data not shown).
 本発明の方法によれば、従来よりも大幅に短い期間で、且つ、100%に近い高効率で、多能性幹細胞から、形態的且つ機能的に成熟したアストロサイトを製造することができる。本発明の方法により製造されたアストロサイトは、アストロサイトの生理的機能や病態における役割を解析するためのモデル細胞や、アストロサイトの異常を伴う疾患の治療薬(細胞製剤)として有益である。 According to the method of the present invention, morphologically and functionally mature astrocytes can be produced from pluripotent stem cells in a significantly shorter period of time than before and with high efficiency close to 100%. The astrocytes produced by the method of the present invention are useful as model cells for analyzing the physiological function and role of astrocytes in pathological conditions, and as therapeutic agents (cell preparations) for diseases associated with astrocyte abnormalities.
 本出願は、2020年11月16日付で日本国に出願された特願2020-190575を基礎としており、ここで言及することによりその内容のすべてが本明細書に組み込まれるものである。 This application is based on Japanese Patent Application No. 2020-190575 filed in Japan on November 16, 2020, the entire contents of which are incorporated herein by reference.

Claims (16)

  1.  多能性幹細胞からアストロサイトを製造する方法であって、下記工程:
    (1)多能性幹細胞において、NEUROG2遺伝子を3日間未満発現させる工程、
    を含む方法。
    A method for producing astrocytes from pluripotent stem cells, the following steps:
    (1) A step of expressing the NEUROG2 gene in pluripotent stem cells for less than 3 days.
    How to include.
  2.  NEUROG2遺伝子の発現期間が8時間以上である、請求項1に記載の方法。 The method according to claim 1, wherein the expression period of the NEUROG2 gene is 8 hours or more.
  3.  前記工程(1)の後に、
    (2)NEUROG2遺伝子の発現誘導を行わずに前記多能性幹細胞を培養する工程、
    を含む、請求項1または2に記載の方法。
    After the step (1),
    (2) A step of culturing the pluripotent stem cells without inducing the expression of the NEUROG2 gene.
    The method according to claim 1 or 2, wherein the method comprises.
  4.  前記NEUROG2遺伝子が誘導型プロモーターに制御される遺伝子であって、前記工程(1)が前記プロモーターを活性化してNEUROG2を発現させる工程である、請求項1~3のいずれか1項に記載の方法。 The method according to any one of claims 1 to 3, wherein the NEUROG2 gene is a gene regulated by an inducible promoter, and the step (1) is a step of activating the promoter to express NEUROG2. ..
  5.  前記誘導型プロモーターが薬剤応答性プロモーターである、請求項4に記載の方法。 The method according to claim 4, wherein the inducible promoter is a drug-responsive promoter.
  6.  前記工程(1)が、前記薬剤応答性プロモーターを活性化する薬剤の存在下で前記多能性幹細胞を培養する工程であり、前記工程(2)が、前記薬剤の非存在下で前記多能性幹細胞を培養する工程である、
    請求項5に記載の方法。
    The step (1) is a step of culturing the pluripotent stem cells in the presence of a drug that activates the drug-responsive promoter, and the step (2) is a step of culturing the pluripotent stem cells in the absence of the drug. The process of culturing sexual stem cells,
    The method according to claim 5.
  7.  工程(2)の培養期間が10日間~20日間である、請求項6に記載の方法。 The method according to claim 6, wherein the culture period of the step (2) is 10 to 20 days.
  8.  工程(2)の培養期間が10日間~16日間である、請求項6に記載の方法。 The method according to claim 6, wherein the culture period of the step (2) is 10 to 16 days.
  9.  前記NEUROG2遺伝子が、トランスポゾンを用いて前記多能性幹細胞に導入された遺伝子である、請求項1~8のいずれか1項に記載の方法。 The method according to any one of claims 1 to 8, wherein the NEUROG2 gene is a gene introduced into the pluripotent stem cell using a transposon.
  10.  前記トランスポゾンがpiggyBacトランスポゾンである、請求項9に記載の方法。 The method according to claim 9, wherein the transposon is a piggyBac transposon.
  11.  工程(2)が、WNTシグナル伝達を促進する因子の存在下で培養する工程である、請求項6~10のいずれか1項に記載の方法。 The method according to any one of claims 6 to 10, wherein the step (2) is a step of culturing in the presence of a factor that promotes WNT signaling.
  12.  前記WNTシグナル伝達を促進する因子が、BMP4(bone morphogenetic protein 4)、CNTF(Ciliary neurotrophic factor)、及びFBS(fetal bovine serum)からなる群から選択される1つ以上である、請求項11に記載の方法。 11. The factor according to claim 11, wherein the factor promoting WNT signaling is one or more selected from the group consisting of BMP4 (bone morphogenetic protein 4), CNTF (Ciliary neurotrophic factor), and FBS (fetal bovine serum). the method of.
  13.  前記多能性幹細胞がヒト人工多能性幹細胞である、請求項1~12のいずれか1項に記載の方法。 The method according to any one of claims 1 to 12, wherein the pluripotent stem cell is a human induced pluripotent stem cell.
  14.  前記ヒト人工多能性幹細胞が、アストロサイトの異常を伴う疾患患者由来である、請求項13に記載の方法。 The method according to claim 13, wherein the human induced pluripotent stem cells are derived from a disease patient with an astrocyte abnormality.
  15.  請求項1~14のいずれか1項に記載の方法で製造されたアストロサイト。 Astrocyte manufactured by the method according to any one of claims 1 to 14.
  16.  請求項15に記載のアストロサイトを有効成分として含む、細胞製剤。  A cell preparation containing the astrocyte according to claim 15 as an active ingredient. The
PCT/JP2021/042096 2020-11-16 2021-11-16 Method of producing astrocytes from pluripotent stem cells WO2022102787A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022562230A JPWO2022102787A1 (en) 2020-11-16 2021-11-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-190575 2020-11-16
JP2020190575 2020-11-16

Publications (1)

Publication Number Publication Date
WO2022102787A1 true WO2022102787A1 (en) 2022-05-19

Family

ID=81601395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042096 WO2022102787A1 (en) 2020-11-16 2021-11-16 Method of producing astrocytes from pluripotent stem cells

Country Status (2)

Country Link
JP (1) JPWO2022102787A1 (en)
WO (1) WO2022102787A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148646A1 (en) * 2013-03-21 2014-09-25 国立大学法人京都大学 Pluripotent stem cell for neuronal differentiation induction
WO2019235576A1 (en) * 2018-06-06 2019-12-12 富士フイルム株式会社 Method for producing human a1 astrocytes, human a1 astrocytes, and method for evaluating test substance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148646A1 (en) * 2013-03-21 2014-09-25 国立大学法人京都大学 Pluripotent stem cell for neuronal differentiation induction
WO2019235576A1 (en) * 2018-06-06 2019-12-12 富士フイルム株式会社 Method for producing human a1 astrocytes, human a1 astrocytes, and method for evaluating test substance

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TCHIEU JASON; CALDER ELIZABETH L.; GUTTIKONDA SUDHA R.; GUTZWILLER EVELINE M.; AROMOLARAN KELLY A.; STEINBECK JULIUS A.; GOLDSTEIN: "NFIA is a gliogenic switch enabling rapid derivation of functional human astrocytes from pluripotent stem cells", NATURE BIOTECHNOLOGY, NATURE PUBLISHING GROUP US, NEW YORK, vol. 37, no. 3, 25 February 2019 (2019-02-25), New York, pages 267 - 275, XP036900609, ISSN: 1087-0156, DOI: 10.1038/s41587-019-0035-0 *
TETSURO YASUI, KINICHI NAKAJIMA: "Effect of oxygen concentration on acquisition of astrocyte differentiation ability of human pluripotent stem cell-derived neural stem / progenitor cells via epigenetics", FOLIA PHARMACOLOGICA JAPONICA, vol. 153, no. 2, 1 January 2019 (2019-01-01), JP , pages 54 - 60, XP009536668, ISSN: 1347-8397, DOI: 10.1254/fpj.153.54 *

Also Published As

Publication number Publication date
JPWO2022102787A1 (en) 2022-05-19

Similar Documents

Publication Publication Date Title
CN105683366B (en) Method for producing retinal tissue and retinal-associated cells
EP2496688B1 (en) A method for differentiation induction in cultured stem cells
US9951353B2 (en) Engineering neural stem cells using homologous recombination
KR102487142B1 (en) How to differentiate pluripotent cells
Bae et al. Hypoxia enhances the generation of retinal progenitor cells from human induced pluripotent and embryonic stem cells
US12098392B2 (en) Compositions and methods for differentiation of human pluripotent stem cells into desired cell types
US8883498B2 (en) Method for inducing differentiation of pluripotent stem cells into skeletal muscle or skeletal muscle progenitor cells
RU2745300C2 (en) Nervous system cells expressing e4orf1 of adenovirus, and methods for their production and application
WO2017126551A1 (en) Differentiation induction from human pluripotent stem cells into hypothalamic neurons
CN115968401A (en) Method for differentiating stem cells into dopaminergic progenitor cells
JP5995237B2 (en) Method for producing eosinophils from pluripotent stem cells
WO2018199142A1 (en) Method for producing neural crest cells and sympathetic neurons
US20150267174A1 (en) Reprogramming peptide and use thereof
WO2022102787A1 (en) Method of producing astrocytes from pluripotent stem cells
JP2011182720A (en) Method for differentiation-inducing and amplifying genital stem cell, and medium therefor
KR20240099369A (en) Dopaminergic neurons containing mutations and methods of using the same
US20120183511A1 (en) Induction of neuronal differentiation in non-neuronal cells using a nucleic acid molecule
JP7548494B2 (en) Cell Production Method
JP6990921B2 (en) How to induce upper motor neurons
JP2021069345A (en) Methods for preparing parathyroid cells
US20240369537A1 (en) In Vitro Cell Co-Cultures of Neuronal Cells, Astrocytes, and Oligodendrocytes
JP7274216B2 (en) Cell excitotoxicity evaluation method
EP4212620A1 (en) Method for producing oligodendrocyte-like cells
JP2023086705A (en) Cell models of muscle fatigue/muscle damage, preparation methods and uses thereof
Mazzara TWO FACTOR BASED REPROGRAMMING OF FIBROBLASTS AND INDUCED PLURIPOTENT STEM CELLS INTO MYELINOGENIC SCHWANN CELLS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21892032

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022562230

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21892032

Country of ref document: EP

Kind code of ref document: A1