Nothing Special   »   [go: up one dir, main page]

WO2022163709A1 - トナー及び画像の読み取り方法 - Google Patents

トナー及び画像の読み取り方法 Download PDF

Info

Publication number
WO2022163709A1
WO2022163709A1 PCT/JP2022/002904 JP2022002904W WO2022163709A1 WO 2022163709 A1 WO2022163709 A1 WO 2022163709A1 JP 2022002904 W JP2022002904 W JP 2022002904W WO 2022163709 A1 WO2022163709 A1 WO 2022163709A1
Authority
WO
WIPO (PCT)
Prior art keywords
toner
gold nanorods
gold
less
image
Prior art date
Application number
PCT/JP2022/002904
Other languages
English (en)
French (fr)
Inventor
泰 吉正
毅 山本
智 山火
良太 大橋
宏 齋藤
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021151226A external-priority patent/JP2022117406A/ja
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to CN202280012088.1A priority Critical patent/CN116762043A/zh
Priority to EP22745928.6A priority patent/EP4286948A1/en
Publication of WO2022163709A1 publication Critical patent/WO2022163709A1/ja
Priority to US18/358,783 priority patent/US20230384703A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • G03G9/09708Inorganic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0819Developers with toner particles characterised by the dimensions of the particles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0827Developers with toner particles characterised by their shape, e.g. degree of sphericity
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08742Binders for toner particles comprising macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G9/08771Polymers having sulfur in the main chain, with or without oxygen, nitrogen or carbon only
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/09Colouring agents for toner particles
    • G03G9/0902Inorganic compounds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/32Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
    • H04N1/32101Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
    • H04N1/32144Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title embedded in the image data, i.e. enclosed or integrated in the image, e.g. watermark, super-imposed logo or stamp
    • H04N1/32149Methods relating to embedding, encoding, decoding, detection or retrieval operations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/20Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from infrared radiation only
    • H04N23/21Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from infrared radiation only from near infrared [NIR] radiation

Definitions

  • the present disclosure relates to a toner and an image reading method.
  • Invisible printing which embeds invisible information in printed matter, has attracted attention for the purpose of strengthening security such as copyright protection and counterfeit prevention. Invisible printing does not degrade the appearance even if it overlaps with visible images, so it is possible to use embedded information while maintaining the quality of ordinary printed matter, and it is expected to be applied in various fields such as security. .
  • Japanese Patent Application Laid-Open No. 2007-219103 discloses that an invisible image can be formed without impairing the image quality of a visible image by incorporating a specific gold nanorod into the toner.
  • One aspect of the present disclosure is directed to providing a toner capable of obtaining an invisible image that can have excellent invisibility in the visible light region and excellent readability in the near-infrared region.
  • Another aspect of the present disclosure is directed to providing a method of reading an image formed using the toner of the present disclosure.
  • a toner having toner particles comprising:
  • the toner contains gold nanorods,
  • the average value ⁇ in the aspect ratio distribution is 6.0 to 13.0,
  • a toner is provided in which the standard deviation ⁇ in the aspect ratio distribution is 0.5 to 4.5.
  • an image reading method including the step of reading an image formed using the toner of the present disclosure using a device equipped with a near-infrared sensor.
  • a toner capable of obtaining an invisible image that can have excellent invisibility in the visible light region and excellent readability in the near-infrared region.
  • an image reading method including the step of reading an image formed using the toner of the present disclosure using a device equipped with a near-infrared sensor.
  • FIG. 4 is a schematic diagram showing the state of image observation in image quality evaluation in the near-infrared region; Optical absorption spectrum of PEDOT-PSS
  • the toner according to the present disclosure is preferably an invisible image forming toner.
  • the toner used to form invisible images is naturally required to be able to form images with excellent invisibility and readability. Therefore, the present inventors have recognized that it is necessary to improve the image so that an image having a sufficiently large maximum absorptance in the near-infrared region relative to the maximum absorptance in the visible light region is required. rice field.
  • the peak in the light absorption spectrum of the fixed image becomes sharper, and the maximum absorption rate in the near-infrared region is achieved. was found to be relatively large. This makes it easier to obtain an image with excellent invisibility and readability even if the gold nanorod content in the toner is about the same.
  • the toner contains gold nanorods.
  • gold nanorods refer to metal nanorods containing gold as a main component.
  • a metal nanorod containing gold as a main component is a metal nanorod having a gold content of 80% or more with respect to its mass.
  • a metal nanorod is a fine metal material that is formed from metal materials such as gold and silver and has a long axis diameter and a short axis diameter in a TEM image. That is, the metal nanorods in the TEM image are observed as substantially rectangular. Generally, the minor axis length is 1 nm to 60 nm and the major axis length is 20 nm to 500 nm. A value obtained by dividing the length of the long axis of the metal nanorod by the length of the short axis is called the aspect ratio. In the present disclosure, those with an aspect ratio of 1.5 or more are treated as gold nanorods.
  • Gold nanorods exhibit two characteristic plasmon absorption bands (bands corresponding to excitation of surface plasmon bands) due to the long axis of the rod and the short axis of the rod, respectively.
  • gold nanorods have an absorption band around 530 nm due to the short axis and an absorption band due to the long axis at 650 nm to 2000 nm.
  • the arrangement of the gold element and the metal element other than gold in the gold nanorod may be in the form of an alloy compounded at the atomic level, or in the form of a core-shell structure in which the gold nanorod is coated with a metal element other than gold.
  • the gold nanorods may be coated with an inert shell such as silica or polystyrene.
  • the surfaces of the gold nanorods may be modified with suitable molecules such as surfactants, depending on the purpose, such as dispersing the gold nanorods in the medium.
  • a value obtained by dividing the length of the long axis of the metal nanorod by the length of the short axis is called an aspect ratio.
  • the aspect ratio of the gold nanorods contained in the toner has a distribution, and the average value and standard deviation in the distribution express the aspect ratio distribution.
  • the distribution may be normal, skewed, or multimodal, such as having multiple peaks.
  • the light absorption spectrum of the gold nanorods changes in a complex manner.
  • the average value ⁇ in the aspect ratio distribution is 6.0 to 13.0
  • a toner having a standard deviation ⁇ in the aspect ratio distribution of 0.5 to 4.5 can have excellent invisibility in the visible light region and excellent readability in the near-infrared region. It was found that images can be easily obtained.
  • the average value ⁇ is within the range of 6.0 to 13.0, it is easy to obtain an image having a peak within the wavelength range of 1000 to 1600 nm in the light absorption spectrum. It has been found that if the average value is less than 6.0, the peak position of the light absorption spectrum tends to approach the visible light region side, and accordingly, the invisibility of the image may not be sufficient. It is considered that this is because light with a wavelength in the visible light region is easily absorbed. Further, when the average value is larger than 13.0, the peak position of the light absorption spectrum may be too long wavelength side, and readability with a device for reading wavelengths in the near infrared region such as an InGaAs camera tends to deteriorate. I found out.
  • the average value ⁇ in the aspect ratio distribution is 6.0 or more, preferably 7.0 or more, and more preferably 8.0 or more. Also, the average value ⁇ is 13.0 or less, preferably 12.0 or less, and more preferably 11.0 or less. That is, a preferable range of the average value ⁇ is 7.0 to 12.0, and a more preferable range is 8.0 to 11.0.
  • the absorption wavelength of the gold nanorods in the near-infrared region is less likely to vary, and the maximum absorptance in the region is relatively higher than the maximum absorptance in the visible light region.
  • Invisible images with excellent invisibility and readability of invisible images are easy to obtain. Therefore, it is 4.5 or less, preferably 3.5 or less, and more preferably 2.5 or less. Although the lower limit is not particularly limited, the standard deviation ⁇ is 0.5 or more.
  • a preferable range of the standard deviation ⁇ is 0.5 to 3.5, and a more preferable range is 0.5 to 2.5.
  • the above average ⁇ and standard deviation ⁇ can be controlled by adjusting the reaction conditions and purification conditions, as described later.
  • the average length of the long axis of the gold nanorods contained in the toner particles is preferably 1/4 or less of the weight average particle size (D4) of the toner particles.
  • D4 weight average particle size
  • the average length of the long axis of the rods is 1/4 or less of the weight-average particle diameter of the toner particles, the size of the gold nanorods is less likely to be excessively large with respect to the size of the toner particles.
  • the volume resistivity of the toner is less likely to decrease, the toner tends to have appropriate charging properties, and high-quality invisible images can be easily obtained.
  • the average length of the long axis of the gold nanorods contained in the toner is preferably 50 to 110 nm.
  • the toner of the present disclosure is obtained by including gold nanorods that satisfy the ranges of the average value ⁇ and the standard deviation ⁇ of the present disclosure. and gold nanorods that do not satisfy the standard deviation ⁇ (hereinafter also referred to as “second gold nanorods”).
  • Gold nanorods that may be contained include, for example, gold nanorods having an average aspect ratio distribution of 1.6 to 2.6 in the measurement of the aspect ratio distribution. Gold nanorods having an average aspect ratio distribution of 2.0 to 2.2 may also be used.
  • the light absorption spectrum of the gold nanorods is measured, the spectrum has a peak in the range of 580-650 nm.
  • the gold nanorods satisfying the range of 6.0 to 13.0 for the average value ⁇ and 0.5 to 4.5 for the standard deviation ⁇ have a large peak attributed to the long axis of the gold nanorods in the light absorption spectrum at a wavelength of 1000 to 1600 nm. found within the range of On the other hand, a small peak due to the short axis of the gold nanorods is seen near 530 nm, which is the visible light region, and may be slightly reddish. Therefore, by adding the above-mentioned gold nanorods having a peak in the range of 580 to 650 nm in the light absorption spectrum, an image with flatter light absorption characteristics in the visible light region, that is, an image with lower saturation and less visibility can be obtained. more likely to be
  • the content of gold nanorods in the toner is preferably 0.005 to 0.200% by mass. If it is 0.005% by mass or more, an invisible image with excellent readability in the near-infrared region can be easily obtained. Therefore, it is preferably 0.005% by mass or more, more preferably 0.010% by mass or more. Further, when the content is 0.200% by mass or less, the volume resistivity of the toner is less likely to decrease, and an invisible image with high image quality can be easily obtained. Therefore, it is preferably 0.200% by mass or less, more preferably 0.100% by mass or less.
  • the toner does not contain gold nanoparticles, or contains gold nanoparticles at a rate of 30% by number or less with respect to the number of gold nanorods contained in the toner.
  • gold nanoparticles are treated as gold-based nanomaterials with an aspect ratio of less than 1.5 in TEM images.
  • Gold nanoparticles may be produced during the preparation of gold nanorods.
  • Gold nanoparticles exhibit absorption in the visible light region according to their particle size. For example, when the particle size is 20 nm, light absorption occurs around 520 nm.
  • the toner does not contain gold nanoparticles, or the above proportion is 15% by number or less. More preferably, the toner does not contain gold nanoparticles, or the above ratio is 10% by number or less. More preferably, the toner does not contain gold nanoparticles, or the above proportion is 5% by number or less.
  • the number ratio of gold nanoparticles can be controlled by the reaction conditions and purification conditions, as described later.
  • Toners according to the present disclosure may contain poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) (PEDOT-PSS).
  • PEDOT-PSS poly(3,4-ethylenedioxythiophene)
  • PSS poly(styrenesulfonic acid)
  • PEDOT-PSS according to the present disclosure is treated as a composite of PEDOT and PSS.
  • conjugated polymers include aliphatic conjugated polyacetylene, aromatic conjugated poly(p-phenylene), heterocyclic conjugated polypyrrole and polythiophene, and heteroatom conjugated polyaniline.
  • acceptors include halogens and Lewis acids, and examples of donors include alkali metals and alkaline earth metals.
  • the above conductive polymer exhibits infrared absorption due to carrier plasma oscillation. In other words, it is considered that infrared absorption is exhibited by forming a polymer complex between a conjugated polymer and an electron acceptor or an electron donor. In addition, since the infrared absorption of a conductive polymer is proportional to the carrier density, a conductive polymer having higher conductivity exhibits higher infrared absorption.
  • PEDOT-PSS contained in the toner according to the present disclosure exhibits high infrared absorption because PEDOT is a conjugated polymer and PSS functions as an acceptor to form a polymer composite.
  • Fig. 2 shows the optical absorption spectrum of PEDOT-PSS.
  • PEDOT-PSS has a large optical absorption band in the infrared region based on carrier plasma oscillation. Therefore, when the toner contains PEDOT-PSS, it is easy to obtain an image having excellent readability in the near-infrared region.
  • light absorption caused by carrier plasma oscillation extends not only to the infrared region but also to the visible light region of 500 to 800 nm. Due to this light absorption extending into the visible light region, a small peak around 530 nm originating from the short axis of the gold nanorods satisfying the range of mean value ⁇ of 6.0 to 13.0 and standard deviation ⁇ of 0.5 to 4.5. Images with flatter peaks, less saturation, and less visibility can be easily obtained.
  • PEDOT-PSS can also be produced, for example, by oxidative polymerization of 3,4-ethylenedioxythiophene in the presence of PSS.
  • general commercial products for example, Denatron PT-300 (trade name), manufactured by Nagase ChemteX Corporation
  • Denatron PT-300 (trade name), manufactured by Nagase ChemteX Corporation
  • Methods for preparing gold nanorods include an electrolytic method (Y. Yuhoka, J. Phys. Chem. B, 101, 6661 (1997)) and a chemical synthesis method (NR Janahoka, J. Phys. Chem. B). , 105, 4065 (2001)).
  • a method of synthesizing gold nanorod particles by reducing gold ions in an aqueous solution containing an excess amount of cetyltrimethylammonium bromide (CTAB), which is a quaternary ammonium salt can be used.
  • CTAB cetyltrimethylammonium bromide
  • a solution containing seed particles is prepared by adding an aqueous CTAB solution to an aqueous solution of chloroauric acid tetrahydrate and then adding sodium borohydride.
  • a mixed solution of silver nitrate, chloroauric acid tetrahydrate, L-ascorbic acid and CTAB is added and held for a certain period of time, or by adding the solution little by little, seed particles as nuclei can be grown anisotropically, and gold nanorods can be obtained.
  • gold nanorods with a large aspect ratio can be obtained by adding benzyldimethylhexadecylammonium chloride when growing the seed particles.
  • Gold nanorods with a large aspect ratio can also be obtained by performing reduction with sodium borohydride, which is a strong reducing agent, in the first step, followed by reduction with triethylamine, which is a weak reducing agent.
  • the gold nanorods can be refined and used by adjusting the aspect ratio distribution.
  • Any generally known method can be used for purification, and for example, density gradient ultracentrifugation can be used.
  • density gradient ultracentrifugation can be used.
  • the method see, for example, Li. S et al., Nano Res. 4, 723-728 (2011). Specifically, first, mixed solutions of sucrose and CTAB with different concentrations are prepared and layered in order of concentration gradient in a centrifugation tube. A sample of gold nanorods is layered on top of it and centrifuged to perform separation based on density and size. By separating and purifying in this way, the standard deviation ⁇ is reduced, and gold nanorods with a narrower aspect ratio distribution can be obtained.
  • the toner particles preferably contain a binder resin.
  • the binder resin is not particularly limited, and specific examples include styrene-acrylic resins, polyester resins, epoxy resins, and the like, and these can be used alone or in combination.
  • the binder resin may be a resin having a linear molecular structure, a branched resin, a crosslinked resin, or a mixture thereof.
  • Spectroscopic analysis of a fixed image formed using the toner according to the present disclosure with a toner loading of 0.30 mg/cm 2 shows that the maximum value of the light absorptance in the wavelength range of 400 nm or more and 800 nm or less is 10% or less. is preferably This wavelength range is a wavelength region corresponding to the visible region, and if the light absorption rate is 10% or less, it becomes substantially difficult to recognize with the naked eye, and an image having excellent invisibility in the visible light region can be obtained. .
  • the maximum transmittance is preferably 90% or more.
  • the absorption rate of light in the visible light region and the infrared region can be controlled by adjusting the aspect ratio distribution of the gold nanorods.
  • a method for reading an image formed using the toner according to the present disclosure is not particularly limited. Since an image formed using the toner according to the present disclosure tends to absorb wavelengths in the near-infrared region, an image reading method using a device equipped with a near-infrared sensor is preferable. More preferably, an apparatus equipped with an InGaAs sensor is used, and an InGaAs camera is even more preferable. Further, it is preferable that the image reading method uses light with a wavelength of 900 to 2500 nm. More preferably 900 to 1800 nm.
  • the weight average particle size (D4) of the toner particles is preferably 4.0 ⁇ m or more and 9.0 ⁇ m or less, more preferably 5.0 ⁇ m or more and 7.0 ⁇ m or less. This range is advantageous for high-definition image formation.
  • the method for producing the toner is not particularly limited, but the following toner production methods (1) to (3) can be exemplified.
  • (1) Pulverization Method When producing a toner by the pulverization method, first, metal nanorods including gold nanorods are sufficiently mixed with a binder resin as a dispersion medium and other additives using a mixer such as a Henschel mixer or a ball mill. . The mixture is melted and kneaded using a kneader, extruder, or other thermal kneader using heat and mechanical shearing force to make the resins compatible with each other.
  • the solidified product is pulverized and the pulverized product is classified to obtain toner particles having a desired particle size.
  • Suspension polymerization method for example, metal nanorods including gold nanorods, a polymerizable monomer capable of forming a binder resin, a polymerization initiator, a cross-linking agent, a charge control agent and Other additives are uniformly dispersed to obtain a polymerizable monomer composition.
  • the resulting polymerizable monomer composition is dispersed and granulated in a continuous layer (e.g., aqueous phase) containing a dispersion stabilizer using a suitable stirrer, and polymerized using a polymerization initiator.
  • a reaction is carried out to obtain toner particles having the desired particle size.
  • Emulsion Aggregation Method When producing a toner by an emulsion aggregation method, first, materials such as metal nanorods including gold nanorods, a binder resin, and other additives are mixed in an aqueous medium containing a dispersion stabilizer. Disperse and mix. A surfactant may be added to the aqueous medium.
  • the toner particles are aggregated to a desired particle size, and then, or at the same time as the aggregation, the fine resin particles are fused. Further, if necessary, toner particles are formed by shape control by heat. After that, toner particles are obtained through a filtration washing process and a drying process.
  • a step of dispersing the metal nanorods in the binder resin may be provided in the series of toner manufacturing steps.
  • a method for dispersing the metal nanorods in the binder resin for example, a method using a masterbatch during the toner manufacturing process can be exemplified. That is, the metal nanorods are mixed with a part of the binder resin so as to have a high concentration, and melt-kneaded while applying a high shear to produce a masterbatch in which the metal nanorods are finely dispersed. After that, the masterbatch is melt-kneaded while being diluted with the remaining binder resin.
  • melt-kneading device suitably used when producing the masterbatch, and these can be used alone or in combination.
  • a twin-screw kneader or the like can be exemplified as a melt kneading device used for dilution kneading.
  • a step of suppressing aggregation of the metal nanorods may be provided during a series of toner production.
  • a method of rapidly cooling after the melt-kneading process can be exemplified.
  • the melt-kneaded material can be rapidly cooled by spreading the melt-kneaded material on a water-cooled metal belt in the form of a sheet. Aggregation of metal nanorods that occurs during cooling can be suppressed by rapid cooling.
  • Suitable cooling devices for rapid cooling include "NR double belt cooler for high viscosity (manufactured by Nippon Belting Co., Ltd.)”, “cooling and solidifying machine belt drum flaker (manufactured by Nippon Coke Kogyo Co., Ltd.)”, “cooling and solidifying Equipment drum flaker (manufactured by Katsuragi Industry Co., Ltd.)” and the like can be exemplified.
  • the process of dispersing the metal nanorods in the binder resin and the method of suppressing aggregation of the metal nanorods may be used in combination.
  • the toner may contain one or more additives selected from waxes, charge control agents, external additives, and the like. Also, the toner according to the present disclosure preferably does not contain a coloring component that renders the fixed image visible.
  • wax is not particularly limited, colorless or light-colored waxes are preferred, and examples thereof include the following.
  • Hydrocarbon waxes such as, butylene glycol dimethacrylate, stearic acid, stearic acid, stearic acid, etc.
  • One type of wax may be used alone, or a plurality of types may be used in combination.
  • Charge control agent is not particularly limited, a colorless or light-colored charge control agent is preferable, and examples thereof include the following.
  • Aromatic oxycarboxylic acids metal compounds of aromatic oxycarboxylic acids, boron compounds, quaternary ammonium salts, calixarene, resins with sulfonic acid (salt) groups, resins with sulfonic acid ester groups, and the like.
  • One type of charge control agent may be used alone, or a plurality of types may be used in combination.
  • the external additive is not particularly limited, it is preferably colorless or light-colored, and examples thereof include the following.
  • silica silica, alumina, titanium oxide, strontium titanate, silicon nitride, polytetrafluoroethylene, zinc stearate, etc.
  • the surface of the external additive may be hydrophobized.
  • the average particle size of the primary particles of the external additive is preferably 1/10 or less of the weight average particle size (D4) of the toner particles.
  • the toner can be used as a one-component developer, but may be mixed with a carrier and used as a two-component developer.
  • a carrier magnetic particles made of known materials such as metals such as iron, ferrite and magnetite, and alloys of these metals with metals such as aluminum and lead can be used.
  • a coated carrier in which the surface of the carrier is coated with a coating agent such as a resin, or a resin-dispersed carrier in which magnetic particles are dispersed in a binder resin may be used.
  • the volume average particle size of the carrier is preferably 15 ⁇ m or more and 100 ⁇ m or less, more preferably 25 ⁇ m or more and 80 ⁇ m or less.
  • the weight average particle diameter (D4) of toner particles is calculated as follows.
  • a precision particle size distribution measurement device “Coulter Counter Multisizer 3” (registered trademark, manufactured by Beckman Coulter, Inc.) using the pore electrical resistance method equipped with a 100 ⁇ m aperture tube is used.
  • the attached dedicated software “Beckman Coulter Multisizer 3 Version 3.51” (manufactured by Beckman Coulter, Inc.) is used for setting the measurement conditions and analyzing the measurement data. The measurement is performed with 25,000 effective measurement channels.
  • the electrolytic aqueous solution used for the measurement can be obtained by dissolving special grade sodium chloride in ion-exchanged water so that the concentration is about 1% by mass, such as "ISOTON II” (manufactured by Beckman Coulter, Inc.). .
  • a specific measuring method is as follows. (1) About 200 mL of the electrolytic aqueous solution is placed in a 250 mL round-bottomed glass beaker exclusively for Multisizer 3, set on a sample stand, and stirred with a stirrer rod counterclockwise at 24 revolutions/second. Then, remove dirt and air bubbles inside the aperture tube using the dedicated software's "Flush Aperture" function. (2) Put about 30 mL of the electrolytic aqueous solution into a 100 mL flat-bottom glass beaker.
  • “Contaminon N” a 10% by mass aqueous solution of a neutral detergent for cleaning precision measuring instruments at pH 7 consisting of a nonionic surfactant, an anionic surfactant, and an organic builder, made by Fujifilm Wako Pure Chemical Industries, Ltd.
  • ion-exchanged water is diluted with ion-exchanged water to about 3 times the mass, and about 0.3 mL of the solution is added.
  • Ultrasonic disperser “Ultrasonic Dispersion System Tetora 150” (manufactured by Nikkaki Bios Co., Ltd.) having an electric output of 120 W and incorporating two oscillators with an oscillation frequency of 50 kHz with a phase shift of 180 degrees.
  • the ultrasonic dispersion treatment is continued for another 60 seconds.
  • the temperature of the water in the water tank is appropriately adjusted to 10°C or higher and 40°C or lower.
  • the electrolytic aqueous solution of (5) above in which toner particles are dispersed is dropped using a pipette, and the measured concentration is adjusted to about 5%. do. The measurement is continued until the number of measured particles reaches 50,000.
  • the "average diameter” on the "analysis/volume statistical value (arithmetic mean)" screen when graph/vol% is set in the dedicated software is the weight average particle diameter (D4).
  • the metal content in the metal nanorod dispersion can be quantified by ICP issued spectroscopic analysis according to JIS K 0116-2014. First, the metal nanorod dispersion is heated to 60° C. on a hot plate to dry it. Aqua regia is added thereto, and microwave acid decomposition is performed using ETHOS PRO (manufactured by Milestone General Co., Ltd.) or the like. The metal content can be quantified by subjecting the liquid to ICP emission spectroscopic analysis using a CIROS CCD (manufactured by SPECTRO).
  • the procedure is to first dissolve the toner using a solvent that can dissolve the binder resin. Next, the gold nanorods are sedimented by centrifugation, and the supernatant is separated. A new solvent is added, centrifugation is performed again, and the supernatant is separated. By repeating this operation several times for washing, and finally removing the solvent by drying, the gold nanorods can be separated and recovered from the toner, and the recovered gold nanorods are redispersed in a solvent such as THF. Use this as a measurement sample.
  • a measurement sample dispersed in a solvent is dropped onto the support film, dried, and then subjected to TEM observation using a transmission electron microscope "Technai F30 (manufactured by FEI)" or the like.
  • the lengths of the major and minor axes of the observed gold nanorods are determined using image processing software such as Photoshop to obtain the average value and standard deviation of the aspect ratio distribution, and the average value of the major axis lengths of the gold nanorods. be able to.
  • the number ratio of gold nanoparticles to gold nanorods contained in the toner can be measured by counting the number of gold nanoparticles and gold nanorods by the above TEM observation and calculating the ratio.
  • the content (% by mass) of gold nanorods contained in the toner is quantified by fluorescent X-ray analysis.
  • the measurement conforms to JIS K 0119-1969, specifically as follows.
  • the wavelength dispersive X-ray fluorescence spectrometer "Axios" manufactured by PANalytical
  • the accompanying dedicated software "SuperQ ver.4.0F” manufactured by PANalytical for setting measurement conditions and analyzing measurement data
  • Rh is used as the anode of the X-ray tube
  • the measurement atmosphere is vacuum
  • the measurement diameter is 27 mm
  • the measurement time is 10 seconds.
  • a proportional counter (PC) is used to measure light elements
  • a scintillation counter (SC) is used to measure heavy elements.
  • toner As a measurement sample, 4 g of toner was placed in a special aluminum ring for press and leveled. Pellets that are pressed and molded to a thickness of 2 mm and a diameter of 39 mm are used.
  • the element is identified based on the X-ray peak position obtained, and the count rate (unit: kcps), which is the number of X-ray photons per unit time, is measured. Then, the content of gold nanorods contained in the toner is calculated using a calibration curve prepared separately. In preparing the calibration curve, the finely pulverized styrene resin and a predetermined amount of gold nanorods are uniformly mixed using a coffee mill, and pellets prepared in the same manner as above are used as measurement samples. .
  • a seed particle solution was prepared. 500 mL of a 0.0005 mol/L chloroauric acid tetrahydrate (Kishida Chemical Co., Ltd.) aqueous solution and 500 mL of a 0.2 mol/L cetyltrimethylammonium bromide (Kishida Chemical Co., Ltd.) aqueous solution were mixed. A seed particle solution (solution A) was obtained by adding 60 mL of 0.01 mol/L sodium borohydride (Tokyo Chemical Industry Co., Ltd.) to this aqueous solution.
  • cetyltrimethylammonium bromide was dissolved in 500 mL of a 0.15 mol/L benzyldimethylhexadecylammonium chloride (Tokyo Chemical Industry Co., Ltd.) aqueous solution.
  • 20 mL of a 0.004 mol/L silver nitrate aqueous solution was added to the aqueous solution containing the two kinds of surfactants.
  • Solution B After adding 500 mL of 0.001 mol/L chloroauric acid tetrahydrate aqueous solution to this aqueous solution, 7 mL of 0.078 mol/L L-ascorbic acid aqueous solution (Kishida Chemical Co., Ltd.) was further added. This solution was designated as Solution B.
  • cetyltrimethylammonium bromide was dissolved in 500 mL of a 0.15 mol/L benzyldimethylhexadecylammonium chloride (Tokyo Chemical Industry Co., Ltd.) aqueous solution.
  • 20 mL of a 0.004 mol/L silver nitrate aqueous solution was added to the aqueous solution containing the two kinds of surfactants.
  • Dispersion K was prepared by performing the same operation as the purification step in Production Example of Dispersion A using Particle Dispersion K1 obtained above.
  • Table 1 shows the physical properties of the gold nanorods contained in the dispersion K (second gold nanorods). Further, when the light absorption spectrum of the gold nanorods contained in the dispersion liquid K was measured, the light absorption peak wavelength in the spectrum was 610 nm.
  • the mixture was melt-kneaded using a PCM-30 model (manufactured by Ikegai Co., Ltd.) set at a temperature of 130° C. to obtain a kneaded product.
  • the resulting kneaded product was spread on a water-cooled metal belt in the form of a sheet, rapidly cooled, and then coarsely pulverized to 1 mm or less by a hammer mill to obtain a coarsely pulverized product.
  • the coarsely ground material obtained was pulverized with T-250 (manufactured by Freund Turbo Co.). Further, classification was performed using 200 TSP (manufactured by Hosokawa Micron Corporation) to obtain toner particles 1 having a weight average particle diameter of 5.9 ⁇ m.
  • ⁇ External Addition Process 100.0 parts by mass of the obtained toner particles 1 and 1.0 parts by mass of hydrophobic silica fine powder (number average particle size of primary particles: 7 nm) surface-treated with hexamethyldisilazane were mixed in an FM mixer (Nippon Coke (manufactured by Kogyo Co., Ltd.) to obtain Toner 1.
  • Toners 2 to 13, 15 to 18, 21 and 22 were prepared in the same manner as in Toner 1 Production Example, except that the type and amount of the gold nanorod dispersion and the amount of the saturated polyester dispersion were changed as shown in Table 2. , 22 were obtained. Table 2 shows the physical properties of toners 2 to 13, 15 to 18, 21 and 22.
  • Step of preparing aqueous medium > 1000.0 parts by mass of ion-exchanged water and 14.0 parts by mass of sodium phosphate 12-hydrate were charged into a reaction vessel and kept at 65° C. for 1 hour while purging with nitrogen. The mixture was stirred at 12,000 rpm using a high-speed stirrer "TK Homomixer" (manufactured by Primix). A calcium chloride aqueous solution prepared by dissolving 9.2 parts by mass of calcium chloride dihydrate in 20.0 parts by mass of ion-exchanged water was added all at once to prepare an aqueous medium containing a fine dispersion stabilizer.
  • TK Homomixer manufactured by Primix
  • ⁇ Preparation step of polymerizable monomer composition A mixture was obtained by mixing the following materials.
  • ⁇ Gold nanorod dispersion liquid I 44.8 parts by mass ⁇ Styrene 128.9 parts by mass ⁇ n-Butyl acrylate 34.0 parts by mass ⁇ Aluminum salicylate compound (Bontron E-88 manufactured by Orient Chemical Industry Co., Ltd.) 1.0 parts by mass ⁇ Saturated Polyester 2 (Polycondensation product of propylene oxide-modified bisphenol A and isophthalic acid, glass transition temperature 65°C, weight average molecular weight 10000, number average molecular weight 6000) 5.0 parts by mass Ester wax (melting point 73°C) 10.0 mass Part Divinylbenzene 0.1 part by mass
  • This mixture was kept at 65°C, and T.I. K.
  • a homomixer was used to uniformly dissolve and disperse at 500 rpm to prepare a polymerizable monomer composition.
  • ⁇ Granulation process> The temperature of the aqueous medium containing the above dispersion stabilizer was set at 70°C, and T.I. K. While maintaining the rotation speed of the homomixer at 12000 rpm, the above polymerizable monomer composition was put into the aqueous medium, and 10.0 parts by mass of t-butyl peroxypivalate as a polymerization initiator was added. After that, granulation was performed for 10 minutes while maintaining the number of revolutions at 12000 rpm.
  • the physical properties of Toner 14 are shown in Table 2.
  • the average value of the major axis lengths in Table 2 is the average value of the major axis lengths of the gold nanorods contained in the toner.
  • the number ratio of gold nanoparticles is the number ratio of gold nanoparticles to the number of gold nanorods contained in the toner.
  • Example 1 ⁇ Image quality evaluation in the near-infrared region>
  • a color printer (trade name: LBP652C, manufactured by Canon Inc.) modified so that the development contrast can be freely changed was used, and the toner in the black developing device was replaced with toner 1.
  • A4 size paper (trade name: GF-C081, Canon Marketing Japan Inc.) was used as the output paper, and images were output under an environment of a temperature of 25° C. and a relative humidity of 60%.
  • a fine line image (20 lines, 100 ⁇ m line width, 500 ⁇ m spacing, 20 mm line length) was formed in the center of A4 paper.
  • a yellow developing device using A4 paper on which the fine line image was formed and a yellow developing device, a yellow solid image was formed so as to shield the fine line image, and an evaluation image was obtained.
  • the light source 202 and the camera 203 were installed as shown in FIG. 1, and the evaluation image 201 was observed. That is, an evaluation image was placed on a desk, and infrared rays were irradiated using the light source 202 from a position about 1 m away from the evaluation image at an angle of 15°. Also, the camera 203 was installed 15 cm above the evaluation image and photographed.
  • a halogen lamp light source (trade name: PCS-UHX-150, manufactured by Nihon P.I. Co., Ltd.) equipped with a visible light cut filter unit was used.
  • a near-infrared camera (trade name: NVU3VD, manufactured by IR Spec Co., Ltd., InGaAs camera) having a lens portion equipped with a filter for cutting wavelength components of 800 nm or less was used.
  • the near-infrared camera had a spectral sensitivity wavelength range of 970 to 1650 nm.
  • the photographed image is displayed on the display, and for the 20 fine lines formed in the center of the evaluation image, the number of fine lines that are clearly visible without interruption over the entire length is counted, and the number of fine lines is the number of fine lines. image quality was evaluated. Table 3 shows the results. It was judged that the effect was obtained when the number was 13 or more.
  • Spectroscopic analysis was performed on the above sample image using a photometer in the wavelength range of 400 nm to 800 nm, and the maximum absorptance in the measurement was taken as the measured value (%) of the sample image.
  • a photometer an ultraviolet-visible-near-infrared spectrophotometer (trade name: UV-3600, manufactured by Shimadzu Corporation) equipped with an integrating sphere accessory (trade name: ISR-240A, manufactured by Shimadzu Corporation) was used.
  • a spectroscopic measurement was also performed on a paper alone (paper on which no image was formed) as a blank.
  • the value obtained by subtracting the measured value (%) of the blank from the measured value (%) of the sample image was defined as the visible light absorptivity (%), and the invisibility of the toner was evaluated using the visible light absorptance (%).
  • Table 3 shows the results. When the image with a visible light absorptance of 11% was visually confirmed, it was found that it could be used as an invisible image. determined that it was exceeded.
  • ⁇ Evaluation of readability in the near-infrared region> ⁇ Method for measuring light absorptance in the wavelength range of 900 nm or more and 1800 nm or less>
  • an ultraviolet-visible near-infrared spectrophotometer (trade name: MV-3300, manufactured by JASCO Corporation) was used to spectroscopically measure the wavelength range of 900 nm or more and 1800 nm or less. did The maximum absorptance in the measurement was taken as the measured value of the sample image.
  • ⁇ Method for measuring light transmittance in the wavelength range of 400 nm or more and 800 nm or less> Using the above image forming apparatus, a rectangular image of 1 cm x 10 cm was formed on a PET film (trade name: Lumirror T60 (manufactured by Toray Industries)) so that the amount of toner 1 applied was 0.30 mg/cm 2 . A sample image was obtained.
  • spectroscopic measurement was performed using the above photometer in the wavelength range of 400 nm or more and 800 nm or less, and the maximum transmittance in the measurement was taken as the measured value (%) of the sample image.
  • a PET film alone a PET film on which no image is formed
  • the visible light transmittance (%) was obtained by subtracting the measured value (%) of the blank from the measured value (%) of the sample image. Table 3 shows the results.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

トナー粒子を有するトナーであって、前記トナーは、金ナノロッドを含有し、前記トナー中に含有される金ナノロッドのアスペクト比分布を測定したとき、前記アスペクト比分布における平均値μが6.0~13.0であり、前記アスペクト比分布における標準偏差σが0.5~4.5であることを特徴とするトナー。

Description

トナー及び画像の読み取り方法 秘術分野
 本開示は、トナー及び画像の読み取り方法に関する。
 近年、著作権保護や偽造防止などのセキュリティ強化を目的として、目には見えない情報を印刷物に埋め込む「不可視印刷」が注目されている。不可視印刷は、可視画像と重なっても見た目を劣化させにくいため、通常の印刷物としての品質を保ちつつ、埋め込まれた情報も合せて利用でき、セキュリティ分野などの多分野で応用が期待されている。
 特開2007-219103号公報では、特定の金ナノロッドをトナーに含有させることにより、可視画像の画質を損なうことない不可視画像を形成できることが開示されている。
特開2007-219103号公報
 特開2007-219103号公報に記載のトナーについて本発明者らが検討した結果、可視光領域における画像の不可視性と、近赤外領域における画像の読み取り性との両立について、より一層の改善が必要であることを認識した。
 本開示の一態様は、可視光領域における優れた不可視性を有し得るとともに、近赤外領域における優れた読み取り性を有し得る不可視画像が得られるトナーの提供に向けたものである。
 また、本開示の他の態様は、本開示のトナーを用いて形成された画像の読み取り方法の提供に向けたものである。
 本開示の一態様によれば、トナー粒子を有するトナーであって、
 前記トナーは、金ナノロッドを含有し、
 前記トナー中に含有される金ナノロッドのアスペクト比分布を測定したとき、
  前記アスペクト比分布における平均値μが6.0~13.0であり、
  前記アスペクト比分布における標準偏差σが0.5~4.5であることを特徴とするトナーが提供される。
 また、本開示の他の態様によれば、本開示のトナーを用いて形成された画像を、近赤外線センサを搭載した装置を用いて読み取る工程を有する、画像の読み取り方法が提供される。
 本開示の一態様によれば、可視光領域における優れた不可視性を有し得るとともに、近赤外領域における優れた読み取り性を有し得る不可視画像が得られるトナーが提供できる。
 また、本開示の他の態様によれば、本開示のトナーを用いて形成された画像を、近赤外線センサを搭載した装置を用いて読み取る工程を有する、画像の読み取り方法が提供できる。
近赤外領域の画質評価における画像観察の状況を示す概略図である PEDOT-PSSの光吸収スペクトル
 数値範囲を表す「○○以上××以下」や「○○~××」の記載は、特に断りのない限り、端点である下限及び上限を含む数値範囲を意味する。数値範囲が段階的に記載されている場合、各数値範囲の上限及び下限は任意に組み合わせることができる。
 本開示に係るトナーは、不可視画像形成用トナーであることが好ましい。
 <発明に至った経緯>
 特開2007-219103号公報に係る技術によれば、確かに、近赤外領域における画像の読み取り性を高め得る。一方で、画像の読み取り性を向上させるために金ナノロッドの含有量を増加させると、画像の不可視性が低下しやすくなることを本発明者らは発見した。これは、定着画像の光吸収スペクトルにおいて、可視光領域における最大吸収率に対して、近赤外領域における最大吸収率が十分に大きくないためであると本発明者らは推測している。これにより、トナー中の金ナノロッドの含有量を増加させると、近赤外領域における最大吸収率だけでなく、可視光領域における最大吸収率もそれに伴って大きく増加してしまい、画像の不可視性が低下すると本発明者らは推測している。
 不可視画像を形成するために用いられるトナーには、当然、不可視性に優れ、且つ読み取り性に優れる画像を形成できることが求められる。そのため、本発明者らは、可視光領域における最大吸収率に対して、近赤外領域における最大吸収率が十分に大きい画像が得られるようにするための改善が必要であるとの認識を得た。
 上記考察に基づき、本発明者らは検討を行った。その結果、アスペクト比の平均値が6.0~13.0の範囲内に制御され、且つその標準偏差が0.5~4.5の範囲内に制御された金ナノロッドを含有するトナーが、上記の如き特性を備えた画像の形成に有効であることを見出した。
 トナーに含有される金ナノロッドの、アスペクト比の平均値及び標準偏差が上記の範囲に制御されることで、定着画像の光吸収スペクトルにおけるピークがよりシャープになり、近赤外領域における最大吸収率が相対的に大きくなることがわかった。これにより、トナー中の金ナノロッド含有量が同程度であっても、優れた不可視性及び読み取り性を有する画像が得られやすくなる。
 <金ナノロッド>
 トナーは、金ナノロッドを含有する。本開示において、金ナノロッドとは、金を主成分とする金属ナノロッドであることを言う。また、金を主成分とする金属ナノロッドとは、その質量に対する金の含有割合が80%以上である金属ナノロッドのことを言う。
 金属ナノロッドとは、金や銀など貴金属類の金属材質から形成され、TEM画像において長軸径と短軸径を有する微細な金属材料を指す。即ち、TEM画像における金属ナノロッドは、略長方形として観察される。一般に、短軸の長さが1nm~60nm、長軸の長さが20nm~500nmである。金属ナノロッドの長軸の長さを短軸の長さで除した値を、アスペクト比と呼ぶ。本開示においては、アスペクト比が1.5以上のものを金ナノロッドとして取り扱う。金ナノロッドはロッドの長軸、及びロッドの短軸のそれぞれに起因する、2本の特徴的なプラズモン吸収バンド(表面プラズモンバンドの励起に対応するバンド)を示す。例えば、金ナノロッドの場合は、短軸に起因する吸収バンドが530nm付近、長軸に起因する吸収バンドが650nm~2000nmに存在する。
 金ナノロッド中における、金元素と金以外の金属元素の配置は、原子レベルで複合化された合金状であっても、金単体のナノロッドを金以外の金属元素で被覆したコア-シェル状でもよい。また、金ナノロッドは、例えば、シリカやポリスチレンのような不活性なシェルで被覆されていても良い。更に、金ナノロッドを媒質中に分散させるため等、目的に応じて、金ナノロッド表面は界面活性剤等の適当な分子で修飾されていてもよい。
 <アスペクト比分布>
 また、金属ナノロッドの長軸の長さを短軸の長さで除した値を、アスペクト比と呼ぶ。
トナーに含有される金ナノロッドのアスペクト比には分布があり、該分布における平均値と標準偏差により、アスペクト比分布が表現される。分布は正規分布でもよいし、歪んだ分布でも、複数の峰をもつような多峰性の分布でもよい。
 金ナノロッドは、そのアスペクト比分布の変化に伴い、光の吸収スペクトルが複雑に変化するが、本発明者らが鋭意検討した結果、トナー中に含有される金ナノロッドのアスペクト比分布を測定したとき、
アスペクト比分布における平均値μが6.0~13.0であり、
アスペクト比分布における標準偏差σが0.5~4.5であるトナー
であると、可視光領域における優れた不可視性を有し得るとともに、近赤外領域における優れた読み取り性を有し得る不可視画像が得られやすいことを見出した。
 上記の平均値μが6.0~13.0の範囲内であると、光吸収スペクトルにおいて波長1000~1600nmの範囲内にピークを有する画像が得られやすい。該平均値が6.0未満であると、光吸収スペクトルのピーク位置が可視光領域側に近づきやすく、これに伴い、画像の不可視性について十分でない場合があることが分かった。これは、可視光領域の波長の光を吸収しやすくなるためであると考えられる。また、該平均値が13.0より大きいと、光吸収スペクトルのピーク位置が長波長側過ぎる場合があり、InGaAsカメラなどの近赤外領域の波長を読み取る装置での読み取り性が低下しやすくなることが分かった。
 上記のことからアスペクト比分布における平均値μが6.0以上であり、7.0以上であることが好ましく、8.0以上であることがより好ましい。また、該平均値μが13.0以下であり、12.0以下であることが好ましく、11.0以下であることがより好ましい。即ち、平均値μの好ましい範囲として、7.0~12.0が挙げられ、より好ましい範囲として、8.0~11.0が挙げられる。
 また、アスペクト比分布における標準偏差σが4.5以下であると、金ナノロッドによる近赤外領域の吸収波長がばらつきにくく、該領域における最大吸収率が、可視光領域における最大吸収率よりも相対的に大きくなることを本発明者らは見出した。
 優れた不可視性及び不可視画像の読み取り性を有する不可視画像が得られやすい。そのため、4.5以下であり、3.5以下であることが好ましく、2.5以下であることがより好ましい。下限は特に制限されないが、標準偏差σが0.5以上である。
 即ち、標準偏差σの好ましい範囲として、0.5~3.5が挙げられ、より好ましい範囲として、0.5~2.5が挙げられる。
 上記の平均値μ及び標準偏差σは後述するように、反応条件、精製条件を調整することにより制御できる。
 また、トナー粒子の重量平均粒径(D4)に対して、トナー粒子に含有される金ナノロッドの長軸長さの平均値が1/4以下であることが好ましい。ロッドの長軸の長さの平均値がトナー粒子の重量平均粒径に対して1/4以下であると、トナー粒子のサイズに対し、金ナノロッドのサイズが過大になりにくい。また、トナーの体積抵抗率が低下しにくくなるため、トナーとして適切な帯電特性を有しやすく、高品位な画質の不可視画像が得られやすい。
 また、トナーに含有される金ナノロッドの長軸長さの平均値が、50~110nmであることが好ましい。
 本開示のトナーは、本開示に係る平均値μ及び標準偏差σの範囲を満たす金ナノロッドをトナーに含有させることによって得られるが、これらの値を逸脱しない範囲において、本開示に係る平均値μ及び標準偏差σを満たさない金ナノロッド(以降、「第2の金ナノロッド」ともいう)を含有させてもよい。含有させてもよい金ナノロッドとしては例えば、アスペクト比分布の測定において、アスペクト比分布の平均値が1.6~2.6である金ナノロッドが挙げられる。また、アスペクト比分布の平均値が2.0~2.2である金ナノロッドであってもよい。該金ナノロッドの光吸収スペクトルを測定すると、そのスペクトルは、580~650nmの範囲にピークを有する。
 平均値μが6.0~13.0及び標準偏差σが0.5~4.5の範囲を満たす金ナノロッドは、光吸収スペクトルにおいて金ナノロッドの長軸に起因する大きなピークが波長1000~1600nmの範囲内に見られる。その一方、金ナノロッドの短軸に起因する小さなピークが可視光領域である530nm付近に見られ、わずかに赤く呈色する場合がある。そこで、光吸収スペクトルにおいて580~650nmの範囲にピークを有する上記の金ナノロッドを添加すると、可視光領域の光吸収特性がよりフラットな画像、即ち、より彩度が小さく、視認しにくい画像が得られやすくなる。
 <金ナノロッドの含有割合>
 トナー中の金ナノロッドの含有割合は、0.005~0.200質量%であることが好ましい。0.005質量%以上であれば、近赤外領域において優れた読み取り性を有する不可視画像が得られやすい。そのため、0.005質量%以上であることが好ましく、0.010質量%以上であることが好ましい。また、0.200質量%以下であれば、トナーの体積抵抗率が低下しづらく、高品位な画質の不可視画像が得られやすい。そのため、0.200質量%以下であることが好ましく、0.100質量%以下であることがより好ましい。
 <金ナノ粒子>
 また、トナーが、金ナノ粒子を含有しない、又はトナーに含有される金ナノロッドの個数に対して30個数%以下の割合で金ナノ粒子を含有することが好ましい。本開示において金ナノ粒子とは、金を主成分とするナノ材料であり、TEM画像においてアスペクト比が1.5未満であるもの、として取り扱う。金ナノ粒子は、金ナノロッドの調製時に生成されることがある。金ナノ粒子は、その粒径に応じた可視光領域での吸収を示す。例えば、該粒径が20nmであると、520nm付近に光吸収を示す。
 金ナノ粒子を含有しない、又は金ナノロッドの個数に対して30個数%以下であると、金ナノ粒子の吸収波長に該当する可視光領域の光吸収率が小さく、優れた不可視性を有する画像が得られやすい。より好ましくは、トナーが、金ナノ粒子を含有しない、又は上記の割合が15個数%以下である。より好ましくは、トナーが、金ナノ粒子を含有しない、又は上記の割合が10個数%以下である。さらに好ましくは、トナーが、金ナノ粒子を含有しない、又は上記の割合が5個数%以下である。
 金ナノ粒子の個数割合は後述するように反応条件、精製条件により制御することができる。
 <PEDOT-PSS>
 本開示に係るトナーは、ポリ(3,4-エチレンジオキシチオフェン)-ポリ(スチレンスルホン酸)(PEDOT-PSS)を含有してもよい。本開示において、ポリ(3,4-エチレンジオキシチオフェン)をPEDOT、ポリ(スチレンスルホン酸)をPSSとも表記する。また、本開示に係るPEDOT-PSSとは、PEDOTとPSSの複合体であると取り扱う。
 PEDOT-PSSについて説明する。共役系高分子に電子受容体(アクセプター)又は電子供与体(ドナー)を付加すると、共役系高分子の主鎖中にキャリア(正孔又は電子)が発生し、導電性を有する高分子複合体を形成する。このような高分子複合体は、一般的に導電性高分子と呼ばれる。代表的な共役系高分子としては、脂肪族共役系のポリアセチレン、芳香族共役系のポリ(p-フェニレン)、複素環共役系のポリピロール、ポリチオフェン、及びヘテロ原子共役系のポリアニリン等が挙げられる。また、アクセプターとしては、ハロゲン、ルイス酸等が挙げられ、ドナーとしては、アルカリ金属、アルカリ土類金属等が挙げられる。
 上記の導電性高分子は、キャリアのプラズマ振動に起因した赤外線吸収性を示す。即ち、共役系高分子と電子受容体又は電子供与体との高分子複合体を形成することで、赤外吸収性を示すと考えられる。また、導電性高分子の赤外線吸収性は、キャリア密度に比例するため、高い導電性を有する導電性高分子ほど高い赤外線吸収性を示す。
 本開示に係るトナーに含有される、PEDOT-PSSは、PEDOTが共役系高分子であり、PSSがアクセプターとして機能し、これらで高分子複合体を形成するため、高い赤外吸収性を示す。
 図2にPEDOT-PSSの光吸収スペクトルを示す。PEDOT-PSSは、赤外線領域にキャリアのプラズマ振動に基づく大きい光吸収帯を有している。そのため、トナーがPEDOT-PSSを含有することで、近赤外領域における優れた読み取り性を有する画像が得られやすい。
 また、図2において、キャリアのプラズマ振動に起因する光吸収は、赤外線領域のみならず、500~800nmの可視光領域にまで及ぶ。この可視光領域にまで及ぶ光吸収によって、平均値μが6.0~13.0及び標準偏差σが0.5~4.5の範囲を満たす金ナノロッドの短軸に起因する530nm付近の小さなピークがよりフラットになり、彩度が小さく、視認しにくい画像が得られやすくなる。
 PEDOT-PSSは、例えば、PSS存在下において、3,4-エチレンジオキシチオフェンの酸化重合を行うことにより製造することもできる。また、一般市販品(例えばデナトロンPT-300(商品名)、ナガセケムテックス社製)を入手し使用することもできる。
 <金ナノロッドの調製>
 金ナノロッドを調製する方法としては、電解法(Y.Yuhoka,J.Phys.Chem.B,101,6661(1997))、化学的合成法(N.R.Janahoka,J.Phys.Chem.B, 105, 4065 (2001))などの方法が挙げられる。
 例えば、四級アンモニウム塩である臭化セチルトリメチルアンモニウム(CTAB)を過剰に含む水溶液中で金イオンを還元して金ナノロッド粒子を合成する方法を用いることができる。当該方法の詳細については、例えば、上記の特開2006-118036号公報、特開2006-169544号公報、Chem. Commun. (2003), pp. 2376-2377などを参照することができる。この方法では、まず、塩化金酸四水和物の水溶液にCTAB水溶液を加え、水素化ホウ素ナトリウムを添加することで、シード粒子を有する溶液を調製する。その溶液に対して、硝酸銀、塩化金酸四水和物、L-アスコルビン酸、CTABを混合した溶液を添加し一定時間保持する、または少量ずつ該溶液を添加することで、核としてのシード粒子を異方的に成長させやすく、金ナノロッドが得られる。
 また、シード粒子を成長させる際に、塩化ベンジルジメチルヘキサデシルアンモニウムを加えることで、アスペクト比の大きい金ナノロッドを得ることができる。他にも、一段階目で強い還元剤である水素化ホウ素ナトリウムによる還元を行い、続いて弱い還元剤であるトリエチルアミンによる還元を行うことによっても、アスペクト比の大きい金ナノロッドを得ることができる。
 また、必要に応じて金ナノロッドを精製してアスペクト比分布を調整して用いることができる。精製には、一般に知られている方法のいずれも使用することができるが、例えば密度勾配超遠心分離法を用いることができる。当該方法の詳細については、例えばLi.S他、Nano Res.4,723-728(2011)などを参照することができる。具体的には、まず濃度の異なるショ糖とCTABの混合溶液を用意し、遠心チューブ内に濃度勾配順に重層する。その上に金ナノロッドのサンプルを重層し、遠心することにより、密度や大きさによる分離を行う。このように分離、精製することで、上記の標準偏差σが小さくなり、よりアスペクト比分布を狭い金ナノロッドが得られる。
 <トナー及びトナー粒子>
 トナー粒子は、結着樹脂を含有することが好ましい。結着樹脂は特に限定されず、具体的には、スチレンアクリル系樹脂、ポリエステル樹脂、エポキシ樹脂等が例示でき、これらは単独で、あるいは混合して使用できる。また、結着樹脂は、分子構造が線状の樹脂、分岐状の樹脂、架橋された樹脂の何れでも良く、これらの混合物でも良い。
 <可視光領域における光の吸収率>
 本開示に係るトナーを用いて、トナーの載り量を0.30mg/cmとして形成した定着画像の分光分析において、波長400nm以上800nm以下の範囲における光の吸収率の最大値が、10%以下であることが好ましい。この波長範囲は可視領域に対応する波長領域であり、光の吸収率が10%以下であれば、実質的に肉眼で認識しにくくなり、可視光領域における優れた不可視性を有する画像が得られる。
 <可視光領域における光の透過率>
 また、画像の不可視性の観点から、本開示に係るトナーを用いて、トナーの載り量を0.30mg/cmとして形成した定着画像の分光分析において、波長400nm以上800nm以下の範囲における光の透過率の最大値が、90%以上であることが好ましい。
 <近赤外領域における光の吸収率>
 また、トナーの載り量を0.30mg/cmとして形成した定着画像の分光分析において、波長900nm以上1800nm以下の範囲における光の吸収率の最大値が5%以上であることが好ましい。この波長範囲は近赤外領域に対応する波長領域であり、光の吸収率が5%以上であれば、InGaAsカメラのような近赤外線カメラなどを用いて不可視画像を明瞭に読み取りやすい。より好ましくは10%以上である。
 また、実際に不可視トナーとして用いる場合は、900nmから1800nmに感度を持つセンサ(InGaAsセンサ等)を搭載したカメラ等を用いることで、不可視領域の光吸収を可視化することができる。
 可視光領域及び赤外領域における光の吸収率は金ナノロッドのアスペクト比分布を調整することにより制御できる。
 <画像の読み取り方法>
 本開示に係るトナーを用いて形成された画像の読み取り方法は特に制限されない。本開示に係るトナーを用いて形成された画像は、近赤外領域の波長を吸収しやすいため、近赤外線センサを搭載した装置を用いる画像読み取り方法であることが好ましい。より好ましくは、InGaAsセンサを搭載した装置を用いることであり、さらに好ましくは、InGaAsカメラを用いることである。また、波長900~2500nmの光を用いる画像読み取り方法であることが好ましい。より好ましくは900~1800nmである。
 <トナー粒子の重量平均粒径(D4)>
 トナー粒子の重量平均粒径(D4)は、4.0μm以上9.0μm以下であることが好ましく、5.0μm以上7.0μm以下であることがさらに好ましい。この範囲であると、高精細な画像形成に有利である。
 <トナーの製造方法>
 トナーの製造方法は特に限定されないが、例えば下記のトナーの製造方法(1)~(3)が例示できる。
(1)粉砕法
 粉砕法によりトナーを製造する際には、まず、金ナノロッドを含む金属ナノロッドを分散媒である結着樹脂や他の添加剤とともにヘンシェルミキサー、ボールミル等の混合機により充分混合する。その混合物をニーダー、エクストルーダー等の熱及び機械的剪断力による熱混練機を用いて溶融混練して樹脂類を互いに相溶させる。溶融混練物を冷却固化後に固化物を粉砕し、粉砕物を分級して目的とする粒径のトナー粒子を得る。
(2)懸濁重合法
 懸濁重合法では、例えば、金ナノロッドを含む金属ナノロッド、結着樹脂を形成しうる重合性単量体、必要に応じて重合開始剤、架橋剤、荷電制御剤及びその他の添加剤を、均一に分散させて重合性単量体組成物を得る。その後、分散安定剤を含有する連続層(例えば水相)中に、適当な攪拌器を用いて、得られた重合性単量体組成物を分散・造粒し、重合開始剤を用いて重合反応を行い、所望の粒径を有するトナー粒子を得る。
(3)乳化凝集法
 乳化凝集法によりトナーを製造する際には、まず金ナノロッドを含む金属ナノロッド、結着樹脂、他の添加剤などの各材料を、分散安定剤を含有する水系媒体中で分散混合する。水系媒体中には、界面活性剤が添加されていてもよい。その後、凝集剤を添加することによって所望のトナーの粒径となるまで凝集させ、その後又は凝集と同時に、樹脂微粒子間の融着を行う。さらに必要に応じて、熱による形状制御を行うことにより、トナー粒子を形成する。その後、濾過洗浄工程、乾燥工程を経て、トナー粒子を得る。
 また、必要に応じて、一連のトナー製造工程の中に金属ナノロッドを結着樹脂中に分散する工程を設けてもよい。
 金属ナノロッドを結着樹脂中に分散する方法としては、例えば、トナー製造工程中においてマスターバッチを用いる方法が例示できる。即ち、金属ナノロッドが高濃度となるように結着樹脂の一部と混合し、高いシェアをかけながら溶融混練して金属ナノロッドが微分散したマスターバッチを製造する。そして、その後、マスターバッチを残りの結着樹脂で希釈しながら溶融混練する方法である。マスターバッチを製造する際に好適に用いられる溶融混練装置としては、ニーダー、バンバリーミキサー、2本ロール、3本ロールミル等が例示でき、これらは単独、あるいは組み合わせて使用できる。希釈混練する際に用いる溶融混練装置としては、二軸混練機等が例示できる。
 また、必要に応じて、一連のトナー製造中に金属ナノロッドの凝集を抑制する工程を設けてもよい。
 トナー製造中に金属ナノロッドの凝集を抑制する方法としては、例えば、溶融混練工程の後の冷却を急速に行う方法が例示できる。例えば、水冷した金属ベルト上に溶融混練物をシート状に展延することで、溶融混練物を急速に冷却することが可能である。急速に冷却することで、冷却中に生じる金属ナノロッドの凝集を抑制することができる。急速冷却するための好適な冷却装置としては、「高粘度用NRダブル・ベルトクーラー(日本ベルティング社製)」、「冷却固化機ベルトドラムフレーカ(日本コークス工業社製)」、「冷却固化装置ドラムフレーカ(カツラギ工業社製)」等が例示できる。
 金属ナノロッドを結着樹脂中に分散する工程と、金属ナノロッドの凝集を抑制する方法は組み合わせて用いてもよい。
 <各種添加剤>
 トナーは必要により、ワックス、荷電制御剤、及び外添剤などから選ばれる1種以上の添加剤を含有してもよい。また、本開示に係るトナーは、定着画像を可視画像とさせるような着色成分を含有しないことが好ましい。
 <ワックス>
 ワックスとしては特に限定されないが、無色あるいは淡色のワックスが好ましく、以下のものが挙げられる。
 炭化水素ワックス、エステルワックス、アミドワックス、高級脂肪族アルコール、高級脂肪酸など。ワックスは1種を単独で用いても、複数種を併用してもよい。
 <荷電制御剤>
 荷電制御剤としては特に限定されないが、無色あるいは淡色の荷電制御剤が好ましく、以下のものが挙げられる。
 芳香族オキシカルボン酸、芳香族オキシカルボン酸の金属化合物、ホウ素化合物、4級アンモニウム塩、カリックスアレーン、スルホン酸(塩)基を有する樹脂、スルホン酸エステル基を有する樹脂など。荷電制御剤は1種を単独で用いても、複数種を併用してもよい。
 <外添剤>
 外添剤としては特に限定されないが、無色あるいは淡色のものが好ましく、以下のものが挙げられる。
 シリカ、アルミナ、酸化チタン、チタン酸ストロンチウム、窒化ケイ素、ポリテトラフルオロエチレン、ステアリン酸亜鉛など。また、外添剤の表面が疎水化処理されていてもよい。
 また、外添剤の一次粒子の平均粒径は、トナー粒子の重量平均粒径(D4)の1/10以下の粒径であることが好ましい。
 <現像剤>
 トナーは、一成分現像剤として使用することもできるが、キャリアと混合して二成分現像剤として使用してもよい。キャリアとしては、例えば鉄、フェライト、マグネタイトなどの金属、それらの金属とアルミニウム、鉛などの金属との合金など、公知の材料からなる磁性粒子を用いることができる。また、キャリアの表面を樹脂などの被覆剤で被覆したコートキャリアや、バインダー樹脂中に磁性粒子を分散した樹脂分散型キャリアを用いてもよい。キャリアの体積平均粒径は、15μm以上100μm以下が好ましく、25μm以上80μm以下がより好ましい。
 <各種測定方法等>
 各種物性測定は、以下のようにして行う。
 <トナー粒子の重量平均粒径(D4)の測定方法>
 トナー粒子の重量平均粒径(D4)は、以下のようにして算出する。
 測定装置としては、100μmのアパーチャーチューブを備えた細孔電気抵抗法による精密粒度分布測定装置「コールター・カウンター Multisizer 3」(登録商標、ベックマン・コールター社製)を用いる。測定条件の設定及び測定データの解析は、付属の専用ソフト「ベックマン・コールター Multisizer 3 Version3.51」(ベックマン・コールター社製)を用いる。なお、測定は実効測定チャンネル数2万5千チャンネルで行う。
 測定に使用する電解水溶液は、特級塩化ナトリウムをイオン交換水に溶解して濃度が約1質量%となるようにしたもの、例えば、「ISOTON II」(ベックマン・コールター社製)を用いることができる。
 なお、測定、解析を行う前に、以下のように上記専用ソフトの設定を行う。
 上記専用ソフトの「標準測定方法(SOM)を変更」画面において、コントロールモードの総カウント数を50,000粒子に設定し、測定回数を1回、Kd値は「標準粒子10.0μm」(ベックマン・コールター社製)を用いて得られた値を設定する。「閾値/ノイズレベルの測定ボタン」を押すことで、閾値とノイズレベルを自動設定する。また、カレントを1600μAに、ゲインを2に、電解液をISOTON IIに設定し、「測定後のアパーチャーチューブのフラッシュ」にチェックを入れる。上記専用ソフトの「パルスから粒径への変換設定」画面において、ビン間隔を対数粒径に、粒径ビンを256粒径ビンに、粒径範囲を2μmから60μmまでに設定する。
 具体的な測定法は以下のとおりである。
(1)Multisizer 3専用のガラス製250mL丸底ビーカーに上記電解水溶液約200mLを入れ、サンプルスタンドにセットし、スターラーロッドの撹拌を反時計回りで24回転/秒にて行う。そして、専用ソフトの「アパーチャーのフラッシュ」機能により、アパーチャーチューブ内の汚れと気泡を除去しておく。
(2)ガラス製の100mL平底ビーカーに上記電解水溶液約30mLを入れる。この中に分散剤として「コンタミノンN」(非イオン界面活性剤、陰イオン界面活性剤、有機ビルダーからなるpH7の精密測定器洗浄用中性洗剤の10質量%水溶液、富士フィルム和光純薬製)をイオン交換水で約3質量倍に希釈した液を約0.3mL加える。
(3)発振周波数50kHzの発振器2個を、位相を180度ずらした状態で内蔵し、電気的出力120Wの超音波分散器「Ultrasonic Dispersion System Tetora150」(日科機バイオス社製)を準備する。超音波分散器の水槽内に約3.3lのイオン交換水を入れ、この水槽中にコンタミノンNを約2mL添加する。
(4)上記(2)のビーカーを上記超音波分散器のビーカー固定穴にセットし、超音波分散器を作動させる。そして、ビーカー内の電解水溶液の液面の共振状態が最大となるようにビーカーの高さ位置を調整する。
(5)上記(4)のビーカー内の電解水溶液に超音波を照射した状態で、トナー粒子約10mgを少量ずつ上記電解水溶液に添加し、分散させる。そして、さらに60秒間超音波分散処理を継続する。なお、超音波分散にあたっては、水槽の水温が10℃以上40℃以下となる様に適宜調節する。
(6)サンプルスタンド内に設置した上記(1)の丸底ビーカーに、ピペットを用いてトナー粒子を分散した上記(5)の電解質水溶液を滴下し、測定濃度が約5%となるように調整する。そして、測定粒子数が50,000個になるまで測定を行う。
(7)測定データを装置付属の上記専用ソフトにて解析を行い、重量平均粒径(D4)を算出する。なお、上記専用ソフトでグラフ/体積%と設定したときの、「分析/体積統計値(算術平均)」画面の「平均径」が重量平均粒径(D4)である。
 <金属ナノロッド分散液中の金属含有量の定量方法>
 金属ナノロッド分散液中の金属含有量の定量は、JIS K 0116-2014に準じて、ICP発行分光分析法により行うことができる。まず、金属ナノロッド分散液をホットプレートで60℃に加熱して乾固ささる。そこに王水を加え、ETHOS PRO(マイルストーンゼネラル社製)等を用いてマイクロウェーブ酸分解を行う。その液体をCIROS CCD(SPECTRO社製)によりICP発光分光分析を行うことにより、金属含有量を定量することができる。
 <トナーに含有される金ナノロッドのアスペクト比分布の測定方法>
 トナーに含有される金ナノロッドのアスペクト比分布を測定するには、まず、トナーに含有される金ナノロッドを分離して回収する。
 その手順はまず、結着樹脂を溶解することのできる溶媒を用いてトナーを溶解する。次に、遠心分離により金ナノロッドを沈降させ、上澄み液を分離する。新たに溶媒を加えて再び遠心分離を行い、上澄み液を分離する。この操作を何度か繰り返すことで洗浄し、最終的に溶媒を乾燥除去することで、金ナノロッドをトナーから分離して回収することができ、回収した金ナノロッドをTHF等の溶媒に再分散させたものを測定試料とする。
 溶媒に分散させた測定試料を支持膜に滴下して乾燥させ、透過型電子顕微鏡「Technai F30(FEI社製)」等によるTEM観察を行う。観察された金ナノロッドの長軸と短軸の長さを、photoshop等の画像処理ソフトにより求めることで、アスペクト比分布の平均値、標準偏差、及び金ナノロッドの長軸長さの平均値を求めることができる。
 <トナーに含有される、金ナノロッドに対する、金ナノ粒子の個数比率の測定方法>
 トナーに含有される金ナノ粒子の、金ナノロッドに対する個数比率の測定は、上記のTEM観察により、金ナノ粒子と金ナノロッドの個数をそれぞれ数え上げ、その比率を算出することで行うことができる。
 <トナーに含有される金ナノロッドの含有量の測定方法>
 トナーに含有される金ナノロッドの含有量(質量%)は、蛍光X線分析により定量する。測定は、JIS K 0119-1969に準ずるが、具体的には以下のとおりである。
 測定装置としては、波長分散型蛍光X線分析装置「Axios」(PANalytical社製)と、測定条件設定及び測定データ解析をするための付属の専用ソフト「SuperQ ver.4.0F」(PANalytical社製)を用いる。なお、X線管球のアノードとしてはRhを用い、測定雰囲気は真空、測定径(コリメーターマスク径)は27mm、測定時間10秒とする。また、軽元素を測定する場合にはプロポーショナルカウンタ(PC)、重元素を測定する場合にはシンチレーションカウンタ(SC)で検出する。
 測定サンプルとしては、専用のプレス用アルミリングの中にトナー4gを入れて平らにならし、錠剤成型圧縮機「BRE-32」(前川試験機製作所製)を用いて、20MPaで、60秒間加圧し、厚さ2mm、直径39mmに成型したペレットを用いる。
 上記条件で測定を行い、得られたX線のピーク位置をもとに元素を同定し、単位時間あたりのX線光子の数である計数率(単位:kcps)を測定する。そして、別途に作成した検量線を用いて、トナーに含有される金ナノロッドの含有量を算出する。なお、検量線の作成に際しては、スチレン系樹脂の微粉砕物と所定量の金ナノロッドとを均一になるようにコーヒーミルを用いて混合し、上記と同様にして作製したペレットを測定サンプルとして用いる。
 以下、実施例により本開示をさらに詳細に説明するが、これらにより本開示は限定されるものではない。また、実施例中の測定結果は、上記した測定方法で測定した。
 [金ナノロッド分散液Aの調製例]
 先ず、シード粒子溶液を調製した。0.0005mol/Lの塩化金酸四水和物(キシダ化学株式会社)水溶液500mLと0.2mol/Lの臭化セチルトリメチルアンモニウム(キシダ化学株式会社)水溶液500mLを混合した。この水溶液に0.01mol/Lの水素化ホウ素ナトリウム(東京化成工業株式会社)60mLを添加することによって、シード粒子溶液(溶液A)を得た。
 続いて、0.15mol/L塩化ベンジルジメチルヘキサデシルアンモニウム(東京化成工業株式会社)水溶液500mLに臭化セチルトリメチルアンモニウム10gを溶解した。この二種類の界面活性剤を含有した水溶液に0.004mol/Lの硝酸銀水溶液20mLを添加した。この水溶液に0.001mol/L塩化金酸四水和物水溶液500mLを添加した後、更に、0.078mol/LのL-アスコルビン酸水溶液(キシダ化学株式会社)7mLを添加した。この溶液を溶液Bとした。
 続いて、0.15mol/L塩化ベンジルジメチルヘキサデシルアンモニウム(東京化成工業株式会社)水溶液500mLに臭化セチルトリメチルアンモニウム10gを溶解した。この二種類の界面活性剤を含有した水溶液に0.004mol/Lの硝酸銀水溶液20mLを添加した。この水溶液に0.0005mol/L塩化金酸四水和物水溶液500mLを添加した後、更に、0.078mol/LのL-アスコルビン酸水溶液(キシダ化学株式会社)3.6mLを添加した。この溶液を溶液Cとした。
 溶液Bに溶液A1.2mLを滴下し、続いて、溶液Cを1.0mL/20分の速度で2.0mL添加し、核としてのシード粒子を異方的に成長させた。10,000×gで5分遠心分離後、金ナノロッドが0.02質量%となるようにTHFに再分散させ、金ナノロッド分散液(分散液A)を得た。分散液Aに含有される金ナノロッドの物性を表1に示す。
 [金ナノロッド分散液B~Jの調製例]
 金ナノロッド分散液Aの製造例において、溶液Cの量、下記の精製工程の有無を表1に示すように変更した以外は、金ナノロッド分散液Aの調製例と同様の操作を行い、分散液B~Jを得た。
 (精製工程)
 得られた金ナノロッド分散液6mLを、10000×gで5分間遠心し、得られたペレットを0.01MのCTAB水溶液0.05mLに再懸濁し、金ナノロッド懸濁液を得た。また、0.01MのCTAB溶液に、10質量%、15質量%、20質量%、25質量%となるようにショ糖を加えた溶液をそれぞれ調製した。これらのショ糖を含有する溶液を15mLポリアロマーチューブ内に、ショ糖濃度が高い順に3mLずつ重ねて入れ、最後に上記の金ナノロッド懸濁液を重層した。そして、高速冷却遠心機 Avanti JXN-30を用いて25℃、10750×gで15分間遠心処理を行った。遠心処理後、300μLずつフラクションに分け、金ナノロッドが含有される各フラクションのTEM画像を観察した。各フラクションのうち、TEM画像から算出されるアスペクト比の平均値μと標準偏差σが所望の値であるフラクションを10000×gで5分間遠心し、その沈殿物である金ナノロッドを回収した。そして回収した金ナノロッドの含有割合が0.02質量%となるようにTHFで再分散させた。
 <金ナノロッド分散液Kの調製例>
 [シード粒子溶液の調製]
 先ず、上記と同様のシード粒子溶液(溶液A)を調製した。
 続いて、別容器に、0.2mol/Lの臭化セチルトリメチルアンモニウム水溶液500mLに0.004mol/L硝酸銀(キシダ化学株式会社)水溶液を5.0mL添加した。この水溶液に0.001mol/Lの塩化金酸四水和物水溶液500mLを添加した後、更に、0.078mol/LのL-アスコルビン酸水溶液(キシダ化学株式会社)7mLを添加した。この溶液を溶液Bとした。
 そして、溶液Bに溶液Aを1.2mL滴下した。この溶液を30℃で20分間保持し、核としてのシード粒子を異方的に成長させ、粒子分散液K1を得た。
 [精製工程]
 分散液Aの製造例における精製工程と同様の操作を、上記で得られた粒子分散液K1を用いて行い、分散液Kを調製した。分散液Kに含有される金ナノロッド(第2の金ナノロッド)の物性を表1に示す。また、分散液Kに含まれる金ナノロッドの光吸収スペクトルを測定すると、そのスペクトルにおける光吸収のピーク波長は、610nmであった。
Figure JPOXMLDOC01-appb-T000001
 [飽和ポリエステル1分散液の製造例]
・飽和ポリエステル1(エチレンオキサイド変性ビスフェノールAとテレフタル酸との重縮合物、ガラス転移温度60℃、重量平均分子量29000、数平均分子量6000) 20.0質量部
・THF 80.0質量部
 上記材料を十分に混合し、飽和ポリエステル1分散液を得た。
 [トナー1の製造例]
・金ナノロッド分散液A 33.0質量部
・飽和ポリエステル1分散液 67.0質量部
 上記材料をマグネチックスターラーを用いてよく攪拌し、ヘプタン(キシダ化学社製)に滴下することで再沈殿させた。沈殿物を吸引濾過により回収することで金ナノロッドと飽和ポリエステルの混合物を粉末状態で得た。この混合物100質量部にエステルワックス(DSC測定における最大吸熱ピークのピーク温度=70℃、Mn=704)5.0質量部を加え、FMミキサ(日本コークス工業社製)を用いて上記の材料を十分に混合した後、温度130℃に設定したPCM-30型(池貝社製)を用いて溶融混練し、混練物を得た。得られた混練物を水冷した金属ベルト上にシート状に展延して急冷後、ハンマーミルにて1mm以下に粗粉砕し、粗砕物を得た。得られた粗砕物をT-250(フロイント・ターボ社製)にて微粉砕した。さらに200TSP(ホソカワミクロン社製)を用いて、分級を行い、重量平均粒径が5.9μmのトナー粒子1を得た。
 <外添工程>
 得られたトナー粒子1を100.0質量部と、ヘキサメチルジシラザンで表面処理された疎水性シリカ微粉体(一次粒子の個数平均粒径7nm)1.0質量部とをFMミキサ(日本コークス工業社製)を用いて混合し、トナー1を得た。
 [トナー2~13、15~18、21、22の製造例]
 金ナノロッド分散液の種類及び量、及び飽和ポリエステル分散液の量を表2に示すように変更した以外は、トナー1の製造例と同様の操作を行い、トナー2~13、15~18、21、22を得た。トナー2~13、15~18、21、22の物性を表2に示す。
 [トナー14の製造例]
 <水系媒体の調製工程>
 反応容器にイオン交換水1000.0質量部、リン酸ナトリウム・12水和物14.0質量部を投入し、窒素パージしながら65℃で1時間保温した。高速撹拌機「T.K.ホモミクサー」(プライミクス社製)を用いて、12000rpmにて攪拌した。そこにイオン交換水20.0質量部に9.2質量部の塩化カルシウム・2水和物を溶解した塩化カルシウム水溶液を一括投入し、微細な分散安定剤を含む水系媒体を調製した。
 <重合性単量体組成物の調製工程>
 下記材料を混合し、混合物を得た。
・金ナノロッド分散液I 44.8質量部
・スチレン 128.9質量部
・n-ブチルアクリレート 34.0質量部
・サリチル酸アルミニウム化合物(オリエント化学工業社製 ボントロンE-88) 1.0質量部
・飽和ポリエステル2(プロピレンオキサイド変性ビスフェノールAとイソフタル酸との重縮合物、ガラス転移温度65℃、重量平均分子量10000、数平均分子量6000) 5.0質量部
・エステルワックス(融点73℃) 10.0質量部
・ジビニルベンゼン 0.1質量部
 この混合物を65℃に保温し、T.K.ホモミクサーを用いて、500rpmにて均一に溶解、分散し、重合性単量体組成物を調製した。
 <造粒工程>
 上記の分散安定剤を含む水系媒体の温度を70℃とし、T.K.ホモミクサーの回転数を12000rpmに保ちながら、水系媒体中に上記の重合性単量体組成物を投入し、重合開始剤であるt-ブチルパーオキシピバレート10.0質量部を添加した。その後、回転数12000rpmを維持しつつ、10分間造粒した。
 <重合工程>
 造粒工程の後、攪拌機をプロペラ撹拌羽根に換え150rpmで攪拌しながら70℃を保持して5時間重合を行い、85℃に昇温して2時間加熱することで重合反応を完結させた。
 <洗浄、乾燥工程>
 重合工程終了後、液温を室温まで冷却し、希塩酸を加えてpH1.5に調整した後、3時間撹拌した。その後、濾過、洗浄を繰り返し、トナーケーキを得た。
 得られたトナーケーキを解砕後、気流乾燥機にて乾燥を行い、さらにコアンダ効果を利用した多分割分級機を用いて微粗粉をカットして、重量平均粒径(D4)が6.3μmのトナー粒子14を得た。
 <外添工程>
 得られたトナー粒子14を100.0質量部と、ヘキサメチルジシラザンで表面処理された疎水性シリカ微粉体(一次粒子の個数平均粒径7nm)1.0質量部とを高速混合機「FMミキサ」(日本コークス工業社製)を用いて混合し、トナー14を得た。トナー14の物性を表2に示す。
 [トナー19の製造例]
 トナー1の製造例において、金ナノロッド分散液Aのかわりに金ナノロッド分散液Dを使用し、さらに上記PEDOT-PSS分散液を33.0質量部加えた以外は、トナー1の製造例と同様の操作を行い、トナー19を得た。トナー19の物性を表2に示す。
 [トナー20の製造例]
 トナー1の製造例において、金ナノロッド分散液Aのかわりに金ナノロッド分散液FHを使用し、さらに上記の分散液K(第二の金ナノロッド分散液)を2.0質量部加えた以外は、トナー1の製造例と同様の操作を行い、トナー20を得た。トナー20の物性を表2に示す。また、トナー20に含有される金ナノロッドのアスペクト比分布を測定すると、アスペクト比分布における平均値μが7.6、標準偏差σが2.1であった。
Figure JPOXMLDOC01-appb-T000002
 表2中の長軸長さの平均値とは、トナーに含有される金ナノロッドの長軸長さの平均値である。また、金ナノ粒子の個数割合とは、トナーに含有される金ナノロッドの個数に対する、金ナノ粒子の個数割合である。
 <実施例1>
 <近赤外領域における画質評価>
 画像形成装置として、現像コントラストを自由に変更できるように改造したカラープリンター(商品名:LBP652C、キヤノン社製)を使用し、ブラック現像器内のトナーを、トナー1と入れ替えた。出力用紙としてA4用紙(商品名:GF-C081、キヤノンマーケテイングジャパン社)を使用し、温度25℃、相対湿度60%の環境下で画像を出力した。
 ブラック現像器を用いて、A4用紙の中央部に細線画像(ライン数20本、ライン幅100μm、間隔500μm、ライン長さ20mm)を形成した。次に、細線画像を形成したA4用紙とイエロー現像器を用いて、上記の細線画像を遮蔽するようにイエローのベタ画像を形成し、評価画像を得た。
 次に、図1に示すように光源202とカメラ203を設置し、評価画像201の観察を行った。即ち、机上に評価画像を静置し、評価画像に対して15°の角度で約1m離れたところから光源202を用いて赤外線を照射した。また、評価画像の真上15cmのところにカメラ203を設置し、撮影した。光源202としては、可視光カットフィルターユニットを取り付けたハロゲンランプ光源(商品名:PCS-UHX-150、日本ピー・アイ社製)を使用した。また、カメラ203としては、800nm以下の波長成分をカットするフィルタをレンズ部に装着した近赤外カメラ(商品名:NVU3VD、アイアールスペック社製、InGaAsカメラ)を使用した。該近赤外カメラの分光感度波長域は、970~1650nmであった。
 撮影した画像をディスプレーに表示し、評価画像の中心部に形成した20本の細線について、全長に渡って途切れることなく、且つ、明確に視認できる細線の本数をカウントし、その本数で細線画像の画質を評価した。結果を表3に示す。該本数が13本以上であるものを、効果が得られているものと判断した。
 <可視光領域における不可視性の評価>
 <波長400nm以上800nm以下の範囲における光の吸収率の測定方法>
 上記の画像形成装置と上記のA4用紙を用い、トナー1の載り量が0.30mg/cmとなるように1cm×10cmの長方形の画像を形成し、サンプル画像を得た。
 上記のサンプル画像について、光度計を用い、波長400nm以上800nm以下の範囲の分光分析測定を行い、その測定における最大の吸収率をサンプル画像の測定値(%)とした。光度計としては、積分球付属装置(商品名:ISR-240A、島津製作所製)を取り付けた紫外可視近赤外分光光度計(商品名:UV-3600、島津製作所製)。ブランクとして紙単体(画像が形成されていない紙)の分光分析測定も行った。
 サンプル画像の測定値(%)から、ブランクの測定値(%)を差し引いた値を、可視光吸収率(%)とし、該可視光吸収率(%)を用いてトナーの不可視性を評価した。結果を表3に示す。可視光吸収率が11%の画像を目視で確認したところ、不可視画像として利用できる程度であったが、可視光吸収率が13%の画像を目視で確認したところ、不可視画像として利用できる程度を超えていたと判断した。
 <近赤外領域における読み取り性の評価>
 <波長900nm以上1800nm以下の範囲における光の吸収率の測定方法>
 上記の不可視性の評価で用いたサンプル画像について、紫外可視近赤外分光光度計(商品名:MV-3300、日本分光社製)を使用して、波長900nm以上1800nm以下の範囲の分光分析測定を行った。その測定における最大の吸収率をサンプル画像の測定値とした。また、ブランクとして紙単体の分光分析測定も行い、サンプル画像の測定値からブランクの測定値を差し引いた値を赤外吸収率(%)とした。結果を表3に示す。赤外吸収率が3%の画像を上記のカメラを用いて確認したところ、不可視画像として読み取れる程度であったが、赤外吸収率が2%の画像を上記のカメラを用いて確認したところ、不可視画像として読み取れる程度を超えていたと判断した。また、上記の可視光吸収率(%)に対する、赤外吸収率(%)の比が、1.50以上であったものを、本開示の効果が得られているものと判断した。結果を表3に示す。
 <波長400nm以上800nm以下の範囲における光の透過率の測定方法>
 上記の画像形成装置を用い、トナー1の載り量が0.30mg/cmとなるようにPETフィルム(商品名:ルミラーT60(東レ製))上に1cm×10cmの長方形の画像を形成し、サンプル画像を得た。
 上記のサンプル画像について、上記の光度計を用い、波長400nm以上800nm以下の範囲の分光分析測定を行い、その測定における最大の透過率をサンプル画像の測定値(%)とした。ブランクとしてPETフィルム単体(画像が形成されていないPETフィルム)の分光分析測定も行った。サンプル画像の測定値(%)から、ブランクの測定値(%)を差し引いた値を可視光透過率(%)とした。結果を表3に示す。
 <実施例2~20、及び比較例1、2>
 表3に記載のように、トナー1をトナー2~22に変更した以外は、実施例1と同様の評価を行った。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。
 本願は、2021年1月29日提出の日本国特許出願特願2021-012778と2021年9月16日提出の日本国特許出願特願2021-151226を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。

Claims (14)

  1.  トナー粒子を有するトナーであって、
     前記トナーは、金ナノロッドを含有し、
     前記トナー中に含有される金ナノロッドのアスペクト比分布を測定したとき、
      前記アスペクト比分布における平均値μが6.0~13.0であり、
      前記アスペクト比分布における標準偏差σが0.5~4.5であることを特徴とするトナー。
  2.  前記標準偏差σが0.5~2.5である、請求項1に記載のトナー。
  3.  前記平均値μが8.0~11.0であり、前記標準偏差σが0.5~2.5である、請求項1又は2に記載のトナー。
  4.  前記トナー中に含有される金ナノロッドの含有割合が、0.005~0.200質量%である、請求項1~3の何れか一項に記載のトナー。
  5.  前記トナーが、
      金ナノ粒子を含有しない、又は
      前記トナーに含有される金ナノロッドの個数に対して、15個数%以下の割合で金ナノ粒子を含有する、請求項1~4の何れか一項に記載のトナー。
  6.  前記トナー粒子の重量平均粒径(D4)が、4.0μm以上9.0μm以下である、請求項1~5の何れか一項に記載のトナー。
  7.  前記トナー粒子の重量平均粒径(D4)に対して、前記トナーに含有される金ナノロッドの長軸長さの平均値が1/4以下である、請求項1~6の何れか一項に記載のトナー。
  8.  前記トナーに含有される金ナノロッドの長軸長さの平均値が、50~110nmである、請求項1~7の何れか一項に記載のトナー。
  9.  前記トナーが、さらにポリ(3,4-エチレンジオキシチオフェン)-ポリ(スチレンスルホン酸)(PEDOT-PSS)を含有する、請求項1~8の何れか一項に記載のトナー。
  10.  前記トナーを用いて、トナーの載り量を0.30mg/cmとして形成した定着画像の分光分析において、波長400nm以上800nm以下の範囲における光の吸収率の最大値が、10%以下である
     請求項1~9の何れか一項に記載のトナー。
  11.  前記トナーを用いて、トナーの載り量を0.30mg/cmとして形成した定着画像の分光分析において、波長900nm以上1800nm以下の範囲における光の吸収率の最大値が5%以上である
     請求項1~10の何れか一項に記載のトナー。
  12.  前記トナーを用いて、トナーの載り量を0.30mg/cmとして形成した定着画像の分光分析において、波長400nm以上800nm以下の範囲における光の透過率の最大値が、90%以上である
     請求項1~11の何れか一項に記載のトナー。
  13.  前記トナーが、不可視画像形成用トナーである、請求項1~12の何れか一項に記載のトナー。
  14.  画像の読み取り方法であって、
     請求項1~13の何れか一項に記載のトナーを用いて形成された画像を、近赤外線センサを搭載した装置を用いて読み取る工程を有する、画像の読み取り方法。
PCT/JP2022/002904 2021-01-29 2022-01-26 トナー及び画像の読み取り方法 WO2022163709A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280012088.1A CN116762043A (zh) 2021-01-29 2022-01-26 调色剂和图像读取方法
EP22745928.6A EP4286948A1 (en) 2021-01-29 2022-01-26 Toner and method for reading image
US18/358,783 US20230384703A1 (en) 2021-01-29 2023-07-25 Toner and image reading method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-012778 2021-01-29
JP2021012778 2021-01-29
JP2021151226A JP2022117406A (ja) 2021-01-29 2021-09-16 トナー及び画像の読み取り方法
JP2021-151226 2021-09-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/358,783 Continuation US20230384703A1 (en) 2021-01-29 2023-07-25 Toner and image reading method

Publications (1)

Publication Number Publication Date
WO2022163709A1 true WO2022163709A1 (ja) 2022-08-04

Family

ID=82653443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002904 WO2022163709A1 (ja) 2021-01-29 2022-01-26 トナー及び画像の読み取り方法

Country Status (3)

Country Link
US (1) US20230384703A1 (ja)
EP (1) EP4286948A1 (ja)
WO (1) WO2022163709A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006070300A (ja) * 2004-08-31 2006-03-16 Mitsubishi Materials Corp 金属微粒子含有組成物、およびその用途
JP2006118036A (ja) 2004-07-08 2006-05-11 Mitsubishi Materials Corp 金属微粒子とその製造方法とその含有組成物ならびにその用途
JP2006169544A (ja) 2004-12-10 2006-06-29 Mitsubishi Materials Corp 金属微粒子とその製造方法とその含有組成物ならびにその用途
JP2007219103A (ja) 2006-02-15 2007-08-30 Fuji Xerox Co Ltd 電子写真用トナー、電子写真用現像剤および画像形成方法
JP2013509479A (ja) * 2009-10-29 2013-03-14 ザ ユニバーシティー オブ サリー パターン化された乾燥ポリマーを作製する方法およびパターン化された乾燥ポリマー
WO2016010049A1 (ja) * 2014-07-16 2016-01-21 コニカミノルタ株式会社 積層フィルムおよびその製造方法
JP2021501832A (ja) * 2017-11-04 2021-01-21 ソナ ナノテック 金属ナノ粒子およびその製造方法
JP2021012778A (ja) 2019-07-04 2021-02-04 日立金属株式会社 ワイヤハーネスの製造装置
JP2021151226A (ja) 2020-03-19 2021-09-30 三菱ケミカル株式会社 植物の高密度栽培方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006118036A (ja) 2004-07-08 2006-05-11 Mitsubishi Materials Corp 金属微粒子とその製造方法とその含有組成物ならびにその用途
JP2006070300A (ja) * 2004-08-31 2006-03-16 Mitsubishi Materials Corp 金属微粒子含有組成物、およびその用途
JP2006169544A (ja) 2004-12-10 2006-06-29 Mitsubishi Materials Corp 金属微粒子とその製造方法とその含有組成物ならびにその用途
JP2007219103A (ja) 2006-02-15 2007-08-30 Fuji Xerox Co Ltd 電子写真用トナー、電子写真用現像剤および画像形成方法
JP2013509479A (ja) * 2009-10-29 2013-03-14 ザ ユニバーシティー オブ サリー パターン化された乾燥ポリマーを作製する方法およびパターン化された乾燥ポリマー
WO2016010049A1 (ja) * 2014-07-16 2016-01-21 コニカミノルタ株式会社 積層フィルムおよびその製造方法
JP2021501832A (ja) * 2017-11-04 2021-01-21 ソナ ナノテック 金属ナノ粒子およびその製造方法
JP2021012778A (ja) 2019-07-04 2021-02-04 日立金属株式会社 ワイヤハーネスの製造装置
JP2021151226A (ja) 2020-03-19 2021-09-30 三菱ケミカル株式会社 植物の高密度栽培方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEM. COMMUN., 2003, pages 2376 - 2377
LI. S ET AL., NANO RES, vol. 4, 2011, pages 723 - 728
N. R. JANAHOKA, J. PHYS. CHEM, vol. 105, 2001, pages 4065
Y YUHOKA, J. PHYS. CHEM, vol. 101, 1997, pages 6661

Also Published As

Publication number Publication date
EP4286948A1 (en) 2023-12-06
US20230384703A1 (en) 2023-11-30

Similar Documents

Publication Publication Date Title
EP3561598B1 (en) Toner
DE102019101893B4 (de) Toner
CN103576480B (zh) 色调剂、显影剂、色调剂盒、处理盒和图像形成设备
DE102015110224B4 (de) Toner
JP4072041B2 (ja) 薄膜被覆微トナーの製造方法
JP6234345B2 (ja) トナー
DE102016116610A1 (de) Toner
DE112013003295T5 (de) Toner
DE102005051851B4 (de) Verfahren zur Herstellung von Toner und Toner
DE102020117139A1 (de) Toner
EP3709087B1 (en) Toner
JP7023721B2 (ja) トナー
DE102005017309B4 (de) Toner für die Entwicklung eines elektrostatischen Bildes und Verfahren zu seiner Herstellung
JP2022117406A (ja) トナー及び画像の読み取り方法
DE102020117140B4 (de) Toner
US20210132519A1 (en) Toner
WO2022163709A1 (ja) トナー及び画像の読み取り方法
CN116762043A (zh) 调色剂和图像读取方法
JP7566656B2 (ja) トナー、トナーの製造方法、及び画像の読み取り方法
JP7566666B2 (ja) トナー及び画像の読み取り方法
JP6679323B2 (ja) トナー粒子の製造方法
JP5253046B2 (ja) 画像形成方法
JP4938932B2 (ja) マスターバッチ顔料、トナーの製造方法、カラートナーおよびその製造方法、画像形成方法、および画像形成装置
DE112019000375T5 (de) Weisser Toner
JP2018045004A (ja) トナー及びトナーの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745928

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280012088.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022745928

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022745928

Country of ref document: EP

Effective date: 20230829